UNIVERSITY of CALIFORNIA

Santa Barbara

Mining and Managing Large-Scale Temporal Graphs

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy
in
Computer Science
by

Bo Zong

Committee in Charge:
Professor Ambuj K. Singh, Co-Chair
Professor Xifeng Yan, Co-Chair
Professor Subhash Suri

December 2015

The Dissertation of Bo Zong is approved.

Professor Xifeng Yan, Co-Chair

Professor Subhash Suri

Professor Ambuj K. Singh, Committee Chair

December 2015

Mining and Managing Large-Scale Temporal Graphs

Copyright (©) 2015
by

Bo Zong

i1

To my parents and my wife, for your endless love and unconditional support
that make me happy everyday, lend me courage to explore unknown world, and

lead me to where I am.

v

Acknowledgements

First of all, I would like to express my sincere gratitude to my advisors, Prof.
Ambuj K. Singh and Prof. Xifeng Yan. I am fortunate to work with two great
advisors who give me invaluable guidance on my research path and also grant me
freedom to explore independent work. In my five years” PhD study, I have learned
how to perform good research from my advisors’ enthusiasm, immense knowledge,
and patience. Outside of academia, Ambuj and Xifeng are also the advisors in
my life. They share with me the wisdom of how to live a happy, healthy, and
meaningful life, and give me great support and encouragement.

Second, I sincerely thank my committee member Prof. Subhash Suri. I am
deeply grateful for his valuable feedback and insightful suggestions on my work.

My sincere thanks also go to Prof. Yinghui Wu and Dr. Misael Mongiovi. It
is my great pleasure to work with them on multiple interesting projects. I am
also grateful to Dr. Nan Li, Dr. Kyle Chipman, Dr. Arijit Khan, Prof. Petko
Bogdanov, Dr. Nicholas D. Larusso, and Prof. Sayan Ranu for their various forms
of help during my PhD study.

[am indebted to all my labmates: Dr. Shengqi Yang, Dr. Xuan-Hong Dang,
Dr. Yang Li, Minh X. Hoang, Huan Sun, Arlei Lopes da Silva, Victor Amelkin,
Fangqiu Han, Sourav Medya, Honglei Liu, Anh Nguyen, Yu Su, Haraldur Hall-
grimsson, Izzeddin Giir, Theodore Georgiou, Semih Yavuz, and Hongyuan You.

I would like to acknowledge my collaborators and mentors for their valuable
advice and numerous discussions: Dr. Ramya Raghavendra, Dr. Mudhakar Sri-
vatsa, Dr. Christos Gkantsidis, Dr. Milan Vojnovic, Dr. Zhichun Li, Dr. Xusheng
Xiao, Dr. Zhenyu Wu, and Prof. Zhiyun Qian.

Finally, I would like to thank my loving family. Thanks to my father Yonghua
Zong and my mother Qiandi Shao for their endless love, and for always being
there for me. Thanks to my wife Dr. Xiaohan Zhao for her unconditional love,

support, and encouragement.

vi

Curriculum Vitae

Bo Zong
Education
2015 Ph.D in Computer Science, University of California, Santa Barbara.
2010 Master of Science in Computer Science, Nanjing University, China.
2007 Bachelor of Science in Computer Science, Nanjing University, China.
Experience

08/2010 — 09/2015 Research Assistant, University of California, Santa Barbara.
03/2015 — 06/2015 Teaching Assistant, University of California, Santa Barbara.
06/2015 — 07/2015 Research Mentor, University of California, Santa Barbara.
06/2014 — 09/2014 Research Intern, NEC Labs America, Princeton, NJ, USA.
05/2013 — 08/2013 Research Intern, Microsoft Research, Cambridge, UK.

06/2012 — 09/2012 Research Intern, IBM Research T. J. Watson, Yorktown Heights,
NY, USA.

Publication
(Publications marked with "*’ order authors alphabetically.)

Bo Zong, Christos Gkantsidis, and Milan Vojnovic. “Herding ‘Small’ Streaming
Queries”. International Conference on Distributed Event-Based Systems (DEBS), July

2015.

Vil

Bo Zong, Yinghui Wu, Jie Song, Ambuj K. Singh, Hasan Cam, Jiawei Han, and
Xifeng Yan. “Towards Scalable Critical Alert Mining”. ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), Aug. 2014.

Bo Zong, Ramya Raghavendra, Mudhakar Srivatsa, Xifeng Yan, Ambuj K. Singh,
and Kang-Won Lee. “Cloud Service Placement via Subgraph Matching”. International

Conference on Data Engineering (ICDE), Apr. 2014.

Bo Zong, Yinghui Wu, Ambuj K. Singh, and Xifeng Yan. “Inferring the Underlying
Structure of Information Cascades”. International Conference on Data Mining (ICDM),

Dec. 2012.

Shengqgi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. “Towards Effective Partition
Management for Large Graphs”. ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), May. 2012.

Misael Mongiovi, Konstantinos Psounis, Ambuj K. Singh, Xifeng Yan, and Bo Zong.
*“Efficient Multicasting for Delay Tolerant Networks using Graph Indexing”. Annual

International Conference on Computer Communications (INFOCOM), Mar. 2012.

Bo Zong, Feng Xu, Jun Jiao, and Jian Lu. “A Broker-assisting Trust and Reputation
System Based on Artificial Neural Network”. International Conference on Systems,

Man and Cybernetics (SMC), Oct. 2009.

viil

Abstract

Mining and Managing Large-Scale Temporal Graphs

by

Bo Zong

Large-scale temporal graphs are everywhere in our daily life. From online
social networks, mobile networks, brain networks to computer systems, entities
in these large complex systems communicate with each other, and their interac-
tions evolve over time. Unlike traditional graphs, temporal graphs are dynamic:
both topologies and attributes on nodes/edges may change over time. On the one
hand, the dynamics have inspired new applications that rely on mining and man-
aging temporal graphs. On the other hand, the dynamics also raise new technical
challenges. First, it is difficult to discover or retrieve knowledge from complex
temporal graph data. Second, because of the extra time dimension, we also face
new scalability problems. To address these new challenges, we need to develop new
methods that model temporal information in graphs so that we can deliver useful
knowledge, new queries with temporal and structural constraints where users can
obtain the desired knowledge, and new algorithms that are cost-effective for both
mining and management tasks.

In this dissertation, we discuss our recent works on mining and managing
large-scale temporal graphs.

First, we investigate two mining problems, including node ranking and link

prediction problems. In these works, temporal graphs are applied to model the

X

data generated from computer systems and online social networks. We formulate
data mining tasks that extract knowledge from temporal graphs. The discovered
knowledge can help domain experts identify critical alerts in system monitoring
applications and recover the complete traces for information propagation in online
social networks. To address computation efficiency problems, we leverage the
unique properties in temporal graphs to simplify mining processes. The resulting
mining algorithms scale well with large-scale temporal graphs with millions of
nodes and billions of edges. By experimental studies over real-life and synthetic
data, we confirm the effectiveness and efficiency of our algorithms.

Second, we focus on temporal graph management problems. In these study,
temporal graphs are used to model datacenter networks, mobile networks, and
subscription relationships between stream queries and data sources. We formu-
late graph queries to retrieve knowledge that supports applications in cloud ser-
vice placement, information routing in mobile networks, and query assignment
in stream processing system. We investigate three types of queries, including
subgraph matching, temporal reachability, and graph partitioning. By utilizing
the relatively stable components in these temporal graphs, we develop flexible
data management techniques to enable fast query processing and handle graph
dynamics. We evaluate the soundness of the proposed techniques by both real
and synthetic data.

Through these study, we have learned valuable lessons. For temporal graph
mining, temporal dimension may not necessarily increase computation complex-
ity; instead, it may reduce computation complexity if temporal information can
be wisely utilized. For temporal graph management, temporal graphs may include

relatively stable components in real applications, which can help us develop flex-

ible data management techniques that enable fast query processing and handle

dynamic changes in temporal graphs.

X1

Contents

Curriculum Vitae

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4

Mining Temporal Graphs

Managing Temporal Graphs

Contributions

Thesis Organization

2 Node Ranking in Temporal Graphs

2.1
2.2
2.3
24

2.5

Introduction

Problem definition

Mining framework
Bound and pruning algorithm
2.4.1 Pruning and verification .
2.4.2 Upper bound

2.4.3 Lower bound

2.4.4 Algorithm BnP
Tree approximation
2.5.1

2.5.2 Multi-tree sampling

Single-tree approximation

xii

vil
xvii

xxi

2.6 Experiment

2.6.1 Setup
26.2 Casestudy.
2.6.3 Overall performance evaluation
2.6.4 Performance evaluation of BnP
2.6.5 Performance evaluation of MTS
2.6.6 Scalability
2.6.7 Summary
2.7 Related work
2.8 Summary

Link Prediction in Temporal Graphs

3.1 Introduction
3.2 Consistent Trees

3.2.1 Consistent trees

3.2.2 Cascade inference problem
3.3 Cascades as perfect trees L.

3.3.1 Bottom-up searching algorithm
3.4 Cascades as bounded trees
3.5 Experiment
3.6 Related work
3.7 Summary

Subgraph Matching in Temporal Graphs

4.1 Introduction
4.2 Problem definition L
4.3 An overview of Gradin
4.4 Fragment index
4.4.1 Naive solutions
4.4.2 FracFilter construction
4.4.3 Searching in FracFilter

xiil

4.4.4 Index update in FracFilter 97

4.5 Optimize query processing 98
4.5.1 Minimum fragment cover L. 99
4.5.2 Fingerprint based pruning L. 101

4.6 Experimentso 103
4.6.1 Experiment setup 104
4.6.2 Query processing 107
4.6.3 Indexing performance 111
4.6.4 Scalability 114
4.6.5 Summary 116

4.7 Related Work 117

4.8 SUMMATY 120

Temporal Reachability 121

5.1 Imtroductiono 121

5.2 Preliminaries o 125

5.3 Problem Statement oL 127
5.3.1 ILP formulation 130
5.3.2 A naive approach for the demand cover problem 132
5.3.3 A compact graph representation 133

5.4 An indexing system for the demand cover problem 135
5.4.1 Index structure oo 136
5.4.2 Preprocessing Lo 137
54.3 Filteringo 139
5.4.4 Optimization 144
5.4.5 Adaptive extension 144

5.5 Experimento 145
5.5.1 Dataset 145
5.5.2 Implementation L. 146
5.5.3 Response time 147
5.5.4 Scalability over query size 149

Xiv

5.5.5 Preprocessingo 150

5.5.6 Filtering capability 151
5.5.7 Communication cost 153
5.6 Related Work oo oo 154
5.7 Summary 155
Partitioning in Temporal Graphs 157
6.1 Introduction 157
6.2 System Model and Assumptions 162
6.2.1 Query Assignment Problem 163
6.3 Hardness and Benchmark 165
6.3.1 NP Hardness 165
6.3.2 Random Query Assignment 167
6.4 Offline Query Assignment 169
6.4.1 Multi-Source Query Assignment 169
6.4.2 Single-Source Query Assignment 176
6.5 Online Query Assignment 180
6.5.1 Greedy Online Algorithms 180
6.5.2 Discussiono 183
6.6 Experiment oo 187
6.6.1 Synthetic Workloads 187
6.6.2 Real-World Workloads 197
6.7 Related Worko 198
6.8 Summary 200
Conclusion 201
7.1 Summaryo 201
7.2 LeSSOnS 204
7.3 Future Worko 205
7.3.1 Data Analytics for Enterprise System Security 205
7.3.2 Data Decay in the Age of Internet of Things 208

XV

Bibliography 210

XVvi

List of Figures

2.1 Critical alert mining: pipeline
2.2 Algorithm BnP: Upper and lower bound
2.3 The pruning procedure Prune L.
24 Algorithm MTS
2.5 Critical alerts over LMo
2.6 Mining performance on LM alert graphs
2.7 BnP performance on LM alert graphs
2.8 MTS performance on LM alert graphs
2.9 Scalability results on SYN graphs

3.1 A cascade of an Ad (partially observed) in a social network G from
user Ann, and its two possible tree representations 77 and 75.

3.2 Tree representations of a partial observation X = {(Ann,0),
(Bill, 1), (Mary,3)}: T3, T, and T; are consistent Trees, while Tg is
NOL. . . o o e

3.3 Algorithm WPCT: initialization, pruning and local searching . . .
3.4 The bottom-up searching in the backbone network

3.5 Algorithm WBCT: searching bounded consistent trees via top-
down strategy

3.6 The prec and rec of the inference algorithms over Enron email cas-
cades and Retweet cascades

3.7 Efficiency and scalability over synthetic cascades

XVil

4.1 A user-defined accounting service with diverse memory and band-
width requirements on nodes and edges

4.2 A fragment with its canonical labeling (top right) and fragment
coordinates (bottom right) oo 0oL

4.3 Gradin consists of two parts: (1) offline index building and (2)
online query processing

4.4 FracFilters of density 2 (left) and 4 (right): s in the top right corner
is the structure of Dy, points are label coordinates, and the integer in
each grid is the gridid. 0oL

4.5 The Algorithm sketch for constructing a FracFilter

4.6 The same query fragment (the red dot) requests fragment searching
on two FracFilters of density 2 (left) and 4 (right).

4.7 An update on FracFilter of density 2 (left) and 4 (right), respec-
tively. When a fragment in bottom left corner is updated, it triggers a
bounded event on the left, but a migration event on the right.

4.8 An example of fingerprint based pruning

4.9 Query processing performance on B3000 and CAIDA with 100 com-
patible subgraphs returnedo

4.10 Query processing on B3000 returning 5 or 10 matches
4.11 Update processing time on B3000 and CAIDA
4.12 Scalability on BCUBE graphs of 5K - 15K nodes

5.1 Anexample of a DTN among moving nodes. (a) The four solid lines
represent four trajectories. To simplicity we use the x-axis indicating
the time. The big dashed circles represent the radio range of nodes.
Nodes that are involved in a transition (contact beginning or contact
end) are filled. Three data needs (71, ro and r3) are represented with
filled triangles. Their deadlines are t,, to and t3, respectively while their
latencies are d,, 02 and J3, respectively. (b) The corresponding temporal
graph. Snapshots of the connectivity graph at three different times are
depicted within big ovals. Temporal links joining contiguous snapshots
are represented with dotted lines.

xXviil

125

5.2 (a) An example of reduction from Set-cover. Each set S; of the
family S is associated to a point p; in the left-hand side. The fixed
nodes 7j1,J2,...,J5 in the right-hand side are associated to elements.
The dashed circle delimits the radio range, of length d. Moving nodes
follow the trajectories depicted by solid lines. The minimal sub-family
that covers all destinations is {5, S4}, corresponding to points po, p4. .

5.3 The compressed graph representation of the example in Figure 5.1
A compressed graph is depicted over the space-time graph. Boxes and
solid lines represent vertices and edges of the compressed graph, respec-
tively. The extent of a box in time represents the component lifetime.
Three data needs are represented (by filled triangles) with their extent

in time. From left to right: r, = (2,t4,d4), 75 = (3, s,), 7e = (4,1, dc).

5.4 (a) An example of PIE graph. The small circles and thin arrows
form the compressed graph. Each path is circumscribed by an oval and
its lifetime is reported. Links between paths are represented by thick
arrows. They are labeled by the ends of the lifetimes of their source
vertices. Solid triangles within circles represent data needs. (b) Validity
intervals of a set of data needs in a path p;. Bars represent the extent
of validity intervals of data needs. The minimal family of sets for this

path is {C(ps,ta), C(ps,te)}- - o v o o o

5.5 An example of maximal coverage sets in a path. Bars represent
the extent of validity intervals of data needs. The coverage of the time
instants t;, o and t3 are maximal sets among all the coverage sets in
the path. The family of maximal sets can be found by sliding a vertical
line in reverse time order and taking each time instant that corresponds
to the beginning of a validity interval (indicated by the symbol “-” at
the top) that occurs right after the end of the same or another validity
interval (indicated by the symbol “+7). This family has minimum size.

5.6 Performances as functions of the size of the dataset (number of
days) and the number of dataneeds.

5.7 Scalability over query size

5.8 Preprocessing time and index size produced by CIDP on different
datasets. The first row refers to CAB, the second row refers to GeoLife
and the last row refers to SYN.

5.9 Evaluation of filtering capability. The first row refers to CAB, the
second row refers to GeoLife and the last row refers to SYN.

Xix

130

134

138

5.10 Communication cost with varying number of requests per cab per
day

6.1 Example of events flowing from the event sources to the query
evaluators, and finally to users. In addition to global events, there are
also personalized event sources; in this example, a query combines traffic
updates with calendar events to generate notifications for the user (e.g.,
time to leave to be on time for next appointment given current traffic).
Note that as user queries can dynamically come and go, the data flow
graph is temporal.

6.2 2-approximation for single-source QA.
6.3 Greedy algorithms for online QA

6.4 Performance of offline query assignment.

6.5 Performance of online query assignment without query departures.

6.6 Performance of online algorithms with dynamic query arrivals and
departures.

6.7 Performance of online algorithms with dynamic query and server
arrivals/departures. Lo

6.8 Performance of query assignment algorithms on heterogeneous
source traffic rates: (left) random, (middle) positively correlated, and
(right) negatively correlated. oL

6.9 Performance of three different online query assignment strategies
for a real-world workload.

XX

List of Tables

3.1
3.2

4.1
4.2
4.3

prec, and prec, over real cascades 70
Complexity and approximability 7
Index construction time (sec) 111
Index size (MB) 112
Construction time and index size of Gradin 115

xxi

Chapter 1

Introduction

Temporal graphs are ubiquitous in our daily life. From online social net-
works [I0T, 208], mobile networks [128 133], road networks [63], brain net-
works [160], to computer systems [124],209], entities in these large complex systems
are not isolated. Instead, they communicate with each other, and their interac-
tions evolve over time, which makes temporal graph a natural data model for such
dynamic relational data. To extract meaningful knowledge from these data, it is
critical to provide efficient and effective tools that is able to mine and manage
temporal graphs.

Unlike traditional graphs, temporal graphs are dynamic. First, topologies in
temporal graphs can evolve over time [I18| 149 152] 204]. For example, in ap-
plications of online social networks [208], temporal graphs are applied to model
dynamic communications between users, where nodes are users, and edges indi-
cate at which time who talked with whom. In this case, the topologies of these
temporal graphs evolve with the communication records between users. Second,

attributes on nodes/edges can be changed over time [27], 63, 130]. Take datacenter

Chapter 1. Introduction

management as an example [207]. Temporal graphs are used to model datacenter
networks, where nodes represent servers, edges are connections between servers,
and attributes on nodes/edges denote the amount of available computation re-
sources. Node/edge attributes in these temporal graphs can change over time,
due to the dynamic workload in datacenters (e.g., new tasks join a datacenter,
or old tasks are finished and then leave a datacenter). The dynamics in temporal
graphs has inspired new applications that rely on mining and managing temporal
graphs.

A big track of applications rely on the knowledge discovered by mining tem-
poral graphs. Temporal graph data can be generated from a variety of domains,
such as cybersecurity [92 7], system management [124] [146], medical health-
care [32, [I71], and many others [119, 131l [I86]. Applications in these domains
(e.g., malware detection in cybersecurity, root cause analysis in system manage-
ment, and treatment effectiveness prediction in medical healthcare) desire the
insights concealed in the collected data. Meanwhile, a common set of data mining
tasks over temporal graphs are able to serve the knowledge demand from different
applications. These tasks include pattern mining [39], anomaly detection [20],
ranking [209], link prediction [I37], and so on [I7, 25 [I72]. For example, in the
application of malware detection, a key task is to build signatures for malware. In
this case, temporal graphs are collected from system call logs generated computer
systems, where nodes are basic system entities (e.g., processes, files, sockets, etc.)
and edges suggest at which time what kind of interactions happened between
these system entities. By performing pattern mining tasks over the data, we can

find discriminative patterns that are unique for malware and then these patterns

Chapter 1. Introduction

can serve as signatures for malware. In sum, the knowledge discovered by mining
temporal graphs benefit various applications.

Another track of applications rely on querying and managing temporal graphs.
Real-life tasks, such as forensic analysis in cybersecurity [18§], service placement in
datacenter management [77], and disease detection in medical healthcare [I3§], can
be formulated as querying problems against temporal graph data, including pat-
tern matching [207], similarity search [91], reachability [206], optimal path [187],
and so on [I70]. Take forensic analysis in cybersecurity as an example. The goal of
this task is to detect the existence of suspicious activities in computer systems. In
this sense, forensic analysis can be served as a pattern matching problem: a query
is a small temporal graph indicating how system entities interact when a suspicious
activity happens, a database stores a large temporal graph recording a history of
system entity interactions, and the goal is to find matches in the database for
the specified pattern in the query. If any matches are found, suspicious activities
exist. To serve queries on temporal graphs and retrieve knowledge for different
applications, we need to provide efficient management tools that enable fast query
performance.

While dynamics in temporal graphs have brought us new opportunities, we
are also facing new technical challenges.

First, it is difficult to discover or retrieve knowledge from complex temporal

graph data.

e For mining, the key questions are what kind of new knowledge we can deliver
from temporal graph data and how to model such temporal information in
graphs so that we can deliver useful knowledge for real-life applications. The

answers to these questions remain unknown.

Chapter 1. Introduction

e For management, the key challenge is how to build meaningful queries such
that users can obtain the desired knowledge. In other words, to retrieve
knowledge, we have to submit proper questions; however, over complex tem-

poral graph data, it is burdensome to formulate right queries.
Second, due to the high-level dynamics, we also face new scalability problems.

e For mining, because of the extra time dimension, the underlying search space
becomes much larger. Existing mining algorithm cannot scale or even deal
with the time dimension. New mining algorithms are desired to scale with

temporal graphs.

e For management, we usually need techniques, such as graph indexing, com-
pression, or partitioning, to speed up query processing. Existing data man-
agement techniques mainly focus on static graphs, and cannot deal with
dynamics in graphs. Therefore, it is critical to develop flexible data struc-

tures that efficiently manage temporal graphs.

My research work aims to address the new challenges raised by mining and
managing large-scale temporal graphs. The statement of this dissertation is as
follows.

To discover and retrieve knowledge from large-scale temporal
graphs, we need to understand how to utilize temporal structural in-
formation and develop cost-effective algorithms that scale with both
dynamics and size of graphs.

Driven by the statement, we have developed algorithms and tools to mine and

manage temporal graphs.

Chapter 1. Introduction

In terms of temporal graph mining, we have investigated two important prob-
lems, including ranking problems and link prediction. These two problems support
critical applications in system management and online social networks. In this se-
ries of study, we investigate what kind of new knowledge are brought by temporal
information and how these new knowledge benefits real-life applications. More-
over, we analyze how temporal dimension in graphs raises computation difficulties
and develop mining algorithms to overcome these problems.

In terms of temporal graph management, we have tackled management prob-
lems such as subgraph matching, temporal reachability, and graph partitioning. In
particular, we studied these problems in the background of datacenter networks,
mobile networks, and stream processing systems, respectively. In these works, we
unveil the importance of managing temporal graphs, and demonstrate how tem-
poral information can help us address the scalability problems in temporal graph
management.

Next, we briefly introduce the works included in this dissertation.

1.1 Mining Temporal Graphs

Node ranking and link prediction are our recent focus in the category of mining

temporal graphs.

Node ranking in temporal graphs. Datacenters are computation facilities
used for hosting users’ services and data. They are powerful but complex. In
general, it is impossible for human beings to manually check whether a datacen-
ter performs normally. What we usually do is we plant sensors into datacenters

to monitor their performance. When these monitoring data suggests there are

Chapter 1. Introduction

anomalies in the systems, alerts will be generated. A big headache for system ad-
mins is there are too many alerts, and they have no time to check the alerts one by
one. We also notice that among the large amount of alerts, some alerts are critical
and can trigger many other alerts. System admins should first fix problems be-
hind the critical alerts, and then other alerts will automatically disappear. In this
work, our goal is to help system admins find the most critical alerts so that they
can work on those alerts first. To address this problem, we first build temporal
graphs on alerts representing their dependencies over time. Because of temporal
dependency among alerts, the resulting temporal graphs are directed and acyclic.
This property inspires us to develop efficient inference algorithms that identify
alerts that have high probability to trigger a large number of other alerts. Note
that the idea in this work is not restricted to datacenters. It can also be applied to
managing other complex systems, like electricity power plants, aircraft systems,
and so on. Moreover, the proposed algorithms can also be applied in online social

networks for influence maximization problems.

Link prediction in temporal graphs. In online social networks, information
cascades are temporal graphs that record traces of information propagation. While
information cascades provide valuable materials for studying the processes gov-
erning information propagation, in practice it is difficult to obtain the complete
structures for information cascades, because of data privacy policies and noise. In
this work, we study a cascade inference problem: Given partially observed cas-
cades and a social network of users, the goal is to recover the structures for the
partially observed cascades. The search space of this problem is extremely large

because of the extra temporal dimension and pure graph size (i.e., the size of

Chapter 1. Introduction

online social networks). To tackle the search scalability problem, we propose to
use both temporal and structural information in partial observations to identify
infeasible information flows between users and prune the search space. The re-
sulting algorithms improve the inference accuracy and scale well with large graphs
of millions of nodes and billions of edges.

From these studies we have learned valuable lessons. First, we have found
concrete evidences showing how knowledge discovered from temporal graphs ben-
efits applications from different areas. Second, we made an interesting observation
from these two problems. When we deal with temporal data, we usually think
they will complicate mining processes. But what we found in our study is if
we wisely utilize temporal information, we can even simplify mining algorithms,

which is counter-intuitive.

1.2 Managing Temporal Graphs

In the direction of temporal graph management, we have investigated subgraph

matching, temporal reachability, and graph partitioning.

Subgraph Matching in temporal graphs. In a cloud datacenter, a routine
task is to find a set of servers that can host users’ services. A user’s service may
include multiple resource requirements. For example, one user may want to rent
6 virtual machines. First, each machine may require different amount of compu-
tation resources, like memory, CPU, and bandwidth. Second, the user may want
these 6 machines to be connected in a specific way, like a star, a ring or even more
complex topology. When a user’s service arrives, we need to find qualified servers

as soon as possible in order to guarantee the system’s throughput. In this work,

Chapter 1. Introduction

we represent users’ services as small graphs, nodes represent virtual machines in
services, edges represent the connections between machines, and attributes on
nodes and edges represent required resources. Cloud datacenters are modeled as
large temporal graphs. Nodes represent available servers, edges represent possible
connections, attributes represent available computation resources. In such graphs,
the attributes will change over time because of the dynamics in cloud. To this
end, the cloud service placement becomes a graph querying problem, and the goal
is to find subgraphs in the large graph that can match the query. We observe that
network structures in datacenters are relatively stable. Based on this observation,
we develop indexing techniques to speed up subgraph matching, and this index
can be efficiently updated when node/edge attributes in the large graph evolve.
In this work, we identify a key application for graph queries, and develop the first

graph index that can handle numerical attributes and their dynamic evolution.

Temporal reachability. In this work, we consider a set of moving entities
like buses or soldiers. When two entities are close enough to each other, they
can communicate; otherwise, they will be disconnected. Therefore, we can use
temporal graphs to model their dynamic connections over time. In this work, we
focus on information routing in such mobile networks. In particular, we aim to
minimize network communication cost when information are required to be sent
to a subset of entities within a time window. To solve this problem, we need to
check temporal reachability: whether one entity can send information to another
within a time window. In general, one information routing task could generate a
large number of temporal reachability queries. If we process those queries one by

one, it will be very slow. In the study, we found entities in mobile networks usually

Chapter 1. Introduction

follow some periodic movement patterns, and develop indexing techniques based
on these patterns. This index can process temporal reachability queries in a batch,
which significantly improves the speed of reachability information collection. With
the reachability information, we can quickly find the optimal routing strategy by

existing linear programming solvers.

Partitioning in temporal graphs. In a stream processing system, data sources
and queries form a bipartite graph representing their subscription relationships.
While data sources continuously generate data as streams, queries subscribe to
one or multiple data sources to obtain the desired knowledge. This subscription
graph is temporal, as queries can dynamically arrive and leave. The number of
queries in the system could be huge. Therefore, it is difficult to host all the queries
in one single server. An intuitive idea is to distribute the queries into multiple
servers, but distributing queries will bring two problems. First, query distribution
will result in extra networking traffic, because we might need to send the stream
data from the same data sources to multiple servers. Second, balanced workload
among servers is preferred, which minimizes wasted computing resources. Inspired
by these constraints, we formulate a query placement problems: given the data
sources, queries, and servers, we want to place queries into servers so that workload
is balanced and the overall network traffic is minimized. We propose a full set
of algorithms to tackle this problem. First, for the case of static queries, we
develop bounded approximation algorithms. Second, for queries with dynamic
arrival and leaving, we find the popularity distribution of data sources is usually
stable in practice, and propose a probabilistic model to randomly assign queries

with performance guarantee. Finally, for dynamic queries where the popularity

Chapter 1. Introduction

distribution of data sources changes over time, we develop heuristic algorithms
that empirically work well.

The following is the key insight drawn from our works on managing temporal
graphs. In many cases, we can identify relatively stable components from tempo-
ral graphs (e.g., stable network structure, periodic movement patterns, or stable
interest /popularity distribution). These stable parts can be very useful: they form
the backbone data structures in data management; on top of the backbones, we

can further build light-weight data structures that handle the dynamics.

1.3 Contributions

In the following, we summarize the key contributions of this dissertation.

o We identify key applications of mining and managing temporal graphs in
multiple domains. In terms of mining, Chapters 2l and [3] demonstrate how
mining temporal graphs discovers critical alerts in system management and
recovers the missing cascade structure in online social networks. In terms of
management, Chapters 4 [and [0l reveals the critical applications of tem-
poral graph management including service placement in datacenter man-
agement, information routing in mobile networks, and query assignment in

stream processing systems.

e We propose scalable mining algorithms to extract meaningful knowledge
from large-scale temporal graphs. (1) On critical alert mining, by leveraging
the directed acyclic property caused by temporal dependency among alerts,

we first develop fast approximation algorithms that is able to find near-

10

Chapter 1. Introduction

optimal solutions, and then develop highly efficient sampling algorithms
that empirically work well on real-life data. (2) On information cascade in-
ference, we propose consistent trees as the model to infer the missing cascade
structures, and use both temporal and structural constraints obtained from
partial observations to prune the underlying search space. The resulting al-
gorithm improves inference accuracy and scales with large-scale graphs with

millions of nodes and billions of edges.

e Cost-effective algorithms are developed to manage large-scale temporal
graphs. We identify relatively stable components in temporal graphs, and
make use of the components to build backbone data structures that effi-
ciently deal with the dynamics in temporal graphs. (1) In dynamic subgraph
matching, the topologies of temporal graphs are quite stable, but node/edge
attributes are highly dynamic. We propose a graph index based on stable
topologies, and then develop grid-based indexes inside of the graph index
to handle dynamically changing node/edge attributes. The proposed index
can scale with millions of attribute updates per second, and process sub-
graph matching queries in a few seconds. (2) For temporal reachability in
mobile networks, topologies of temporal graphs are highly dynamic, and the
evolution of topologies follows periodic patterns. Based on this observa-
tion, we develop a graph index that processes temporal reachability queries
in a batch, which significantly improves the speed of finding optimal infor-
mation routing strategy in mobile networks. (3) In terms of stream query
assignment, topologies of temporal graphs are also dynamic, but the de-

gree distribution in the graphs is relatively stable in practice. This insight

11

Chapter 1. Introduction

helps us develop a probabilistic model that randomly assign queries with

performance guarantee.

1.4 Thesis Organization

The rest of the dissertation is organized as follows. We start with mining prob-
lems, where critical alert mining and information cascade inference are discussed
in Chapters 2 and B] respectively. Next, we move to management problems in
Chapters [, B and [0l covering dynamic subgraph matching, temporal reachabil-
ity, and stream query assignment. At the end of this dissertation, we summarize

our works, and discuss future directions.

12

Chapter 2

Node Ranking in Temporal
Graphs

2.1 Introduction

System monitoring and analysis in datacenters and cybersecurity applications
produces alert sequences to capture abnormal events. For example, performance
metrics are posed on hosts in datacenters to measure the system activities, and
capture alerts such as high CPU usage, memory overflow, or service errors. Un-
derstanding the causal and dependency relations among these alerts is critical for
datacenter management [74] 134], cyber security [99], and device network diagno-
sis [124], among others.

While there exists a variety of approaches for modeling and deriving causal
relations [20], 158, 164], another important step is to efficiently suggest critical
alerts from a huge amount of observed alerts. Intuitively, these critical alerts

indicate the “root causes” that account for the observed alerts, such that if fixed,

13

Chapter 2. Node Ranking in Temporal Graphs

we may expect a great reduction of other alerts without blindly addressing them

one by one. We consider several real-life applications below.

Datacenters. System monitoring and analysis providers seek efficient and re-
liable techniques to understand a large number of system performance alerts in
datacenters. According to LogicMonito, a SaaS network monitor company, a
datacenter of 122 servers generates more than 20,000 alerts per day. While it
is daunting for domain experts to manually check these alerts one by one, it is
desirable to automatically suggest a small set of alerts that are potentially causes
for a large amount of alerts, for further verification. These critical alerts also help

in determining key control points for datacenter infrastructures [134].

Intrusion detection [22, O§]. State-of-the-art intrusion detection systems pro-
duce large numbers of alerts from cyber network sensors, over tens of thousands
of security metrics, e.g., Host scan or TCP hijacking [22]. As suggested in [98], it
is observed that a few critical alerts generally account for over 90% of the alerts
that an intrusion detection system triggers. By handling only a small number of
critical alerts, a huge amount of effort and resource can be reduced. On the other

hand, critical alerts can reduce the number of “false alerts” and improve alarm
quality [22].

Network performance diagnosis [124]. Large-scale IP networks (e.g., North
America IPTV network) contain millions of devices, which generate a great num-
ber of performance alarms from customer call records and provider logs. Scalable
mining of critical alerts for a given set of symptom events benefits fast network

diagnosis [124].

Thttp://www.logicmonitor.com/

14

Chapter 2. Node Ranking in Temporal Graphs

These highlight the need for efficient algorithms to mine critical alerts, given
the sheer size of observed ones. In this chapter, we investigate efficient critical alert
mining techniques. We focus on a general framework with desirable performance

guarantees on alert quality and scalability.

(1) We formulate the critical alert mining problem: Given a set of alerts and
a number k, it aims to find a set of k critical alerts, such that the number of
alerts that are potentially caused by them is maximized. We introduce a generic
framework for mining critical alerts. In this framework, we learn and maintain a
temporal graph over alerts (referred to as an alert graph), a graph representation
of causal relations among alerts. Upon users’ requests, top critical alerts are mined

from alert graphs.

(2) We show that the critical alert mining problem is NP-complete. Nonetheless,
we provide an algorithm with approximation ratio 1—2, in time O(k|V||E|), where
|V| and |E| are the number of alerts and the number of their causal relations,
respectively. To further improve the efficiency of the algorithm, we propose a
bound and pruning algorithm that effectively reduces the size of alerts to be
verified as critical ones. In addition, we identify a special case: when alert graphs
are trees, it is in O(k|V|) time to find & critical alerts, with the same approximation

ratio.

(3) The quadratic time approximation may still be expensive for large alert graphs.
We further propose two fast heuristics for large-scale critical alert mining. These
algorithms induce trees that preserve the most probable causal relations from large

alert graphs, and estimate top critical alerts and their impact by only accessing

15

Chapter 2. Node Ranking in Temporal Graphs

the trees. The first one induces a single tree, while the second algorithm balances

alert quality and mining efficiency with multiple sampled trees.

(4) We experimentally verify our critical alert mining framework. Over real-life
datacenter datasets, our algorithms effectively identify critical alerts that trigger
a large number of other alerts, as verified by domain experts. We found that
our approximation algorithms mine a top critical alert from up to 270,000 causal
relations (one day’s alert sequences) in 5 seconds. On the other hand, while our
heuristics preserve more than 80% of solution quality, they are up to 5,000 times
faster than their approximation counterparts. The heuristics also scale well over
large synthetic alert graphs, with up to in total 1 million alerts and 10 million

relations.

In contrast to conventional causality modeling and mining, our algorithms
leverage effecitive pruning and sampling methods for fast critical alert mining. In
addition, we do not assume the luxury of accessing rich semantics from the alerts
that helps in improving mining efficiency, although our methods immediately ben-
efit from the semantics in specific applications [98, 124 [134], as well as domain
experts. Taken together with domain knowledge and causality mining tools, these
algorithms are one step towards large-scale critical alert analysis for datacenters,

intrusion detection systems, and network diagnosis systems.

2.2 Problem definition

We start with the notions of alert sequences and alert graphs. Then we intro-

duce the critical alert mining problem.

16

Chapter 2. Node Ranking in Temporal Graphs

causality scenarios/knowledge bases user
% (P1,t2w1) P
offline online on-demand :
Sp;:[0,1,...1,1] | dependency alert graph (P2,t1,w2): critical alert (

Sp,:[1,1,...1,0] | rule mining maintenance 1 (Pa.t3,ws) mining
. > R > (p2,t1,W2) m
Sp,-[0,0,...1,1] (oot)
2,11,W2 | L.
“en (o1 towi) 5 (Pa,ta,wa) top critical
' alerts

alerts sequence
(system/user logs, dependency

monitor records) rules upcoming alerts alert graph

(Pp3,t3,wa) time {1 t2 t3

Figure 2.1: Critical alert mining: pipeline

Performance metrics. A performance metric measures an aspect of system
performance. For datacenters, common types of performance metrics include CPU
and memory usage for virtual machines, error rate of disk writes for a service, or
communication time between two hosts. The same type of metrics over different
hosts, virtual machines, or services are considered as distinct performance metrics.

In practice, system service providers e.g., LogicMonitor may cope with 2 mil-
lion metrics from a datacenter with 5,000 hosts. These metrics could correlate

with and cause each other due to functional or resource dependencies.

Alert and alert sequences. For a set of performance metrics P, alerts are deter-
mined by aggregating the metric values of interest. For example, in datacenters,
an alert is raised when the value of a performance metric (e.g., CPU usage) goes
beyond a pre-defined threshold (e.g., > 75%). In this work, we define an alert as
a triple u = (py, tu, w,), where p, € P is a performance metric u corresponds to,
t, denotes the timestamp when the alert u happened, and w, is the weight of u,
representing the benefit if u is fixed.

We use a sequence of alerts to characterize abnormal events for a specific
performance metric. Indeed, in practice the performance metrics are typically

periodically monitored to capture the abnormal events as alerts. We denote as

17

Chapter 2. Node Ranking in Temporal Graphs

s, an alert series (an ordered sequence of alerts following their timestamps), for
a specific performance metric p € P. Each entry of §, is either 0 (normal) or 1
(alert).

To characterize causal relations between two alerts, we next introduce a notion
of dependency rule. We also introduce alert graph as an intuitive graph represen-

tation for multiple dependency rules.

Dependency rule. Let p and ¢ be two distinct performance metrics. A depen-
dency rule p l’i> q denotes an alert issued on ¢ at some time ¢ is caused by an alert
issued on p at t' € [t — l,q,t — 1], where [, is a lag from p to ¢ (e.g., 5 minutes).
Note that we do not specify the time ¢, as a dependency rule describes a statistical
rule for all the observed alerts. Intuitively, a dependency rule indicates that alerts
on q occurs if and only if alerts on p occurs as the cause of the alerts on ¢; that
is, the alerts on p will trigger the alerts on ¢. If certain trouble shooting action is
taken to fix p, ¢ is addressed accordingly [22, [124].

Dependency rules can be automatically learned from alert series [26, [158].
They can also be suggested by experts and existing knowledge bases [59]. To
smoothen the noise or error brought by rule generation process, we associate an
uncertainty to each dependency rule. In particular, we denote the uncertainty
by Pr(p Ira, q), which is the probability that the corresponding dependency rule
holds.

Alert graph. An alert graph over a set of alerts V is a directed acyclic graph
G=(V,E, f.):

e 1 is the set of vertices in G, where each vertex v € V' is an alert from V.

18

Chapter 2. Node Ranking in Temporal Graphs

e Fisaset of edgesin G. Let u = (py, ty, w,) and v = (p,, t,, w,) be two alerts
in V. There is an edge (u,v) € E if and only if there exists a dependency

lpupu

rule p, — p,, where t,, <t,, and t, — ¢, < l,,.

e f.is a function that assigns for each edge (u, v) the probability that u causes

v, i.e., Pr(py LN Do)-

We shall use the following notations. Abusing the notions from tree topology,
we say u (resp. v) is a parent (resp. child) of v (resp. u) if (u,v) € E, and the
edge (u,v) is an incoming edge of v. The topological order r of an alert w in G is
defined as follows. (a) r(u) = 0 if u has no parent, and (b) r(u) = 1 + maxr(v),
for all its parents v.

Following the convention of causal relation and cascading models [142], we
assume that an alert is caused by a single alert issued earlier, if any. Intuitively,
a path from an alert u to another alert v in the alert graph indicates a potential
“causal chain” from wu to v, indicated by e.g., the actual dependencies among the

vulnerabilities of the servers [43].

Critical alerts. We next introduce a metric to characterize critical alerts, in
terms of how many alerts are potentially caused by them via a cascading effect
(and hence are addressed if the critical ones are fixed). Given G = (V, E, f.), a set
of fixed alerts S C V, and an alert u € V', we use a notion of alert-fixed probability

Py to characterize the probability that u is fixed if S is fixed. More specifically,
° Pf(S,u) =1lifues,
e otherwise,

P(Su)y=1-] <1—Pf(5,u')fe(u',u)).

(u' u)eE

19

Chapter 2. Node Ranking in Temporal Graphs

Based on the alert-fixed probability, we next define a set function, denoted
as Gain, to characterize critical alerts. Given an alert graph G = (V, E, f.) and
S C V, the gain of S is a set function

Gain(S) = > wy - Pr(S,u).
ueV

As remarked earlier, here w, refers to the weight of u, i.e., the benfit if u is
fixed. Intuitively, Gain(.S) computes the total expected benefits induced via fixing
a set of alerts S and subsequently addressing the alerts caused by S. The larger
Gain(9) is, the more “critical” S is.

We next introduce the critical alert mining problem.

Definition 1. Given an alert graph G and an integer k, the critical alert mining
problem (referred to as CAM) is to find a set of k critical alerts S C 'V such that

Gain(S) is mazimized.

Finding the best set of k alerts which maximize the gain is desirable albeit

intractable.

Theorem 1. For a given alert graph G and an integer k, the problem CAM is

NP-complete.

Proof. We prove the NP-completeness of the decision version of CAM as follows.
(1) CAM is in NP. Indeed, given an alert graph G = (V, E) and a set of vertices
S C V, one can evaluate Gain by computing Py (S, v) of each alert v in polynomial
time. (2) To show that CAM is NP-hard, we construct a reduction from the
maximum coverage problem, which is known to be Np-hard [I80]. An instance

of a maximum coverage problem consists of a set of sets S and an integer k. It

20

Chapter 2. Node Ranking in Temporal Graphs

selects at most k of these sets such that the number of elements that are covered
is no less than a bound B. A maximum coverage instance can be constructed as
a bipartite alert graph, with each “upside” node as a set in S, each “downside”
node a distinct element in these sets, and there is an edge from upside node to
downside node if the corresponding element is in the set denoted by the upside
node. In addition, the weights on edges are uniformly 1. Given the bound B, one
may verify that there is a solution for the maximum converage problem if and
only if there is a set S of k critical alerts with Gain(S) > B. Therefore, CAM is
at least as hard as maximum coverage problem, and is NP-hard. Hence, CAM is

NP-complete. O

2.3 Mining framework

In this section, we present a framework for critical alert mining. It consists of
three components as illustrated in Figure 2.1t (1) offline dependency rule mining;

(2) online alert graph maintenance; and (3) on-demand critical alert mining.

Offline dependency rule mining. Given a set of observed alert sequences, the
system mines the alerts of interest and their causal relations offline, and represent
them as a set of dependency rules. As there are a variety of methods to model
a causal relation, in this work we adopt Granger causality [20, [158], which can
naturally be represented by dependency rules. An alert sequence X is said to
Granger-cause another sequence Y if it can be shown, via certain statistic tests
on lagged values of X and Y, that the values of X provide statistically significant

information to predicate the future values of Y. More specifically,

21

Chapter 2. Node Ranking in Temporal Graphs

(1) We collect alert sequences for all performance metrics of interest as training
data, following two criteria as follows: (a) the alerts in training data should be the
latest ones such that the latest dependency patterns among performance metrics
can be captured; and (b) the alert information should be rich enough such that
learned dependency rules would be more robust. In our work, we treat the latest

one week alert data as the training data.

(2) We apply existing Granger causality analysis tools [I58] to mine the depen-
dency rules, and apply conditional probabilities to estimate the uncertainty of the
rules [106].

The learned dependency rules are stored in knowledge bases to support on-
line alert graph maintenance. Moreover, existing knowledge bases such as event
causality scenarios [59], or vulnerabilities exploitation among cyber assets [43]
can also be “plugged” into our critical causal mining framework. The dependency

rules are then shipped to the next stage in the system to maintain alert graphs.

Online alert graph maintenance. Using dependency rules, our system con-
structs and maintains an alert graph G online from a range of newly issued alerts.
Upon an alert v from performance metric ¢ is detected at time ¢, it first marks
u as a new alert in G. It then checks (1) if there exists dependency rules in the
form of p LN q, and (2) whether there are alerts detected on performance metric
p during the time period [t —1,,, t). If there exists such an alert v on p, an directed
edge from v to u is inserted, and the rule uncertainty Pr(p lp—q> q) is associated
to the edge (v,u). Following the above steps, it maintains G online for newly

detected alerts.

22

Chapter 2. Node Ranking in Temporal Graphs

On-demand critical alert mining. The major task (and the focus of this
work) in the pipeline is to identify k critical alerts from alert graphs. In practice,
a user may specify a time window of interest, which induces an alert graph from
the maintained alert graph. It contains all the alerts detected during the time
window. However, the induced alert graphs can still be huge.

In this paper, we propose three algorithms to address the scalability issue: (1)
a quadratic time approximation with performance guarantees on the quality of
critical alerts, (2) a linear time approximation, which guarantees the alert quality
for tree-structured alert graphs; and (3) sampling-based heuristics which can be
tuned to balance the alert quality and response time. The critical alerts are then

returned to users for further analysis and verification.

2.4 Bound and pruning algorithm

Theorem [tells us that it is unlikely to find a polynomial time algorithm
to find the best k alerts with the maximum gain. All is not lost: we can find
polynomial time algorithms that approximately identify the most critical alerts.

The main result in this section is as follows.

Theorem 2. Given an alert graph G = (V, E, f.) and an integer k, (1) there
exists an algorithm in O(k|V||E|) time with approzimation ratio 1 — 1, where e is
the base of natural logarithm, and (2) there exists a 1 —% approximation algorithm

in O(k|V]) time, when G is a tree.

Proof. We focus on showing the function Gain(+) has diminishing return as follows.

23

Chapter 2. Node Ranking in Temporal Graphs

(1) One could verify when u € Sy, u € Sy, or u = v, Pr(S1 U{v},u) — Pp(Si,u) >
Pp(Sy U{v}, u) — Pr(S2,u);

(2) For u ¢ Sy U{v}, we prove the diminishing return by mathematical reduction.

(a) Assume that all u’s parents v’ satisfy Pp(S; U {v}, v') — Pp(Si,u') > Pp(S; U
{v}, ') = Py(S2,).

(b) When u has only one parent, Pr(S U {v},u) — Pr(S,u) = fo(u',u)(P(S U

{v},u) — Pr(S,u)), and it is easy to see the diminish return for u.

(c) Assume that when u has m parents, we have a — b > ¢ — d, where a =
T (1 = £e(t) Pr(S1,). b = Loy (1= £l u)Py(S U (0]), e =
ey (1~ felo) Py (3,), and d = TLeng (1= Folu) Pr(S2 U0}).
Note that b > d. Consider the case when u has m + 1 parents, and w.l.0.g., u” is
the m + 1-th parent satisfying x5 — x1 > x4 — 29, where x5 = Pp(S1{v},u"), 21 =
Pr(S1,u"), x4 = Pr(SaU{v},u”), and z9 = Py(S2, u”), where x; < 5. Therefore,
we have a(1—21) —b(1—x3) = a—b—ax; +brs = (1 —z1)(a—b)+ (3 —x1)b, and
c(1—x9)—d(1—x4) = c—d—caxo+dry = (1—22)(c—d)+(xv4—22)d. Thus, we obtain
a(l—x1) —b(1 —x3) > (1 —x3) —d(1 — x4), which is Pr(SU{v},u) — Pr(S,u) =
Flut w) (P(S U {0},) — Py(S,u).

In all the cases, when u ¢ Sy U {v}, its diminishing return holds. Hence,
Gain(-) is a submodular function. It is known that for maximizing a submodular
function, a greedy strategy achieves 1 — é approximation ratio [I39]. Theorem

hence follows. O

24

Chapter 2. Node Ranking in Temporal Graphs

Here e refers to Euler’s number (approximately 2.71828). Denote the optimal
k alerts as S*, we present an efficient algorithm to identify &k alerts S where
Gain(S) > (1 — %)Gain(S5*), in quadratic time.

We start with a greedy algorithm, denoted as Naive.

Naive greedy algorithm. Given an alert graph G = (V, E, f.) and an integer k,
Naive finds k critical alerts in k iterations as follows. (1) It initializes a set Sy to
store the selected alerts. (2) At the ith iteration, Naive checks each alert in V', and
greedily picks the alert s; that maximizes the incremental gain Gain(S;—1 U {s;}),
where S;_; is the set of critical alerts found at iteration ¢ — 1. (3) It repeats the

above step until k£ alerts are identified.

One may verify that Naive is a 1 — 2 approximation algorithm. To see this,
observe that the set function Gain(-) is a monotonically submodular function. A
function f(S) over a set S is called submodular if for any subset S; C Sy, C §
and x € S\ Sy, f(S1U{z}) - f(S1) > f(SaU{x}) - f(S52). It is known that for
maximizing a submodular function, a greedy strategy achieves 1—% approximation
ratio [I39]. Hence it suffices to show that the function Gain is a monotonically
submodular function. Indeed, (1) one may verify that Gain is monotonic: for any
S1 € Sy C V, Gain(S;) < Gain(S2); (2) the diminishing return of Gain can be
shown by mathematical reduction.

For complexity, Naive requires k iterations, and in each iteration, it scans all
the vertices u and computes P(Sk_1, u), which takes in total O(k|V||E|) time.

Naive provides a polynomial time algorithm to approximate CAM within 1 — %

Nevertheless, the scalability issue of Naive makes it difficult to use in practice for

large alert graphs. For instance, when an alert graph of around 20K vertices and

25

Chapter 2. Node Ranking in Temporal Graphs

200K edges, Naive mines 6 critical alerts in more than 800 seconds. We next
present a faster approximation algorithm with the same approximation ratio. By
using pruning and verification, the algorithm is 30 times faster than Naive, as

verified in our experimental study.

2.4.1 Pruning and verification

To select a most promising alert at each iteration, Naive evaluates the in-
cremental gain for each alert in V' \ S, and then selects the one of the highest
incremental gain, which runs in O(|V||E|) time. Instead of blindly processing
every alert, we may efficiently filter “unpromising” alerts, and then evaluate the
exact gain for the remaining vertices. In particular, at each iteration i, for two
alerts v and v € V' \ S;_1, we compute upper bounds U], U, and lower bounds
L, L, for Gain(S;—1 U{v}) and Gain(S;_; U{v'}) , respectively. If v/ is already not
a critical alert, all the alerts v with L, > U, can be safely skipped without losing

the alert quality.

We next derive an upper and lower bound for Gain(-), and present algorithms
to compute them efficiently. Instead of visiting each alert and causal relation in
G, these algorithms compute the bounds by visiting only local information of each

alert in G. This enables a fast estimation of Gain(-).

2.4.2 Upper bound

We introduce a notion of sum gain (denoted as SGain) to characterize the upper

bound for Gain(-). Given an alert graph G = (V, E, f.), an alert v € V| and a set

26

Chapter 2. Node Ranking in Temporal Graphs

of selected critical alerts S C V', an upper bound is computed as SGain(SU{v}) =
ey W Pr(SU {v},u), where

o P(SU{v},u)=1,ifues;

¢ pf(S U {U}>u) = Z(u’,u)EE pf(S U {U}au/)fE(u/’u)a if u ¢ S.

The sum gain SGain (as illustrated in Figure2.2)) is an upper bound for Gain(-).

Better still, it can be efficiently computed.

Proposition 1. Given an alert graph G = (V, E, f.), a set of critical alert S C 'V,
and an alert w € V'\ S, (1) Gain(S U {u}) < SGain(S U {u}); and (2) SGain can

be computed for all alerts in V in O(|E|) time.

We first prove Proposition [I (1). We remark that SGain is built upon the

following generalization of Bernoulli’s inequality [129]. Given x; < 1, we have

n n

I—H(l—xi)Sin.

=1

We next conduct a mathematical induction over the topological order (Sec-

tion 2.2)) of the alerts in G as follows.

e Consider the alerts u; € V with topological order 0: (1) if uy € S,
Pi(S,u1) = 1 and Pp(S,uy) = 1; (2) otherwise, P¢(S,u;) = 0 and

P;(S,u1) = 0, since u; has no parents. In both cases, P;(S,u;) < Pp(S, u1).

27

Chapter 2. Node Ranking in Temporal Graphs

e Assume that alert u; € V with topological order ¢ satisfies Pp(S,u;) <
Pf(S, u;). For an alert u; 1 € V,

Pf(S, Ui+1) =1- H (1 - Pf(Sv ul)fe(ul7 ui+1>)

(v uiy1)EE

< Y PUS) Ll i)

(w'ujq1)EE

< Z pf(Sv u,)fe(uluui+1)

(u’ ,ui+1)€E

= Pf(S’ Ui+1)

Therefore, for any u € V, P¢(S,u) < Ps(S,u). By definition, Gain(S U {u}) <
SGain(S U {u}). Hence, SGain is indeed an upper bound for Gain(-).

Upper bound computation. As a constructive proof for Proposition [(2), we
present a procedure (denoted as computeUpperBound) for SGain to compute the
upper bounds for all vertices in O(|E|) time.

The algorithm (not shown) follows a “bottom up” computation, starting from
the alerts with the highest topological order in G. (1) It first computes the
topological order for all the alerts in G. (2) Starting from the alert with the
highest topological order, it computes SGain for each alert uw € V'\ S as follows:
(a) SGain(SU{u}) = SGain(SU{u})+w,, and (b) for each u" € N;(u), it updates
SGain(S U {u'}) by SGain(S U {u'}) + fe(u',u)SGain(S U {u}). (3) It repeats step
(2) until all the alerts are processed.

It takes O(|E|) time for computeUpperBound to obtain the topological order
by depth-first search in step (1). Each edge in G is visited exactly once in step
(2) and (3). Therefore, the algorithm runs in O(|E|) time.

The above analysis completes the proof of Proposition [

28

Chapter 2. Node Ranking in Temporal Graphs

\% \4
1, " R
/N
7N
SUp ees UL Ve
Tt I . un_)_‘j,,—'
SGain(SU{v}) LGain(S U{v})

Figure 2.2: Algorithm BnP: Upper and lower bound

2.4.3 Lower bound

To compute the lower bound of Gain(-), we introduce a notion local gain (de-
noted as LGain). Given an alert graph G = (V| E), an alert v € V| a set of selected
alerts S C V, and an integer h, LGain of S U {v} is defined as follows.

LGain(S U {v}) = Y w, - P(SU{v},u),

ueVh

where h is a tunable integer, and V;h C V is a set of vertices that can be reached
from v in no more than h hops. Intuitively, LGain estimates a lower bound of
Gain(S) with the impact of an alert to its local “nearby” alerts in G (as illustrated

in Figure 22)). One may verify the following.

Proposition 2. Given G = (V,E), S CV, for any alert u € V'\ S, (1) Gain(SU

{v}) > LGain(S U {v}), and (2) LGain can be computed in O(>_ ., |E"|) time,

veV

where E" is the set of incoming edges in G of the alerts in V.

We present a procedure computeLowerBound to compute LGain. For each alert
veV\S (eg., ug in Figure 2.2)), the algorithm visits the alerts in V" and their
incoming edges (e.g., (u},u3)) once, and computes LGain following the definition,

in O(X,cv | ES]) time.

29

Chapter 2. Node Ranking in Temporal Graphs

2.4.4 Algorithm BnP

Based on the upper and lower bounds, we propose an approximation, denoted
as BnP. BnP enables faster critical alert mining while achieving the approximation
ratio 1 — % The algorithm follows Naive’s greedy strategy: given an integer
k, it conducts k iterations of search, each determines a top critical alert. The
difference is that in each iteration, it invokes a procedure Prune to identify a set
C of candidate alerts for consideration.

The procedure Prune (as illustrated in Figure[2.3]) invokes computeUpperBounds
and computeLowerBounds to dynamically update the lower and upper bounds for

each alert by accessing their local information (lines 1-2), and filters the alerts

that are not critical:

1. it scans the lower bounds LGain of each alert, and find the maximum one as

bar (line 3);

2. it scans the upper bounds SGain of each alert, and prunes those with

SGain(u) < bar, adding the rest to a candidate alert set C.

Correctness and Complexity. The algorithm BnP achieves approximation
ratio 1 — é, as it follows the same greedy strategy as Naive. Note that the pruning
procedure Prune does not affect the approximation ratio.

For complexity, let C), be the maximum set of candidate sets in all the itera-
tions after pruning. For the alerts in C,,, it takes BnP O(|C,,||E|) time to find a
best alert. The total time for pruning is O(k(>" . |EL| + |E|)). Hence, it takes
BnP in total O(k(}_,cy |EY + |Ci||E])) time. Moreover, |E”| is typically small,

and is tunable by varying h, as indicated by Proposition For example, when

30

Chapter 2. Node Ranking in Temporal Graphs

Input: An alert graph G = (V, E, f.);
a set of critical alert S.

Output: a set of candidate alerts C'.

1. computeUpperBound (G, S);
2. computeLowerBound (G, S);

set bar as the largest LGain over alerts in V' \ S;

LS

C « 0;
for each uweV\S
if SGain(u) > bar
C + CU{u};

© N o«

return C;

Figure 2.3: The pruning procedure Prune

h = 1, LGain can be computed in O(d,,|E|) for all the alerts, where d,, is the
largest in-degree in GG. As h gets larger, the computation complexity gets higher,
leading to tighter lower bound LGain. In our experimental study, by setting h = 3,
95% of the alerts are pruned, which makes BnP 30 times faster than Naive without

losing alert quality.

Mining Alert Trees. When G is a directed tree, the algorithm BnP identifies
k critical alerts in O(k|V|) as follows. (1) Starting from the alerts u € V' of the
highest topological order, it computes Gain(u) = Gain(u) + w,, and makes an
update by Gain(u') = Gain(v') + fe(u',u)Gain(u), if v/ is the parent of u. (2) It

repeats (1) on the alerts following the decreasing topological order, until all the

31

Chapter 2. Node Ranking in Temporal Graphs

alerts are processed. One iteration over (1) and (2) identifies a critical alert. (3)
BnP repeats (1) and (2) to find k critical alerts.

Following the correctness analysis, BnP preserves the approximation ratio 1—%
over trees. Moreover, each edge in (G is visited once in a single iteration. Hence,

it takes O(k|V']) time of BnP over G as trees. Theorem [2 (2) hence follows.

2.5 'Tree approximation

Algorithm BnP needs to process all the candidates and their causal relations,
which may not be efficient for a large amount of alert sequences. In extreme cases
where few alerts are pruned, BnP degrades to its naive greedy counterpart.

As indicated by Theorem [2(2), fast approximation exists for alert graphs as
trees. Following this intuition, we may make large alert graphs “small”, by spar-
sifying them into directed trees, which “preserve” most of alert dependency in-
formation in an alert graph. This enables both fast algorithms and low quality

loss.

2.5.1 Single-tree approximation

We start by introducing a heuristic algorithm ST. The basic idea is to induce
a maximum directed tree (forest) T from a given alert graph G, such that for any
set of alerts S in G, Gain(S) in 7" is “close” as much as possible to Gain(S) in G,

and a fast approximation can be performed over T" without much quality loss.

Maximum directed tree. Given an alert graph G = (V, E, f.), a maximum

directed tree of G is a spanning tree 7' = (V, E’), where £’ C E, such that (1)

32

Chapter 2. Node Ranking in Temporal Graphs

for any u € V, u has at most one incoming edge, and (2) Z(u,v)EEl felu,v) is
maximized. Intuitively, T" depicts a “skeleton” of an alert graph G, where causal

relations always follow the most likely dependency rules.

Algorithm ST. Given an alert graph G = (V| E, f.), the single-tree approxima-
tion ST mines k critical alerts as follows. (1) ST first finds the maximum directed
tree T. To construct 7', an algorithm simply selects, for each alert u in G, the
incoming edge (v/,u) with the maximum f.(u’,u) among all its incoming edges.
(2) ST searches the k critical alerts following the algorithm BnP over 7'

One may verify that it is in O(|E|) time to construct 7. From Theorem [2(2),
it is in O(k|V]) time to find k critical alerts in 7' (as either a tree or a forest).
Hence, the algorithm ST takes in total O(|E|+ k|V|) time. Note that the induced

T can be a set of disjoint trees, where the above complexity still holds.

2.5.2 Multi-tree sampling

Single-tree approximation provides fast mining method for large scale alerts.
On the other hand, using induced trees to approximate causal structures may lead
to biased results. For example, more dependency information could be lost for
alerts with more incoming edges. To rectify this, we propose a heuristic, denoted

as MTS, based on multi-tree sampling.

Algorithm MTS. The algorithm MTS is as illustrated in Figure 2.4l Given an
alert graph G = (V, E, f.), integer k and a sample number N, MTS starts by
initializing a set Sy as), the alert-fixed probability for each node as 0 (line 1),

and identify the topological orders of the alerts in G.

33

Chapter 2. Node Ranking in Temporal Graphs

Algorithm MTS then finds a set S critical alerts in k iterations as follows. De-
note the selected critical set at iteration i —1 as S;_1. At each iteration ¢, (1) MTS
updates the alert-fixed probability P;i_l)(Si_l, u) for each alert u € V in G, fixing
S;—1 as the critical alerts (lines 3-4). (2) It then invokes procedure sampleTree to
sample N trees from G (lines 6-7), according to the updated alert-fixed probability
in (1). (3) For each alert u, MTS computes the weighted sum of u’s descendants
D(u,l) in each sampled tree T;;, and takes the average D(u,l) over all sam-
pled tress as an estimation of Gain(S;_; U {u}) (lines 8-9). It selects the alert u
that introduces the maximum improvement, and update S;_; as S; by adding u

(lines 10-11), which is used to update Pf(-) in G in the next iteration.

Procedure sampleTree. Given an alert graph G and an integer N, the proce-
dure sampleTree (line 7) samples N trees (forest) from G at iteration i. More
specifically, it generates a single tree (or forest) 7;; as follows. (1) It first sam-
ples a set of alerts V;; as the nodes for tree T;; following Bernoulli distributions.
For each alert u € V' and the updated P;i_l)(u), MTS selects u with probability
1-— P;i_l)(u), and inserts it to V;;. (2) MTS then samples an edge for each alert
u € V;;. It randomly orders u’s parents. Starting from the first parent, u tries
to build an edge (u/,u) to its parent with probability f.(u',u), where u' ranges
over all the parents of u, until an edge is selected (and attached to), or all the
parents are visited. (3) MTS repeats (2) until all the alerts u € V;; are visited.
It takes in total O(k * N|E]) time for MTS to find k critical alerts. (a) MTS
takes in total O(k|E|) time to update Py in G; (b) the total sampling time is in

O(k=* N|E|); and (c) it takes in total O(k* N|V|) time to select the critical alerts.

34

Chapter 2. Node Ranking in Temporal Graphs

Input: Alert graph G = (V, E, f.),
integer k, the number of sampled trees N.

Output: A set S of k critical alerts.

—_

S < 0; initializes Py(-); i < 0;

2. while i <k Do

3 for each alert v in G Do

4. update P}i_l)(Si_l, u);

5 [+ 0;

6 while | < N Do

7. T;, < sampleTree(G);

8 for each alert v in G Do

9 Gain(S;—1 U{u}) < Gain(S;_1) + M;
10. select u with the maximum Gain(S;—1 U {u});
11. S, « Si—1 U{u};

12. return Si;

Figure 2.4: Algorithm MTS

In contrast to its single-tree counterpart, MTS leverages sampling to reduce
the bias: alerts with more parents and larger probability are more likely to have
a parent in a sampled tree. In addition, it synthesizes the gain estimation from
multiple trees, such that the noise from a single tree is smoothed. Indeed, we

found that using only 300 samples, MTS finds top 6 critical alerts with Gain(-)

35

Chapter 2. Node Ranking in Temporal Graphs

90% as good as Naive, and is 80 times faster. It reduces 10% more loss on Gain(-)

compared with ST (see Section 2.0]).

2.6 Experiment

We applied both real-life and synthetic data to evaluate our algorithms. We
first provide a case study (Section Z6.2)). Using real-life data, we next investigate
(1) the efficiency and effectiveness of our algorithms (Section 2.6.3)), (2) the impact
of the number of explored hops to the performance of BnP (Section 2.6.4]), and (3)
how the number of samples affects MTS (Section 2.6.5)). In addition, we evaluate

the scalability of our algorithms, over large synthetic data (Section [Z6.0l).

2.6.1 Setup

Real-life data. We use real-life datacenter performance data (referred to as
LM), from LogicMonitor, an SaaS network monitoring company. The data spans
53 days from Nov. 23, 2013 to Jan. 14, 2014. It contains the sequences for 50,772
performance metrics from 9,956 services residing in 122 servers. Each metric is
reported every 2 minutes. The alerts are identified by specified rules provided by

LogicMonitor, where we assign a weight 1.0 to all the metrics.

Dependency rules and alert graphs. Dependency rules were mined from data
collected in 7 consecutive days, and are used to construct alert graphs using the
data from the following days. We used the tool developed by [158] to mine the
Granger causality among performance metrics as dependency rules (with the p-

value set to be 0.01 [I58]). We then applied conditional probability to estimate

36

Chapter 2. Node Ranking in Temporal Graphs

the uncertainty of the rules [I06]. From the dataset LM, we mined 46 sets of
dependency rules, where each set contains on average 2,082 rules. Each set of
rules were mined in less than 60 minutes.

By applying the sets of dependency rules on the alert detected in the next single
day, we obtained 46 alert graphs, following the online alert graph construction
(Section Z3]). The number of alerts (resp. edges) ranges from 20,248 to 25,057
(resp. 162,000 to 270,370) for a single graph.

Synthetic alert graphs. For scalability tests over large alert graphs, we applied
the graph model proposed in [I00] to generate large synthetic alert graphs (referred
to as SYN). In particular, the node degree and edge weights follow the empirical
distributions [I79] learned from alert graphs over the real-life data LM. We ranged
the number of alerts from 100K to 1M, and the average degree of SYN graphs is
9.

Evaluation. To measure the quality of the critical alerts identified by an algo-

rithm A, we investigate a metric loss ratio of A defined as

Gain(Sa)

1 t’ A = 1 TN oy
oss ratio(A) Gain(Snaive)’

where Snaive (resp. Sa) is the set of critical vertices returned by the algorithm
Naive (resp. algorithm A). As Naive guarantees the alert quality within a bound,
loss ratio suggests how “close” the quality of the alerts from heuristic algorithms

and the optimal ones is. The less, the better.

Implementation. In addition to the proposed algorithms BnP, ST, and MTS, we
implemented the following baseline algorithms: (1) Naive, the greedy algorithms

without pruning strategy; (2) BnPyg, a simplified version of BnP, which only uses

37

Chapter 2. Node Ranking in Temporal Graphs

upper bound to filter unpromising alerts: it skips those alerts with upper bound
smaller than an alert with computed Gain(-) in each iteration (Section 2.4]). (3)
MaxDeg, a simple strategy that returns the top k alerts with the largest weighted
sum of outgoing edges.

All the algorithms were implemented in C++, and all experiments were exe-
cuted on a machine powered by an Intel Core i7-2620M 2.7GHz CPU and 8GB of
RAM, using Ubuntu 12.10 with GCC 4.7.2. Each experiment was run 10 times,

and their average results are presented.

2.6.2 Case study

Using real-world data LM, our algorithms suggest reasonable critical alerts that
are indeed the source of a range of large amount of alerts, as verified by the do-
main experts from LogicMonitor. We illustrate three “causality patterns” induced
by top two critical alerts and their descendants following the weighted depen-
dency rules in Figure (1) Our algorithms suggest that StorageUsed, a critical
alert that indicates insufficient memory, leads to poor performance of Web servers
(Apache), which typically triggers delayed Ping round-trip time (Ping-avgrtt)
from other servers. In another set of hosts, it leads to insufficient shared memory
over a range of servers, which typically triggers slower Shared Data Access write
time (SDA writetime) on their own. (2) A second critical alert DiskReadLatency
suggests 1/O bottleneck for a range of abnormal status of database applications.
The disk access speed alert often triggers the unsolved back up requests from
another server, which leads to poor performance of CPU and database servers,

and further affects a range of database related requests from more outside servers.

38

Chapter 2. Node Ranking in Temporal Graphs
critical alert 1 critical alert 2
StorageUsed (Server 1) StorageUsed (Server 3) DiskReadLatency (Server 4)
MongoDB total
backup_jobs
DC 7 (Server 5)
Apache- shared CPU Cores
BusyWorkers Busy (Server 5)
(Seyn/er 1) mzmoryU; ed MongoDB total MongoDB
(Server 3) backup jobs Busy (Server 5)
(Server 3)
us-west- Apache SDA MongoDB Mcollective
Ping-avgrtt NoResponse writetime status (Server 6) Reg status
(Server 2) (Server 2) (Server 3) (Server 5)

Figure 2.5: Critical alerts over LM

These causal patterns are consistent with the workflow of datacenters at Logic-
Monitor.

Our algorithms do not assume prior domain knowledge. On the other hand,
external knowledge and rules enable our algorithms to further improve the quality

of the critical alerts and causal patterns.

2.6.3 Overall performance evaluation

We first investigate the efficiency and effectiveness of the proposed algorithms,
using alert graphs from LM. In the following tests, we fixed the number of explored
hops in BnP as 3, and the number of sampled trees in MTS as 300.

As illustrated in Figure , the proposed algorithms BnP, MTS, and ST
consistently outperform the baseline algorithms Naive and BnPyg in efficiency,
while varying k, the number of required critical alerts. They introduce different
levels of efficiency improvement. Compared with Naive and BnPyg, BnP is 30

times and 17 times faster, respectively, without quality loss on solutions. With

some quality loss, ST is 5000 times and 3000 times faster than Naive and BnPyg,

39

Chapter 2. Node Ranking in Temporal Graphs

g 108 n . : . . .
& 105 I Naive --w--- BAP -0 o7]
@ 194 | BnPug o MTS --a- :
o 10

ey IS PPECEEES SRRt SeeEEtt) 4 4
'g 102 E ST S S z T i 3
g 10, c*--“:::ﬁ:::::::3:::::::2:::::::2::::::__]
c 0k ol :
s 10

§ 10-;] se-m=m""" === Hmmmmmm emmmmm—— Hemmmmmmm X]
o 10 I : L L ! !

k, #critical alerts

(a) Mining efficiency on different algorithms

1 T T T T T T
MaxDeg ---o---
0.8 ST -----= 7]
s 1 MTS --m-
5 06 MTS ---a--- |
3 S
g 04¢f b
—
0.2 r b
B =
o 1 1 1 1 1 1

0 1 2 3 4 5 6 7
k, #critical alerts

(b) Loss ratio comparison

Figure 2.6: Mining performance on LM alert graphs

respectively, and MTS results in 80 times and 50 times speedup. In addition, all
the algorithms take more time when £ varies from 1 to 6, as expected.

Figure [2.6(b)| shows the loss ratio of ST and MTS, where k varies from 1 to
6. Compared with MaxDeg, MTS and ST obtain significant improvement on loss
ratio. As k increases, the loss ratio of MaxDeg is consistently more than 0.4;
meanwhile, the loss ratio of MTS and ST is around 0.1 and 0.2, respectively.
Compared with MTS, ST receives higher efficiency at the cost of solution quality
loss. When the number of required critical alerts varies from 1 to 6, MTS and

ST share the same trend: the loss ratio decreases. Compared with BnP that

40

Chapter 2. Node Ranking in Temporal Graphs

returns critical alerts without quality loss, ST and MTS are 180 and 3 times

faster, respectively, at the cost of small quality loss.

In all cases, we observe that the total Gain(-) increases with larger k& with

diminish return (not shown). This is consistent with its submodularity.

2.6.4 Performance

evaluation of BnP

10°
10* F
10% F
10° F
10t F
10° F
10t F
102 F

Computation time (second)

103

I I I " Total ---o---]
Gain evaluation ---%---

Lower bound ---&--- 7

(- Upper bound ---2---
~~~~~ e.="‘'::_—8.-_::::::::«E"""‘"EJ E
--------------- 2 RN E
g & =X ]
1 2 3 4 5 6

h, #explored hops

(a) Computation time on different components

11

1
0.9
0.8
0.7
0.6

Pruning ratio

BnPl ....el.... T T T

- BnPyg ---o--- o 4
- 0" B
0 1 2 3 4 5 6

h, #explored hops

(b) Pruning ratio comparison

Figure 2.7: BnP performance on LM alert graphs

In this set of experiments, we focus on the impact of the number of hops h (for

lower bound computation) to the performance of BnP. We fixed k as 1. Besides

Vi=Ic]

running time, we investigate the pruning ratio of BnP, defined as T where

41



Chapter 2. Node Ranking in Temporal Graphs

|V| is the total alert number in an alert graph G, and |C| is the average size of
the candidate set C' (Section 2.4)) after pruning, for all the & iterations.

Figure and Figure[2.7(b)|illustrate how the computation time of different
components in BnP varies, and how the pruning ratio varies, respectively, while the
number of explored hops h varies from 1 to 5. The result tells us the following. (1)
When h increases from 1 to 3, the response time of BnP drops. Indeed, as observed
from Figure the efficiency improvement comes from the increasing number
of pruned alerts. With more alerts pruned, the amount of time taken on Gain
evaluation, which is the dominating cost, drops accordingly. (2) When the number
of hops increases from 3 to 5, the response time of BnP increases. As the number
of hops grows from 3 to 5, we can see that the pruning ratio of BnP marginally is
improved from Figure ; however, the amount of computation time for lower
bound in BnP dramatically increases, which becomes the dominating computation
cost. According to our result, when the number of explored hops is set to be 3,
BnP achieves the best performance on LM alert graphs.

In addition, as shown in Figure BnP consistently outperforms BnPyg in
terms of pruning ratio, since the upper and lower bounds in BnP introduce more

powerful pruning to reduce unnecessary computation.

2.6.5 Performance evaluation of MTS

In this set of experiments, we demonstrate how the number of sampled trees
affect the performance of MTS.
Figure [2.8(a)| tells us the following. (1) While the number of required critical

alerts is fixed, the response time of MTS is proportional to the number of sampled

42



Chapter 2. Node Ranking in Temporal Graphs

10°

5
—_ 10 T T T T T T
2 ", 500 ------
g 107 F 400 ---o--- E
3 10° 3
) 2 ]
= 101
o 10 3
(%]
o
o
o
7]
[}
©

k, #critical alerts

(a) MTS efficiency on varying #sampled trees

N
o
o
W mkod

Loss ratio

R e e e e

k, #critical alerts

(b) MTS effectiveness on varying #sampled trees

Figure 2.8: MTS performance on LM alert graphs

trees (varies from 5 to 500). (2) When the number of samples is fixed, the response
time of MTS grows linear to the number of required critical alerts. In all cases,
MTS takes no more than 15 seconds.

Figure [2.8(b)| illustrates how the number of sampled trees influences the ef-
fectiveness of MTS. When the number of sampled trees increases, the loss ratio
of MTS decreases, while the reduction of loss ratio diminishes. As the number
of sampled trees changes from 5 to 100, the loss ratio of MTS is significantly im-
proved; meanwhile, as the number of sampled trees changes from 100 to 500, the

loss ratio is marginally improved. In addition, fixing the number of sampled trees,

43



Chapter 2. Node Ranking in Temporal Graphs

when the number of required critical alerts is increased, the loss ratio of all MTS

variants decreases.

2.6.6 Scalability

10° . | | | |
10% [ MTS = _
10° b ]
1w E R i ]
S e .
100 F ]

10'1 1 1 1 1 1
0 200 400 600 800 1000

#vertices (K)

Response time (second)

Figure 2.9: Scalability results on SYN graphs

On SYN alert graphs, we fixed the number of required critical alerts to be 3,
and evaluate the scalability of BnP, MTS, ST, Naive, and BnPyg. Note that the
number of hops explored in BnP is fixed to be 3, and the number of sampled trees
in MTS is fixed to be 300.

Figure reports the scalability results. When the number of alerts in SYN
graphs increases from 100K to 1000K, the response time of MTS and ST linearly
grows. In particular, when a SYN graph has 1M alerts and more than 90M edges,
MTS and ST return 3 critical alerts in 4 minutes and 13 seconds, respectively.
On the other hand, Naive, BnPyg, and BnP cannot finish the computation in an
hour, even for alert graphs with 100K alerts (hence are not shown). Indeed, the
efficiency of BnP relies on the amount of alerts it can prune. In the worst case, it
works as slow as Naive. In contrast, MTS and ST are much less sensitive to the

growth of graph size, and are more promising for large alert graphs.

44



Chapter 2. Node Ranking in Temporal Graphs

2.6.7 Summary

We found the following. (1) With pruning strategy, BnP outperforms baseline
algorithms in terms of efficiency up to 30 times, without loss of solution quality.
(2) While MTS is up to 80 times faster than baseline algorithms, the resulting loss
ratio is around 0.1. (3) ST is up to 5000 times faster than baseline algorithms,

with loss ratio around 0.2.

2.7 Related work

Causality models and analysis. Causal relations among time series data have
been modeled with Granger causality [I75], lagged correlation [124], Bayesian
networks [142] 136], among others. Granger causality measures a cause in terms
of whether it passes Granger Test, i.e., whether it helps in predicating the future
events, beyond what can be predicted by using only the historical events. Lagged
correlation characterizes causal relations with the correlation between two time
series shifted in time relative to one another. Causal Bayesian networks interprets
causal relations with graphical models, in which the predecessors of a node are
interpreted as directly causing the variable associated with that node.

A variety of causality mining techniques have been studied [26], 158, [164], varied
with causality models. Silverstein et al. [I64] proposed algorithms to mine causal
relations in large databases by estimating the conditional probability of rules of
interest. For Granger causality, Arnold et al. [26] applied Lasso Granger method
to find a set of events that are conditionally dependent with regression, without

exhaustively performing pairwise Granger Test. A toolbox for detecting Granger

45



Chapter 2. Node Ranking in Temporal Graphs

causality is developed [158]. These methods stop at identifying causal relations.
Our work, on the contrary, efficiently identifies the most critical alerts rather
than suggesting all possible causal relationships. On the other hand, efficient
causality mining techniques, as well as existing knowledge bases on event causality

scenarios [59] serve as preprocessing in our critical causal mining framework.

Root cause analysis. We are aware of a range of domain-specific studies that
aims to find the “root causes”. Given a set of observed symptom events, the
problem is to identify the set of root causes that can best explain the symptom.
In intrusion detection, Julisch [98] leveraged alert clustering techniques to indi-
cate root causes for system alarms. A hierarchical clustering process is iteratively
performed over groups of similar alarms, until the top causes are identified. In net-
work performance diagnosis, Mahimkar et al. [I24] proposed methods to identify
potential root causes as the events that have statistically significant (lagged) cor-
relations with a set of known symptom events. In contrast, we propose a general
computational framework for efficient root cause analysis over large-scale alert
sequences in networks. While we do not have the luxury to assume the access
of rich domain-specific semantics that benefit event filtering, any such knowledge

serves as preprocessing to reduce the input size of our problem.

Influence maximization. Node influence evaluation aims to select a group
of nodes with maximized influence, under various information diffusion models,
such as independent cascade model [I13], linear threshold model [I0T], competing
model [41,00], continuous-time model [65] [155], and credit distribution model [81].
The problem is, however, highly intractable (#P-hard). Sampling methods such as

Monte Carlo simulations are usually applied to estimate node influence. Nonethe-

46



Chapter 2. Node Ranking in Temporal Graphs

less, these approaches typically take massive amount of computation time and are
hard to scale over large graphs [120]. To improve the scalability, various pruning
algorithms have been proposed to reduce the number of Monte Carlo simula-
tions [56], (65, [82), 205], and heuristic algorithms have been studied to estimate
node influence [49, 51], [52) [141]. In contrast to these works, we identify efficient
algorithms for critical alert mining, with desirable performance guarantees on alert
quality and efficiency. Striking a balance between mining quality and efficiency,

these algorithms suggest scalable mining for large scale alert analysis.

2.8 Summary

In this chapter, we study the critical alert mining problem. Despite its in-
tractability, we develop approximation algorithms with quality guarantees, as well
as fast heuristics that preserve at least 80% of solution quality, and perform up
to 5,000 times faster than their approximation counterparts.

This work is a first step towards large-scale critical alerts mining. We are
conducting experiments over various large real-life datasets and causality models.
One topic is to extend our techniques for distributed network monitoring systems
and datacenters. Another topic is to dynamically maintain the alert graphs and
mined critical alerts. In addition, to further improve the alert quality, one wants
to combine the mining framework with external semantics and knowledge bases,

and to automatically interpret the critical alerts for various application domains.

47



Chapter 3

Link Prediction in Temporal

Graphs

3.1 Introduction

In various real-life networks, users frequently exchange information and influ-
ence with each other. The information (e.g., messages, articles, recommendation
links) is typically created from a user and spreads via links among users, leaving a
trace of its propagation. Such traces are typically represented as temporal graphs,
namely, information cascades, where (a) each node in a cascade is associated with
the time step at which it receives the information, and (b) an edge from a node
to another indicates that a user propagates the information to and influences its
neighbor [38] [7§].

A comprehensive understanding and analysis of cascades benefit various emerg-
ing applications in social networks [44] [102], viral marketing [27, 64, [153], and

recommendation networks [I2I]. In order to model the propagation of informa-

48



Chapter 3. Link Prediction in Temporal Graphs

"Iphone 4s"

Mary,3
G T1 T2

Figure 3.1: A cascade of an Ad (partially observed) in a social network G from
user Ann, and its two possible tree representations 77 and 75.

tion, various cascade models have been developed [60, 167, [183]. Among the most
widely used models is the independent cascade model [102], where each node has
only one chance to influence its inactive neighbors, and each node is influenced by
at most one of its neighbors independently. Nevertheless, it is typically difficult to
observe the entire cascade in practice, due to the noisy graphs with missing data,
or data privacy policies [I10} 156]. It is important to develop techniques that can

infer the cascades using partial information. Consider the following example.

Example 1. The temporal graph G in Figure [31] depicts a fraction of a social
network (e.g., Twitter), where each node is a user, and each edge represents an
information exchange. For example, edge (Ann, Bill) with a weight 0.7 repre-
sents that a user Ann sends an advertisement (Ad) about a released product (e.g.,
“Iphone 4s”) with probability 0.7. To identify the impact of an Ad strategy, a
company would like to know the complete cascade starting from their agent Ann.
Due to data privacy policies, the observed information may be limited: (a) at time
step 0, Ann posts an Ad about “Iphone 4s”; (b) at time step 1, Bill is influenced
by Ann and retweets the Ad; (c) by time step 3, the Ad reaches Mary, and Mary

retweets it. As seen, the information diffuses from one user to his or her neighbors

49



Chapter 3. Link Prediction in Temporal Graphs

with different probabilities, represented by the weighted edges in G. Note that the
cascade unfolds as a tree, rooted at the node Ann.

To capture the entire topological information of the cascades, we need to make
inferences on the temporal graph. Given the above partially observed information,
two such inferred cascades are shown as trees Ty and Ty in Figurel3.1. Ty illustrates
a cascade where each path from the source Ann to each observed node has a length
that exactly equals to the time step, at which the observed node is influenced, while
T illustrates a cascade where any path in Ty from Ann to an observed node has a
length no greater than the observed time step when the node is influenced, due to
possible delay in observation, e.g., Mary is known to be influenced by (instead of
exactly at) time step 3. The inferred cascades provide useful information about the

missing links and users that are important in the propagation of the information.

The above example highlights the need to make reasonable inference about
the cascades, according to only the partial observations of influenced nodes and
the time at or by which they are influenced. Although cascade models and a set
of related problems, e.g., influence maximization, have been widely studied, much
less is known on how to infer the cascade structures, including complexity bounds
and approximation algorithms.

In this chapter, we investigate the cascade inference problem, where cascades
follow the widely used independent cascade model. To the best of our knowledge,
this is the first work towards inferring cascades as general trees following indepen-
dent cascade model, based on the partial observations. The rest of this chapter

are organized as follows.

50



Chapter 3. Link Prediction in Temporal Graphs

e We introduce the notions of (perfect and bounded) consistent trees in Sec-
tion 3.2l These notions capture the inferred cascades by incorporating con-
nectivity and time constraints in the partial observations. To provide a
quantitative measure of the quality of inferred cascades, we also introduce
two metrics, based on the size of the consistent trees and the likelihood
when a diffusion function of the network graph is taken into account, re-
spectively. These metrics give rise to two optimization problems, referred to
as the minimum consistent tree problem and minimum weighted consistent

tree problem.

e We investigate the problems of identifying perfect and bounded consistent
trees, for given partial observations, in Section and Section B.4] respec-
tively. These problems are variants of the inference problem. We show that
these problems are all NP-complete. Worse still, the optimization problems
are hard to approximate: unless P = NP, it is not possible to approximate
the problems within any constant ratio. Nevertheless, we provide approxi-
mation and heuristic algorithms for these problems. For bounded trees, the
problems are O(| X | %)—approximable, where | X| is the size of the par-
tial observation, and fy,;, (resp. fimae) are the minimum (resp. maximum)
probability on the graph edges. We provide such polynomial approximation
algorithms. For perfect trees, we show that it is already NP-hard to even
find a feasible solution. However, we provide an efficient heuristics using a
greedy strategy. Finally, we address a practical special case for perfect tree
problems, which are O(d * 2&fmin )_approximable, where d is the diameter of

log fmaa

the graph, which is typically small in practice.

51



Chapter 3. Link Prediction in Temporal Graphs

Ann,0 Ann,0 Ann,0 Ann,0
Bill,1
Bill,1 Bill,1 Jack Bill,1 Mike
Jack
Jack
Mary 3 Mary 3 Mary 3 Mary 3

Figure 3.2: Tree representations of a partial observation X = {(Ann,0), (Bill, 1),
(Mary, 3)}: Ts, Ty and T5 are consistent Trees, while T is not.

o We experimentally verify the effectiveness and the efficiency of our algo-
rithms in Section B using real-life data and synthetic data. We show
that our inference algorithms can efficiently infer cascades with satisfactory

accuracy.

e We discuss the related work in Section and conclude this chapter in

Section B.71

3.2 Consistent Trees

We start by introducing several notions.

Diffusion graph. We denote a social network as a directed graph G = (V, E, f),
where (a) V' is a finite set of nodes, and each node u € V denotes a user; (b)
E CV xV is a finite set of edges, where each edge (u,v) € E denotes a social
connection via which the information may diffuse from u to v; and (c¢) a diffusion
function f : E'— R™ which assigns for each edge (u,v) € E avalue f(u,v) € [0, 1],

as the probability that node u influences v.

52



Chapter 3. Link Prediction in Temporal Graphs

Cascades. We first review the independent cascade model [102]. We say an
information propagates over a graph G following the independent cascade model
if (a) at any time step, each node in G is exactly one of the three states {active,
newly active, inactive}; (b) a cascade starts from a source node s being newly
active at time step 0; (¢) a newly active node u at time step ¢t has only one chance
to influence its inactive neighbors, such that at time ¢ + 1, (i) if v is an inactive
neighbor of u, v becomes newly active with probability f(u,v); and (ii) the state
of w changes from newly active to active, and cannot influence any neighbors
afterwards; and (d) each inactive node v can be influenced by at most one of its
newly active neighbors independently, and the neighbors’ attempts are sequenced
in an arbitrary order. Once a node is active, it cannot change its state.

Based on the independent cascade model, we define a cascade C' over graph G
= (V,E, f) as a directed tree (V., E.,s,T) where (a) V. CV, E. C E; (b) s € V.
is the source node from which the information starts to propagate; and (c) 7 is a
function which assigns for each node v; € V.. a time step t;, which represents that
v; is newly active at time step t;. Intuitively, a cascade is a tree representation of
the “trace” of the information propagation from a specified source node s to a set
of influenced nodes.

Indeed, one may verify that any cascade from s following the independent

cascade model is a tree rooted at s.

Example 2. The graph G in Figure[d depicts a social graph. The tree T} and T
are two possible cascades following the independent cascade model. For instance,
after issuing an ad of “Iphone 4s”, Ann at time 0 becomes “newly active”. Bill

and Jack retweet the ad at time 1. Ann becomes “active”, while Bill and Jack are

93



Chapter 3. Link Prediction in Temporal Graphs

turned to “newly active”. The process repeats until the ad reaches Mary at time

step 3. The trace of the information propagation forms the cascade T7.

As remarked earlier, it is often difficult to observe the entire structure of a
cascade in practice. We model the observed information for a cascade as a partial

observation.

Partial observation. Given a cascade C = (V_, E.,s,7), a pair (v;,t;) is an
observation point, if v; € V is known (observed) to be newly active at or by time
step t;. A partial observation X is a set of observation points. Specifically, X is a
complete observation if for any v € V,, there is an observation point (v,t) € X. To
simplify the discussion, we also assume that pair (s,0) € X where s is the source
node. The techniques developed in this paper can be easily adapted to the case
where the source node is unknown.

We are now ready to introduce the idea of consistent trees.

3.2.1 Consistent trees

Given a partial observation X of a graph G = (V, E, f), a bounded consistent
tree Ts = (Vr,, Er,,s) w.r.t. X is a directed subtree of G with root s € V', such
that for every (v, t;) € X, v; € Vr,, and s reaches v; by t; hops, i.e., there exists
a path of length at most t; from s to v;. Specifically, we say a consistent tree is
a perfect consistent tree if for every (v;,t;) € X and v; € Vg, there is a path of
length equals to t; from s to v;.

Intuitively, consistent trees represent possible cascades which conform to the
independent cascade model, as well as the partial observation. Note the following:

(a) the path from the root s to a node v; in a bounded consistent tree T} is not

o4



Chapter 3. Link Prediction in Temporal Graphs

necessarily a shortest path from s to v; in G, as observed in [I11]; (b) the perfect
consistent trees model cascades when the partial observation is accurate, i.e., each
time ¢; in an observation point (v;, ;) is exactly the time when v; is newly active;
in contrast, in bounded consistent trees, an observation point (v, t) indicates that
node v is newly active at the time step t' < t, due to possible delays in the

information propagation, as observed in [44].

Example 3. Recall the graph G in Figure[ll. The partial observation of a cascade
in G is X = {(Ann,0), (Bill,1), (Mary,3)}. The tree T\ is a perfect consistent
tree w.r.t. X, where Ty is a bounded consistent tree w.r.t. X.

Now consider the trees in Figure[34. One may verify that (a) T3, Ty and T;
are bounded consistent trees w.r.t. X; (b) Ty and Ty are perfect consistent trees
w.r.t. X, where Ts is not a perfect consistent tree. (c) T is not a consistent tree,
as there is no path from the source Ann to Mary with length no greater than 3 as

constrained by the observation point (Mary, 3).

3.2.2 Cascade inference problem

We introduce the general cascade inference problem. Given a social graph
G and a partial observation X, the cascade inference problem is to determine
whether there exists a consistent tree T" w.r.t. X in G.

There may be multiple consistent trees for a partial observation, so one often
wants to identify the best consistent tree. We next provide two quantitative
metrics to measure the quality of the inferred cascades. Let G = (V. E, f) be a

social graph, and X be a partial observation.

55



Chapter 3. Link Prediction in Temporal Graphs

Minimum weighted consistent trees. In practice, one often wants to identify
the consistent trees that are most likely to be the real cascades. Recall that
each edge (u,v) € F in a given network G carries a value assigned by a diffusion
function f(u,v), which indicates the probability that « influences v. Based on
f(u,v), we introduce a likelihood function as a quantitative metric for consistent

trees.

Likelihood function. Given a graph G = (V, E, f), a partial observation X and
a consistent tree Ty = (Vr,, Er,, s), the likelihood of Ty, denoted as Lx(T5), is
defined as:

Lx(T,) =P(X |T,)= [] fluv) (3.1)

(u,v)€ET,

Following common practice, we opt to use the log-likelihood metric, where

Lx(Ty) = ) logf(u,v)

(uvv)eETs

Given G and X, a natural problem is to find the consistent tree of the maximum
likelihood in G w.r.t. X. Using log-likelihood, the minimum weighted consistent
tree problem is to identify the consistent tree T with the minimum —Lx(7%),

which in turn has the maximum likelihood.

Minimum consistent trees. Instead of weighted consistent trees, one may
simply want to find the minimum structure that represents a cascade [125]. The
minimum consistent tree, as a special case of the minimum weighted consistent

tree, depicts the smallest cascades with the fewest communication steps to pass

o6



Chapter 3. Link Prediction in Temporal Graphs

the information to all the observed nodes. In other words, the metric favors those
consistent trees consist with the given partial observation with the fewest edges.
Given G and X, the minimum consistent tree problem is to find the minimum
consistent trees in G w.r.t. X.
In the following sections, we investigate the cascade inference problem, and
the related optimization problems using the two metrics. We investigate the
problems for perfect consistent trees in Section B3] and for bounded consistent

trees in Section [B.4], respectively.

3.3 Cascades as perfect trees

As remarked earlier, when the partial observation X is accurate, one may want
to infer the cascade structure via perfect consistent trees. The minimum (resp.
weighted) perfect consistent tree problem, denoted as PCT ., (resp. PCT,,) is to
find the perfect consistent trees with minimum size (resp. weight) as the quality
metric.

Though it is desirable to have efficient polynomial time algorithms to identify
perfect consistent trees, the problems of searching PCT ., and PCT,, are nontriv-

ial.

Proposition 3. Given a graph G and a partial observation X, (a) it is NP-
complete to determine whether there is a perfect consistent tree w.r.t. X in G;

and (b) the PCT i, and PCT,, problems are NP-complete and APX-hard.

One may verify Proposition Bfa) by a reduction from the Hamiltonian path

problem [I80], which is to determine whether there is a simple path of length

o7



Chapter 3. Link Prediction in Temporal Graphs

|[V|—11in a graph G =(V, E). Following this, one can verify that the PCT;, and
PCT,, problems are NP-complete as an immediate result.

Proposition Bl(b) shows that the PCT ., and PCT,, problems are hard to ap-
proximate. The APX class [I80] consists of NP optimization problems that can
be approximated by a polynomial time (PTIME) algorithm within some positive
constant. The ApX-hard problems are APX problems to which every APX problem
can be reduced. Hence, the problem for computing a minimum (weighted) perfect
consistent tree is among the hardest ones that allow PTIME algorithms with a
constant approximation ratio.

It is known that if there is an approximation preserving reduction (AFP-
reduction ) [I80] from a problem II; to a problem II,, and if problem II; is APX-hard,
then Il is Apx-hard [I80]. To see Proposition Blb), we may construct an AFP-
reduction from the minimum directed steiner tree (MST) problem. An instance of
a directed steiner tree problem I = {G,V,,V,,r,w} consists of a graph G, a set
of required nodes V,., a set of steiner nodes Vj, a source node r and a function w
which assigns to each node a positive weight. The problem is to find a minimum
weighted tree rooted at r, such that it contains all the nodes in V, and a part of V.

We show such a reduction exists. Since MST is ApX-hard, PCT ;, is APX-hard.

3.3.1 Bottom-up searching algorithm

Given the above intractability and approximation hardness result, we intro-
duce a heuristic WPCT for the PCT,, problem. The idea is to (a) generate a
“backbone network” G, of G which contains all the nodes and edges that are pos-

sible to form a perfect consistent tree, using a set of pruning rules, and also rank

o8



Chapter 3. Link Prediction in Temporal Graphs

the observed nodes in ¢, with the descending order of their time step in X, and
(b) perform a bottom-up evaluation for each time step in G} using a local-optimal

strategy, following the descending order of the time step.

Backbone network. We consider pruning strategies to reduce the nodes and
the edges that are not possible to be in any perfect consistent trees, given a graph
G = (V,E, f) and a partial observation X = {(v1,t1),..., (vg, tx)}. We define a
backbone network Gy = (V}, ), where

o Vi, = [U{v;|dist(s,v;) + dist(v;,v;) <t} for each (v;,t;) € X; and
o £ ={(,v) € VyveV, (Vv v)eE}

Intuitively, G, includes all the possible nodes and edges that may appear in a
perfect consistent tree for a given partial observation. In order to construct Gy, a
set of pruning rules can be developed as follows: if for a node v" and each observed
node v in a cascade with time step ¢, dist(s,v") + dist(v’,v) > ¢, then v and all

the edges connected to v’ can be removed from Gy,

Algorithm. Algorithm WPCT, as shown in Figure B3], consists of the following
steps:

Initialization (line 1). The algorithm WPCT starts by initializing a tree T', by
inserting all the observation points into 7. Each node v in T is assigned with a

level [(v) equal to its time step as in X. The edge set is set to empty.

Pruning (lines 2-10). The algorithm WPCT then constructs a backbone network
Gy with the pruning rules (lines 2-9). It initializes a node set V}, within ¢,,,, hop
of the source node s, where t,,,, is the maximum time step in X (line 2). If there

exists some node v € X that is not in V}, the algorithm returns (), since there is no

99



Chapter 3. Link Prediction in Temporal Graphs

Input: graph G and partial observation X.
Qutput: a perfect consistent tree 7" in G.

1. tree T = (Vp, Er), where Vr := {v|(v,t) € X},
set level [(v):= t for each (v,t) € X, E =
set Vp := {ws|dist(s,v) < tmaax};
if there is a node v in X and v ¢ V; then return 0,
set By = {(v',v)|(v',v) € E,v' € Vi,u e W)}
for each v € V, do

if there is no (v:,t;) € X that

dist(s, v)+dist(v,v;) < t; then

Ve = Vi \ {v}

Ey, = By \ {(v1,v2)} where v; = v or vz = v;
graph Gy = (Vb, Eb);
0. list L := {(’Ul,tl), ceey (’Uk,tk)}

where t; < tit1, (“U-i,ti') S X, i€ [1, k— 1];
11. for each i € [1,tmq.] following descending order do
12. V= V1UV2UV3,V']_ = {'U-il(v,ti) EX};

Vo == {vfv € Vp,l(v) = t;};
Vs = {o|(v,v) € Bp,v e ViUV, v ¢ Vi)

13. E::={@ )| e V5, e ViUV, (v',v) € Ep};
14. construct Gy = (V4, Ey);
15. T :=TUPCT|(Gy, Vi UV, Va,i);
16.if T is a tree then return 7';
17. return ;

Procedure PCT,
Input: A bipartite graph Gy,
node set V', node set V,, a number ¢;;
Output: a forest T3.
1. T, = 0;
2. construct T3 as a minimum weighted steiner forest
which cover V' as the required nodes;
. for each tree T; € T; do
I(r) :=t; — 1 where r € V; is the root of T5;
. return 7;;

AR e

S o>

W

Figure 3.3: Algorithm WPCT: initialization, pruning and local searching

60



Chapter 3. Link Prediction in Temporal Graphs

path from s reaching v with ¢ steps for (v,t) € X (line 3). It further removes the
redundant nodes and edges that are not in any perfect trees, using the pruning
rules (lines 5-8). The network G is then constructed with V, and Fj, at line 9.

The partial observation X is also sorted w.r.t. the time step (line 10).

Bottom-up local searching (lines 11-17). Following a bottom-up greedy strategy,
the algorithm WPCT processes each observation point as follows. For each i in
[1, tmaz), it generates a (bipartite) graph G;. (a) It initializes a node set V; as the
union of three sets of