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Abstract

Path Planning Algorithms

for Robotic Agents

by

Pushkarini Agharkar

The focus of this work is path planning algorithms for autonomous agents. Specifically,

we study problems in three areas where path planning to direct the motion of autonomous

agents is critical for their performance. The first problem is a vehicle routing problem in

which mobile demands appear in an environment and the task of the autonomous agent

is to stop the demands from escaping the environment boundary. We first propose two

fundamental performance bounds for the proposed problem. We then propose routing

algorithms for this problem with performance guarantees. We examine the gap between

these guarantees and the fundamental performance bounds. The second problem is a

surveillance problem in a networked environment. The tasks of the autonomous surveil-

lance agent in this problem are to (1) detect unknown intruder locations and (2) detect

anomalies based on noisy measurements. We propose Markov chain based routing algo-

rithms for the surveillance agent to achieve these goals. We parameterize these routing

algorithms using a property of Markov chains called the mean first passage time. We

also frame optimization problems to obtain optimal algorithms for the two surveillance

tasks. The third problem studied in this work is a boundary guarding problem in which

the task of a set of patrolling agents constrained to move on a ring is to achieve syn-

chronization using only local communication. We propose a coordination algorithm to

solve this problem and identify initial agent configurations under which synchronization

is guaranteed.
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Chapter 1

Introduction

Autonomous robotic agents have numerous applications, for instance in hospital and

office delivery system [89],[56], as museum tour guides [23], for topological mapping [99],

in warehouse management [106] and building maintenance and surveillance [68]. Apart

from the onboard sensors and the dexterity of the robots, the performance of these robots

depends on the path planning algorithms, that is, the algorithms which determine their

motion in the environment under service. In order to optimize the performance of the

robots, these algorithms have to deal with various service allocation problems as well as

facilitate coordination amongst robots in a multi-robot system.

We focus our attention of the motion planning of autonomous robots in three specific

areas- (1) vehicle routing problems, (2) surveillance for intruder and anomaly detection

and (3) coordinated boundary guarding. We now review the current literature in these

areas. We will also state the motivation for the problem setups considered in the next

chapters.

1



Introduction Chapter 1

1.1 Vehicle Routing Problems

The Vehicle Routing Problem (VRP) was first introduced by [31] and has received

wide attention for a long time [62],[43]. Due to a recent surge of activity in the area of

motion planning for autonomous robots, a lot of variants of the VRP have been addressed

over the last decade. An extensive list of such problems can be found in [22].

The most well-known VRP is arguably the classical Traveling Salesman Problem

(TSP). In the TSP, a traveling salesman has to conduct the shortest tour of a given

number of cities, visiting each city exactly once. The TSP like most other VRPs is NP-

hard. The TSP and its extensions to other VRP problems have been explored extensively

[11, 100]. Of the numerous extensions of the VRP, these are the extensions particularly

relevant to the specific problem that we study:

(1) Dynamic Vehicle Routing (DVR) [83] problems, in which the arrival process of the

demands to be serviced is stochastic.

(2) VRP with time-windows [33],[100], in which demands have to be serviced within a

time-window.

(3) VRP with moving demands [48] where the vehicle has to intercept demands moving

with arbitrary velocities.

The problem introduced in Chapter 2 draws from all these extensions. We now review

some problems and the algorithms proposed for them in these extension areas, with

particular attention to the VRP with moving targets, and also justify our problem setup.

(Dynamic Vehicle Routing): In DVR problems, demands arrive according to a

stochastic rather than a deterministic process. This setup is motivated by stochastic

arrival of demands in different applications, e.g. demands for services [98, 10] or goods

[42, 7]. In DVR problems at least a part of the input is unknown to the vehicle and the

2
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vehicle has to modify its path based on real-time information of new demand locations. In

contrast to static vehicle routing, these problems hence require routing policies instead

of pre-planned routes. The dynamically changing routes which are a result of these

routing policies can be computed and executed due to technological advances like the

introduction of the GPS and GIS and the widespread use of mobile and smartphones.

A review of Dynamic Vehicle Routing Problems was conducted in [83]. An example

DVR problem which is also arguably the most general model for vehicle routing problems

that have both a dynamic and a stochastic component is the m−vehicle Dynamic Trav-

eling Repairman Problem (m-DTRP), which was introduced by [84] and mainly studied

by Bertsimas and van Ryzin in [11], [12] and [13]. In [80] authors introduce policies for

the m-DTRP which are adaptive with respect to the environment parameters and also

provably optimal in light and heavy demand load conditions.

(VRP with time-windows): In situations where the demands are active only for a

limited time period, time-windows are introduced in the setup of the VRP. This modi-

fication can enhance customer satisfaction and is necessary in situations where demand

generation degrades over time, e.g. in the case of sensors which are active for some time

on receiving information before going into an energy-saving “sleep” mode. The VRP

with time-windows (VRPTW) was reviewed in [63]. Significant progress has been made

in this class of VRPs, see for example, [93, 100, 20, 34]. In [79], authors model the prob-

lem with time-windows in a dynamic environment. They also consider stochastic time

windows within which targets are required to be serviced. Modified versions of VRP with

time-windows have been studied in [15, 79].

(VRP with moving demands): Several researchers have worked on dynamic vehi-

cle routing problems (VRPs) involving moving targets in the past. The approximation

complexity of Moving-Target TSP was studied in [46], where it was shown that Moving-

Target TSP with n targets cannot be approximated better than by a factor of 2O(
√
n)

3
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times optimal within polynomial time unless P = NP . The authors in the same work

also showed that if targets have the same velocities, then there is a polynomial time

approximation for the Moving-Target TSP. Authors in [48] give a 2 + ε approximation

algorithm for instances of the Moving-Target TSP in which O( logn
log logn

) of the n points

are moving with arbitrary velocity. Authors in [16] study a variant of the Moving-Target

VRP in which targets appear on a segment and move with the same velocity. They prove

that a first come first serve policy minimizes the expected time to service a target when

the target arrival rate is very high as well as when the target speed is close to the vehicle

speed. Authors in [26] study a kinetic variant of the k-delivery TSP where all targets

move with the same velocity and a robotic arm moving with a finite capacity must in-

tercept them. They provide constant-factor approximation for the problem. Authors

in [6] study a grasp and delivery problem motivated by robot navigation and propose a

2-factor approximation algorithm. In [15], the moving targets have to be serviced within

a time-window and a policy based on repeated computation of longest paths through the

available set of targets is proposed to this end.

Apart from the above broader areas, more recent results on the subject of routing

problems involving the task of target interception consider more general models for target

behavior [8, 66, 61]. In [8], the authors propose a partitioning strategy for a multiple

vehicle multiple target problem in which the targets can apply an evading strategy in

response to the actions of the service vehicle. We consider a vehicle routing problem in

which demands appear according to a stochastic process. On appearing, they move in

the radially outward direction so that all demands have different speeds, depending on

where they originate in the environment. The time-windows within which they need to

be serviced also depend on their point of origin. They do not, however, modify their

direction to evade an approaching vehicle.

Motivation: The problem setup in Chapter 2 is significantly different from earlier

4
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setups in the following ways: The moving targets have different velocities depending on

their angular location, as opposed to having same velocities as assumed in many problem

setups looked at in literature [16, 46, 90, 79]. They also have different deadlines depending

on their radial location as opposed to having the same deadline or time window before

which they should be serviced [15, 16]. They move along radial direction so as to escape

the environment as quickly as they can. One application of this problem setup is in

robotic patrolling where it is necessary to stop malicious agents from leaving a region so

as to protect the surroundings.

1.2 Robotic Surveillance

The second area of application which we study is robotic surveillance. The surveil-

lance problem has appeared in the literature in various manifestations. Theoretical anal-

ysis of the surveillance problem was conducted in [28] and a survey of various surveillance

scenarios and the corresponding approaches was presented in [4]. Surveillance strategies

that minimize the refresh time, i.e. time period between subsequent visits to regions

have been proposed in [76],[91] and [92]. In [76], authors propose optimal algorithms

which minimize the refresh time for chain and tree graphs and constant factor algorithm

for cyclic graphs. Authors in [92] consider the problem of minimizing specific weighted

sums of refresh times and design non-intersecting tours on graphs for this surveillance

criterion. In [91], the authors design speed controllers on closed paths to minimize the

refresh time for a given set of points of interest in the environment.

The surveillance policies proposed in [76],[91] and [92] are deterministic in nature.

Stochastic surveillance strategies assume importance in scenarios where the intruders can

move or hide to avoid detection and as a result, the movement of the surveillance vehicle

is required to be non-deterministic. A main result of [94] also shows that deterministic

5
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policies are ill-suited when designing strategies with arbitrary constraints on those visit

frequencies. Several authors have used Markov chain based approaches to design stochas-

tic strategies for various surveillance tasks. Authors in [94] use the Metropolis-Hastings

algorithm to achieve specified frequency of visits to regions of the environment. In [44],

authors design random walk strategies on hypergraphs and parametrically vary the local

transition probabilities over time in order to achieve fast convergence to a desired visit

frequency distribution. In [95], authors use the fastest mixing Markov chain for quickest

detection of anomalies.

Motivated by practical applications, the surveillance problem has also been dealt with

in other innovative ways. For example authors in [87] consider different intruder models

and present routing strategies for surveillance in scenarios corresponding to them. In [67]

wireless sensor networks are utilized for intruder detection in previously unknown environ-

ments. In [5], the authors explore strategies for surveillance using a multi-agent ground

vehicle system which must maintain connectivity between agents. A non-cooperative

game framework is utilized in [27] to determine an optimal strategy for intruder detec-

tion, and in [77] a similar framework is used to analyze intruder detection for ad-hoc

mobile networks.

We consider two problems within the broad area of robotic surveillance, the first one

is concerned with the detection of unknown intruder location and the second with the

quickest detection of anomalies in networked environments. We propose Markov chain

based routing strategies for the problems. Both the problems and the proposed robotic

routing strategies are parameterized by the metric called the mean first passage time of

Markov chains. We now present the literature on the mean first passage time.

For a random walk associated with a Markov chain, the mean first passage time, also

known as the Kemeny constant, of the chain is the expected time taken by a random

walker to travel from an arbitrary start node to a second randomly-selected node in a

6
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network. The Kemeny constant of a Markov chain first appeared in [55] and has since

been studied by several scientists, e.g., see [52, 58] and references therein. Bounds on the

mean first passage time for an arbitrary Markov chain over various network topologies

appear in [52, 64].

The mean first passage time is closely related to other well-known metrics for graphs

and Markov chains. We discuss two such quantities in what follows. First, the Kirchhoff

index [59], also known as the effective graph resistance [38], is a related metric quan-

tifying the distance between pairs of vertices in an electric network. The relationship

between electrical networks and random walks on graphs is explained elaborately in [37].

For an arbitrary graph, the Kirchoff index and the Kemeny constant can be calculated

from the eigenvalues of the conductance matrix and the transition matrix, respectively.

The relationship between these two quantities for regular graphs is established in [75].

Second, the mixing rate of an irreducible Markov chain is the rate at which an arbitrary

distribution converges to the chain’s stationary distribution [35]. It is well-know that

the mixing rate is related to the second largest eigenvalue of the transition matrix of the

Markov chain. The influential text [65] provides a detailed review of the mixing rate and

of other notions of mixing. Recently, [58] refers to the Kemeny constant as the “expected

time to mixing” and relates it to the mixing rate.

Motivation: There are several motivations for the problem setups considered in

Chapter 3 and 4. First of all, the setups highlight the effectiveness of the notion of the

mean first passage time which is relevant to surveillance tasks in which each region should

be accessible from the other regions in the environment in minumum time. The setups

also take into account travel times required by robotic agents to travel across the regions

of a networked environment. Third, the mean first passage time, which we analyze in

the process of proposing strategies for the two problems is of independent mathematical

interest and has applications potentially outside the area of robotics, e.g. in determining

7
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how quickly information propagates in an online network [9] or how quickly an epidemic

spreads through a contact network [105]. Lastly, the problem setups are motivated by

realistic surveillance scenarios, namely detection of an unknown intruder location in least

amount of time (Chapter 3) and surveillance under extreme modelling uncertainty and

measurement noise (Chapter 4).

1.3 Boundary Guarding and Coordination

The third area of application is the problem of guarding environment boundaries.

We study a multi-agent boundary guarding problem in which the agents achieve syn-

chronization in motion along the boundary of the environment. The synchronization

problem can also be seen as a consensus problem in which the agents reach consensus on

the environment partition in order to service the environment in a distributed manner.

Consensus algorithms have been extensively studied, beginning with the early work

on averaging opinions and stochastic matrices in [32]. For the setting of non-degenerate

stochastic matrices, [102] gives convergence conditions for consensus algorithms under

mild connectivity assumptions. Recent references on average consensus, algebraic graph

methods and symmetric stochastic matrices include [72, 54]. Recent surveys [40, 74, 85]

discuss attractive properties of these algorithms such as convergence under delays and

communication failures, and robustness to communication noise.

Synchronization in itself has been a widely studied problem and has been explored

for multi-agent system coordination; e.g. see [104, 36, 73, 70, 82]. In [104] a general-

ized distributed network of nonlinear dynamic systems with access to global information

is considered and synchronization in the network is shown to occur for strong enough

coupling strengths. The authors in [36] and [73] present distributed algorithms using

which synchronization is achieved in multi-agent systems using event triggered and self

8
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triggered control respectively. The authors in [70] draw analogies between impulsive and

diffusive synchronization in the weak coupling limit.

References on the problem of perimeter estimation and monitoring by mobile robots

include [29, 107, 97, 101]. Patrolling problems have also been studied in [76, 2, 69]. More

relevant to the problem setup in this chapter are the studies in [25, 57], which make

use of the steady-state orbit for even number of synchronized agents described here and

referred to as ‘balanced’ synchronization.

Motivation: A possible worldly motivation for the study of this class of algorithms

is the surveillance of regions in a 2D space. Some examples of similar problems in

literature include [25, 57]. In [25] pairs of agents have to be released at particular points,

sequentially, and with the same speed. In contrast, in our algorithm the number of agents

can be odd, the agents can be released at arbitrary positions and with arbitrary speeds.

The distributed algorithm in [57] requires only that the agents move with a fixed speed.

However, it can not be easily extended to a perimeter which is a closed curve unless the

agents are assumed to have unique identifiers. Further, we stabilize a broader range of

trajectories, namely ‘unbalanced’ synchronization.

Apart from the application in boundary-patrolling, the study of the n beads problem

can find justification on more fundamental grounds. Namely, the investigation of under

what conditions systems subject to impacts and controlled dynamics are robustly stable,

and what techniques can be useful helpful in proving such stability properties. Both

these aspects have motivated us to consider this synchronization problem.

1.4 Organization

The thesis is organized as follows. In Chapter 2, we introduce and analyze the Radially

Escaping Targets problem and propose routing policies for autonomous agents for this

9
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problem. In Chapter 3 and Chapter 4 we study two surveillance problems. We propose

routing policies for surveillance agents in the two setups, employing the notion of the

mean first passage times of Markov chains in both the cases. In Chapter 5 we study a

boundary patrolling problem involving consensus between robotic agents using limited

communication. Finally, in Chapter 6 we summarize the results of the previous chapters

and also list some open problems.

10



Chapter 2

Radially Escaping Targets Problem

The various extensions of the vehicle routing problems were discussed in Section 1.1. In

this chapter we propose a novel vehicle routing problem involving moving targets. In

the setup of this problem, a single target maintains the same velocity throughout with

the intention of escaping the environment as quickly as possible. One application of this

problem setup is in robotic patrolling where it is necessary to stop malicious agents from

leaving a region so as to protect the surroundings.

The problem setup in this chapter is significantly different from earlier setups in the

following ways: The moving targets have different velocities depending on their angular

location, as opposed to having same velocities as assumed in many problem setups looked

at in literature [16, 46, 90, 79]. They also have different deadlines depending on their

radial location as opposed to having the same deadline or time window before which they

should be serviced [15, 16].

11
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2.1 Contributions

The contributions of this chapter 1 can be summarized as follows. We introduce

a novel dynamic vehicle routing problem termed the Radially Escaping Targets (RET)

problem. The RET problem has three parameters: the target arrival rate λ, the target

speed v < 1 and the environment radius D.
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Figure 2.1: (a) Schematic of the Radially escaping targets (RET) problem. (b) The
parameter regimes where the Stay-at-Center (SAC), Sector-Wise(SW) and Stay-N-
ear-Boundary(SNB) policies are designed are shown for D=1. The gray shaded regions
indicate the parameter regimes in which the policies are constant factor optimal.

We first determine two policy independent upper bounds on the fraction of targets

that can be captured for the RET problem. In the process, we derive a novel method to

establish upper and lower bounds on the path through radially escaping targets. Next,

we formulate three policies: Stay-at-Center (SAC), Sector-wise (SW) and Stay-Near-

Boundary (SNB) policy. The SAC policy is designed for low arrival rates while the SW

policy is formulated for moderate arrival rates. The SNB policy is designed for high

arrival rates. Lower bounds on the fraction of targets captured using the SAC, SW and

SNB policies are obtained. In Table 2.1, we summarize these lower bounds and also

present the factor of optimality (defined as the ratio of the fundamental upper bound for

1This work is a product of collaboration with Dr. Shaunak Bopardikar
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the RET problem to the capture fraction of a policy). The symbol β ≈ 0.7120± 0.0002

and

α(v) =

√
v

π2

((
v

(1− v2)3/2

)1/2

+
10

3

(1− v2)1/2

v

)−1/2

.

In Fig. 2.1(b), the design regimes for the SAC, SW and SNB policies are shown. The

gray shaded regions indicate the regimes where the policies are constant factor optimal.

The SAC and SNB policy are constant factor optimal in the asymptotic regimes of

λ → 0+ and λ → +∞ respectively. The gray shaded regions separated by dashed lines

are representative of these asymptotic regimes. For fixed target speed, the SW policy

is within a constant factor of the optimal in the gray shaded region in the middle. We

present numerical simulations which empirically verify our results.

Table 2.1: Performance of policies for the RET problem

Design Regime Algorithm Regime of Factor

constant factor optimality of optimality

Light load Stay-At-Center λ→ 0+ 1

Moderate load Sector-wise λ >
7πv

(1− v2)3/2D
, v >

1

4
√

2

1

α(v)

Fixed speed, heavy load Stay-Near-Boundary λ→ +∞, D > 1
7β

2

The set-up of the RET problem can be viewed as a dynamical system where targets

are generated via a stochastic process. The dynamical system needs to be controlled

using a control law or policy in order to stop the targets from escaping the environment.

The performance metric to evaluate the policy is the capture fraction of the targets which

needs to be maximized. Fundamental upper bounds and achievable lower bounds on the

capture fraction is the topic of the chapter. We study the gap between them as well.
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2.2 Organization

This Chapter is organized as follows. In Section 2.1 we state the contributions of the

work. In chapter 2.3 we describe the problem setup. The preliminary results are stated

in Section 2.4 and the main results, i.e. the routing policies for the proposed problem are

presented in 2.5. The chapter ends with numerical simulations presented in Section 2.6.

2.3 Problem Formulation

We start with introducing a DVR problem in which the environment is a disk of

radius D given by:

E = {(r, θ) : 0 ≤ r ≤ D ∀θ ∈ [0, 2π)} .

Targets appear independently and uniformly distributed in E with uniform spatial den-

sity. Their arrival times are modeled using a Poisson process with rate λ [86]. Uni-

form spatial distribution of the targets is realized through probability density functions

f(r) = 2r/D2 and e(θ) = 1/2π where r and θ are random variables describing the lo-

cation of appearing targets in radial coordinates. Once the targets appear, they move

radially outwards with a constant speed v < 1 and eventually reach the boundary of

the environment. A vehicle with speed of 1 and confined to move in E intercepts the

targets and captures them before they escape the environment. We refer to this problem

as the Radially Escaping Targets (RET) problem for convenience and a schematic of the

problem is shown in Fig. 2.1(a). The parameters of the RET problem are the target

speed v, arrival rate λ and disk radius D.

Let Q(t) ⊂ E denote the set of positions of all targets that have appeared but have

not been serviced or have escaped before time t. Let p(t) ∈ E be the position of the

vehicle at time t. A policy for the vehicle is a map P : E × FIN(E)→ R2, where FIN(E)

14
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is the set of finite subsets of E , assigning a velocity to the service vehicle as a function

of the current state of the system: ṗ(t) = P (p(t),Q(t)). Let mcap(t) be the number of

targets that have appeared and have been captured before time t and mmiss(t) be the

number of targets that have escaped and mtot(t) = mmiss(t) + mcap(t), then the goal of

this problem can be stated as follows:

Problem Statement Find policies P that maximize the fraction of targets that are

serviced Fcap(P ), termed as the capture fraction. Formally, for a policy P , we define the

steady state average capture fraction as

Fcap(P ) := lim sup
t→+∞

E
[

mcap(t)

mcap(t)+mmiss(t)

]

where the expectation is with respect to the stochastic process that generates the targets.

Each target has a deadline depending on when and where it appears in the envi-

ronment. We propose policies for the service vehicle suitable for specific target speeds

and arrival rates with provable guarantees on their performance. We first present some

preliminary results which will be used to analyze policies for the RET problem.

2.4 Preliminary results

We start with reviewing some established results to intercept moving targets in short-

est time as well as propose methods to obtain bounds on paths through a set of moving

targets.
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2.4.1 Time to capture a single target

The optimal strategy (i.e., taking minimum time) for a vehicle to capture a target

moving at a speed less than that of the vehicle is to move in a straight line with maximum

speed to intercept the target based on the constant bearing principle [53]. In the following

definition, this result is stated in terms of radial coordinates.

Definition 1 (Constant bearing principle) The time taken by the vehicle starting from

p = (x, 0) and moving with unit speed to capture a target located at q = (r, θ) and moving

radially outward with constant speed v < 1 is

T (p, q) =
−v(x cos θ − r) + (v2(x cos θ − r)2 − (1− v2)(2rx cos θ − x2 − r2))1/2

1− v2
.

The next result gives a relation of the distance between the vehicle and target location

to the time required to capture the moving target.

Lemma 2 (Time to capture) The time T (p, q) required by the vehicle starting from p =

(x, 0) and moving with unit speed to capture a target at q = (r, θ) moving radially outward

with speed v satisfies the following inequality

T (p, q) ≤
(

2v

1− v2
+

1√
1− v2

)
d(p, q),

where d(p, q) =
√
x2 + r2 − 2xr cos θ is the Euclidean distance between p and q. If r ≤

x cos θ, then

T (p, q) ≤
(

1√
1− v2

)
d(p, q)

Proof: We start with providing an upper bound on the positive root y+ of a

quadratic equation. For the quadratic equation ay2 + by+ c = 0, if a > 0 and c < 0, then

there are two possibilities: b ≥ 0 or b < 0.
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y+ =
−b+

√
b2 − 4ac

2a
=


−b+

√
b2 + 4a |c|
2a

≤
−b+ b+ 2

√
a |c|

2a
=

√
|c|
a
, b ≥ 0,

−b+
√
|b|2 + 4a |c|
2a

≤ |b|
a

+

√
|c|
a
, b < 0.

Since the time taken T := T (p, q) to capture a target at q starting from p satisfies the

following quadratic equation,

T 2(1− v2) + 2vT (x cos θ − r)− (x2 + r2 − 2xr cos θ) = 0,

the result follows.

2.4.2 Optimal placement of vehicle

By optimal placement, we mean the location at which the vehicle should be placed in

order for it to have the highest probability of capturing a target. To determine optimal

placement, we start by defining the capturable set of a vehicle location.

Definition 3 (Capturable set) A vehicle located at (x, 0) and moving with unit speed can

only reach targets located in the capturable set

C(x, v,D) := {(r, θ) ∈ E : r < rc ∀θ ∈ [0, 2π)}

using the constant bearing principle, where

rc(x, v,D, θ) = max
(

0, D − v
√
D2 + x2 − 2xD cos θ

)
.

These are the locations for which r + vT ≤ D. The expression for rc is obtained by
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setting rc + vT = D. The radial location rc corresponds to the locations of targets that

the vehicle can capture just before they escape the disk. The probability that a target is

in the capturable set of a particular vehicle location (x, 0) is given by

ρ(x, v,D) :=

∫ 2π

0

∫ D
0

P [(r, θ) ∈ C(x, v,D)] f(r)e(θ)drdθ∫ 2π

0

∫ D
0

P [(r, θ) ∈ E ] f(r)e(θ)drdθ
=

∫ 2π

0

∫ rc
0
f(r)e(θ)drdθ

πD2
.

When the vehicle is at location p∗ = (x∗(v,D), 0) where

x∗(v,D) := arg max
0≤x≤D

ρ(x, v,D), (2.1)

the probability of it capturing a target is maximum. The vehicle location x∗(v,D) is

referred to as the optimal location. Let ρ∗(v,D) := ρ(x∗, v,D). Closed form expressions

for x∗ and ρ∗ do not appear to be possible for all v ∈ (0, 1). However, from numerical

calculations it is known that x∗ = 0 for v ∈ (0, 0.5] irrespective of the value of the

parameter D. The numerically computed variation of x∗(v,D) and ρ∗(v,D) for D = 1 is

shown in Fig. 2.2. For target speed v ≤ 0.5, x∗ = 0 and the vehicle location p∗ = (0, 0)

maximizes the probability of the vehicle being able to capture a target before it escapes.

For higher speeds, this location is closer to the boundary. There is a qualitative difference

between these two cases. For the former case, p∗ = (0, 0) is the unique vehicle location

which maximizes ρ whereas for the later case, the set of corresponding optimal locations

is all points with radial coordinate equal to x∗.

Theorem 4 (Capture fraction upper bound) For every policy P for the RET(v, λ) prob-

lem, Fcap(P ) ≤ ρ∗(v,D).

Proof: Let the vehicle start from x1 and service target at p1. The probability of

the vehicle capturing this target is maximum when x1 = x∗. The best case scenario is
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Figure 2.2: Optimal vehicle location x∗ and the maximum probability ρ∗ of capturing
an escaping target starting from (x∗, 0) as a function of target speed v for the RET
problem with D = 1.

that no new target appears while the vehicle services it and repositions itself at x2 so as

to increase the probability of capturing a new target at p2. This can be realized for a

suitably low value of arrival rate λ. In order to maximize the probability of capturing

the new target, x2 = x∗ as well. Thus, to maximize the probability of capturing every

new target, the vehicle returns to x∗ and waits for a target to appear. With this strategy,

the vehicle can still only capture targets which appear within C(x∗, v,D). The fraction

of targets which satisfy this criterion is ρ∗(v,D). Thus, the vehicle can capture no more

than ρ∗(v,D) fraction of targets.

2.4.3 Quantification of targets inside the environment

In this subsection we quantify the number of targets in an unserviced region in the

environment. We distinguish between targets originating and accumulating in a certain

region. Targets are said to have accumulated in a region when after appearing, they

spend time in the region, in the course of their trajectories.

Definition 5 (Annular section) The annular section A(a, b, θ1, θ2) ⊂ R2 is the set

19



Radially Escaping Targets Problem Chapter 2

A(a, b, θ1, θ2) := {(r, θ)|a ≤ r ≤ b, θ ∈ [θ1, θ2]}.

Lemma 6 (Accumulated targets in an annular section) For 0 < a < b < D, let nA

be the number of targets accumulated at steady state in an unserviced annular section

A(a, b, 0, 2π) and fa(x) be the distribution of the accumulating targets w.r.t the radial

location x ∈ [0, D]. Then,

(i) E[nA] = (b3 − a3)λ/3vD2,

(ii) Var[nA] = (b3 − a3)λ/3vD2 and

(iii) fa(x) = λx2/vD2.

Proof: Firstly, steady state is assumed, meaning that the initial transient has al-

ready passed, hence the time at which the snapshot is taken is t ≥ D/v. Also, by

unserviced, we mean that the vehicle has not serviced targets in the region under con-

sideration for at least time D/v before the time instant under consideration. Let us

examine the number of targets accumulating in the annulus Ar := A(r, r + ∆r, 0, 2π)

due to targets appearing in the annulus R1 := A(p1, p1 + ∆p1, 0, 2π). Let us also assume

that ∆r and ∆p are infinitesimal. The intensity of the Poisson arrival process on R1 is

directly proportional to its area and is equal to 2πp1∆p1λ/πD
2 = 2p1∆p1λ/D

2.

P[Ar contains n targets originating from R1]

= P
[
n targets originated from R1 in time interval

[
t, t+

∆r

v

]]
= P

[
n targets originated from R1 in time interval of length

∆r

v

]

= exp

(
−2p1∆p1λ∆r

D2v

)(2p1∆p1λ∆r

D2v

)n
n!

,
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where t = (r − p1)/v. Thus, the process of targets accumulating in Ar due to targets

originating in R1 is spatially Poisson with intensity area(R1)/(πD2)λ/v = 2p1∆p1λ/D
2v.

Next, let us examine the process of accumulation of targets in Ar due to two annuli

R1 := A(p1, p1 + ∆p1, 0, 2π) and R2 := A(p2, p2 + ∆p2, 0, 2π).

P[Ar contains n targets from R1 ∪R2] =
n∑
i=0

[
exp

(
−2p1∆p1λ∆r

D2v

)(2p1∆p1λ∆r

D2v

)i
i!

× exp

(
−2p2∆p2λ∆r

D2v

)(2p2∆p2λ∆r

D2v

)(n−i)

(n− i)!

]

= exp

(
−2(p1∆p1 + p2∆p2)λ∆r

D2v

)

×

(
2(p1∆p1 + p2∆p2)λ∆r

D2v

)n
n!

(2.2)

Thus the process of targets accumulating in Ar due to targets originating in R1∪R2 is

also spatially Poisson and the intensity of this process, given by (2p1∆p1+2p2∆p2)λ/D2v =

(area(R1) + area(R2))/(πD2)λ/v, is the sum of the intensities due to R1 and R2. This

can be extended to all the rings of radii p ∈ [0, r]. So arrival process of all targets accu-

mulating in Ar is also spatially Poisson and has intensity area(A(0, r, 0, 2π))/(πD2)λ/v =

(r2λ/vD2). Thus the expected number as well as the variance of targets accumulating in

the unserviced annulus Ar is r2λ∆r/vD2.

Next, consider an annular section A(a, b, 0, 2π). Since Poisson processes are additive,

the arrival process of targets accumulating in A(a, b, 0, 2π) is Poisson and is the sum of

processes of targets accumulating in disjoint annuli like Ar with r ∈ [a, b]. Hence the
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Figure 2.3: (a) The set ST for the RET problem is shown by the gray shaded region.
The dashed circle is the boundary of S̄T which is a circle of radius T centered at
(X − vT, 0). (b) The area element ζ of length and width m in S̄T .

expected number and variance of targets accumulating in A(a, b, 0, 2π) is

∫ b

a

(r2λ/vD2)dr = (b3 − a3)λ/3vD2.

Let fa(x) be the distribution of the number of accumulating targets w.r.t the radial

location x. Since
∫ s

0
fa(x)dx = s3λ/3vD2, we get fa(x) = λx2/vD2.

Lemma 7 (Travel time bound for RET problem) Let targets arrive uniformly in E ac-

cording to a Poisson arrival process of rate λ and move radially outward with speed v. Let

Q be the set of targets accumulated in E at time t and Td be the random variable giving

the minimum amount of time required to travel to a target in Q starting from vehicle

position (X, 0). Then,

E[Td] ≥
√
πvD

2λ
.

Proof: To get a bound on the travel time, we start with defining a set ST shown in

Fig. 2.3(a), such that any target in it can be reached from the vehicle position (X, 0) in
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T time units or less. Mathematically,

ST :=
{

(r, θ) ∈ E|X2 + (r + vT )2 − 2X(r + vT ) cos(θ) ≤ T 2
}
.

Also, let S̄T := {(r, θ) ∈ E|(X − vT − r cos θ)2 + (r sin θ)2 ≤ T 2}. Since the relative ve-

locity of any target with respect to the vehicle is more than or equal to (1 − v), the

distance s1 of any point on the boundary of ST from (X, 0) is greater than or equal to

T (1− v). Using the triangle inequality, the distance s2 of that point from (X − vT, 0) is

less than or equal to T . Then, ST ⊆ S̄T .

If Td is the random variable giving the minimum amount of time to go from vehicle

location (X, 0) to a target, then Td > T if ST is empty and P[Td > T ] = P[|ST | = 0].

Here, the notation |ST | is used to denote the number of outstanding targets in the set

ST . Further,

P[|S̄T | = 0] = P[|ST | = 0]P[|S̄T\ST | = 0] ≤ P[|ST | = 0]. (2.3)

We now calculate the probability that an infinitesimal area element ζ of length m and

width m centered at (s, 0) shown in Fig. 2.3(b) is empty:

P[|ζ| = 0] = exp

(
−λm

v

1

πD2

∫ s

0

rθdr

)
= exp

(
−λm

v

1

πD2

∫ s

0

r
m

s
dr

)
(2.4)

= exp

(
−m2

v

λs

2πD2

)
≥ exp

(
−m2λ

2πvD

)
= exp

(
−λ

2πvD
area(ζ)

)
, (2.5)

where the inequality follows from the fact that s ∈ [0, D], and the exponential function

has a minimum at s = D. The last equality is true since area(ζ) = m2. Further, every
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compact set can be written as a countable union of non-overlapping rectangles. Thus,

Eq. (2.4) holds for the compact measurable set S̄T as well. Then, using the results from

Eq. (2.3) and Eq. (2.4),

P[|ST | = 0] ≥ P[|S̄T | = 0] ≥ exp

(
−λ

2πvD
area(S̄T )

)
= exp

(
−λ

2πvD
πT 2

)
,

and the expectation of Td can be bounded as follows:

E[Td] =

∫ +∞

0

P[Td > T ]dT =

∫ +∞

0

P[|ST | = 0] ≥
∫ +∞

0

P[|S̄T | = 0]dT

≥
∫ +∞

0

exp

(
−T 2λ

2vD

)
dT ≥

√
π

2

√
2vD

λ
=

√
πvD

2λ
.

so the result is obtained.

Theorem 8 (Policy Independent Upper Bound on Service Fraction) An upper bound on

the service fraction of any policy P for the RET problem satisfies

Fcap(P ) ≤
√

2

πvλD
.

Proof: This follows from the fact that in order to service a fraction c ∈ (0, 1] of

targets, we require that the rate at which targets are serviced is more than the rate at

which they arrive [60], i.e., cλE[T ] ≤ 1. Since T > Td, the result now follows by using

Lemma 7.

2.4.4 Bounds on paths and tours through targets

To distinguish static targets from moving targets, we introduce some terminology. A

target moving radially outward is referred to as an escaping target. A target is said to

have been ‘captured’ by the vehicle if the vehicle reaches the target before it escapes the
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environment. The following results are used to estimate and bound the length of the

path through targets in the environment.

Theorem 9 (Upper bound on path through escaping targets) Let targets starting from

(ri, θi), i ∈ {1, . . . , N} move radially outward with speed v. Let T be the length of the path

through these escaping targets in some arbitrary order δ : {1, . . . , N} → {1, . . . , N}. Let

Ts be the length of the path through static targets located at (ri + vT̄ , θi), i ∈ {1, . . . , N}

processed in order δ and T̄ ≥ T . Then,

T ≤ Ts
1− v

.

Proof: Without loss of generality, let the targets be labeled in the order in which

they are processed. Let the vehicle take time Tj to service the j−th escaping target having

serviced the (j− 1)−th escaping target. Consider the i−th escaping target starting from

(ri, θi). The vehicle services this target at time
∑i

j=1 Tj. It then starts for the escaping

target i+1 and reaches it in time Ti+1. Let T
′
i+1 be the distance between (ri+v

∑i+1
j=1 Tj, θi)

and (ri+1 + v
∑i+1

j=1 Tj, θi+1). Also, let T
′′
i+1 be the distance between (ri + vT, θi) and

(ri+1 + vT, θi+1) while Ts,i+1 is the distance between (ri + vT̄ , θi) and (ri+1 + vT̄ , θi+1).

Since the distance between two targets moving radially outward with the same speed is

a non-decreasing function of time, T
′
i+1 ≤ T

′′
i+1 ≤ Ts,i+1. Referring to Fig. 2.4, from the

triangle inequality, T
′
i+1 + vTi+1 ≥ Ti+1, i.e., Ti+1 ≤ (T

′
i+1)/(1 − v) ≤ (Ts,i+1)(1 − v).

Extending this to all the targets in the path,

T =
n∑
i=1

Ti+1 ≤
n∑
i=1

Ts,i+1

1− v
=

Ts
1− v

.

The upper bound on the length of the path through escaping targets is thus related
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Figure 2.4: The thick line labeled Ti+1 indicates the trajectory of the vehicle starting
from the target i to service the target i+ 1. The gray circles indicate the locations at
which the vehicle intercepts the targets.

to the length of the path through their static locations in the future.

Theorem 10 (Lower bound on path through escaping targets) Let targets starting from

(ri, θi), i ∈ {1, . . . , N} move radially outward with speed v. Let T be the length of the

path through these escaping targets in some arbitrary order δ : {1, . . . , N} → {1, . . . , N}.

Let T0 be the length of the path through static targets located at (ri, θi), i ∈ {1, . . . , N}

processed in order δ. Then,

T ≥ T0

1 + v
.

Proof: The proof is similar to that of Theorem. 9 and is omitted for brevity.

Given a set K of n points, the Euclidean traveling salesperson problem (ETSP) is to

determine the shortest tour, i.e., a closed path that visits each point exactly once. We

now state the classic result providing a limit for the length of the ETSP through large

number of points. We will leverage this result in the next section to derive tighter analytic

bounds on the performance of our policies in regimes of high target arrival rates.
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Theorem 11 (Asymptotic ETSP length,[96]) If a set K of n points is distributed inde-

pendently and identically in a compact set Q, then there exists a constant β such that

lim
n→+∞

ETSP (K)√
n

= β

∫
Q

ϕ(q)1/2dq,

where ϕ is the density of the absolutely continuous part of the point distribution.

The constant β has been estimated numerically as β ≈ 0.7120± 0.0002 [81].

2.5 Policies

In this section, we propose three policies for the RET problem. The SAC policy is

designed for low target arrival rates while the SW policy is designed for moderate target

arrival rates. Finally, the SNB policy is proposed for high arrival rates.

2.5.1 Stay at Center (SAC) Policy

According to this policy, the vehicle stays at the optimal location in the disk and

waits for new targets to appear in its capturable set. For v ∈ [0, 0.5], this location is

the center. The SAC policy is suitable for low target arrival rates at which the optimal

vehicle location takes prominence.

Given a vehicle location (x, 0) ∈ E , recall that C(x, v,D) denotes the capturable set

for the vehicle. Let x∗ and ρ∗ be defined as per Eq. (2.1). The formal description of the

SAC policy is given in Algorithm 1.

Algorithm 1 has the following guarantee on capture fraction.

Theorem 12 (SAC Policy Capture Fraction) The capture fraction of the SAC policy
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Algorithm 1: Stay At Center (SAC) policy

Given: v, D known and the vehicle placed at (x∗, 0).
1 Intercept a target that appears inside C(x∗, v,D);
2 Return back to (x∗, 0);
3 Repeat from step 1.

satisfies

Fcap(SAC) ≥ ρ∗(v,D)

2ρ∗(v,D)λD + 1
.

If v ∈ [0, 0.5] so that the optimal vehicle location x∗ = 0, then the above fraction

becomes equal to

Fcap(SAC) ≥ (1− v)2

2λ(1− v)2D + 1
.

Proof: See Appendix.

Remark 13 (Optimality in light load, i.e., λ→ 0+) In the light load regime of λ→ 0+,

the capture fraction achieved equals ρ∗(v,D), which is exactly equal to the probability that

a target falls within the capturable set C when the vehicle is located at the optimal location

(x∗, 0). Comparing with Theorem 4, we see that the SAC policy is optimal in this limiting

regime.

2.5.2 Sector-wise (SW) Policy

In the Sector-wise policy, the vehicle stays closer to the boundary and utilizes the

high relative velocity of the outgoing targets. It starts every iteration at a radial location

X and services the first target with the smallest clockwise angular separation in a specific

subset associated with the iteration.

One such subset J1 which the vehicle encounters in the first iteration is shown by the

shaded region in Fig. 2.5. It then proceeds to the nearest location with radial coordinate

X in the disk and waits for a specified time to begin its next iteration. The formal
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Figure 2.5: (a) Vehicle located at p = (X, 0) services outstanding targets shown by
the shaded region. (b) Factor of optimality of the SW policy in different parameter
regimes v, λ when D = 1.

Algorithm 2: Sector-wise (SW) policy

Given: v,D known and the vehicle placed at (X, 0).
1 Set X = D

√
1− v2, W = max (0, X(1/4v −

√
2));

2 repeat
3 if there are targets in E with clockwise angular separation θ < π/2 such that

their radial coordinate r satisfies r ≤ X cos θ then
4 Service the target with smallest angular separation and move to nearest

location in E with radial coordinate X ;
5 Wait for time W and return to step 3.

6 else
7 Stay at current location.
8 end

9 until all targets are serviced or have escaped ;

description of the policy is given in Algorithm 2. While the SW policy is applicable in all

parameter regimes of the RET problem, for a fixed speed v, it is constant factor optimal

in moderate arrival regimes as established in Theorem 15. Algorithm 2 has the following

guarantee on capture fraction.

Lemma 14 (SW Policy Capture Fraction) The capture fraction of the SW policy satisfies

Fcap(SW) ≥ 1

λ

(
W +

πD

4
(3η1(k) + η2(k)) +

8

λ(1− v2)
η3(k)

)−1

,

29



Radially Escaping Targets Problem Chapter 2

where

η1(k) = (L−1(8k)− I1(8k)− L−1(20k) + I1(20k)) , (2.6)

η2(k) = (I0(8k)− L0(8k)− I0(20k) + L0(20k)) , (2.7)

η3(k) = 1− π/2 (I0(12k)− L0(12k)− I0(20k) + L0(20k)) , (2.8)

W = max (0, D
√

1− v2(1/4v −
√

2)), k = λD(1−v2)3/2/72πv, and I0 and I1 are modified

Bessel functions of the first kind and L0 and L−1 are modified Struve functions [1].

Proof: See Appendix.

Theorem 15 (Performance in moderate arrival rates) For λ > 7πv
(1−v2)3/2D

and v ∈

(1/4
√

2, 1), the capture fraction of the SW policy satisfies

Fcap(SW) ≥ α(v)

√
2

πvλD
,

where

α(v) =

√
v

π2

((
v

(1− v2)3/2

)1/2

+
10

3

(1− v2)1/2

v

)−1/2

. (2.9)

Proof: See Appendix.

Thus, for moderate arrival rates and v ∈ (1/4
√

2, 1), using the result from Theorem 15

and the fundamental bound obtained in Theorem 8, the SW policy is also a constant

factor policy with the factor equal to 1/α(v).

2.5.3 Stay-Near-Boundary (SNB) Policy

We now introduce the SNB policy for the high arrival regime. In this regime, the

density of targets accumulating close to the boundary of the disk is high. Hence, the

distance traversed by the vehicle (and the time taken) between capturing consecutive
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targets is small. Consequently, the distance by which the targets move between consec-

utive captures is also small. Hence, the vehicle can plan ahead and capture multiple

targets in a single iteration. To determine the order of captures, it uses the solution

to the Euclidean Minimum Hamiltonian Path (EMHP) problem which can be stated as

follows:

Given a set of n (stationary) points, determine the length of the shortest path

which visits each point exactly once.

The SNB policy makes use of three parameters g, h and ncap. At the beginning of

every iteration, the vehicle computes an EMHP through the locations that the targets

accumulated in A(g, h, 0, 2π) will have after time (D − h). This is done to levarage the

result from Theorem 9. It uses the order obtained from the EMPH to service the first

ncap targets using constant bearing principle. A formal statement of the SNB policy is

given in Algorithm 3.

The parameters g, h and ncap are chosen in a way which ensures that the vehicle will

service all the ncap targets accumulated in A(g, h, 0, 2π) at the beginning of the iteration

before the last target escapes the environment. This can be achieved in the following

way:

(i. parameters g and h are solutions to variables a and b respectively in the following
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Optimization Problem:

max
a,b

(
b3 − a3

b2 − a2

)
subject to

µA =
λ(b3 − a3)

3vD2
,

β

1− v

√
6π

b3 − a3

(
b2 − a2

2

)√
µA(1 + v) ≤ D − b

v
,

β

1 + v

√
6π

b3 − a3

(
b2 − a2

2

)√
µA(1− v) ≥ b− a

v
,

0 ≤ a < b < D.

(ii. parameter ncap is set as follows:

ncap :=
λ(1− v)

3vD2
(h3 − g3).

Algorithm 3 has the following guarantee on the capture fraction of the RET problem.

Algorithm 3: Stay-Near-Boundary (SNB) policy

Given: g, h and ncap are known and the vehicle is at (h, 0).
1 if A(g, h, 0, 2π) contains outstanding targets then
2 s1 := set of locations of outstanding targets in A(g, h, 0, 2π);
3 s2 := set of their locations if they move radially outward by distance (D − h);
4 Ψ := order of the EMHP starting from (D, 0), visiting targets in s2 and ending

at (D, 0);
5 service the first ncap targets in s1 in order from Ψ using constant bearing

principle and return to (h, 0).
6 end

Theorem 16 (SNB Policy Capture Fraction) For any fixed v ∈ (0, 1), in the limit as
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λ→ +∞, the capture fraction of the SNB policy satisfies

Fcap(SNB) ≥ 2p

7β

√
2

πλvD

with probability one, where

p := p(D) =


1, D > 1,

5
√
D

6
, otherwise.

Proof: See Appendix.

Corollary 17 (Performance of the SNB policy) In the limit as λ → +∞ such that

λ > (1 + v)2/2πβ2v(1− v), the SNB policy is within a factor 7β/2p of the optimal. For

D ≥ 1, this factor is ≈ 2.52.

2.6 Simulations

The numerical performance of the SAC and SW policies for arrival rates of λ = 2 and

λ = 10 respectively and all target speeds is shown in Fig. 2.6. The parameter D = 1 for

these simulations. The mean of the capture fraction based on 1000 simulations is shown

along with its standard deviation. It agrees well with the theoretical lower bounds.

The theoretical bounds are still conservative. For the SAC policy, the conservativeness

comes from the application of Jensen’s inequality in Eq. (2.10). For the SW policy, the

conservativeness of the bound is because of inequalities introduced in Eq. (2.11),(2.13)

to bound integrals.
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Figure 2.6: Performance of the (a) SAC and (b) SW policies for arrival rates λ = 2
and λ = 10 respectively for the RET problem with D = 1. The theoretical bounds
are from Theorem 12 and Theorem 15 respectively.

Appendix

Proof of Theorem 12: Notice that if mcap(t) > 0 for some t > 0, then

lim sup
t→+∞

E
[

mcap(t)

mcap(t)+mmiss(t)

]
= lim sup

t→+∞
E
[

1

1+
mmiss(t)

mcap(t)

]
≥
(

1 + lim sup
t→+∞

E
[
mmiss(t)
mcap(t)

])−1

,

(2.10)

where the last step comes from an application of Jensen’s inequality [21]. Thus, we can

determine a lower bound on the capture fraction by studying the number of targets that

escape per captured target. Consider a tagged target i which falls within C(x∗, v,D). The

time ti taken by vehicle to intercept target i and return to the optimal location satisfies

ti ≤ 2D. Therefore, the number of targets that escape because the vehicle intercepts the

i-th target is equal to the sum of 1) the number of targets that arrive anywhere in the

environment during the time interval of ti and 2) the number of targets that are generated

outside of C(x∗, v,D) while the vehicle is waiting for the next capturable target. Since the

target arrival process is temporally Poisson, the expected number of targets in case 1 are

given by λti ≤ 2λD. The spatial distribution of the targets is uniform random. Further,

area(C(x∗, v,D)) = ρ∗(v,D)πD2. Therefore, the targets missed in case 2, denoted by
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Nmiss is a random variable distributed as follows.

Nmiss =



0, with probability ρ∗(v,D),

1, with probability ρ∗(v,D)
(

1− ρ∗(v,D)
)
,

2, with probability ρ∗(v,D)
(

1− ρ∗(v,D)
)2

,

...

k, with probability ρ∗(v,D)
(

1− ρ∗(v,D)
)k
,

...

Therefore,

E [Nmiss] =
∞∑
k=1

kρ∗(v,D)
(

1− ρ∗(v,D)
)k

= ρ∗(v,D)
∞∑
k=1

(
1− ρ∗(v,D)

)k
= ρ∗(v,D)

1− ρ∗(v,D)

(ρ∗(v,D))2
=

1

ρ∗(v,D)
− 1.

Substituting the upper bound for case 1 and the expression for case 2 in (2.10), we obtain

Fcap(SAC) ≥ 1

2λD + 1
ρ∗(v,D)

=
ρ∗(v,D)

2ρ∗(v,D)λD + 1
.

Proof of Theorem 14: In the sector-wise policy, the vehicle starts every iteration at a

distance X = D
√

1− v2 from the center. If θv is the angular position of the vehicle in

its i-th iteration and

Ji := {(r, θ) | 0 ≤ r ≤ X cos(θ − θv), θ − θv ∈ [0, π/2]} ,

then if there is an outstanding target in Ji, the vehicle services the target in Ji with the

smallest angular separation from θv in the counterclockwise direction. The choice of X
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ensures that the vehicle always services any target in Ji before it escapes the disk.

We now calculate the expectation of the time required for a single iteration of the

SW policy. Without loss of generality we assume that i = 1, θv = 0 initially and the

vehicle is at (X, 0). We also assume that the environment is unserviced. Let K(γ1, γ2) :=

{(r, φ)|0 ≤ r ≤ X cosφ, φ ∈ [γ1, γ2]} for γ1 < γ2. Also, for infinitesimal δθ, let θ+ = θ+δθ.

Then the probability of the first outstanding target in J1 being at an angular location θ,

i.e.

P[first target is in K(θ, θ+)| J1 is not empty ] =P [|K(0, θ)| = 0]P
[
|K(0, θ+)| 6= 0

]
= exp (−k (9 sin θ + sin 3θ))

×
(
1− exp

(
−k
(
9 sin θ+ + sin 3θ+

)))
≥ exp(−8k sin θ) (1− exp(−12k sin θ)) ,

(2.11)

where k = λX3

72πvD2 . A number of results are used to obtain Eq. (2.11). The first result,

which is derived in the same spirit as Eq. (2.4), is that for α ∈ [0, 2π],

P [|K(0, α)| = 0] = exp (−k (9 sinα + sin 3α)) . (2.12)

The second supporting result is the following empirically obtained inequality for α ∈

[0, π/2]: 12 sinα ≥ 9 sinα + sin 3α ≥ 8 sinα.

Now that we have an expectation of the first target being at an angular location

θ relative to the vehicle, we calculate the time taken to capture this target. Let Tθ

be the random variable denoting the time taken to start from (X, 0), service a target

at (r, θ) and go to (X, θ) to start the next iteration. We determine a bound on the

expectation of Tθ. Once again, we assume that the environment is unserviced and note
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that the probability distribution of the outstanding targets is given by fa(r) = λr2/vD2

as obtained in Lemma 6. Since r ≤ X cos θ, we use Lemma 2 to obtain a lower bound

on the expectation of Tθ:

E[Tθ] ≤
2

∫
X cos θ

r=0

(
λr2

vD2

)(√
X2 + r2 − 2Xr cos θ√

1− v2

)
dr∫

X cos θ

r=0

(
λr2

vD2

)
dr

=

2

∫
cos θ

s=0
X

(
λs2

vD2

)(√
1 + s2 − 2s cos θ√

1− v2

)
ds∫

cos θ

s=0

(
λs2

vD2

)
ds

(2.13)

≤ 6X√
1− v2

(
sin θ

4
+

1

12

)
=: Γ(θ). (2.14)

The factor of two is required since the vehicle has to go to (X, θ) to start the next

iteration and the time required for this is always less than or equal to the time required

to service the target at (r, θ) starting from (X, 0). If T is the random variable denoting

the time required to start from (X, 0), service the first target in J1 and return to the

radial location X, then using the result from Eq. (2.11),

E[T |J1 is not empty] =

∫ π/2

θ=0

E[Tθ] P[ first target in K(θ, θ+)]dθ

≤
∫ π/2

θ=0

Γ(θ) (exp(−8k sin θ) (1− exp(−12k sin θ))) dθ

=

(
6X√
1− v2

)(π
8
η1(k) +

π

24
η2(k)

)
. (2.15)

(2.16)

where the functions η1 and η2 are as defined in Eq. (2.6). Further, using the result from
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Eq. (2.12),

P[ J1 is empty ] ≤1−
∫ π/2

0

exp(−12k sin θ) (1− exp(−8k sin θ)) dθ

=1− π

2
(I0(12k)− L0(12k)− I0(20k) + L0(20k))

=η3(k), (2.17)

and the expected time that the vehicle has to wait for a new target to appear in J1 is

less than 8/λ(1 − v2) since the area of J1 is (1 − v2)/8 times the area of the disk. This

is in addition to the time W that the vehicle waits at the beginning of the iteration. So,

using Eq. (2.15) and Eq. (2.17), the time T taken to finish a single iteration of the SW

policy has the following expectation:

E[T ] =W + E[T | J1 is not empty ] + E[T | J1 is empty ]

=W + E[T | J1 is not empty ] +
8

λ(1− v2)
P[ J1 is empty ]

≤W +

(
6X√
1− v2

)(π
8
η1(k) +

π

24
η2(k)

)
+

(
8

λ(1− v2)

)
η3(k)

=W +
3πD

4
η1(k) +

πD

4
η2(k) +

8

λ(1− v2)
η3(k).

Then, Fcap(SW ) ≥ 1/λE[T ]. Finally, in the most favorable scenario for the vehicle, it

intercepts each new target at the end of each quadrant at a radial location X, waits for

time W and begins a new iteration. The time in which it returns to a quadrant in this

manner is equal to 4
√

2X + 4W . Since X/v < 4
√

2X + 4W for all v < 1, the assumption

that the vehicle always begins an iteration in an unserviced region holds true.

Proof of Theorem 15: From Lemma 14, we know that the capture fraction of the SW
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policy satisfies

Fcap(SW) ≥ 1

λ

(
W +

πD

4
(3η1(k) + η2(k)) +

8

λ(1− v2)
η3(k)

)−1

. (2.18)

When v > 1/4
√

2, W = 0. Further, when λ > 7πv
(1−v2)3/2D

, k = λ(1−v2)3/2

72πv
> 0.1. Using

upper and lower bounds on Bessel and Struve functions, the following hold true for

k > 0.1,

3

4
η1(k) +

1

4
η2(k) =

3

4
(L−1(8k)−I1(8k)− L−1(20k) + I1(20k))

+
1

4
(I0(8k)− L0(8k)− I0(20k) + L0(20k)) ≤ 1

12
√
k
,

(2.19)

η3(k) = 1− π

2
(I0(12k)− L0(12k)− I0(20k) + L0(20k)) ≤ 5

√
k

2
. (2.20)

Using Eq. 2.19 and 2.20, and the result in Eq. 2.18, Fcap(SW) can be bounded and

the result is obtained.

Proof of Theorem 16 We start with calculating an upper bound on the length of the

tour through all the targets in A(g, h, 0, 2π). Let Q := {(r, θ) ∈ A(g, h, 0, 2π)} be the set

of locations of targets accumulated in A(g, h, 0, 2π) and n = |Q|. From Lemma 6, the

normalized distribution of these targets w.r.t the radial location x is given by fn(x) =

3x2/(h3 − g3) for x ∈ [g, h]. Let Q̄ be the set of locations (s, φ) of these targets if

they move outwards by distance d and occupy A(g + d, h + d, 0, 2π). The normalized

distribution functions of the random variables s and φ which denote locations of these
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targets are

fs(x) =
3(x− d)2

h3 − g3
and eφ(y) =

1

2π
.

Using Theorem 11 and assuming that n→∞ (which we will revisit later),

lim
n→+∞

ETSP (Q̄)√
n

= β

√
6π

h3 − g3

(
h2 − g2

2

)

with

ϕ(s, φ) = fs(x)eφ(y) =
3(x− d)2

(h3 − g3)

1

2π
.

Using Chebyshev’s inequality, if µA and σA are the mean and standard deviation of the

random variable n, then for any fixed v ∈ (0, 1),

P[n < µA(1 + v)] ≥ 1− σ2
A/v

2µ2
A.

Then, the condition

tu :=
β

1− v

√
6π

h3 − g3

(
h2 − g2

2

)√
µA(1 + v) ≤ D − g

v
(2.21)

from the Optimization Problem (i ensures that the n targets will be serviced before they

escape the disk with at least a probability of 1−σ2
A/v

2µ2
A. Similarly since ncap = µA(1−v)

and v > 0,

P[n > µA(1− v)] ≥ 1− σ2
A/v

2µ2
A (2.22)

so that n > ncap and the vehicle services ncap targets in an iteration with probability of

at least 1− σ2
A/v

2µ2
A. Further, the condition

β

1 + v

√
6π

h3 − g3

(
h2 − g2

2

)√
µA(1− v) ≥ h− g

v
(2.23)
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from the Optimization Problem (i ensures that with probability of at least 1− σ2
A/v

2µ2
A,

when the vehicle starts an iteration, A(g, h, 0, 2π) is unserviced. In the above inequality,

the left-hand side is the lower bound on the length of the tour through µA(1− v) targets

in A(g, h, 0, 2π) obtained by using Theorem 10. We also know that

µA =
λ(h3 − g3)

3vD2

and σ2
A = µA from Lemma 6. When λ → +∞ and v ∈ (0, 1), then µA → +∞ and

ncap → +∞ so that Eq. (2.21),(2.22) and (2.23) hold true with probability one. Then,

since ncap → +∞ and n > ncap with probability one, our earlier assumption that n→ +∞

is true as well.

If ktot(i) and kcap(i) are the number of targets that have appeared and have been

serviced in the i−th iteration of the SNB policy, and Fi(SNB) = E [kcap(i)/ktot(i)], then

since at every iteration, kcap(i) ≥ ncap,

Fi(SNB) ≥ E
[
ncap

ktot(i)

]
= ncapE

[
1

ktot(i)

]
≥ ncap

E[ktot(i)]
, (2.24)

where the last inequality holds true using Jensen’s inequality for convex function 1/ktot(i).

Next, when λ > (1 + v)2/2πβ2v(1− v), the solution to the Optimization Problem (i

exists and the parameters g and h obtained by solving it satisfy

h3 − g3

h2 − g2
≥ 4Dp

7

1− v√
1 + v

.

Now, when λ → +∞, for a fixed speed, the above condition on λ is met. Then, from

Eq. 2.24 and using the fact that E[ktot(i)] ≤ λtu,

Fi(SNB) ≥ 2p(1− v)2

7(1 + v)

1− v
β

√
2

πλv
.
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Let the countably infinite set Y := {Fi(SNB) ∀i ∈ N}. Also, let the uncountable set

Z := {E [mcap(t)/mtot(t)]∀t ∈ R≥0} . Since Y ⊆ Z,

Fcap(SNB) = lim sup
t→∞

E
[
mcap(t)

mtot(t)

]
≥ lim sup

i→∞
Fi(SNB) ≥ 2p(1− v)2

7(1 + v)

1− v
β

√
2

πλv
,

the result is obtained.

42



Chapter 3

Robotic Surveillance:

Detection of Intruder Location

In this chapter we study a surveillance problem in which unknown intruder locations have

to be detected in networked environments. This is achieved by designing Markov chain

random walks for the surveillance vehicle which have minimum mean first passage time.

Motivating examples for this problem include the monitoring of oil spills [29], the detec-

tion of forest fires [57], the tracking of border changes [97], and the periodic patrolling

of an environment [39, 76]. Other applications include minimizing emergency vehicle

response times [14] as well as servicing tasks in robotic warehouse management [106].

In areas of research outside of robotics, the study of the mean first passage time is

of general mathematical and engineering interest. Similar to the fastest mixing Markov

chain, the mean first passage time is a metric by which to gauge the performance of

a random walk. The mean first passage time is also potentially useful in determining

how quickly information propagates in an online network [9] or how quickly an epidemic

spreads through a contact network [105].
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3.1 Contributions

The contributions of this chapter 1 are as follows. First, we provide a convex opti-

mization framework to minimize the Kemeny constant of a reversible Markov chain given

the underlying graph topology of the random walk and the desired stationary distribu-

tion. Second, we extend the formulation of the mean first passage time to the network

environments with non-homogeneous travel times, a generalization not yet looked at in

the literature. We denote this extension the weighted Kemeny constant. Third, we derive

a closed form solution for the weighted Kemeny constant and show its relation to the

Kemeny constant. Fourth, we provide a convex optimization framework to minimize the

weighted Kemeny constant of a Markov chain with desired stationary distribution. Fifth,

we provide a semidefinite program (SDP) formulation for the optimization of the Kemeny

constant and the weighted Kemeny constant. Finally, we look at two stochastic surveil-

lance scenarios; in the first scenario we provide a setup in which minimizing the weighted

Kemeny constant leads to the optimal Markov-chain strategy. In the second surveil-

lance scenario we establish through numerical simulation that the Markov chain with the

minimum weighted Kemeny constant performs substantially better compared with other

well-known Markov chains like the the fastest mixing chain and the Metropolis-Hastings

Markov chain.

3.2 Organization

We state the contributions of the chapter is Section 3.1. We then summarize the

notation which we use throughout this chapter and the next. We also briefly review

properties of Markov chains. In Section 3.3 we give background for the Kemeny constant

and present our results for its minimization. In Section 3.4 we introduce and provide

1This is joint work with Rushabh Patel
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detailed characterization of the weighted Kemeny constant as well as its minimization.

In Section 3.5 we provide practical surveillance applications of the weighted Kemeny

constant. In the final Section we present our conclusions and future research directions.

Notation

We use the notation A = [aij] to denote a matrix A with the element aij in its i-th

row and j-th column and, unless otherwise indicated, use bold-faced letters to denote

vectors. Letting δij denote the Kronecker delta, Ad = [δijaij] represents the diagonal

matrix whose diagonal elements are the diagonal elements of the matrix A. The column

vector of all ones and length n is denoted by 1n ∈ Rn×1 and I represents the identity

matrix of appropriate dimension. We use diag[b] to denote the diagonal matrix generated

by vector b and Tr[A] to denote the trace of matrix A.

Properties of Markov chains

A Markov chain is a sequence of random variables taking value in the finite set

{1, . . . , n} with the Markov property, namely that, the future state depends only on the

present state; see [50, 55] for more details. Let Xk ∈ {1, . . . , n} denote the location of a

random walker at time k ∈ {0, 1, 2, . . . }. Some terminology for Makov chains follows:

(1) A Markov chain is time-homogeneous if P[Xn+1 = j|Xn = i] = P[Xn = j|Xn−1 =

i] = pij, where P ∈ Rn×n is the transition matrix of the Markov chain.

(2) The vector π ∈ Rn×1 is a stationary distribution of P if
∑n

i=1 πi = 1, 0 ≤ πi ≤

1 for all i ∈ {1, . . . , n} and πTP = πT .

(3) A time-homogeneous Markov chain is said to be reversible if πipij = πjpji, for

all i, j ∈ {1, . . . , n}. For reversible Markov chains, π is always a steady state
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distribution.

(4) A Markov chain is irreducible if there exists a t such that for all i, j ∈ {1, . . . , n},

(P t)ij > 0.

(5) If the Markov chain is irreducible, then there is a unique stationary distribution π,

and the corresponding eigenvalues of the transition matrix, λi for i ∈ {1, . . . , n},

are such that λ1 = 1, |λi| ≤ 1 and λi 6= 1 for i ∈ {2, . . . , n}.

For further details on irreducible matrices and about results (4) and (5) see [71,

Chapter 8]. In this and the next chapter we consider finite irreducible time-homogeneous

Markov chains.

3.3 The Kemeny constant and its minimization

Consider a undirected weighted graph G = (V , E, P ) with node set V := {1, . . . , n},

edge set E ⊂ V × V , and weight matrix P = [pij] with the property that pij ≥ 0 if

(i, j) ∈ E and pij = 0 otherwise. We interpret the weight of edge (i, j) as the prob-

ability of moving along that edge. Therefore, element pij in the matrix represents the

probability with which the random walk visits node j from node i. Throughout this docu-

ment we assume that the underlying undirected graph (V , E) associated to the transition

probabilities P is connected.

In this section we look into a discrete-time random walk defined by a Markov chain on

a graph G. At each time step (hop) of the random walk we move to a new node or stay at

the current node according to the transition probabilities described by a transition matrix

P as discussed above. We do this with three objectives in mind. The first objective is

to analyze the random walk and characterize the average visit time between nodes in

the graph. The second objective is to minimize the average visit time between any two
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nodes and the final is to achieve a long term (infinite horizon) visit frequency πi at node

i. Here, the frequency πi is the ratio of visits to node i divided by the total number of

visits to all nodes in the graph. Throughout this chapter, we describe the random walk

using realizations of a Markov chain with transition matrix P = [pij].

3.3.1 The mean first passage time for a weighted graph

LetXk ∈ {1, . . . , n} denote the location of the random walker at time k ∈ {0, 1, 2, . . . }.

For any two nodes i, j ∈ {1, . . . , n}, the first passage time from i to j, denoted by Tij, is

the first time that the random walker starting at node i at time 0 reaches node j, that

is,

Tij = min{k ≥ 1 | Xk = j given that X0 = i}.

It is convenient to introduce the shorthand mij = E[Tij], and to define the mean first

passage time matrix M to have entries mij, for i, j ∈ {1, . . . , n}. The mean first passage

time from start node i, denoted by ki, is the expected first passage time from node i to

a random node selected according to the stationary distribution π, i.e.,

ki =
n∑
j=1

mijπj.

It is well known [52] that the mean first passage time from a start node is independent

of the start node, that is, ki = kj for all i, j ∈ {1, . . . , n}. Accordingly, we let K = ki,

for all i ∈ {1, . . . , n}, denote the mean first passage time, also known as the Kemeny

constant, of the Markov chain.

Next, we provide formulas for these quantities. By definition, the first passage time
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from i to j satisfies the recursive formula:

Tij =


1, with probability pij,

Tkj + 1, with probability pik, k 6= j.

Taking the expectation, we compute

mij = pij +
n∑

k=1,k 6=j

pik(mkj + 1) = 1 +
n∑

k=1,k 6=j

pikmkj,

or in matrix notation,

(I − P )M = 1n1
T
n − PMd, (3.1)

where P is the transition matrix of the Markov chain. If the Markov chain is irreducible

with stationary distribution π, then one can show Md = diag[{1/π1, . . . , 1/πn}], and

πTMπ =
n∑
i=1

πi

n∑
j=1

πjmij =
n∑
i=1

πiki = K.

Clearly, the Kemeny constant can be written as the function P 7→ K(P ), however, to

ease notation we simply write K and use K(P ) only when we wish to emphasize the

constant’s dependence on P .

The Kemeny constant K = πTMπ can be computed from equation (3.1) or can be

expressed as a function of the eigenvalues of the transition matrix P as is stated in the

following theorem [52].

Theorem 18 (Kemeny constant of an irreducible Markov chain): Consider a Markov

chain with an irreducible transition matrix P with eigenvalues λ1 = 1 and λi, i ∈
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{2, . . . , n}. The Kemeny constant of the Markov chain is given by

K = 1 +
n∑
i=2

1

1− λi
.

Using Theorem 18, we derive the following equivalent expression for reversible Markov

chains in terms of the trace of a symmetric positive definite matrix. Before stating our

result, we first introduce some notation. Given a stationary distribution vector π ∈ Rn×1

for a Markov chain with transition matrix P ∈ Rn×n, we define the matrix Π ∈ Rn×n as

Π = diag[π] and the vector q ∈ Rn×1 as qT = (
√
π1, . . . ,

√
πn). We are now ready to

state our first result.

Theorem 19 (Kemeny constant of a reversible irreducible Markov chain): The Kemeny

constant of a reversible irreducible Markov chain with transition matrix P and stationary

distribution π is given by

K = Tr
[
(I − Π1/2PΠ−1/2 + qqT )−1

]
. (3.2)

Proof: We start by noting that P is an irreducible row-stochastic matrix therefore

the eigenvalues of P are {λ1 = 1, λ2, . . . , λn}, where |λi| ≤ 1 and λi 6= 1 for i ∈ {2, . . . , n}.

It follows that the eigenvalues of (I−P ) are {0, 1− λ2, . . . , 1− λn}. Since P is irreducible

and reversible, there exists a stationary distribution π ∈ Rn
>0 implying Π is invertible

and that Π1/2(I − P )Π−1/2 = I − Π1/2PΠ−1/2 is symmetric. It can easily be verified

that I − P and I −Π1/2PΠ−1/2 have the same eigenvalues and that q is the eigenvector

associated with the eigenvalue at 0. Next, notice the matrix (I − Π1/2PΠ−1/2 + qqT )

is symmetric and that (I − Π1/2PΠ−1/2 + qqT )q = q. Therefore, (I − Π1/2PΠ−1/2 +

qqT ) has an eigenvalue at 1 associated with the vector q. Since (I − Π1/2PΠ−1/2 +

qqT ) is symmetric, the eigenvectors corresponding to different eigenvalues are orthogonal;
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implying for eigenvector v 6= q that (I−Π1/2PΠ−1/2 +qqT )v = (I−Π1/2PΠ−1/2)v since

the eigenvalue at 1 is simple. Therefore, the eigenvalues of (I − Π1/2PΠ−1/2 + qqT ) are

{1, 1− λ2, . . . , 1− λn}. Thus, K = Tr
[
(I − Π1/2PΠ−1/2 + qqT )−1

]
= 1 + 1/(1 − λ2) +

. . .+ 1/(1− λn) = K.

Given the above result, we are now ready to state our first problem of interest.

Problem 1 (Optimizing the Kemeny constant of a reversible Markov chain): Given the

stationary distribution π and graph G with vertex set V and edge set E, determine the

transition probabilities P = [pij] solving:

minimize Tr
[
(I − Π1/2PΠ−1/2 + qqT )−1

]
subject to

n∑
j=1

pij = 1, for each i ∈ {1, . . . , n}

πipij = πjpji, for each (i, j) ∈ E

0 ≤ pij ≤ 1, for each (i, j) ∈ E

pij = 0, for each (i, j) /∈ E.

(3.3)

Remark 20 All feasible solutions P to Problem 1 are inherently irreducible transition

matrices: when P is not irreducible, the matrix (I−Π1/2PΠ−1/2 +qqT ) is not invertible.

Moreover, a feasible point always exists since the Metropolis-Hastings algorithm applied

to any irreducible transition matrix associated with G, generates a reversible transition

matrix which is irreducible and satisfies the stationary distribution constraint [47].

The following theorem establishes the convexity of the Kemeny constant for transition

matrices with fixed stationary distribution.

Theorem 21 (Convexity of Problem 1) Let Pπ denote the set of matrices associated

to irreducible reversible Markov chains with stationary distribution π. Then, Pπ is a

convex set and P 7→ K(P ) is a convex function over Pπ.
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Proof: Let S denote the set of symmetric positive definite matrices, for any sta-

tionary distribution π ∈ Rn
>0, denote the set SP,π := {I −Π1/2PΠ−1/2 + qqT | P ∈ Pπ}.

We begin by showing that Pπ is a convex set. Let P1, P2 ∈ Pπ, then Pπ is convex if for

an arbitrary θ ∈ [0, 1] that

θP1 + (1− θ)P2 = P3 ∈ Pπ. (3.4)

Pre and post multiplying (3.4) by Π1/2 and Π−1/2, respectively, we have that θΠ1/2P1Π−1/2+

(1 − θ)Π1/2P2Π−1/2 = Π1/2P3Π−1/2. Then Π1/2P3Π−1/2 is symmetric since Π1/2P1Π−1/2

and Π1/2P2Π−1/2 are symmetric. Pre multiplying (3.4) by πT we easily verify that the

stationary distribution P3 is πT and similarly, post multiplying by 1n verifies that P3

is row stochastic. Finally taking the left hand side of (3.4) to the n-th power gives

(θP1 + (1− θ)P2)n = θnP n
1 + (1− θ)nP n

2 + ζ, where ζ denotes the sum of all other terms

in the expansion and has the property ζij ≥ 0 for all i, j since P1 and P2 are non-negative

element-wise matrices. Moreover from irreducibility, there exists a sufficiently large N

such that for n > N , (P n
1 )ij > 0 and (P n

2 )ij > 0 for all i, j, which implies (P n
3 )ij > 0,

therefore P3 ∈ Pπ and Pπ is convex.

Next we show that SP,π ⊂ S. From the proof of Theorem 19 we have for P ∈ Pπ that

I −Π1/2PΠ−1/2 + qqT has eigenvalues {1, 1−λ2, . . . , 1−λn}, where λi for i ∈ {1, . . . , n}

are the eigenvalues of P , where λi ≤ |1| for all i and λi 6= 1 for i ∈ {2, . . . , n}. Therefore,

all eigenvalues of I −Π1/2PΠ−1/2 +qqT are strictly greater than zero. Finally, since P is

reversible Π1/2PΠ−1/2 is symmetric implying (I−Π1/2PΠ−1/2+qqT )T = I−Π1/2PΠ−1/2+

qqT and so SP,π ⊂ S.

Finally, define the mapping g : Pπ 7→ SP,π by g(X) = I − Π1/2XΠ−1/2 + qqT . This

is an affine mapping from the convex set Pπ to a subset of S. From [41] we know

that Tr[X−1] is convex for X ∈ S, therefore the composition with the affine mapping
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g : Pπ 7→ SP,π ⊂ S, Tr[g(X)−1] is also convex [19, Chapter 3.2.2].

Problem 1 includes constraints on the stationary distribution of the transition matrix, a

notion which has not been looked at in the literature before. The author of [58] provides

bounds to determine the set of transition matrices such that K is minimized and [52]

gives special matrices for which the optimal Kemeny constant can be found, but these

are all approached for the general setting with no constraint on the actual stationary

distribution. In real-world settings, constraints on the stationary distribution are impor-

tant and have many practical interpretations. For example, it is often desirable to visit

certain regions more frequently than other based on each region’s relative importance.

3.3.2 SDP framework for optimizing the Kemeny constant

Here we show how Problem 1 can be equivalently rewritten as an SDP by introducing

a symmetric slack matrix.

Problem 2 (Optimizing the Kemeny constant of a reversible Markov chain (SDP)):

Given the stationary distribution π and graph G with vertex set V and edge set E, deter-

mine X = [xij] and the transition probabilities P = [pij] solving:

minimize Tr[X]

subject to

 I − Π1/2PΠ−1/2 + qqT I

I X

 � 0

n∑
j=1

pij = 1, for each i ∈ {1, . . . , n}

πipij = πjpji, for each (i, j) ∈ E

0 ≤ pij ≤ 1, for each (i, j) ∈ E

pij = 0, for each (i, j) /∈ E.
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The first inequality constraint in Problem 2 represents a linear matrix inequality (LMI)

and denotes that the matrix is positive semidefinite. Since the matrix in the LMI has

off-diagonal entries equal to the identity matrix, it holds true if and only if X is positive

definite and (I −Π1/2PΠ−1/2 + qqT )−X−1 is positive semidefinite [3, Theorem 1]. This

implies (I−Π1/2PΠ−1/2+qqT ) is positive definite and thatX � (I−Π1/2PΠ−1/2+qqT )−1.

Therefore, the SDP given by Problem 2 minimizes the Kemeny constant.

3.4 The weighted Kemeny constant and its mini-

mization

In most practical applications, distance/time traveled and service costs/times are

important factors in the model of the system. We incorporate these concepts by allowing

for an additional set of weighted edges in our graph in addition to the edge weights which

describe the transition probabilities. Such a system can be represented by the doubly-

weighted graph G = (V , E, P,D), where D = [dij] is a weight matrix with the properties

that: if (i, i) ∈ E, then dii ≥ 0; if (i, j) ∈ E, i 6= j, then dij > 0 ; and if (i, j) /∈ E,

then dij = 0. The weighted adjacency matrix P = [pij] has the same interpretation as

before as an irreducible row-stochastic transition matrix P which governs the random

walk on the graph. An example of a doubly-weighted graph is shown in Figure 3.1. In

the following, we will interpret dij, i 6= j as the time to travel between two nodes, i and

j, in the graph and dii as the service time at node i. We discuss another motivating

example and interpretation for dij in a later section.

Recall that Xk = i denotes that the random walker is at node i at time k. If a sample

trajectory of the random walk is X0 = i, X1 = j, X2 = k, then the time instant at which

a random walker arrives in state X2 is dij + djk. Thus the time interval between two
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Figure 3.1: Example of a doubly-weighted graph G = (V, E, P,D) with three nodes:
(a) shows the edge set, E, allowed for the graph with three nodes, (b) shows the
probabilities, pij to move along each edge, and (c) shows the time (i.e., distance
traveled), dij to move along each edge.

consecutive steps of this random walk depends on the weighted adjacency matrix, D, of

the graph and is not constant.

In the following analysis, we look at several characterization and optimization objec-

tives: The first involves extending the notion of the Kemeny constant to doubly-weighted

graphs and providing a detailed characterization of this extension. The second involves

the minimization of the mean first passage time of a doubly-weighted graph and the third

involves characterization and minimization of the mean time to execute a single hop. The

first and second objectives are motivated by the need to minimize visit times to nodes

in the graph, and the third is motivated by the desire to minimize resource consumption

when moving between nodes. We seek to design transition matrices P with stationary

distribution π which optimize each problem. We start with the first objective.

3.4.1 The mean first passage time for a doubly-weighted graph

The mean first passage time for the Markov chain on a weighted graph G = (V , E, P )

by definition, is simply its Kemeny constant. Recall that the mean first passage time

for node i, defined by ki, is determined by taking the expectation over the first passage
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times mij, from node i to all other nodes j. We present an analogous notion of the first

passage time between two nodes on a doubly-weighted graph. We start with defining the

first passage time random variable for a random walk on a doubly-weighted graph and

provide a recursive formulation for its expectation.

As in Section 3.3.1, for any two nodes i, j ∈ {1, . . . , n}, the first passage time from i

to j is the first time that the random walker starting at node i at time 0 reaches node j,

that is,

Tij = min
{ k−1∑
n=0

dXn,Xn+1 , for k ≥ 1 | Xk = j given that X0 = i
}
.

Lemma 22 (First passage time for a doubly-weighted graph): Let nij = E[Tij] denote the

mean first passage time to go from i to j for a graph with weight matrix D and transition

matrix P . Then

nij = pij(dij) +
∑
k 6=j

pik(nkj + dik), (3.5)

or, in matrix notation,

(I − P )N = (P ◦D)1n1
T
n − PNd, (3.6)

where (P ◦D) is the element-wise product between P and D and where Nd = [δijnij].

Proof: By its definition, the first passage time satisfies the recursive formula:

Tij =


dij, with probability pij,

dik + Tkj, with probability pik, k 6= j.

(3.7)
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Therefore, the results follows from taking the expectation:

E[Tij] = dijpij +
∑
k 6=j

pik(E[Tkj] + dik).

The matrix N , which we call the mean first passage time matrix for a doubly-weighted

graph thus satisfies an equation similar to (3.1) for the passage time matrix M of a graph

with a single weight matrix, the transition matrix P . In fact, we see that equation (3.6)

is equivalent to (3.1) when dij = 1 for all (i, j) ∈ E (i.e., for an unweighted graph).

The random variable tracking the time interval between consecutive visits to a node

has been referred to as the refresh time of that node [76] and nii is the expected value

of the refresh time for the random walk. We now obtain a relation between π and the

refresh times nii.

Theorem 23 (Refresh times for doubly-weighted graphs) Consider a Markov

chain on a doubly-weighted graph G = (V , E, P,D) with stationary distribution π and

associated mean first passage time matrix N . The refresh time for node i is given by

nii = (πT (P ◦D)1n)/πi, implying that

Nd = πT (P ◦D)1nMd. (3.8)

Proof: The stationary distribution of the transition matrix P is π ∈ Rn×1. There-

fore, premultiplying equation (3.6) by πT , we obtain

0 = πT (P ◦D)1n1
T
n − πTNd,

where the left hand side of equation (3.6) is zero since πT (I − P ) = πT − πT = 0. Now

56



Robotic Surveillance: Detection of Intruder Location Chapter 3

we have that (πT (P ◦W )1n)1Tn = πTNd. Since Nd is a diagonal matrix and πT (P ◦D)1n

is a scalar, we get that πinii = πT (P ◦ D)1n. Thus, dividing by πi we have that

nii = πT (P ◦D)1n/πi, and in matrix form Nd = πT (P ◦D)1ndiag({1/π1, . . . , 1 πn}) =

πT (P ◦D)1nMd .

This theorem implies that the refresh time nii of the random walk is directly propor-

tional to the visit frequencies 1/πi. Therefore, the relative visit frequencies of one node

compared to another are not a function of the weight matrix D and only depend on the

stationary distribution of the transition matrix P .

We now investigate the properties of the mean first passage time of the weighted

random walk. The mean first passage time for a doubly-weighted graph G = (V , E, P,D)

with associated passage times matrix N is given by KD = πTkD, where kD = Nπ is the

vector of first passage times and the i−th entry kD,i in kD denotes the mean time to go

from i to any other node. We refer to the mean first passage time for a doubly-weighted

graph, KD, as the weighted Kemeny constant. We now provide an analytic expression

for the vector kD ∈ Rn×1.

Lemma 24 (First passage times for a doubly-weighted graph): Given a Markov chain on

a doubly-weighted graph G = (V , E, P,D) with stationary distribution π and associated

first passage time matrix N , the following equality holds:

(I − P )kD = (P ◦D)1n − 1nπ
T (P ◦D)1n, (3.9)

where kD = Nπ.
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Proof: Post multiplying equation (3.6) on both sides by π gives

(I − P )Nπ =(P ◦D)1n1
T
nπ − PNdπ,

(I − P )kD =(P ◦D)1n − P (πT (P ◦D)1n)1n

=(P ◦D)1n − 1nπ
T (P ◦D)1n.

The right hand side of (3.9) gives the insight that, in general, kD,i 6= kD,j on the doubly-

weighted graph, unlike the counterpart for the single-weighted graph (where ki = K for

all i ∈ {1, . . . , n}). Interestingly enough however, there does exist a relation between the

weighted Kemeny constant KD and the Kemeny constant K as is stated in the following

theorem, whose proof is postponed to the Appendix.

Theorem 25 (Weighted Kemeny constant of a Markov chain): For the doubly-weighted

graph G = (V , E, P,D), the weighted Kemeny constant KD of the Markov chain is given

by

KD = πT (P ◦D)1nK, (3.10)

where K is the Kemeny constant associated with the irreducible transition matrix P with

stationary distribution π .

Remark 26 The expected number of hops to go from one node to another in a Markov

chain with transition matrix P is its Kemeny constant. The expected distance travelled

(and hence time taken) executing one hop is
∑

i πi
∑

j pijdij = π(P ◦D)1n. Hence, it is

consistent with intuition that the expected time to travel from one node to another should

be KπT (P ◦D)1n as is formally shown in the appendix.

58



Robotic Surveillance: Detection of Intruder Location Chapter 3

Given the above results, we are now ready to state another problem of interest.

Problem 3 (Optimizing the weighted Kemeny constant of a reversible Markov chain):

Given the stationary distribution π and graph G with vertex set V, edge set E and weight

matrix D, determine the transition probabilities P = [pij] solving:

minimize
(
πT (P ◦D)1n

) (
Tr
[
(I − Π1/2PΠ−1/2 + qqT )−1

])
subject to

n∑
j=1

pij = 1, for each i ∈ {1, . . . , n}

πipij = πjpji, for each (i, j) ∈ E

0 ≤ pij ≤ 1, for each (i, j) ∈ E

pij = 0, for each (i, j) /∈ E.

The following theorem establishes the convexity of the weighted Kemeny constant for

transition matrices with fixed stationary distribution.

Theorem 27 (Convexity of Problem 3) Given the graph G with vertex set V, edge

set E and weight matrix D, let PG,π denote the set of matrices associated with G that

are irreducible reversible Markov chains with stationary distribution π. Then, PG,π is a

convex set and P 7→ πT (P ◦D)1nK(P ) is a convex function over PG,π.

Proof: Let S denote the set of symmetric positive definite matrices, for any station-

ary distribution π ∈ Rn
>0, denote the set SG,P,π := {I − Π1/2PΠ−1/2 + qqT | P ∈ PG,π}.

The proof of convexity of the set PG,π is similar to that of the proof of Pπ in Theorem 21

and so is omitted for brevity. Then from the proof of Theorem 21 we know there exists an

affine mapping g(X) : PG,π 7→ SG,P,π given by g(X) = I − Π1/2PΠ−1/2 + qqT . We know

from [41] that f(X) = Tr[X−1] is convex, therefore the perspective function h(X, t) =

{tf(X/t) | t > 0} is also convex [19, Chapter 3.2.6]. Moreover the composition of h(X, t)
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with the affine mapping g(X), h(g(X), t) is also convex. Let t = (πT (X ◦ D)1n)1/2,

and notice that πT (X ◦ D)1n > 0 for X ∈ PG,π and therefore t > 0. Also notice

that for a constant k ∈ Rn
>0 and matrix X ∈ Rn×n that Tr[(X

k
)−1] = kTr[X−1]. Then

h(g(X), t) = tTr[(g(X)
t

)−1] = t2Tr[(g(X)−1] = πT (X◦D)1nTr[(I−Π1/2XΠ−1/2+qqT )−1]

for X ∈ PG,π.

3.4.2 SDP framework for optimizing the weighted Kemeny con-

stant

In a similar fashion to Problem 1, we can formulate Problem 3 as an SDP by intro-

ducing the symmetric slack matrix X ∈ Rn×n and the scalar variable t as is shown in the

following.

Problem 4 (Optimizing the weighted Kemeny constant of a reversible Markov chain

(SDP)): Given the stationary distribution π and graph G with vertex set V, edge set E
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and weight matrix D, determine Y = [yij], X and t solving:

minimize Tr[X]

subject to

 t(I + qqT )− Π1/2YΠ−1/2 I

I X

 � 0

n∑
j=1

yij = t, for each i ∈ {1, . . . , n}

πiyij = πjyji, for each (i, j) ∈ E

0 ≤ yij ≤ t, for each (i, j) ∈ E

yij = 0, for each (i, j) /∈ E

πT (Y ◦D)1n = 1

t ≥ 0.

Then, the transition matrix P is given by P = Y/t.

As in Problem 2, the first inequality constraint in Problem 4 represents an LMI. Before

noting when the LMI holds, first note that the constraints in Problem 4 imply that

Pt = Y and that t = 1
πT (P◦D)1n

. Hence, using a similar argument as in Problem 2, the

LMI constraint holds true if and only if X � πT (P ◦D)1n(I−Π1/2PΠ−1/2+qqT )−1 where

X and πT (P ◦D)1n(I − Π1/2PΠ−1/2 + qqT )−1 are both positive definite, and therefore

the SDP given by Problem 4 minimizes the weighted Kemeny constant.

3.4.3 Minimizing single hop distance

We now look at the objective of minimizing the mean time for a single hop of a

random walk. At time k, let Sij be the time required to transition from i to j in a single
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hop along an edge of length dij. Then,

E [S] =
n∑
i=1

n∑
j=1

pijSij =
n∑
i=1

P [Xk = i]
n∑
j=1

dijP [Xk+1 = j]

=
n∑
i=1

n∑
j=1

πidijpij = πT (P ◦D)1n. (3.11)

The function πT (P ◦ D)1n is clearly convex in P . If one assumes that dii = 0 for all

i ∈ {1, . . . , n}, then minimizing (3.11) over P yields the trivial solution P = I. We can

take into account both the single hop distance as well as the Kemeny constant to design

a Markov chain as follows.

Problem 5 (Optimizing Kemeny constant and mean distance): Given the stationary

distribution π and graph G with vertex set V, edge set E and weight matrix D, and given

user specified constant α ∈ [0, 1], determine the transition probabilities P = [pij] solving:

minimize αTr
[
(I − Π1/2PΠ−1/2 + qqT )−1

]
+ (1− α)πT (P ◦D)1n

subject to
n∑
j=1

pij = 1, for each i ∈ {1, . . . , n}

πipij = πjpji, for each (i, j) ∈ E

0 ≤ pij ≤ 1, for each (i, j) ∈ E

pij = 0, for each (i, j) /∈ E.

This problem is convex since the sum of two convex problems is convex, moreover, it

can be extended to an SDP utilizing the LMI defined in Problem 2. In the context

where dii = 0 for all i ∈ {1, . . . , n}, varying the parameter α can be used to control the

connectivity of the Markov chain; the choice α = 1 ensures connectivity, and the choice

α = 0 minimizes the single hop distance while making the graph disconnected.
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3.5 Applications of the mean first passage time to

surveillance

The results on mean first passage time for doubly-weighted graphs (i.e., the weighted

Kemeny constant) presented in this work provide a general framework which can po-

tentially be applied to the analysis and design in a myriad of fields. We focus on one

application in particular; the intruder detection and surveillance problem. We look at

two variations of this problem:

Scenario I In practical stochastic intruder detection and surveillance scenarios, there

is often a desire to surveil some regions more than others (i.e.,have a pre- specified

stationary distribution) while simultaneously minimizing the time any one region has to

wait before it is serviced. For this setup, in every step of the random walk, the agent must

move to a new region and execute its surveillance task. Assuming we are working on a

doubly-weighted graph described by G = (V , E, P,D), let us also assume there is a fixed

persistent intruder in the environment and it takes si time for an agent to determine if

the intruder is in region i ∈ V . Denote the time to move from region i to region j by dij,

where we can assume, without loss of generality, that dii = 0. Then, we can define the

weight corresponding to the edge from i to j as dij = dij + sj. In this scenario we wish to

minimize the expected time to capture the persistent intruder when no prior knowledge

of their position is known.

Scenario II In this scenario we consider the intruder detection problem and adopt a

similar setup to Scenario I, however, we now assume a set of intruders are distributed

throughout the environment. Each intruder performs a malicious activity in its host

region for a fixed duration of time, which we call the intruder life-time, followed instan-
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taneously by another intruder. The intruder is caught only if the agent is in the same

region as the intruder for any duration of the intruder life-time. For simplicity only a

single intruder appears at a time.

In the following subsections we analyze the performance of various stochastic surveil-

lance policies as applied to Scenario I and Scenario II described above. More specifically,

we gauge the performance of other well-known Markov chain design algorithms against

the algorithms presented in this chapter.

3.5.1 Optimal strategy for Scenario I

In the context of Scenario I the weighted Kemeny constant of the agent’s transition

matrix, P , corresponds to the average time it takes to capture an intruder regardless

of where the agent and intruder are in the environment. Therefore by definition of the

Kemeny constant, we have the following immediate corollary for Scenario I.

Corollary 28 (Optimal surveillance and service strategy) The transition matrix

P which has minimal mean first passage time is the optimal strategy for the intruder

detection problem described by Scenario I.

This tells us that if we restrict ourselves to reversible Markov chains, then not only

is the chain with minimal mean first passage time optimal, but given the results from

Section 3.3 and 3.4, we can also optimally design this chain.

3.5.2 Numerical analysis of Scenario II

In Scenario II the transition matrix with minimum mean first passage time is not

guaranteed to be the optimal policy, and thus to gauge its performance compared to

other policies we analyze both homogeneous (uniform service/travel times) and hetero-

geneous environment cases. To compare performance we generate a random walk for the
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environment using the Metropolis-Hastings, fastest mixing Markov chain (FMMC) [18],

and Kemeny constant algorithms. While game theoretic frameworks [27, 17] also gen-

erate stochastic policies, they are based on assumptions on the intruder behavior. We

avoid such assumptions here and, therefore, omit them from our comparative analysis.

We first look at the homogeneous case which is described by the discretized envi-

ronment shown in Figure 3.2. We assume that a single surveillance agent executes a

random walk in the environment, spending 1 time unit in each region, and that the agent

transitions between two connected regions instantaneously. Also, we assume a uniform

stationary distribution on the transition matrix (each node in the region must be visited

with equal likelihood). The Markov chain generated by the Metropolis-Hastings algo-

rithm is generated by applying the algorithm to the random walk described by pij = 1/di

for i 6= j and pij = 0 for i = j, where di is the degree of a node i (excluding self-loops) [47].

The intruder life-time is set to 66 time units and 500 intruders appear per simulation run

(the sequence in which the intruders appear is determined before each simulation run),

for a total simulation run of 33, 000 time units. As stated in the scenario description,

the intruder is caught if the surveillance agent is in the same region as the intruder for

any portion of the intruder life-time. Table 3.1 summarizes the statistical performance of

each algorithm after 200 runs of the simulation and justifies our use of the Kemeny con-

stant algorithm as a valid surveillance strategy; the Kemeny constant algorithm captures

intruders more frequently than the other two algorithms, and its worst case performance

is still better than the worst case performance of the other two algorithms. Although

results for an intruder life-time of only 66 time units are presented here, we have found

that the Kemeny constant algorithm always outperforms the other two algorithms or

is equivalent; the algorithms become equivalent in the limiting case, when the intruder

life-times are so low that no intruder can be caught, or when the intruder-life times are

so large that the intruder is always caught.
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Figure 3.2: Environment with two obstacle represented by an unweighted graph.

Algorithm Min Mean Max StdDev K

Kemeny constant 26.6 32.4 38.2 2.1 207
FMMC 24.6 29.8 34.4 1.9 236

Metropolis-Hastings 24.8 31.1 37 2.1 231

Table 3.1: Statistics on the percentage of intruders caught in 200 simulation runs for
the environment in Fig. 3.2.

For the heterogeneous case, we work with the environment shown in Figure 3.3. In

this environment the time taken by the agent to travel an edge is no longer instantaneous

and has travel weights as shown in the figure. Once in a new region, the agent is required

to spend 1 time unit examining the region for malicious activities. We again assume that

each node in the region must be visited with equal likelihood. We again also assume an

intruder is caught if the surveillance agent is in the same region as a intruder for any

portion of the intruder life-time, but now set the intruder life-time to 11 time units with

a intruder appearing 500 times (total of 5500 time units per simulation run). Since the

design of the FMMC and Metropolis-Hastings algorithms do not inherently account for

non-uniform travel and service times, we also compare the performance of the random

walk generated by the weighted Kemeny constant algorithm against the random walk gen-

erated by solving Problem 5 with α = 0.1 (smaller α emphasizes minimizing the length of
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Figure 3.3: Various airport hub locations (top), and the corresponding weight map
(bottom). Edge weights between two hubs account for travel time between hubs plus
required service time once at hub. Self loops have no travel time so encompass only
service time required at hub.

the average edge traveled in the graph). Table 3.2 summarizes the statistical performance

of each algorithm after 200 runs of the simulation. The weighted Kemeny constant algo-

rithm’s performance compared to the FMMC and Metropolis-Hastings stochastic policies

in this scenario is significantly better than what was seen in the first scenario. We also

note that the random walk policy determined by solving Problem 5 performs comparably

to the weighted Kemeny constant policy. This is to be expected since the Metropolis-

Hastings and FMMC stochastic policies do not account for heterogeneous travel/service

times on the graph. To get a better understanding of each algorithm’s performance in

this intruder scenario, the simulation is run for different intruder life-times, the results

of which can be seen in Figure 3.4. There are several key items worth noting from the
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Figure 3.4: Percentage of intruders detected for varying intruder life-times by a surveil-
lance agent executing a random walk according to the Markov chain generated by the
mean first-passage time algorithm (circle), FMMC algorithm (square), M-H algorithm
(asterisk), and the Markov chain generated by solving Problem 5 (diamond). Average
points and standard deviation error bars are taken over 200 runs, where the intruder
appears 500 times for each run.

Algorithm Min Mean Max StdDev KD

Weighted Kemeny 44 50.1 56 2.2 19.5
Kemeny+Mean Dist. 40.6 47.1 53 2.2 23.1

FMMC 29.8 35.4 40.4 2.2 26.2
Metropolis-Hastings 30.4 36 41.6 2.1 26.5

Table 3.2: Statistics on the percentage of intruders caught in 200 simulation runs for
the environment in Fig. 3.3.

simulation. First, we see that the weighted Kemeny constant algorithm significantly out-

performs the other algorithms for a large range of intruder life-times. This matches our

intuition since the algorithm inherently minimizes average travel time between nodes.

Second, notice that the Markov chain generated by solving Problem 5 (with α = 0.1)

performs well for small intruder life-times but its performance plateaus quickly. This is

due to the fact that the transition matrix generated by solving Problem 5 forces agents

to stay at a given node rather than jump nodes; as one would suspect, once intruder

life-times increase, a strategy which places emphasis on an agent that moves between

regions will begin to perform relatively better. Finally, observe that as intruder life-time
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increases, the algorithms’ capture rates start to converge. As in the homogeneous case,

this is due to the fact that once the intruder’s life-time is long enough, the agent will

almost surely reach the intruder regardless of the policy it follows.

To solve for the Markov chains with minimal Kemeny constant (Problem 2 and Prob-

lem 4) and with fastest mixing rate, we use CVX, a Matlab-based package for convex

programs [45]. The execution time to solve each Markov chain for the examples described

above takes on the order of a couple seconds using a computer with a 1.3 GHz processor.

Appendix

Proof of Theorem 25: Let β = πT (P ◦ D)1n, then from Theorem 23 we have that Nd

from (3.6) can be written as βMd. Now from Theorem 30 the general solution to (3.6) is

N = G((P ◦D)1n1
T
n − βPMd) + (I −G(I − P ))U, (3.12)

where G is a generalized inverse of (I−P ) (see Theorem 32) and U is an arbitrary matrix

as long as the consistency condition

(
I − (I − P )G

)(
(P ◦D)1n1

T
n − βPMd

)
= 0 (3.13)

holds. Substituting (3.18) from Lemma 33 in for (I − P )G in (3.13) gives that

(
I − (I − P )G

)(
(P ◦D)1n1

T
n − βPMd

)
=
tπT

πT t
((P ◦D)1n1

T
n − βPMd),

=
t

πT t
(πT (P ◦D)1n1

T
n − βπTPMd),

=
t

πT t
(β1Tn − β1Tn ) = 0,
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and so we have that the system of equations is consistent. This implies we can design

U to reduce (3.12). We start by seeing how the second term in (3.12) can be reduced.

Using (3.19) from Lemma 33 we have that (I − G(I − P ))U = 1nuT

uT 1n
U = 1nh

T , where

hT = uTU
uT 1n

. Hence, we can re-write (3.12) as

N = G((P ◦D)1n1
T
n − βPMd) + 1nh

T , (3.14)

designing U reduces to designing the n elements of h. Let H = diag[h], then 1nh
T =

1n1
T
nH. Also, let Ξ = 1nπ

T , where Ξd = diag[π]. Utilizing these expressions in (3.14)

and taking the diagonal elements gives

(
N = G((P ◦D)1n1

T
n − βPMd) + 1n1

T
nH
)

d
,

=⇒ βMd = (G(P ◦D)Ξ)dMd − β(GP )dMd +H,

=⇒ H = βMd − (G(P ◦D)Ξ)dMd + β(GP )dMd,

where we use Lemma 31 to get the initial diagonal reduction. Substituting the expression

for H into (3.14), and recalling that 1nh
T = 1n1

T
nH gives

N =
(
G(P ◦D)Ξ− 1n1

T
n (G(P ◦D)Ξ)d + β(1n1

T
n (GP )d −GP + 1n1

T
n )
)
Md, (3.15)

where we use the fact that 1n1
T
n = ΞMd. Now from (3.19) we have that I −G−GP =

1nuT

uT 1n
. Notice that 1n1

T
n (I − G − GP )d = 1n1

T
n (1nu

T

uT 1n
)d = 1nuT

uT 1n
and so this implies that

1n1
T
n−1n1TnGd+1n1

T
n (GP )d = I−G+GP , which implies that 1n1

T
n+1n1

T
n (GP )d−GP =

I −G+ 1n1
T
nGd. Substituting this into (3.15) gives the following reduced form.

N =
(
G(P ◦D)Ξ− 1n1

T
n (G(P ◦D)Ξ)d + β(1n1

T
nGd + I −G)

)
Md. (3.16)
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Observing the definition of the generalized inverse, G, given by Theorem 15 part (ii) and

recalling that Ξ = 1nπ
T , we can rewrite the first term on the right hand side of (16) as

G(P ◦ D)Ξ = (I − P + tuT )−1(P ◦ D)1nπ
T . Substituting (3.20) in for the right hand

side with t = (P ◦D)1n gives G(P ◦D)Ξ = 1nπT

uT 1n
= 1

uT 1n
Ξ, and so 1n1

T
n (G(P ◦D)Ξ)d =

1n1
T
n ( 1
uT 1n

Ξ)d = 1
uT 1n

Ξ = G(P ◦ D)Ξ. Therefore, the first two terms in (3.16) cancel

giving the equality

N = β(1n1
T
nGd + I −G)Md. (3.17)

We have already defined t in the generalized inverse G but not u. Let u = π and multiply

the right hand side of (3.17) by π and the left hand side by πT . Utilizing equality (3.21)

from Lemma 33 gives

πTNπ = πTβ(1n1
T
nGd + I −G)Mdπ = β(1TnGd + πT − π

T

β
)1n

= β(1TnGd1n + 1− 1

β
) = β(Tr[G] + 1)− 1.

Noting that the eigenvalue at 1 for an irreducible row-stochastic matrix is unique, it

can be easily verified using the orthogonality property of left and right eigenvectors that

the eigenvalues of G−1 are λ̄i = (1 − λi) for i ∈ {2, . . . , n}, where λi are eigenvalues

of P and λi 6= 1. Therefore, it only remains to find λ̄1. Taking the trace of G−1 gives

Tr[I−P + (P ◦D)1nπ
T ] = Tr[I−P ] + Tr[(P ◦D)1nπ

T ] =
∑n

i=1(1−λi) +πT (P ◦D)1n,

which implies that λ̄1 = πT (P ◦ D)1n = β. Therefore, β(Tr[G] + 1) − 1 = β( 1
β

+∑n
i=2

1
1−λi + 1)− 1 = β(1 +

∑n
i=2

1
1−λi ).
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Supplemental Material

For completeness, we include the following results which are needed in the proof of

Theorem 25. We begin with some standard results on generalized inverses. For more

details refer to [50, Chapter 4] or [49] .

Definition 29 (Generalized inverse) A generalized inverse of an m× n matrix A is

defined as any n×m matrix A− that has the property

AA−A = A.

It should be noted that a generalized inverse always exists, although it is not always

unique. However, for non-singular matrices the generalized inverse is unique and cor-

responds to the usual notion of a matrix inverse. The following theorems summarize

practical considerations when working with generalized inverses.

Theorem 30 The equation Ax = b admits a solution if and only if every generalized

inverse A− satisfies

AA−b = b.

Then, we say Ax = b is consistent and all its general solutions are given by

x = A−b+ (A−A− I)z,

where z is an arbitrary vector. Moreover, a necessary and sufficient condition for the

equation AX = C to be consistent is that (I − AA−)C = 0, in which case the general
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solution is given by

X = A−C + (I − A−A)U,

where U is an arbitrary matrix.

The next two results come from [51, Chapter 7].

Lemma 31 (Diagonal matrix properties) For π with positive non-zero elements, let

1nπ
T = Ξ, where Ξd = diag[π]. Also, let Λ be any diagonal matrix, X any square matrix

of same dimensions as Λ, and D = (Ξd)−1, then

(i.) (XΛ)d = (Xd)Λ, and

(ii.) (X1n1
T
n )d = (XΞ)dD, and

(iii.) 1n1
T
nΞd = Ξ.

Theorem 32 (Generalized inverse of I − P ) Let P ∈ Rn×n be the transition matrix

of a irreducible Markov Chain with stationary distribution π. Let u, t ∈ Rn be any vectors

such that uT1n 6= 0 and πT t 6= 0, then

(i.) I − P + tuT is nonsingular, and

(ii.) (I − P + tuT )−1 is a generalized inverse of I − P .

Lemma 33 (Properties of the generalized inverse of I − P ) Let G = (V , E, P,D)

be a doubly-weighted graph with associated weight matrix D and irreducible transition

matrix P with stationary distribution π. Also let G = (I − P + tuT )−1 denote the

generalized inverse of (I − P ), then the following relations hold.

(I − P )G = I − tπ
T

πT t
, (3.18)
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G(I − P ) = I − 1nu
T

uT1n
, and (3.19)

1n

uT1n
= Gt. (3.20)

If t = (P ◦D)1n and uT = πT then

πTG =
πT

πT (P ◦D)1n
(3.21)

Proof: First, notice that (I − P + tuT )(I − P + tuT )−1 = I implies that

(I − P )G = I − tuTG. (3.22)

Multiplying both sides on the left by πT and noting that πT (I − P ) = 0 gives that

πT = (πT t)uTG. Dividing through by (πT t) gives

πT

πT t
= uTG, (3.23)

and substituting (3.23) into (3.22) gives (3.18).

Following a similar procedure as before with (I−P +tuT )−1(I−P +tuT ) = I, where

we now multiply both sides on the right by 1n and note that (I − P )1n = 0 results in

(3.20), which after appropriate substitution gives (3.19).

For the proof of equality (3.21), first we check that t = (P ◦D)1n and uT = πT satisfy

the conditions of Theorem 32. The definition of D guarantees that P ◦ D has at least

one non-zero element which implies πT t = πT (P ◦D)1n 6= 0. Also, uT1n = πT1n = 1.

Now substituting u and t into (3.23) gives (3.21).

74



Chapter 4

Robotic Surveillance:

Quickest Anomaly Detection

In this chapter we study a surveillance problem in which anomalies in regions of a net-

worked environment have to be detected based on noisy observations from the regions as

soon as possible after their occurence. Motivating applications for this setup are surveil-

lance tasks like detection of wilde fires, oil spills and other environmental monitoring

tasks in which large number of regions have to be monitored under extreme sensor and

modeling uncertainties. In many such scenarios, limited number of vehicles have to mon-

itor a large number of regions and the vehicles have to be deployed in a manner which is

most conducive to quick anomaly detection.

The framework for the surveillance problem studied in this chapter was introduced

in [95]. The authors in [95] proposed a Markov chain based routing policy termed the

Ensemble CUSUM Algorithm for this purpose. The Markov chains that they considered

were required to have transition matrices with identical columns.
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4.1 Contributions

We revisit the surveillance problem studied in [95]. The authors in [95] considered

an all to all graph topology more suitable for aerial vehicles. We extend their setup to

weighted graphs with arbitrary topologies, which we broadly refer to as robotic roadmaps.

Further, we only keep the assumption of irreducibility on the Markov chains and look at a

wider class of Markov chains than the one considered in [95]. We determine an expression

for the average detection delay in the generalized setting and find that it depends on the

first passage times of the Markov chain corresponding to the routing policy. We then

frame an optimization problem to find the Markov chain corresponding to the optimal

policy which minimizes the detection delay. We also provide an upper bound on the

minimum detection delay and frame an optimization problem to minimize the upper

bound. We prove that the upper bound optimization problem is convex and provide a

semidefinite program (SDP) formulation to solve it and obtain the corresponding efficient

policy. Using an illustrative example, we validate our expression for the detection delay

and also surmise that the efficient policy provides a detection delay close to that of the

optimal policy.

4.2 Organization

In Section 4.3, we describe the setup of the surveillance problem, formally define the

quickest detection task and state the Ensemble CUSUM Algorithm to address the task. In

Section 4.4, we review results on the CUSUM algorithm and the mean first passage time

of Markov chain random walks on graphs which will be used to analyze the Ensemble

CUSUM Algorithm. In Section 4.5, we analyze the performance of the Ensemble CUSUM

Algorithm and provide an upper bound on its performance. In Section 4.6, we present
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numerical simulations which validate our findings.

4.3 Problem Setup

We first describe our model for the environment and the mathematical model used

for simulating the presence of anomalies in the environment.

4.3.1 Environment

A networked environment similar to that in Chapter 3 is consired in this chapter as

well and is reviewed here for sake of completeness. The environment is modeled as a

graph G = (V,E) with node set V := {1, . . . , n} and edge set E ⊆ V × V . The nodes in

the graph correspond to the regions in the environment and the edges correspond to the

interconnections between them. The time taken to travel from region i to the neighboring

region j is dij and travel time matrix D = [dij] ∈ Rn×n with the property that dij ≥ 0 if

(i, j) ∈ E and dij = 0 otherwise.

The level of importance wi is assigned to region i and w = [wi] ∈ Rn×1 is the referred

to as the priority vector. Without loss of generality, wT1n = 1. The environment can

thus be described by the 4-tuple: E = 〈V,E,D,w〉. An example of the environment and

the graph corresponding to it is shown in Fig. 4.1 and Fig. 4.2 respectively.

4.3.2 Observations in Environment

When the surveillance vehicle visits a region in the environment, it makes an obser-

vation about the region. Based on all the observations made in the region up to that

point, it predicts the presence of anomalies in the region.

Let the set of observations made by the surveillance vehicle at the region k be
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Figure 4.1: The environment is an area separated into seven regions of interest. Ob-
servations made in the highlighted region change after an anomaly occurs. The aim
of the surveillance vehicle is to detect this change as soon as possible.
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Figure 4.2: The robotic roadmap corresponding to the environment can be represented
by a graph. The edge weights of the graph represent travel times between neighboring
regions.

{yk,1, yk,2, . . .}. If an anomaly occurs in the region at some iteration v, then the ob-

servations {yk,1, . . . yk,v} are i.i.d. with probability density function f 0
k and the observa-

tions {yk,v, yk,v+1, . . .} are i.i.d. with probability density function f 1
k . We use the nota-

tion D(f 1
k , f

0
k ) to denote the Kullback-Leibler divergence of f 0

k from f 1
k and also denote

Dk := D(f 1
k , f

0
k ) for convenience. We now describe the spatial quickest detection task and

quantify it.
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4.3.3 Quickest Detection of Anomalies

The surveillance vehicle adopts a policy described by the tuple P = 〈P, q〉. It moves

in the environment E = 〈V,E,D,w〉 according to a Markov chain with stationary distri-

bution q = [qi] ∈ Rn×1 and transition matrix P = [pij] ∈ Rn×n. If (i, j) ∈ E, then pij ≥ 0

and pij = 0 otherwise.

The aim of the vehicle is to detect anomalies in a region based on observations made

in that region in least amount of time possible. More specifically, using a routing policy

P , it is required to minimize the average detection delay defined below.

Definition 34 (Average Detection Delay) Let the vehicle service the environment

E = 〈V,E,D,w〉 using policy P for k ∈ {1, . . . , n} and let δk(P) be the delay in detecting

an anomaly at region k. Then the task of the vehicle is to minimize the average detection

delay δavg(P) given by

δavg(P) =
n∑
k=1

wkE[δk(P)]. (4.1)

4.3.4 Ensemble CUSUM Algorithm

The surveillance vehicle visits the regions in E according to a realization of the Markov

chain with stationary distribution q and transition matrix P . When the vehicle is in a

particular region of the environment, it runs a local version of the CUSUM algorithm. We

refer to the n parallel CUSUM algorithms by Ensemble CUSUM Algorithm (Algorithm 4).

We wish to find the surveillance policy P = 〈P, q〉 for the environment E = 〈V,E,D,w〉

which minimizes the average detection delay δavg(P) defined in equation (4.1) in the

previous section.

Remark 35 (Service times): The service times required for conducting surveillance in

different regions are not modeled in the problem setup. However, they can be incorporated
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Algorithm 4: Ensemble CUSUM Algorithm

Given: Policy P = 〈P, q〉, threshold η, initial state x.
Set: Λk,0 = 0 for k ∈ {1, . . . , n}, local variable τ = 1 for all regions.

1 Make observation yk,τ at region x. ;

2 Λx,τ =
(

Λx,τ−1 + log f1x(yx,τ )

f0x(yx,τ )

)+

;

3 if Λx,τ > η then
4 Declare an anomaly at region x.;
5 Set Λx,τ = 0;

6 end
7 Set τ ← τ + 1 for x;
8 Select x← z with probability P (x, z) ;
9 Repeat from step 1.

in a straighforward manner. If v ∈ Rn×1 is the constant vector of service times, they can

be accounted for by modifying the travel time matrix to D̄ := D + 1nv
T .

Remark 36 (Knowledge of probability density functions): The probability density func-

tions in the absence and presence of anomalies are assumed to be known to the surveillance

vehicle. In a scenario where the probability density functions are not known, the CUSUM

algoithm can be replaced by the minimax robust quickest change detection algorithm [103]

and the results presented in this chapter can be extended to apply to that scenario as well.

4.4 Preliminary Results

We will now state some preliminary results which will be used in analysing the En-

semble CUSUM Algorithm. We will start by reviewing some performance guarantees on

the CUSUM algorithm.
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4.4.1 CUSUM Algorithm

The CUSUM algorithm is designed for quick prediction of anomalies while at the same

time, avoiding making false alarms [88]. In the CUSUM algorithm, at each iteration

τ ∈ N made in region k, (i) observation yk,τ is collected, (ii) the statistic

Λk,τ =

(
Λk,τ−1 + log

f 1
k (yk,τ )

f 0
k (yk,τ )

)+

with Λk,0 = 0 is computed and (iii) a change is declared if Λk,τ > η. Let Ok be the

observation at which an anomaly is declared at region k. For a given threshold η, the

expectation of Ok conditioned on the presence of an anomaly, i.e. the worst expected

number of observations of the CUSUM algorithm is

Ef1k (Ok) ≈
e−η + η − 1

D(f 1
k , f

0
k )

=
η̄

Dk
, (4.2)

where η̄ = e−η + η − 1, and the expectation of Ok conditioned on the absence of an

anomaly, i.e. the false alarm rate for CUSUM algorithm is

Ef0k (Ok) ≈
eη − η − 1

D(f 0
k , f

1
k )

(4.3)

The approximations in equations (4.2,4.3) are referred to as the Walds approxima-

tions [88]. For large values of the threshold η, these approximations are known to be

accurate. We also set

sk :=
η̄

Dk
, (4.4)

and s = [sk] ∈ Rn×1, referring to it as the vector of CUSUM samples. Given η̄ and Dk,

the constant sk is the expected number of visits to region k required to detect an anomaly
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in that region.

The expression for the average detection delay of the Ensemble CUSUM Algorithm

(Algorithm 4) depends on the property of Markov chains called the first passage time

stated in Chapter 3.

4.5 Performance of the Ensemble CUSUM Algorithm

We are now ready to state our main results on the average detection delay δavg(P) of

the Ensemble CUSUM Algorithm (Algorithm 4).

Theorem 37 (Performance of the Ensemble CUSUM Algorithm): For a single vehicle

conducting surveillance of the environment E = 〈V,E,D,w〉 according to the Ensemble

CUSUM Algorithm (Algorithm 4) using the policy P = 〈P, q〉,

(i) the expected detection delay E[δk(P)] at region k satisfies

E[δk(P)] =
n∑
i=1

qinik + (sk − 1)nkk, (4.5)

(ii) the average detection delay δavg(P) over the entire environment satisfies

δavg(P) =
n∑
k=1

wk

(
n∑
i=1

qinik + (sk − 1)nkk

)
, (4.6)

where N = [nij] ∈ Rn×n is the first passage time matrix for the irreducible Markov chain

with transition matrix P ∈ Rn×n and stationary distribution q ∈ Rn×1 and the constant

s ∈ Rn×1 is the vector of CUSUM samples.

Proof: Let τ ∈ {1, . . . , Ok} be the iterations at which the vehicle visits region

region k and sends information about it to the control center. Let Ok be the iteration at
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which an anomaly is detected in region k. The observation made at region k at the τ -th

iteration in that region is denoted by yk,τ . Let the log likelihood ratio calculated by the

local CUSUM algorithm for that iteration be εk,τ . Then,

εk,τ = log
f 1
k (yk,τ )

f 0
k (yk,τ )

.

Conditioned on the presence of an anomaly, {εk,τ}τk∈N are i.i.d. and Ef1k [εk,τ ] = Dk. Then,

referring to result summarized in equation (4.2), Ef1k [Ok] = η̄/Dk. Thus, the expected

time it takes for the Ensemble CUSUM Algorithm to make the Ok-th observation at

region k is essentially the expected detection delay δk(P) at region k. We will now

devote our attention to computing the expectation of δk(P).

Let t0k be the time at which the vehicle starts the CUSUM algorithm. Let {t1k, t2k, . . . t
Ok
k }

be the time instant at which it leaves region k, having serviced it, and ∆tik = ti+1
k − tik for

i = {0, 1, 2, . . .}. Then, the detection delay δk(P ) = tOkk =
∑Ok

i=0 ∆tik. The expectation of

δk(P ) can be computed:

E[δk(P )] =E

[
Ok−1∑
i=0

∆tik

]
= E[∆t0k] + E

[
Ok−1∑
i=1

∆tik

]
,

=E[∆t0k] + (E[Ok]− 1)E[∆tik] (4.7)

=
n∑
i=1

qinik +

(
η̄

Dk
− 1

)
nkk. (4.8)

Equation (4.7) comes from the application of Wald’s identity. Notice that E[∆t0k] is the

expected time to start from any node and visit node k for the first time and given i > 0,

E[∆tik] is the expected time taken to return to node k. Recollect that nij is the expected

time for the vehicle to start from node i to visits node j for the first time. Hence, we can

conclude that E[∆t0k] =
∑n

i=1 qinik and E[∆tik] = nkk for i > 0 to obtain equation (4.8).
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Using the definition of s from equation (4.4), the first result follows. Next, using the

definition of δavg(P) from equation (4.1), the second result follows.

Thus, the average detection delay depends on the first passage times between nodes

of the graph representing the environment E . We now present a modified expression for

δavg(P), removing the dependence of the first passage times, in the following theorem.

The proof of the theorem is postponed to Appendix.

Theorem 38 (Average detection delay): For a single vehicle conducting surveillance of

the environment E = 〈V,E,D,w〉 according to the Ensemble CUSUM Algorithm (Algo-

rithm 4) using the policy P = 〈P, q〉,

δavg(P) = β1Tn [(((I − P ) + (P ◦D)1nq
T ))−1 ◦ I](r · w) + (β − 1) + β(s− 1n)T (r · w),

(4.9)

where r ∈ Rn×1 with r · q = 1n, I ∈ Rn×n is the identity matrix, β = qT (P ◦ D)1n and

the constant s ∈ Rn×1 is the vector of CUSUM samples.

In our setup, the environment can have an arbitrary graph topology and the routing

policy can also take an arbitrary form adhering to the restrictions imposed by the graph

topology. A specific simplification, where the environment is an all to all graph and

where the transition matrix for the routing policy has the form P = 1nq
T is explored in

[95]. While they provide algorithms to optimize the transition matrix q in the simplified

setup, we consider the more generalized problem. Specifically, our goal is to find policy

P = 〈P, q〉 for the vehicle such that δavg(P) is minimized. This can be framed as the

following optimization problem:

Problem 6 ( Minimizing the average detection delay): Given the environment

E = 〈V,E,D,w〉 and the constant vector of CUSUM samples s ∈ Rn×1, determine the
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stationary distribution q = [qi] ∈ Rn×1 and transition probabilities P = [pij] ∈ Rn×n

solving:

minimize β1Tn [(((I − P ) + (P ◦D)1nq
T ))−1 ◦ I](r · w)

+ (β − 1) + β(s− 1n)T (r · w)

subject to P1n = 1n, for each i ∈ {1, . . . , n}

0 ≤ pij ≤ 1, for each (i, j) ∈ E

pij = 0, for each (i, j) /∈ E

qTP = qT , for each (i, j) ∈ E

qT1n = 1, qi ≥ 0, for each i ∈ {1, . . . , n}

P irreducible,

β = qT (P ◦D)1n, r · q = 1n.

The above optimization problem contains the constraint that the transition matrix

be irreducible. Since it is hard to enforce the irreducibility constraint during each step of

an iterative optimization algorithm, our approach is to relax the irreducibility constraint

and verify that the final solution satisfies the constraint. A Markov chain that is not irre-

ducible contains multiple communicating classes, making the first passage time between

at least one pair of regions infinite. Since the average detection delay depends on the

first passage times of the chain, the outcome where the final solution is a reducible chain

would drive up the cost function of the optimization problem, making such an outcome

highly unlikely. Because of this reason, the relaxation of the irreducibility constraint

works very well in practice.

Let P∗ be the solution to Problem 6 and let δ∗avg := δavg(P∗). The cost function

of this optimization problem is not a convex function of P and q. Moreover, one of
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the constraints is also nonlinear. We now devote some attention to determining an

upper bound on δ∗avg, and frame an optimization problem to minimize it. We start with

evaluating policies of the form Pw = 〈Pw, w〉, i.e., where the Markov chain corresponding

to the policy has the stationary distribution w. We leverage the result known on the

weighted sum of the first passage times from Theorem 25 to simplify expressions for the

detection delay of the Ensemble CUSUM algorithm in this case.

Theorem 39 (Upper bound on average detection delay): For a single vehicle conducting

surveillance of the environment E = 〈V,E,D,w〉 according to the Ensemble CUSUM

Algorithm (Algorithm 4) using the policy Pw = 〈Pw, w〉,

δavg(Pw) =
(
wT (Pw ◦D)1n

)( n∑
i=2

1

1− λi(Pw)
+ (s− 1n)T1n

)

for all Pw ∈ Sw, where Sw is the set of transition matrices corresponding to irreducible

Markov chains with stationary distribution w, {λ1(Pw), . . . , λn(Pw)} are the eigenvalues

of Pw with λ1(Pw) = 1, and the constant s ∈ Rn×1 is the vector of CUSUM samples.

Proof: We start with the expression for δavg(P) obtained in Theorem 37. In matrix

form, equation (4.6) can be rewritten as

δavg(P) = qTNw + (s− 1n)TNdw, (4.10)

where P = 〈P, q〉. Setting the variable q to w, and using the result from Theorem 25, as

well as the result from Theorem. 23 (ii), equation (4.10) can be simplified:

δavg(Pw) =wTNw + (s− 1n)TNdw,

=
(
wT (Pw ◦D)1n

)( n∑
i=2

1

1− λi(Pw)
+ (s− 1n)T1n

)
,
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We can make the upper bound obtained on the optimal detection delay tighter by

choosing Pub ∈ Sw which minimizes the average detection delay. The following optimiza-

tion problem can be framed to find the matrix Pub.

Problem 7 (Minimizing the upper bound on optimal average detection delay): Given

the environment E = 〈V,E,D,w〉, the vector of CUSUM samples s ∈ Rn×1 and the

stationary distribution w ∈ Rn×1, determine the transition probabilities P = [pij] ∈ Rn×n

solving:

minimize
(
wT (P ◦D)1n

)( n∑
i=2

1

1− λi(P )
+ (s− 1n)T1n

)

subject to P1n = 1n, for each i ∈ {1, . . . , n}

0 ≤ pij ≤ 1, for each (i, j) ∈ E

pij = 0, for each (i, j) /∈ E

wipij = wjpji, for each (i, j) ∈ E.

(4.11)

Note that the above optimization problem also involves the restriction of non-reversibility

on the transition matrix P as denoted by the last equality.

Theorem 40 (Convexity of Optimization Problem 7): Let Sw be the set of transition

matrices associated with irreducible non-reversible Markov chains on graph G = (V,E)

and having the stationary distribution w. Then, the Optimization Problem 7 is convex.

Proof: From Theorem 39, the cost function f(Pw) of the Optimization Problem 7

can be written down as:

f(Pw) =
(
wT (Pw ◦D)1n

)( n∑
i=2

1

1− λi(Pw)

)
+
(
wT (Pw ◦D)1n

)
(s− 1n)T1n. (4.12)
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The first term in equation (4.12) is the mean first passage time of the Markov chain as

defined in Theorem 25. The mean first passage time is a convex function over the set Sw

(refer to [78] for the proof). Moreoever, the second term in equation (4.12) is an affine

function over the set Sw. Since the positive weighted sum of convex and affine functions

is convex, the function Pw 7→ f(Pw) is convex over the set Sw. The set Sw is also convex

and the constraints of the problem are affine. Hence, the optimization problem is convex.

The Optimization Problem 7 can be written as a semidefinite program. In order to do

this, the expression for the detection delay is rewritten in terms of the trace of a matrix:

δavg(Pw) =
(
wT (Pw ◦D)1n

)( n∑
i=2

1

1− λi(Pw)
+ (s− 1n)T1n

)
,

=
(
wT (Pw ◦D)1n

)
Tr
[
(I −W 1/2PwW

−1/2 + wcw
T
c )−1

]
+
(
wT (Pw ◦D)1n

)
(s− 1n)T1n,

where W = diag[w] and the column vector wc = (
√
w1, . . . ,

√
wn)T . The first equation

comes from Theorem 39 and the first part of the second equation is because of a relation

between the trace of a function of Pw and its eigenvalues [78]. Using this form for δavg(Pw),

we can now formulate an SDP as shown below.

Problem 8 (Minimizing the upper bound on the optimal average detection delay (SDP)):

Given the environment E = 〈V,E,D,w〉 and vector of CUSUM samples s ∈ Rn×1, with

W = diag[w] and wc = (
√
w1, . . . ,

√
wn)T , determine Y = [yij] ∈ Rn×n, X ∈ Rn×n, t ∈ R
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and u ∈ R solving:

minimize Tr[X] + u(sT1n)

subject to t(I + wcw
T
c )−W 1/2YW−1/2 I

I X

 > 0

 t 1

1 u

 > 0

n∑
j=1

yij = t, for each i ∈ {1, . . . , n}

wiyij = wjyji, for each (i, j) ∈ E

0 ≤ yij ≤ t, for each (i, j) ∈ E

yij = 0, for each (i, j) /∈ E

wT (Y ◦W )1n = 1

t ≥ 0.

Then, the transition matrix Pw is given by Pw = Y/t.

Let Pub be the solution to the Optimization Problem 7. We refer to the policy

Pub = 〈Pub, w〉 as the efficient policy for convenience.

4.6 Numerical Simulations

We now study the spatial quickest detection task for a specific environment. In

particular, we are interested in examining the efficiency of the upper bound service policy

Pub = 〈Pub, w〉 compared to the optimal policy P∗ which minimizes the average detection
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Figure 4.3: Variation of the average detection delay using the optimal policy δ∗avg

(black squares), the efficient policy δub (grey squares), the policy based on the fastest
mixing non-reversible Markov chain with a uniform stationary distribution (grey cir-
cles) and the policy in [95] (black circles) with respect to the threshold η of the
CUSUM algorithm. Expected detection delay for the optimal policy using Monte
Carlo Simulations (dashed lines).
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Figure 4.4: Average detection delay using the optimal policy δ∗avg (black squares) and
the efficient policy δub (grey squares) are compared with the average detection delay
obtained using the policy based on the fastest mixing non-reversible Markov chain
(grey circles) with a uniform stationary distribution and the policy from [95] (black
circles) for various levels on noise in observations made in the second region.

delay. We also compare these two policies to some candidate policies (namely the policy

based on the fastest mixing non-reversible Markov chain [18] and a policy proposed in

[95]).

Environment and modeling of anomalies: The environment (Fig. 4.1) is an

90



Robotic Surveillance: Quickest Anomaly Detection Chapter 4

area separated into seven regions of interest. The weighted graph corresponding to this

environment is shown in Fig. 4.2. The edge weights of this graph represent the travel

times between neighboring regions. All regions in the environment have equal priority,

so that w = 1n, and the service time required to make an observation in each of the

regions is one time unit. The probability density functions of the observations made

in the environment in the absence and presence of anomalies are normal distributions

f 0
k = N (0, 1) and f 1

k = N (1, 1) respectively for k ∈ {1, . . . , n}.

Computation of service policies: The Optimization Problem 6 to determine the

optimal policy P∗ is non-convex with nonlinear constraints. We solve it using the sqp

algorithm in Matlab and verify that the solutions obtained are at least local minima. This

is done by ensuring that the solutions satisfies 1. the regularity condition and 2. the

Karush-Kuhn-Tucker (KKT) conditions necessary for the solution to optimal. On the

other hand, the Optimization Problem 7 to compute the Markov chain corresponding

to the upper bound service policy Pub is convex and can be written as a semidefinite

program. It is solved using CVX, a Matlab-based package for convex programs [45]. The

fastest mixing non-reversible Markov chain is also computed by solving a semidefinite

program in CVX. The policy proposed in [95] is stated as follows: P† = 〈P †, q†〉 where

q†k =

√
wk/Dk∑n

j=1

√
wj/Dj

, k ∈ {1, . . . , n}

and P † is the fastest mixing non-reversible Markov chain with stationary distribution q†.

Validation of theoretical expressions: We start with comparing the theoretical

expression for the average detection delay δavg in the environment obtained in Theorem 38

(black squares) to the expected detection delay computed through Monte-Carlo simula-

tions (dotted lines) in Fig 4.3 for the optimal policy. The gap between the theoretical

and the numerically obtained values is attributed to Wald’s approximation introduced in
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equation (4.2).

Comparison of performances of service policies: We first compare variation

in the performance of various service policies with respect to different thresholds η of

the CUSUM algorithm in Fig. 4.3(a). The average detection delay δub obtained using

the efficient policy Pub (grey squares) is close to the optimal average detection delay

δ∗avg (black squares) for lower values of the threshold η. The gap observed between the

optimal solution and the upper bound can be attributed to two factors: freedom to

choose any stationary distribution as well as relaxation of the nonreversibility constraint

for computing the optimal solution. In comparison, the performance of the fastest mixing

non-reversible Markov chain with stationary distribution w = 1n (grey circles) and the

policy proposed in Theorem 6 in [95] (black circles) is much poorer. This is expected

since the efficient policy is guaranteed to perform better in comparison to the fastest

mixing non-reversible Markov chain with the same stationary distribution.

Next, we study the effect of the variation in the probability density functions of

observations on the performance of the service policies. We consider a scenario where

the second region, which is a residential area in our illustration, is affected by noisy

observations. While the probability distribution functions for observations in all the

other regions remain same, they are different for the second region: f 0
2 = N (0, σ) and

f 1
2 = N (1, σ). The average detection delays for the various policies considered in the

chapter are compared for different values of σ in Fig. 4.4. The performance of the

efficient policy (grey squares) is very close to the optimal performance (black squares)

for a wide range of σ in this case. In comparison, the performances of the policy based on

the fastest mixing non-reversible chain with stationary distribution w = 1n (grey circles)

and the policy from [95] (black circles) are much poorer. They also get worse for noisier

observations.
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Appendix

Proof of Theorem 38: We start from the expression for δavg(P) obtained in Theorem 37.

Using the definition of s stated in the statement of the theorem, and equation (4.6), the

expression for δavg(P) can be written in matrix form as follows:

δavg(P) = qTNw + (s− 1n)TNdw. (4.13)

We first work towards simplifying the first term in equation (4.13). The first passage

time matrix satisfies equation (3.6). Using this and the identity from Lemma 33, and the

assumption that 1Tnw = 1, the term qTNw can be simplified:

qTNw =qTβ(1n1
T
nGd + I −G)Q−1w,= β(1TnGd + qT (I −G))Q−1w,

=β(1TnGd + qT − qT

β
)Q−1w = β1TnGdQ

−1w + (β − 1)qTQ−1w,

=β1TnGdQ
−1w + (β − 1)1Tnw = β1TnGdQ

−1w + (β − 1). (4.14)

where Q = diag[q]. Looking at the first term in equation (4.14),

1
T
nGdQ

−1w =1
T
n [(((I − P ) + (P ◦D)1nq

T ))−1 ◦Q−1]w,

=1
T
n [(((I − P ) + (P ◦D)1nq

T ))−1 ◦ I](r · w).

Substituting Ndw = βQ−1w = β(r ◦ w) from equation (3.8) into the second term in

equation (4.13), the result follows.
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Chapter 5

Synchronization of Beads on a Ring

We now consider the problem of synchronization of n robotic agents that control their

motion on a ring and that communicate when in close proximity of each other. One

application of this setup is as a boundary-patrolling algorithm which has numerous ap-

plications, e.g. in monitoring of spreading fires, toxic-area containment and clean-up, and

the sensing of sharp temperature gradient surfaces in the sea. These algorithms require

sporadic communication among agents, which have to optimally divide the task among

themselves without the intervention of a supervisor.

We therefore pose the question: can n intelligent agents (or beads), capable of control-

ling their motion, autonomously organize themselves so that each one sweeps a sector of

the ring and impacts with the neighboring beads always at the boundaries of the sector?

In other words, can they reach a periodic orbit and get in sync?

Apart from boundary-guarding the problem is also of general interest: If the n agents

control their motion to simulate n beads sliding on a frictionless hoop, then we know

that their dynamics is very rich. In fact, in [30], the authors study extensively the case

of n = 3 and prove the existence of periodic as well as chaotic orbits.
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5.1 Contributions

We state the contributions of this chapter 1 now. We design a distributed algorithm

that allows a collection of beads to reach synchronization and that is robust to failure of

beads. The algorithm requires the beads to slowdown and speedup immediately prior to

and after impact respectively; accordingly, we refer to the algorithm as the “slowdown,

impact and speedup algorithm.” The beads can be deployed with arbitrary initial posi-

tions and speeds. At the desired steady state, every bead sweeps a sector of equal length,

and neighboring beads meet always at the same point. If n is even, the beads all travel

at the same speed, while if n is odd, the beads travel at the same average speed. Two

beads exchange information only when they impact. We provide a sufficient condition on

the initial positions of the beads to guarantee converegence of beads. Extensive simula-

tions show that synchronization is reached in general, even when the assumptions are not

satisfied. Moreover, our algorithm confers certain robustness properties on the emerging

synchronized behavior, which is of interest for any control system.

5.2 Organization

This chapter is organized as follows. Section 5.1 states the contributions of the

work. We then introduce the notation employed and describe in detail what is meant by

agent or bead synchronization on a circular boundary in Section 5.3. The discrete-time

synchronization algorithm is presented in Section 5.4. A set of preliminary results on

which the main theorems build upon is presented in 5.5. The main results that allow us

to analyze the algorithm are included in 5.6. Finally, we present simulations in Section 5.7

showing that convergence of the algorithm is indeed possible in most general cases.

1This work is in collaboration with Dr. Sara Susca and Prof. Sonia Mart́ınez
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Notation

On the ring or 1-sphere S1, by convention, let us define positions as angles measured

counterclockwise from the positive horizontal axis. The counterclockwise distance between

two angles distcc : S1×S1 → [0, 2π) is the path length from an angle to the other traveling

counterclockwise. The column vector with entries all equal to 1 is 1n ∈ Rn. When working

with indices in {1, . . . , n}, we use the identifications 0 ≡ n and n+ 1 ≡ 1.

5.3 Model and problem statement

Here we model a network of agents moving on a ring and we state our stabilization

problem for certain interesting periodic modes. First, we propose our agents model with

motion control, sensing and communication capabilities. The agents are at arbitrary

positions θi ∈ S1, i ∈ {1, . . . , n}, at initial time and ordered counterclockwise.

Each agent controls its motion according to θ̇i(t) = ui(t), where ui is a bounded

control signal. Each agent senses its own position on the ring and senses/distinguishes

impacts with its counterclockwise and clockwise neighbors. However, agents do not need

to have knowledge of their absolute positions in a global reference frame. Similarly, agents

do not need to know the total number of beads n and the circle length. Each agent is

equipped with a short-range communication device; for simplicity, we assume two agents

communicate only when they are at the same position. In other words, two agents have

communication impacts when they move to a coincident position. The algorithm can

be implemented over anonymous agents; that is, agents lacking an identifier that can

distinguish them from each other. However, for simplicity in formulating the problem,

we make use of indices i ∈ {1, . . . , n} and make use of coordinates in a global reference

frame. Finally, each agent is equipped with a processor, capable of storing quantities in

memory and performing computations.
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Figure 5.1: The figure shows a collection of four beads moving in balanced synchronization.

Next, we describe some interesting periodic trajectories for n beads moving on a ring.

It is our objective, in the following sections, to design a motion control and communica-

tion algorithm to render such trajectories attractive.

Definition 41 (Balanced synchronization) Consider a collection of n beads moving

on a ring. The collection of beads is balanced synchronized with period T , if (i) any

two neighboring beads impact always at the same point, (ii) the time interval between

two consecutive impacts, involving the same beads, has duration T , and (iii) all the beads

impact simultaneously. In other words, in a balanced synchronized collection, each bead

sweeps an arc of length 2π/n at constant speed 2 2π
nT

.

An example of a collection of four beads in sync is shown in Figure 5.1: each bead

sweeps an arc at the boundaries of which it impacts with one of its neighbors and the

impacts happen simultaneously.

If n is odd, then balanced synchronization cannot be reached. Therefore, we give the

following weaker synchronization notion, reachable also for odd n.

Definition 42 (Unbalanced synchronization) Consider a collection of n beads mov-

ing on a ring. The collection of beads is unbalanced synchronized with period T , if (i)
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any two beads impact always at the same point and (ii) the time interval between two

consecutive impacts, involving the same beads, has duration T . As before, in an unbal-

anced synchronized collection, each bead sweeps an arc of length 2π/n at average speed

2 2π
nT

.

5.4 Synchronization algorithm

In this section we describe an algorithm that allows a collection of n agents to achieve

balanced synchronization (for n even) and unbalanced synchronization (for n odd). We

begin with an informal description for the case when n is even:

Each agent changes its direction of motion when it impacts another agent with

opposing velocity. Each agent maintains an estimate of the arc it eventually

sweeps when the network asymptotically achieves balanced synchronization.

This estimate is updated according to an averaging law at each communica-

tion impact (so that all estimated arcs converge to pairwise contiguous arcs

of equal length). A similar averaging law is applied to the agent’s speed

to ensure that all agents’ speeds converge to a common nominal value. To

synchronize the back-and-forth motion inside the arcs, each agent travels at

nominal speed while inside its arc, slows down when moving away from it,

and speeds up when moving towards it after an impact.

We refer to this strategy as to the Slowdown, Impact and Speedup Algorithm, abbre-

viated as the SIS Algorithm. To provide a formal description, we begin by defining all

variables that each agent maintains in its memory and we later state how these variables

are updated as time evolves and communication impacts take place.
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Algorithm Variables

Each agent i ∈ {1, . . . , n} maintains in memory the following tuple:

vi ∈ R>0, the nominal speed,

di ∈ {−1,+1}, the direction of motion,

ai ∈ {−1,+1}, the moving-away flag,

`i ∈ S1, the arc lower boundary, and

ui ∈ S1, the arc upper boundary.

Regarding initialization, we allow vi(0), di(0) to be arbitrary and we set `i(0) = ui(0) :=

θi(0), and ai(0) := di(0).

Given these definitions, it is convenient to introduce the following notation and

nomenclature. First, we define the ith processor state xi := (vi, di, ai, `i, ui) and call

(θi, xi) the ith agent state. Next, we associate an arc of the ring to each bead. This arc

is the fraction of the ring that each bead eventually sweeps when balanced synchrony

(as in Definition (41)) is asymptotically reached. To each bead i, we associate a desired

sweeping arc defined by

Arc(`i, ui) = {θ ∈ S1 | distcc(`i, θ) ≤ distcc(`i, ui)}.

This quantity will also be denoted by Di for convenience henceforth.

Algorithm Rules

The algorithm rules specify how the agents move in continuous time and how they

update their processor states when certain events happen.
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First, at all time t ≥ 0, each bead sets its velocity θ̇i depending on whether the bead

is traveling inside its desired sweeping arc, or, if outside the sweeping arc, depending

on whether it is moving away from or towards the sweeping arc. Specifically, given two

scalar gains 1
2
< f < 1 and h = f

2f−1
> 1, we set

θ̇i(t) := di(t)vi(t) ·


1, if θi(t) ∈ Di,

f, if θi(t) /∈ Di and di(t) = ai(t),

h, if θi(t) /∈ Di and di(t) = −ai(t).

Second, the ith processor state changes only when one of the following two events

occurs: an Impact Event which takes place with either bead i− 1 or with bead i+ 1, or

a Crossing Event which takes place when bead i crosses either `i or ui while leaving its

desired sweeping arc.

(Impact Event) If at time t an impact occurs for bead i with either bead i+1 or i−1,

then: (1) the two beads exchange through communication their processors states, and

(2) with this information, each bead updates its memory as follows. We define an impact

between beads i and i+ 1 to be of head-to-tail type if di(t) = di+1(t), and of head-to-head
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type if instead di(t) = −di+1(t). The ith processor state is updated according to:

vi(t
+) :=


1
2

(
vi(t) + vi−1(t)

)
, if the impact occurs with i− 1,

1
2

(
vi(t) + vi+1(t)

)
, if the impact occurs with i+ 1,

(5.1)

di(t
+) :=


−di(t), if the impact is head-to-head type,

di(t), otherwise,

(5.2)

ai(t
+) := ai(t),

`i(t
+) :=


Ci(t)− 1

2
distcc(Ci−1(t), Ci(t)), if the impact occurs with i− 1,

`i(t), if the impact occurs with i+ 1,

(5.3)

ui(t
+) :=


ui(t), if the impact occurs with i− 1,

Ci(t) + 1
2

distcc(Ci(t), Ci+1(t)), if the impact occurs with i+ 1,

(5.4)

where the upper-script + indicates the variable value right after the impact, and where

we define the center Ci ∈ S1 of the desired sweeping arc Di by Ci = `i + distcc(`i, ui)/2.

Note that, after an impact between beads i and i − 1, we have `i−1(t+) = ui(t
+)

because they both are defined as the midpoint of the arc from Ci−1(t) to Ci(t).

(Crossing Event) The memory of each bead i is updated also when the agent crosses

either `i(t) or ui(t) while leaving its desired sweeping arc. The nominal speed vi, the

direction di and the boundary of the sweeping arc `i and ui do not change,

vi(t
+) := vi(t), di(t

+) := di(t), `i(t
+) := `i(t), ui(t

+) := ui(t),

The flag ai is updated as follows:

ai(t
+) := di(t).
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Here the upper-script + indicates the value of the memory right after bead i crosses the

boundary of its desired sweeping arc.

Only two-way impacts have been considered in the above algorithm. However, im-

pacts between three or more beads can be assumed to be a sequence of two-way impacts

separated by infinitesimal times. By default, impacts between beads with smaller in-

dices can be addressed first. Although the order in which they are addressed affects the

subsequent motion of the beads, it does not affect the convergence results of the SIS

Algorithm.

5.5 Preliminary results

In this section we prove some preliminary results before we can prove the correctness

of the SIS Algorithm. We begin with an important characterization of initial states.

Definition 43 (Admissible balanced and unbalanced configurations) A state

{(θi, xi)}i∈{1,...,n} is

(1) directionally balanced if
∑n

i=1 di = 0

(2) directionally D-unbalanced for D ∈ {−n+ 1, . . . , n− 1} \ {0}, if
∑n

i=1 di = D.

Furthermore, a state has an admissible configuration if in addition to being directionally

balanced or D-unbalanced, for all i, j ∈ {1, . . . , n} and j 6= i, θi 6= θj. The set of admis-

sible balanced configurations, and admissible D-unbalanced configurations are denoted

by A0−bal, and AD−unbal respectively.

Note that {(θi, xi)}i∈{1,...,n} ∈ A0−bal if and only if n is even and n/2 beads are moving

clockwise and n/2 are moving counterclockwise.
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Next, at each time t ≥ 0, we define the impact graph G(t) as the undirected graph

with vertex set {1, . . . , n} and with edge set defined by the following rule: the pair (i, j)

is an edge in G(t) if the beads i and j collide at time t.

Proposition 1 (Uniform connectivity of impact graphs) Along the trajectories of

the SIS Algorithm, with {(θi(0), xi(0))}i∈{1,...,n} ∈ A0−bal

⋃
AD−unbal, for all t0 ≥ 0 the

graph
⋃
t∈[t0,t0+2π/(fvmin)] G(t) is connected.

The proof of Proposition 1 builds up on the following facts.

Lemma 44 (Properties) Along the trajectories of the SIS Algorithm, with

{(θi(0), xi(0))}i∈{1,...,n} ∈ A0−bal

⋃
AD−unbal:

(1)
∑n

i=1 di(t) is constant,

(2) any two desired sweeping arcs are disjoint or share at most a boundary point, fur-

thermore their label index increases in the counterclockwise direction, i.e., ui(t) =

`i+1(t),

(3) the order of the beads is preserved, i.e., for all i, j ∈ {1, . . . , n}, j 6∈ {i, i+ 1}, and

t ≥ 0, we have distcc(θi(t), θi+1(t)) ≤ distcc(θi(t), θj(t)). Therefore, a bead i can

impact only its immediate neighbors i− 1 and i+ 1.

Proof: See Appendix

Lemma 45 (Impacts in bounded interval) Let vmin = mini∈{1,...,n} vi(0). Along the

trajectories of the SIS Algorithm, with {(θi(0), xi(0))}i∈{1,...,n} ∈ A0−bal

⋃
AD−unbal,

for all i ∈ {1, . . . , n} and for all t0 > 0, bead i impacts at least once with both its

neighbors i− 1 and i+ 1 across the interval [t0, t0 + 2π
fvmin

].

Proof: See Appendix
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Figure 5.2: This figure shows that, regardless from where and with which velocities
beads i and i + 1 impact, the order of the beads is preserved. The velocities in the
figure are the velocities after the impact. The speed v is just the average value of vi
and vi+1 before the impact.
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Proof: [of Proposition 1] Because of Lemma 45, for all i and for all t0 there exist

t1 and t2 ∈ [t0, t0 + 2π
fvmin

] such that G(t1) and G(t2) have respectively an edge between

vertices i and i+1 and between vertices i and i−1. Therefore, the graph
⋃
t∈[t0,t0+ 2π

fv(0)
] G(t)

contains the ring graph.

5.6 Convergence analysis

In the first part of this section we prove that the nominal speeds vi of all the beads

will asymptotically be equal to the average of their initial values, and that the desired

sweeping arc will asymptotically attain a length 2π/N . In the second and third part of

this section we show that SIS Algorithm enables the beads to reach balanced synchrony

if n is even and unbalanced synchrony if n is odd. We begin our convergence analysis

with a useful result that combines known facts from [40, 102, 72]. Given a symmetric

stochastic matrix F ∈ RN×N , its associated graph has node set {1, . . . , N} and edge set

defined as follows: (i, j) is an edge if and only if Fij > 0.

Theorem 46 (Average Consensus Dynamics) Consider a sequence of symmetric

stochastic matrices {F (`) | ` ∈ Z≥0} ⊂ RN×N and the dynamical system

x(`+ 1) = F (`)x(`).

Let G(`) be the graph associated with F (`). Assume that

(A1) G(`) has a self loop at each node,

(A2) Each non-zero edge weight Fij(`), including the self-loops weights Fii(`), is larger

than a constant α > 0, and

(A3) The graph ∪τ≥`G(τ) is connected for all ` ∈ Z≥0.
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Then the system is said to achieve average consensus with

lim
`→+∞

x(`) =
( 1

N

N∑
i=1

xi(0)
)
1N .

We also define some terminology associated with movement of the beads on the

ring. Let the kth impact between beads i and i + 1 occur at the instant Iki . Let Ik =

[Ik1 , . . . , I
k
n]T ∈ Rn. Let us also define the kth passage time P k

i as the instant at which

bead i passes by the center of its desired sweeping arc after its kth but before its (k+1)th

impact. Let P k = [P k
1 , . . . , P

k
n ]T ∈ Rn.

5.6.1 Convergence of nominal speed and desired sweeping arc

We start by proving that all nominal speeds vi converge to being equal to the average

of their initial values.

Lemma 47 (Speed convergence) Let v(t) = [v1(t), . . . , vn(t)]T ∈ Rn. Along the tra-

jectories of the SIS Algorithm, with {(θi(0), xi(0))}i∈{1,...,n} ∈ A0−bal

⋃
AD−unbal:

lim
t→+∞

v(t) =
1
T
nv(0)

n
1n.

Proof: For all i ∈ {1, . . . , n}, define Ai ∈ Rn×n by:

[Ai]lm =



1
2
, if (l,m) ∈ {(i, i), (i, i+ 1), (i+ 1, i), (i+ 1, i+ 1)},

1, if l = m and l 6∈ {i, i+ 1},

0, otherwise .
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Because of equation (5.1),

v(Iki + ε) = Aiv(Iki ).

where Iki + ε is the time instant just after the impact. This can be extended to account

for more than one two-way impacts taking place at the same instant. For example, if

two separate impacts occur between beads i and i+ 1 as well as j and j + 1 at Iki , then

v(Iki + ε) = AiAjv(Iki ).

Therefore, the dynamics of v(t) is the average consensus dynamics with matrices Ai.

Proposition 1 ensures that the sequence of impact graphs at impact instants is uniformly

jointly connected. Therefore, the assumptions of Theorem 46 are satisfied and we know

that all velocities vi(t) converge to 1
n

∑n
i=1 vi(0).

We now prove that the desired sweeping arcs converge asymptotically to a stationary

configuration in which all sweeping arcs have length 2π/n.

Lemma 48 (Convergence of desired sweeping arc) Let Li(t) = distcc(`i(t), ui(t))

be the length of the desired sweeping arc Di for i ∈ {1, . . . , n}, and L(t) = [L1(t), . . . , Ln(t)]T

∈ Rn. Along the trajectories of the SIS Algorithm, with {(θi(0), xi(0))}i∈{1,...,n} ∈

A0−bal

⋃
AD−unbal, the arc lengths and the arcs converge, that is,

lim
t→+∞

L(t) =
2π

n
1n,

and the limits limt→+∞ `i(t) and limt→+∞ ui(t) exist and are finite.
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Proof: For all i ∈ {1, . . . , n}, define Bi ∈ Rn×n by:

[Bi]lm =



3
4
, if (l,m) ∈ {(i, i), (i+ 1, i+ 1)},

1
4
, if (l,m) ∈ {(i, i+ 1), (i+ 1, i)},

1, if l = m 6∈ {i, i+ 1},

0, otherwise .

From equations (5.3) and (5.4), an impact between i and i+ 1 at time t causes

Li(I
k
i + ε) =

3

4
Li(I

k
i ) +

1

4
Li+1(Iki ),

Li+1(Iki + ε) =
1

4
Li(I

k
i ) +

3

4
Li+1(Iki ).

Therefore, if at time t an impact between i and i+ 1 occurs and no other impact occurs,

then L(Iki + ε) = BiL(Iki ). Analogously to the proof of Lemma 47, the dynamics of

L(t) is the average consensus dynamics with matrices Bi. Proposition 1 ensures that the

sequence of impact graphs at impact instants is uniformly jointly connected. Therefore,

the assumptions of Theorem 46 are satisfied and we know that all lengths Li(t) converge

to 1
n

∑n
i=1 Li(0) = 2π

n
. To prove that the limits of the arc boundaries `i(t) and ui(t) exist

and are finite, it suffices to notice that (i) at each impact the arc boundaries change by an

amount proportional to the difference between arc lengths, and (ii) every exponentially

decaying sequence is summable.

5.6.2 Balanced synchrony

We now prove that the SIS Algorithm steers the collection of beads to be in

balanced synchrony for a set of initial conditions contained in A0−bal, under certain

108



Synchronization of Beads on a Ring Chapter 5

assumptions. Although convergence to balanced synchronization is proved only locally,

simulations shown in Section 5.7 suggest that indeed the set of initial conditions for which

the balanced synchronization is reached is quite large and may be equal to A0−bal.

Theorem 49 (Balanced synchrony convergence) Consider an even number n of

beads with an initial condition contained in A0−bal and executing the SIS Algorithm.

Assume that

(A4) The desired sweeping arcs for each agent are already the desired steady-state regions

of equal length 2π/n and the nominal velocity of each agent has the same value v.

Since the SIS Algorithm makes sweeping regions and nominal velocities reach

these common values for any initial condition in A0−bal, we can do this without loss

of generality.

(A5) d2i(0) = −d2i−1(0) for i ∈ {1, . . . , n/2}, i.e., consecutive beads move in opposite

directions.

(A6) The initial condition satisfies |P 1
i − P 1

j | ≤ δpb for i, j ∈ {1, . . . , n}, where δpb =

π
nv̄

( 1+f
f

) .

Then

lim
k→+∞

P k =
1
T
nP

k

n
1n.

Proof: See Appendix.

5.6.3 Unbalanced synchrony

We now prove that the SIS Algorithm steers the collection of beads to be in

unbalanced synchrony for a set of initial conditions contained entirely in AD−unbal with

D = ±1. We first start by proving that there exists an orbit along which the beads can

reach unbalanced synchrony.
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Theorem 50 (Existence of periodic orbit for 1-unbalanced collections: sufficiency)

Given D ∈ {−1,+1}, assume that {(θi(0), xi(0))}i∈{1,...,n} ∈ AD−unbal,
1
2
< f < n

1+n
, and

that, for i ∈ {1, . . . , n}, vi(t) = vi(0) = v, `i(t) = `i(0), ui(t) = ui(0) with `i(0) = ui−1(0)

and with distcc(`i(0), `i+1(0)) = 2π
n

. Then

(i) there exists a periodic orbit for the SIS Algorithm in which the beads are in

unbalanced synchrony with period 22π
n

1
v
; and

(ii) along this orbit each bead i impacts its neighboring bead i−1 at position `i(0)+Dδ,

where δ = 2π
n2

f
1−f <

2π
n

.

Figure 5.3: This figure shows the periodic orbit described in Theorem 50. The white
circles are the positions of beads. The black dots are the locations of the impacts for
any two neighboring beads. Note that bead i− 1 and i− 2 are moving towards each
other and so are beads i and i+ 1.

Remark 51 (Impacts order in 1-unbalanced synchrony) It is useful to take note

of the order in which the impacts happen in a D-unbalanced collection of beads that reach

unbalanced synchrony, where D ∈ {−1,+1}. As we will see in the proof of Theorem 50,

if
∑n

i=1 di(0) = −1 and i and i + 1 have just met, then the next impact will be between

i−1 and i−2 and so on until i meets i+1 again and the periodic orbit is complete. More

concisely, if the first two beads to impact are i and i + 1, then the kth impact happens

between (i−3Dk) mod n and (i+1−3Dk) mod n. Therefore, if
∑n

i=1 di(0) = −1, then
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the impacts happen in a counterclockwise fashion; on the other hand, if
∑n

i=1 di(0) = +1,

then the impacts happen in a clockwise fashion. Let us illustrate the idea using a the

graph G(t) introduced in Proposition 1. We recall that the graph G(t) has as vertex set

{1, . . . , n} and edge from i to i + 1 if and only if the beads i and i + 1 collide at time t.

Figure 5.4 shows G(t) for t ∈ [I1,2, I1,2 + 22π
n

1
v
] and the time at which the impacts happen

for n = 5. �

Figure 5.4: This figure illustrates G(t) for t ∈ [I1,2, I1,2 + 22π
n

1
v ] and the time at which

each edge appears for n = 5 and
∑n

i=1 di(0) = −1 when unbalanced synchrony is
reached.

Proof: [of Theorem 50] See Appendix.

It turns out that f < n
1+n

is not only sufficient but also necessary for the existence of

the periodic orbit described in part (ii) of Theorem 50.

Theorem 52 (Existence of periodic orbit for 1-unbalanced collections: necessity)

Given D ∈ {−1,+1}, assume that {(θi(0), xi(0))}i∈{1,...,n} ∈ AD−unbal, and that, for

i ∈ {1, . . . , N}, vi(t) = vi(0) = v, `i(t) = `i(0), ui(t) = ui(0) with `i(0) = ui−1(0) and

with distcc(`i(0), `i+1(0)) = 2π
N

. If along the trajectories of the SIS Algorithm the un-
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balanced synchrony is reached, that is, beads i and i − 1 always meet at `i(t) + Dδ with

δ < 2π
n

and the period of the orbit is 22π
n

1
v
, then f < n

1+n
.

Proof: See Appendix.

A natural question to ask is if there exists a periodic orbit for the SIS Algorithm

when {(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal and |D| > 1. To answer this question, we extend

the result of Theorem 52 to the more general case of D-unbalanced collections of beads.

Theorem 53 (Existence of a periodic orbit: necessity) Let {(θi(0), xi(0))}i∈{1,...,n}

∈ AD−unbal and |D| > 1. If along the trajectories of the SIS Algorithm the unbalanced

synchrony is reached and bead i meets bead i− 1 at location `i(t) + D
|D|δ with δ < 2π

n
, then

f < n/|D|
1+n/|D| .

Proof: See Appendix.

We now prove that the SIS Algorithm steers the collection of beads to be in

unbalanced synchrony for a set of initial conditions contained in AD−unbal, under certain

assumptions.

In particular we prove that the interval between two consecutive times each bead

passes by a point while moving in the same direction asymptotically approaches 22π
n

1
v
,

which is the period of the periodic orbit. This is just a consequence of the definition of

unbalanced synchrony.

Theorem 54 (1-unbalanced synchrony convergence) Consider n beads executing

the SIS Algorithm, with n being odd. Let δ = 2π
n2

f
1−f <

2π
n

, and C̃i be the center of the

counterclockwise arc Arc(`i(0) +Dδ, ui(0) +Dδ) for all i ∈ {1, . . . , n}. Further, assume

that

(A7) The desired sweeping arcs for each agent are already the desired steady-state regions

of equal length 2π/n and the nominal velocity of each agent has the same value v.
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Since the initial condition is in AD−unbal, we can do this without loss of generality.

(A8) D ∈ {−1,+1}

(A9) The initial condition is such that |P 1
i − P 1

j | ≤ δpub for i, j ∈ {1, . . . , n} where

δpub = 1
v̄
( δ + π

n
) ( 1−f

f
) .

Then, along the trajectories of the SIS Algorithm:

lim
k→+∞

P 2k − P 2(k−1) = 1n
2

v

2π

n
,

that is, the collection of beads asymptotically reaches unbalanced synchrony.

Proof: See Appendix.

5.7 Simulations

In this section we present numerical simulations obtained by implementing the SIS

Algorithm on balanced and unbalanced collection of beads. Based on the simulations

we formulate four conjectures.

5.7.1 Balanced collection of beads

As we have seen in Section 5.6.2, it can be proved that the SIS Algorithm allows

the beads to get in sync if for all i ∈ {1, . . . , N}, vi(0) = v > 0, distcc(`i(0), `i+1(0)) = 2π
n

,

distcc(`i(0), ui(0)) = 2π
n

, and di(0) = −dj(0) for j ∈ {i− 1, i+ 1}. Extensive simulations
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suggest that the basin of attraction of the periodic orbit is indeed much larger; we state

this observation as a conjecture.

Conjecture 1 (Balanced collection: global basin of attraction) Given initial con-

ditions {(θi(0), xi(0))}i∈{1,...,n} ∈ A0−bal, let P k
i be the last instant at which bead i passed

by the center of its desired sweeping arc before time t and let P k = [P k
1 , . . . , P

k
n ]T ∈ Rn.

Then, along the trajectories of the SIS Algorithm:

lim
k→+∞

P k =
1
T
nP

k

n
1n.

In what follows we present the simulation results obtained by implementing the SIS

Algorithm with n = 8 beads, when beads are randomly positioned on S1, vi(0) uni-

formly distributed in ]0, 1], d1(0) = d2(0) = d4(0) = d6(0) = +1 and f = 0.7.

Figure 5.5(a) shows the positions of the eight beads vs time. Consecutive beads do not

move in opposite directions initially, as is assumed in Assumption (A5) for the validity

of Theorem 49. They also do not possess same initial nominal speeds, as is necessary

according to Assumption (A4). Since beads i = 3, 4, 6 and 7 impact neighboring beads

even before they pass through the centers of their respective desired sweeping arcs after

their first impacts, clearly Assumption (A6) is also not satisfied.

In spite of none of the assumptions being satisfied, each bead meets its neighbor at

the same location on the circle asymptotically, reaching synchrony. The beads also attain

the same nominal speed asymptotically. In Figure 5.5(b), the positions and the desired

sweeping arc boundaries for bead i = 5 are illustrated. The solid line represents θ5(t), the

dash-dot line represents `5(t), and the thicker solid line represents u5(t). The distance

distcc(`5(t), u5(t)) asymptotically approaches 360/N = 45 degrees.
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Figure 5.5: The SIS Algorithm is implemented with n = 8 beads,
which are randomly positioned on S1, vi(0) is uniformly distributed in ]0, 1],
d1(0) = d2(0) = d4(0) = d6(0) = +1, and f = 0.7. (a) shows positions of beads
vs time. Beads 2, 4, 6, 8 are represented by solid lines, while the dash line, dash-dot
line, point line, and thicker dash line represent the positions of beads 1, 3, 5, 7. (b)
shows θ5(t) (solid line), u5(t) (thicker solid line), and `5(t) (dash-dot line).

5.7.2 Unbalanced collection of beads

In Theorem 54 we have proved that if {(θi(0), xi(0))}i∈{1,...,n} ∈ AD−unbal with D ∈

{−1,+1}, and if the collection of beads is close to unbalanced synchrony, then the SIS

Algorithm steers the collection to synchrony. Also in this case, extensive simulations

suggest that the basin of attraction of the periodic orbit is larger.

Conjecture 2 (1-unbalanced collection: global basin of attraction) Given initial

conditions {(θi(0), xi(0))}i∈{1,...,n} ∈ AD−unbal with D ∈ {−1,+1}, let δ = 2π
n2

f
1−f <

2π
n

,

and let C̃i(t) be the center of the counterclockwise arc Arc(`i(t) +Dδ, ui(t) +Dδ) for all

i ∈ {1, . . . , n}. Let P k
i be the instant at which bead i passes by C̃i for the kth time and let

P k = [P k
1 , . . . , P

k
n ]T ∈ Rn. Then, along the trajectories of the SIS Algorithm:

lim
k→+∞

P 2k − P 2(k−1) = 1n
2

v

2π

n
,
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Figure 5.6: The SIS Algorithm is implemented for n = 7 beads. The
beads are randomly positioned on S1, vi(0) is uniformly distributed in ]0, 1],
d1(0) = d4(0) = d5(0) = d7(0) = −1, and f = 0.6. (a) shows θi vs time. Beads
2, 4, 6 are represented by solid lines, while the dash line, dash-dot line, point line, and
thicker dash line represent the positions of beads 1, 3, 5, 7. (b) shows θ3(t) (solid line),
u3(t) (thicker solid line), and `3(t) (dash-dot line).

that is, the collection of beads asymptotically reaches unbalanced synchrony.

In what follows we present the simulation results obtained by implementing the SIS

Algorithm with n = 7 beads, the beads are randomly positioned on S1, vi(0) uniformly

distributed in ]0, 1], d1(0) = d4(0) = d5(0) = d7(0) = −1, that is the collection of beads

is D-unbalanced with D = −1, and f = 0.6. Note that f < n
1+n

= 7
8
. Figure 5.6(a)

shows the positions of the seven beads vs time. Clearly, asymptotically each bead meets

its neighbor at the same location on the circle, reaching synchrony. In Figure 5.6(b), the

positions and the desired sweeping arc boundaries for bead i = 3 are illustrated. The solid

line represents θ3(t), the dash-dot line represents `3(t), and the thicker solid line represents

u3(t). The distance distcc(`3(t), u3(t)) asymptotically approaches 360/n ≈ 51.42 degrees.

For the more general case of D-unbalanced collections with n > |D| > 1, Theorem 53

states that f < n/|D|
1+n/|D| is just a necessary condition for the existence of a period orbit,

along which, i and i − 1 meet always at `i + D
|D|δ, with δ < 2π

n
. We conjecture that (i)
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Figure 5.7: The SIS Algorithm is implemented for n = 12 beads. The
beads are randomly positioned on S1, vi(0) is uniformly distributed in ]0, 1],
d1(0) = d2(0) = d4(0) = d6(0) = d7(0) = d9(0) = d12(0) = −1, and f = 0.84.
(a) shows positions of the beads vs time. Beads 2, 4, 6, 8, 10, 12 are represented by
solid lines, while the dash line, dash-dot line, point line, and thicker dash line repre-
sent the positions of beads 1, 3, 5, 7, 9, 11. (b) shows θ3(t) (solid line), u3(t) (thicker
solid line), and `3(t) (dash-dot line).

f < n/|D|
1+n/|D| is also sufficient for the existence of a periodic orbit in the most general case

of |D| > 1, and (ii) the SIS Algorithm steers the collection of D-unbalanced beads to

synchrony.

Conjecture 3 (D-unbalanced collection: existence of periodic orbit) Assume

{(θi(0), xi(0))}i∈{1,...,n} ∈ AD−unbal, vi(t) = v, distcc(`i(0), `i+1(0)) = 2π
n

for all i ∈

{1, . . . , n}. The following two statements are equivalent:

(i. 1
2
< f < n

1+n
,

(ii. there exists a periodic orbit along which each bead i impacts with its previous bead

i− 1 always at position `i(0) +Dδ, where δ = 2π
n2

f
1−f <

2π
n

.

Conjecture 4 (D-unbalanced collection: global basin of attraction) Assume

{(θi(0), xi(0))}i∈{1,...,n} ∈ AD−unbal with n > |D| > 1, δ = 2π
n2

f
1−f <

2π
n

, and let C̃i(t) be the

center of the counterclockwise arc Arc(`i(t)+Dδ, ui(t)+Dδ) for all i ∈ {1, . . . , N}. Let P k
i
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Figure 5.8: This figure shows θi vs time, obtained by implementing the SIS Algo-
rithm with n = 12 beads, the beads are randomly positioned on S1, vi(0) uniformly
distributed in ]0, 1], d1(0) = d4(0) = d6(0) = d7(0) = d8(0) = d9(0) = d10(0) = −1,
and f = 0.87. The positions of the beads 2, 4, 6, 8, 10, 12 are represented by solid
lines, while the dash line, dash-dot line, point line, and thicker dash line represent the
positions of beads 1, 3, 5, 7, 9, 11.

be the instant at which bead i passed by C̃i for the kth time and let P k = [P k
1 , . . . , P

k
n ]T ∈

Rn. Then, along the trajectories of the SIS Algorithm:

lim
k→+∞

P 2k − P 2(k−1) = 1n
2

v

2π

n
,

that is, the collection of beads asymptotically reaches unbalanced synchrony.

In what follows we present the results of two simulations (Figures 5.7 and 5.8) obtained

by implementing the SIS Algorithm with a collection of N = 12 beads which are D-

unbalanced with D = −2, the beads are randomly positioned on S1, vi(0) uniformly

distributed in ]0, 1]. Note that according to our conjectures f < n/|D|
1+n/|D| = 6

7
≈ 0.857 has

to hold in order to reach unbalanced synchrony. In the first simulation f = 0.84, while

in the second simulation f = 0.87, therefore we expect to the collection of beads to be
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in sync asymptotically in the first simulation but not in the second one.

Figure 5.7(a) shows the positions of the 12 beads vs time with f = 0.84. Clearly,

asymptotically each bead meets its neighbor at the same location on the circle, reaching

synchrony. In Figure 5.7(b), the positions and the desired sweeping arc boundaries for

bead i = 3 are illustrated. The solid line represents θ3(t), the dash-dot line represents

`3(t), and the thicker solid line represents u3(t). The distance distcc(`3(t), u3(t)) asymp-

totically approaches 360/n = 30 degrees. Figure 5.8 shows the positions of the 12 beads

vs time when f = 0.87. Clearly synchrony is not reached as expected.

Appendix

Proof of Lemma 44: We first prove (1). Let
∑n

i=1 di(0) = D. The only instants at which∑n
i=1 di(t) can change is when an impact occurs, as in equation (5.2). If the impact is

of head-to-tail type, then the directions of both the beads involved do not change. On

the other hand, if the impact is of head-to-head type, then the directions of the beads

involved are just swapped, therefore
∑n

i=1 di(t) = D for any t ≥ 0.

We now prove 44(2). To initialize the algorithm, Di(0) = `i(0) = ui(0) = θi(0), and

θi(0) are ordered along the counterclockwise direction. The desired sweeping arc Di is up-

dated only when the bead i is involved in an impact according to equations (5.3) and (5.4).

It is elementary to show that the update equations for `i and ui force ui(t
+) = `i+1(t+)

and `i(t
+) = ui−1(t+). This clearly implies that the order of the desired sweeping arcs is

never changed and that any two desired sweeping arcs can at most share a boundary.

We finally prove 44(3). The order of the beads can change only as a consequence of

an impact. However, we show next that even after an impact the order of the beads is

preserved. If beads i and i+ 1 are involved in an impact of head-to-head type, then after

the impacts both beads change their direction so clearly distcc(θi−1(t + s), θi(t + s)) ≤
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distcc(θi−1(t+s), θi+1(t+s)), with 0 ≤ s < s and t+s is the time at which i impacts again.

If the impact is of head-to-tail type, then the directions of the two beads does not change,

but their nominal velocities vi(t
+) and vi+1(t+) are equal because of equation (5.1). The

impact can occur in Di(t), or in Di+1(t) or in neither, see Figure 5.2. If the impact

occurs in Di(t) and di(t) = di+1(t) = +1, then after the impact θ̇i(t
+) = vi(t

+) while

θ̇i+1(t+) = hvi+1(t+). In fact, because of part (2), i + 1 is moving towards its desired

sweeping arc. If the impact occurs in Di(t) and di(t) = di+1(t) = −1, then after the

impact θ̇i(t
+) = −vi(t+) and θ̇i+1(t+) = −fvi+1(t+) because i + 1 is moving away from

its desired sweeping arc, again because of part (2). Recalling that f < 1 and h > 1 we

have that, in both cases, distcc(θi−1(t+ s), θi(t+ s)) ≤ distcc(θi−1(t+ s), θi+1(t+ s)) for

any time 0 ≤ s < s. An analogous reasoning leads to the conclusion that this property

holds also if the impact occurs in Di+1(t). Now, if the impact occurs in neither Di(t) nor

Di+1(t), then the beads are both moving either towards or away their desired sweeping

arcs. Therefore, θ̇i(t
+) = θ̇i+1(t+) = hvi(t

+) or θ̇i(t
+) = θ̇i+1(t+) = fvi(t

+). Again

distcc(θi−1(t+ s), θi(t+ s)) ≤ distcc(θi−1(t+ s), θi+1(t+ s)) for any 0 ≤ s < s.

Proof of Lemma 45: Note that mini∈{1,...,n} vi(t) ≥ mini∈{1,...,n} vi(0) = vmin because of

equation (5.1). Therefore for any t > 0 the lowest possible speed at which a bead can

travel is fvmin. We first show that at most after π
fvmin

any bead has a head-to-head type

impact with one of its neighbors. First, any bead i can only impact neighbors i+ 1 and

i − 1 because of Lemma 44, part (3). The necessary time for two beads i and i + 1

to impact depends on their positions, the directions of motion and the speeds they are

traveling with.

In the worst possible case at a time t = t0 all the beads are clustered in a small arc of S1

of length ε, with i and i+1 at the opposite ends of the arc (i.e., distcc(θi+1(t0), θi(t0)) = ε),

di(t0) = di+1(t0), and the speeds have the smallest possible value |θ̇i(t0)| = |θ̇i+1(t0)| =
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fvmin. Let us suppose di(t0) = di+1(t0) = +1. That is, i + 1 is moving towards the

cluster of beads and i is moving away from it. Because of Lemma 44, part (1), we have

that
∑n

i=1 di(t0)| = D < n and this implies that i + 1 can travel at most for ε
2fvmin

before having a head-to-head type impact. So at t1 ≤ t0 + ε
2fvmin

, di+1(t1) = −1, and

distcc(θi+1(t1), θi(t1)) ≥ ε. Now, suppose that even after the impact |θ̇i+1(t1)| = fvmin,

then beads i and i+1 are moving towards each other and distcc(θi(t1), θi+1(t1)) ≤ 2π− ε.

They then meet at time t2 ≤ t1 + 2π−ε
2fvmin

≤ t0 + ε
2fvmin

+ 2π−ε
2fvmin

= t0 + π
fvmin

.

After the impact with i+ 1, di(t2) = −1 and, therefore, in its next head-to-head type

impact bead i meets i − 1. Following the same reasoning, we have that at most after

π
fvmin

the two beads i and i − 1 meet. Hence across the interval [t0, t0 + 2π
fvmin

] any bead

impacts at least once with both its neighbors.

Proof of Lemma 49: Let us suppose that at time t the beads i and i+ 1, with directions

di(t) = −di+1(t) = +1, are about to collide after their kth impact. According to Assump-

tion (A4), they also have sweeping arcs that have converged and same nominal velocity

v̄. Let us assume, without any loss of generality, that the impact between beads i and

i+ 1 occurs in Di+1 and precisely at ui + ∆1 as shown in Figure 5.9.

Figure 5.9: This figure shows how the speeds of bead i and i + 1 change while they
are traveling towards each other. Note that bead i is early with respect to bead i+ 1.

The time instant at which beads i and i + 1 reach the point ui + ∆1 simultaneously
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is:

P k
i +

π

n

1

v
+

∆1

fv
= P k

i+1 +
π

n

1

v
− ∆1

v
. (5.5)

Solving (5.5) for ∆1 we have:

∆1 = v
f

1 + f
(P k

i+1 − P k
i ) . (5.6)

According to Assumption (A5), beads i − 2 and i − 1 are also either going to or have

already collided with each other. Let us assume that the impact between them occurs in

Di−1 and precisely at ui−2 + ∆2. Following a similar analysis as done for obtaining ∆1,

one can conclude that

∆2 = v
f

1 + f
(P k

i−1 − P k
i−2) . (5.7)

After the impact between beads i and i+ 1, the directions of both beads change because

the impact is of head-to-head type, and they both head towards Ci and Ci+1, which they

would reach at time P k+1
i and P k+1

i+1 respectively. In order for the variable P k+1
i to be

defined, the bead i should reach the center of its sweeping arc Ci before bead i− 1 does,

after its own kth impact. For this to hold true, the time taken for the former event should

be smaller than or equal to the time take for the later event:

P k
i +

2π

n

1

v
+

∆1

v

(
1

f
+

1

h

)
≤ P k

i−1 +
2

v̄

(π
n
−∆2

)
+
π

n

1

v̄

(
1 + f

f

)
(5.8)

Using (5.6) and (5.7) and simplifying,

(
1− f
1 + f

)(
P k
i − P k

i−1

)
+

(
2f

1 + f

)(
P k
i+1 − P k

i−2

)
≤ π

nv̄

(
f + 1

f

)

should hold for P k+1
i to be defined. This is the case, based on Assumption (A6) and the

fact that the dynamics of the passage times is average consensus, as will be proved later.
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The same analysis can be carried out to prove that P k+1
i+1 is also well-defined. The choice

of the impact locations ui + ∆1 and ui−2 + ∆2 also accounts for the worst case scenario.

Calculating P k+1
i and P k+1

i+1 :

P k+1
i = P k

i +
2π

n

1

v
+

∆1

v

(
1

f
+

1

h

)
,

P k+1
i+1 = P k

i+1 + 2
(π
n
−∆1

) 1

v
.

Simplifying:

P k+1
i =

1− f
1 + f

P k
i +

2f

1 + f
P k
i+1 +

2π

nv
,

P k+1
i+1 =

2f

1 + f
P k
i +

1− f
1 + f

P k
i+1 +

2π

nv
.

Note that 0 < 1−f
1+f

< 1/3 and 2/3 < 2f
1+f

< 1 since f ∈ ]0.5, 1[. Now, let us define the

matrices Ceven and Codd ∈ Rn×n by:

[Ceven]lm =


1−f
1+f

, if (l,m) ∈ {(i, i+ 1)},

2f
1+f

, if (l,m) ∈ {(i, i+ 2), (j, j)}, i odd, j even

[Codd]lm =


1−f
1+f

, if l = m,

2f
1+f

, if (l,m) ∈ {(i, i+ 1), (i+ 1, i)}, i odd.

Once again, we use the identification n+ 1 ≡ 1 while working with indices i and j. If the

first impact after t = 0 is between i and i + 1, and i is even, then the vector P k evolves

as follows:

P k+1 =


CoddP

k + 2π
nv
1n, if k odd,

CevenP
k + 2π

nv
1n, if k even.

(5.9)
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If the first impact is between i and i + 1, and i is odd, then equation (5.9) is still

valid as long as the definitions of Codd and Ceven are exchanged. In any case, the dy-

namics of the passage times is just the average consensus dynamics with matrices Codd

and Ceven. Therefore, it can be easily proved that limk→+∞ P
k = 1

T
nP

k

n
1n. Further,

‖P k − 1
T
nP

k

n
1n‖2

≥ ‖P k+1 − 1
T
nP

k+1

n
1n‖2

and δ ≥ maxi{1,...,n} |P k
i −P k

j | ≥maxi{1,...,n} |P k+1
i −

P k+1
j |. In other words, if the initial conditions of the collection of beads are close to the

periodic orbit, i.e., satisfy Assumption (A6), then the resulting trajectory remains close to

the periodic orbit. Furthermore, because of Proposition 1 and Theorem 46, the balanced

synchrony, i.e., the consensus, is asymptotically reached.

Proof of Lemma 54: Case (i) Let us suppose δ < π
n
, and

∑n
i=1 di(0) = −1. According to

Assumption (A7), the beads have sweeping arcs which have converged and same nominal

velocity v̄. Let us suppose that bead i−1 and bead i are moving towards each other and

let P k
i−1 and P k

i be the last time they passed by C̃i−1 and C̃i with directions di−1 = +1

and di = −1. If the two beads are not in unbalanced sync, they will not meet at ui−1− δ

but at ui−1 − δ −∆, as shown in Figure 5.10.

Figure 5.10: From top to bottom, the figure illustrates the position of C̃i−1, C̃i, and
of ui−1 − δ −∆ for δ < π

n and δ > π
n .

In order to calculate where and when the beads impact we need to impose that i and
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i− 1 reach simultaneously ui−1 − δ −∆:

P k
i−1 + (

π

n
−∆)

1

v
= P k

i + (
π

n
− δ)1

v
+

(δ + ∆)

fv
.

Note that the speeds of the beads are decided based on their location with respect to the

sweeping arcs. According to Assumption (A8), these are shifted by an amount δ from

the desired sweeping arcs Di defined earlier. The direction of shift is determined by the

sign of D. Solving for ∆ we have:

∆ =
−f
f + 1

v(P k
i − P k

i−1) +
f − 1

f + 1
δ. (5.10)

Note that requiring i and i− 1 to be in unbalanced sync is equivalent to imposing ∆ = 0

which implies P k
i − P k

i−1 = f−1
f

δ
v
. After impacting at ui−1 − δ − ∆, beads i − 1 and i

change directions and head back towards C̃i−1 and C̃i, that they will reach at time P k+1
i−1

and P k+1
i :

P k+1
i−1 = P k

i−1 + 2(
π

n
−∆)

1

v
,

P k+1
i = P k

i + 2(
π

n
+ ∆)

1

v
.

Recalling equation (5.10) and rearranging the terms we have:

P k+1
i−1

P k+1
i

 = M

P k
i−1

P k
i

+
2δ

v

1− f
f

 1

−1

+
1

v

2π

n

1

1

 ,

where

M =

1− 2f
f+1

2f
f+1

2f
f+1

1− 2f
f+1

 . (5.11)
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Note that the dynamics matrix M is doubly stochastic since f ∈ ]0.5, 1[.

Before proceeding, we note that for P k+1
i to be defined, we must impose that bead i

reaches C̃i before bead i+ 1 does, i.e.

P k+1
i ≤ P k

i+1 + (
π

n
+ δ)

1

v̄
+ (

π

n
− δ) 1

fv̄

The term on the left hand side of this inequality is the time required for i + 1 to reach

C̃i after its kth impact. This inequality can be simplified further:

(
2f

f + 1
) P k

i−1 + (
1− f
1 + f

) P k
i − P k

i+1 ≤
1

v̄
( δ +

π

n
) (

1− f
f

)

This is true according to Assumption (A9), and the convergence properties of the passage

times which will be proved later.

Returning back to the dynamics of the passage times, any time an impact between

i − 1 and i occurs, if Assumption (A9) is satisfied, the beads pass again by the centers

of their cells at: 

P k
1

...

P k+1
i−1

P k+1
i

...

P k
n


= Ei−1



P k
1

...

P k
i−1

P k
i

...

P k
n


+

2δ

v

1− f
f

ui−1 +
1

v

2π

n
wi−1 ,
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where

Ei−1 =



1 0 . . . 0

0
. . . 0

... M11 M12
...

... M21 M22
...

. . .

0 0 . . . 1


, ui−1 =



0

...

1

−1

...

0


, wi−1 =



0

...

1

1

...

0


,

and Mij are the entries of the matrix M defined in equation (5.11). After any bead has

met both its two neighbors once, the vector P k+2 can be calculated in closed form:

P k+2 = ẼP k +
2δ

v

1− f
f

Ũ +
1

v

2π

n
W̃ , (5.12)

where Ẽ =
∏n

m=1Ejm , jm ∈ {1, . . . , n} (the value of jm depends on the order of the

impacts), Ũ =
∑n

r=1

(∏n
m=1+r Ejm

)
ujr , and W̃ =

∑n
r=1

(∏n
m=1+r Ejm

)
wjr .

For all k ∈ \ the dynamics matrix Ẽ is actually constant because by assumption the

order of the impacts is just like in Figure 5.4. Since the dynamics (5.12) is time invariant

we can write the trajectory in closed-form:

P 2k+1 = ẼkP 1 +

(
k−1∑
j=1

Ẽj

)(
2δ

v

1− f
f

Ũ +
1

v

2π

n
W̃

)
.

We can then calculate:

P 2k+1 − P 2(k−1)+1 = (Ẽk − Ẽk−1)P 1 + Ẽk−1

(
2δ

v

1− f
f

Ũ +
1

v

2π

n
W̃

)
.
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Now, note that:

P 2(k+1)+1 − P 2k+1 = (Ẽk+1 − Ẽk)P 1 + Ẽk

(
2δ

v

1− f
f

Ũ +
1

v

2π

n
W̃

)
,

therefore we can write:

P 2(k+1)+1 − P 2k+1 = Ẽ(P 2k+1 − P 2(k−1)+1).

Since Ẽ is doubly stochastic, Ẽ1n = 1n and therefore:

P 2(k+1)+1 − P 2k+1 − 1n
2

v

2π

n
= Ẽ

(
P 2k+1 − P 2(k−1)+1 − 1n

2

v

2π

n

)
.

This implies that ‖(P 2k+1 − P 2(k−1)+1)− 1n
2
v

2π
n
‖

2
≥ ‖(P 2(k+1)+1 − P 2k+1)− 1n

2
v

2π
n
‖

2
and

that maxi{1,...,n} |(P 2k+1
i −P 2(k−1)+1

i )−1n 2
v

2π
n
| ≥ maxi{1,...,n} |(P 2(k+1)+1−P 2k+1)−1n 2

v
2π
n
|.

Therefore, if the initial conditions of the collection of beads are close to the periodic

orbit, then the resulting trajectory remains close to the periodic orbit. We now prove

that the collection of beads asymptotically reaches unbalanced synchrony. Since Ẽ is

doubly stochastic and its associated graph is connected, limk→+∞ Ẽ
k = 1n1

T
n

n
(see [72]),
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and therefore:

lim
k→+∞

P 2k+1 − P 2(k−1)+1 =

(
1n1

T
n

n
− 1n1

T
n

n

)
P 1 +

1n1
T
n

n

(
2δ

v

1− f
f

Ũ +
1

v

2π

n
W̃

)
=

1n1
T
n

n

n∑
r=1

(
2δ

v

1− f
f

n∏
m=1+r

Ejmujr +
1

v

2π

n

n∏
m=1+r

Ejmwjr

)

=
2δ

v

1− f
f

n∑
r=1

(
1n1

T
n

n
ujr

)
+

1

v

2π

n

n∑
r=1

(
1n1

T
n

n
wjr

)
= 0 +

1

v

2π

n

n∑
r=1

2
1n

n

=
2

v

2π

n
1n .

The third equality holds because 1TnEjm = 1
T
n for all jm ∈ {1, . . . , n} since Ejm is doubly

stochastic, while the fourth equality holds because 1
T
nujr = 0 and 1

T
nwjr = 2 for all

jr ∈ {1, . . . , n}.

Case (ii) Let us now suppose δ ≥ π
n
. To calculate where beads i−1 and i will impact

we need to solve (see Figure 5.10):

P k
i−1 + (δ − π

n
)

1

hv
+ (

2π

n
− δ −∆)

1

v
= P k

i + (
π

n
+ ∆)

1

fv
,

solving for ∆ we have:

∆ =
−f
f + 1

v(P k
i − P k

i−1) +
f − 1

f + 1
δ, (5.13)

just like for case (i). After impacting at ui−1− δ−∆ beads i− 1 and i change directions
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and head back towards C̃i−1 and C̃i. We can now calculate P k+1
i−1 and P k+1

i :

P k+1
i−1 = P k

i + 2(
π

n
+ ∆)

1

v
,

P k+1
i = P k

i + 2(
π

n
−∆)

1

v
.

The dynamics of Pi−1 and Pi are just like in case (i), therefore the analysis and conclusion

of case (i) are valid also for case (ii).

Proof of Lemma 50: We prove the theorem by constructing the periodic orbit. Without

loss of generality let us suppose that
∑n

i=1 di(0) = −1. Let I1
i be the time at which bead i

and bead i+1 impact at ui(0)−δ ≡ `i+1(0)−δ. Let us suppose that θi−1(I1
i ) = `i−1(0)−α

and that θi−2(I1
i ) is such that:

I1
i−2 = I1

i−1 +
δ − α
fv

, (5.14)

with δ < 2π
n

and α < δ (see Figure 5.3). Recalling (5.14) and by symmetry we have:

I1
2 = I1

1 +
n− 1

2

δ − α
fv

, (5.15)

I1
n = I1

1 +
n+ 1

2

δ − α
fv

. (5.16)

For beads 1 and 2 to meet again at u1(0)− δ ≡ `2(0)− δ, the following must hold:

I1
2 +

(
2π

n
− δ
)

1

v
+

δ

fv
= I1

n +
δ

hv
+

(
2π

n
− δ
)

1

v
. (5.17)

In fact, after impacting with bead 3, bead 2 travels along the arc Arc(`2(0), u2(0) − δ)

with velocity −v since it is in its desired sweeping arc. After crossing `2(0), the speed

of bead 2 becomes −fv because it is moving away from its arc. For bead 1 the dual is
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Figure 5.11: This figure shows how the speeds of bead 1 and 2 change as they are
traveling towards each other, shortly after bead 1 meets bead n.

true. After impacting with bead n, bead 1 travels along the arc Arc(`1(0)− δ, `1(0)) with

speed hv since it is moving towards its desired sweeping arc. After crossing `1(0), the

speed of bead 1 becomes v because it is in its arc (see Figure 5.11).

Recalling (5.15) and (5.16), we have:

I1
1 +

n− 1

2

δ − α
fv

+

(
2π

n
− δ
)

1

v
+

δ

fv
= I1

1 +
n+ 1

2

δ − α
fv

+
δ

hv
+

(
2π

n
− δ
)

1

v
.

Rearranging all the terms and solving for α:

α = δ(2f − 1). (5.18)

In order to be a periodic orbit we need to impose that beads 1 and 2 meet again after a

period:

I1
1 +

n− 1

2

δ − α
fv

+

(
2π

n
− δ
)

1

v
+

δ

fv
= I1

1 + 2
2π

n

1

v
. (5.19)

Substituting (5.18) in (5.19) and solving for δ, we have:

δ =
2π

n2

f

1− f
.
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Recalling the assumption of f we have:

f <
n

1 + n
=⇒ δ =

2π

n2

f

1− f
<

2π

n
.

Proof of Lemma 52: Let us assume, with no loss of generality, that
∑n

i=1 di(0) = −1. Let

t+ be the time spent by each bead traveling along the positive direction, and t− be the

time spent by each bead traveling along the negative direction in a period of the periodic

orbit. In other words, if δ < 2π
n

, then t− = (2π
n
− δ) 1

v
+ δ

fv
, and t+ = δ

hv
+ (2π

n
− δ) 1

v
,

as in (5.17). Clearly t− + t+ = 22π
n

1
v
, which is the period of the orbit, and t− > t+,

that is each bead spends more time traveling along the negative direction than along

the positive. At every instant of time only one bead is unbalanced and t− − t+ is the

time each bead is unbalanced during a period. By symmetry we can then conclude that

n(t− − t+) must be equal to a period:

2
2π

N

1

v
= n(t− − t+) . (5.20)

Recalling the expressions for t− and t+, we have:

2
2π

n

1

v
= n2

δ

v

f

1− f
,

and solving for δ

δ =
2π

n2

f

1− f
.

By assumption δ < 2π
n

, therefore:

δ =
2π

n2

f

1− f
<

2π

n
=⇒ f <

n

1 + n
.
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Proof of Lemma 53: The proof parallels the one of Theorem 52. Without loss of generality

let us assume
∑n

i=1 di(t) = D < −1. At every instant of time |D| beads are unbalanced

and t− − t+ is the time each bead is unbalanced during a periodic orbit. By symmetry

we can then conclude that n (t−−t+)
|D| must be equal to a period, therefore equation (5.20)

becomes:

2
2π

n

1

v
= n

(t− − t+)

|D|
,

where t− − t+ = 2 δ
v

f
1−f . Solving for δ we have:

δ = |D|2π
n2

f

1− f
.

Imposing the constraint δ < 2π
n

we can calculate the necessary condition for the existence

of the periodic orbit in a D-unbalanced collection of beads:

f <
n/|D|

1 + n/|D|
.

Note that the higher the ratio |D|/n is, the smaller f needs to be so that each bead

spends enough time outside of its desired sweeping arc Arc(`i(t), ui(t)) but it does not

get too far from it.
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Chapter 6

Conclusions and Future Directions

6.1 Radially Escaping Targets Problem

In Chapter 2 we introduced a novel vehicle routing problem termed the RET problem

in which targets move radially outward in a disk with the intention of escaping it quickly.

We established two policy independent upper bounds on the performance of any algorithm

for the RET problem. We also proposed three policies for different parameter regimes of

the RET problem. In Table 2.1, we also summarized the lower bounds on the capture

fraction achieved by these policies as well as their factor of optimality. The SAC policy

is optimal for λ→ 0+ while for moderate arrival rates, for a fixed target speed, the SW

policy is within a constant factor of the optimal. The SNB policy is within a constant

factor of the optimal for λ→ +∞. When the disk radius is greater than or equal to one,

this factor is equal to 2.52.

The current problem setup can be extended in various ways. We assume that the

vehicle needs to intercept the target exactly in order to capture it. An interesting and

realistically motivated modification of the problem is when the vehicle has a small capture

radius. The SAC policy may be extended and applied relatively easily to that setup.
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On the other hand, the other policies would require extensive computation due to the

history dependence which would be introduced because of the capture radius model. In

the current setup, the targets move radially outward with the intention of escaping the

environment in minimum time. Another modification of the setup is the case in which

the targets modify their trajectories in order to evade the pursuing vehicle.

A variation of the RET problem is also the scenario in which the targets are moving

radially inward towards an inner boundary instead of moving radially outward and the

vehicle has to stop the targets from reaching the inner boundary. Generalizations of the

RET problem, like for instance, when the distribution of targets in the environment is

not uniform, or when the environment is an arbitrary closed curve and the targets have

arbitrary velocities are also open to exploration.

6.2 Quickest Detection of Intruder Location

In Chapter 3 we studied the problem of how to optimally design a Markov chain

which minimizes the mean first passage time to go from one region to any other region in

a connected environment. We presented the first formulation of the mean first passage

time for a doubly-weighted graph, which we refer to as the weighted Kemeny constant,

and also provided a provably correct convex formulation for the minimization of both

the Kemeny constant and the weighted Kemeny constant. Finally, we showed that both

problems can be written as SDPs and, moreover, demonstrated the effectiveness of using

a Markov chain with minimal mean first passage time as a surveillance policy as compared

to other well-known Markov chain policies.

This work leaves open various directions for further research. First, we designed

surveillance policy only for single agent systems and it would be of practical interest to

consider the case where there are multiple agents: [94, 24, 5, 25] are examples of work
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in this direction. Second, it would be useful to understand bounds on the design of

of the mean first passage time for general graph topologies. Finally, we treat only the

optimization of the transition matrix of the graph. It would be of interest to study how

we can optimize the weight matrix W in conjunction with the transition matrix. This

can have the interpretation of optimizing the ”capacity” or ”resistance” of the graph, a

topic in optimization which is of independent interest [41].

6.3 Quickest Detection of Anomalies

In Chapter 4 we studied the problem of quickest detection of anomalies based on

sensor observations in environments with arbitrary graph topologies. We analyzed the

Ensemble CUSUM Algorithm for this surveillance task and provided guarantees on its

performance. We framed an optimization problem to compute the optimal policy for

the Ensemble CUSUM Algorithm. We also proposed an efficient policy which can be

computed by solving a convex optimization problem. Through numerical simulations,

we compared the performance of the optimal policy to the efficient policy. The detection

delays guaranteed by the efficient policy were much smaller compared to alternative

policies considered, especially for higher levels of uncertainties in sensor observations.

There are several possible extensions of the ideas considered here. First, the current

method assume known distributions in presence and absence of anomalies in the regions

under surveillance. An interesting direction is to design anomalydetection strategies

that are robust to the uncertainties in these distributions. As mentioned earlier, in this

case, the CUSUM algorithm can be replaced by the minimax quickest detection change

algorithm [103]. Second, in the current setup, the anomalies on appearing one region, are

always contained in that region. It would be of interest to consider anomalies that can

move from region to region. The case of multivehicle surveillance for this setup can also
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be considered. In particular, the extent of information that the vehicles can share with

eachother will influence their individual routing policies. Lastly, in the Markov chain

based proposed policies we relied on time-homogeneous Markov chains. A time varying

Markov chain may potentially display shorter anomaly detection delays. This is also an

interesting direction to be pursued.

6.4 Synchronization of beads on a ring

In Chapter 5 presented and analyzed the SIS Algorithm that synchronizes a col-

lection of n agents or beads, moving on a ring, so that each bead patrols only a sector of

the ring. The algorithm is distributed and requires that two agents exchange information

only when they meet. We have established that the proposed algorithm renders locally

attractive the periodic modes corresponding to balanced and unbalanced synchrony. Sim-

ulations indicate that convergence to the desired periodic modes takes places for a large

set of initial conditions.

Without providing a formal analysis, we mention here a few properties of the pro-

posed algorithm. The SIS Algorithm (1) adapts smoothly to arrival and departures of

agents throughout execution time, including adapting to switches between odd and even

numbers of agents, (2) handles smoothly measurement noise and control disturbances,

(3) has memory requirements and message sizes independent of n, (4) is truly distributed

and does not require agents to have unique identifiers, and (5) is invariant under rotations

and reflections.

Furthermore, our algorithm may be implemented even on robotic agents that do not

have access to their position with respect to a global reference frame on the ring, i.e.,

even if they do not agree upon the position of the absolute 0 angle. To be specific,

assume that each agent can only measure the angular distances that it travels and that,
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at communication impacts, the agent transmits its travel distance from its arc center to

the impact position. Then, it is easy to see that this “relative angle” information suffices

to implement the update rules of the feedback law.

One may design alternative approaches to the basic problem of steering a group of

agents to balanced synchronization. An example alternative solution is described as fol-

lows: all agents could rendezvous at a common location, thereby forming a connected

communication network; then they could elect a leader, agree upon an open-loop plan,

and implement it without any further communication. This approach is philosophically

and practically very different from our proposed algorithm. We leave a detailed compar-

ison to future works.
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[20] Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows,
part i: Route construction and local search algorithms. Transportation science,
39(1):104–118, 2005.

[21] L. Breiman. Probability, volume 7 of Classics in Applied Mathematics. SIAM, 1992.
Corrected reprint of the 1968 original.

[22] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic vehicle
routing for robotic systems. Proceedings of the IEEE, 99(9):1482–1504, 2011.

[23] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide
robot. Artificial intelligence, 114(1):3–55, 1999.

140



[24] G. Cannata and A. Sgorbissa. A minimalist algorithm for multirobot continuous
coverage. IEEE Transactions on Robotics, 27(2):297–312, 2011.

[25] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. Mclain, S.-M. Li, and
R. Mehra. Cooperative forest fire surveillance using a team of small unmanned
air vehicles. International Journal of Systems Sciences, 37(6):351–360, 2006.

[26] P. Chalasani and R. Motwani. Approximating capacitated routing and delivery
problems. SIAM Journal on Computing, 28(6):2133–2149, 1999.

[27] L. Chen and J. Leneutre. A game theoretical framework on intrusion detection in
heterogeneous networks. IEEE Transactions on Information Forensics and Secu-
rity, 4(2):165–178, June 2009.

[28] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. In
IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology, pages 302–308, Bei-
jing, China, September 2004.

[29] J. Clark and R. Fierro. Mobile robotic sensors for perimeter detection and tracking.
ISA Transactions, 46(1):3–13, 2007.

[30] B. Cooley and P. K. Newton. Iterated impact dynamics of N -beads on a ring.
SIAM Review, 47(2):273–300, 2005.

[31] G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management
science, 6(1):80–91, 1959.

[32] M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Asso-
ciation, 69(345):118–121, 1974.

[33] M. Desrochers, J. Desrochers, and M. Solomon. A new optimization algorithm for
the vehicle routing problem with time windows. Operations Research, 40(2):342–
354, 1992.

[34] Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis. Time
constrained routing and scheduling. Handbooks in operations research and man-
agement science, 8:35–139, 1995.

[35] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains.
Annals of Applied Probability, 1(1):36–61, 1991.

[36] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson. Distributed event-
triggered control for multi-agent systems. IEEE Transactions on Automatic Con-
trol, 57(5):1291–1297, 2012.

[37] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. Mathematical
Association of America, 1984.

141



[38] W. Ellens, F. M. Spieksma, P. Van Mieghem, A. Jamakovic, and R. E. Kooij.
Effective graph resistance. Linear Algebra and its Applications, 435(10):2491–2506,
2011.

[39] Y. Elmaliach, A. Shiloni, and G. A. Kaminka. A realistic model of frequency-
based multi-robot polyline patrolling. In International Conference on Autonomous
Agents, pages 63–70, Estoril, Portugal, May 2008.

[40] F. Garin and L. Schenato. A survey on distributed estimation and control ap-
plications using linear consensus algorithms. In A. Bemporad, M. Heemels, and
M. Johansson, editors, Networked Control Systems, LNCIS, pages 75–107. Springer,
2010.

[41] A. Ghosh, S. Boyd, and A. Saberi. Minimizing effective resistance of a graph. SIAM
Review, 50(1):37–66, 2008.

[42] A. Goel and V. Gruhn. A general vehicle routing problem. European Journal of
Operational Research, 191(3):650–660, 2008.

[43] B. Golden, S. Raghavan, and E. Wasil. The Vehicle Routing Problem: Latest Ad-
vances and New Challenges, volume 43 of Operations Research/Computer Science
Interfaces. Springer, 2008.

[44] J. Grace and J. Baillieul. Stochastic strategies for autonomous robotic surveillance.
In IEEE Conf. on Decision and Control and European Control Conference, pages
2200–2205, Seville, Spain, December 2005.

[45] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx, October 2014.

[46] M. Hammar and B. J. Nilsson. Approximation results for kinetic variants of TSP.
Discrete and Computational Geometry, 27(4):635–651, 2002.

[47] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

[48] C. S. Helvig, G. Robins, and A. Zelikovsky. The moving-target traveling salesman
problem. Journal of Algorithms, 49(1):153–174, 2003.

[49] J. J. Hunter. Generalized inverses and their application to applied probability
problems. Linear Algebra and its Applications, 45:157–198, 1982.

[50] J. J. Hunter. Mathematical Techniques of Applied Probability, volume 1 of Discrete
Time Models: Basic Theory. Academic Press, 1983.

[51] J. J. Hunter. Mathematical Techniques of Applied Probability, volume 2 of Discrete
Time Models: Techniques and Applications. Academic Press, 1983.

142

http://cvxr.com/cvx


[52] J. J. Hunter. The role of Kemeny’s constant in properties of Markov chains. Com-
munications in Statistics - Theory and Methods, 43(7):1309–1321, 2014.

[53] R. Isaacs. Differential Games. John Wiley & Sons, 1965.

[54] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48(6):988–1001, 2003.

[55] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Springer, 1976.

[56] S. J. King and C. Weiman. Helpmate autonomous mobile robot navigation system.
In Fibers’ 91, Boston, MA, pages 190–198. International Society for Optics and
Photonics, 1991.

[57] D. B. Kingston, R. W. Beard, and R. S. Holt. Decentralized perimeter surveillance
using a team of UAVs. IEEE Transactions on Robotics, 24(6):1394–1404, 2008.

[58] S. Kirkland. Fastest expected time to mixing for a Markov chain on a directed
graph. Linear Algebra and its Applications, 433(11-12):1988–1996, 2010.
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[83] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia. A review of dynamic
vehicle routing problems. European Journal of Operational Research, 225(1):1–11,
2012.

[84] H. N. Psaraftis. Dynamic vehicle routing problems. In B. Golden and A. Assad,
editors, Vehicle Routing: Methods and Studies, pages 223–248. Elsevier (North-
Holland), 1988.

[85] W. Ren, R. W. Beard, and E. M. Atkins. Information consensus in multivehicle
cooperative control: Collective group behavior through local interaction. IEEE
Control Systems Magazine, 27(2):71–82, 2007.

[86] S. M. Ross. Applied Probability Models with Optimization Applications. Dover
Publications, 1992.

[87] T. Sak, J. Wainer, and S. Goldenstein. Probabilistic multiagent patrolling. In
Brazilian Symposium on Artificial Intelligence, Advances in Artificial Intelligence,
pages 124–133, Salvador, Brazil, 2008. Springer.

[88] D. Siegmund. Sequential Analysis: Tests and Confidence Intervals. Springer, 1985.

[89] R. G. Simmons, R. H. Goodwin, K. Z. Haigh, S. Koenig, J. O’Sullivan, and M. M.
Veloso. Xavier: Experience with a layered robot architecture. ACM Sigart Bulletin,
8(1-4):22–33, 1997.

[90] S. L. Smith, S. D. Bopardikar, and F. Bullo. A dynamic boundary guarding problem
with translating demands. In IEEE Conf. on Decision and Control and Chinese
Control Conference, pages 8543–8548, Shanghai, China, December 2009.

[91] S. L. Smith and D. Rus. Multi-robot monitoring in dynamic environments with
guaranteed currency of observations. In IEEE Conf. on Decision and Control, pages
514–521, Atlanta, GA, USA, December 2010.

145



[92] S. L. Smith, M. Schwager, and D. Rus. Persistent robotic tasks: Monitoring and
sweeping in changing environments. IEEE Transactions on Robotics, 28(2):410–
426, 2012.

[93] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research, 35(2):254–265, 1987.

[94] K. Srivastava, D. M. Stipanovic̀, and M. W. Spong. On a stochastic robotic surveil-
lance problem. In IEEE Conf. on Decision and Control, pages 8567–8574, Shanghai,
China, December 2009.

[95] V. Srivastava, F. Pasqualetti, and F. Bullo. Stochastic surveillance strategies for
spatial quickest detection. International Journal of Robotics Research, 32(12):1438–
1458, 2013.

[96] J. M. Steele. Probabilistic and worst case analyses of classical problems of com-
binatorial optimization in Euclidean space. Mathematics of Operations Research,
15(4):749–770, 1990.

[97] S. Susca, S. Mart́ınez, and F. Bullo. Monitoring environmental boundaries with
a robotic sensor network. IEEE Transactions on Control Systems Technology,
16(2):288–296, 2008.

[98] B.W. Thomas. Waiting strategies for anticipating service requests from known
customer locations. Transportation Science, 41(3):319–331, 2007.

[99] S. Thrun et al. Robotic mapping: A survey, 2002.

[100] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Monographs on
Discrete Mathematics and Applications. SIAM, 2001.

[101] I. Triandaf and I. B. Schwartz. A collective motion algorithm for tracking time-
dependent boundaries. Mathematics and Computers in Simulation, 70(4):187–202,
2005.

[102] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms. IEEE Transactions on
Automatic Control, 31(9):803–812, 1986.

[103] J. Unnikrishnan, V. V. Veeravalli, and S. P. Meyn. Minimax robust quickest change
detection. IEEE Transactions on Information Theory, 57(3):1604–1614, 2011.

[104] W. Wang and J.-J. E. Slotine. On partial contraction analysis for coupled nonlinear
oscillators. Biological Cybernetics, 92(1):38–53, 2005.

146



[105] X. Wu and Z. Liu. How community structure influences epidemic spread in social
networks. Physica A: Statistical Mechanics and its Applications, 387(2):623–630,
2008.

[106] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds of coopera-
tive, autonomous vehicles in warehouses. AI Magazine, 29(1):9–20, 2008.

[107] F. Zhang and N. E. Leonard. Coordinated patterns of unit speed particles on a
closed curve. Systems & Control Letters, 56(6):397–407, 2007.

147


	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Vehicle Routing Problems
	Robotic Surveillance
	Boundary Guarding and Coordination
	Organization

	Radially Escaping Targets Problem
	Contributions
	Organization
	Problem Formulation
	Preliminary results
	Policies
	Simulations

	Robotic Surveillance: Detection of Intruder Location
	Contributions
	Organization
	The Kemeny constant and its minimization
	The weighted Kemeny constant and its minimization
	Applications of the mean first passage time to surveillance

	Robotic Surveillance: Quickest Anomaly Detection
	Contributions
	Organization
	Problem Setup
	Preliminary Results
	Performance of the Ensemble CUSUM Algorithm
	Numerical Simulations

	Synchronization of Beads on a Ring
	Contributions
	Organization
	Model and problem statement
	Synchronization algorithm
	Preliminary results
	Convergence analysis
	Simulations

	Conclusions and Future Directions
	Radially Escaping Targets Problem
	Quickest Detection of Intruder Location
	Quickest Detection of Anomalies
	Synchronization of beads on a ring

	Bibliography

