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Abstract

Unipotent Radicals of the Standard Borel and Parabolic
Subgroups in Quantum Special Linear Groups

Andrew Cecil Jaramillo

In this dissertation we find noncommutative analogues of the coordinate rings
of the unipotent radicals of the standard Borel and standard parabolic subgroups
in quantum special linear groups. In each case, two subalgebras are defined, both
of which can be considered quantizations of the unipotent radical of a standard
Borel or a standard parabolic subgroup. Presentations are given for these alge-
bras. It is also shown that these algebras arise as a coinvariant subalgebra of
a natural comodule algebra action induced from the Hopf algebra structure on

quantum special linear groups.
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Introduction

Quantum groups were first discovered in the 1980’s in mathematical physics
while studying the quantum inverse scattering method. Since that time there has
been much work done on these groups, studying their various properties. Still
though, there is not yet a widely accepted axiomatic definition for them. (See
[1, Problem I1.10.1].) Nevertheless, this has not prevented many objects being
given the title of “quantum group.” What many of these groups have in common
is that they are noncommutative deformations (in some sense) of classical k-
algebras with a parameter ¢, with the property that as g approaches special
values (e.g. ¢ — 1), we recover the classical k-algebra. Thus, a quantum group
is a noncommutative object that “acts like” some classical object, and from the
quantum group the classical structure is recovered.

For instance, the quantized coordinate ring of SL,,; or quantum SL,; for
short, is a noncommutative deformation of O(SL,1), the coordinate ring of

SL,,+1. If we take a presentation for quantum SL,,;; (see (1.19)) — (1.23))), then as

q — 1 we get a presentation for O(SL, ). Thus, we may think of quantum SL,, |



as a coordinate ring of a “noncommutative space” which “limits to” O(SL,41).
Of course this can be made more precise (see [6]), but the basic idea is the follow-
ing: quantum SL,,,; is the coordinate ring of a space that has “vanished” leaving
behind the “shadow” of SL,;1.

With this general framework of a quantum group in mind, the purpose of the
present document is to define and study the properties of quantized coordinate
rings for the unipotent radicals of standard Borel and standard parabolic groups
of SL,,+1. To do this we remind the reader of the classical version of these groups,

and show obstacles to finding quantum analogues of them.

Standard Borel Subgroups and their Unipotent Radicals in
SLn+1

In SL,;+; the positive (negative) standard Borel subgroup B* (respec-
tively B~) is the subgroup consisting of all upper (lower) triangular matrices
in SL,;1. The positive (negative) unipotent radical N (respectively N7)
of BT (respectively B™) is the subgroup of upper (lower) triangular unipotent
matrices in BT (respectively B™).

Since B* are closed subvarieties of SL, 1, it follows that for the coordinate

rings O(B*) we have

O(B) =2 O(SLyp11)/(X;; | i>7) and  O(B7) =2 O(SL,y1)/(Xy | i < 5).



Similarly, since N* are closed subvarieties of SL,;, for the coordinate rings

O(N#) we have

ONH)2O(BH/(Xy—1]i=1,...,n,n+1).

We now wish to “quantize” these coordinate rings using the above general
framework. Moreover, since B* are Poisson-algebraic subgroups of SL,,; we
also require the semiclassical limits, as in [6], of O,(B¥) to be O(B*) as Poisson-
algebras. Having this property does not leave us much choice in defining O,(B?*).
Thus, following [25, Section 6.1] we define the quantized coordinate rings of
the standard Borel subgroups or quantum standard positive (negative)

Borel subgroup for short, to be

O0y(B*) = 0,(SLun)/(Xy | > ) and Oy(B7) := O,(SLusr)/{X,y | i < j).

Attempting to define the quantized coordinate rings of the unipotent radicals

in the same way as in the classical case gives us

O,(BF)/(Xu—1|1<i<n+1).



However, this would not be helpful to us since relation (1.19)) in O,(SL,1) implies
that for all ¢ # j

Xij = XuXij = qXi; Xii = ¢ Xy

For q # 1 this implies X;; = 0 for all ¢ # j. Thus, O,(N*) = k (|25, Remark
6.3]). Though this may be a nice algebra to study, it is not a particularly useful
analogue to the classical setting. Therefore, we must try and define O,(N*) in
another way.

There are (surprisingly) few definitions found in the literature although some
authors (e.g. [4]) have defined O(N*) to be Uz (sl,11); since when ¢ — 1 we
recover O(N*). This definition “quantizes” O(N¥) however, we would like to
find an algebra more directly related to O,(B¥). Since N* are not Poisson-
algebraic subgroups of B* there are fewer requirements when defining quantized
coordinate rings for them. In contrast to the classical case, there are no “natural”
quotient algebras of O,(B*) that reduce to O(N*) when ¢ — 1. (See [25, Remark
6.3.].) Nevertheless, there exist candidate subalgebras of O,(B*) that do have this
property; some of which were defined in [8], and thus are good candidates for the
definition of O,(N¥).

Another possible way to define O, (N*) is to first note that B* is the semidi-
rect product T'x N* where T is the diagonal subgroup (standard maximal torus)
of SL,11. Thus, O(N?*) is the algebra of coinvariants using the corresponding

coaction of O(T) on O(B*). Hence, another possible definition for O,(N*) is



as the subalgebra of coinvariants for a natural coaction of a quantized standard
maximal torus, O,(T), on O,(B*) using the Hopf algebra structure of O,(SL,1).

Therefore, with this in mind we define two subalgebras in O,(SL,1) which
can be considered quantized coordinate rings for the unipotent radicals of
positive (negative) standard Borel subgroups. Presentations for these subalgebras
are found and each of these subalgebras has the property that when ¢ — 1, the
coordinate ring of the standard unipotent radical is recovered. Moreover, the

following properties are also shown:

(i) All of the quantized coordinate rings for the unipotent radical of a standard

Borel subgroup are isomorphic.

(ii) Each quantized coordinate ring for the unipotent radical of a standard Borel
subgroup is the coinvariant subalgebra of a natural coaction of the quantized

standard maximal torus on the quantum standard Borel subgroup.

(iii) The quantized coordinate ring of a standard Borel subgroup is a smash
product of a quantized unipotent radical and the quantized coordinate ring

of the standard maximal torus.

(iv) Each quantized coordinate ring for the unipotent radical of a standard Borel
subgroup is isomorphic to the quantized universal enveloping algebra of the

standard nilpotent subalgebra of sl,, ;.



It follows that all of the above possibilities for defining a quantized coordinate

ring for the unipotent radical of a standard Borel will lead to isomorphic algebras.

Standard Parabolic Subgroups and their Unipotent Radi-
cals in SL,

In SL,.; a positive (negative) standard parabolic subgroup is a sub-
group that contains a positive (negative) standard Borel subgroup. In particular,
standard Borel subgroups and SL,,; are examples of standard parabolic sub-
groups.

In general though, positive (negative) standard parabolic subgroups are com-
posed of matrices in SL,,; that are “upper (lower) triangular block matrices.”
That is, the matrices in the subgroup can be written with m x m block matrices
on the diagonal (with each block possibly a different size m) and 0 on the entries
below (above) these blocks. The subgroup of matrices in SL,;; that are nonzero
on the “block diagonal” and zero elsewhere also form a subgroup called the Levi
subgroup for the parabolic group. Moreover, the positive (negative) unipo-
tent radical of a positive (negative) standard parabolic is composed of upper

(lower) triangular matrices with identity matrices on the “block diagonal.”



For instance, in SL;, an example of a positive standard parabolic group is

composed of matrices in SL; of the following form:

a1 alg | 413 ai4 als ale Ay

ag1 agg | A23 A4 Az Age A7

0 0 |as3 ass|ags ags asy

0 0 | a3 ass | ass ase aur

0 0 0 O |ass ass asy

0 0 0 0 | ags ags agr

0 0 0 O |arps ar arr

The Levi subgroup is composed of matrices that are nonzero in the indicated
diagonal blocks and zero elsewhere. In addition, the positive unipotent radical

consists of matrices of the following form:

1 O0jaz aq a;s ag air

0 1]ags ags ags ags agr

0 0| 1 0 |ass ass agry

0 0 0 1 aqs A4 Aqr




Just as with standard Borel subgroups, their unipotent radicals, and the stan-
dard maximal torus; standard parabolic groups, their unipotent radicals, and the
Levi subgroup are closed subvarieties of SL,, ;1.

When attempting to “quantize” these coordinate rings, again following [25]
Section 6.1] a quantized coordinate ring for a positive (negative) stan-
dard parabolic subgroups or a quantum positive (negative) standard
parabolic subgroup, can be defined in the same way as the quantized coordi-
nate ring of a standard Borel was defined. That is, by direct analogy with the
classical case. Similarly, we define the quantized coordinate ring of the Levi
subgroup by direct analogy with the coordinate ring of the Levi subgroup.

However, just as with unipotent radicals of standard Borel subgroups, at-
tempting to define quantized coordinate rings for the unipotent radicals as the
natural quotient algebras will give us an algebra isomorphic to k. Therefore,
we must find a quantized coordinate ring of the unipotent radical of a standard
parabolic in another way.

Again, just as with the unipotent radical of a standard Borel, we define two
quantized coordinate rings for the unipotent radical of a positive (neg-
ative) standard parabolic group, which are generated by products of quantum

minors of a certain form. We then show the following:



(i) A quantized coordinate ring for the unipotent radical of a standard parabolic
subgroup is the subalgebra of coinvariants of a natural coaction of the quan-

tized standard Levi on the quantum standard parabolic subgroup.

(ii) The quantized coordinate ring of a standard parabolic subgroup is the smash
product of a quantized unipotent radical of the standard parabolic subgroup

and the quantized coordinate ring of the standard Levi.

(iii) A presentation for a quantum unipotent radical for a positive (negative)
standard parabolic subgroup is found, and has the property that when ¢ — 1

the coordinate ring of the standard unipotent radical is recovered.

(iv) A quantized coordinate ring for the unipotent radical of a standard parabolic
subgroup is a noncommutative UFD and satisfies the Dixmier-Moeglin Equiv-

alence.

We note that a quantum standard Borel is a special instance of a quantum
standard parabolic, hence many of the theorems from Chapter 2 are special in-

stances of theorems from Chapter 3.



Chapter 1

Background

1.1 Notation and Conventions

Let k be a field. Unless otherwise noted, we make no further assumptions on
k. For two k-vector spaces V', W we use V ® K to denote V ®; W. All rings will

contain 1. All ring homomorphisms have the property that f(1) = 1.

1.2 Algebras, Coalgebras, Bialgebras, and Hopf

Algebras

Definition 1.1. A k-algebra is a ring, A, with a ring homomorphismn : k — A
,whose image is contained in the center of A. The map n is called the structure

map for the algebra.

10



Using the map 7, A is a k-vector space by the following rule:
ra=n(r)a

for all r € k and a € A.

A k-algebra homomorphism or a morphism of algebras is a ring homo-
morphism f: A — A’ so that f(n(r)) =n'(r) for all z,y € A and r € k where 7/
is the structure map of A’.

Changing our point of view slightly, multiplication in the ring A may be
thought of as a k-linear map u: A ® A — A which satisfies certain axioms.
Specifically, a k-algebra A is a k-vector space with k-linear maps n and p that

make the following diagrams commute:

A9 A A2 A A (1.1)

o I

AR A A

“w

N

where [, r are the canonical isomorphisms defined by [(s®a) = sa and r(a® s) =

as for all s € k and a € A.

11



We may also reinterpret a k-algebra homomorphism by using using the maps,

1 and 7. Specifically, f is a k-algebra homomorphism if and only if
fop=p'o(f®f) and fon=1

where 4/ is multiplication map and 7’ is the structure map on A’.
For any k-algebra A we may form the opposite algebra denoted A°® whose
underlying vector space is the same as A and whose structure map is the same

as A, but where the multiplication map, u°?, is defined by
pP(a®@b) = pb®a)

for all a,b € A. Notice, A is a commutative algebra if and only if u = p°P.
A k-linear map f : A — B so that f(ab) = f(b)f(a) for all a,b € A is
referred to as an anti-homomorphism. We note that an anti-homomorphism

is a morphism f: A — B°P.

Definition 1.2. A k-coalgebra is a k-vector space, C, equipped with k-linear

maps A : C — C®C and e : C — k that make the following diagrams commute:

C * ~CeC (1.3)

N s

C®CT®>MC®C®C

12



ko<l ocgo i ek (1.4)

RGP

C

where A, p are the canonical isomorphisms defined by A(c) = 1®c and p(c) = c®1
forall c e C.
The map A s referred to as the comultiplication map and € is called the

counit.

Note that a coalgebra dualizes the definition of an algebra. That is, dia-
gram reverses the arrows of diagram (1.1)) and diagram reverses the
arrows of diagram . For this reason the axiom diagram is referred to
as coassociativity and the axiom diagram is referred to as the counital
axiom.

A coalgebra homomorphism or a morphism of coalgebras is a k-linear

map f: C — C’ such that
(f@floA=Aof and e=¢cof

where A’) ¢ are the comultiplication and counit of C’, respectively. Again note
that a morphism of coalgebras dualizes the definition for a k-algebra homomor-
phism.

Let op : C ® C — C ® C, be the k-linear map defined by op(c® ') = ® ¢

for ¢, € C. For any coalgebra C' we may form the co-opposite coalgebra

13



denoted C°°? whose underlying vector space is the same as C', but where the

comultiplication map, AP, is defined by
AP :=opo A.

A coalgebra is co-commutative if A = A°®. A morphism f : C — D is

referred to as an coalgebra anti-homomorphism from C to D.

Sweedler’s Notation

For all x in a coalgebra C' we have
Az) = Zx; ® .
i=1

In order to make what follows more readable, we adopt Sweedler’s sigma no-

tation. That is, we will denote the above expression by

Ax) = Z 1 Q Ty
()

where x; and x5 stand for the first and second components of the pure tensors in

A(x). Using this notation, coassociativity of A becomes

SUY @@ @) | @ =Y 210 | Y (22)1 @ (22)s
(z)

(@) \(z1) (z2)

14



Since this is still a bit unwieldy, simplifying notation further we denote either

side of this equation by

> 11 @1 @1,
@

In this notation f is a coalgebra homomorphism if and only if

Zf(xl) ® f(22) = Z f(@)1® f(2)s

(z) (f(=))

for all z € C'. Finally, we note that
A°P(x) = sz ® x1.
(z)

Bialgebras and Hopf Algebras

Definition 1.3. A bialgebra is a k-algebra, H, that is also a coalgebra so that
the comultiplication A and counit € are morphisms of algebras. FEquivalently,
from [17, Theorem II1.2.1] H is a bialgebra if the maps p and n are coalgebra

morphisms.

A morphism of bialgebras is a map that is both a morphism of algebras
and a morphism of coalgebras.

For a bialgebra H, let H°? denote the vector space that has the same under-
lying k-vector space as H, but with structure map 7, multiplication u°?, comul-

tiplication A, and counit €. Similarly, H°P has structure map 7, multiplication

15



i, comultiplication A°P and counit ¢, From [17, Proposition 11.2.2] if H is a
bialgebra, then so are H°P are HP.

Let C be a coalgebra and A a k-algebra.

Definition 1.4. The convolution product, , of two k-linear maps f,g : C —

A is defined as the linear map f*g:C — A such that

(fxg)(w) = flar)g(wa).

(2)

Notice, for any linear map f : C' — A that f xne = ne x f = f. Hence, C*

and Homy(C, A) are k-algebras with multiplication * and unit, ne.

Definition 1.5. Let v : C — A be a k-linear map where v(1) = 1. Then 7 is

convolution invertible if there exists a k-linear map 7 : C' — A so that

VXY =F*ky=mn0¢€

Let H be a bialgebra. An antipode, S, is an endomorphism of H so that

idx«S=Sxid=noe.

That is, the identity map on H is convolution invertible with convolution inverse

S.

16



Using Sweedler’s notation, this can be rewritten as

ZS($1)$2 = les(xg) =e(x)-1
(z)

()
forx € H.
Definition 1.6. A Hopf algebra H is a bialgebra with an antipode, S.

From [17, Theorem I1.3.4] we have that S is an algebra anti-homomorphism.
A morphism of Hopf algebras is a map f : H — H’ that is a morphism
between the underlying bialgebras so that fo.S = S’ o f where S and S’ are the
antipodes of H and H’, respectively.

From [17, Corollary I1.3.5] H°P°P is a a Hopf algebra with antipode S. More-
over, if S is an anti-isomorphism, then H°? and HP are also Hopf algebras with

antipode S~

Definition 1.7. A Hopf ideal I in a Hopf algebra H is an ideal of H so that

ICkere and A(I) CH®I+1® H and S(I) C I.

If I is a Hopf ideal then H/I is also a Hopf algebra with comultiplication A,
counit €, and antipode S induced from A, ¢, and S [23, Section 1.1]. We say H/I
is the quotient or factor Hopf algebra induced from the Hopf ideal I.

The Hopf dual for H is the subspace of H* defined by

He:={f e H"| f(I)=0some ideal I with dimy(H/I) < co}.

17



We note that H° is a subalgebra of H*. Also, H° is a Hopf algebra using the

transpose of the comultiplication map in H.

1.3 Modules, Comodules, and Comodule Alge-

bras

Definition 1.8. Let A be a k-algebra with structure map n and multiplication map
w. A (left) A-module M, is a k-vector space with a linear map pipr - AQM — M

such that the following diagrams commute

p®id

ARAQ MA@ M (1.5)
id®/.uuj j/ﬂvf
A ® M 12374 M
A (1.6)

Y

where Iy is the canonical isomorphism defined by l,(s ® a) = sa for s € k and
a € A. The map py is called the structure map for the A-module M or the

action of A on the module. A right A-module is defined similarly.

A morphism of A-modules is a linear map f : M — M’ so that puyp o (id®
f) = fouyn. Fora € Aand m € M we will often denote pp(a ® m) by am or

a.m. Similar conventions also hold for a right module.

18



Modules over a Hopf Algebra

Let H be a bialgebra. If M and M’ are both H-modules, then M ® M’ is also

an H-module with H-action defined by

h.(m®@m') = Z hy.m & hy.m/
(h)

for alme M, m' € M', and h € H.
Now suppose that H is a Hopf algebra. For M an H-module, the dual H-
module, denoted M*, is a left H-module on the dual space (i.e. the space of

linear functions f : M — k) with H-action defined by

(h.f)(m) = f(S(h).m)

forall f € M*, h € H, and m € M. In addition, we also define a right H-module
on M* given by

(f-h)(x) = f(h.x)

forallhe H, f € M* and z € M.

Comodules, Comodule Algebras, and Module Algebras

Definition 1.9. Let C' be a coalgebra. A (left) C-comodule, M, is a k-vector

space with a k-linear map Ay : M — C ® M such that the following diagrams

19



commute:

Ang

M CoM (1.7)
AML lM®AM

C’®MT®>idC®C'®M

FoM<YoeMm (1.8)

where Ay is the canonical isomorphism defined by Ay (m) = 1®@m for allm € M.
The map pyy is called the coaction of the coalgebra. A right C-comodule is

defined similarly.

A morphism of C-comodules is a linear map f : M — M’ so that (id ® f) o
Ay = App o f.

Note the diagrams in the definition of a comodule dualizes the definition of a
module. That is, diagram reverse the arrows of diagram and diagram
reverses the arrows of diagram . We note that C'is a C-comodule using

the comultiplication A.

Definition 1.10. Let H be a bialgebra and A an algebra. We say A is an H-

comodule algebra (on the left) if
(1) A is a left H-comodule with coaction Ay : A — H® A;
(i) Aa is a morphism of algebras.

An H-comodule algebra on the right is defined similarly.

20



It follows from |17, Proposition II11.7.2] that if s : AQA — Aandns: k — A
are the structure maps for the algebra A and A is a left H-comodule, then A is

an H-comodule algebra if and only if us and 14 are H-comodule morphisms.

Definition 1.11. Let H be a bialgebra and A an algebra. We say A is an H-

module algebra (on the left) if
(i) A is an H-module;

(i1) The multiplication map and structure map for A are morphisms of H-

modules.

An H-module algebra on the right is defined similarly.

1.4 Smash Product and Coinvariants

Definition 1.12. Let A be a left H-module algebra. The (right) smash prod-

uct denoted A#H 1is defined as follows,

(i) As a k-vector space A#H = A ® H and we write a#h for the elements

a® h;

(11) Multiplication is defined by

(a#th) (b#k) = a(hy.b)#hak
(h)

21



for all a,b € A and h,k € H.
Similarly, if A is a right H-module algebra the left smash product H#A

has underling k-vector space H @ A and multiplication defined by

(h#a)(k#b) = > hki#(a.ka)b
(k)

for all h,k € H and a,b € A.

Definition 1.13. Let H be a bialgebra. A (left) coinvariant for a left H-
comodule algebra B is any element b € B so that Ag(b) = 1®b. Similarly, a right

coinvariant for a right comodule algebra is an element b so that Ag(b) =b® 1.

Since Ap is an algebra homomorphism, it follows that if a,b € B are left
(right) coinvariants then ab is also a left (right) coinvariant. Therefore, the left

(right) coinvariants of B form a subalgebra that we denote by B® 25,

Definition 1.14. Let H be a Hopf algebra, B a right H-comodule algebra, and
A = B®?28._ The comodule algebra B is called a (right) H-cleft extension
of A if there is an H-comodule morphism ~y : H — B where v(1) = 1 that is
convolution invertible (with convolution inverse 7). A left H-cleft extension

1s defined similarly for a left H-comodule algbera.

22



According to a result of [2], shown in [23, Proposition 7.2.3], for B an H-cleft

extension with o : H ® H — A defined by

= > (h)y (k)7 (haky)

(h),(k)

there is a left H-action on A is given by

ha:=Y_ y(h)ay(hs),
(h)

and there is a well-defined multiplication on A ® H given by

(@@h)(b@k) =Y a(hi.b)o(ha, k1) @ hsks (1.9)
(1), ()

for all a,b € A and h,k € H.

Similarly, if B’ is a left H-cleft extension of A" with

Z V(hakr)y(h2)v(k2)

there is a right H-action on A’ is given by

a.h = ZT(hl)a’V(}h)v
(h)
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and there is a well-defined multiplication on H ® A’ given by

(h@a)(k@b) =Y hiky ® o’ (hy, ks)(a.h3)b (1.10)
(h).(k)

for all a,b € A" and h,k € H.

Definition 1.15. The k-algebra with multiplication defined by equation (1.9) is
called a (right) crossed product of A and H. It is denoted A#,H and the
vectors a®h are denoted by a#h. Similarly, H#, A’ is the left crossed product

of H and A" with multiplication defined by equation (1.10)).

For the remainder of this section H will be a Hopf algebra, B an H-comodule

algebra, and A = B® 25,

Definition 1.16. Let B be an H-cleft extension of A with map vy : H — B and B’
be an H'-cleft extension of A" with map ~' : H — B'. Let 7 : H — H' be a Hopf
algebra homomorphism and let f : A — A’ be a k-algebra homomorphism. The
maps T and f are H-cleft intertwining if they have the property that v'T = f~

and 't = 7. Similar definitions also hold for left H-cleft extensions.

Proposition 1.17. Let 7 : H — H’ be a Hopf algebra homomorhpism and
f : B — B’ a k-algebra homomorphism with f(A) C A’. If 7 and f are H-
cleft intertwining maps then the map f @ 7 : A#,H — A'#,H' is a k-algebra
homomorphism.

Stmilar statements also hold for left crossed products.
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Proof. First note that for all h, k € H we have

Moreover, for all h € H and a € A we have

f(ha)=f (Z ”Y(h1>a7(h2)) = Z f(v(h1)) f(a) f(7(h2))
(h)

(h)

= 5" () Fa)V (7 (h2)
(h)

= > A (7)) f(@)7 (7(h)2) = 7(R).f(a).
(m(h))

Since f ® 7 is a k-linear map, we need only check that it is an algebra homo-

morphism. Indeed, for all h,k € H and a,b € A we have

(f @7) ((agth)(b#k)) = (f @ 7) (Z a(hl.b)a(hg,kl)#h3k2)

(h) (k)

= > Fa(h1.0) f(o(ha, k)7 (hsks)
(h)(k)
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— Z f(a)f(h1.b)o" (T(ha), 7(k1))#7(hs)T(k2)
(h) (k)

= 3" F@) (). 0) (v (o). 7 (ko) (hs)7 (o)
(h) (k)

= > H@r () fO)o (R}, (k) )FT ()57 (k)

(T() (7 (k)

= (fla)#7(R))(f(B)#(K)). =

We may denote the map f ® 7 by f#7. Moreover, if 7 and f are isomorphisms,

SO is f#T.

If v is a k-algebra homomorphism then

= Y y(hak1)V(hoka) = (v x7)(hk) = e(hk) - 1
(1), ()

for all A,k € H. In this case, we note that multiplication becomes

(ath) (b#k) =) a(hy b)#hok
(h)

foralla,b € Aand h,k € H. That is, A#,H is exactly the (right) smash product
from Definition [1.12] Similarly, if v is a homomorphism, the left crossed product

becomes the left smash product.

26



Theorem 1.18 (|23, Proposition 7.2.3]). Let H be a Hopf algebra, and B an

H-cleft extension of A. There is a k-algebra isomorphism ® : A#,H — B given

by ®(a#h) = ay(h).
Similarly, for B" a left H-cleft extension of A’ there is a k-algebra isomorphism

V: H#,A — B defined by V(h#a) =v(h)a.

1.5 Prime Ideals and H-prime ideals

Let R be a ring.

Definition 1.19. A prime ideal P in R is any proper ideal of R such that

whenever I and J are ideals of R with IJ C P then either I C P or J C P.

The set of all prime ideals for R is denoted by spec(R). A completely prime
ideal P is an ideal so that R/P is a domain. Note, if P is completely prime then
P is prime. (The converse is not true, generally.)

Let H be a group acting by automorphisms on R.

Definition 1.20. An H-ideal K is an ideal of R so that h.K = K for allh € H.
An H-prime ideal K is a proper H-ideal so that whenever I,J are H-ideals of

R so that 1J C K then either I C K or J C K.

The set of all H-prime ideals for R is denoted by H-spec(R).
Suppose that the group H acting on R is an affine algebraic group over k. The

action of H on A is rational if A is the directed union of finite dimensional H-
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invariant k-subspaces V;, so that the restriction maps H — GL(V;) are morphisms

of algebraic varieties.

1.6 Gelfand-Kirillov Dimension

Let R be a k-algebra. If V and W are subspaces of R, let VW denote the set
of all finite sums of products vw where v € V and w € W. Moreover, we denote

V0 =k and for any natural number n denote V" = V"1,

Definition 1.21. A (nonnegative, exhaustive) filtration for R is some in-

dexed family of subspaces {R; | i € Z>o} so that

(Z) R; C Rj fOT’i <75

(ZZ) RZR] C Ri+j fOT’ all i,j,’

(iii) U, R = R.

The filtration is standard if R; = R} for all i. The filtration is finite if

dim R,, < oo for all n.

Definition 1.22. A k-algebra R is affine if it is generated as a k-algebra by a

finite set of elements.

If R is affine then R is necessarily generated by a finite dimensional vector

space V called a generating subspace for R. Moreover, R has a standard
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finite filtration generated by V, given by Ry = V' = k and R, = > , V"’ for
each n € N.

For a generating subspace V' with standard filtration {R;} as above, let

gv := limsup((log dim R;)/ log ).

1—+00
Lemma 1.23 ([22, Lemma 8.1.10]). Let V, V' be generating subspaces for stan-
dard filtrations {R;} and {R;} on a ring R. Then gy = gy.
Using this Lemma, we have a well-defined invariant of the ring R.

Definition 1.24. The Gelfand-Kirillov dimension or GK dimension for an
affine k-algebra R is

GK.dim (R) =gv

for any choice of generating subspace V.

Recall the definitions and notation of Section We have the following

Lemma.

Lemma 1.25. Let H be a Hopf algebra and A an H-module algebra. Suppose
U C WH#YV is a generating subspace for A#H where V s a finite dimensional
subspace of H and W is a finite dimensional subspace of A. Assume HW C W

and A(V) C H®V. Then

sup(GK.dim (A), GK.dim (H)) < GK.dim (A#H) < GK.dim (A) + GK.dim (H).
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Proof. The first inequality follows from the fact that A and H naturally imbed
into A# H as the the subalgebras A#1 and 1#H, respectively.

Let n be a natural number and suppose U™ C W"#V™. We first observe that
HW" C (HW)W" ! C W™ Suppose b € W" and k € V" with a € W and
h € V. Since hy € V and h;.b € W™ and by how multiplication on A#H is

defined, we have

(agth)(b#k) =) ahy b)#thok € WH V™,
()

Hence, U™+t C W4y 7+ Therefore UF C W*#VF for all k € N.

Next, let S and T be the subalgebras of A and H generated by W and V/,
respectively. From what we have just shown, it follows that dim(A#H), <
(dim Sk)(dim(7}) for all nonnegative integers k. Thus, by [22, Lemma 8.1.7 (ii)]

the proposition follows. O

We note that Lemma [I.25] also holds for a right smash product H# A making

the appropriate changes.
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1.7 Skew Polynomial Rings

Let R be a ring, o an automorphism of R, and § a map on R. The map ¢ is

an a-derivation if

d(rs) = a(r)d(s) + d(r)s and d(r+s)=20(r)+d(s)

for all r,s € R.

Definition 1.26. A skew polynomial ring over R, denoted S = R[x;«, 0], is

a ring satisfying the following conditions:
(i) S is a ring containing R as a subring,
(ii) © € S;
(iii) S is a free left R-module with basis {1,z,2°,...};
(iv) « is an automorphism of R and 0 is an a-derivation;
(v) xr = a(r)x +(r) for all r € R.

Definition 1.27. A skew polynomial k-algebra is a skew polynomial ring

S = R[x;q, 0] so that R is a k-algebra and o, § are k-linear. It follows that S is

a k-algebra.

We say

S = Rlz1; 00, 01][w2; 2, 02] - - - [Tty O]
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is an iterated skew polynomial ring if
(R[xl; o, 51][352; g, 52] T [Iz‘—l; A1, 5i—1]) [%‘? Qg 5z']

is a skew polynomial ring over R[z1;aq,01][x2; g, o] -+ - [x;_1; i1, 8;_1] for each

i=1,2,...,n.

Lemma 1.28. Let S = R[x;«, 0] be a skew polynomial k-algebra and let V' be a
generating subspace of R. Suppose &' is a an a-deriwation of R. If 6(v) = §'(v)

for allv eV then 6 = 0.

Proof. By hypothesis, for all v € V' we have §(v) = ¢'(v). Proceeding inductively,
suppose for all w € V" that 6(w) = §'(w). Let z € V"™ Then z = Y, vw;

where v; € V and w; € V™. Hence,

)

— Z (a(v;)d" (w;) + 8" (vi)w;) = & (Z ini> =d'(2).

i

6(z) =19 (Z viwi> = Z ((v;)0(w;) + 6 (v;)w;)

Thus 6(z) = &'(2) for all 2 € V™. Therefore, for all N € N if z € V¥ then
§(z) = 0'(2). Since every z € R is in V¥ for some N large enough, it follows that

d=17". O
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Definition 1.29. Let A\ a nonzero element of k with A # +1. For all m € N

define

A\

[m])\ = W

We define [0],! = 1 and for m € N we define

[mh' = [m]x[m — 1]>\ cee [1])\

Finally, for m € Z>y and 1 = 0,1, ..., m we define

Lemma 1.30. Let S = R[z;«a, 8] be a skew polynomial k-algebra. Suppose that
ad = Noa for X a nonzero, non root of unity in k For allm € N and r,s € R we

have

Proof. See [1, Section 1.8.4]. O

Definition 1.31. Let S = R[z; a, 0] be a skew polynomial ring. The a-derivation

§ is locally nilpotent if for each r € R there exists an N € N so that 6™ (r) = 0.

Lemma 1.32. Let S = R[x;«,d] be a skew polynomial k-algebra and let V' be a

generating subspace for R. Suppose that ad = Ao« for some nonzero, non root of
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unity scalar A and that there exists an integer m so that 6™(v) =0 for allv € V.

Then § is locally nilpotent.

Proof. By hypothesis, there exists an m € N so that §™(v) = 0 for all v € V.

Proceeding inductively, suppose that for all w € V™ that there is an integer s so
that 6*(w) = 0. Let z € V"™ Then z = ), v;w; where v; € V and w; € V™.

From Lemma [1.30] we have

s+m

5 (z) = 6+ (Z viwi) -y (‘9 */;m)Awmk(sk(w)(wm’f(wi).

i k=0

If & > m then a*™™ %§*(v;) = 0 by assumption. Moreover, if k < m then
§5Tm=F(w;) = 0 by our hypothesis. Hence, for all z € V™! we have §°7™(z) = 0.
Since every element of R is in V'V for large enough N, it follows that ¢ is locally

nilpotent. O

CGL Extensions

Definition 1.33. A CGL extension is an iterated skew polynomial k-algebra
R = k’[.ﬁﬂl][l'g, T2, (52] Ce [[L’m7 Tm,s 5m]

equipped with a rational action of a k-torus H by algebra automorphisms, which

satisfies the following conditions:

(1) For all1 < j <k <m, 1,(z;) = \gjz; for some \; € k*.
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(i1) For2 <k <m, & is a locally nilpotent Ty-derivation on

Ri—1 = klz1][x2; T2, 0] . . . [Th—1; Th—1, O—1].

(i) The elements x1,--- ,x, are H-eivgenvectors.

(iv) For every 1 < k < m there is an hy, € H so that hy. |g,_,= T and

hi.xi = Az where A\, € k* is not a root of unity.

1.8 Root Systems

Let V' be a vector space over k.

Definition 1.34. A nondegenerate bilinear form on a vector space V is a

map (—,—) : V xV =k so that
(i) (—,—) is linear in both arguments;
(ii) If (z,y) =0 for ally € V then x = 0;
(111) If (x,y) =0 for allx € V then y = 0.
To emphasize the vector space V' we may write (—,—) as (—, —)y.

Definition 1.35. Let V' be a a finite-dimensional space with nondegenerate bi-

linear form (—,—). A root system ® for V is a set & C V so that
(i) ® is finite, ® spansV , 0 ¢ ®;
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(i1) If « € @, the only multiples of a in ® are +a;

11) For all o, B € ® we have 982) ¢ 7.
(1i1) ; ;

(a,@)

(iv) For all o, B € ® we have B — 2%@ € d.

The elements of ® are called roots.

For each a € ® we define a transformation s, of V' by

a (1.11)

forallveV.
If ® is a root system for V and ¥ is a root system of W then the two root
systems are equivalent if there is an invertible linear transformation f : V —

W that sends ® to ¥ so that for all &« € ® we have

fsa = Sf(a).f'

Definition 1.36. A base for a root system ® is a set I C ® so that
(1) 11 is a basis for V;
(i) Each root o € ® can be expressed as a linear combination of elements of 11
such that the coefficients are either all negative or all positive integers.

The roots for which the coefficients are nonnegative (relative to II) are called

the positive roots for ® . The roots for which the coefficients are nonpositive
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are called the negative roots for ®. The elements in II are called the positive

simple roots. From |14, Theorem 10.1], every root system ® has a base.

Definition 1.37. Let {ay,...,a,} be the set of positive simple roots for a root

system ®. The Cartan matrix of ® is the matriz C' so that Cj; = 9loiag)

(aj,05)°
Theorem 1.38 ([14, Proposition 11.1]). If ® a root system for V with base
{a1,...,a¢} with Cartan matrizc C' and @ a root systems for W with base
{ay, ..., ai} with Cartan matriz C', and Cy; = C}; for all i,j, then the bijec-

tion a; — o} extends to an equivalency of the root systems ® and @'.

Theorem [I.3§ essentially says that the Cartan matrix of ® determines ® up

to equivalence.

Weyl Group

Definition 1.39. The Weyl group W of ® is the subgroup of GL(V') generated

by the s, for a € ® from equation (1.11)).

From |14, Theorem 10.3] the Weyl group is generated by the s; := s,, where
«; is a positive simple root. A reduced word in the Weyl group is an irreducible
representation of a element of w € W as the product of the s;. The length of w
is the shortest possible length of a reduced word for w. There is a unique element
of longest length in the Weyl group called the longest word, which is denoted

by wy [1, Section 1.5.1].
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Irreducible Root Systems

Let @ be a root system for V' and ¥ a root system for W. The vector space
V @ W has a natural bilinear form induced from the bilinear forms on V' and W
given by

(01 + w1, v +wa)vew = (vi,v2)v + (w1, w2)w

for all v; € V and w; € W. If follows from [11, Proposition 8.3] that ® U ¥ is a

root system for V @ W, which we denote by & & .

Definition 1.40. A root system ® is reducible if ® = &, Dy where @y, Py # (.

A root system is irreducible if it is not reducible.

Theorem 1.41 (|14} Proposition 11.3]). Every root system ® can be decomposed
mto
D D Dy & -+ D P, where each ®; is an irreducible nonempty root sys-

tem. Moreover, this decomposition is unique.

From [14] Lemma 10.4 C] if ® is an irreducible root system, at most two root
lengths occur in ®. In this case we refer to the roots as long or short depending
on the length. If all roots are the same length, then all roots are considered short.

For an irreducible root system the bilinear form may be normalized so that
(av, &) = 2 for short roots. It follows this root system is equivalent to our original

one.
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Convention 1. Let ® be an irreducible root system. We fix some choice of
positive simple roots I1 = {oy, -, a,} with C = (¢;5) the Cartan matriz. The

bilinear form is assumed to have the property that (o, ) = 2 for short roots.

It follows from Convention [I| that for all positive roots c;,a; € II and «; a

short root, (ay, o) = ¢;j.

Dynkin Diagrams

Definition 1.42. A Dynkin diagram for a root system ® with Cartan matrix

C, is a diagram so that

(i) Each vertex is labeled by a simple root of a; € II and each simple root is

labeled by some vertex;

(ii) For each pair of distinct oy, «; € II there are C;;C}; edges drawn between

the vertices labeled a; and ay;

(iii) If the length of «; is shorter then the length of a; , then an arrow is drawn

pointing from the vertex labeled «; to the vertex labeled «;.

A Dynkin diagram is said to be an irreducible if is connected. Hence, a Dynkin
diagram is irreducible if and only if the root system is irreducible. Two Dynkin
diagrams are equivalent if there is a bijective map of the vertices that preserves

the number of edges and direction of the arrows between vertices.
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Theorem 1.43 (|14, Theorem 11.4] and |11, Theorem 8.27]). Every irreducible

Dynkin diagram is equivalent to one of the following:

Fy

G

oO—Oo0— -+ —O0—0
(651 6%) Qp—1 Op
O—O— -+ — 0O = O
aq Qo Qp_1 Qpn
O—O— - — 0 <= 0
(651 (%) Qp—1 Op

)

| &
O—O0— -+ —0—0
(0%} (6%} Op_2 Op_q

O

|

O—O0O—0—0—0
a %) as Oy (67

@)
| %
O—O0—0—0—0—0
(@51 (8% Q3 QY Qs Qg
O
Qg

O—0—0—0—0—0—0
(€3] %) as Oy (67 Qg Q7

O—O0 = O0—0
aq Qo a3 0y

0= 0

aq (8%

Theorem 1.44 ([14, Proposition 14.1]). There is a bijective correspondence

between the isomorphism classes of indecomposable finite dimensional complex

semisimple Lie algebras and irreducible root systems.
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Root and Weight Lattices

Definition 1.45. The groups

QH = {ZTiOéi‘T’Z'EQ, OéZ'EH} and ZII .= {Zk}&l‘klez, CKZ'EH}
=1

i=1
are called the rational root lattice and root lattice respectively.

For all « € ® set d, = (a;‘). From [11, Section 8.10] there exist w; € QII

called the fundamental weights with the property that (w;, oj) = dq; 05 for all

a; € II. The set of fundamental weights is denoted by (2.

Definition 1.46. The semigroups

A= {Z kw; | ki € Z, w; € Q} and AT = {Z kiw; | ki € Z>o, w; € Q}

i=1 i=1
are called the weight lattice and positive weight lattice, respectively.

It is straightforward to see that ZII C A and that for A € A and p € ZII we
have (A, ) € Z.

We may give A a partial order by defining A > 0 if there exists k; € Z>( so
that A\ = kiaq + koas + - -+ + k. If u, A € A we define > X if and only if

w—A>0.
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1.9 Quantum Universal Enveloping Algebras

Let ¢ € k™ with ¢ not a root of unity. Let g be the irreducible semisimple Lie

algebra with corresponding irreducible root system ®. Keeping in mind conven-

()

tion , for each o € ® denote ¢, = ¢% = ¢ 2 . Recall Definition m For all

m € N and o € ® we use the notation

[m]a == [mlg,
and

(mla! = [m]g,!
Finally, for m € Z>p and [ =0,1,...,m we set

Definition 1.47. The quantized universal enveloping algebra U,(g) is the
k-algebra with generators E,, F,, Kf\ﬂ for a, A € 11 presented with the following

relations: for all o, B, N\, pp € 11

KK '=K'K\,=1 (1.12)

KK, = K,K) (1.13)
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K\E, = (*E K, (1.14)

K\F, =q¢ " E,K, (1.15)
K,— K;!
1—-anp 1
> <—1>l( zw> Eo """ BB, =0 (1.17)
=0 @
1—anp

1— o
> (-1)’( la"‘ﬁ> Fa " FyFl =0 (1.18)

=0

(a,8)

(e,

where dqp s the Kronecker delta and aqp = 2

N

The quantized positive Borel subalgebra, denoted UZ°(g), is the subal-
gebra generated by the E, and the Kffl. Similarly, The quantized negative
Borel subalgebra, denoted U,(g)=’, is the subalgebra generated by the F,, and
the Ki'. Moreover, the positive nilpotent subalgebra of U,(g), denoted
U/ (g), is the subalgebra generated by all the E, and the negative nilpotent
subalgebra, denoted by U, (g), is the subalgebra generated by all the F,,. Fi-

nally, the the quantum torus, denoted by U(?(g), is the subalgebra generated

by the Ki.

Convention 2. We use the notation b; = E,,, F; = F,, and KZ-jEl = Kojfil.
Furthermore, we also adopt the convention that if I = (i1,i9,--in_1,in) where

each iy € {1,2,...,n} then

E[ — EilEig E

IN—1

E; and Fy=F,F, - F

IN—1

F;

N
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Moreover, Ey =1 and Fy = 1.

Let Ko, = (Kiﬂ)k for k € Zso and «; € I1. Since these elements commute,

for any X\ € ZI1 where A = kiaq + - - - + ko, we also use the convention that

We note, it follows from this convention that for A € ZII and 1 <1 < n we

have

K\E; = (M E K, and K\Fy = ¢ M EK,.

Hopf algebra Structure

U,(g) is a Hopf algebra with comultiplication A, counit €, and antipode S

determined by the following:

AF)=FoK '+10F, e(F}) =0 S(F) = —FK;
A(Ky) = K\ ® K, e(Ky) =1 S(Ky) = K;*

fori=1,2,...,nand X\ € IL.
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The Quantized Universal Enveloping Algebra U,(g)

Denote by U,(g) the algebra generated by the E,, I, with a € II and K for
A € € instead of just A € II. It is presented with relations as in equations
— (|1.18)), except we now allow A, € Q. It is also a Hopf algebra with the same
description as the Hopf algebra structure for U,(g), again allowing A € €.

The positive (resp. negative) Borel subalgebras of U,(g) denoted by UZ°(g)
(resp. Uq§0(g)) are defined analogously as above. Note that the positive and

negative nilpotent subalgebras for U,(g) are the same as for U,(g).

1.10 The Algebra of Matrix Coefficients

Weights and Weight Spaces

Continue with g as in Section Let V be a left U,(g)-module.

Definition 1.48. A nonzero vector v € V is a weight vector if it has that has

the property that there is a A € A and a homomorphism o : 11 — {1} such that

K0 = o(n)g™v

for all p € 11. The element X\ is called the weight for v and X\ is said to be of

type o.
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The set of weights for V' is denoted by Q(V). The set of all weight vectors
with weight A of type o, together with 0, is a subspace of V' which we denote by
Vire) and call it a weight space of V. If A is of type 1 we denote V|, 1) by Vi.

If a weight vector v € V has the property that E;v = 0 for all the E; € U,(g)
then v is called a maximal weight vector for V. Analogously, a weight vector

v € V is a minimal weight vector if F,u = 0 for all the F; € U,(g).

The Category %,(g)

Let V, denote the sum of the weight spaces of type o for a module V. From

[15 Section 5.2] we have

V=V,

We say a finite dimensional U,(g)-module V' has type o if V' = V,. In particular,
irreducible modules have a well-defined type. From, [15, Section 5.2 - 5.4] the
class of finite dimensional modules of type 1 is closed under direct sum, tensor
product, and duals. Therefore, we denote by %,(g) the full subcategory whose
objects are finite dimensional left U,(g)-modules of type 1. We note that from 15|
Section 5.2] there is an equivalence of categories between €, (g) and the category
of all finite dimensional U,(g)-modules of type o, for any o.

We collect some basic facts about €, (g) which can be found in [15, Chapters

5, 6].
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For V and W objects in %,(g) and V) and W, weight spaces, V), @ W, C
(V& W), and (Vy)* = (V*)_, where V* has the left action of U(g) from

Section (See 15 Section 5.3].)
Theorem 1.49. IfV € €,(g) then V is the direct sum of its weight spaces.
Theorem 1.50. Let V € 6,(g) be irreducible.
(1) V' contains a mazimal weight vector vy with weight A € A™T.
(ii) dim Vy = 1.
(11i) If v is any other weight for V then v < \.
(iv) Uy(g)= vy =V,

Similarly, V' also contains a minimal weight vector v_,, with weight —p € —A*

with analogous properties.

From Theorem [I.50] if A is the weight of a maximal weight vector v, then
we call vy a highest weight vector for I/ and A the highest weight for V.
Analogously v_, is called a lowest weight vector for V' and —p called the

lowest weight for V.

Theorem 1.51. For every A € A" there is an irreducible module V € €, which
has highest weight X. Moreover, if W is any other irreducible module in €, with

highest weight p, then V=W if and only if p = A.
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Taking account of Theorem we denote an irreducible module with highest

weight A by V(). Using this notation, we note V' = V(A if and only if 1 = .
g y V(A) g : (1) (A) y if p

Definition and Structure of C,(g)

Definition 1.52. ForV € 6,(g) and f € V* andv € V, a coordinate function

or a matrix coefficient is the linear functional c}fv in U,(g)* defined by

for all w € U,(g). The set of all coordinate functions is denoted by Cy(g).

Since the annihilator of V' is contained in the kernel of ¢}, and since V is
finite dimensional, ¢}, € Uy(g)°. Therefore, Cy(g) C Uy(g)°.

Note that using the standard addition and multiplication in U,(g)°, we have

Vew
fog,vdw

v W Veow

% W _
Cpypt Coy =C and CraComw = Cloguow:

Since %,(g) is closed under finite direct sums and tensor products it follows that
Cy(g) is a k-subalgebra of U,(g)°.
Finally, C,(g) is both a left U,(g)-module and a right U,(g)-module with

actions given by

v _ .V \4 _
U.Chy, = Choy and (Cha)U = Chapype
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Convention 3. For the irreducible modules V(i) in €,(g), we will often denote
c}/,f)“) simply by c;,. Moreover, for weight vectors v € V(u) and f € V(u)*
with weights v and —\ respectively, we may denote ¢, by either ¢, or ", .

Therefore, any proposition written with ¢, , will be independent of any choice of

weight vectors v or f.

1.11 Some Quantized Coordinate Rings

Define g =q — ¢~ .

Definition 1.53. The quantized coordinate ring for M, ; or quantum
(n + 1) x (n + 1) matrices, denoted Oy(M,11), is the k-algebra generated by

{Xi; | 1 <i,j <n+1} presented with the following relations:

Xij Xim = qXimXij for j <m (1.19)
X X = qX; X for i <1 (1.20)
Xij Xim = Xy Xij fori <land j >m (1.21)
Xij Xim — XimXij = ¢Xim Xy for i < land j < m. (1.22)

We note this presentation is from 25, Section 3.5] but replacing ¢! there with
q in our relations here. When ¢ — 1 we recover exactly the usual presentation

for O(M;,41).
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Definition 1.54. Let I,J C {1,2,...,n+ 1} with |I| = |J| =k # 0 and I =
{21,,Zk} wzth21<22<<zk (LndJ:{jl,,jk} ’U)Zth]l <]2<<]k

The k x k quantum minor [/ | J] is the element of O,(M,,11) defined by

[I | J] = Z (_q)é(U)Xilzjg(l) o 'Xik,ja(k)'

o€Sym,,

In particular we set

D:=[1,2,....,n+1|1,2,...,.n+1]. (1.23)

The element D is often referred to as the quantum determinant of O,(M,,11)

and from [19, 9.2 Proposition 9] belongs to the center of Oy(M,,11).

Definition 1.55. The quantized coordinate ring for GL,,; or quantum

GL,+1 s the k-algebra

Oq(SLi11) = Og(Myi1)[D*].

Definition 1.56. The quantized coordinate ring for SL,.; or quantum

SL,1+1 s the k-algebra

Oq¢(SLnt1) 1= Og(Mp+1)/ (D — 1) .

We note that when ¢ — 1 we recover exactly the usual presentation for O(M,,;1).
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We will often abuse notation in O,4(SL,1) and O,(GL,41) and will refer to
the coset which contains X;; simply by X;;. Similarly, we refer to the coset which

contains [/ | J] simply by [I | J].

Algebraic Torus Actions

Let

HY = (k%)™ x (k*)"*! (1.24)

and

H :={(u,v) € (k*>n+1 X (k*)nH | wy -+ Upgrv1 - Upyr = 1}

From [1, I1.1.16] there is a rational H-action on O,(SL,1) by algebra auto-

morphisms given by

(ZL, ’U).Xz‘j = 'LLZ"Uin' (125)

for all (u.v) € H and X;; € O4(SLy41). Similarly, from [1, I1.1.15] there is a
rational H"-action by algebra automorphisms on O,(M,,11) and O,(GL,,) given

by (u, 'U).Xij = ui’l}inj.
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Hopf Algebra Structure

In [19, 9.2.3 Proposition 10] it is shown that O,(M,,4+1) is a coalgebra. Specif-

ically, the comultiplication and the counit are defined by

n+1
A(Xj) = ZXik ® Xp;j and €(Xij) = 0yj.
k=1

We note that from [19, 9.2.2 Proposition 7(ii)]
ALY =) I K@K | J). (1.26)

K

Moreover, O,(SL,1) is a Hopf algebra with comultiplication and counit car-

ried over from O,(M,1) and with the antipode defined by

S(le):ql_j[1727 7./7‘\7"' 7n+1 | 1a27"' 7/2.\7"' ,TL+1]

In fact, from [19, 9.2.3 Proposition 10] we have

52 (Xl]) = qu—Qinj.

It follows that S is an anti-isomorphism.
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1.12 Quantized Universal Enveloping Algebra

for sl, .,

We now specialize Section tog=sl,1.

From [14, 11.4 Table 1] the Cartan matrix is the matrix (Cj;) so that

2 ifi=j

Cij=9§ —1 ifli—jl=1 -

0 otherwise
\

Moreover, from |14} 13.2 Table 1] the fundamental weights are given by

i—1 n
1
= n—1+1 tagy +1 n—t+ 1oy | .
Using the convention that wg = w,11 = 0, we also have
o = —Wi_1 + 2(&11' — Wit1- (127)

Specializing Definition we have the following presentation for U, (sl,,11).
The generators are the K;*' and the FEj, Fj where i,j € {1,2,...,n} presented

with the following relations: for 7,5 € {1,2,...,n}

KK1=1 K,K; = KiK;

7
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K,FE; :q(%‘m)Ein K;F; = q—(a;‘,ai)Fin

EZE] :E]EZfOI' |Z—]|>2 EF]:F‘]EfOI |Z—]|>2
K; — K
[Ei, F| = %F

E}E; — (¢ +q EE;E+E;E] =0 for |i — j| =1

F2F; — (q+ ¢ YFF;Fi+F;F? = 0for |i — j| = 1.

Example: The Module V(w,)

Since the module V' (w;) is so integral for what follows, we examine it a bit
more closely.

Using |15} Section 5.15] we have that dim V' (w;) = n+1 and there exists a basis
{e1,e2,..., €11} so that each e; is a weight vector with weight wy —a;+- - - —ay;_1.
Moreover, we may select the e; so that Fie; = 0, ;_1e;_1 and Fie; = 0; ;€41 for
all the E;, F; € Uy(sl,41). Consequently, e; has highest weight w; and this basis
is well-ordered with respect to weight, that is wt e; > wt e; if and only if ¢ < j.

Keeping in mind convention [2|if I = (iy,4s,...,iy) then

Ere; =04y 5 N+10iy5-N+2°** Oin_y,j—20in j—1€i; -
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Therefore, for i < j we have Ere; = e; ifandonlyif I = (4,i+1,--- ,j — 2,5 — 1).
Furthermore, if I is any other nonempty finite sequence of elements from {1,2,...,n}
then Ere; = 0 for all j. Finally, Ere; = e; if and only if I = (.

By for each i =1,2,...,n we have the weight of ¢; is §; := —w;_; +w;.

Hence for A€ ZIl and 1 < j < n+ 1 we get
Kyej = qPiVe;. (1.28)

Denote the natural dual basis {f!, f2,..., f*"!} for V(w;)* corresponding to
{61, €9,... ,6n+1} so that fi(€j> = 5ZJ
Finally, we note that there is an isomorphism between quantum SL,; and

the quantum algebra of matrix coefficients C,(sl,1).

Theorem 1.57 ([12, Theorem 1.4.1]). {c‘;il e li,7=1,2,...n+ 1} is a generat-
ing set for the algebra Cy(sl,11). Moreover, there exists a k-algebra isomorphism

k0 Oq(Shint1) = Cylshaia) so that k(Xi;) = i .

Using the isomorphism from Theorem [1.57] we will often abuse notation and

denote C}er.
€5
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Chapter 2

Quantum Unipotent Radicals of

the Standard Borel Subgroups

2.1 Quantum Standard Borel Subgroups

Definition 2.1. The quantized coordinate ring of the positive (negative)
standard Borel subgroup or the quantum positive (negative) standard

Borel subgroup of quantum SL,, .1 is
Oy(BT) := Oy(SLy41)/(Xij | i > j) and  Oy(B™) = O4(SLys1) /(X5 | i < j).

We will often abuse notation and denote simply by X;; the coset containing

Xi;. We note that these algebras are quantizations of the standard Borel subgroup
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since as ¢ — 1 for the above subgroup, we recover the coordinate ring of the

standard Borel.

Definition and Structure of O,(N*) and O,(N*)’

Note that in O,(B*) (resp. O,(B7)) that X;; = 0 for ¢ > j (resp. i < j).
Moreover, since the quantum determinant is 1, relation (1.23)) in O, (B*) simplifies
to

Xy Xoyippr = L

Moreover, by relation (1.22) in O,(B*) we have X;;X;; = X;;X;;. Taking these
two facts together we can conclude that for all « = 1,2,...,n + 1 the elements
X;; are in fact, invertible in O,(B*). Therefore we may define in O,(B") two

subalgebras

Og(NT) i =k(X;'X;;|1<i<j<n+1)

Og(N*) i =k (XyX;' [1<i<j<n+1).

These are natural choices because they both become isomorphic to O,(NT) when

g — 1. We may analogously define subalgebras in O,(B~) by

O(N7)' = k(X; X' [1<i<j<n+1).

57



Having defined the algebras O,(N*) and O,(N*)’, we now analyze their structure.

Lemma 2.2. Define for 1 < i < j < n+ 1 the elements y;; = Xngij and

zij = Xinj_jl in Oy(BY). The following are defining relations for O,(N*) and

O,(N*) respectively:

YijYim = qQYimYij

YijYii = qYiYij

YijYim = YimYij

YijYim =

.

YimYij if g <1

O YmYis + Wi G =1

\ YimYi; + QWimYi; if 1 >1

ZijZim = qZimZij

Zij2lj = qZ1j%ij

ZijRlm = Rlm~ij

ZijRm =

(
Zm~ij if j <

qilzlmzij + qilz]\'zim Zf] = l

\ ZimRij + quimzlj ’ij > [.

o8

(J <m)
(1<)

(i<l,j>m)

(1<, 7 <m)

(7 <m)
(1<)

(i<l,7>m)

(i<l,7<m)



Proof. First we show that the generators y;; of O,(NT) satisfy the relations (2.1)

— (2.4) above. Note, that from the relations (1.21)) and (1.22)) in O,(SL;+1), the

elements X;; commute with X, in O,(B™) whenever [, m # i.

For j <m and ¢ =1

YijYim = Xi;le‘jXﬁlXim = q_lXﬁlXinimXﬁl

= X' Xim Xij Xii' = q X3 Xim X5 Xij = qyim¥is-

Fori<land j=m

yisy = Xi X X' Xy = X X0 X Xy = X X XX

= q X' X X0 X = q X X X X = quiyis-

Fori <l and j >m

Yighm = Xig ' XXy X = X3 X Xy X = X5 Xy Xin X

(2

= Xy X Xim Xij = Xy Xim X35 Xij = Ymis-

Fori <, 7 <m,and j <l

YijYim = Xinginﬁlem = Xilelleinlm = XilellelmXij

= XﬁlXﬁlemXij = lelemXﬁlXij = YimVYij-
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Fori <l , j<m,and j =1

Yisyim = X5 X X Xim
= ¢ XX X X = ¢ X X (X Xy + §Xam Xy)
= qflxﬁlXuilemXij + qflqAXﬁlXﬁlXilej
= q X X X Xy 4N G X Xy X

= ¢ ' X X X5 X+ 00X Xim = @ i + @ Qi

Fori <l , 7 <m,and j >1

Yishm = X7 Xig Xy, X = X7 X0 X X = X7 X5 Xy X
= Xy X (X X+ @Xam Xo5) = Xy X5 X X + GX X X X

1

= X X X5 X5 + GX5 X Xy X0 = Yimi + Wi

We now show that the above relations are a defining set of relations for
O,(N*). Let B be the algebra generated by {b;; | 1 < ¢ < j < n+ 1} pre-
sented with relations analogous to those in (2.1)-(2.4) above but replacing v;;

with b;;. Let ¢ be the k-algebra homomorphism ¢ : B — O,(N*) defined by

¢(bij) = Yij-
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Order the X;; lexicographically in O,(B™) omitting X,,4+1,,,+1. As asserted in
the proof of [8, Lemma 2.8] , the set of monomials ordered in this way is linearly
independent.

This is still true if we allow ordered monomials with negative exponents on
Xii. Moreover since the X;; commute up to scalars with every X, in O,(B™)
then the set of ordered monomials in the y;; is linearly independent, hence forms
a basis for O,(N*).

Now the monomials in the b;; form a spanning set for B. Hence 1) maps a
spanning set of B to a basis of O,(N"). Therefore 1 is an isomorphism.

It can be similarly verified that the relations - give a presentation of

Oy(N*)'. [l
Theorem 2.3. The algebras O,(N*) and O,(N*)" are all isomorphic.

Proof. From Lemma [2.2] it is immediate that O,(N*) = O,(NT)’ since the alge-
bras have the same presentation.

From [25, Proposition 3.7.1] there exists a transpose homomorphism 7 :
Oy(SLy41) = O4(SLy41) so that 7(X;;) = Xj; for all 4,5 € {1,2,...,n+ 1} .
This is an automorphism of O,(SL,+1) that maps (X;; | i > j) onto (X, | i < j).
Therefore there is an induced isomorphism 7 : O,(BT) — O,(B™).

Observe that

(X' Xiy) = X' Xji = ¢ ' XX
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and
?(XZ]X]—Jl) = X]ZX]_Jl = q_lXj_leji
for all i < j. Hence, 7 maps Oy(N™) onto O,(N~)" and so O,(NT) = Oy(N~)".

Similarly 7 maps O,(NT) onto O,(N~). Therefore Oy (NT) = O,(N™) O

Using this theorem we will refer to either O,(N*) or O,(N*)" as a positive
quantized unipotent subgroup or positive standard Borel. Similarly, O,(N ™)
or O,(N~)" are a negative quantized unipotent subgroup. Notice that as

g — 1 we have a commutative k-algebra which matches the usual presentation

for O(N®).

2.2 The Algebras of Coinvariants for O,(B¥)

O,(B*) as Hopf Algebras

Define I~ := (X;; | i > j) and IT := (X;; | ¢ < j) in Oy(SLy41). We now

show that I* are Hopf ideals.
Lemma 2.4. I* are Hopf ideals in Oy(SLy41).

Proof. Tt is clear that It C kere. If i < j then Zi; Xk ® Xg; € Oy @ I'T and
ZZi]l Xir ® Xgj € IT ® O, Hence A(X;;) € O, @ T+ 1T ® O,. Since A is an

algebra homomorphism we have A(/7) C IT® O, + 0, @ .
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Now since 7 < j then each monomial in Mj; is of the form

QE(U)XLUQ) o X 1o(i- )Xo (i41) " Ko 1,o() XK jr1,0(+1) ** Xntl,o(ntl)

where is ¢ is some permutation on I = {1,2,...,7,...71 + 1}. If o is not the
identity there is a k € I so that o(k) > k. Hence the above monomial is in I+
since it contains either the term X, ;) or Xj;_1 o(x), both of which are in It Ifo
is the identity then again the above monomial is in 1T since it contains the term
X i+1 which again is in IT.

Thus for every o, the monomials terms of Mj; are in It. Hence S(X;;) =
q"7Mj; € I'". Since S is an antihomomorphism then S(I*) C I". Therefore I*
is a Hopf ideal.

A similar argument also shows that I~ is a Hopf ideal. O]

Since O,(B*) = O,(SL,+1)/IT then O,(B*) are Hopf algebras induced from
the Hopf algebra structure of O,(SL,,11). We denote the comultiplication, counit,
and antipode of the Hopf algebra of O,(B*) by Ap=, g+, and Sp+ respectively,
when emphasis is needed, otherwise we will retain the standard notation A, e,

and S. Specifically we note that for X;; € O,(B*) and X,; € Oy(B~) we have

Ape(Xij) = Y Xa®Xy;  and  Ap-(Xp) = Y Xop ® Xps.

i<k<j r>k>s
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The Quantum Standard Maximal Torus

In the classical setting the coordinate ring of the standard maximal torus of
O(SLn+1) is

O(T) = O(SLny1) /{Xij | 1 # 7).

We may therefore define the quantized coordinate ring of the standard

maximal torus for S, or quantum standard maximal torus by

Oy(T) := Oy(SLpy1) (X5 | i # J)-

Denote by Y;; the coset containing X;; in O,(7T"). We first note that O, (T) is
generated by the Yj; where ¢ = 1,2,...,n + 1. It is straightforward to check
that Y;;Yj; = YV, for all i,j € {1,2,--- ,n+ 1}. Thus Oy (7T) is actually a
commutative algebra. Moreover since the quantum determinant is 1 in Oy (SLj,11)
this implies that

Yl,l e Yn+1,n+1 =1

That is, each of the Yj; are invertible. Therefore we have, in fact, O, (T) =
O(T). Moreover, since Oy(T) = O,(SL,11)/(IT 4+ I7) this implies that O,(T) is
also a Hopf algebra induced from O,(SL,41). We denote the comultiplication,

counit, and antipode by Ar, e, and St respectively, when emphasis is needed.
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Specifically, we note that for V;; € O,(T) we have

AT(Ym) =Y, ®Y,.

O,(T)-coactions on O,(B¥)

There are natural projection homomorphisms p* : O,(B*) — O,(T) defined
by p*(Xi;) = Yi; and p*(X;;) = 0 for i # j. Therefore using these maps as well
as the comultiplication maps A on O,(B*) we define the maps n* : O,(B*) —
O,(B*) ® O,(T) by

0t = (id ® p*)A.

Since p* and A are k-algebra homomorphisms, so are n*. Similarly the maps
0= : O,(B*) — 0,(T) @ Oy(B*) defined by 6* := (p* ® id)A are k-algebra
homomorphisms. Specifically, since p*(X;;) = 0 for i # j and p*(X;;) = Y, this

implies that for X;; € O,(B*) we have

N (Xiy) = Xy @Yy 0% (Xi;) = Yi @ Xij.

In fact n* and #F are comodule homomorphisms which we now show.

Lemma 2.5. nfand 60 are right (resp. left) O (T)-comodule maps. Hence,

O,(B*) are right (resp. left) O (T)-comodule algebras.

65



Proof. We need to verify that (p* ® id)p* = (id @ Ar)p*. Tt suffices to verify it

on the X;; € O,(B¥*) since p* and Ar are k-algebra homomorphisms. Note that
(0™ @ id)p™ (Xy) = (p* @ id)(Xy ® V) = X5 @ ¥} ® Y

and

(id ® A)p™(Xi) = (1d ® Ap) (X ® V) = Xij @ Y @ Y.

Hence 0% is a right O,(T)-comodule map. In the same way we can show n* are
left O,(T")-comodule maps.
Since 6% is also a k-algebra homomorphism we have O,(B*) are right O,(T')-

comodule algebras with these structure maps. Similarly, n* will also make

O,(B?*) into left O,(T)-comodule algebras. O

O,(N¥*) as Coinvariants

Theorem 2.6. Let AX = O (BX)®° " then A#0,(T) = O,(B*). Similarly let-
ting

CE = 0y(B)® then O (T)#C* = O,(B*).

Proof. Let r* : Oy(T) — O,(B¥*) be the k-algebra homomorphism such that

r%(Y;) = Xyi. Define v : O (T) — O,(B*) by r* = r*S;. Then

(=« 7 H)(Y) = S )rEY) = [ SOViSe(Y) | = (er(Y) 1) = e(Y) -1
) (Y)
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for all Y € O,(T). Similarly, (r¥+r%)(Y) = €(Y)-1. Hence, r¥ is the convolution
inverse of r¥.

To check that r* is a right O,(T')-comodule map we need to show that n*r* =
(r* ® id)Ar. Since r* and n* are k-algebra homomorphisms, it is sufficient to

show the equality holds on the Y;; € O,(T"). This holds because

and

(T‘i ®id)Ar(Yy) = (Ti ®id)(Yy @ Yy) = X @ Yy

* are right O,(T)-comodule homomorphisms. Therefore O,(B*) is an H-

Hence, r
cleft extension. Moreover, by the above discussion, using the result of |2] there is a
k-algebra isomorphism ®* : A*#0,(T) — O,(B*) where ®*(X#Y) = Xr(Y).

Similarly, by making the appropriate changes to the above proof, there is

a k-algebra isomophrism ¥* : O, (T)#C* — O,(B*) defined by U(Y#X) =

rE(YV)X. 0

It is natural to ask what are the coinvariants for O,(B*) using the structure

maps 1+ or 6?7 Note that for any X!, X, € O,(B*
n J q

Jji o

(X X5 = (Xt (X)) = (X @ Vi) (X5 @Y = XX @1

Jj JJj
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That is X;; X! € O,(B*)°* . Similarly, X;;'X;; € Oy(B*)®%". Since n*
and 6% are algebra homomorphism this implies that O,(N*) is a subalgebra of
O,(B)® 7" and O,(N%) is a subalgebra of O,(B*)® %", In fact these algebras

are exactly the coinvariants for n* and 6* which we now show.
Theorem 2.7. O,(N*) = O,(B*)® ™ and O,(N%) = O (BE)* o

Proof. From our discussion we have shown that O,(N%) C O,(B%)©"". Since
the map ®* from Theorem is an isomorphism of A* ® O,(T') onto O,(B¥),
it is sufficient to show that ®* maps O,(N*) @ O,(T) onto O,(B*).

Notice that

OF(Og(N*)' ® Og(T)) = Oy(NF)1(04(T)) € Oy(B*).

Therefore we need only show that O,(N*)r*(0,(T)) is a subalgebra that contains
all the X;; to prove the proposition.

Let L* be the subalgebra generated by {X:' |1 < i < n+ 1} in Oy (B?%).
Note that the image of the maps r* from Theorem is L*. Using the projec-
tion homomorphism p*, it is straightforward to check that p*r* = ido,(r) and

r¥p* = idy+. Hence r*

is an isomorphism from O,(T) to L*. Since each of
the Xy, commutes up to a scalar with each of the X;; € O,(B*) we have that

O,(NE)Yr£(0,(T)) is a subalgebra of O,(B*).
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Now for X', X;; € O,(B*) with i # j we have

ji
OF(X X5 @ Yy) = Xy X5 (V) = Xy X7 Xy = Xy,

Hence, Oy(N*)'1=(0,(T)) = Oy(BF). Therefore O (N*) = O,(B*)® ",
In the same way one can use the isomorphism U* to show Oy (N%) = O, (B=)<

]

Finally we have the following corollary.
Corollary 2.8. O,(B*) 2 O,(T)#0,(N*) 2 O,(N*)#0,(T).
Proof. The first isomorphism follows directly from Theorem [3.19] and Theorem
2.7, For the second isomorphism we note that Theorem and Theorem

imply that O,(B*) = O,(N*)'#0,(T). Since from Theorem we have

O,(N*) =2 O,(N#*) the second isomorphism holds. O

2.3 The Restriction Map and C,(b%)

Having investigated O,(B*) and O,(N*) we now switch to the quantum func-
tion algebra or algebra of matrix coefficients C,(sl,11). In order to do this though
we first need some background.

For any element ¢ € C,(sl,4+1) we may restrict the domain of ¢ to the subal-
gebra U (sl,41) (resp. Uy(b7)). This induces a well-defined k-algebra homomor-

phism from C,(sl,11) to Uy(b™)* (resp. U,(b™)*). Let p* (resp. p~) denote this
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restriction homomorphism and denote im p* by C,(b™) (resp. im p~ by C,y(b7)).
For ¢ € Cy(sl,41) we denote p*(c) by ¢ From this convention we note that ¢ # 0
if and only if ¢(u) # 0 for some u € UZ%(sl,11).

We now wish to better understand p*(c‘}’}’ej) which, using the conventions

above, we denote by 72-].,

Example: Matrix Coefficients for V(w;) in C,(b%)

We wish to understand C,(b%) and to do so we will start trying to understand
the “basic” elements X;; € Cy(b*). Since UZ" (resp. Us?) is spanned by mono-
mials of the form K)E; (resp. K\F;) where A € Z®" and I € P*, to understand

any Yij it is sufficient to understand where it maps each of these elements.

Lemma 2.9. For A € ZII and I a finite sequence of elements from {1,2,...,n+

1} we have the following:

Fori <7,
g if I =Pandi=j
Xi(KaEr) = ¢BN if I =(iji+1,--+,j—2,j—1) andi < j
0 otherwise.
\
where B; = —w;_1 + w;.

Fori > j, then Yij(K,\EI) = 0.
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Proof. By equation if © < j we have Ere; = e¢; if and only if I =
(i,i4+1,---,j—2,j—1) and Ere; = e; if and only if I = (). Furthermore, if
I is any other finite sequence of elements from {1,2,...,n+1} then E;e; = 0 for
all j =1,2,...,n+ 1. Hence by equation ifi<jand I = (i,--+,j—1)
we have K\Eje; = ¢¥%Ne; and if I = () then K\Eje; = ¢%Ve;. Thus if i < j
then X;;(K\E;) is as indicated.

Note that for all the F; we have F,e; is either 0 or a weight vector of lower
weight. Hence, for ¢ > j there is no F; so that Ere; = e;. Therefore for ¢ > j
we have f(Ere;) = 0 for all E;. Hence, X;(KyEr) =0 for all A\ € Z&T and I a

finite sequence with entries in {1,2,...,n+ 1}. O

2.4 The Dual Pairing

By [3] Corollary 3.3, if »+/q € k there exists a unique nondegenerate bilinear
pairing (—,—) : Uqgo X [V]qzo — k defined by the following properties: for all

u, v’ € UZ% and all v,v' € US? and all p,v € A and o, f € 11

(u,v0") = (A(u), v @ v) (uu',v) = (u@u', A(v))
(Ku K,) = ¢~ " (Foo Bg) = =050
(K/ME/J’) =0 (Fozv KM) =0
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We note there is a pairing on UZ°(sl,41) x U7%(sl,11) defined in [15, p. 6.12] as
well as |16}, p. 9.2.10] with the same properties as above.

The bilinear pairing above can be restricted to a bilinear pairing on U0 x UZ°.
In fact the assumption that »#/q € k is not needed to have a well defined dual
pairing on UqSO X UqZO. Since we will primarily be studying this pairing, we
remove this assumption. We now show that the pairing in nondegenerate by

slightly modifying the proof in [3, Corollary 3.3].
Theorem 2.10. The dual pairing on Uqgo X quo s nondegenerate.

Proof. By [15, p. 4.7, U] and U are Zll-graded with deg E, = a and det I, =
—a for o € II. For each p € ZII denote a basis of U by {u;'}. By [15, Corollary
8.30] , the pairing when restricted to UZ, x U} with u € ZII is nondegenerate.
Therefore, we may select a corresponding dual basis of UZ,, which we denote by
{v; "}, with the property that (v; ", u}) = ;.

Suppose that y € U0 so that (y,z) = 0 for all z € U%(sl,.1). We may write

y= Y v puiK)

W ELI i
where

Pwi(K) = Z A Ky
Ve
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for some scalars c’;:z It follows from [15, 6.10(3) and 6.10(4)] that if p € ZII

then for all n € ZII and all j we have

0=( ch_(”)".

ANeA

Notice that for all X € A there exist scalars \},..., A € Z so that X' = Nw; +
-+ 4+ XN w,. Therefore, for each m = (my,...,m,) € Z", setting n = —(myay +

S mpay) we get

=Y A = RN = (@™ ™) = g (a™)
MNeA MeA

where

N
E HJ )AL
pu,j(xla"'7 C)\/ .771
ANeA

Since ¢ is not a root of unity, it follows from [3, Lemma 3.2] that p, ; = 0 for all

€ ZII and all j. Hence, y = 0.
Suppose for z € U7%(sly11) that (y,z) =0 for all y € Uqgo. Since x € quo

follows from the nondegeneracy of (—, —) on Us? x UZ° that 2 = 0. O

Using this dual pairing we define the map ¢ : U=" — (UZ°)* by

¢(u)(v) = (u, v).
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The map ¢ is a k-algebra homomorphism and since the bilinear form is nonde-
generate by Theorem [2.10] ¢ is injective.

For I = (iy,i9,...,1y) define wt I = o, + v, +- - -+, . Wesay that J C Iif
J is a subsequence of I. For J C I we denote I — J to be the sequence remaining
when the subsequence J is removed.

It is shown in |15, 6.8(8) and 6.12] that (Fy, E;) = 0 unless wt [ = wt J. If
follows that ker(¢(Fy)) has finite codimension for every /. Similarly, ker ¢(K,)

has codimension 1. Hence ¢(u) € (UZ°(sl,41))° for all u € UL,

Lemma 2.11. For the map ¢ we have (K g1 0, F;) = —q¢ 7 7 Xyiy1 and ¢(Kzp,) =

X

[

Proof. From [15, 6.9 (2)] it follows for all u, A € A that (K, K,E;) = 0 if and

only if I # (0. Using this fact we get

O(K g0, i) (KOE;) = (K40, Fiy KaEi) = (K g, 10, ® Fi, A(K)E;))
= (K_g4a; ® Fi, Kxjo, ® K\E; + K\E; ® K))
= (K_ga;, Konta,) (Fis KNE;) + (K_p,a,, KAE;) (F3 K))
= (K_pi+ai Kora,) (£ KAE)
= (K_gi+ai Kota, ) (A(F), B ® K))
= (K gtay Koga, ) (i@ K_o, + 1 ® F;, B; ® K))

= (K—BH—OW K/\-i-oti) ((E’ Ei)(K—Ocm K/\) + (17 EZ)(E’ KA))
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= (K _g1ai, Kava,)(Fiy Bi) (K _a;, K))

— _ o~ (=Bitai;, A tai) >

q q_lq(aH)\) p— ~1 (BlvA).

—q ' 'q

Now suppose I # (7). It follows from [15, 6.8 (1)] , for A € ZII and I a finite

sequence of elements in {1,2,...,n}

A(K)\E[) = ZCLJK)\KJE[,J & K)\EJ

JCI

for some scalars, ¢y ;. Hence, we have

¢(K*ﬁ¢+a¢Fi)(K>\EI) = (K*ﬁiJraiFl'? K)\EI) = (K*ﬁiﬂli ® F;, A(K)\EI))

= (Kﬁwai ® F;, Z cr g KONK By ® KAEJ)

JCI

= Z cr 7 (K pita; KAK Erg)(Fi, K\Ey).

JCI

It follows from [15 6.8 (7)] that (F;, K\E;) = 0 if and only if J # (i). More-
over, if J = (i) then since I # (i) we have that I — J # (). This implies
(K_g,4a:, KaK E;_;) = 0. Therefore, we have ¢(K_g, 1o, F;)(KxEr) = 0. There-

fore, we have

¢(K*52‘+OéiFi> (KAE1> =
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Similarly,

O(Kzp,)(Ky) = (Ksg,, Ky) = g7

Moreover, if A € ZIT and I is a finite sequence of elements from {1,2,...,n} and

I # () we have

¢(K:F/3i)(K>\EI> = (K:Fﬂi’ K/\EI)
- (K:FBi ® K:Fﬁn Er® K)\)
- (K:Fﬂ“ EI)<K:F:8H KA)

=0.

Hence,
g=BN if [ =)
O(Kzp,)(K\Ep) =
0 otherwise
By Lemma [2.9]
_ g N it T = (4)
Xiiv1(K\Ep) =
0 otherwise
and
Xii (K/\EI) -

0 otherwise.
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Since UZ°(sln41) is spanned by the elements of the form KyE; where I is a

finite sequence of elements from {1,2,...,n} and A € ZII then ¢(K_pg,+o, F;) =

_q_la_17i7i+1 and ¢<K¥5l) = y:tl D

"

W )

Lemma 2.12. C,(b™) is generated by {7i1 X |1<i<n+1,1<;< n}

Proof. Denote {X;;', X;i41 |1 <i<n+1, 1<j<n} in Oy(B") by S. Since

forall 1 <i<n-—1, O,(B") has the relation
Xiit1, Xitt,iv2 — Xiv2,ir1 X i1 = ¢Xit1,i01 Xi o

By multiplying both sides by X;MH we see X; ;10 € Sforall1 <i<n-—1.

Continuing inductively if X; ;1 € S for all 1 <7 <mn — k since

Xiirh Xivkyivhr1 — Xivkitht1Xii+k = QX it kithXiitht1

multiplying by Xijrlm,rk we get X, 4541 € S for all 1 < i < n — k. Therefore

X;; € Sforalll <i < j<n+1 Hence S generates O,(BT). Using the

isomorphism induced from Corollary 7?7, the proposition follows. O

The following theorem can be found in [16, p. 9.2.12] however, in the present

case we may prove it more simply.

Theorem 2.13. The map ¢ is an isomorphism of Uq§0 onto Cy(b™).
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Proof. Note that F8; = Fw; so then

$(Kzun) = (Kzp,) = X11 € Cy(b7).

Proceeding inductively, we see that if ¢(K 4, ,) € Cy(b™) then since ¢p(Kzp,) =

—+1
X, we have

qb(K:Fwi) = QS(K:F@')QS(K:FMA) = YEEIQS(K:F%A) € CQ([]+)

It then follows that ¢(K,) € Cy(b™) for all u € A.
Finally, we note that g; — a; = B;41 for 1 < ¢ < n. Therefore we have for

1 <4 <n that

Qb(E) = ¢(K5i—aiK—Bi+aiE) = ¢(Kﬁi+1)¢(K—ﬂi+aiFi> S CQ(b+)

Since the K, with 4 € A and the F; generate Uqgo) then im ¢ C C,(b™).
Conversely, since the 7;:1 and X, ;. generate C,(b%) it follows that im ¢ =
C,y(b™). Since the dual pairing is nondegenerate, ¢ is injective. Hence, ¢ is a

k-algebra isomorphism. O

Corollary 2.14. If w : quo — Uqgo i1s the Cartan homomorphism then ¢ o w

restricted to U induces an isomorphism onto p* (k(Oy(N*)")).
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Proof. The Cartan homomorphism is defined by w(K) = K and w(E;) = F;. It
is clear that w is an isomorphism, so ¢ow is an isomorphism. Hence ¢ow restricted
to UqJr is an injective k-algebra homomorphism. Moreover, from Theorem m

fori=1,2,...,n

-1 PR —i -l
$ow(Er) = (K )OK pvaFi) = Xipri (07T Xigr) = =0 XigaXipip1-
Since pt(k(Oy(N*)")) is generated by the yi,iﬂyz;ll,iﬂ for i = 1,2,...n then

¢ o w when restricted to U, q+ is an isomorphism. O]

Theorem 2.15. There is a k-algebra isomorphism v : U — Oy(N*)" such that

V(E;) = _a_lxi,i+1Xi:_11’i+1 for1 <i<n.

Proof. This follows from Corollary and the fact that, p* and x are isomor-

phisms. O

We note that since the Cartan automorphism w is an isomorphism of U, onto
U/ it also follows form Theorem that U = O,(N7)".

In conclusion, we have shown that the algebras O,(N*) = O, (B*)® o+
O (N*) = O, (BF)° " and UF are all isomorphic from Theorem , Theo-

rem 2.7, and Theorem [2.15] .
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Chapter 3

Quantum Unipotent Radicals of

Standard Parabolic Subgroups

Let n be a fixed positive integer.

3.1 Standard Parabolic Subgroups

Recall from the Introduction that a standard parabolic subgroup of SL, is
a group that contains a standard Borel subgroup, B*. This implies that the
matrices in a standard parabolic subgroup are in “upper (lower) block diagonal
form.” Since parabolic subgroups are closed subvarieties of SL,,, we first describe
the coordinate ring of a standard parabolic, and then “quantize” this to define

quantum standard parabolic subgroups of SL,,.
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Definition 3.1. A partition of n is a set P ={P,..., P} where each P; is a

nonempty subset of {1,... ,n} so that
(a) U, P =1{1,...,n}
(b) PP =0 fori

(¢c) For each i = 1,...,k — 1 each element of P; is less than every element of

Pi.

The idea behind Definition [3.1}, is that the partition of n determines a “block
diagonal” for matrices in SL,,. Using this block diagonal, a standard parabolic
subgroup of SL,, is a subgroup that is composed of matrices that are zero below
(above) the block diagonal.

Also note that this definition for a partition of n is different from the usual
definition found in combinatorics. In that definition a partition of n is a se-
quence of positive integers (ny,...,nx) so that ny + ---ny = n. However, the
two are related — for if P is a partition of n (in the sense of Definition then
(|P1],-..,|Px|) is a partition of n in the combinatorial sense.

For each j € {1,2,...,|P|} denote the sets

P.;=||P, and Py;=| |P.

I>5 ]

Similarly, define P.; and P<;. For convenience if | P| = k we adopt the convention

that Py, = () and Py = ().
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For P a partition of n, with |P| = k, define the following subsets of

{1,2,...,n} x{1,2,...,n}:

k k
¢t =P x Ps) and Cp = J(Pi x P).

=1 i=1

It easy to check that Cj = Ule(P@' x P;) and Cp = Ule(Pi X P).

Therefore a parabolic group relative to a partition P is

PE = {(ay) € SL, | (i,§) € Cp}.

Let x;; be the coordinate functions in O(SL,,) and define the following ideals

in O(SL,,):

Ty :=(x;; € O(SL,) | (i,j) €Cf) and Ty := (x;; € O(SLy,) | (4,5) € Cp).

For the coordinate rings of the standard parabolic subgroups of SL,

relative to P we have

O(PZ) =2 O(SL,)/T5.

Moreover, for the coordinate ring of the standard Levi subgroup of SL,

relative to P we have

O(Lp) = O(SL,) /(T + T5).
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3.2 Quantum Standard Parabolic Subgroups

We may now define the quantized coordinate ring of the standard parabolic
in direct analogy with the classical case.

Let P be a partition of n and define the following ideals in O,(SL,):

I = (X | (i,) €Ch) and Ip = (X | (i.5) €Cp).

Definition 3.2. For P a partition of n, define the quantized coordinate rings

of the standard parabolic subgroups of SL, relative to P by

O4(Pr) = Oy(SLa) /T

We will often abuse notation and refer to the coset which contains X;; in
Oq(PIE—L) simply by Xj;;. Similarly, we will refer to the coset which contains the
quantum minor [/ | J] in O,(P5) simply by [I | J].

We note that this definition for quantum parabolic groups is not standard;
however, it is equivalent to the definition of quantum parabolic groups given in

[25, Section 6.1].
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Examples
i If P ={{1},{2},...,{n}} then I} = (X;;|i<j) and I = (X;; | i > j).
Therefore, O,(P%) = O,(B*) from Chapter 2.
ii. If P={{1,...,n}} then If =0 . Therefore, O (P5) = O,(Sl,).
Lemma 3.3. Let P be a partition of n. For1 <i<s<nandl<j<t<nif
(i,7) or (s,t) in Cy then (i,t) or (s,7) is in C5.

Proof. Let i € B. If (i,j) € C{ then j € Ps;. Since ¢t > j then t € Ps; and so
(i,t) € Cj. Similarly, if (s,t) € C}, then s € P, for some r > [ and t € Ps,. It
follows that ¢ € Ps; and therefore (i,t) € C}.

A similar proof also works for Cp. m

Theorem 3.4. Let P be a partition of n. The algebras Oq(Pff) are noetherian

domains.

Proof. Since O,(SL,,) is noetherian, it follows that O,(P%) is as well.

Define the following ideals of O,(M,,):

T = (X | (i,5) € Ch) Tp =Xy | (i,5) € Cp) .

Using Lemma , if follows from [9, Lemma 3.2] that J7 are completely
prime ideals in O,(M,,). Let D be the quantum determinant of O,(M,,). It is

clear that D™ ¢ J7 for all positive integers m. Therefore, by [7, Theorem 10.20]
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the extension ideal, (J3)¢ in O,(GL,) is a prime ideal. In fact, (J5)¢ is in H-
spec, where HT is the natural torus action on O,(GL,) (See (1.24])). From [1,
Lemma I1.5.16] there is a bijection between the H-spec of O,(GL,,) and the H-
spec of O,(SL,). Using this bijection it follows that I3 is an H-prime of O,(SLy,,).
Finally, from [1, Lemma I1.5.17] we have that I3 is completely prime. Therefore,

O,(PZ) is a domain. O

Preliminary Relations in Oq(P]SL)

Lemma 3.5. Let P be a partition of n with P, € P and J C {1,...,n} so that

B = [J].

(i) If JN Po; # 0 then [P | J] € Ip. Hence, [P | J] =0 in O,(Pg).
(ii) If JN Ps; # 0 then [J | B € I5. Hence, [J | Pi| =0 in O,(Pg).
(iii) If J N Ps; # O then [P; | J] € I5. Hence, [P; | J] =0 in O, (Pp).
(iv) If JN P-; # 0 then [J | P] € I},. Hence, [J | Pj] =0 in O,(Pp).

Proof. Let j € P, J. Note for all i, € P, that (X, ;) C Ip. Since each
monomial term of [P; | J] contains an element of (X;_ ;) for some i, € B, it
follows that [P; | J] € I. Hence, [P; | J] =0 in O,(P}).

The other cases are proven similarly. O]
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For index sets I, J C {1,2,...,n} define

(I, J) = |{(,5)|iel,jei>j}.

Recall from [24] Proposition 1.1] the following g-Laplace relation in O,(SL,,):

Theorem 3.6 ([24, Proposition 1.1 ]). Let I,J C {1,2,...,n} with |I| = |J|.

For I, I, C I with |I,| + |I2] = |I] then

Z (_q)E(J1,J2)[Il | JIHIQ ‘ Jz] _ (_Q)f(h,lg)[[ ’ J] Zf I, NI, =0

For each P, € P denote

Dp, =[P | P).

(3

Theorem 3.7. For P ={P, P,,..., P.} a partition of n, we have

DpDp,-+-Dp,_ Dp =D =1

m Oq(PIf) )

Proof. Let i € {1,2,...k+ 1}. Setting I = P, and I, = P,_; it follows from

Theorem [3.6] that

[Pei | P = Z (=) 7Py | I[Py | Jo]

JiluJo=P;
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where |Ji| = |P<;_1| and |J5| = |P,_1|. However, by Lemma [3.5]if Jo N Pe;_q # 0
then

[Pioy | Jo) = 0 in O,(Pg). Therefore, the only nonzero term on the right
hand side of the equality occurs when Jo, = P,_y. Hence, J; = P-;_;. Since

{(P<i—1, Pi_1) = 0, we get the following relation in O,(Pf):

[P<i ‘ P<z'] = [P<i—1 ‘ P<i—1][Pi—1 ’ Pi—l]-

In particular,

D:[P<k‘P<kHPk’sz] and [P<2’P<2]:[P1’P1].

Thus,

D = [Pey | Pei][Py | Pi] = [Pak—1 | Pek—)[Pi—1 | Pea][Pe | Pyl

=--'=[P1|P1][P2|P2]"'[Pk—1|Pk—1][Pk|Pk]:DP1DPz"'DPk—1DPk

in O,(P7). A similar proof also works in O,(Pp). O

Theorem 3.8. Let P be a partition of n with P;, P; € P andi < j. The following

relation holds in Oy(Pg):

Dp,Dp, = Dp, Dp,.
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Proof. For ia,ig € P and j,,js € P; relation (1.22)) simplifies to X;, i, X; j; =

X, is X

Jyis<Mialg

in O,(P5). The relation follows easily from this. O

Corollary 3.9. For P a given partition of n we have Dp, is invertible in Oq(PIE—L)

for all P; € P.
Proof. This follows directly from Theorems [3.7] and [3.8] O

For P a partition of n and P, € P where the elements of P; are placed in
increasing order, we denote the a'" term of P, by i,. Similarly, denote the 5™

term of P-; by ig. For each ¢, € P; and ig € P~; denote the quantum minor

My, =[P | (P \ia) U {ig}].

Theorem 3.10. Let P a partition of n and P, € P. For i, € P; and ig € Ps,,

the following relation holds in O, (Pg):

inig = Z _( q’Y | P;|— 1) Xzaz-yMZPrLBD 11

i»y ep;

Proof. Set I = J = P;U{ig} and I, = {in} with I, = P,. Since I N Iy # 0,

Theorem [3.6] implies

Y (=) Wi | GBI\ ] =0, (3.1)

jed
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If j € P, then j = i, for some ~. In this case it is clear that ¢ ({i,}, J \ i,) = v—1.

Similarly, if j = ig then (({ig}, {J\ig}) = ¢({ig}, ;) = |P;|. Thus, becomes

Y ) Mo LB T TN\ + (=) i | ds][P | P] = 0.

i»y epr;

Since [iq | iy] = Xi,i, and [P | J\ i) = Mf@ as well as [iy | ig] = Xj,i, and
[P, | P;] = Dp,, Corollary 3.9 completes the proof. O

Theorem 3.11. For P a partition of n with P, € P where i, € P; and ig € P,

the following relation holds in O (P}):

Dp MP. = qMFP

lalg ialg

Dp,. (3.2)

Proof. Let iy,i, € P,. From [8, Lemma 5.2] we have X;; Dp = DpX;

Alp Ay

Moreover, from [25, Lemma 4.5.1], following the proof in [8, Lemma 5.2] we have

i»yEPi
1y <i)

Since (P;\iy)U{ig}NPs; # () we have from Lemmathat Dp,Xiyis = 4Xi,i,Dp,

g

in O,(P}). Since Ml.i i, 1s the sum of monomials that contain exactly one X;

Al
for some iy € P; and the other terms are Xj,;,, it follows that MZ.I: D, =
C]DPZ-M;ZZ-B- ]
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Theorem 3.12. Let P a partition of n with P;, P; € P where i < j. For j, € F;

and js € Ps; with i, € P; and ig € Ps;, the following relations hold in O, (Pg):

Py _ arbi
Dp,M,* = M.’ Dp, (3.3)
M Dp, = qDp, M., if ig € P, (3.4)
M Dp, = Dp, M, if ig & P;. (3.5)

Proof.

(i) Let iy,i, € P, and j, € P;. For all jy € Ps; relation (1.22) simplifies to

XiyinXijo = XjjeXi

. + . . .
inip X jnjo jnjoXini, i1 Oy(Pp). Since Dp, is the sum of monomials

that contain X;,;, and M ;zj ., is the sum of monomials that contain Xj, j,, it

follows that Dp, and M by

J~Js

commute and (3.3)) follows.

(ii) Let ix,i, € P;. It is straightforward to check that Xj;, Dp, = Dp,X;

)\i,u l)\iu .

(See the proof of Theorem ) Moreover, for ig € P;, it follows from |25,

Lemma 4.5.1] following the proof in [8, Lemma 5.2] that

Xl)\lgD qDP ixlg q Z \j’Y> U {2)\}] Jyig*

JvEP;
Jy<ix

Since ((P; \ jy) U {ir}) N P<j # 0, we have from Lemma [3.5] that

X;

ixig

Dp, = ¢Dp, X,

izig
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in O,(P}). Since Mi”m is the sum of monomials that contain exactly

one X;,;, for some i, € P, and the other terms are X it follows that

Aiﬁ Aiu7

]Maizﬁlyfy = ql)fij{f%

Zaiﬂ'

(iii) Let iy,7, € P;. It is straightforward to check that X

inipy

Dp, = Dp,X;

Xiu'

Moreover, for ig ¢ P; we have from relations (1.22)) and (1.21]) for all j,, js €

Pj that X, Xj 55 = Xj s Xiyi, 0 O,(Pg). Tt follows that XivisDp, =
Dp, Xi,i, in Og(Pf). Since Mi i, 18 the sum of monomials that contain
exactly one Xj,;, and the other terms are X;;,, it follows that MZ-]: ii/; Dp, =
Dp, M, . O

More Relations in O,(P})

Let P be a partition of n. For all P, € P, is € P, and 7, € P.; define in

Oy(Pp)

Wik, =iy} U (P \is) | P.

Similarly, for all P, € P, i, € P;, and i5 € P, define in O,(Pp)

mis, = [P | {is} U (P \ds)).

ivis
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Finally, for all P, € P, ig € P5;, and i, € P, define in O,(Pp)

w; ', = (P \ia) U {ig} | B.

We note that there are relations in O,(P%) analogous to those in Theo-

rems [3.10} [3.11] and [3.12} involving W} Jia? mf:"ié, or wZ i;- The proofs are similar

to the proofs in these theorems and we simply state the results explicitly below.

Theorem 3.13. Let P be a partition of n with P;, P; € P where i < j.
If io € Po; andig € P; with j, € P.; and js € P;, the following relations hold

in Oy(Py):

W, Dp, =q ' Dp W,

Wl Dp, = Dp W/

Dp,W, =q "W/, Dp,if j, € P,
Dp, th W Dp if j, € P,

If i, € Po; andig € P, with j, € P.; and js € P;, the following relations hold

in Oy(Pp):

P _ 1 P
j”/jéDPj =4 DP m]’y]é
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m Dp —meP

'La'LB Zalﬁ
P;

Dpm;’; =q~ m Dp if j, € B
P.

mejjé—m s Dp it jy & P

Ifio € P; and ig € Ps; with j, € P; and js € Ps;, the following relations hold

in Oy(Pp):

DPiwziiiB - qwijiﬁ P;
D pl.wjp;jjé = ngé D P;

ZigDPj - qDijiiig it ig € P
sz;ZiBDPj = Dpjwiiiﬂ if ig g Pj

Theorem 3.14. Let P be a partition of n and P; € P.

Fori, € P-; and ig € P;, the following relation holds in O,(Pg):

Xiig = Z — (=q" %171 Dy, 1VV£HXW5-

i»y epr;

For i, € P, and ig € P, the following relation holds in O,(Pp):

Xiniy = Z _ (_q7—|Pi|—1) XZDMmZBZ D_

’i»y epr;
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For i, € Ps; and ig € P;, the following relation holds in Oy(Pp):

R _ (Pl -1, P o
KXiais = E: (=" ") Dyl X

Ty eP;

3.3 The Algebras of Coinvariants for O,(P5)

Proposition 3.15. I}% are Hopf ideals.

Proof. If |P| = 1 then I = 0 and the result is trivial. Therefore, we may assume
that |P| > 1.
It is clear that I}; C kere. For each X;; € I} there exists an r so that i € P,

and j € Ps,. Comultiplication of X;; becomes

A(X;5) = ZXit ® Xy = Z Xit @ Xy5 + Z Xit @ Xy5 + Z Xit @ Xyj.
t=1

t€P<1~ tGPr t€P>1~

(3.6)

But for t € P<, since j € P, then X;; € I;. Moreover for t € P., since i € P,
then X;; € I}5. Therefore A(X;;) € Iy ® O,(SL,) + O,(SL,,) ® I}.

Let L = {1,2,...,3,...,71} and M = {1,2,...,?,...,71}. Ordering the el-
ements of L and M sequentially, let I, and m,;, be the k™" terms of L and M,

respectively. From the definition of the antipode we have

S(Xl]) = qi_j[L | M] = Z (_q)é(U)Xhma(l) T Xln—1mg(n,1)-

O-GSymnf 1
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Note, for any o € Sym,,_; we may interpret o acting on M by o(my) = me@u).
Thus, to show that S(X;;) € I}, it is sufficient to show that for any o € Sym,,_,
there is a k € {1,2,...,n — 1} so that X s(m,) € I}. To do this, we need to
show that for all ¢ € Sym,,_, there is a k € {1,2,--- ,n — 1} so that [, € P,
and o(my) € Ps,.

Since X;; € I;;, from above there is a natural number r so that ¢ € P, and
7 € Ps,. It follows that i < j and so I, < my, for all k. In fact, i < m; < jif and
only if [, < my. This implies that if my € P<, then [ € P,.

There are two possibilities for ¢ € Sym,,_; to consider. Either there is an
my € M so that my € P<, and o(my) € P-, or there is not. If the former, then
from the previous discussion l;, € P<, and we are done. If ¢ is in the latter case
then for all my, € P<, we must have o(my,) € P<,. Consequently, for all m;, € P,
we have o(my) € P~,. Let m;y = min P,. Then ¢ < m; < j. This implies that
Iy < my. Since my is min P, then l; € P<,. However, since o(m;) € P-, again
we are done.

It can similarly be shown that /, is a Hopf ideal. O

It follows from Theorem that O,(PZ) are Hopf algebras induced from
the Hopf algebra structure of O,(SL,). For clarity we may denote the counit,
comultiplication, and antipode in Oq(PfDE) by ep+, Ap+, and Sp+ respectively,

otherwise we will keep the usual notation of ¢, A, and S.
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We note from (3.6) that if i, € P; then

AP+ zazﬁ Z Xzazw ® inig + Z Xiaia, 0%y Xz},i@

iyEP; iyE€Ps;

and

zaz@ Z Taly X Xiwiﬁ + Z Xiaiv & Xia,ig‘

iy EP; i EP;

We also note that for P, € P and ig € P, then from (1.26)) we have

A(ME) = AR PN UGN = 3 [BIJ@ | (P\ia) Ui},

|J|=|P5]
Jc{1,2,....,n}

However, by Lemma 3.5 we have that if JN P; # 0 then [P | J] = 0in O, (P}).

Thus, we have

Aps (MP) = ST (R IJI@T | (R \ia)ULis)].
=P
JCP>;

Similarly,

Ape (W0 ) = 32 HinhU(B\is) | J]@ [T | P
|7|=|Fi

Ap- (mf) = SR I@ 1 | {in} U (P i)
|J|=| P

96



Ap- (w,) = 3 ((P\i) ULis} | @[] | P
|J]=| P
JCPs;

Finally, we note that Lemma [3.5| also implies that Ap=(Dp,) = Dp, ® Dp, for all

PeP.

Levi Subalgebra O,(Lp)

Definition 3.16. The quantized (standard) Levi algebra of O,(SL,,) rela-

tive to P is the algebra defined by
Oy(Lp) := O4(SLy) /(17 + Ip).

For i,,ig € P; we denote the coset containing X; ;, in O4(Lp) by Y; It

alp alg:
is clear that O,(Lp) is generated by {Y; i, | Pi € P, iq, ig € Pi}. We will also
abuse notation and denote by Dp, the quantum minor [P; | P;] in O4(Lp).

Since I3 are Hopf ideals, O,(Lp) is also a Hopf algebra induced from O,(SLy,,).
We denote the comultiplication, counit, and antipode by Ay, €, and Sy, respec-

tively, when emphasis is needed. Specifically, for all P, € P we note that for

ia,ig e b

AL(Yiaig) = Z Yini, ® Yiig (3.7)

iyER;
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and

AL(DPi) = DPz' ® DPz"

We also define the subalgebras O,(S3) in O,(P%) to be the algebras generated
by

{Xij | P € P, i,j € P}

O,(Lp)-coactions on O,(P})

There exist natural projection homomorphisms p* : O,(P5) — O,(Lp) such
that
. Yiiis ifia,ig € B some Py € P
P (Xigig) = (3.8)
0 otherwise.
It is clear that p* is surjective when restricted to O,(S*). Lemma [3.5 implies

that

pe (B ] J]) = and  p* ([J [ B]) =

0 otherwise 0 otherwise.

Using these maps, as well as the comultiplication maps, A and identity maps,

idp+ on O,(Pg), we define the maps n* : O, (P%) — O,(Pg) ® O (Lp) and
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0+ : Oy(Pp) — Oy(Lp) ® Oy(Pp) b

Nt = (idp: @ p¥)A and 0F ;= (p* ®idps)A.

Since p* and A are k-algebra homomorphisms, so too are n* and 6*. We

note for i, € P; and jz € P; we have

ZaJﬁ Z XZDJ’Y J'y]ﬁ la]ﬂ Z Xlal—y ® Xl»y]ﬂ

JrEP; iyER;

We also note that

77+(W7f:7;,a) = WZIj%LB ® DPZ 9 (MlPZB) D-Pz ® Mliiig
n_(wiizﬁ) w; ’LB ®DP 9_(miza) DP ®m
Finally,
ni<DPi):DPi®DPi and ei(DPi):DPi(g)DPi'

It is easily checked that n* and 6% are comodule structure maps, i.e., O,(Pg)
is a right O, (L p)-comodule algebra via n* and similarly, O,(Pz) is a left O,(Lp)-

comodule algebra via 6%.
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Lemma 3.17. Let P be a partition of n with |P| = k. Let M = @, Oy(Mip,)).
There exists a surjective algebra homomorphism ¢ : M — O,(Lp) so that 1 ®

R Xizjl e e Y(|P<z|+il)(|P<z|+jl) Jfor all Xiljl S OQ(MPL)'

Proof. For each P, € P, define a map ¢; : O,(Mp,) — O,(Lp) by Xp —
Y(poil+0)(1P<sj+m)- It is straightforward to check that these maps are k-algebra
homomorphisms.

Define the map ¢ : [[-, O,(Mp,) — O,(Lp) defined by ¢(ai,...,a;) =
é1(ar) -~ ¢r(ag). Again, it is straightforward to check that ¢ is a surjective
multilinear map. Moreover, if ¢5, j; € Ps and [;, m; € P, with s # t then Y, ;, and

Y}, m, commute. It follows that

5(17 7Xisjsv"' 71>€_Z§(17 7Xltmt7"' 7]-)

=01, Xpymys -, D)1, Xijy -+, 1)

for all X; ;, € Oq(M)p,) and all X, € Og(Mp,) with s # t. By the universal
property for the tensor products of algebras, there exists an algebra homomor-

phism ¢ described above. [
Lemma 3.18. The map p* is an isomorphism of O,(S%) onto Oy(Lp).

Proof. Let ¢ : M — O,(Lp) be the homomorphism from Lemma and let

+ _ +
Ps =7 lo,sp)
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It follows from the proof of Theorem [3.40|that GK.dim M = GK.dim O,(Lp)+
1. Notice that there exists a surjective algebra homomorphism ¢’ : M — O,(S})
so that pf¢’ = ¢. Since D1 ® --- D,, — 1 € ker ¢/ it follows from [20, Proposition
3.15] that GK.dim O,(S") < GK.dim M — 1 = GK.dim O,(Lp). However, since
O,(Lp) = p&(0,(S}h)) it is not possible for GK.dim O,(S*) < O,(Lp). Therefore,
kerp& = 0.

Similarly results hold for pg.

]

Therefore, by Lemma we may define homomorphisms r* : O,(Lp) —

O,(P%) by r* := (p*)~! where p* is restricted to O,(S*). Notice that

Ti(Yéaz’B) =X; (3.9)

oﬂ'f} °

Note, from Corollary [3.9) we have that the Dp, € O,(Lp) are invertible which

implies that A L(DIZZ_I) = D;il ® D;l_l.

O,(PZ) as the Smash Product of Coinvariants

Theorem 3.19. Let AT = O (PE)° " then AT#0,(Lp) = O,(PE). Similarly

letting CF = Oy (PE)® % then Oy(Lp)#C= = O,(PF).
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Proof. Let r* be the homomorphism from (3.9). Define 7+ : O,(Lp) — O,(P5)

by r* = r*S.. Note we have
(rErE)(Y) =D rE(V)rE(Ye) = ZYlSL (V) | =rF (e (V) - 1) = (V) 1
(Y)

for all Y € O,(Lp). Similarly, (r£ % r%)(Y) = e,(Y) - 1. Since r¥(1) = 1 then 7+
is the convolution inverse of r*.
To check that r* is a right O,(Lp)-comodule map we need to show that
4.+

ntr* = (r* ® id)Ay, but since r* and n* are k-algebra homomorphisms, it is

sufficient to show the equality holds on the Y;; € O,(Lp). Indeed,

(Vi) = 0 (Xigi,) = Y Xii, ® Vi,
iyEP;
and
( (%9 Zd)AL( zaw) ® Zd Z szaz.y ® Y;wﬁ = Z Xzaz.y & }/:L-Y’Lﬂ
MEP i—YEPl

for all P, € P, i,,is € P;. Hence, r* are right O,(Lp)-comodule homomor-
phisms. Therefore we have O,(P%) is an H-cleft extension. Moreover, using
Theorem we have a k-algebra isomorphism ®* : A*#0,(Lp) — O, (P%)

where ®(X#Y) = XrE(Y).
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Similarly, by making the appropriate changes to the above proof, there is a
k-algebra isomorphism U* : O,(Lp)#C* — O,(P%) defined by U (Y#X) =

rE(Y)X. m

Quantized Standard Unipotent Subgroups of Pﬁ

It is natural to ask what are the coinvariants for O,(P%) using the structure

maps 7% or 6. Note, for the elements D;}Mi”i 5 € O,(P}) we have

0+ (Dp! M) = 6+ (Dp)o™ (M)

iaiﬁ Zaiﬁ

) = (Dp! ® Dp)(Dp, © M;!

ialg

)=1® Dp' M

ialg”

That is, Dp' M}

ialg

€ Oy(Pf)° %" . Similarly, w;’;, Dp' € Oy(Pp)", I/ViiaD;il €

ialg
Oq<PIj)COn+, and D]_DilmP'a c Oq(PE)C00_~

i
I

Define the following subalgebras of O,(P7)

O,(NTp) 1 =k <D;}M£@B | P e P, iy € P, isc P>i> (3.10)
O,(N*p) 1 =k <W:;5D;i1 | P e P, i, € Py, is € B-> . (3.11)

Similarly, define the subalgebras of O,(Pp)

Oy(NZp) : =k (Dp'ml’ | P € P, iy € Peyy i € P) (3.12)
O,(NZp) 1 =k <wf;i5D;i1 | P, € P, io € Puyy ig € R> . (3.13)
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Since n* and 6* are algebra homomorphisms, from the above discussion
0,(N¥p) and O,(NZp,) are subalgebras of O,(Pg)®?%" and O,(Pf)®°"". Sim-
ilarly, O4(N_p) and O,(NZp) are subalgebras of O,(Pp)®°? and Oy (Pp)®" .
In fact, these algebras are exactly the coinvariants for n* and #* which we now

show.

Theorem 3.20. O,(N,) = O,(PF)®% and Oy(NZp) = O, (Pp)®? . Simi-

larly, O4(NZp) = Oy(PE)*"" and Oy(NZp) = Og(Pp)™" .

Proof. From the discussion above it follows that Oy(NS,) C O,(Pf)®?" . The
map Ut from the proof of Theorem is an isomorphism of Oy(Lp)# C*
onto O,(Py), thus it is sufficient to show that U™ maps Oy(Lp)#0,(NZp) onto
O,(P2).

Notice that

\Iﬁ_(oq(LP)#Oq(N:P)) = r+<0q(LP))Oq(N;_P) - Oq(P;)'

It follows that r™(O,(Lp))O,(NZp) is a subalgebra of O,(Pg). Therefore, we
need only show that this subalgebra contains all the X;; that generate O,(P7)
to prove the Theorem.

For i,,i3 € P; we note that

ai[}'
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Moreover, for i, € P; and ig € Ps; the relation from Theorem and Theo-

rem [3.11] gives us

—|P; .
Xiviy =Y, —(=¢""NX; ., D' M, .

Z‘»YEPZ'

Hence,

\/as Z —(—q"~ \PI) Y, #D5 1Mlljlg _ Z _(_qw—IPiI)TJr(Yiaiv)D;ilMZI:izB

’i—y eP; i»y eP;

_Z aliiy'es D_lM:zB

inE€EP;

= X,

lalg "

Therefore, the generators of O,(Pp) are contained in the image of W'. Hence,
Oq<N:P) = Oq(PJJDF)CO .

By a similar argument using ¥~ from from the proof of Theorem [3.19, and

Theorems [3.13 and [3.14) we have O,(Pp)®% = O,(NZp) . Finally, using ®*

from the proof of Theorem [3.19, and Theorems and [3.14] one can also show

that Oq(N:p) = Oq(p;‘)co nt and Oq<N>_P) _ Oq(P];)co n ]

Corollary 3.21. For P a partition of n we have the following k-algebra isomor-

phisms

Oq(P;) = Oq(LP)#Oq(N;P) = Oq(N:P)#Oq(LP)
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Oq(PJ;) = Oq(LP)#Oq(N;P) = Oq(N;P)#Oq(LP)-

Proof. This follows directly from Theorem and Theorem [3.20] O

Definition 3.22. The algebras from and are called quantized
standard positive unipotent subgroups of P . Similarly, the algebras from
(3.12) and are called quantized standard negative unipotent sub-
groups of P, . Collectively, they are called the quantized standard unipotent

subgroups.

3.4 Isomorphisms of Unipotent Radical Subal-

gebras

Let wyp be the longest element in Sym,,. For P a partition of n where |P| = k,
denote wy(P) to be the partition of n such that wg(P)x_;+1 = wo(F;). Note, for
any 7,7 € {1,2,...,n} with i < j then wg(i) > wo(j).

From [25 Section 3.7] there exist a transpose automorphism 7 : O,(M,) —
O4(M,,) defined by 7(X;;) = X,; and an anti-automorphism & : O,(M,) —
O,(M,) defined by &(Xij) = Xuwe()uwo(). It is clear that 72 = id and since

w2 = 1 then & = id. We note from [25, Lemma 4.3.1] that for index sets
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I,J Cc{1,2,...,n} where |I| = |J| then
(L) =1 1] and §( 1)) = [wo(J) | wo(1)]- (3.14)

It is clear that 7(D) = D. Moreover, since wo({1,2,...,n}) = {1,2,...,n} it
follows that £(D) = D. Hence, 7 induces an automorphism and £ induces an anti-
automorphism of O,(SL,,), respectively. We will abuse notation and continue to

denote these maps by 7 and €.
Lemma 3.23. Let P be a partition of n.
(i) The map 7 induces algebra isomorphisms 75 : Oy(Pg) — Oy (PF).

cop

(i) The map T induces a Hopf algebra isomorphism 1y, : Oy(Lp) — O4(Lp)
(iii) The map & induces algebra isomorphisms &5 : O,(PE) — O, <P§O(P)>Op.
(iv) The map & induces a Hopf algebra isomorphism &y, : Oy(Lp) — Oy(Lp)°P.

Proof. If X,; € I then 7(X;;) = X;; € I} and so 7(I5) C I}. Conversely, since
72 = id, then I C 7(I}). Thus, I C 7(I) C I} and so 7(IE) = I}. Hence,
7 induces algebra homomorphisms 75 : O,(P5) — O,(Pf). Moreover, for all

Xii € O,(Pf) and all Xy, € O,(Pp) we get
ThTp (Xyy) = 5 (Xj0) = X and o758 (X)) = 75 (Xin) = X
+

That is 747, = idp+ and 757/ = idp-. Therefore, 7 are isomorphisms.
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From [25, Proposition 3.7.1 (2)] we have that 7 is a Hopf algebra automor-
phism from O,(SL,) — O,(SL,)*?. It follows from the above discussion that
(I} +1p) = I+ 1. Hence, from Proposition m the induced homomorphism
7+ Oy(Lp) = Oy4(Lp)®°P is also a Hopf algebra homomorphism. Since 77 = id,
we have 77, is a Hopf algebra isomorphism.

Similar proofs also hold for 5 and &7, noting that ¢ is an anti-automorphism

of O,(SL,) and &£(IF) = 1. O

Proposition 3.24. The maps 75 from Lemma restricted to Oy(N=p) give
isomorphisms onto O,(NTp). Also, the maps 73 restricted to Oy(N=p) give iso-
morphisms onto Oy (NIp). Finally, & restricted to O,(NZp) gives

anti-isomorphisms onto Oy(NZ

Zwo(p)) and &5 restricted to O,(NZp) gives anti-

isomorphisms onto Oq(waO(P)).

Proof. Let P; € P. We first note that for all Dp, € O,(P}) we have 75 (Dp,) =

Dp, .We also note that

i (MF,) =75 (P (P \ia) Uish) = [P \ia) U {ig} | P) = wly,

for all M , € O4(Py). Hence, for Dp, Ml , € Og(NSp) it follows from Theorem

[B.11] that
o (DRl =7 (M2, D5!) = 7 (7'M, ) 75 (DR!) = 07wl Dy
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Hence 75 (Og(NIp)) € Of(NZp).

Conversely, for wf;z’ng_%l € O4(NZp), we have

— —1 P; -1\ P; —1
7 (aDp, M; s, Dp, ) = w; i, Dp, -

Therefore, the generators of O,4(IN_p) are contained in the image of 7, and the
inclusion becomes an equality. Since 75 is an isomorphism on O,(P}), it follows
from the above that the restriction to O,(NZ},) is an isomorphism onto Oy (NZp).

The other statements are proven similarly. O]

Theorem 3.25. For P a partition of n we have the following k-algebra isomor-

phisms

Og(PE) = Og(Lp)*P#04(N2p) = Og(N_p)#04(Lp)™®

O,(Py) = Oy(Lp) " #0,(Ntp) = Oy(NZp)#O, (L),

Proof. Let P; € P. We note that for all in,ig € P;, if r* is the map defined in

equation (3.9)) we have

T (1L (Yiein)) = 77 (Yigin) = Xigia = 78 (Xiniy) = T2 (r"(Yini,))-

Hence, =7, = 7pr". Since 71, : Oy(Lp) — O4(Lp)°® is a Hopf algebra iso-

morphism and since the antipode for O,(Lp)<°P is S;', from Theorem we
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have

ror, =1 Sy =r i S; =Tt S =1t

Therefore, the maps 775 and 7, are H-cleft intertwining maps.
From Proposition the restriction of 75 is an isomorphism of, Oy(N1p)

onto Oy(N_p). Thus, the map
(Tp#71) + Og(NZp)#O04(Lp) — Of(N_p)##O0q(Lp)*®

is an algebra isomorphism from Proposition [I.17} It follows from Corollary
that Oy(Pp) = Og(N_p)#O0,(Lp)*P.

The other statements follow similarly. O

Theorem 3.26. All of the algebras from Theorem [3.25 and Corollary are
1somorphic to Oq(PIf) and hence, are isomorphic to each other. Moreover, all of

these algebras are anti-isomorphic to O, (Pio(P)>'
Proof. This follows from Lemma [3.23] O

A succinet way to state Theorem (ignoring some details) is that the quan-
tized standard parabolic group is the smash product of the quantized standard

Levi algebra and a quantized standard unipotent subgroup.
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3.5 Structure of O, (N1,)

Next, we will show that O,(NZ}) is a CGL extension, and hence can give an
explicit presentation for this algebra. To do this we first need relations involving

the quantum minors Dp,, Ml-i"iﬁ € O,(P}).

Relations with Quantum Minors in O,(P})

Lemma 3.27. Let P be a partition of n with P; € P. For iy, i, € P; with i, < i,

and ig,is € Ps; with ig < is, the following relation holds in O, (Pf):

Dp[P; | (P {iayiy}) U {ig,is}] = aM, M M, M,

2
iyigMiis — 4 MigigMiis

Proof. We first note that from [18, Theorem 2.1] for Jy, Jo, K C P;U{ig, s} with
|J1], 2] < 7 and |K| = 2r —|J'| —|J"| > r then we have the following relation

in O,(Pg):
7 ()RR KR I[P | K U[P | UK = 0. (3.15)

K'UK"=K

Case (i) |P| = 2 that is, P, = {iq, 1}

Set

Jy=10 Jo = {is} K = {ia,iy,15}
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and r = 2. Applying (3.15) the only possibilities for K’ and K" are

Ky = {iasin} K5 = {ia, 15} Ky = {iy,ig}
K ={is} Ky =iy} Ky = {ia}

and for these possibilities,

0(J, Ky) + 0K}, KY) + 0K, Jy) =0
€<J17 Ké) + K(K§7 Ké/) + €<Kg7 J2) =1

0(Jy, K3) + (K5, KY) + 0K, Jp) = 2.

Hence, (3.15)) becomes

[Pi | PP [ {ig.is}] — alPs | {ia, ig}][Pi | {in,is}] + @[5 | {iy, ig}][P: | {ia, i5}] = 0.

It follows that Dp,[P; | ig,i5] = ¢M M}

iyig tals

_ (]2 MPZ MPZ

zaiﬁ 7,»\,7:5'

Case (ii) |P;| > 3.

Set J = (P; \ {iq,iy}) with

J1:J\m1nJ JQZ{HHHJ,Z(;} K:PZU{Zﬁ}
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and r = |P;| and apply (3.15)). Since K’ U K" = K and K'U J; and K" L Jy, the

only possibilities for K’ and K" are

K| = {min J,in,i,}  Ky={minJ isig}  Kj={minJ i, iz}

K{ = Jy U{ig} Ky = JiU{i,} Ky = Ji U {ia}.

To compute ¢(J;, K) we note that every element in J; is greater than min J.
Therefore, there are are r — 3 elements greater than min J. Similarly, there are
r —a — 1 elements in J; greater than 7, and r — ~v elements in J; greater than

t,. Hence

W, K)=(r-3)+(r—a-1)+(r—-9)=3r—a—vy—4.

In the same way we also get

(K], K{)=a+7vy-5 and UK, J) =1 —2.

Therefore,

0Ty, KL) + 0K KT + 0K, Jy) = 4r — 11,
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In a similar way, we have

0Ty, K) + (K, KY) + (K2 Jy) = 4r — 10

0Ty, K3 + 0K, KY) + 0(KY Jy) = 4r — 9.

Since

LUK, =P, o UKY = (P \ {iayi2}) U {is.is)
LUK, = (P\i)U{is}  BUKY=(P\ia) U{is)
LUKy = (P\i)U{is}  BUKY=(P\i)U {is}

equation (3.15)) simplifies to

(=" M Dp [P | (P {iayin}) Ui, is}] + ()" M, My,

+(=q) M Mo =o0.

lalg iyls

It follows that Dp,[P; | (P \ {ia,i,})U{ig, is}] = ¢M M M M

2
Z,yig tals - q ZQiB Z.yi(;' D

We may give the set of all nonempty subsets of {1,2,...,n} with the same
cardinality a partial order by the following rule: for I,J € {1,2,...,n} with

I={ii<iys<---<ip}pand J ={j1 <jo < -+ <jx} weset I <Jif and only

ifitgjtfort:]_’Q,...,k.
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Let I,J,M,N C {1,2,...n} so that |I| = |J| and |M| = |N|. Define the

family

(<I|IM}:={SCTUM|S>INMwith|S| = |I| and S < I}

and

(> JIN}:={T C JUN|T>JNN with |T| = |J| and T > J}.

For T'e {> J||N} and S € {< I||M} define

T :=(JUN)\ (TU(JAN)) and S*:=TUM)\(SU(NM)).

Define

L(S, T, M) :=0((S\SHU(T\ M),S\I)—£L(S\S)U(I\M),I\S)

LUT, J,N) = L(T*\T)U(J\N), T\ J) = (T \T)U(J\ N),J\T).

For any set X we denote X \ {z} simply by X \ z.

For any nonnegative integer d recall from Definition that
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For each 1 =1,2,... k set d; = |[1,4)] N J| —l + 1. Using this, define

5{1(]? J) = [dl]—q[d2]—q T [dk]—q'

Since many of of our calculations will use [5, Theorem 6.2, and Corollary 6.3] we

remind the reader of these theorems.

Theorem 3.28 (Theorem 6.2 [5]). For I, J, M,N C {1,2,...,n} with |I| = |J]|

and |M| = |N|, then

g"™MIT | M| N+ g™ 3 Ag[S | J][S*| V]
Se{<I||M}

= /™M NI+ g™ > T [ M| T T
Te{>J||N}

where

As = ") SN S S\T) i = G (=) TINE(T N\ T T\ T),

Theorem 3.29 (Corollary 6.3 [3]). For I,J,M,N C {1,2,...,n} with |I| = |J|

and |M| = |N|, then

g" NI | M | N+ ¢"™N N N[ S][M | S7)
Se{<J||N}

= MMM [ NI J) 4+ ¢ > [T NYT | ]
Te{>I||M}
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where

Ao = @7V (—q)ZEINe (TN S35\ ) = @V (—g) P TIMe (T\ I, 1\ T).

Theorem 3.30. Let P be a partition of n with P; € P. For i,,iy,15 € P and

ig € Ps;, the following relations hold in Oy(Pg):

M

1513

6—1
— g lx. . AF AE n—=ox. . prb
Xi»yig - q XZ—yZéMiéiﬂ _|_ q q Xl’yl’inniﬁ
n=1

Py  _—x.  MEP ; ;
M’LaZ[}X,L — XZ’YzéMia’iﬁ fOl" ZC! # /[/5

yis

DpX,

Lis = Ninis Dp,.

Proof.

(3.16)

(3.17)

(3.18)

(i) Set I = P, and J = (B, \ i5) U {ig} with M = {i,} and N = {is}. Since

INM = {i,} and IUM = P;, there isno set S with /UM DS D>INM

with |S| = |I] so that S < I. Hence, {< I||M} = (). Moreover, since

JUN = P,U{ig} and JN N = @ the only sets T with T C JU N and

T>JNN with |[T| =|J| and T > J are

Ty = (B \ in) U {ig}
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where n =1,2,...,6 — 1. This implies TTE = {iy}. To calculate Ay, we note

that J\ N = J and

Tn\J:{ié} J\Tn:{in} Tg\Tn:{in} Tn\ngTn'

Hence,

LT 1, T) = (], {is}) — L {ig}) = p =6+ 1~ (u—m) =n— b+ 1.

Finally, since

& (fis}: {i}) = (1) = 1

we get from Theorem that

I | JIM | N = (M| N[ | )+ @ H M | T8 | 7).

n=1

MF

yis i51g

That is, M X, ;= ¢7'X;

1513

Py .
+q Zn:i q" 6Xz'7z',,M-P

inig”
Set [ = P, and J = (P, \ io) U {ig} with M = {i,} and N = {is}. Then
INM = {i,} and I UM = P,. Note that there is no set S such that
S D {iy} and S C P, with S < I. Hence, {< I||M} = (. Similarly, since

JNN ={is} and JUN = J there is no set 7" where T D {is} with " C J
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so that T > J. Hence, {> J||N} = 0. Therefore, from Theorem we
have

gl | J][IM | N] = q[M | NI | J].

i B - X. . MP
That IS, MZQZBX/L — XZ”/ZSMiaiﬂ'

vis

= X, ...Dp

i

(iii) Since Dp, is a central element in Mp,, it follows that Dp,X; ;, is

O

Theorem 3.31. Let P be a partition of n and P;, P; € P with i < j. For

oy 8,0y, 15 € P with jo, € Pj and jg € Psj, the following relations hold in

Oq(PJJDr)-'
P, B P,
MjajﬁXiwié - XiwiéMjajﬁ (319)
DPinaiﬁ == XiaiBDPj' (320)
Proof.

(i) Set I = P; and M = {i,}. Since i < j then TUM = P;U{i,} and INM = 0.
Note, for every j, € P; we have j, > i,. Hence, there is no set S so that

SCIUM and S D InNM with S < I. Therefore, {< I||M} = 0.

Set J = (P; \ jo) U{js} and N = {is}, then JUN = (P; \ ja) U {Js, %5}
and JNN = (. Note forany 7> J with T C JUN and T D JN N we

must have 7% N P; # (). Hence, [i, | T € I,. Therefore, by Theorem [3.2§]
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we have in O,(Pf)

(L JIIM [ N} = [M | N][L[J].

. P; B P

vis

(ii) We note that for any j,,js € P; that X;,:,Xj, j, = Xjj, Xiaiy in Og(PF).

XiisDp. .

J

Consequently, Dp, X i, = X, i,

]

Theorem 3.32. Let P be a partition of n and P;, P; € P with i < j. For

JvsJs € Pj and i, € P and ig € Ps; the following relations hold in O (Pg):

M X, = X5 M, forig € Py (3.21)
Mziiingvja = ijjéMiI:iiﬁ + EJ\XJ‘W‘BMZ-Z& for ig € P; and ig < js (3.22)
M X 55 = qX;,5, M forig € Py and ig = js (3.23)
M X 55 = X5, My, forig > jis (3.24)

Dp,X; js = X, Dp.. (3.25)

Proof. Set I = P, and M = {j,}. Since i < j then TUM = P, U {j,} and
I'NM = 0. Note for every i, € P, that i, < j,. Hence, there is no set S so that

SCcIUMand S D INM =0 with S < I. Therefore, {< I||M} = (. Thus,
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Theorem [3.28| simplifies to

(1] )M | NT = g"™M[M [ N ]+ g™ " MM [ T[] T).
Te{>J||N}

We now consider each case separately.

(i)

Set J = (P; \ io) U{ig} and N = {j5}, then JUN = (P; \ in) U {ig, Js}
and J N N = (. Notice that since iz € P; then ig < js. Therefore, any
T>JwithT C JUN and T D JN N must have T% N P; # (). Hence,

lio | T%] € I5. That is, in O,(PZ) the relation from Theorem simplifies

to
[I|J)[M|N]=[M|N]I|.J,
Le., MiiiiBXj'yjé = ijjaMi}:iig‘

Set J = (P; \ i) U {ig} and N = {js}. For each 4, € J denote

Tn = (']\7;77) U {]6}

It is clear that T, > J for all 4, € J and that {> J||N} consists of exactly
these T,. Now, for i, # ig we have T,E = {i,} and T,E N P.; # 0. Hence,

Uy | T, ,E] € I,. Therefore, the relation from Theorem simplifies in

121



(i)

0,(P}) to

(1| J)M | N] = [M | NJIL| J)+ Mg, [M | T | T3]

where T = (J \ ig) U {js}. To calculate Az, we note that J\ N = .J and

T\ J={js} J\Ts={is} Ti\Ts={isg} Ts\T5=Ts

Therefore, Ay, = @ since

LH(Tp, J,N) = U5 {js}) — (i {isg}) =0 and & ({js}: {is}) = 1]y = 1.

M

iaig

+qX;, M

JvigMiqgs

It follows that M X j

ialg

2is = Xiuds
Set J = (P; \ in) U{ig} and N = {js}. Hence, JUN = (P, \ in) U {is}
and J NN = {ig}. We note that for any set 7" with 7" C J U N and
T D JNN = {ig} sothat T > J we have T*NP; # (. Hence, [i, | T%] € Ip.

Therefore, in O,(P7) the relation from Theorem simplifies to

[ | J][M | N] = g[M | N][I'| J].

- Vi
vis = qXJ'yjéMiaiﬁ’

That is, M5, X;
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(iv) Set J = (P \ ia) U{ig} and N = {js}. Hence, JUN = (P, \ in) U {Js,i5}
and JN N = (). We note that for any set T with T Cc JUN and T D JNN
so that T' > J we have T%N P.; # (. Hence, [i, | T%] € I. Therefore, in

O,(Py) the relation from Theorem simplifies to

(| JI[M [ N} = [M | N][L[J].

=X, ;M

Jvds MHiig:

That is, M X;

talg ~Js

v) Since Dp. is a central element of M,p, it follows that Dp. X .. = X, . Dp..
i | 1‘ i)y IvJs i

[]

Theorem 3.33. Let P be a partition of n with P, € P. For i,,i, € P; with

io < iy and ig,is € Ps; with ig < i, the following relations hold in O,(Pg):

Mi]:iiﬁMiI:ii(; = in]:iigMiI:iiﬁ (3.26)
M M =g M7 M (3.27)
M7 M = M Mfiﬁ (3.28)

oMl = M M — M M (3.29)
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Proof. Set I = M = P,. We first note that since {< I||M} = (), Theorem [3.2§]

simplifies to

gL )M | N ="M | NYT L)+ g™ > g [M [ TH(T | T,
Te{>J||N}

(1) Set J = (P \ia)U{ig} and N = (P, \i,)U{is}. Note that JNN = (P;\ i)
and JUN = (P; \ in) U {ig,is}. Hence, the only possibilities for 7" so that
|T| =1|J| withT C JUN and T" D> JN N are J and N. Since N > J, the

relation above simplifies to

gPII | J)[M | N) = ¢ M | NI | J) + ¢ P 14GIM | J)[T | N

However, since N N Ps; # () then [I | N] =0 in O,(P7) by Lemma (3.5 Tt

follows that M. M]% = qM’ M}

lals™ lalg’

(ii) Set J = (P, \ ia) U {ig} and N = (P, \ iy) U {ig}. Note that JN N =
(P \ {ta,iy}) U{ig} and JUN = P,U{ig}. The only possibilities for T" so
that || = |J| with T C JUN and T" D> JN N are J and N. None of these
sets have the property that T > J so {> J||[N} = 0. Hence, by Theorem

.28 we get

gL | )M | N) =g M N[,

It follows that M5 M =q 'M M.

Talg™ iy iyig lalg”
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(iii) Set J = (P; \ ia) U {ig} and N = (P, \ i,) U {is}. Note that JN N =
(P \ {ia,iy}) and JUN = P; U {ig,i5}. Hence, the only possibilities for T’
so that |T| = |J| with T"C JUN and T' D> J N N with the property that

T > J are

Ty = (P \ ia) U {is} or Ty = (P \ {ia, iy}) U {ig, is}-

To compute Ay, we note that J\ N = {i,,i3} and

T} = (P \ i) U i} =P
TIATL = {ia i) T\ T = {ia.is}
T\ J = {is) Ty\ J = {is)
J\Ty = {is} I\ T = {i,}.

Therefore,

gu(le J,N) = ﬁ({ia,i,y,ig}, {is}) — g({ia’i’wiﬁ}v {Zﬁ}) =0+0=0

LTy, J.N) = ({ias iy, is} {is}) — ({ias iy i, {i}) = 0 — 1= —1.

Similarly,

&M\ J;J\Th) =1 and E(T\ J; J\Ty) = 1.
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Thus, Ay, = ¢ and Ay, = g(—q)~!. Therefore, by Theorem we have

¢ | J[M | N]=¢" 2 [M [ N[ ] J)

+ "2 gIM | T | T + ¢ 712 (=g aM | T | To).

That is,

MiaiﬁMiﬂ,ié =4q Mi'yiéMiaiﬁ +q inviBM +q °(=q )qDp [P | T3].

ials

However, by Lemmal[3.27|we have Dp, [P, | Ty] = M M —g2 M Mk

iyig T Tials Talg ™ Tiyis"

Therefore
P; P, =2 P; P; —2-~ 1 P; P;
MiaigMiﬂ,@; =4q Mi,yi(;Miaiﬂ +q quBMiaig

+q2(—q 7 (e M, — P MS M)

inig Minis iaigiyis

=q2MP ME

inis ™ inip

+q2qMm M — 7 rgM M

iyig " T ials iyig tals

lalg ™ iyis
= ¢ *MF M.Pi.ﬁ + MP MP g2 MP ME

iyls Tl zaiﬁ Iyls zaig Tyls”

It follows that M’

boMmlo=ME Ml
alp 1yls

’L'fyl'(; iaiﬁ'

(iv) Set J = (B;\ia) U{is} and N = (B \ ) U{is}. Then JUN = P,U {is, is}

and J NN = P, \ {iq,i,}. The only possibility for 7" so that |T'| = |J| with
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T CJUN and T D JN N with the property that T" > J is

T = (Pi\ {ia, iy}) U {ig, is}-

To compute Ar we note J \ N = {i,,is} and

T"=P  T'\T={ini,} T\J={izg} J\T={i}

Therefore we get

"%u(T7L ‘]) = g({imi’w%h {zﬁ}) - E({ia7i77i3}7 {Z’Y}) =1-1=0.

Similarly, we have

&I\ JI\T) = 1.

Therefore, Ay = ¢ and we have the relation

gPII | J)[M | N) = g2 (M | NI | J) + P20 | T[T | 7).

That is,

MP MP = g2 vk
B i

tals iyl ials

+q2@Dp, [P | T).
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However, by Lemma[3.27|we have Dp [P, | T] = M. M. — @M ME

inig™ Tials

Substituting this into the equation, we have

P;

iais

MPy, = g M M g7 (g T M

iyig iyig

iyig T ials lalg

—2 MP MP + q MP MP MZP MP

iyig T T ials iyig* Miats Iyl

= MP MP —gMP ME

iyig* Miats Talg ™ " iyis"

For P;, P; € P with i, € P; and js, j, € P; denote

Pj P,
(iajé

|Pjl—

i L N\ 1- P; P; ‘P|

Vsdv T Z ( q) nMjWJ+nvj5Miajv+n +< )’Y D Mza%
n=1

M )
inyis

ialg

iyis "

Theorem 3.34. Let P be a partition of n and P;, P; € P withi < j. Fori, € F;

with ig € Ps; and j, € P; with js € Ps;, the following relations hold in O,(Pg):

P; P;
iai,@ j"/]é
P P;
Miaiﬁ Mjwa
P; Pj
Miaiﬁ Mj'yja
P; Pj
Miaiﬁ Mjws
P; P;
icxiﬁ j'y]é
P; P;
Miaiﬁ Mjwa

= M MP. forig e P.,

Jvds ™ Tialg

—qM MP forig € P; but ig # j,

lalp

M MP +4q M i for ig € P; and ig = j,

lalg (iads)sd

M WM+ M lBMP for ig € Ps; and ig < js

P . . .
MJWMZ iy forig € Py and ig = js

M M forig € Py and ig > js.
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Proof. Set I = P, and M = P;. Since i < j it follows that {< I||M} = 0.

Set J = (P; \ ia) U{ig} and N = (F; \ jy) U{js}. For T' € {> J||N} since
P, C P, if PNT? % () then [P; | T%] = 0 in O,(P}) by Lemma 3.5 (i). Since we
are concerned with relations in O,(Pp}) we need only consider the T € {> J||N}
so that P, N T" = (), which is equivalent to 7' D> J N P;,. Hence, Theorem m

simplifies in O,(P}) to

()M | NT = ™M [ NI | ]+ g7y A [M | T[T | 7). (3.36)

Te{>J||N}
TD>JNP;

We now consider each case individually.

i) First note that JAN =0 and JNP;, = P\ i,. If 4 T then ig € T". Since
(i) 6 6
ig € P—j then T° N P.; # 0, hence [M | T% = 0 in O,(P{) by Theorem
B.5 (i). If ig € T then since we are only considering 7' > J N P; then this

implies that T'= J. Since T' # J equation ({3.36] simplifies to

(| JIIM [ N} = [M | N]IL[J].

That is, M7 M7 = M5 vb

latp™ " Jvyis Jvds~ Tialg”
(ii) Since ig € P; then ig = j, for some j, € P; except ig # j,. Hence,
JUN = (P, \ia) U(P;\ jy)U{Jjs} and JNN = {ig}. Notice, since we need

only consider ' D J N P, = P, \ i, and since T' D {ig} then we must have
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T = J. However, since T # J equation (3.36| simplifies to

[ | J][M | N] = g[M | N][I'| J].

That is, M M

Lot ™ JvJs

— Pj P
= qM; 5, M,

Zaiﬁ'
(iii) Note that JUN = (P;\ia) UP;U{js} and JNN = . It is straightforward

to verify that the only 7' € {> J||N} with T' D> J N P, are

Ty = (P \ia) U {jyin}

where n =1,2,...,|P;| —~ and

Ts := (B \ ia) U{Js}-

To compute Az, we note J\ N = J and

Tﬁ = (PJ \jv+n) U {jé} T;E \Tn = Tn T'rz \ J = {j’y+n} J \ Tn = {.]7}

Therefore,

LTy, J,N) = L((Pi \ia) U (P \ Jyen) U LG5 Hrn})

— (B \ia) U Py \ i) U {05} {54 })
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=|Pl=(y+n)+1—=(|P]—v)=1-n

and &(T; \ J; J\T;) = 1. Thus, A, = q(—¢)'~". Similarly, to compute A,

we note that
=P TA\T=P  T\J={i}  J\Ty={j}
Therefore,

LHT5, 1, J) = €((P \ia) U Py, {Gs}) = €((Pi \ia) U Py, {52})

— 0= (1B =7) =7~ |l

and &,(T5 \ J;J \ T5) = 1. Thus, A, = q(—q)""1"3l. Therefore, equation

(3.36)) becomes

(L] J][M [ N} = [M [ N][I[J]

|Pj|—~
+ ) q(—)" M | T | T,) + q(—q)BIM | T[T | T).
n=1
That is,

MP, M7 = M ME

Zaiﬁ J’Yjé j’}'j6 iai/B
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|Pjl—
n E : 1=n p b P; —|P; VP
+ q (_q) ! j’Y]"FTIvj(S MiO&j’Y-‘rTl + <_q)’y ]|DPJ ioc.jé
n=1

+gMb P

(’Laj(;)v]"/

= M5 P
JvJé

lalg

(iv) We have JUN = (P, \ ia) U (P;\ Jy) U {ia,js} and JNN = (. Since i < j
then ig < j. for all j. € P;. Similarly, since ig € P, then ig > 4, for all
i, € P;. Since ig < js the only element in J U N larger than ig is js. Since
we need only consider T' € {> J||N} such that T D> J N P; it is clear that

the only such T'is T = (P; \ ia) U {Js}-

Now, to compute Ay we note

T =P\ {is)  T\T=T T\J={js} J\T={is.

Hence,

LHT,I,T) = U((Pi \ia) U (P \ jy) U {is} {ds})

— L((Pi \ia) U (P \ jy) U{ig}, {ig}) = 0

and &,(T'\ J; J\T) = 1. Therefore, Ay = g. Thus, equation (3.36) simplifies

to become

(1| )M | N]=[M [ N][T| J]+qIM | T¥[1 | T].
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That is, M M

latg ™ jyJs

_ P; P ~a 1P P;
= M M, +GM M

tajs®
Since jg = ls we have JUN = (P; \io) U(P;\ j,)U{js} and JNN = {js}.
Since JN P, = P;\ i, C T and since we must have js € T then T = J.

Therefore, equation (3.36]) simplifies to

(L[ J][M | N] = q[M | NJ[I'| J].

; P; P _ Pj P;
That is, M; 5, M; " = qM; 75 M; s .

We have JUN = (B; \ in) U (P; \ Jy) U {Js,i5} and JN N = . Since
i < j and ig > js5 then ig is the largest element in J U N. Since ig € J if
ig € T then T' # J. Hence, ig € T'. Moreover, since we need only consider
T € {> J||N}sothat JNP, C T and ig € T with |T'| = |J| then T = J.

Therefore, equation (3.36]) above simplifies to

(L JI[M | N} = [M | N][L[J].

: Py Py P; P;
That is, M7 M =M% ML, . 0
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Relations in Oq(N;r P)

Let P be a partition of n. Now that we have some relations in O,(Pp)

P

involving the quantum minors Dp, and M;; . we can deduce some relations in

Oy (Np)-

For P; € P with i, € P, and ig € P; denote the generators of O, (N7,) by

P; o —1 P;
iaiﬁ T DPZ laig”

Moreover, for P;, P; € P with i, € P; and j5, j, € P; denote

P; P; N ST o P S &
x(iajé)JW T DPj DPi M(iajé)’j’v.
It follows from ([3.3]) and Theorem [3.8 that
|Pj|—
PP _ _ N1-n,.B; P; — ) 1P5l P
x(ijajé),jw o Z ( q) :Cj’jJrnjéxiajern + ( q> ’ xi&jts'
n=1

Theorem 3.35. Let P be a partition of n with P; € P.
Foriq, iy € Py withi, <1, andig,is € Ps; withig < i, the following relations

hold in Oy(N3p):

P; P P, P

LinigLigis = DipisLiyig (3.37)
P P _ -1_P P

Ligiglivig = 4 TijigTisig (3.38)
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ali gl =gl gl (3.39)

iaigLiyis inis Vigig
P P _ P P~ P _P
iaisLiyig — LiyigLiais — QliqigTiyis- (3.40)

Let P; € P with i < j let i, € P; with ig € Ps; and j, € P; with js € Ps;. The

following relations hold in O,(NIp):

>
xfa"iﬁxfjjé = :L'j:jj&xiiiﬁ forig € P.; (3.41)
xi"iﬁxfjjé = :vfjjéxfziﬁ forig € P; but ig # j, (3.42)
fziﬁ ijjé = _1$;:jj5$zifi,3 + q_lf]\xaﬁ)yh for ig € Pj and ig = j, (3.43)
Z"iﬂxfjjé = fjjézvfziﬂ + E[xfjiﬂxf;jé forig € Psj and ig < js (3.44)
Z"iﬂ ;:jjé = qxfjjéxifiﬁ for ig € P~; and ig = js (3.45)
i"iﬂ ;:jjé = xfjjaxfjiﬁ for ig € P-; and ig > js. (3.46)

Proof. For i, iy € P; with i, <, and ig,is € Ps; with ig < i5 by Theorem [3.11],

Dp, commutes with M, M M and Milj 1, Hence, relations (3.37)) — (3.40)

Zoﬂ[ﬁ’ oty Z’Y'LB’

follow from - .

Now, for P, P; € P with ¢ < j and i, € P, with ig € P5; and j, € P; with
Jjs € P~; by Theorem and relation (3.5) we have that Dp, commutes with
My,
with Dp,. Hence, relations follows from and relations -
follow from - .

and Dp, commutes with M, i Moreover, by Theorem Dp, commute

ialg”
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(i) For relation (3.42) using relations ([3.31)), (3.3)), and (3.4) along with Theo-

rem [3.8] we have

wl = Dpt M DptM?
J

talg™ Jyis iaig J~Js
- P;
=q 'Dy' Dy 1M M;

P;
'Lal,fj’ Jv Js

=q 'Dp! Dy, M MP , = Dp' Dy, 1M MF

lalp IvI ]’YJ& lalp
_ p-lasb —lasP _ B P

(ii) For relation ([3.43]) using relations (3.32), (3.3), and (3.4]) along with Theo-

rem [3.8 we have

xf;iﬁxfjﬂa =Dp, lMZiZﬁD;le]ijjé - _ID ID IMZIZ%MJ'I:%
_ q—lD 1D le’La'L,B ]?:jjé
= qilD};le};il (MJ J(SMZZZB - qAM(I;iJ']:Zj’jW)
= ¢ ' DR DR M M, + g gD DR M
= q 'Dp!M;% D! M+ q'qDp DM
i, 4T g, .
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Action of O, (Lp) on Oq(N;Lp)

Recall that there is a natural right O,(Lp) action on O,(NZ},) given by

2Y =) rH (S (V))art (Ya)
)

for Y € Oy(Lp) and z € Oy(NIp).

Theorem 3.36. Let P be a partition of n with Py, P;, P; € P with k <1 < j.

Foriy, iy, is € P; and ig, € Ps; and ky, k, € Py, and j,, jo € P}, the right Oy(Lp)

action on Oy(NZp) satisfies the following:

P; P,

— 7
IiaiB’YkAku = 51@1@”%&2'5
B S RN ; ;
Titig-Yiyis = 0iyisTi i, fOT la 7# is
5—1
P; - _ —1c P ~ e—o¢ B .
TinigYigis = 4 OiyisTi iy T4 E 4700wy fordo = i
e=1
B R G & ; .
iaiB‘Y.;UJG - 5]0]9'171'0‘2'/3 for ZB € P<.7
B R e a5, . b ; . ; ;
Tivig-Yiojo = 51039%&1‘5 + qéwﬁxiajg forig € P; and ig < jg
P, - P . ‘ .
Titin-Yiejo = qéjgjexiaiﬁ forig € P;j and ig = jyg
Tigig-Yiois = OjojoTinis TOT 15 > Jp.
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(3.50)
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Proof. From Theorem (3.31)) and from the comultiplication (3.7) we have

vl Yk, = Y (S (Vaak,)) Dp M T (Vi)

knEPk

—_— Z 7“+<SL<Y]€>\]€"))D 1M1P13anku
kyIGPk

= Z r+(SL(Yk>\kn))ankuD IMZP’LB
knEPk

= > (S Vi)t Ve, ) Dp M
knEPk

= r+(€L<Yk>\k‘u)) f;lg = 5k5kk,uxlplg

If i, # i5, from equations (3.17) and (3.18) and from the comultiplication

(3.7) we have

%aZ,B Z-\/Z(;: E rt SL 'szn

in€l;

=2

in€h;

=2

in€PR;

-5

in€P;

1vzn

zyzn

IZT+(€L(}K

lw’ié))'rpi
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If i, = i5, from equations (3.16) and (3.18) and from the comultiplication

(3.7) we have

ol Vi, = Z rH(Sp(Yiyi,)) Dy M5 X,

talg ints

= 2 (Sl ) Dy ( XM +aZ 7 %%Mfw)

_ <q*1r+(SL(Yiwin))X Dy MP )

ints talp
in€P;
6—1
+ (Ef q -0 +(SL( Z»an))XZnZeD 1MZIZZB>
inEPi e=1
= q_1r+(SL(}/;7in))XlnléD ZlMZiZB
Z’UEPi
6—1
+a\ q€*5 Z (SL( ’lwln)>X7fn7feD 1MZ€ZB
e=1 in€P;
d—1
= (e (Viyi))g " Dp! M+ T qor (e (Yiyi ) Dp M,
e=1

6—1
_ 1 P — 6—5 Pi
= 0iyisd T, T4 § q 0.

If ig € P-j, using equations (3.21)) and (3.25) and from the comultiplication

(3.7) we have

— § : Lasks _ 2 : 1asks
7‘0‘15 ]0.70 - ]G]n D M’L&’LBX]'UJ'Q - (SL( ]a]n))XJ'rﬂeD MZ 7,5
In€P; Jjn€EP;
_ ot TasP P;
=r (GL(}/}U.%))D Mla’L@ (sjoijiojiﬁ‘
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If ig € Pj and ig < jg, using equations (3.22) and (3.25)) and from the comul-

tiplication (3.7)) we have

$Zi5'y}aj9 = Z (SL( ]a]n))D 1MZI:ZBXjan

In€P;

= Z (SL( ]a]n))D P (XjnjeMzP + XJnZﬁMzI:je>
Jn€P;

= Z < (SL(Yi,)) X0 D 1szzﬁ +qr*(Se( Yioiu)) Xiis Dp 1MZ]:J9)
jnepj

= 1 (er(V,50)) D! M + @t (e (Vi,,)) DRt M,

= 5Jaje$iaiﬁ + 405,15y

If ig € P; and ig = jp, using equations (3.23)) and (3.25)) and from the comul-

tiplication (3.7) we have

— P; 1 P;
zazﬂ Yi,jo = § Yj,i,))Dp, Mzazﬁ Jnje = E :qT (S(Yi, 4, )XJUJG‘D Mzazﬁ

Jn€P; Jjn€EP;
= qr+(€L(Y}aj9))D IMZIZ’L[; = q(sjajem’if’i/g'
If ig > jg, using equations (3.24) and (3.25) and from the comultiplication

(3.7) we have

xiP;iB'}/}ajO = Z (SL( ]a]n))D lleI:zBXjnje = Z (SL( ]a]n))XJnjeD ZleI:zB

Jn€P; Jn€P;j

+(€L(Y}'ojo))D13ilMPi'

=T talp
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GK-dimension for O,(N7},)

Having found some relations in O,(NZp) we wish to find the G K-dimension
for Oy(NZ5). This will help us in showing that O,(NZ}) is a CGL extension. To
find the GK-dimension, we first need to return to O,(PZ%) and find bounds on
the GK-dimension for O,(P5%) as well as finding the GK-dimension for O,(Lp).

We may define an ordering on the generators of O,(SL,,) by the following rule:
for X;j, X € O4(SL,,) we have Xy <pex Xij if and only if & < ¢ or k = ¢ and
[ > j. We may similarly define another ordering by Xj; <cex X;; if and only if
l <jorl=jandk > i Notethat <, and <.e are in fact well-orderings on
the generators of O,(SL,). Let S} be the sequence of generators from I}, ordered
sequentially using <jex. Similarly, let S be the sequence of generators from I,

ordered sequentially using < ex. Observe that

k k
|SE1 =Y |BIIP and S5 = > | Bl Pail: (3.54)

i=1 i=1

Definition 3.37 (Definition 4.1.13 [22]). A sequence of elements ay, ... ,ay in a
ring R is a normalizing sequence if for each j € {0,1,2,..., N — 1} the image
of ajp1 in R/ S, a;R is normal and YN  a;R # R. The ideal generated by

such a sequence is called polynormal.

141



Let R = O,(SL,). For each element X;; of S}, let

We note that <.y induces an inclusion on the right ideals R;; from Lemma [3.38
That is, R;} C RY if and only if Xij <tlex Xst- We may similarly define right

ideals R;; from Sp using <clex-

Lemma 3.38. Let P be a partition of n. The ideals I% are polynormal. Moreover,

It + Iy is also a polynormal ideal.

Proof. If |P| = 1 then Si = (). Since IF = 0 the statement holds trivially.
Therefore, we suppose that |P| > 1.

To show S} is a normalizing sequence, we need to show that the image of
each Xj; € S§ is normal in Oy(SL,)/Rj;. To do this, it sufficient to show that
Xi; is normal modulo R} with respect to each of the generators of Oy(SLy,).

Let Xg € Oy(SL,,). If i < sand j >tori>sand j <t, then X;; commutes
or g-commutes with X and X;; normalizes X . Therefore, we only need to
consider the case where X;; and X are “NW” or “SE” from each other. That
is,ifi <sand j<tori>sandj>t.

If i < sandj <t then X;; Xy = XuX;; + ¢X;X,;. In this case we have
Xit <wex X5 and so Xy X,; € Rf5. Similarly, if ¢ > s and j > ¢ then again

XstXij = Xinst+Z]\ijXit and ij <tlex Xij and so ijXit c Rz—; It follows that
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Xi; is normal modulo Rj; with respect to any generator of O,4(SLy). Therefore,
ST is a normalizing sequence and I} is a polynormal ideal.
A similar proof also works for S, replacing <jjex wWith <cjex and Rjj with R;J
Finally, denote S}, U Sp the sequence of elements of S}, followed by those of
S5. To show Si U Sy is a normalizing sequence, since S} and Sy are already
normalizing sequences, it is sufficient to show that the lowest element of S;, X1,
is normal modulo the right ideal generated by S} to prove the Lemma. However,

since X,,; is normalizes all the generators of O,(SL;,) this is trivial. O
Let A% be the right ideals in O,(SL,,) generated by S5.

Proposition 3.39. Let P be a partition of n. All the R?; are two-sided ideals.

Moreover, the AI% are two-sided ideals equal to I]j;f.

Proof. If |P| = 1 then S5 = (). It follows that the right ideal generated by S3
and I# are both 0 and the theorem holds. Therefore we suppose that |P| > 1.
We proceed inductively to show that all the right ideals R;} are two-sided.
It is trivial that Ry, is a two-sided ideal. Let X ; be the immediate successor
to Xi; in S35 and suppose that R is a two-sided ideal. We wish to show that
R;,“j, is also a two-sided ideal. Since X is the immediate successor of X;; we

have R;?j, = X;;R+ R;; from the definition of Rj,j,. Moreover, it follows from

Lemma W that RX;; C X;; R + RZ'; Therefore, since R;; is a two-sided ideal
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we have

That is, RZ,], is a two-sided ideal. Hence, all the R;; are two sided ideals. A
similar proof replacing <x With <gex can also show that the RZ-_J- are two-sided

ideals.

It is clear that

+
AP - max P, max PkR + Rmax Py max Py,

In a similar way to above, since R is a two-sided ideal, we have that

max P max Py,
A7 is also a two-sided ideal. A similar proof also shows Ay is a two-sided ideal.

Since A} are two-sided ideals and since I3 are the ideals generated by S,

they are equal. O

Theorem 3.40. For P a partition of n with |P| = k we have

GK.dim (O,(Pg)) > (n® — 1) Z|P||P<Z

e

GK.dim (0,(P;)) > (0 — 1) = 3P| Pi.

=1
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Moreover,
k
GK.dim (0,(Lp)) = (n* ~ 1) Z|P||P<z SSIRIIP
i=1

Proof. Since the quantum determinant D is a central element of O,(SL,,) [19} 9.2
Proposition 9], it follows from [22, Theorem 4.1.13 | and |1, Corollary 11.9.18]
that GK.dim (O,(SL,)) = n* — 1.

By Lemma and [22, Theorem 4.1.13] we have
height (If) < height (I35 /A5) + |S5].

However, by Proposition we have that A5 = I5. Therefore,

k
height (13) < Z |P,|| P and height (1) <> ||| Psil.

=1

Since, by [1, Corollary I1.9.18] we have that Ilf satisfies Tauvel’s height formula,

1.e.

GK.dim (O,(SLy,)) = height (I35) + GK.dim (O,(SL,/I)),
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it immediately follows that

GK.dim (O4(P})) > (n? — 1) Z|P|\P<z

GK.dim (O,(Pp)) > (n® — 1) Z | P,|| Psi|.
Moreover, using Lemma and [22, Theorem 4.1.13] we have
height (I + 1) < |Sp U Sp|.
By a similar argument to above, it follows that

k
GK.dim (Oy(Lp)) > (n® — 1) Z\PHPQ > IB|Psil.
i=1

(3.55)

Let ¢ be the map described in Lemma [3.17, Let D; be the quantum de-

terminant of Oy(Mp,|). Using Theorem it is easy to verify that that D; ®

-+ ® Dy — 1 € ker ¢. Moreover, since each Oy(Mp,|) is a domain we have that

Dy ®---® Dy — 1 is a regular element. Therefore, from [20, Proposition 3.15] we

have

GK.dim (M/ ker ¢) + 1 < GK.dim (M).

Since Og4(M)p,) is a finitely generated iterated skew polynomial ring, it follows

from [13, Lemma 2.2] that GK.dim Oy (Mp,) = |F;|>. Hence, (20, Lemma 3.10]

146



implies

GK.dim (M) < Z|P|2

Since O,(Lp) = M/ ker ¢ we have
k
GK.dim (O,(Lp)) <> P[> 1.

Since
k k k

Y IBP =07 = |PlIPql =) |BIIP

i=1 i=1 i=1

it follows that
GK.dim (O,(Lp)) < (n* — 1) ZIPHPQI—ZIPHPM

Combining (3.55) and ([3.56)) gives us the desired result.

Corollary 3.41. Let P be a partition of n. We have that

k
GK.dim (Og(NZp)) = > |P||Psil.

=1

Proof. Let W be the subspace spanned by the Y;_;,

(3.56)

€ O,(Lp) and 1. Note that

W is a generating subspace for O,(Lp). Similarly, if V' is the subspace spanned

by the generators xP of O,(NZ,) and 1, then V is a generating subspace for

O4(NZp). From Theorem we have V.O,(Lp) C V. Moreover, from (3.7) we
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have A(W) C W ® O,(Lp). Hence, Lemma implies
GK.dim (O,(NZp)) > GK.dim (O, (Pf)) — GK.dim (O4(Lp)).

Theorem then gives the desired result. O

If |P| = 1 then O,(P5) = O,(SL,) and therefore the quantum unipotent
subgroups are trivial. From now on, unless indicated otherwise, we assume |P| >
1.

We may give the set of generators of Oy(NT,) a total ordering, <y+ by the
following rule: xfziﬁ <N+ -’Eijj& if and only if i < j, or ¢ = j and i, > j5, or ¢ = j

and i, = j, and ig < js.

For P; € P with j, € P; and js € P-; define
Py P P; P Bl P; P; P;
Rjlj =k <xiaiﬁ | Tisy <+ xjm> and  R;; =k <f‘7z‘az‘g | igiy S+ %a‘5> :

We note that xfz'iﬁ <N+ xfjjé if and only if }_%Zf is C }_%fjjé. It follows that all

the algebras Efjja form an ascending chain of subalgebras of Oy(N7,). Denote

this chain by Rp. We note that if R; = Efjjé is the i term in the chain, then
}_%i—l = R;:jjé and

oy
Il

Ri_l <:L‘j’yj6 > :
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Consequently, the length of this chain is 3, . p | Pi|| P5i|. We also note that Ry is

a polynomial ring in one variable and the highest element in the chain is Oy(NZ,).

Lemma 3.42. Let P be a partition of n. Let P; € P and j, € P; and js € P5;.

ofR b , there exist scalars N so that

For each generator ! o

B

TinisTiaip ~ NiavigTiais Jw% < Rﬂv%

Proof. Let :UZ ; be a generator of R}’ J . We note that for ¢ < j and i, € P; that

7

P, P; P;
, € 7, Moreover, for n € {1,...,|Pj| —~} we have that x] nis? Tigoin €
P.
R] js- 1t follows that x5 . € R] ;- Therefore, by (3.43) we have
P; Pi P
x]"f]é iaiﬁ - qxloﬂﬁ .7’7.75 € RJ’YJ(F

P Pj

For i,,i3 € P; with i, > j, and ig < j; we have that $J 13,:1: s ij-é.

Therefore, by (3.40) we have gt g gl b
y Jv Ja lalp Ll Jv]s IvJs "
P,
For i < j with i, € P, and i3 € P, with ig < js we have that x; Jé,xjjiﬁ €
P; P, P P;

R] ;- Therefore, by - we have wj ]5:UZQZB TinisTilis € ij.

Finally, for all other cases it follows from Theorem that there exist scalars

)\f) g SO that

g ogP B BB g pY O

JvJs T talp la,yig " ials J'y]é JyJs”
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Theorem 3.43. Let P be a partition of n. We have that
GK.dim (O,(N3,)) Z | P,|| P

Moreover, for all P; € P and j, € P; and j; € Ps; we have

JvJs

GK.dim (R}, ) =1+ GK.dim (R, ).

Proof. We note that using Lemma [3.42} the proof of [22, Proposition 8.6.7] can
be modified to show that

J~Js IvIs

GK.dim <}_3 > <1+ GK.dim (R}-Dj- ) :

Hence, each subalgebra in the chain Rp has GK-dimension at most one more
than the subalgebra immediately preceding it. Since the lowest element of the
chain Rp is a polynomial ring in one variable, the GK-dimension of this algebra
is 1. Moreover, since the highest element of the chain is O,(NZ}), it follows that
the 1 < GK.dim (Oy(NZp) < ¢ |B||Psi|. By, Corollary 3.41| we then have
that GK.dim (O,(NZ,)) = Zle | P;|| P~;|. It immediately follows that

GK.dim (EP

Jvds

)—1+GKd1m<RPj->. O

IvJIs
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H-action on O,(NZ},)

Lemma 3.44. Let P be a partition of n. The H-action on O,(SL,) from (1.25)
induces a rational H-action by algebra automorphisms on O,(Pg). Moreover,

this action has the property that

(U,?)).Dpl. = H uh”h) Dpl.

iINEP;

- . . - ME
(u,v).Miaiﬁ = H (N | | v, | vis M5,

iINEP; i, €P;
iuia

for (u,v) € H and for all P, € P with i, € P, and ig € Ps;.

Proof. We first note that Ith is generated by H-eigenvectors. It follows that there
are induced actions of H on O,(P%). From [1, Theorem I1.2.7], the induced action
H-action on O,(Pg) is rational.

If |P;| = k, we have

(0,v).Dp, = (u,0).[P; | P] = (u,0). | Y (=) Xisi, - Xigioge

ocE€Sym,,

_ l(o
= § (—q) )Ui1vig<1)Xi1ig(1) T uikvic;(k)Xikia(k)

oE€Sym,,

k
¢
- Z ( uijvia(ﬁ) (—a) (U)Xiliou) Xy -
7j=1

ocE€Sym,,
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However, since for any o € Sym,

k k
| |UijUi(,(j) = | |Uz']-Uz']- = | | Uiy Uiy
j=1 j=1

Z')\Gpi

we have

k
Z (Huijvia<j>> (_Q)Z(G)Xiliou) n Koy = (H u“”“)
j=1

oESym,, ixEP;
In the same way we also have,

P
(u, v).Mia@;ﬁ = H Ui, H Vi, WB [

NS i, €F;
inFia

Proposition 3.45. Let P be a partition of n. For P, € P with i, € P; and

ig € Ps; then

P; _ =1 P;
(u, V)T, = Vi VigTiliy

for all (u,v) € H.

Proof. From Lemma [3.44] it follows that

-1
(u,v).Dp' = <H Uzﬂ%) Dyl

i)\EPi
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Therefore, we have

(u,v).xfziﬂ = (u,v).D;}Mi@ﬁ

-1
1 P
= <H UiAUiA) Dpi H (N H viu UiﬁMiaZiB

ixEP; iIxEP; i, €EP;
iy ia
_ -1 p-lafP _ . -1 P
= v, UZBDPi Miaia = Vi, VigTi i O

Let P be a partition of n. For each h € H define the map 7, : Oy(NIp) —

Oq(PIJﬂr) by

(z) == h.x (3.57)

for all # € O,(NZ}). Since the H-action is by algebra homomorphisms, 7, is an
algebra homomorphism. Since each generator of O,(NZ,) is an H-eigenvector,
T, is an automorphism of O, (N ).

For P; € P and j, € P; and js € P-; define h;:jjé = (u,v) € H where

g ? ifk= Jv ¢ ifk= Jy
U =4 1 if k= js and vpr=9q 1 if k= j
g~ otherwise g otherwise.
\ \

153



We note that the restriction of TP to Rfjj

. . P;
is an automorphism of R
Jvis

)

We denote this restriction by ijjjé. Using Proposition [3.45| it is straightforward

to verify for each generator xiz ;€ R;:jja that

1 P, g . . .
q lxiaiﬁ if i =7 and i, = j,

g ta,, if i =j and ig = js

vl ifi=jand i, > jy and ig > js
i, ifi=jandis > jy and ig < js
P ifi<jandig€ P
JvJ6s lalp
i, ifi<jandig€ Pybutig # j,

qr;.;, ifi<jandige Pjandig=j,
Tl iti <jandige€ Ps;andig < js
q '-5 if 1 < 7 and iﬂ S P>j and iﬁ =Js

Tl it i < jandig € Ps; and ig > Js.

P.
Define the map 0,

() =20 o — 70 (2)a]) (3.59)

- j’yjé j'yjé j'\/j&
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for all z € R} J . Since TP is defined using the H-action, it is straightforward to

check that 5;3 s is a 7' -derlvatlon and from the relations of Theorem [3.35[ that

0 if i = j and i, = J,
0 if i = j and i5 = js
0 if i = j and i, > j, and ig > j;
—qxizﬂ i i =7 and i, > j, and i < js

P 0 if i < jand ig € P
b
0 if i < j and ig € P but ig # j,
qA (Zajé)h if i <jandig € Pj and ig = j,

~ P P oo , , ,
—qxiljéxj;iﬁ if i < jandig € P5; and ig < js

0 ifi<jandi5€P>jandi5:j5

0 ifi<jandi5€P>jandig>j5

for 93 s € R] s
Having defined an automorphism 775 and a 7' —derlvatlon 5 J , on R

IvJs Jv Js’

. =P . S ;
should not be surprising that R, j ;5 18 a skew polynomial ring over R;;]jé.
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Theorem 3.46. Let P be a partition of n. For P; € P and j, € P; and j5 € Ps;

then

PP P
Iv387 " IvJs7 TIvIsdT

- RY. [z

Jvds T VIvds

Proof. Since Tf:jjé is an automorphism and 0, J4 is a 7' —derlvatlon it follows that

P P; .
there exists a skew polynomial ring R] PALSTRE P 63 ’;;]- Since R , has a finite

dimensional generating subspace V' such that Tj:jj& (V) =V and 55 (V) C VvV

Jvis

it follows from [13, Lemma 2.2] that

GK.dim (R, 57 77 677 ]) = GK.dim (R,

Jv Js[ J~3s0 "Jvds? T inds JvJs

)+ 1. (3.61)

b7 00 ] =

From ([3.59)) there exists an algebra homomorphism ¢ : RY s’ Tisiss Ojs

JyJs

g
Ljogs:

R which is the identity on RPJ ,

I~Is JvIs and b] Js

It is clear that ¢ is surjective. Suppose ker ¢ # 0. In view of (3.61]), [20

Proposition 3.15] implies that

GK.dim (R,’, ) < GK.dim (R}’

Jv J(S)

Since this contradicts Theorem [3.43] we must have that ker ¢ = 0. It follows that

¢ is an isomorphism. O]
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P,
and T I,

)

Properties of 5?55

Lemma 3.47. Let P be a partition of n. For P; € P with j, € P; and js € Ps;

we have

P; P; P, P;
R :qu.J, O
I~v38 " IvIs Iv3s " IvIs

Proof. Since 7;” is an automorphism, this is equivalent to (ij) s Tings =

q25Pj Since both sides of the equation are ijjjé-derivations, we can apply

J~rds”

Lemma [1.28] and therefore need to show equality on the generators of Rj:jjg.

Let xi"iﬁ a generator of Rfjjé. For i = j with i, > j, and ig < js, from (3.58))

and (3.60)
P, P; P ~ P; P; P; P;
71350, (Tiniy) = (= D)7 (0,705,235,

_ 2. -2/ ~ P P _ P P (P
=00 (D53, Ti0gs = 0555750 (Tidig)-

Similarly, for ¢ < j and ig € P-; then

P, P; P ~ P; P; P; P;
07355050 (@ika,) = (D), (230573 (@5 0,)

_ 220~ P P _ P P P
=4 (DTG5, = 050575 (Tisy )
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Moreover, for i < j and ig € P; and ig = j, then

2. P <P (P
975550555 (Tinig)
|Pj =
20 L b by P — PP
- q ( q) Z ( q) Tj’yjé <xj'y+nj6)7—j'yj6(xiaj'y+n> +( q> Tj’yjé(xiajs)
n=1
|P]‘ v
20 N —1 177P P 'y\P|P
=4 ( q)q ]'ernj(Sxiaj'ern + ( q) Za]é
n=1
_ PN _ B P B
5]’7]6( 7»0/5[3) T Yi~ds j’yj5< iai[i)'
Finally, for any other 27, € V, since 7./ (xP i) is a scalar multiple of 1", we
Y Yy ialg ) JyJs \iatg p tow zﬁ
P oP; b _
have ¢? T 3553735 (xw- ) =0 and 5]7]5 hgg(miai5> =0. O

Proposition 3.48. Let P be a partition of n. For all P; € P and j, € P; and

Js € P~ we have that 5;?]'5 is locally nilpotent on Rijj&.

Proof. By Lemma [1.32] it is sufficient to show that (5J i) (@) 13) =0 for all 2}’

ig

a generator of R;:jjs' If i = j and i, > j, and ig < js then from (3.60|) we have

P; P, P, P; P; P; P; P;
5jw]j5 (xj;iﬁxialja) = ij]jfs (xj;iﬁ)(sjwjjs( Za%) + 5ij5< le;a)xiazjs = 0.

Similarly, if ¢ < j and ig € P5; and ig < js then

Py PP Py Po\oP P; P; P; Py
s TiisTip) = T3 05 (@ )05 75 (s ) =4 0575 (), = 0
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Moreover, if ¢ < j and ig € P; with ig = j, then

[Psl—
P; P; P, P  N1-nBj P; NPl 5P P;
5jwjja<x(i;j;),jw) _5j7]j5 Z< q) nxj’:Jrnj&xio:j’YJrﬁ +( q)v ’ 5jwjja<xiojj5)
n=1
gy P, , P P P P
B - , , . B . , P
= Z (=) (0 (5 g ) 055 (i ) 0505 (0 )iy )
n=1
=0.

Thus (5fjj5)2(xf;iﬂ) = 0 in the above cases. Since, 53?% (J:Zm) = 0 for all other
xfziﬁ, we are done. ]

O,(N7,) is a CGL Extension

Theorem 3.49. Let P be a partition of n. Let X}, be the sequence of generators
of Oq(N;“P) ordered sequentially using <n+. Let x; = x;:jjé be the it" term in the
sequence with T; = T;Z(S and 6; = (5;?]-6. The ring Oy(NZp) is a CGL extension

equal to

k[ﬂh][m; T2, 52] s [$m§ Tm, 5m]-

and R; = EPj

Jvds”

Proof. Let R; = Rfjj

Since R; = R;_1, Theorem [3.46 gives us

8

that R; = R;_1[x;; 7i, 0;]. Since Oy(NIp) = R, repeatedly applying the theorem

gives us that O,(NZ},) is the skew polynomial ring above.
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Notice that

P P 9 P
R Qx.J,_
Iv3s " IvIs J~Js

The fact that O,(NZ},) is a CGL extension follows from this fact, the definition
of 7;, (3.58), Proposition [3.45 and Proposition [3.48| O

Theorem 3.50. The relations from Theorem give a presentation of Oy(NZp).

Proof. This is a direct consequence of Theorem [3.49| O]

Notice that as ¢ — 1 we recover the relations for the coordinate ring for the

unipotent radical of a a standard parabolic group in SL,.

Definition 3.51. Let R be a domain. A prime element in R is any nonzero
normal element p € R such that Rp is a completely prime ideal. A noncommu-
tative unique factorization domain (UFD) is a domain R such that each

nonzero prime ideal of R contains a prime element.

The fact that O,(NZp) is a GCL extension gives us many useful properties
for this ring. For instance, from [21, Theorem 3.7 it follows that O (NZ,) is
a noncommutative UFD. It also follows from [10, Theorem 4.7] that O,(NIp)
satisfies the Dixmier-Moeglin Equivalence.

In fact, using the isomorphisms from Section 3.4} we have the following result.

Theorem 3.52. Let P be a partition of n. The rings O,(NZp) and Oy(N=p) are

noncommutative UFDs and satisfy the Dizmier-Moeglin Equivalence.
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