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ABSTRACT 

 

Brain Invaders: Exploring the Impact of Platelet Transmigration on Serotonin Signaling in 

the Medial Prefrontal Cortex 

 

by 

 

Sonya Elizabeth Gross 

 

 Recent evidence in immunology has indicated that a peripheral player may be 

contributing to central serotonergic signaling.  Researchers have shown that transmigration of 

blood platelets across the blood brain barrier (BBB) occurs during times of inflammation in 

the CNS, but none have suggested whether or not this process impacts central serotonin 

signaling. This paper addresses current research determining the transmigration of platelets 

into the CNS under natural conditions and addresses future work to solidify any contribution 

by platelets to CNS 5-HT signaling. Using immunohistochemistry and confocal imaging we 

mapped the serotonergic varicosities of the mouse brain and used them in comparison to a 

swellshark (lacking a peripheral serotonin system) to determine any significant differences. It 

was observed that the ‘loose-varicosities’ seen in the mouse did not appear to be present in 

the sharks, indicating that these may actually be transmigrated platelets. In order to determine 

whether or not platelets that cross the BBB contribute significantly to 5-HT signaling we 

must first determine an accurate and efficient sensor to extracellular changes of 5-HT. In the 

presence of Fluoxetine (a serotonin reuptake inhibitor), RTq-PCR was used on a variety of 
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receptors to determine sensitivity. Findings were inconclusive for all but one receptor 

(ITGB3), showing a significant increase in mRNA transcripts. Our results require further 

verification of platelets from the microvasculature in the CNS using more definitive labeling 

techniques, elucidation of additional markers as efficient serotonin sensors, and assessing 

changes in receptor expression as a function of pharmacological platelet depletion. 
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INTRODUCTION 

 The function of the medial prefrontal cortex (mPFC) strongly depends on serotonin 

signaling.  The biogenic amine serotonin, also known as 5-hydroxytryptamine (5-HT), is a 

major neurotransmitter in the central nervous system (CNS).  The activity of projection 

neurons and interneurons within the mPFC are controlled by a number of serotonin receptors 

that directly affect their firing rates.  Serotonergic activity within the mPFC has been 

associated with multiple important functions including working memory, attentional 

processes, and decision-making.  Currently, studies concerning altered 5-HT levels and their 

role in neurological diseases focus on 5-HT produced strictly in the CNS.  However, the 

brain only synthesizes and contains around 5% of the body’s 5-HT.  The remaining 95% is 

produced by the small intestine, and it is currently believed that this peripheral 5-HT never 

finds its way into the brain.  This is due to the protective function of the blood brain barrier 

(BBB), which is currently known to block 5-HT entry.  Thus, the central and peripheral 5-HT 

systems are considered to be functionally separate from one another.  This paper will discuss 

the possibility that the predominant 5-HT source in the periphery of the body affects 5-HT 

signaling within the brain via blood platelet transmigration.   

5-HT signaling in the mPFC 

 Central 5-HT axons terminate onto widely distributed locations throughout the brain.  

One region targeted by raphe 5-HT terminals is the mPFC, which contains a high density of 

5-HT receptors and these are modulated in a region-specific manner.  Research using rodent 

models to describe the function of the human mPFC has brought to into question the validity 

of comparing the cortex of rodent brain and primate brains.  The homology between the 

primate and rodent mPFC is a highly contentious subject, but strong evidence exists that the 
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rodent mPFC is functionally homologous to the primate agranular mPFC (Uylings, 

Groenewegen, & Kolb, 2003).  The mPFC in the rat contains four main subdivisions: the 

medial agranular (AGm), the anterior cingulate (AC), the prelimbic (PL), and the infralimbic 

(IL) cortices (Vertes, 2004).  These subdivisions are represented by distinct patterns of 

connectivity, which feed into the various cognitive and emotional roles associated with each 

cortical node.  Even within a single brain region, differential IL and PL projections can be 

observed.  For example, it has been suggested that the PL and IL play opposing roles in fear 

behavior regulation.  The PL is thought to promote fear expression by increasing amygdala 

output, while the IL has an inhibitory effect on amygdala output (T. Chan et al., 2011).  

Findings in adult rats agree with this model: microstimulation of the PL increases 

conditioned freezing and impairs extinction, while microstimulation of the IL decreases 

freezing and facilitates extinction under standard footshock conditions (Vidal-Gonzalez, 

Vidal-Gonzalez, Rauch, & Quirk, 2006).  

 The mPFC is rich with both dense intra-connectivity between different nodes within 

the mPFC itself and outward projections to termination sites distributed throughout the brain.  

Altered 5-HT function within these networks is thought to play a role in the pathophysiology 

of depression (Sullivan et al., 2009), schizophrenia (Muguruza et al., 2013), and drug 

addiction (Liu, Bubar, Lanfranco, Hillman, & Cunningham, 2007).  The main area of 5-HT 

synthesis in the brain is the dorsal raphe nucleus (DRN), which is controlled by several 

forebrain regions, including the mPFC.  The mPFC and DRN form an active circuit within 

this network and the communication between the two regions has been studied heavily for its 

role in depression.  This cortical projection is mainly glutamatergic and exerts a top-down 

control over 5-HT neurons in the DRN. With recent advances in optogenetics researchers can 
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use light to precisely control specific neurons in this pathway. Melissa Warden and 

colleagues were able to demonstrate that optogenetic stimulation of the mPFC-DRN pathway 

induces immediate anti-depressant effects as measured by increased kick frequency during 

the forced swim test (Warden et al., 2012).  A later study reported that not only are more of 

these glutamatergic cortical projections synapsing onto GABA cells in the DRN to regulate 

5-HT output, but that optogenetic stimulation of the same pathway increases social avoidance 

in chronically defeated rats (Challis et al., 2013).  The results of these two studies are at odds 

with one another, however, this contradiction could be a result of the inherent differences 

between the models employed. The forced swim test and social interaction task could be 

engaging different defense systems (flight vs. behavioral inhibition), each of which may be 

dissimilarly regulated by 5-HT. Nevertheless, the studies both implicate the circuit in the 

regulation of behavioral responses to aversive challenges.  

 More generally, cortical 5-HT is a key player in decision-making, a daily activity that 

results from the confluence of cognitive and affective functions (Homberg, 2012).  Decisions 

routinely initiated by high impulsivity can be a hallmark feature of multiple neuropsychiatric 

conditions such as substance abuse disorders (Verdejo-García, Lawrence, & Clark, 2008).  

Work done using stable high impulsive and low impulsive phenotypes from an outbred 

rodent population, found a positive correlation between impulsive action (measured with the 

1-choice serial reaction time task) and 5-HT2aR binding density in the mPFC by quantifying 

[3H]-ketanserin radioligand binding (Fink et al., 2015).  With individual variation in inherent 

impulsivity playing a role in pathological behaviors, it is not surprising that parallel 

dysregulation of 5-HT2aR binding was discovered in postmortem PFC of schizophrenic 

subjects untreated with anti-psychotics (Muguruza et al., 2013).  Similar dysregulation has 
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been observed in the PFC of suicide victims, establishing a link between increased 5-HT2a 

receptor expression and suicidality (Oquendo et al., 2006; Pandey et al., 2002).  Central 

serotonergic signaling has an enormous range of behavioral influence within the mPFC, but 

the role of 5-HT also extends to a number of biological processes within the periphery. 

Peripheral 5-HT system  

 Outside the CNS, 5-HT is a vital gastrointestinal (GI) signaling molecule within the 

enteric nervous system (ENS).  Enterochromaffin cells (EC) within the gut epithelium 

synthesize 90% of the total amount of 5-HT in the body, while the remainder is produced by 

ENS neurons (Janušonis, 2014b).  5-HT is synthesized in two steps, with tryptophan 

hydroxylase (Tph) as the rate-limiting enzyme (Walther, 2003).  The two forms of Tph, Tph1 

and Tph2, are found, respectively, in EC cells and neurons (Gershon & Tack, 2007).  5-HT 

plays two distinct roles within the gut.  First, gut 5-HT can act as a neurotransmitter in the 

ENS, exerting its action within the myenteric and submucosal plexuses.  ENS neurons use 5-

HT to carry out several vital functions: they modulate GI secretion, intestinal motility, and 

pain sensitivity (McLean, Borman, & Lee, 2007).  Ultimately, 5-HT signaling must be 

terminated via uptake by other GI cells.  Extracellular 5-HT is taken up by neurons and 

enterocytes (non-neuronal absorptive cells present in the gastrointestinal mucosa) that 

express the serotonin reuptake transporter, SERT (Gershon, 2004).  SERT is a molecular 

pump embedded in the plasma membrane of particular cells and modulates the strength and 

duration of 5-HT signaling.  It is often studied in reference to the CNS because it is a 

common target of the psychoactive drugs used to treat depression (Whyte, Jessen, Varney, & 

Carneiro, 2014).  However, SERT is expressed by several peripheral tissues, including: lung 

endothelial cells, gastrointestinal epithelium, systemic arteries and veins, the adrenal gland, 
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lymphocytes, and in the placenta and blood platelets (Yubero-Lahoz, Robledo, Farré, & de 

laTorre, 2013).   

 The second role of gut 5-HT is initiated when gut 5-HT enters the systemic blood 

circulation, where most of this free 5-HT is cleared by organs such as the liver and lungs 

(Aster, 1966).  Some of the free 5-HT is taken up by circulating blood platelets (small non-

nucleated cell fragments) expressing SERT.  Blood platelets are an indispensable component 

of the blood, where they play important roles in blood clotting and regulation of vascular 

tone (Esmon, 1993).  Circulating platelets carry 5-HT throughout all organs including the 

brain, which is interlaced with a dense network of capillaries.  Though platelets carrying 5-

HT are extremely abundant within the brain vasculature, it is widely accepted that platelets 

do not penetrate the BBB and thus do not participate in central 5-HT signaling.  It is 

noteworthy that mammals are the only animals that possess blood platelets.  Non-mammals 

with systemically circulating 5-HT carry peripheral 5-HT within nucleated blood cells called 

thrombocytes (Greenberg et al., 1999).  Some vertebrates do not contain any 5-HT molecules 

in their blood.  For example, the blood of fishes is completely devoid of peripheral 5-HT but 

the fish central 5-HT system is homologous to that of vertebrates (Levin, 2002).  This puts 

fishes in the position to provide an ideal model system to study a natural CNS serotonergic 

environment and its vasculature that is unaffected by peripheral 5-HT.  Within the 

mammalian systemic blood circulation, peripherally derived 5-HT is abundantly present and 

could only affect the central 5-HT system if it was able to traverse the vascular endothelial 

cells of the BBB.  The ‘neurovascular unit’ is more recently considered synonymous with the 

BBB, to indicate that the endothelium dynamically expresses its barrier properties by 

collecting input from other cell types, such as neurons and astrocytes within the brain 
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parenchyma (Mäe, Armulik, & Betsholtz, 2011).  The BBB is indeed a dynamic entity, 

whose permeability can be manipulated by pharmacological agents as well as the endogenous 

molecules elicited by the stress response (Sharma, 2004).  Yet, it is currently believed that 

this permeability is never extended to 5-HT molecules. 

Potential transmigration 

 Recent studies have challenged the perceived impermeability of the BBB to 5-HT, 

suggesting that transmigration is possible for 5-HT molecules.  One lab has found that 

elevated brain 5-HT levels can cause a significant rise in blood 5-HT levels (Nakatani et al., 

2008).  While the notion of peripheral 5-HT infiltrates is rather controversial, the field of 

immunology has established that some cells can certainly escape capillaries and reach the 

neurons normally protected by the BBB.  Recent studies have shown that specialized large 

blood cells, monocytes, are able to enter into the brain parenchyma under neuroinflammatory 

conditions such as those induced by social stress.  Social stress models in rodents, such as 

repeated social defeat (RSD), mimic the immunological and behavioral conditions linked to 

psychosocial stress in humans.  RSD activates stress-responsive brain regions associated with 

fear and anxiety that seem to cause the behavioral adaptations associated with experiencing 

high levels of social threat (Reader et al., 2015).  One recent study demonstrated that RSD in 

mice causes an increase in mRNA expression of vascular adhesion molecules and 

chemokines associated with monocyte recruitment, and that these increases are localized to 

the vasculature of the distinct brain regions implicated in fear and anxiety responses (Sawicki 

et al., 2014).   

 Neuroinflammation is also associated with HIV-1 infected individuals, presenting 

another opportunity to study transmigration occurring when the BBB is compromised.  One 
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research group found that blood platelets have been observed “piggy-backing” on 

transmigrating monocytes and that these transient platelet-monocyte complexes (PMCs) were 

increased in the whole blood of HIV-1 patients, quantified with flow cytometry.  

Furthermore, in-vitro culture assays revealed that PMCs display increased adherence to 

endothelial cells and enhanced transendothelial migration (Singh et al., 2014).  These pieces 

of information do not prove that platelets are leaving circulation, yet they do suggest that 

platelets are able to cross the BBB under certain conditions.  A more conservative 

interpretation would be that platelets are increasing the permeability of the BBB to 

monocytes through their action as inflammatory mediators, given that platelets are able to 

release 5-HT into the extracellular space through a process called degranulation, which can 

act on 5-HT2 receptors in the CNS microvasculature to increase BBB permeability (Abbott, 

2000).  However, given that blood platelets are subcellular in size, it is reasonable to question 

whether they too can transmigrate.   

 Recent research in immunology has revealed that platelets recognize specific 

glycolipid structure called gangliosides, situated in lipid rafts on the surface of astroglial and 

neuronal cells.  Activated receptors on platelet surfaces, such as CD62P, enable platelets to 

recognize these distinct ganglioside formations and release proinflammatory factors such as 

5-HT into extracellular space (Sotnikov et al., 2013).  These results suggested that platelets 

alone were able to enter mouse brain parenchyma and interact with brain cells (neurons and 

astrocytes), yet this process has not been established definitively and further investigation is 

needed.  Based on this emerging evidence, platelets could be transmigrating into the brain 

parenchyma and communicating with neuronal and astroglial cells.  Moreover, 

transmigrating blood platelets may be mistaken for 5-HT varicosities.  Serotonergic 
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varicosities and blood platelets share both obvious and subtle similarities.  Both contain 5-

HT, are approximately the same size (Benzekhroufa, Liu, Tang, Teschemacher, & Kasparov, 

2009), lack nuclei, and are located remote distances away from the cell bodies that have 

produced them (Fig. 1).  Both platelets and varicosities express SERT, 5-HT receptors, and 

integrin β3 (ITGB3) (Whyte et al., 2014).  In immunology, CD61 is commonly used as a 

selective platelet marker (Singh et al., 2014; Sotnikov et al., 2013) and has been used to track 

the migration of platelets.  Emerging evidence in immunology supports the concept of 

platelet transmigration, however, these studies do not consider the potential effects of platelet 

transmigration on brain 5-HT signaling.  This paper will explore the possibility that 

peripheral 5-HT from blood platelets can affect central 5-HT signaling within the mPFC via 

transmigration.   

METHODS  

Aim 1: Characterize mPFC serotonergic varicosities and platelet profiles 

Animals 

 Adult C57BL/6J mice and timed-pregnant C57BL/6J mice were purchased from The 

Jackson Laboratory and housed individually on a 12:12 light-dark cycle with free access to 

water and food.  All procedures have been approved by the UCSB Institutional Animal Care 

and Use Committee.   

 The heads of adult swellsharks (Cephaloscyllium ventriosum) were obtained from the 

Parasitology laboratory taught at the UCSB Department of Ecology, Evolution and Marine 

Biology (EEMB 111) and immediately stored on ice.   

Immunohistochemistry 

Collagen IV immunohistochemistry with 3,3’-diaminobenzidine 
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 Adult mice were terminally anesthetized with ketamine (200 mg/kg) and xylazine (20 

mg/kg) and their brains were immediately immersion-fixed in 4% paraformaldehyde (PFA) 

overnight at 4ºC.  They were cryoprotected in 30% sucrose overnight at 4ºCand sectioned 

coronally at 40 µm thickness on a freezing microtome.  Sections were rinsed three times (5 

min each) in 0.1M phosphate-buffered saline (PBS); pretreated in 0.3% H2O2 for 30 min to 

block endogenous peroxidase activity; rinsed 2 times (5 min each) in PBS; blocked in 2% 

normal donkey serum (NDS, Jackson ImmunoResearch) in PBS for 30 minutes; incubated in 

1:500 rabbit anti-collagen IV IgG [Abcam#19808] with 2% NDS and 0.3% TX in PBS for 2-

3 days at 4ºC on a shaker; rinsed three times (10 min each) in PBS; incubated at room 

temperature for 90 min in 1:2,000 biotin-SP-conjugated donkey anti-rabbit IgG (Jackson 

ImmunoResearch); rinsed three times (10 min each) in PBS; incubated in the avidin-biotin-

peroxidase complex (1:100 ABC; Vector Laboratories); rinsed 3 times (10 min each) in PBS;  

developed for 5 min in 0.05% 3,3’-diaminobenzidine tetrahydrochloride (DAB; ISOPAC, 

Sigma-Alderich) with 0.01% H2O2 in PBS; rinsed in PBS; mounted out of water onto 

chromium/gelatin subbed slides, allowed to air-dry, coverslipped with Permount; and 

examined in bright field on a Zeiss AxioImager Z1. 

Collagen IV/5-HT immunohistochemistry for confocal microscopy 

 At embryonic day 17 (E17), timed-pregnant dams were terminally anesthetized with a 

mixture of ketamine (200 mg/kg) and xylazine (20 mg/kg), and their uterus was dissected 

and kept in 0.1M PBS on ice.  Embryos were removed from the uterus, decapitated, and their 

brains were dissected with fine forceps under a stereoscope.  They were immersion-fixed in 

4% PFA overnight at 4ºC, cryoprotected in 30% sucrose overnight at 4ºC, embedded in 20% 

gelatin (bloom 275), and sectioned coronally at 40 µm thickness on a freezing microtome.  
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Sections were then rinsed three times (5 min each) in 0.1M PBS; blocked in 2% NDS in PBS 

for 30 minutes; incubated in 1:250 rabbit anti-collagen IV IgG [Abcam#19808] and 1:400 

goat anti-5-HT IgG [ImmunoStar #20079] with 2% NDS and 0.3% TX in PBS for 2-3 days 

at 4ºC on a shaker; rinsed three times (10 min each) in PBS; incubated at room temperature 

for 90 min in 1:1,000 AlexaFluor 488-donkey anti-rabbit IgG [Life Technologies] and 1:200 

Cy3-donkey anti-goat IgG [Jackson ImmunoResearch] with 2% NDS in PBS; rinsed three 

times (10 min each) in PBS; mounted out of water onto chromium/gelatin subbed slides, 

allowed to air-dry, and coverslipped with the ProlongGold antifade medium with DAPI (Life 

Technologies).  Confocal z-stacks (30-60 optical sections, 0.42 µm thick) were obtained with 

a 60X objective on the Olympus Fluoview 1000 Spectral Confocal system.  Shark brains 

were dissected from the skulls with large rongeurs and processed the same way as the 

embryonic mouse brains.  Adult mouse brains were processed under the same protocol. 

Aim 2: Characterization of increased extracellular 5-HT levels on the expression of mPFC 

receptors 

Animals  

 Adult C57BL/6 mice were purchased from Jackson Laboratories and housed 

individually on a 12:12 light-dark cycle with free access to water and food.  All procedures 

have been approved by the UCSB Institutional Animal Care and Use Committee.   

Treatment Group 

 Mice were given an intraperitoneal injection of fluoxetine (an SSRI; 5 mg/kg) to 

increase extracellular 5-HT levels.   

Tissue Collection and RNA Isolation 
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 Twenty-four hours following injection, mice were terminally anesthetized using a 

mixture of ketamine (200 mg/kg) and xylazine (20 mg/kg).  Their brains were dissected and 

put on ice for approximately three minutes.  Brains were placed in a metal brain mold 

(Braintree Scientific) and 1 mm thick coronal slices of the rostral telencephalon were taken 

using sterile razor blades.  The slices through the mPFC were mounted on glass slides and 

mPFC region was isolated under a stereoscope on dry ice using a brain punch (Stoelting Co.  

#57401).  The punched slices imaged unstained on a Zeiss AxioImager Z1 with a 1X 

objective (Figure 2A).  The total RNA was immediately extracted from the tissue punch with 

the RNeasy Plus Mini Kit (Qiagen) according to the manufacturer's instructions.  The RNA 

quality (the A260/A280 ratio) and concentration was measured with a NanoDrop 

spectrophotometer and the samples were stored at −80 °C until further processing.  The 

quality of RNA (RIN) was measured with the TapeStation (Agilent Technologies) (Fig. 2B).  

From each sample, an estimated 20 mg of each RNA sample was reverse-transcribed to 

cDNA in an Eppendorf Mastercycler pro S using the iScript cDNA Kit (Bio-Rad) according 

to the manufacturer's instructions.   

Quantitative RT-PCR Analysis 

 The RT-qPCR analysis was based on our published protocol (Hernandez & Janušonis, 

2010).  RT-PCR was run in a technical triplicate using SYBR green reagent (Qiagen).  The 

expression of three serotonin receptors (5-HT1A, 5-HT2A, 5-HT4), and integrin β3 (ITGB3) 

were quantified.  Gene expression was normalized to three house-keeping reference genes 

(ubiquitin-C (UBC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and TATA box 

binding protein (TBP).  The primers were designed in Primer 3 (Bio-Informatics Software) 

and are given in Table 1.  The amplification was performed with the BioRad CFX96 
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thermocycler.  The amplification conditions were as follows: 95 °C (3min); 39 cycles of 95 

°C (15 s), 60 °C (15 s), 72 °C (10 s), 95 °C (10 s); and 60 °C (1 min).  The efficiency of each 

amplification was calculated automatically by using a Mathematica (Wolfram Research, Inc.) 

program (Hernandez & Janušonis, 2010) based on a published algorithm (Tichopad, Dilger, 

Schwarz, & Pfaffl, 2003) with alterations.  The obtained values were normalized to the 

geometric mean of the reference genes and multiplied by 1000 for convenience.   

RESULTS 

Mapping of microvasculature with confocal microscopy 

 First, the overall density of microvasculature was mapped in the adult mouse mPFC 

(Fig. 3).  The capillaries appear uniformly distributed across the tissue, suggesting that there 

is homogeny in the density within gray matter.  A three-dimensional reconstruction of adult 

mouse mPFC cells from z-stacks and Imaris software were used to provide a qualitative 

measure of the spatial association between brain vasculature and serotonergic varicosities 

(Fig. 4).  However, the sheer density of 5-HT fibers fails to provide a clear view of the 

associations among varicosities and capillaries.  

 In order to better explore their spatial relationships, the next challenge was to better 

separate microvasculature and 5-HT varicosities.  During development, serotonin fibers 

originating from the raphe nucleus invade the cortex. Upon initially reaching the cortex, 

rather than evenly innervating the region, 5-HT fibers form two bands.  One band is located 

above the developing cortex, which at that point of development, is known as the cortical 

plate (CP; future cortical layers II-VI) and the second band resides in the marginal zone (MZ; 

future cortical layer I).  Eventually, serotonergic fibers will be spread throughout all cortical 

layers, but at E17 in mice, 5-HT fibers are sparse within the CP (Janusonis, Gluncic, & 
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Rakic, 2004).  Thus, the position of serotonergic fibers within the developing cortex of E17 

mice presents a unique opportunity to analyze spatial composition of brain microvasculature 

and serotonergic fibers, unfettered by a heavy concentration of serotonergic fibers (Fig. 5).  

Single optical sections show 5-HT and capillaries to be closely associated with one another.  

It appears as though some of these 5-HT-positive profiles may be platelets situated within 

capillaries.  Upon closer inspection, it appears as though these platelets are adhering close to 

the vascular walls and at times, appear to be escaping capillaries.      

 Swellshark images provide a chance to view serotonergic varicosities in an 

environment free from the presence of any potential transmigrated platelets.  Since the swell 

shark has no peripheral 5-HT, studying a system with no platelet input allows a comparison 

of the differences and similarities between shark and rodent brains (Fig. 6).  Comparing the 

confocal images of the two species leads to an interesting observation that the shark 

varicosities all seemed to display apparent axonal connections, while the mouse samples 

appeared to have ‘loose varicosities’ on occasion: a varicosity-like profile of which did not 

appear to have axonal connections to varicosities.  Examining z-stacks from the shark brain 

did not reveal any 5-HT of which did not appear to be apart of a variscosity, though this 

observation was not apparent when viewing a single plane.  These techniques do not provide 

a reliable way to distinguish between platelets and 5-HT fibers, yet they do point to the 

possibility that these free profiles are migrating platelets. 

Effects of increased extracellular 5-HT on mRNA levels 

 RT-qPCR was performed for the mRNAs of 5-HT1aR, 5-HT2aR, 5-HT4R, and ITGB3 

in order to examine which receptors could be used as endogenous biological sensors of 

extracellular 5-HT levels in the mPFC.  Statistical analyses were performed in SPSS 19 
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(IBM, Inc.).  An independent samples t-test was used for each gene to compare the mean 

mRNA expressions for Fluoxetine-treated and saline control groups (Fig. 7).  Fluoxetine 

treatment did not significantly alter mRNA levels for all but one of the tested receptors. 

Expression patterns were as follows: 5-HT1aR (t(12)=-0.326, p=0.749), 5-HT2aR (t(14)=-

0.403, p=0.693), and 5-HT4R (t(14)=-0.891, p=0.388).  The mRNA expressions did not yield 

a significant effect, indicating that the transcription of the 5-HT1a, 5-HT2a, and 5-HT4 

receptors is not sensitive to acutely elevated 5-HT levels.  These results contradict previous 

findings in our lab, where significant changes in mRNA expression resulted for these 5-HT 

receptors after acute SSRI administration (Chen, 2015).  The mRNA that showed a 

significant change in expression was ITGB3 receptor (t(12)=-2.330, p=0.038) suggesting this 

as a potential indicator candidate.  

DISCUSSION 

 It has not yet been investigated experimentally whether circulating blood platelets 

affect central 5-HT signaling.  It is known that serotonergic varicosities are in close 

proximity to blood capillaries (Janušonis, 2014) and current research is continuing to 

challenge the impermeability of the BBB (Sotnikov et al., 2013), providing a basis to venture 

into projects that examine whether there is an exchange between the central and peripheral 5-

HT systems.  Our confocal data observed varicosity-like profiles in the mouse brain that may 

actually be transmigrated platelets.  Since these curious varicosity-like profiles did not seem 

to be present within the swellshark brain, which does not contain any peripheral 5-HT (nor 

blood platelets), this may indicate that there are transmigrated platelets within the brain 

parenchyma that exhibit distinct (albeit subtle) profiles.  However, this hypothesis needs to 

be tested, and we plan to add a simple measure to our analysis.  We will selectively label 
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blood platelets in vivo with a staining reagent that carries a fluorescent (DyLight 649) tag 

(Emfret Analytics #X649) and use the Imaris system to automatically detect and count 

immunoreactive profiles.  We expect that some fluorescently tagged platelets will be present 

in the brain parenchyma, indicating that peripheral 5-HT is able to cross the BBB and 

infiltrate the CNS.  Whether or not these migrating platelets play a role in modulating central 

5-HT signaling is yet another question currently left unaddressed.  

 While searching for a receptor sensitive to extracellular 5-HT changes, it was found 

that acutely increased 5-HT levels did not significantly affect the mRNA amounts of all 

studied 5-HT receptors in the adult mouse mPFC. Interestingly, the ITGB3 receptor was the 

most sensitive mRNA in the set.  Integrins are cell adhesion molecules that facilitate the 

interaction between cell membranes and the extracellular matrix.  They can be located in 

synapses, where they function to transduce signals between extracellular and intracellular 

domains (C.-S. Chan, Weeber, Kurup, Sweatt, & Davis, 2003).  Recent evidence in human 

genetic studies suggest a role of ITGB3 in modulating 5-HT reuptake through its interactions 

with SERT (Whyte et al., 2014).  One addiction study utilized immunoblotting and found 

that the ITBG3 subunit protein expression in the nucleus accumbens of adult mice was 

significantly increased 30 minutes after a cocaine challenge following chronic saline 

treatment (Wiggins, Pacchioni, & Kalivas, 2009).  Results indicated that ITGB3 may be 

increasing actin cycling and modifying dendritic morphology in response to cocaine, which 

among its other actions, blocks 5-HT reuptake.  This remarkably quick response in protein 

expression may be attributed to an acute sensitivity to increased extracellular 5-HT, which 

could explain our findings.  The Wiggins findings suggest that the affinity of these receptors 

is increased by means of up-regulation or receptor modification, making it the best candidate 
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thus far for a functional monitor of changes in the levels of extracellular serotonin on a rapid 

time scale.   

 Our confocal data and observations provide a foundation for the ultimate objective of 

testing functional changes in central 5-HT signaling after direct blood platelet manipulation.  

In immunology, selective platelet depletion is a well-validated technique and is routinely 

used in mouse models.  One feature of this technique is that platelets are short-lived and 

researchers can control the dynamics of their platelet counts by adjusting dose and 

administration (Fig. 8 and 9).  Though we have not established that SSRIs have a rapid effect 

on the previously tested receptor expression in the adult mPFC using qRT-PCR, we seek to 

test more receptors as well as use more sensitive measures of mRNA expression.  We plan to 

use future verified receptors as endogenous biological sensors to capture a central effect of 

depleting platelets.  Using pharmalogical platelet depletion, we plan to assess changes in 5-

HTR expressions in the mPFC using digital droplet PCR (ddPCR), a new technology 

available to our lab through the Biological NanoStructures Lab (California NanoSystems 

Institute, UCSB). With ddPCR, absolute gene quantification can be performed with a much 

higher quantitative sensitivity than qRT-PCR.  This technique can detect very small changes 

in mRNA levels, so it may detect differences in expression of mPFC receptors that exhibit 

more subtle responses to altered 5-HT levels.  

 This paper has identified emerging evidence that platelets may be entering the brain 

parenchyma, using varicosity mapping in combination with confocal imaging.  If platelets do 

reach and participate in CNS signaling, this means that extracellular 5-HT levels in the CNS 

not only depend on raphe signaling but also platelet transmigration.  Platelets may well be a 

major underrepresented source of 5-HT that could change extracellular 5-HT levels in the 
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mPFC and thus affect an enormous range of behavioral processes.  We aim to continue 

looking at platelet transmigration and its effect on mPFC 5-HT signaling in future projects, 

using the aforementioned procedures.  
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Figure 1.  The similarity between serotonergic varicosities and blood platelets.  (A) Confocal 
image of serotonergic fibers (green, immunohistochemistry), blood capillaries (red, 
rhodamine-conjugated dextran), and cell nuclei (blue, DAPI) in the mouse forebrain.  (B) 
Bright-field image of a mouse blood sample (treated with EDTA to prevent coagulation).  
Some platelets are known to develop processes (Brecher & Cronkite, 1950).  One such 
process is enlarged in the inset.  These small processes are similar to some observed 
varicosities.  (A and B) Arrows point to individual serotonergic varicosities and blood 
platelets. Scale= µm. (C) A schematic representation of 5-HT packets in the brain (green, 
serotonergic varicosities) and 5-HT packets in the blood (platelets, red) that coexist in close 
proximity.  The star shapes represent serotonergic neurons in the raphe nuclei (5-HT) and a 
megakaryocyte in the bone marrow (MKC), both of which may be located remote distances 
from the 5-HT packets (not drawn to scale).  Taken from Janusonis, 2014. 
 

 

Figure 2. (A) Sample microdissection taken from the mPFC of an adult mouse using a 
1.75mm gauge brain punch (Stoelting #57401) Imaged unstained on a Zeiss AxioImager Z1 
with a 1X objective.  Scale=1,000µm.  (B) RNA analysis carried out using the Agilent 2200 
TapeStation system.  Representative electropherogram of total RNA from mPFC sample, the 
18/28s peaks are annotated. 
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mRNA 
accession 

Target 
mRNA 

Forward primer  
(5’-3’) 

Reverse primer  
(5’-3’) 

bp 

NM_008308 5-HT1AR CAGCGCGAGACA
GATATTAC 

CATCTGAGAGGA
GCACTCAC 

152 

NM_172812 5-HT2AR TGACTGATTCCTC
TCTGTGC 

CCCCTCTCTTTGA
GCTTCTA 

196 

XM_011246848
.1 

5-HT4R GGAGATGTTCTGC
CTGGTCC 

CCAGCAGCCTCCC
AACATTA 

172 

XM_011248766
.1 

ITGB3 CTGCCGGAAGAA
CTGTCACT 

AGGCACAGTCAC
AGTCGAAG 

226 

NM_013684.3 
(reference) 

TBP AAGAGAGCCACG
GACAACTG 

TTCACATCACAGC
TCCCCAC 

183 

NM_008084 
(reference) 

GAPDH AATGTGTCCGTCG
TGGATCTGA 

AGTGTAGCCCAA
GATGCCCTTC 

117 

NM_019639 
(reference) 

UBC GATCTTTGCAGGC
AAGCAGCT 

TTCTCTATGGTGT
CACTGGGCTC 

174 

Table 1.  The primer sequences for RT-qPCR.  Abbreviations: bp, amplicon length in base 
pairs; ; TBP, TATA box binding protein; GAPDH, Glyceraldehyde-3-phosphate 
dehydrogenase; UBC, Ubiquitin C 
 
 

 
Figure 3. Staining of adult mouse mPFC microvasculature using collagen IV 
immunohistochemistry with 3,3’-diaminobenzidine. Scale=1,000µm.  (A) Boxed region of 
the prelimbic cortex (PL) enlarged in (B) Blood capillaries are evenly distributed across 
tissue. Moving laterally, capillary density declines as it approaches the white matter of the 
anterior corpus callosum. Scale=100µm 
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Figure 4. Confocal z-stacks showing (A) serotonergic fibers, (B) microvasculature (collagen 
IV), and (C) serotonergic fibers, microvasculature, and cell nuclei (blue) in the adult mouse 
mPFC. Note the studied processes rely on spatial relationship between capillaries and 
serotonergic fibers and (C) combined channels provide a crowded image with a very heavy 
dense meshwork of serotonergic fibers superimposed on capillaries.  Scale=30µm. 
 
 



	  

	  25	  

 
Figure 5.  Confocal images of E17 mouse telencephalon.  (A) At E17, the serotonergic fibers 
are mainly restricted to the MZ and below the CP.  MZ=marginal zone (future cortical layer 
I), CP=cortical plate (future layers II-VI), IZ=intermediate zone (future white matter), 
LV=lateral ventricle.  (B and C) Single optical sections (0.4 um thick) of a CP region 
(matches the future position of mPFC).  Panels show collagen IV, 5-HT, and merged 
channels. Microvasculature (green) and 5-HT-positive profiles (red) appear to be in close 
apposition. Note that some 5-HT-positive profiles appear to be only partially contained 
within the microcapillaries and might be transmigrating platelets (arrows, insets). 
Scale=20µm 
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Figure 6. (A) Freshly caught swellshark (B) telencephalon (arrow) was dissected 
(scale=5mm) and (C) confocal imaging of serotonergic varicosities (red) and cell nuclei 
(blue). Note that swellsharks do not carry blood platelets nor do they have any 5-HT in 
circulation, thus (C) offer a central 5-HT system that is not confounded by peripheral 5-HT. 
Fibers are notably strong, with no apparent platelet-like profiles present when viewed within 
3D z-stacks. Scale=20µm 
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Figure 7. The relative expression of mRNA within the mPFC.  There was no difference 
between the treatment groups for 5-HT receptors.  ITGB3 expression was altered (t(12)=-
2.330, p=0.038), with an increased expression of ITGB3 mRNA in the Fluoxetine treated 
group relative to saline.   
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Figure 8. The platelet count following a single injection (2ug per g body weight) of a 
mixture of purified rat monoclonal antibodies against mouse GP1bα (CD42b) (data from the 
Emfret Analytics). This mixture reduces platelet count by over 95% within 60 minutes after 
treatment and remain knocked down for 48 hours. 
 
 
 
 
 

 
 
Figure 9. (A) mPFC pyramidal neurons (blue triangle) and GABAergic interneurons (yellow 
circle) express 5-HT receptors that monitor extracellular 5-HT. All 5-HT present in the brain 
is thought to be released from serotonergic varicosities (black connected circles) that are 
located on axons projecting mainly from the dorsal raphe nucleus (DRN; green oval) 
However, the mPFC may contain an alternative 5-HT source: blood platelets (black, 
unconnected circles). Platelets bear a resemblance to serotonergic varicosities and may 
escape capillaries to enter the brain parenchyma. (B) If this hypothesis is correct, selective 
platelet depletion should have an effect on 5-HT signaling in the mPFC. 
	  


