
UNIVERSITY OF CALIFORNIA

Santa Barbara

Design and Analysis of Arduino, Raspberry Pi, and Xbee Based Wireless Sensor Networks

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in Electrical and Computer Engineering

by

Sean Alexander Cassero

Committee in charge:

Professor Joao Hespanha, Chair

Professor Katie Byl

Professor Jason Marden

September 2016

The thesis of Sean Alexander Cassero is approved.

__
Katie Byl

__
Jason Marden

__
Joao Hespanha, Committee Chair

September 2016

Design and Analysis of Arduino, Raspberry Pi, and Xbee Based Wireless Sensor Networks

Copyright © 2016

by

Sean Alexander Cassero

iii

ACKNOWLEDGEMENTS

Thanks to

Professor Joao Hespanha for agreeing to act as advisor for the duration of the project

Professors Katie Byl and Jason Marden for consenting to be a part of the thesis

committee

Mohamed “Rufus” Hafez and Stefan Waterstaat for their contributions to the Rails

development and subsequent analysis section

and Sara Khatib for her support and encouragement throughout

iv

ABSTRACT

Design and Analysis of Arduino, Raspberry Pi, and Xbee Based Wireless Sensor Networks

by

Sean Alexander Cassero

With a constantly changing technological landscape, the Engineering world is

continually tasked with justifying the optimality of accepted standards and practices. The

recent development of inexpensive simple microprocessors and linux computers has the

potential to replace various methodologies for low energy, low-rate information transfer and

control such as environmental monitoring, smart houses, smart lighting and others.

In the area of wireless sensor networks, a design standard is developing

incorporating Xbee series 2 as a wireless bridge between Arduino or Raspberry Pi sensor

and data aggregate nodes. In this thesis I construct an Xbee series 2 ZigBee wireless star

topology network with an Arduino as a ZigBee End Device and Raspberry Pi as the ZigBee

network coordinator.

The End Device uses an Arduino Uno v3 for local signal processing on a Parallax

PMB-648 GPS and DS18B20 temperature sensor for periodic signal transmission via Xbee

series 2. Xbee uses API mode 2 with escaping for package formation and transmission and

is connected to the Arduino via the hardware serial port.

 The Coordinator node consists of an Xbee Series 2 with Coordinator firmware

communicating via the Raspberry Pi GPIO serial input ports. The Raspberry Pi uses

specialized Python libraries to parse incoming API statements from active end devices.

v

The Raspberry Pi doubles as an internet gateway to an SQLite database run on a

Ruby on Rails web application framework. The Raspberry Pi uses the Python requests

library to transmit received End Device sensor measurements to the cloud server as URL

parameters. The Ruby on Rails framework uses a Model View Controller architecture to

pass data as URL parameters to an SQLite database, as well as display End Device sensor

data on an interactive user interface upon a browser request. The user interface uses

Gmaps4Rails to render an interactive map consisting of the GPS markers of reporting End

Devices and their corresponding temperature measurements. The cloud server functions as a

shared database linking multiple complete wireless sensor networks together under a single

web app.

By testing End Device node lifetimes with various data transmission frequencies, an

experimental relationship between Arduino/Xbee sleep duration and End Device lifetime is

found. Using direct current measurements and information on the End Device hardware, a

theoretical relationship between battery charge and End Device charge consumption during

runtime is used to generate experimental equations relating End Device average current

consumption during different phases in End Device lifetime. Multiple regression analysis is

performed to derive an experimental value for the average current consumption of the End

Device during all phases of operation, resulting in an experimental relationship between End

Device average current and data transmission frequency of

I avg=
(2.3mA∗t sleep+131.3 mC)

(t sleep+2.6s)
+34.0mA , where t sleep is the End Device sleep cycle

duration in seconds. The above relationship was able to predict the average current for all

End Device trials to within 5% error.

vi

I. Introduction

1. Related Work/Motivation

As wireless technology matured, Wireless Sensor Networks (WSN) began to emerge

as an advantageous alternative to their wired counterparts due in part to easy deployment

and scalability [1]-[2]. The 802.15.4 IEEE communication standard was developed for use

specifically with low-rate wireless personal area networks (LR-WPANs) with a focus on

wireless sensor networks [3]. In the early 2000s, the ZigBee alliance worked to construct the

ZigBee protocols, communication protocols functioning on the 802.15.4 MAC and Physical

layers. The main advantage of the ZigBee protocols over its competitor Bluetooth was

ZigBees' highly efficient sleep mode; ZigBee devices use a basic master-slave configuration

suited for low frequency data transmission star topologies, and can wake from sleep and

transmit a packet in around 15 miliseconds. As a result, ZigBee devices can last for long

periods on a single power supply [7].

In recent years, Digi incorporated the 802.15.4 standard and ZigBee protocols into a

proprietary RF module known as the Xbee. Xbee devices have modular firmware capable of

constructing various network topologies and have been utilized as end devices in wireless

sensor network and monitoring applications [4]-[6].

However, Xbee does not contain large processors for signal processing or local data

analysis at the End Device. The limited processing capabilities of an Xbee device can be

addressed with the implementation of additional hardware for processing support. Current

WSN designs utilize an Arduino, a low-cost, reliable microcontroller capable of functioning

1

as a building block for data acquisition or control systems [8], to augment a sensor nodes

processing capabilities [9]-[10].

In addition to the Arduino and Xbee, prototype WSN routinely incorporate a

Raspberry Pi, a small inexpensive linux computer. The Raspberry Pi usually serves as a

hardware platform for the ZigBee network Coordinator, and is used to direct network

communication and control in wireless systems [12]-[13]. Additionally, the Raspberry Pi

can be used to handle WSN data storage by functioning as a database server [11].

Raspberry Pi, Arduino, and Xbee based WSN posit two main questions. First, since

ZigBee protocols were developed specifically for facilitating long node lifetimes, how does

introducing additional processing hardware in the form of an Arduino impact overall node

lifetime? And second, if one reason for the advance of WSN is its scalability, how do

developers address the relatively limited storage capabilities of the IoT devices (Arduino,

Raspberry Pi) and their potential inability to successfully scale with increasing WSN traffic?

2. Project Overview

This project designs and builds an Xbee, Arduino, and Raspberry Pi based wireless

sensor network as a client to a cloud database server.

The project uses Xbee series 2 with ZigBee protocols, which are based on the IEEE

802.15.4 standard, as a wireless personal area network (WPAN) communication bridge. The

Xbee Series 2 modules are programmed to communicate in API mode with escaping to form

a star topography WPAN with one ZigBee Coordinator node and multiple ZigBee End

Devices.

2

Each ZigBee End Device consists of an Xbee Series 2 radio frequency (RF)

communication module loaded with End Device firmware via XCTU, mounted on an

Arduino Uno v3 via a proprietary Xbee shield. The Arduino Uno serves as a signal

processor for two local sensors: a DS18B20 temperature sensor and a Parallax PMB-648

SiRF GPS Module.

Both sensors require signal processing to convert their data into human readable

format. The Arduino uses the One Wire and Dallas Temperature libraries to read

temperature values from the DS18B20 sensor, and the softSerial and TinyGPS libraries to

parse GPS data from the PMB-648 GPS module. The Arduino runs a single loop that

manages reading temperature and GPS sensor data, and communicating data via Xbee to the

ZigBee network Coordinator.

Both the Xbee and Arduino have sleep functions that minimize power consumption

by periodically stopping unnecessary internal processes when those processes are not

Figure 1. Initial prototype hardware for the ZigBee End Device (left)and
Coordinator (right)

3

needed. The sleep functions were implemented inside the Arduino main code loop to halt

superfluous processes while the node was neither gathering nor transmitting data.

In oder to address the impact of the Arduino on End Device lifetimes, End Device

average power consumption was compared for a range of transmission frequencies to

generate a graphical relationship between transmission frequency and power consumption of

an Arduino-Xbee End Device.

 The ZigBee Coordinator node consists of a Raspberry Pi series 2 B running OS

Raspbian Jessie and a single Xbee Series 2 loaded with Coordinator firmware via XCTU.

The Xbee Coordinator transmission and reception lines are input to the Raspberry Pi via its

GPIO pins as a serial communication device. Raspberry Pi uses the Python serial and Xbee

libraries to parse incoming API statements from End Devices.

In order to address the limited local storage on the Raspberry Pi ZigBee Coordinator,

the device is transformed into an SQLite cloud database client. The Raspberry Pi uses the

Python requests library to transmit data packets as URL parameters to a cloud server. The

cloud database server handles all WSN data storage, alleviating the responsibility from the

Raspberry Pi.

Web Application Development uses Heroku as a Platform as a Service (PaaS).

Heroku runs a Linux Operating System, a Puma Web Server, and an SQLite database as a

framework for development. The project uses the Heroku foundation to run a Ruby on Rails

Web Application.

The Web Application is in charge of managing wireless sensor network data storage

in the SQLite database and rendering a useful human readable User Interface (UI) for data

4

presentation with a browser request. The Web Application uses Rails Model, View, and

Controller (MCV) architecture to pass incoming URL parameters to the the SQLite database

via Object Relational Mapping (ORM).

User Interface uses the Gmaps4Rails, a Ruby gem to superimpose Sensor and

Coordinator GPS data as markers on an interactive map using the google maps API. The

markers display relevant sensor data when clicked by the user, such as MAC address for

sensor and Coordinator node, and temperature in degrees celsius for sensor node. A full list

of the latest received data for each unique Sensor node is displayed in table format

underneath the map for easy viewing.

Additionally, the cloud database server is designed to be a shared database for

multiple wireless sensor networks. A collaborative wireless sensor network cloud database

may be useful in monitoring large scale geographically separate areas of interest such as a

nationwide average temperature census or large scale environmental monitoring. Examples

are given showing the cloud server functioning as a shared database.

Figure 2. Example Web Application UI

5

I. Wireless Communication

A. 802.15.4 Communication Protocol

There are four main wireless Personal Area Network (PAN) standards for data

transmission: Wifi (based on IEEE 802.11/a/b/g), ZigBee (based on IEEE 802.15.4),

Bluetooth (based on IEEE 802.15.1), and UWB (based on IEEE 802.14.3). While each have

their intended use cases, the 802.15.4 IEEE protocol was developed specifically for low-

rate, low power signal transmission [3] and is ideal for industrial level sensor network

applications [2].

6

Figure 3. Range vs Data Rate for various IEEE standards. Image courtesy of Arthur
Stachowicz

 While the 802.15.4 protocol specify the MAC and physical layer, ZigBee protocols

handle application layer and above which generally deal with network configuration,

security, and application profile.

Xbee Series 1 and Series 2 modules operate on the 802.15.4 and ZigBee standards

respectively with small variations for specific uses. Due to its intended development for low

rate sensor networks, Xbee series 2 with ZigBee protocols was used as a communication

bridge.

B. ZigBee Network Topology

ZigBee is a global open standard for communication using the 802.15.4 protocol.

Maintained by the ZigBee Alliance, transceivers communicate over ISM signal bands (2.4

GHz globally, 868MHz in Europe, and 915 MHz in US) with intended ranges of 10-100m.

Figure 4. Protocol layers for ZigBee stack. Image courtesy of Arthur Stachowicz

7

ZigBee device firmware can have one of three functions which combine to form various

network topologies. The three types are: ZigBee Coordinator (ZC), ZigBee Router (ZR), and

ZigBee End Device (ZED).

ZigBee Coordinators (ZC) act as the central controller and parent node to both end

devices and routers. They are in charge of network management functions such as storing

security keys and network ids as well as handling network traffic. They are the most

resource heavy nodes in terms of processing and local memory, and must be active for a

network to exist.

ZigBee Routers (ZR) are capable of performing application layer tasks as well as acting

as fully functional sensor nodes. Routers may function as network repeaters, extending

network size by relaying information from end devices or other routers out of range of the

Coordinator node. Routers are not necessary for a ZigBee network to exist, but are useful in

forming sophisticated network structures or when network contains a large number of nodes.

ZigBee End Devices are not fully functional devices, they send information only to their

parent node, which can be either a Router or Coordinator. Limited functionality makes End

Devices the least power hungry network nodes. Generally, End Devices form the bulk of

sensor nodes in a network structure.

In order to facilitate long battery life, ZigBee protocols allow for an easily

programmable sleep mode for End Devices, periodically limiting computation and thus

power consumption. Coordinator and Router nodes continually transmit beacon signals to

alert child nodes of their presence. Upon waking, End Devices wait for a beacon signal and

relay information before continuing their sleep cycle.

8

C. Xbee

Xbee module is a small programmable RF transmitter functioning on the IEEE 802.15.4

standard. The series 2 and series 2 PRO models operate with ZigBee protocols and have a

Figure 6. Xbee Series 2 module and Schematic. Images from Digi site.

Figure 5. Potential ZigBee Network Topologies. Image courtesy of Arthur
Stachowicz.

9

communication range of 30m indoor 90m outdoor and 90m outdoor 1600m outdoor

respectively. They operate on 3.3V, transmit at up to 250,000bps and 115,200 baud, and are

available with a variety of antennas for specific uses. They are relatively low power with a

programmable sleep mode, and and are a recommended communication bridge between IoT

devices in sensor networks due to a simple implementation and existing hardware

integration [11].

1. AT vs API Mode

There are two types of UART schemes available for Xbee modules, AT and API mode.

AT mode is synonymous with transparent mode, each module has a single network

destination and personal address. Configuration of network parameters must be done

through command mode, either by the user or a micro controller. AT mode is useful for

simple point-to-point communication or non-modular network topology.

API mode is recommended for larger networks with more complicated overall

topologies. Messages contain a personal and destination address, which can be changed

during run time depending on message type, making mesh topology simple to implement.

Additionally, API mode contains packet delivery confirmation messages and has the option

of escape parameters.

Figure 7. Standard API Frame Format. Image taken from Digi Website.

10

For this design I used API mode “2” with escaping for modular destination addresses,

package delivery confirmation, and robust packet reception.

2. Programming

Xbee devices have a number of adjustable parameters. Each device is configured either

through XCTU, an open source GUI interface maintained by Digi, or configured wirelessly

using API commands via the local UART. For this project, a one Coordinator multiple End

Device star topography is used to minimize energy expenditures of sensor nodes.

 Xbee modules can be connected to a computer running XCTU via a micro usb to usb

cable and an Xbee explorer board. Here, firmware can be updated and parameters

configured.

First, update each unit with the latest version of its intended firmware (ZC, ZR, or ZED).

11

Figure 8. XCTU interface for Firmware Download

Each device must specify its Personal Area Network ID as a hexadecimal string on the

range x0000 to xFFFF, all devices must operate on the same channel to communicate.

Lastly, API mode with escaping (API = 2) is used.

Additionally, End Devices have a configurable sleep mode that will be handled in later

sections.

XCTU terminal application can be used to check network connectivity. If parameters

have been assigned correctly, messages may be broadcast in the correct API format from

one devices' terminal session to another.

Project network design is one ZigBee Coordinator and two ZigBee End Devices forming

a simple star topology.

Figure 9. XCTU Interface for Setting PAN ID

Figure 10. XCTU Interface for Setting API mode 2

12

II. Arduino as Sensor Node

A. Overview

Arduino is a small, open source micro-controller initially intended for simple electronics

prototyping applications, but has found a niche as low-cost reliable hardware. The design is

open sourced, with programmable analog and digital ports to serve a variety of functions

including local signal analysis and processing.

For this project I used and Arduino Uno v3 board. The Uno uses the Atmel

ATmega328P processor chip with 32KB flash memory (.5KB used for bootloader), 2KB

RAM, and 1KB EEPROM, is capable of 16MHz clock speed, and contains 6 Analog and 14

Digital I/O pins.

Arduino uses its own programming language (based on Wiring) and IDE (based on

processing) with a large community of engineers contributing software libraries for

interfacing relevant technologies.

The Arduino Uno serves as a signal processor for the data collector node,

periodically reading and formatting GPS data and temperature for transmission via Xbee to

the network Coordinator.

B. Temperature Sensor

1. Hardware

For this project the DS18B20 temperature sensor is used. The DS18B20 measures

temperatures from -55°C to +125°C (–67°F to +257°F) with ±0.5°C accuracy from –10°C to

13

+85°C. Input voltage ranges from 3V-5.5V which may be extracted from the data line

enabling a two wire connection scheme.

The BS18B20 operates as a standard one wire sensor, with a signaling scheme that

performs half-duplex bidirectional communications between a master and slaves sharing a

common data line. Both power and data are transferred along this single line, with slaves

using an internal capacitor to charge power when data signal is high for use when signal

drops low. Pins GND and V++ are connected to ground and a 47K pull-up resistor is wired

in series with the data pin which is then fed into an Arduino digital input port.

2. Software

the Arduino uses both the OneWire and DallasTemperature Arduino libraries to read

temperature values from the DS18B20 sensor.

Figure 11. Temperature sensor hardware

14

OneWire library incorporates the one wire sensor signaling scheme mentioned above

into simple function calls while DallasTemperature adapts the general OneWire library to

the specific use of the DS18B20 sensor. Basic loop runs as follows:

import the requisite libraries:

#include <OneWire.h>
#include <DallasTemperature.h>

Initialize your states by declaring a OneWire instance on the data input port and passing

that reference to DallasTemperature

#define ONE_WIRE_BUS 10
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);

 In the setup(), start the library by calling begin() on the sensor instance.

void setup(){
sensors.begin()
}

The loop functions by sending the sensor a request for a temperature measurement, then

calling getTemperatures() on the sensor instance. Pull from the index what is needed,

this project reads temperature in degrees Celsius.

void loop(){
sensors.requestTemperatures();

 sensorValue = sensors.getTempCByIndex(0);
}

Links to the OneWire and DallasTemperature Github repositories in Appendix

15

C. GPS Measurement

1. Hardware

This project uses the Parallax PMB-648 SiRF GPS Module. The PMB-648 module

operates on NMEA0183 v2.2 protocol, contains a built in antennae, and 20 satellite

communication channels. Module requires 3.3-5V input, has TTL or RS-232 asynchronous

serial interfaces at 4600 baud with position accuracy +/- 5m. The PMB-648 requires no

additional hardware to interface with the Arduino input ports, connect 5V and GND to

corresponding Arduino ports, device transfers GPS data via TTLTx line.

2. Software

PMB-648 module uses TinyGPS and SoftwareSerial Arduino libraries for parsing

NMEA GPS strings.

TinyGPS is designed to alert the Arduino when NMEA GPS data is received, and to

extract useful parameters from the data. Since NMEA data comes from a serial GPS unit,

either the built in Arduino hardware serial interface, or a software serial port must be used.

Figure 12. Parallax PMB-648 SiRF GPS Module Arduino Interface

16

Xbee communication uses the hardware serial port, so the SoftwareSerial library is required.

Basic code structure is as follows:

Import the requisite libraries

#include <SoftwareSerial.h>
#include <TinyGPS.h>

Initialize the software serial communication ports and declare an instance of TinyGPS

SoftwareSerial gpsSerial(8, 9);
TinyGPS gps;

Tell Arduino to listen to the software serial port, and wait until data is available. TinyGPS

library contains a boolean function encode() that parses data one character at a time and

returns true when a complete statement has been received. Proper functionality states to

hinge an if statement on the boolean return of encode(). Once inside the if statement,

TinyGPS contains function calls for retrieving parameters of interest from the data string.

This project is only interested in the latitude and longitude of the device.

gpsSerial.listen();
 while(gpsSerial.available()){
 if(gps.encode(gpsSerial.read())){
 gps.get_position(&lat,&lon);

}

links to the full SoftSerial and TinyGPS Arduino libraries Github repositories in Appendix

17

D. Xbee Communication

1. Xbee Setup

The Arduino serves as the networks data collection node, transmitting data packets to

the Coordinator. The ZigBee equivalent firmware is End Device (ZED) or router (ZR), ZED

requires less power as a non-fully functional device, so it is preferred. XCTU is used to set

PAN ID arbitrarily to 3001, API mode = 2 for API with escape parameters following the

procedure outlined in the Xbee section above.

2. Hardware

Xbee pins are spaced at non-standard intervals requiring additional hardware for

Arduino interfacing. Proprietary Xbee shields are relatively inexpensive solutions, allowing

for a top-mount platform coupling the Xbee pins to their corresponding Arduino inputs.

Shields contain basic circuit protection such as voltage regulation, and jumpers to switch

between programming Arduino and Xbee, both of which require the Arduinos serial

communication ports. The Xbee shield receives power and GND through ICSP pins, leaving

the 5V and GND headers on Arduino available for external circuits. Xbee Tx and Rx pins

are connected to Arduino Digital port Rx and Tx respectively, Digital pins 8-13 are left open

for additional sensors.

18

3. Software

The Arduino-Xbee communication library by Andrew Rapport is used to send Xbee

transmission requests. The Xbee library handles the potential complexity of API message

formatting with message type declarations constructing the API headers and addressing.

Import the requisite libraries

#include <XBee.h>

An Xbee instance is declared and the message payload is defined as an unsigned int of the

necessary size. This projects transmits packets with 10 bits of data.

XBee xbee = Xbee();
uint8_t payload[] = { 0,0,0,0,0,0,0,0,0,0};

Xbee destination address must be specified. Since we are using API mode this

address can change throughout runtime without additional configuration, but for the star

topology implemented, only the Coordinator address must be specified. Additionally,

Figure 13. Xbee Series 2 with Xbee shield and hardware for End
Device

19

declare an instance of the API message type that will be used, here we format an API

transmission request.

XBeeAddress64 addr64 = XBeeAddress64(0x0013a200,
0x40d8d723); // address of Coordinator Xbee

ZBTxRequest zbTx = ZBTxRequest(addr64, payload,
sizeof(payload)); // ZigBee Transmission with addressing,
// payload and checksum

In setup(), initiate the hardware serial instance at the proper baud rate and pass the

Serial instance to the Xbee instance

void setup(){
Serial.begin(9600); // connect serial
xbee.setSerial(Serial);

}

Data can be read in as any type, payload is formatted as hexadecimal strings with

escape characters. For this project, temperature and GPS data are initially read as floats from

their respective sensors. Convert floats to byte sized numerical strings and pass into the

payload array for Xbee transmission. Here pin5 is the temperature sensor float value.

void loop(){
pin5 = int(100*sensorValue);

 payload[8] = pin5 >>8 ;
 payload[9] = pin5;

GPS data is stored similarly. Once payload is correctly formatted, call the send() function

on the updated data packet for Xbee transmission

xbee.send(zbTx);
}

Link to the Arduino-Xbee library Github repository can be found in Appendix

20

 III. Raspberry Pi as Data Aggregate Node/Cloud Gateway

A. Overview

Raspberry Pi is a small, inexpensive, fully functional linux computer. Founded in

may 2009, the Pi was initially intended as an educational tool, a hackable bare-bones shell

adaptable for many uses. It has since been embraced by the maker community and others as

a competent module for small scale processing applications requiring an OS kernel for

asynchronous multitasking.

For this project, a Raspberry Pi 2 model B is used. The model B comes equipped

with a 900MHz quad-core ARM Cortex-A7 CPU, 1GB of onboard RAM, four USB ports

for interfacing various technologies, an ethernet port, 40 GPIO pins for signal I/O, a micro

SD slot, and HDMI cable for a GUI via monitor.

Figure 14. Raspberry Pi Model 2B. Images taken from
Raspberry Pi website

21

The Cortex-A7 processor is capable of running the full range of GNU/Linux

distributions including Windows 10. Due to its reliability and large support community, OS

Raspbian Jessie was used via a 16GB flash drive.

The data aggregate node/internet gateway must receive large amounts of sensor data

and transmit them via wifi, both relatively energy intensive tasks. The Pi requires a strict 5V

regulated power supply with current draw up to 2A depending on application hardware. A

standard wall wart meeting the above specifications is used.

B. Xbee Communication

1. Xbee Setup

The Raspberry Pi serves as the networks data aggregate node, receiving data packets

from wireless sensor nodes. ZigBee equivalent firmware is network coordinator (ZC).

XCTU is used to set PAN ID arbitrarily to 3001, API mode = 2 for API with escape

parameters. Procedure is identical to process described in previous sections.

2. Hardware

 The Coordinator Xbee draws power from the Raspberry Pi's 3.3V and GND power

lines, and Xbee Tx and Rx lines are connected to serial Rx and Tx. All RPI connections are

via the Pi's GPIO pins. Female to male wires are used to carry the corresponding lines to a

breadboard, where an Xbee breakout board converts the Xbee pin spacing to the 2.54mm

breadboard standard to facilitate connection.

22

3. Os Initialization

The Raspberry Pi GPIO serial port is referenced as /dev/ttyAMA0 by Jessie OS.

Default OS configuration has Jessie passing kernel messages via ttyAMA0, which must be

disabled for clean communication. Jessie uses sytemd for initialization, and /boot calls

cmdline.txt to initialize kernel message passing.

Edit /boot/cmdline.txt and remove any reference of ttyAMA0. Functionally, this

means removing

console=ttyAMA0, 115200

from the cmdline.txt file.

Additionally, disable systemd services on ttyAMA0 to clear for incoming communications

$ sudo systemctl stop serial-getty@ttyAMA0.service

If functioning correctly, opening a terminal emulator (i.e. minicom) on ttyAMA0 will be

clear while Xbee is disconnected.

Figure 15. Raspberry Pi hardware setup

23

mailto:serial-getty@ttyAMA0.service
mailto:serial-getty@ttyAMA0.service
mailto:serial-getty@ttyAMA0.service
mailto:serial-getty@ttyAMA0.service
mailto:serial-getty@ttyAMA0.service

4. Software

The Raspberry Pi uses pythons' Xbee, ASCII, and serial libraries to receive and parse

communication on the ttyAMA0 serial GPIO. The Python Xbee library is similar to Arduino

Xbee, containing instance declaration of Xbee types with function calls for API message

transmission, formation, and reception. Serial Python library provides a backend for serial

port communication. ASCII hexlifier() parses the hexadecimal API data transmission

payloads into human readable format for data analysis and storage. Code is structured as

follows:

Import the requisite libraries

import serial
 import xbee
from binascii import hexlify

Initialize the serial port library by declaring a serial instance on ttyAMA0 with a baud rate

of the Xbee at the End Devices

SERIAL_PORT = '/dev/ttyAMA0'
BAUD_RATE = 9600
ser_port = serial.Serial(SERIAL_PORT,BAUD_RATE)

Pass the reference to a ZigBee instance in the Xbee library

xbee1 = xbee.zigbee.ZigBee(ser_port,escaped=True)

use the wait_read_frame() function on the Xbee instance to receive data.

data_samples = xbee1.wait_read_frame()

upon the event of signal reception, data_samples containes the API transmission packet

in raw format. The Xbee library parses received statements into a dictionary that can be

indexed by the user. Python function pprint can display the transmission in its raw form.

24

Here we can see a full list of received parameters and their dictionary identifiers. For this

project, the important parameters are the 'source_addr_long', the MAC address of the

transmitting sensor node, and 'rf_data', the data payload of the transmission in hexadecimal

format. Extract the relevant parameters using standard indexing, and since Xbee API mode

"2" formats transmissions in hexadecimal with escape parameters, convert data using the

hexlifier() function.

 address = data_samples['source_addr_long']
 address=hexlify(address)

samples = data_samples['rf_data']
 samples = hexlify(samples)
 dataStr = str(samples)

variables dataStr and address are now human readable. The End Device Xbee sends

GPS and temperature values in the same data string, so dataStr must be indexed and

further assignments made. Initial Arduino code sends data as hexadecimal, which makes

floats difficult to format. Therefore, float sensor variables such as temperature, latitude, and

longitude are converted to unsigned integers before transmission, and must be converted

back to floats in Raspberry Pi Python script. Knowledge of significant figures for sensor

values on the Arduino side is necessary for proper indexing and conversion. Python script is

Figure 16. Print to Console of Received Tx Packet in raw form

25

gnostic to separation points in initial dataStr variable and uses the information to assign

the correct values.

 lat = int(dataStr[1:4],16)*.01 + int(dataStr[5:8],16)*.000001
 long = -1*int(dataStr[8:12],16)*.01 -

int(dataStr[13:16],16)*.000001
 samples = int(dataStr[17:20],16)*.01

Latitude and longitude are transmitted with a precision of 6 decimal places and

temperature a precision of 2. The first [1:8] of dataStr are the float value of latitude, [8:16]

of dataStr are float values of longitude, and [17:20] of dataStr are float temperature in

degrees Celsius. Since project development was in Santa Barbara, longitude is a negative

value.

C. Cloud Gateway

1. Hardware

Built in Ethernet and wifi capabilities make transforming the Raspberry Pi into an

internet gateway simple. Ethernet cable or external USB wifi card offer plug-and-play

functionality for internet communication. Due to its spacial flexibility, an Edimax EW-

7811Un external wifi card is used.

2. Software

Python requests library is used to send get requests to cloud server. Requests is an

abstract HTTP API library that is simple to implement and popular. The cloud server is

26

configured to update the database with URL parameters received on a specific URL.

Implementation with requests library is straightforward:

import requisite libraries

import requests

format URL with sensor data as parameters, as well as additional useful parameters of

interest such as static Coordinator GPS and MAC address. Python string replacement is used

to fill a standard URL with values on each loop. Here, the cloud server is located at

sensornodeserver.heroku.com

url = "sensornodeserver.heroku.com/reports/create?
report[temp]={0}&report[sensor_mac]={1}&report[controller_mac]={2}&
report[lat]={3}&report[long]={4}&report[controller_lat]={5}&report[
controller_long]={6}".format(samples,address,macAddr,lat,long,contr
oller_lat,controller_long)

send url to update database

 r = requests.get(url)

Link to Python requests, ASCII, Xbee, and serial Github repositories available in the

Appendix

3. Boot at startup

The design of the Coordinator node necessitates a continuous runtime for the

duration of the sensor network. Two options are available: use a Raspberry Pi screen

program to maintain a computing environment with a break in ssh, or create a systemd

service to be run during system boot. The screen solution will fail with a momentary

27

power outage since screen must be manually initiated to persist, thus a systemd service

is more robust to failure modes.

Create a new service

$ sudo vim /lib/systemd/system/[service name].service

Edit service script with following text to execute a Python script after the user

environment is available

[Unit]

Description=[service description]

After=multi-user.target

[Service]

Type=idle

ExecStart=/usr/bin/python ["path to python script"]

[Install]

WantedBy=multi-user.target

Change the permissions of the newly created service to be accessed by systemd

$ sudo chmod 644 /lib/systemd/system/[service name].service

Inform systemd of new service

$ sudo systemctl daemon-reload

 $ sudo systemctl enable [service name].service

Pi will now run the Python script on boot as a systemd service.

28

IV. Cloud Server

A. Overview

The basic web development stack consists of an Operating System, a web server, a

web application layer, and a database.

This project uses Heroku as a platform as a service, which takes care of setting up

and maintaining the operating system (Linux), web server (Puma), and database structure

(SQLite), leaving the developer to tailor the web application layer to their particular use

case. Because of its reputation as one of the easiest initial learning curves for development,

Ruby on Rails is used as a web application framework.

Ruby is a high level language that abstracts a lot of structural complexities, while

Rails sets a powerful framework that automates standard resource generation for streamlined

development. Rails framework splits the web application layer into three processes

separated by core functionality: Model, View and Controller.

B. Rails MVC Architecture

The Model (ActiveRecord) is in charge of database queries and database

management. ActiveRecord is an object relational mapping (ORM) technique that includes

data access logic as part of the object structure. The Model receives requests from the

Controller and performs object oriented database operations.

29

Browser requests are received by a router, which directs the request to the

corresponding Controller. The Controller (ActionController) interprets the browser request

and directs the Model and View to compile the correct response. Generally, the Controller

sends requests to the Model for Object Relational Mapping of database parameters, and

requests to the View for HTML rendering. The Controller can be thought of as a middle man

for the Model and View.

The View (ActionView) accepts data retrieved by the Model via the Controller and

compiles the response to be sent to the browser. ActionView templates are written using

embedded Ruby in tags mingled with HTML, and compile the browser response to the end

user.

Figure 17. Block Diagram of high level overview of Rails MVC structure.
Image via Rubysource.com

30

C. Web Application Design

The Web Application has two main functions: accept data as URL parameters to

update the SQLite database, and compile data in a useful human readable form with a

browser request. This can be accomplished with the use of a single Controller/View setup.

1. Routes and Database

Rails uses SQLite as a relational database management system to construct an

embedded database for local storage on application hardware. Unlike MySQL, SQLite does

not operate with a client-server relationship and is instead self-contained and server-less,

SQLite reads and writes locally to ordinary disk files.

Rails creates a new database object via migrations, a Ruby DSL that allows the

database schema and database changes to be database independent (see Appendix for

example migrations).

There are eight parameters of interest for each sensor report: Temperature (C),

Sensor Latitude, Sensor Longitude, Sensor MAC Address, Controller MAC Address,

Controller Latitude, Controller Longitude, and Timestamp (hh/mm/dd). The database can be

updated to contain all parameters with a database migration and rake (Ruby make). An

outline of the database schema can be seen in the projects schema.rb (see Appendix).

The Rails router functions at an abstract level to direct incoming traffic flow to the

requisite Controller. The routes.rb file exists in a do loop, specifying each request URL,

its get or post API, and its Controller destination. For a single Controller/View web app,

only a few lines need to be entered into the routes.rb file.

31

The project web app receives get requests on the /reports and reports/create URLs

and directs them to the reports Controller. The following code is placed inside the

routes.rb do statement

Specify a URL that is passed to the Controller named index as the variable reports

 get '/reports/', to: "reports#index", as: "reports"

Pass the URL /reports/create to the Controller function create

get 'reports/create'

See Appendix for the full routes.rb file.

2. Gmaps4Rails

In order to present GPS and sensor data in a convenient and useful format, a map is

rendered and each End Device and Coordinators location is superimposed. Gmaps4Rails is a

Ruby gem (plug and play library) that incorporates the google maps API into a Rails project

for easy implementation. Gmaps4Rails gem works with the Controller to collect data from

the local SQLite database to pass to the View for rendering. The View then calls a google

JavaScript executable to render a map, and populates the map with markers. More extensive

description of the Gmaps4Rails code used in this project can be seen in the Controller

subsection of this chapter.

32

Before using the Gmaps4Rails gem, the correct dependencies must be satisfied.

Underscore and gmaps/google must be added to the project pipeline and underscore.js

installed in the Javascript assets folder of vendor. Additionally, specific JavaScript

dependencies must be sourced from the Gmaps4Rails Github at the beginning of each

HTML file. Full installation instructions can be found at the Gmaps4Rails Github cited in

the references.

For example Gmaps4Rails Controller and View implementation see code in Appendix.

3. Controller

This project contains one core Controller named reports_controller.

Reports_controller has two main functions: send incoming data to the Model for

database storage, and act as a data transfer middleman between the Model and View.

Therefore, two main functions are required.

The functions create and report_params handle passing incoming URL

parameters from /reports/create to the Model for database storage. Create saves incoming

Figure 18. Basic map Gmaps4Rails HTML rendering (left) and corresponding
code (right). Image taken from Gmaps4Rails live examples page:
http://apneadiving.github.io/

33

data as the global variable @report, and calls the function report_params on the

@report instance.

@report = Report.new report_params

report_params instructs the Model to save URL parameters fitting the description of

keywords for each relevant data-type. Parameters must contain the keyword “report” and are

stored under their corresponding identifier (temp, lat, long, etc.).

params.require(:report).permit(:temp, :lat, :long,
 :sensor_mac, :controller_mac, :sleep, :voltage,

:controller_lat, :controller_long)

Function index handles retrieving data via Model and constructing a map framework to

pass to View for rendering. Index defines a global Ruby variable named @reports as

collection of latest received unique sensor MAC addresses.

@reports = Report.pluck(:sensor_mac).uniq.sort.map {|mac|
Report.where(sensor_mac: mac).last }

@hash uses Gmpas4Rails library to construct a global hash of each parameter in

@reports to generate markers for the final map. Each marker consists of a latitude and

longitude value, as well as a custom infobox displaying relevant sensor data when clicked by

a user.

@hash = Gmaps4rails.build_markers(@reports) do |report,
marker|

 marker.lat report.lat
 marker.lng report.long

Sensor markers are generic blue gmaps markers pulled from the gmaps API.

marker.picture({

34

 :url => "http://chart.apis.google.com/chart?
chst=d_map_pin_letter&chld=S|FF0000|000000",

 :width => 32,
 :height => 32
 })

The project was developed with the idea of a cloud server acting as a shared database

for multiple ZigBee star networks. Therefore, even though a Coordinator MAC address is

unique for a single ZigBee network, a Coordinator MAC addresses in the SQLite database

may not be unique. Since the user is interested in all unique controller MAC addresses as

well as unique sensor MAC addresses, a second loop is run to find each unique controller

MAC address for all parameters in @reports:

 @controllers = Report.pluck(:controller_mac).uniq.sort.map
{|mac| Report.where(controller_mac: mac).last }
@hashed = Gmaps4rails.build_markers(@controllers) do |
controller, marker|

The final @hash variable is a combination of @hash and @hashed parameters and is

passed to View for rendering.

@hash += @hashed

Full reports_controller code available in Appendix.

4. View

Project uses a single View. Each Rails View contains multiple html files with

initialization, but project development focused on a single html file named index.html to

render sensor data upon a browser request. Index.html begins by initializing a map with

an external src script provided by google via their maps Github.

35

http://chart.apis.google.com/chart

<script src="//maps.google.com/maps/api/js
v=3.23&sensor=false&client=&key=&libraries=geometry&language=
&hl=®ion="></script>

<script
src="//cdn.rawgit.com/mahnunchik/markerclustererplus/master/d
ist/markerclusterer.min.js"></script>

The index.html main loop initializes the map parameters in HTML and executes

a JavaScript script calling the Gmaps4Rails library to populate the map with data received

by the reports_controller. Markers are passed as the @hash parameter, and

Gmaps4Rails library handles zoom and formatting.

handler = Gmaps.build('Google');
 var mapOptions = { mapTypeId:

google.maps.MapTypeId.SATELLITE };
 handler.buildMap({ provider: mapOptions, internal: {id:
'map'}}, function(){
 markers = handler.addMarkers(<%=raw @hash.to_json %>);

 handler.bounds.extendWith(markers);
 handler.fitMapToBounds();

Additionally, an HTML script is executed beneath the map to form a table listing the latest

data parameters for each unique sensor node contained in @reports.

Initialize the table with standard HTML and populate the first row with column titles

<table style="width:100%">
 <tbody>
 <tr>
 <td>Sensor Mac Address</td>
 <td>Controller Mac Address </td>
 <td>Temperature (C)</td>
 <td>Latitude</td>
 <td>Longitude</td>
 <td>Time Logged</td>
 </tr>

36

View is capable of reading identifiers for nested Ruby code, making variable passing simple.

Tell index.html to execute Ruby statement with a “<%” identifier, and index variables

via Ruby to populate the HTML table. Here report is the global variable defined by the

controller containing the latest Report object for each unique sensor MAC address.

</tr>
 <% @reports.each do |report| %>
 <tr>
 <td><%= report.sensor_mac %></td>
 <td><%= report.controller_mac %></td>
 <td><%= report.temp %></td>
 <td><%= report.lat %></td>
 <td><%= report.long %></td>
 <td><%= report.updated_at %></td>
 </tr>
 <% end %>
 </tbody>
</table>

Full index.html code available in the Appendix.

5. Model

Generally, object oriented frameworks require a lot of configuration code. However,

Rails operates via inheritance and only requires additional configuration if an object deviates

from the default. The project Model contains two parameters: sensors and reports.

Each inherit from ActiveRecord::Base specifying the default structure of the class

object. Additional configuration uses Ruby keywords to dictate relationship between two

objects; each report has_one :sensor and each sensor has_many :reports.

Model responds by updating the database object structure of Report parameters for easy

indexing later on. For full Model initialization see Appendix.

37

V. Power Analysis

A. Overview

The major incentive for the 802.15.4 communication protocol is its low frequency

low power transmission scheme. In this context it is relevant to examine the average power

consumption of an End Device implementing the ZigBee communication protocols.

Arduino is a prototyping board due to the general nature of its components. In

addition to the AtMega328P processor, the stock Arduino Uno v3 hardware includes an

AtMega16U2 microcontroller for converting the USB signal to serial, an LCP1117 linear

voltage regulator for Vin to 5V conversion, an LP2985-N linear voltage regulator for power

supply to 3.3V conversion, and a power LED, all of which draw current while the Arduino is

battery powered.

Figure 19. Arduino Uno v3 annotated schematic

38

However, if standard Arduino Uno hardware is desired then End Device power

consumption can be minimized in three ways.

First, Xbee devices have a programmable sleep mode that can drastically decrease

power consumption. Unlike Arduino, Xbee does not have a voltage regulator to dissipate

energy, devices only contain a RF communicator and a small microprocessor, and require a

regulated 3.3V input. In order to limit power consumption of their onboard processor, Xbee

devices can implement a watchdog timer based sleep cycle to stop computation while the

Xbee is idle.

Second, the Arduino is similarly capable of using a sleep mode with a watchdog

timer interrupt on its AtMega328P processor. While the Arduino is idle, the AtMega328P

can halt unnecessary hardware functionalities to decrease overall power consumption.

Third, the GPS sensor draws relatively large current while running (~32mA). If the

End Devices are stationary, then only one valid GPS string needs to be sent at node

initialization. The GPS sensor can be powered by an Arduino output pin which is capable of

sourcing up to 40mA. Since only one valid reading is needed, GPS code can be run in the

Arduino startup loop which is run once upon system initialization. Once a valid GPS string

is received the Arduino shuts power to the GPS device by writing the output port to voltage

low, reducing the nodes average power consumption.

In order to test the change in node efficiency when implementing the above

methodologies, a single End Devices hardware and software was modified.

39

B. GPS Modification

The projects initial End Device hardware setup powers the Parallax PMB-648 SiRF

GPS Module from the Arduino 5V source. In order to limit GPS power consumption, the

device is instead powered via a digital I/O pin that can be specified at high (5V) or low (0V).

Power to the GPS unit is enabled until an accurate latitude and longitude reading is known

by the device.

In order to implement the changes, a few new variables must be added to the

Arduino main loop, and code blocks shifted.

Define the Digital output pin the GPS unit draws power from, as well as an int

named GPScount. The first few GPS readings are error prone, a more accurate value is

achieved after a few strings have been received. GPScount specifies the number of times

GPS strings are to be read before latitude and longitude vales are within acceptable error to

their true values.

int GPSpower = 11;
int GPScount = 0;

in the setup loop, GPSpower must be specified as an output

pinMode(GPSpower, OUTPUT);

Since we only need a single GPS measurement at End Device initialization, the GPS code

block can be executed entirely in Arduino startup(). Allow power to the GPS unit and

follow a similar procedure to the one outlined in the GPS subsection above. At the end of

the loop, turn power to GPS off by writing the Digital pin GPSpower low.

40

while(GPScount < 10){
 digitalWrite(GPSpower,HIGH);

 gpsSerial.listen();
 while(gpsSerial.available()){ // check for gps data

 if(gps.encode(gpsSerial.read())){ // encode gps
data
 gps.get_position(&lat,&lon); // get latitude
and longitude

While Inside this if() statement, save the GPS string to the payload variable and update

the GPScount

 latInt = int(lat/10000);
 payload[0] = latInt >>8 ;
 payload[1] = latInt;

 ... //follow a similar procedure for storing
rest of data

 GPScount = GPScount +1;
 }

 }
 }
 digitalWrite(GPSpower,LOW);

}

C. Xbee Sleep

Xbee series 2 End Devices make implementing sleep mode simple. Xbee sleep mode

is configurable through XCTU, with a number of options for tailoring to a specific use. In

this project, Xbee pin sleep is used.

41

1. XCTU Configuration

The specific Xbee sleep method must be specified and outbound flow control must

be disabled. Both can be configured via XCTU, change the End Device sleep setting to pin

mode (1), and disable the Xbee d7 parameter by setting the value to 0.

Additionally, the Coordinator node is gnostic to the approximate report frequency of

the sEnd Devices. The XCTU parameters SP and SN are configurable as End Device sleep

cycle duration (in hexadecimal) and End Device sleep cycles per transmission respectively.

In order for the Coordinator to receive transmissions reliably from a sleeping Xbee, SP and

SN must be set accordingly

2. Hardware Modification

In the projects previous iteration, a proprietary Xbee shield was used to

connect the Xbee to the Arduino. In order to change Xbee pin sleep status, the voltage on the

Xbee DTR pin is changed. Logic high (3.3V) on the DTR pin enables Xbee sleep mode, and

a logic low (0V) disables Xbee sleep. Since the Arduino Uno v3 is a stock 5V device, a

secondary voltage regulator is needed to supply the 3.3V to the DTR pin. The Xbee device

is placed on an external breadboard via an Xbee explorer unit. The Xbee is powered via the

Arduino 3.3V source, and Tx and Rx lines are connected to the Arduino manually via wires.

Figure 20. Example SP and SN settings. The above configuration is for an End
Device transmission every 24 seconds.

42

In order to change the voltage level on the Xbee DTR pin, an Arduino Digital output

pin is connected to the input of a Sparkfun breadboard power supply stick. The output of the

power supply stick is connected to the Xbee DTR pin. When the Arduino digital output is

configured high (5V), the breadboard supply stick outputs 3.3V to the DTR pin and the

Xbee receives the command to sleep. When the digital output is sent low (0V), the Xbee

receives the command to wake up.

3. Software Modification

Specify the digital output pin to control the breadboard supply stick

int XbeeSleep = 12;

in the setup loop, specify the digital pin XbeeSleep as an output

pinMode(XbeeSleep, OUTPUT);

in the main loop, Xbee sleep state can be changed by either writing the XbeeSleep pin

high (Xbee sleep) or low (Xbee wake)

digitalWrite(XbeeSleep,LOW); // wake the Xbee
digitalWrite(XbeeSleep,HIGH); //put the Xbee to sleep

Figure 21. Sparkfun breadboard
power supply stick

Figure 22. Modified End Device
hardware

43

D. AtMega328P Sleep

Putting the Arduino AtMega processor to sleep can be done via the AVR/sleep.h

library. No additional hardware components are required, the requisite hardware is internal

to the AtMega processor.

There are various types of sleep cycles available dependent on what the user is able

to sacrifice. There is a trade off between processes left running and energy saved during a

sleep session, with the deepest sleep mode (SLEEP_MODE_PWR_DOWN) disabling the most

peripherals.

Since maximal energy conservation is important for this project, the PWR_DOWN

sleep mode is used. PWR_DOWN sleep mode can be interrupted by the AtMega328P internal

watchdog timer, one of the few peripherals left running. The watchdog timer (WDT) runs off

a 128 kHz clock cycle, and is capable of delivering an interrupt or reset or both.

Figure 23. Chart of available sleep modes and hardware tradeoff for the
AtMega328P processor. Image taken from the AtMega328P datasheet

44

Import the library

#include <avr/sleep.h>

Define a volatile int that counts the number of sleep cycles

volatile int sleep_count = 0;

in the setup() loop, configure the watchdog timer by setting the reset flag (bit 3) on the

Micro Controller Unit Status Register (MCUSR). Additionally, set the watchdog

configuration enable WDCE (bit 4) and watchdog enable WDE (bit 3) in the watchdog timer

configuration status registry (WDTCSR). This allows changes to be made to the watchdog

prescalers and resets the watchdog timer.

MCUSR = MCUSR & B11110111;
WDTCSR = WDTCSR | B00011000;

Set the watchdog timer prescaler value to 1024k, which will reset in about 8 seconds. This

will be the time interval for one complete sleep cycle.

WDTCSR = B00100001;

Figure 24. Watchdog timer. Image taken from AtMega328P datasheet.

45

lastly, enable the watchdog timer interrupt by changing the correct bits on the MCUCSR and

the WDTCSR

WDTCSR = WDTCSR | B01000000;
MCUSR = MCUSR & B11110111;

With the watchdog timer configured, the Arduino may be sent to sleep by a series of

function calls in the main() loop

set_sleep_mode(SLEEP_MODE_PWR_DOWN); // Specify sleep mode.
sleep_enable(); // Enable sleep mode.
sleep_mode(); // Enter sleep mode.
//Processor sleeps until WDT sends interrupt
sleep_disable(); // Disable sleep mode after waking.
if (sleep_count == sleep_total)
{ //execute periodic sampling and reset sleep_count }

Once all changes are implemented, a Duracell 9v 310mAh battery powers the

modified End Device until exhaustion over a range of transmission frequencies to get an

estimate of the average End Device current as a function of transmission frequency.

From an analysis point of view, it is interesting to know how the AtMega328P as a

standalone processor would effect the average current of an Xbee End Device. This section

attempts to determine the average power consumption of both the Arduino Uno/Xbee End

Device hardware built in this project, and estimate the average current of an Xbee End

Device with only the AtMega328P processor as additional hardware.

There are three main phases of the End Device software, each with a different

average current. The node initialization includes Arduino startup, the node GPS

configuration, and the Xbee End Device configuration process, all of which requires a set

46

charge denoted as Qstartup . Since the node initialization is a standardized process,

Qstartup is assumed to be a constant parameter in the final formula. After the node

initialization, the battery charge required by the End Device goes to powering two things.

First, the Arduino hardware (linear voltage regulators for 5V and 3.3V, and the

AtMega16U2) requires some constant charge from the battery for the entirety of End Device

runtime, denoted as Qidle . Since the Arduino hardware is constantly drawing current,

Qidle=(iUSB+i5V reg+i3.3Vreg)∗T tot=iidle∗T tot , where T tot is the total time spent

transmitting.

Second, the End Device is periodically responsible for reading and transmitting

sensor data to the Coordinator via Xbee. The battery charge required by this process can be

broken into two subsections: Qsleep and QTx .

Qsleep is the battery charge required by the AtMega328P and Xbee processors

during the End Device sleep process. Qsleep=(i AtMega
sleep

+i Xbee
sleep

+iSprkfn reg)∗t sleep , where

tsleep is the time the End Device spends sleeping.

QTx Is the battery charge required during End Device data sampling and

transmission. The Arduino is responsible for powering the temperature sensor and

communicating with the Xbee via their serial connection while the Xbee receives from the

Arduino and transmits to the Coordinator. Thus, QTx=(i AtMega
awake

+i Xbee
awake

+iTmp sensor)∗t awake

where tawake is the time the End Device spends awake, and tsleep+t awake=T tot .

The complete equation for the battery charge can be written as

47

Qbattery=Qsleep+QTx+Qidle+Qstartup . Rewriting in terms of measurable quantities gives

Qbattery=(i AtMega
sleep

+i Xbee
sleep

+i Sprkfnreg)∗t sleep+(i AtMega
awake

+i Xbee
awake

)∗t awake+iidle∗T tot+Qstartup .

If we know the expected End Device lifetime, the number of Arduino loops can be

found. A full Arduino loop is completed every tloop=t sleep cycle+t Tx seconds where

tsleep cycle=1 / f report is the time spend sleeping for one sleep cycle, and tTx is the time

spend on one transmission. The number of loops completed in an End Device lifetime is

given by nloops=T tot / tloop=T tot /(t Tx+t sleep cycle) . Then tsleep=t sleep cycle∗nloops and

tawake=t Tx∗nloops seconds. Using this description, the charge of the battery can be rewritten

in terms of the variables tsleep cycle and T tot , and the number of loops nloops :

Qbattery=(i sleep)∗tsleep cycle∗nloops+(iawake)∗t Tx∗nloops+(iidle∗T tot)+Qstartup

Where isleep=i AtMega sleep
+i Xbeesleep

+i Sprkfnreg and iawake=i AtMegaawake
+i Xbeeawake

+iTmp sensor

VI. Results

A. ZigBee Network

Implementation of an Arduino-Xbee sensor node with Raspberry Pi ZigBee

Coordinator/Cloud gateway to Rails database server was successful. Existing Arduino Xbee,

TinyGPS, and softserial libraries collaborated for simple ZigBee data transmission to central

Coordinator node. Python Xbee and requests library run smoothly on Raspberry Pi for

receiving and parsing remote data and acting as internet gateway.

Prototype sensor and controller nodes are assembled.

48

Initial prototype was two ZigBee End Point Sensor Nodes and one ZigBee Controller

star network.

GPS sensors must lock on satellite signal before transmission is allowed to begin.

Red LED on the GPS device flashes on and off while sensor is locking and switches to solid

once a lock has been established. Cold start time ranges from 1-10min for indoor sensors.

Figure 25. End Device prototype hardware

Figure 27. GPS of Sensor Node Flashing Off and On Before Lock

Figure 26. Controller node
prototype hardware

49

Although previous development allow Raspberry Pi to function as Coordinator/

Cloud Gateway without user initialization, parameters may still be adjusted and scripts run

via ssh over direct ethernet connection.

Notice Sensor MAC address parameters switch between the two transmitting sensors

while Controller MAC stays the same. In this development iteration GPS strings are

received with each End Device transmission, but variation in GPS signal is nonexistent for

Figure 28. Headless Raspberry Pi ssh connection via Laptop (left) SSH terminal
window (right)

Figure 29. Terminal window showing received transmissions. Python script prints
URLs to console before sending.

50

stationary sensors. Since both prototype End Devices are placed in the same room they read

virtually identical temperature values.

B. Cloud Database Server

The Rails server successfully receives get requests for data storage and uses

Gmaps4Rails to compile data to user friendly interface. The Raspberry Pi runs a Python

script to send data as URL parameters to the cloud server.

The Web Application URL was adjusted to sensornodeserver.heroku.com.

New data is sent to [URL]/reports/create for the reports_controller to direct the

Model to update the database.

 The initial network was tested at a local residence, all sensors transmitting inside a

single room. The UI shows inconsistencies in recorded GPS data, likely due to GPS signal

reflections when receiving indoors. The table beneath the map shows the corresponding data

Figure 30. Heroku Server GUI interface for tEnd Device and one Coordinator star
network

51

for each sensor, which is identical to the URL parameters contained in the sample URLs printed to

console in figure above. The markers are clickable by the user to display relevant information of the

corresponding End Device or Coordinator. The prototype infobox displays the latest temperature and

MAC address for End Devices. Coordinator markers only display MAC address since they are not

responsible for logging temperature values.

Figure 31. Marker Infobox for Coordinator (top) and End Device (bottom)

52

In order to show the cloud server as a shared database function, a second ZigBee

network is simulated consisted of a single End Device and Coordinator. The second network

is placed near UCSBs Harold Frank Hall, a few miles away from the first prototype network.

The inclusion of Coordinator and Sensor MAC addresses as URL parameters will handle the

uniqueness of each report. Gmaps4Rails handles map scaling and marker generation.

Initially, the Gmaps4Rails function in the cloud server handles map scaling. A user

can adjust the map scaling using the clickable buttons on the bottom right to closely examine

areas of interest. In the figure below, a user has zoomed in to a single ZigBee network.

Figure 32. Map rendering on sensornodeserver.heroku.com/reports

with two ZigBee star networks reporting to a single Web Application

53

A third simulation highlights the possibility of larger numbers of complete ZigBee

networks with varying topologies storing data on a shared Rails server. Below is an image of

the Rails server generating the UI for a collaborative multi-network sensor scheme.

Figure 33. A specific network can be highlighted for analysis of behaviors of
interest. Zoomed view of the second ZigBee star network is rendered on the above
map.

Figure 34. UI displaying the map of collaborative sensor network data.

54

In the figure above, various sensor networks are sending temperature data to the

Rails server. The blue markers indicate the number of End Device and/or Coordinator

markers located within their circle. The table beneath the map displays the latest parameters

for each unique End Device.

C. End Device Power Analysis

Below are the results of the power analysis trials. Trials ranged from 8-360 second

End Device sleep cycle duration.

Figure 35. Graphical results of End Device power analysis

0 50 100 150 200 250 300 350 400

0

1

2

3

4

5

6

7

8

9

Arduino Uno v3 and Xbee Series 2 ZigBee End Device Lifetime
Duracell 9V power supply at 310 mAh

Arduino AtMega328P and Xbee sleep cycle duration (sec)

E
n
d
 D

e
v
ic

e
 L

if
e
ti
m

e
 (

h
o
u
rs

)

55

 The End Device lifetime increases initially due to the reduction of current to

the Atmega328P processor and Xbee device during the sleep cycle phase, but reaches a

saturation point due to the constant current draw iidle=Qidle /T tot of the Arduino Uno

hardware components listed in the Power Analysis section. Further increase in End Device

efficiency must be through modification to the Arduino Uno hardware.

Analysis on End Device average current consumption independent of the Arduino

Uno hardware is relevant to future designs. Using the formulation derived in the power

analysis subsection, or

Qbattery=(i sleep)∗tsleep cycle∗nloops+(iawake)∗t Tx∗nloops+(iidle∗T tot)+Qstartup , an experimental

value for the optimal End Device hardware power consumption as a function of End Device

sleep cycle duration can be derived.

Begin by updating the above equation with known parameters.

From observation, the data transmission portion of the End Device cycle takes

approximately 2.6s to complete, resulting in tTx=2.6s .

Qsleep boils down to three things, the Xbee sleeping current consumption (~.01mA from

the Digi datasheet), the AtMega328P PWR_DWN sleep current consumption (~.0039mA from

the Atmega datasheet), and the 5V to 3.3V Sparkfun voltage regulator supplying the Xbee

DTR pin with 3.3V (measured at ~ 2.3mA). Thus Plugging in values gives

Qsleep=(.0039 mA+.01mA+2.3mA)∗t sleep=2.3139mA∗t sleep .

56

A single 8 pack of Duracel 9V Alkaline batteries was used to test the End Device

lifetimes. Due to the relatively high discharge rate for a standard 9V battery, a 310 mAh

charge is assumed, resulting in Qbattery=310 mAh=1116000mAs .

The tsleep cycle and nloops variables change for each trial, below is a table

summarizing the values

tstartup proved difficult to accurately measure due to a high variability in GPS

locking (1-10 min), so Qstartup was omitted from the analysis. But since

Qstartup≪Qidle+QTx+Qsleep , Qbattery≈Qidle+QTx+Qsleep is valid to within a small degree

of error.

Using the data in the table above, a series of equations can be generated relating the

variables of interest. The expression for End Device current consumption is organized as

known parameters on the LHS and unknown parameters on the RHS , giving

Qbattery−(isleep∗t sleep cycle∗nloops)=(i awake∗tTx∗nloops)+(iidle∗T tot)

Plugging in the results from the table above gives 6 equations with 2 unknowns (iawake ,

and iidle).

sleep interval (s) node lifetime (h) node lifetime (s) Tx time (s) n loops t sleep (s) t awake (s)

8 6.25 22500 2.6 2112.6 16900.8 5492.76

16 7.5 27000 2.6 1451.6 23225.6 3774.16

40 7.85 28260 2.6 663.4 26536 1724.84
56 8.2 29520 2.6 503.8 28212.8 1309.88

120 8.17 29412 2.6 239.9 28788 623.74

360 8.35 30060 2.6 82.9 29844 215.54
360 8.35 30060 2.6 82.9 29844 215.54

57

1. 1076724 mAs=(iawake∗5492.76s)+(iidle∗22500s)
2. 1062281 mAs=(iawake∗3774.16s)+(iidle∗27000s)
3. 1046973 mAs=(iawake∗1724.84s)+(iidle∗28260s)
4. 1054627 mAs=(iawake∗1309.88s)+(iidle∗29520s)
5. 1050753 mAs=(iawake∗623.74s)+(iidle∗29412s)
6. 1049416 mAs=(iawake∗215.54s)+(iidle∗30060s)

Using the above equations, multiple regression analysis is performed to get a least-

squares estimate for the unknown parameters.

The regression analysis resulted in vales of [iidle ,i awake]=[34.02 mA ,50.5 mA] .

The above graph is the predicted vs observed values for Qbattery−(isleep∗t sleep cycle∗nloops)

given [iidle ,i awake]=[34.02 mA ,50.5 mA] , superimposed over the line y = x. All

predictions fall within 5% error of the observed values (shown by the error margins in the

Figure 36. Predicted vs observed mAh results of multiple regression analysis

250 260 270 280 290 300 310 320 330 340

250

260

270

280

290

300

310

320

330

340

Multiple Regression Analysis
i_idle = 34 mA, i_awake = 50.5 mA

Observed (mAh)

P
re

d
ic

te
d
 (

m
A

h
)

58

plot above). Due to the potential variability in Qbattery from trail to trial, and the absence of

Qstartup due to difficult measurement, a 5% error window is considered statistically

significant.

From the above results, a formula for the End Device average current during

transmission as a function of sleep cycle duration can be written as follows

I
avg

=
(t sleep∗i sleep+2.6s∗iawake)

(t sleep+2.6s)
+i

idle
=

(2.3 mA∗t sleep+131.3 mC)

(t sleep+2.6s)
+34.0mA

Without the Arduino Uno hardware drawing idle current during the End Device

runtime, the average current can be reduced. In order to get an estimate of the average

current for an End Device consisting of solely an AtMega328P and Xbee device, the above

equation can be modified by removing iidle and modifying iawake , isleep , and tTx to

reflect potential optimization or use cases. For this project, the One Wire temperature sensor

draws 4mA during runtime, and requires a nontrivial amount of time (~1s) to complete a

reading. Also, the Sparkfun breadboard power supply to provide the Xbee DTR pin with

3.3V during sleep cycle is not necessary for hardware platforms using an AtMega processor

at 3.3V. Converting the AtMega to 3.3V and removing the Sparkfun supply would greatly

decrease isleep .

59

VII. Conclusion

Xbee series 2 devices successfully implement star network with minimal initial

configuration. API mode with escaping provides reliable data transmission scheme with

integrated parameters of interest in packet formation. Integration of Xbee communicators

with existing microprocessor and Linux computer platforms offers streamlined prototyping

and smooth data transmission.

Although implementation was successful, hardware flaws on stock Arduino Uno

make power consumption suboptimal. LP2985-N linear voltage regulator has maximum

efficiency of .71% with Arduino recommended voltage input range. Incorporating an

Arduino as End Device hardware must manually bypass the stock linear regulator to achieve

desired battery longevity depending on future project requirements. Simple wireless

networks requiring sensor data with minimal signal processing might consider alternate

hardware platforms1. Arduino does serve as a sufficient prototyping module to get initial

idea up and running with minimal development time due to simple hardware integration and

wide user community providing sensor library support. The wide selection of Arduino plug

and play sensors with existing library integration make prototyping fast and simple.

The development of an Environmental monitoring sensor networks using pressure,

humidity, temperature, and GPS data for sensor node data transmission is simply a matter of

editing Arduino hardware and software configuration for a particular application. This

project is similarly suited for other remote sensing/controlling applications such as smart

lighting, smart homes, or smart cars. However, in such cases the minimal processing

1Alternative hardware platforms are discussed in the “Future Work” section of this thesis

60

capabilities of Xbee devices are potentially sufficient for a standalone sensor node. The

addition of an Arduino in simple wireless sensor network schemes is most likely

unnecessary. Arduino may have a place as a data-aggregate node for large scale personal

area ZigBee networks with tree or mesh topology where additional computational power is

required for routers to maintain network functionality. However, considerations into the

inefficient nature of the Arduino linear voltage regulator must be taken into account for the

intended low-energy ZigBee network to function properly in such a design structure.

Raspberry Pi stock hardware provides an adequate platform for Coordinator node

with minimal software initialization. Pi's limited onboard memory and processing

capabilities are addressed with a cloud database server for remote data storage. Python as an

interpreted language offers no noticeable significant latencies for small scale networks with

low frequency data transmission rates.

Since the Coordinator node requires wifi connectivity for cloud communication, it is

assumed it is in range of a wall power source. Therefore minimizing power consumption of

Raspberry Pi Coordinator node is unimportant for analysis purposes since it is assumed the

Raspberry Pi has a dedicated power source. The project uses a 2A 5V wall wart to provide

sufficient power for the Coordinator node.

The cloud server is an adequate framework for a simple cloud database. The

implementation of a single Controller View setup is sufficient for a basic user interface and

database management. Server allows for multiple complete ZigBee sensor networks to

collaborate on a shared database for geographically separate network configurations.

61

Gmaps4Rails handles map sizing for proper zooming and map marker implementation

creating an easily readable and interactive user interface.

The complete prototype wireless sensor network is fit for scalable network sizes and

a variety of potential applications. The remote sensor nodes use ZigBee protocols to

automatically register unique sensor MAC address with network Coordinator upon sensor

node initialization, allowing for modular sized networks.

Additionally, the cloud database structure offers scalability to various project sizes

with demand-specific processing based off incoming traffic. The cloud database also

addresses the minimal local storage capacity on Raspberry Pi Coordinator node by

outsourcing data storage to a more capable structure.

The shared database structure is useful for large scale geographically separate sensor

networks such as monitoring collective health of the California Redwood forests as,

monitoring radiation hotspots on coastal region after Nuclear plant meltdown leading to

ocean contamination, coastal health monitoring, nation wide temperature measurement

systems for climate evolution, or other large scale networks not able to transmit data solely

via network repeaters to a local database.

The implemented structure of Arduino for additional local processing capabilities in

ZigBee star network topology is potentially useful in networks where ZigBee End Devices

require higher processing than simple wireless sensor networks, such as a mobile robotics

network. While wireless mobile robotics networks generally require high data rate

transmission frequencies for variables such as PID parameters or video and speech

62

processing, the ZigBee networks low frequency transmission scheme may be useful for

sensor data transmission that is not as frequent, such as GPS data on a relatively stationary

unit. The ZigBee low power transmission scheme may still be relevant in high power

systems such as robotics if there is a desire for a periodic low power transmission scheme

functioning alongside a high frequency parameter transmission, or as a failsafe

communication system in low power settings.

End Device power consumption was tested by recording End Device lifetimes over a

series of data transmission frequencies. A duracel 9V battery powered the End Device

hardware until exhaustion and the total transmission time for an End device was recorded.

Analysis of the End Device hardware components was used to derive a mathematical

relationship between battery charge and average current draws and duration of the main loop

functions of an End Device given by

Qbattery=(i sleep)∗tsleep cycle∗nloops+(iawake)∗t Tx∗nloops+(iidle∗T tot)+Qstartup . The End Device

lifetimes were used to generate values for nloops for each of the trials run. Known current

draws and direct measurements on operating End Devices were used to eliminate all

variables in the above equation except iidle and iawake , resulting in 6 equations with two

unknowns. Multiple regression analysis provided least-squares estimates for the above

parameters of [iidle ,i awake]=[34.02 mA ,50.5 mA] , coming within 5% of predicting the

observed values for all trials. Using the experimental results, an equation for the average

63

current draw of the Arduino/Xbee End Device is given by

I avg=
(t sleep∗i sleep+2.6s∗iawake)

(t sleep+2.6s)
+iidle=

(2.3 mA∗t sleep+131.3 mC)

(t sleep+2.6s)
+34.0mA

where tsleep is the End Device sleep cycle duration.

VIII. Future Work

End Device hardware can be improved in a number of ways. First, an

efficient switching regulator in place of the Arduino stock linear regulator. The LCP1117

linear voltage regulator has an efficiency of V i /V o∗100=55.55 % at 9v. This is

inefficient, and since the voltage regulator runs continuously the regulator efficiency places

an upper bound on the overall node efficiency. Similarly, the LP2985-N linear regulator is

not optimal for this project since the Xbee draws relatively large current while operating

(~27 mA) and is powered by the Arduino 3.3V source. End Device power consumption can

be decreased by bypassing the integrated voltage regulators for a more efficient switching

regulator. Future designs should consist of a single switching voltage regulator to convert

input voltage to 3.3V.

While the AtMega16U2 makes updating the Arduino code simple, a more efficient

End Device hardware design should place the USB to serial conversion off the main board

64

to limit idle current draw. The switching regulator should power a single AtMega processor

running at 3.3V to handle signal processing in tandem with the Xbee device for

communication. Elimination of the 5V to 3.3V drop between the Xbee and the AtMega will

eliminate the need for a voltage regulator powering the Xbee DTR pin during the sleep

cycle, increasing the End Device lifetime by lowering isleep . A tTx value of 2.6s is

unreasonably high for most applications. The high tTx was mostly for experimental

purposes, such as using an LED to signify successful transmission and using a One Wire

temperature sensor operating on a ~1s/reading signaling scheme. Reduction of the tTx

parameter can be achieved with AtMega main loop code optimization and high speed sensor

selection, decreasing average End Device current as well.

Renewable energy generation for outdoor sensor nodes such as solar power can be

feasible to greatly extend node lifetime without human interaction. A DC power solar panel

can periodically charge the End Device battery while resources are available. Automatic

registration with the Coordinator node will allow an End Device to comply with the

potentially sporadic power supply of direct sunlight by automatically resuming data

transmission when adequate power requirements are met.

If a network size grows considerably larger, the relatively high inherent latency of

Python implemented in the Coordinator node may become problematic for timely data

transmission. Developing the Raspberry Pi Coordinator node and cloud gateway script in

compiled language such as C will improve code efficiency of the Coordinator node.

65

Similarly, as network size increases, the cloud server framework may need to change

to address increased traffic. SQLite database is sufficient for small prototype development,

but heavier alternatives much as MySQL or Mongo.db may be necessary to handle database

structure after a certain network node number threshold is crossed.

This project focused on information transfer from End Device to cloud database,

further development could focus on reliable bidirectional communication. There is potential

usefulness in modifying certain End Device parameters such as sleep rate via a browser

request to the cloud server. Developers could update the Rails controller to send a request to

the Coordinator node when the browser toggles a certain interface in the Rails View. Each

Coordinator has a unique MAC address and IP, the Model could update the Reports

object in the SQLite database with an incoming IP address. The Rails request would contain

the Sensor MAC address, parameter to be changed, and would be addressed to the IP of the

corresponding Coordinator MAC address. Part of the Python loop in the Raspberry Pi would

check for incoming messages from the Rails server and, if a new transmission is received,

parse the Sensor MAC and parameter to change from that message. ZigBee API mode

allows for wireless node configuration with correct the API packet transmission, Raspberry

Pi would construct the necessary API message and transmit to Sensor MAC address.

Modular sleep rates for End Devices could be useful in tailoring sensor network to report

areas of interest more frequently. Game theoretic AI in controller could calculate optimal

transmission frequency of End Devices based on variability in received parameters; more

variability means more frequent transmission.

66

Alternative communication APIs such as MQTT might be more efficient for specific

use cases. Potential investigation into efficiencies and benefits of other communication

methodologies is potentially relevant.

Investigation into security risks of Xbee series 2 ZigBee network is relevant for

networks with sensitive information. Transporting data as URL parameters also has potential

security risks if the Raspberry Pi communicates via http not https. A security key might be

useful for admitting new reports.

67

References

1. C. Y. Chong and S. P. Kumar, “Sensor networks: Evolution, opportunities, and
challenges,” Proceedings of the IEEE, vol. 91, pp. 1247- 1256, August 2003.

2. T. Arampatzis, J. Lygeros, and S. Manesis,"A Survey of Applications of Wireless
Sensors and Wireless Sensor Networks," IEEE International Symposium on
Intelligent Control, Mediterrean Conference on Control and Automation, pp.719,724,
27-29 June 2005.

3. J. S. Lee, “Performance evaluation of IEEE 802.15.4 for low-rate wireless personal
area networks,” IEEE Trans. Consum. Electron., vol. 52, no. 3, pp. 742–749, Aug.
2006.

4. N. S. A. Zulkifli, F. K. C. Harun, and N. S. Azahar, "XBee wireless sensor networks
for Heart Rate Monitoring in sport training," in Biomedical Engineering (ICoBE),
2012 International Conference on, 2012, pp. 441-444.

5. X. Liu, H. Chen, M. Wang, and S. Chen, “An xbee-pro based energy monitoring
system,” in Telecommunication Networks and Applications Conference (ATNAC),
2012 Australasian. IEEE, 2012, pp. 1–6.

6. Ghariani, N., Chaoui, M., Ghariani, H., Lahiani, M., “Design of a digital
communication system based on a XBee module for biomedical applications”, 8th
International Multi-Conference on Systems, Signals and Devices, pp. 1-5, 2011.

7. C. Evans-Pughe, “Bzzzz [ZigBee wireless standard],” IEE Review, vol. 49, issue 3,
pp. 28-31, March 2003.

8. Milan Matijevic, and Vladamir Cvjetkovic, “Overview of architectures with Arduino
boards as building blocks for data acquisition and control systems” in Remote
Engineering and Virtual Instrumentation (REV), 2016 International Conference on,
pp. 56-63, 2016.

9. Syed Zahurul, Norman Mariun, Leong Kah, and Hashim Hizam, “A novel Zigbee-
based data acquisition system for distributed photovoltaic generation in smart grid”
in Smart Grid Tehnologies – Asia (ISGT ASIA), 2015 IEEE Innovative, pp. 1-6,
2015.

10. Mohd Faris, and Mohd Fuzi, “HOME FADS: A dedicated fire alert detection system
using ZigBee wireless network” in Control and System Graduate Research
Colloquium (ICSGRC), 2014 IEEE 5th, pp. 53-58, 2014.

68

11. Charles Bell “Beginning Sensor Networks with Arduino and Raspberry Pi” New
York: Springer Science+Business Media, 2013.

12. Nikhil Agrawal, Noida Siemens, and Smita Singhal “Smart drip irrigation system
using raspberry pi and arduino” in Computing, Communication & Automation
(ICCCA), 2015 International Conference on, pp. 928-932, 2015.

13. Sudhir G. Nikhade, “Wireless sensor network system using Raspberry Pi and zigbee
for environmental monitoring applications” in Smart Technologies and Management
for Computing, Controls, Energy, and Materials (ICSTM), 2015 International
Conference on, pp 376-381, 2015.

14. G. V. Vivek, and M. P. Sunil, “Enabling IOT services using WIFI-ZigBee gateway
for a home automation system” in 2015 IEEE International Conference on Research
in Computational Intellegence and Communication Networks (ICRCICN), pp 77-80,
2015.

15. Ferreira, H. G. C.; Canedo, E. D.; Sousa Júnior, R. T. (2013). IoT Architecture to
Enable Intercommunication Through REST API and UPnP Using IP, ZigBee and
Arduino. 2013 IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), pp.53,60. doi:
10.1109/WiMOB.2013.6673340.

69

Appendix A

Routes.rb file

Rails.application.routes.draw do

 get '/reports/', to: "reports#index", as: "reports"
 get 'reports/create'
 get 'reports/update'
 get 'reports/destroy'
end

Database Schema

Schema.rb

ActiveRecord::Schema.define(version: 20160429014601) do

 create_table "reports", force: :cascade do |t|
 t.float "temp"
 t.float "lat"
 t.float "long"
 t.string "sensor_mac"
 t.string "controller_mac"
 t.datetime "created_at"
 t.datetime "updated_at"
 t.float "controller_long"
 t.float "controller_lat"
 end

 create_table "sensors", force: :cascade do |t|
 t.string "mac"
 end

70

Model Initialization

sensor.rb

class Sensor < ActiveRecord::Base
 has_many :reports
end

 report.rb

class Report < ActiveRecord::Base
 has_one :sensor
end

Database Migration

class CreateReports < ActiveRecord::Migration
 def change
 create_table :reports do |t|
 t.integer :sensor_id
 t.float :temp
 t.float :lat
 t.float :long
 end
 end
end

Rails View Source Code

 index.html.erb

71

<script src="//maps.google.com/maps/api/js?
v=3.23&sensor=false&client=&key=&libraries=geometry&lang
uage=&hl=®ion="></script>
<script
src="//cdn.rawgit.com/mahnunchik/markerclustererplus/mas
ter/dist/markerclusterer.min.js"></script>

<div style='width: 800px;'>
 <div id="map" style='width: 800px; height: 400px;'></div>
</div>

<script type="text/javascript">
 handler = Gmaps.build('Google');
 var mapOptions = { mapTypeId:
google.maps.MapTypeId.SATELLITE };
 handler.buildMap({ provider: mapOptions, internal: {id:
'map'}}, function(){
 markers = handler.addMarkers(<%=raw @hash.to_json %>);

 handler.bounds.extendWith(markers);
 handler.fitMapToBounds();

 });
</script>

<table style="width:100%">
 <tbody>
 <tr>
 <td>Sensor Mac Address</td>
 <td>Controller Mac Address </td>
 <td>Temperature (C)</td>
 <td>Latitude</td>
 <td>Longitude</td>
 <td>Time Logged</td>

 </tr>
 <% @reports.each do |report| %>
 <tr>
 <td><%= report.sensor_mac %></td>
 <td><%= report.controller_mac %></td>
 <td><%= report.temp %></td>
 <td><%= report.lat %></td>
 <td><%= report.long %></td>

72

 <td><%= report.updated_at %></td>
 </tr>
 <% end %>
 </tbody>
</table>

Rails Controller Code

 reports_controller.rb

class ReportsController < ApplicationController
 protect_from_forgery :except => :create

 def index
 @reports = Report.pluck(:sensor_mac).uniq.sort.map {|mac|
Report.where(sensor_mac: mac).last }

73

 @hash = Gmaps4rails.build_markers(@reports) do |report,
marker|
 marker.lat report.lat
 marker.lng report.long
 desc = "Sensor Mac: #{report.sensor_mac}, Temperature:
#{report.temp} C"
 marker.infowindow desc
 marker.picture({
 :url => "http://chart.apis.google.com/chart?
chst=d_map_pin_letter&chld=S|FF0000|000000",
 :width => 32,
 :height => 32
 })

 end

 @controllers =
Report.pluck(:controller_mac).uniq.sort.map {|mac|
Report.where(controller_mac: mac).last }

 @hashed = Gmaps4rails.build_markers(@controllers) do |
controller, marker|
 marker.lat controller.controller_lat
 marker.lng controller.controller_long
 desc = "Controller Mac: #{controller.controller_mac} "
 marker.infowindow desc
 marker.picture({
 :url => "http://chart.apis.google.com/chart?
chst=d_map_pin_letter&chld=C|0000FF|000000",
 :width => 32,
 :height => 32
 })

 end

74

 @hash += @hashed

 end

 def create
 logger.debug report_params
 @report = Report.new report_params
 @report.save
 render nothing: true
 end

 private

 def report_params
 params.require(:report).permit(:temp, :lat, :long,
 :sensor_mac, :controller_mac, :sleep, :voltage,
:controller_lat, :controller_long)
 end
end

75

Appendix B

List of Github Repositories

Arduino One Wire Github. Website: https://github.com/PaulStoffregen/OneWire

Python requests Github. Website: http://docs.python-requests.org/en/master/

Python serial Github. Website: https://github.com/pyserial/pyserial

Python Xbee Github. Website: https://github.com/nioinnovation/python-xbee

Arduino-Xbee Github. Website: https://github.com/andrewrapp/xbee-arduino

Arduino TinyGPS Github. Website: http://arduiniana.org/libraries/tinygps/

Soft Serial Github. Website:
https://github.com/arduino/Arduino/tree/master/hardware/arduino/avr/libraries/Software
Serial

Arduino Dallas Temperature Github. Website: https://github.com/milesburton/Arduino-
Temperature-Control-Library

Ruby Gmaps4rails Github. Website: https://github.com/apneadiving/Google-Maps-for-
Rails

76

	I. Introduction
	I. Wireless Communication
	A. 802.15.4 Communication Protocol
	B. ZigBee Network Topology
	C. Xbee
	1. AT vs API Mode
	2. Programming

	A. Overview

	Appendix A

