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Abstract

Predicting Microlensing Rates and Properties in Wide-Field Surveys

by

Amanda Patrice Fournier

The rates and properties of out-of-plane microlensing events have been understudied

in the past. We seek to remedy this by building a simulation of galactic stars and lensing

events, drawing upon numerous up-to-date sources. The resulting code is a well-verified

software tool which can be adapted to simulate a wide range of potential survey strategies

and parameters. It will be a useful tool for the community to optimize the design of the

deep, wide-angle surveys coming on line in the next decades, such as ATLAS, Evryscope,

and LSST. In the text, we provide baseline all-sky lensing properties for a deep survey.
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Chapter 1

Introduction

1.1 A brief introduction to microlensing

A key result of general relativity is that gravity is not so much a force as a bending of

time and space. Because of this, gravity can influence the path of even massless particles,

like photons [Einstein, 1916]. Thus it is possible for massive, gravitating objects, like stars

and galaxies, to act as “lenses” for bright objects, like other stars and galaxies, turning

more of their light towards an observer on earth [Einstein, 1936]. This phenomenon

is known as lensing, and when the lens mass is a star or smaller object, it is called

microlensing.

When the lensing effect was first proposed, it was thought to be unobservable [Ein-

stein, 1936]. However, improvements in telescope technology, especially the introduction

of the charge coupled device (CCD) camera and the resulting integration of telescopes

with computers, have transformed the observation of microlensing from nigh impossi-

ble to an achievable endeavor, albeit one requiring daunting amounts of resources and

coordination [Paczynski, 1986].

The first effort at deliberate microlensing observation, the MACHO project, required
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Introduction Chapter 1

enormous efforts to overcome the technical obstacles of microlensing, ultimately observing

less than two dozen events over half a dozen years [Alcock et al., 2000]. Detection,

distinction from other celestial events, and characterization were all nontrivial, but these

obstacles were ultimately overcome, laying the groundwork for later surveys.

A combination of improved technique, clever use of resources, and heroic efforts ul-

timately brought the Optical Gravitational Lensing Experiment (OGLE) [Udalski et al.,

1992, Udalski et al., 1997, Udalski, 2003, Udalski et al., 2008, Wyrzykowski et al., 2014]

to the forefront of MACHO’s successors, presently uncovering over a thousand lensing

events per year, followed by the Microlensing Observations in Astrophysics (MOA) [Mu-

raki et al., 1999,Yanagisawa et al., 2000,Hearnshaw et al., 2006,Sako et al., 2008]. OGLE

and other modern surveys use a two-part strategy for microlensing observations; while

the OGLE survey proper continually scans the sky to detect events, it relies on outside

collaborators for the detailed, high-fidelity observations and continuous coverage needed

to actually characterize lensing events. This strategy, carried out by a dedicated sur-

vey team and their community of supporters, has met with great success; OGLE is now

uncovering over a thousand lensing events per year.

It has been proposed that the Large Synoptic Survey Telescope (LSST) [LSST Science

Collaboration et al., 2009] could represent a next major step in microlensing surveys,

although their effectiveness will depend on the details of their observing strategy [Gould,

2013]. The LSST will survey most of the visible sky multiple times a night, potentially

identifying many microlensing events in the process [LSST Science Collaboration et al.,

2009, p. 268]. We will present extensive analysis of likely outcomes of such an effort,

noting the effects of possible changes in the still-developing survey plan.
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1.2 Microlensing and dim, massive objects

Lensing has its roots in finding and characterizing hard-to-see celestial objects. The

very first microlensing study, the MACHO Project [Hart et al., 1996,Alcock et al., 2000],

sought MAssive Compact Halo Objects such as black holes or brown dwarfs that were

thought to be a major component of the galaxy’s dark matter. While traditional astro-

nomical methods wouldn’t do - the hypothesized MACHOs did not give off much light,

thus qualifying as dark matter - any large enough mass is perfectly capable of acting as

the lens mass in a microlensing event.

The MACHO Project suffered through the teething problems that come with being

first. They had to deal with the difficulties of ground-based time-domain astronomy;

not only is data discontinuous as the daytime sky blocks out the stars, but bad weather

disrupts observations, sometimes halting them completely, sometimes lowering their qual-

ity. Sometimes the disturbances are detected; sometimes not. They had to distinguish

different kinds of transient events not using perfect data, but incomplete, noisy data.

Although some false signals were relatively easy to be rid of, they had to develop their

own means of filtering out some variable stars [Alcock et al., 2000, p. 290], and still could

not be fully certain of every interesting event. Even so, they were able to come away

fairly certain of more than a dozen microlensing events, and to provide a first estimate

of the galactic dark matter’s MACHO population.

The microlensing field has matured a great deal since those early efforts. What was

once done with difficulty is now done routinely; MACHO took years to find a scant

dozen events, but OGLE detects more than a thousand lensing events per year, and

MOA detects hundreds. Large portions of the data pipeline have been given over to

automation, but just as importantly, the community has grown a population of expert

lensing event analysts. The field is now more than capable of studying a wide variety of
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other dim objects, such as brown dwarfs, rogue planets, and stellar remnants.

Brown dwarfs are failed stars that never accumulated enough mass to start a self-

sustaining fusion reaction. Any star-like object smaller than about seven or eight percent

of our sun’s mass will not be able to ignite and sustain a hydrogen-to-helium fusion

reaction, the main source of power for the vast majority of stars. First theorized in

the 1960s [Kumar, 1963, Hayashi and Nakano, 1963], brown dwarfs were not detected

until the 80s [Becklin and Zuckerman, 1988] or confirmed until the 90s [Golimowski

et al., 1995, Pavlenko, 1997]. They emit a faint light as they slowly cool, mostly in the

infrared, but are very dim. Brown dwarfs are difficult to detect, and their detection by

conventional means is virtually impossible from the ground; our atmosphere blocks most

of their radiation. They can be found either in orbit about a larger star, using many of the

same techniques as planet-finding, or solitary, using space-based infrared surveys. Brown

dwarfs are in many ways the missing link between low-mass stars and high-mass planets;

learning more about them will inform studies of stars and planets alike [Beichman et al.,

2014].

Infrared surveys have been successful in detecting lone brown dwarfs, but only in the

very close neighborhood of our sun. The Deep Near Infrared Survey (DENIS) [Delfosse

et al., 1997], the Two Micron All Sky Survey (2MASS) [Kleinmann et al., 1994], the

Wide-field Infrared Survey Explorer (WISE) [Wright et al., 2010, Mainzer et al., 2011]

and others have discovered hundreds of brown dwarfs [Phan-Bao et al., 2001, Phan-Bao

et al., 2003, Kirkpatrick et al., 2000, Kirkpatrick et al., 2011, Mace et al., 2013], but all

very close by, within about a hundred parsecs. Microlensing, by contrast, has discovered

and taken good measurements of brown dwarfs without stellar companions at distances

of nearly two thousand parsecs [Choi et al., 2013].

At low masses, brown dwarfs come to closely resemble gas giant planets like Jupiter

and Saturn. There is some debate about where to draw the line between the two classes
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of objects. For our purposes, the mass at which deuterium ignites is a useful boundary;

objects larger than about 13 Jupiter masses or 1.2 percent of a solar mass will briefly

ignite and fuse their deuterium into helium, but smaller objects will not. Anything below

this mass, we will refer to as a planet.

“Free-floating” or “rogue” planets, i.e. planet-sized masses not bound to any home

star, are even more difficult to detect than brown dwarfs. Their presence cannot be

inferred using the most widespread planet-finding techniques because those methods

require the planet to orbit a visible star. They emit very little light of their own, and are

not near enough to a star to shine even by reflection; no telescope on or around earth can

hope to see any but the nearest, youngest, and largest. The population of free planets

could provide a wealth of information about how planets form and how well they fare

over long time scales, but they are terribly difficult to detect at all.

Nonetheless, rogue planets have been detected. The MOA collaboration announced

in 2011 that they had detected a population of low-mass objects with no sign of stellar

hosts, at least some of which were very likely rogue planets [Sumi et al., 2011]; others

may be brown dwarfs or planets in very wide orbits. Using this data, they were able

to provide an estimate that there are roughly twice as many free-floating planets as

there are stars in our galaxy. A handful of rogue planet candidates have been found

by other methods, some of them very plausible but uncommonly young and close to

our sun [Delorme et al., 2012]. Only microlensing can detect enough rogue planets to

seriously attempt population statistics.

The same principles apply to any class of dim, dense, massive objects; if it is in our

galaxy, microlensing has the potential to detect it. As with brown dwarfs and rogue

planets, microlensing is capable of providing mass measurements for stellar remnants

such as black holes and neutron stars regardless of whether they are bright enough to see

directly, and can provide an independent mass measurement for those that can already
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be detected and characterized.

1.3 Microlensing detection of planets

Much of microlensing’s current popular appeal comes from its use as a planet detection

technique. During a microlensing event in which a star magnifies a background source,

it is possible for a planet orbiting the lens star to cause additional magnification from

which the planet’s presence and properties can be deduced. This effect was first described

by [Mao and Paczynski, 1991] as a possible by-product of the MACHO survey, and

elaborated upon by [Gould and Loeb, 1992].

This suggestion came at a time of great excitement in the astrophysics community,

as the first confirmed planets outside our solar system (“exoplanets”) had just been

discovered. Wolszczan & Frail observed a variation in the timing of a nearby pulsar and

demonstrated that this variation was consistent with not one, but two planets in orbit

about the pulsar [Wolszczan and Frail, 1992].

This discovery was an enormous landmark for astronomy. The discovery of exoplanets

has long been a Holy Grail of astronomy. Speculations about “other worlds” are perhaps

as old as humanity, but speculations about exoplanets specifically were recorded shortly

after the advent of the Copernican model in the sixteenth century by Giordano Bruno,

and mistaken discoveries published as early as the nineteenth century [Jacob, 1855]. All

prior claims had been discredited, however, either by demonstrations that phenomena

were better explained otherwise, or by a failure to reproduce observations that should be

repeatable.

Not only was the discovery of exoplanets a great technical feat, it represented an im-

portant philosophical point. It is one of the most important rebuffs to anthropocentrism,

world views in which humanity and earth are unique, special, and in extreme cases, liter-
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ally thought to be the center of the universe. Copernicus was one of the first to propose

otherwise, postulating that the earth orbited the sun, not vice versa; this was borne out

by the observations of Brahe and Kepler. Hubble’s observations of so-called spiral neb-

ulae demonstrated that they were much further away than previously thought [Hubble,

1925], leading to the conclusion that they were in fact spiral galaxies; our galaxy is not

the only one. Astronomers have long thought that it is unlikely that our star was the

only one to have planets and thus potentially be home to life, but while the view was

certainly defensible, it had no concrete proof. The existence of exoplanets is the latest -

but we hope not the last - in a series of discoveries showing that the universe is a much

bigger, more interesting place than humanity alone.

Wolszczan & Frail’s discovery started something akin to a gold rush, as projects to

search for planets were suddenly the subject of much interest and old proposals for planet-

finding methods received a wealth of new attention. A great many planets have been

discovered since using a wide variety of methods, but a handful deserve special mention

and will be covered here.

As a planet orbits a star, the star also moves, counterbalancing the planet. The star’s

movement is much smaller than the planet’s, making it difficult to detect by looking for

stars that “wobble” from side to side; the first such detection by tracking a star’s position

was achieved in 2010 [Muterspaugh et al., 2010a-2010e]. However, a closely related effect

was the first detction method to achieve great success.

Radial velocity (RV) measurement relies on the fact that a star’s wobble towards and

away from the earth can be detected because it has a Doppler effect on the light from the

star [Struve, 1952]; its light shifts to higher, bluer frequencies as the star moves towards

us, and lower, redder frequencies as it moves away. Precision spectroscopy can detect the

shift in color and track it over time.

Radial velocity measurements were the first major source of planets. From 1995
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Figure 1.1: Planet detections per year by detection method. Radial velocity mea-
surements dominated until 2009, when Kepler Observatory began reporting planetary
candidates. Image courtesy of the NASA Exoplanet Archive.

[Mayor and Queloz, 1995,Marcy et al., 1997] to about 2010, RV was the reigning champion

of planet-hunting; to date it has racked up more than 500 planet detections. However, it

suffered from being difficult to mass produce; each and every detection was the product of

exacting, time-consuming work by astronomers. The spectroscopes used in RV detection

are some of the best in the world, developed specifically for the task by dedicated teams,

and not easily replicated or replaced. Furthermore, to reach the precision required for

planet searches, a star must be very bright by astronomers’ standards; such stars are rare,

and it is uncommon to see several close together on the sky, where one measurement might

capture all at once. Each detection requires an individual allotment of telescope time

with a world-class instrument. This particular weakness is one of the main reasons RV

was ultimately upstaged by an unlikely-seeming contender.
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Transit detection [Charbonneau et al., 2000] relies on a very special coincidence; it

requires that a planet’s orbit pass directly between its parent star and earth. The slight

dimming as the planet blocks out some of its star and the return to full brightness

as the planet moves away [Struve, 1952] is what transit surveys watch for. At least

three transits need to be observed before the existence of a planet can be confidently

deduced from transit data, and unlike RV detection, transit detection requires an almost

unblinking watch; if you’re not observing at the time a transit happens, you’ll have no

hint of the planet’s presence.

Planet hunters dealt with the rarity of transiting planets by searching many, many

stars, and the timing of transit events by keeping nightly watch for months at a time.

Surveys such as the Wide Angle Search for Planets (WASP) [Pollacco et al., 2006,Butters

et al., 2010,Smith and WASP Consortium, 2014] and the Hungarian Automated Telescope

Network (HATnet) [Bakos et al., 2004, Bakos et al., 2013] both had to handle massive

quantities of data at a very fast pace, much faster than a human team could possibly

keep up with; they both had to rely on automation for a large portion of their analysis

needs. Although some RV data was still required to prove that the star did not have a

stellar companion that could explain the variations in its light, confirming or denying a

likely candidate whose properties were already well-constrained was much quicker and

easier than proving the presence of a planet through RV data alone, while searching

without any foreknowledge of which stars would prove interesting. This strategy paid

off; each survey netted dozens of new discoveries, and ultimately paved the way for the

fantastically successful Kepler survey.

The Kepler Observatory is a telescope in orbit about earth, designed from the ground

up for the purpose of finding transit events. Its placement in space has important ad-

vantages; it never needs to close because of the day-night cycle, and has no atmosphere

blurring its view of the stars. Its sensitivity lets it detect transits of planet masses as
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small as earth; its continuous operation of five years running lets it confirm planetary

orbits as long as an earth year. Kepler’s enormous success - over one thousand confirmed

planets, including some with very earth like properties - transformed transit detection

into the dominant form of planet-hunting in the space of a few years.

Microlensing, like transits, relies on a coincidence: one star passing in front of another,

close enough to act as a magnifying lens. To detect a planet via microlensing, an observer

must find microlensing events as they happen, searching millions of stars at once. They

must then record the microlensing event in detail, especially the brightest point in the

event, which contains a lot of information about the objects involved. Most events

monitored by scientists are long - there may be a month or more between the time when

an event begins, and the time when it peaks - but not all, and short events may prove

very interesting.

At first glance, microlensing seems to share the worst difficulties of both radial velocity

detection and transit searches. Like RV, each microlensing event requires a fair amount of

individual attention and skilled labor to characterize in detail. Like transits, microlensing

events are rare and give no advance warning. While lensing events do generally give an

observer more opportunity to prepare than a previously unknown transit, they are strictly

one-shot events that will never recur, and cannot be observed in more detail at a later

date.

What makes microlensing uniquely useful is the type of planets it detects. Both

transits and radial velocity searches are more likely to pick up on a planet if it is closer

to its star, in scalding hot orbits like Mercury’s, or warmer; microlensing tends to detect

planets near Earth’s orbit or cooler. RV favors massive planets like Jupiter and Saturn,

and transits likewise favor gas giants very strongly over small, rocky planets like Earth;

microlensing also prefers large planets, but does much better at reaching down to earth-

like masses. RV works best when a planet’s orbit is near to edge-on, and a transit requires
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that the orbit be almost perfectly edge-on; microlensing has a chance to detect planets in

any orbit about their star. For nearly every aspect of a planet’s properties, microlensing

favors a different set of characteristics than the currently dominant methods, and it is

generally much more sensitive to planets earth-like in nature than RV or transit searches.

Figure 1.2: Planet properties by detection method. Microlensing probes lower masses
and longer periods, hence cooler orbits, than other detection methods. Image courtesy
of the NASA Exoplanet Archive.

The one truly unique characteristic of microlensing as a planet-finding technique,

though, is that we need not be able to see the star a planet orbits. Stars smaller than our

sun are plentiful, long-living, and relatively stable, in many ways excellent candidates to

host earth-like life, but dim. The brightest stars, by contrast, are large; some massive

and short-lived, others at the end of their lifetime, neither type particularly hospitable.

As a technique that doesn’t depend on an object’s own visible light, microlensing has a

truly unique level of access to the small, dim, stable stars of our galaxy, able to detect

11
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them at much greater distances.

The net effect of these differences is that microlensing serves to fill in an area of

parameter space that other methods cannot access. Microlensing is able to detect earth-

mass planets in earth-like orbits, from the ground, using relatively modest telescopes [Abe

et al., 2013]. This claim is absolutely unique amongst planet-finding methods.

1.4 Field microlensing

To date, microlensing projects have focused on dense stellar fields. MACHO, search-

ing for massive dark objects in the galactic halo, pointed towards the Magellanic clouds.

OGLE and MOA focus primarily of the galactic bulge, where microlensing rates are

highest. These projects are excellently designed to fill their intended purposes, but leave

untouched the more sparsely starred areas of the sky, the “field”.

1.4.1 The Tago event

In October 2006 A. Tago, an amateur astronomer unaffiliated with any microlensing

programs, reported what he believed to be a supernova of an already bright star. For-

tunately for all involved, his report was noticed by scientists and recognized for what it

was: microlensing.

A team of Japanese microlensing astronomers began an observing campaign the fol-

lowing night [Fukui et al., 2007]. They concluded, and later follow-up analysis agreed

[Gaudi et al., 2008b], that this was indeed a microlensing event, the lensing of a “field”

star, located out of the galactic disk rather than towards the galactic bulge. This event

was the first of its kind, and to the day of this publication, remains the only field lensing

event observed.

Partly due to its unique nature, there were strong efforts to characterize the Tago
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event as well as possible. However, this event yielded much tighter constraints on the

properties of the stars involved than a typical bulge lensing event subjected to the same

level of scrutiny. The stars were closer, and as a result had brighter apparent magnitudes,

larger proper motions, and a shorter separation time than the stars in typical bulge lensing

events; they also occupied an uncrowded area of the sky, where it was possible to resolve

them from uninvolved stars. The benefits of the stars being near us were important to

their successful study, but the clear sky behind them was even more so.

1.4.2 Wide-field surveys and possibilities for the future

It has long been known that the rate of lensing will be much lower in regions with

fewer stars, but the Tago event inspired a renewed interest in the possibilities of field

lensing. About a year later, Cheongho Han published a paper intended to estimate the

microlensing rate in in the field, in the sparsely-starred areas above and below the galactic

disk [Han, 2008]. That paper forms a major part of the inspiration for this thesis, which

aims to make a similar estimation. Han ultimately concluded that there would be roughly

two dozen events per year caused by the lensing of field stars visible to a survey that

could see stars with a brightness of eighteen visual magnitudes.

It is not possible to justify the building of a suitable sky survey for a mere two dozen

events each year, not with thousands of events already being detected each year by other

projects. The survey to do this would need to be high-cadence (it should photograph

the sky once every few nights, at a minimum), wide-angle (it should cover a significant

fraction of the visible sky), and deep (able to see dim stars); these three characteristics

together describe a very advanced and expensive system, unlike any survey now operating.

However, it is a long-standing tradition of astronomy to allow multiple teams access to

a data set, each studying a different type of object or event. If a suitable survey existed,
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there is an excellent chance that microlensers could gain access for the study of lensing

events.

Enter the Large Synoptic Survey Telescope, or LSST [LSST Science Collaboration

et al., 2009]. LSST will survey most of its visible sky, a space of 10,000 square degrees,

about one-quarter of the total sphere about earth; it satisfies the wide angle requirement.

LSST will return to each position every three to four days, satisfying the high cadence

requirement. LSST will see stars as dim as 24.5 magnitudes in the red band, by far

surpassing the requirement for depth. It has enormous potential as the detection stage

of a lensing detection-followup collaboration similar to MOA or OGLE.

The LSST group is alert to the possibility of studying lensing events [LSST Science

Collaboration et al., 2009], but does not have many microlensers on team to advocate

for such a program. Some aspects of their proposed program may need adjustment to

reach LSST’s full potential in this area [Gould, 2013]. This is at the core of the problem

we hope to address in this thesis.

1.5 Our project: Predictions for observers

As we will explain in chapter 2, translating between the directly observable microlens-

ing light curve and the physical properties of the objects involved is often a complex task,

and careful analysis often calls for good models of stellar populations. These models are

used to provide prior probabilities about the stars involved; if a type of star is known to

be rare, it is less likely to be involved in a given event.

In this thesis I provide a detailed, working model of microlensing events in our galaxy,

with extensive comparison to known quantities wherever possible. The model can take

common observational restrictions into account, such as field of view, survey cadence,

and limiting magnitudes, returning predictions about the properties of events such an
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observation would detect. It is intended that this should be a useful tool to observers

seeking to characterize events.

I also hope to inform the design of microlensing observations. Upcoming large field

of view surveys like LSST may benefit greatly from being able to determine in advance

their likely yield of microlensing events and how it depends on survey design decisions.

The equations governing microlensing are derived in full in chapter 2, and techni-

cal aspects of the discipline expanded upon. Numerical integration techniques, special

challenges of multidimensional integration, and Monte Carlo integration methods are

covered in chapter 3. Chapter 4 contains the astrophysical inputs that we combine to

form a model of galactic stellar populations. Chapter 5 outlines the code’s design and

notable features. Chapter 6 describes the verification of the code, including software

tests and comparison to known observable quantities. Chapter 7 showcases our results,

discussions, and conclusions.

15



Chapter 2

Introduction to Microlensing

2.1 Introduction

Albert Einstein published on gravitational lensing twenty-four years after he first

published on the gravitational bending of light [Einstein, 1916, Einstein, 1936], but did

not think it was important. He could see that for any given star, the odds of being

lensed were minuscule, and that a lensed star would be nigh impossible to distinguish

from an unlensed one using still-frame photometry. Lensing was, to all appearances, an

unobservable phenomenon. In the end, the result was published only because a Czech

engineer, R. W. Mandl, pleaded with him to do so.

Einstein was missing two crucial pieces of information, though. First is that the stars

are all in motion, not just orbiting the galactic center, but each deviating from that

average by some amount. We need not rely on their appearance at any one moment to

learn whether they are lensed, but rather can observe how their appearance changes over

time as they pass in and out of lensing alignments. Time-dependent photometry can

distinguish a lensing event, as we will describe in this chapter.

Second is that our photographic and computing technology would improve by orders

16



Introduction to Microlensing Chapter 2

of magnitude in the century following his work. What was far too dim to see in his day

can now be observed, and the digitization of photography means that computers can

search millions of signals for one that matches the microlensing light curve.

In this chapter we will derive useful equations to describe microlensing properties and

touch on phenomenology to help the reader gain some intuition about the observation

of microlensing events, as well as the historical development of microlensing observation.

§2.2 derives the deflection angle of light under general relativity. §2.3 finds the resulting

position of lens images. §2.4 derives the magnification caused by a lensing event, and

§2.4.1 discusses the light curve that results. Binary mass lensing, as with lens stars

orbited by planets, is covered in §2.5, and some important points on planet detection

in §2.5.1. The microlensing rate is derived in §2.6. Important second-order effects are

described in §2.7. §2.8 gives estimates of the numeric values of lensing quantities.

2.2 Deflection angle

Here we derive the angle by which light is deflected when passing a massive, gravitat-

ing object. This derivation references without proof certain results of general relativity

which are beyond the scope of this thesis. Einstein’s original result can be found in [Ein-

stein, 1916] and a more detailed derivation in [Wald, 1984].

Assumptions:

The gravitating object - the “lens” - is a single object, is to an excellent approximation

spherical, is not rotating at relativistic speeds, and has a radius significantly smaller than

the impact parameter of the passing photon.

The angle by which our test photon is deflected is very small.

Definitions:

r is the photon’s impact parameter, i.e. the distance at which it passes closest to the

17
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lens star.

M is the mass of the lens star.

ε is the angle of deflection.

Derivation:

The curvature of space-time outside a spherically symmetric gravitating object, such

as a star, is given by the Schwarzschild metric [Schwarzschild, 1916]:

ds2 = −
(

1− 2GM

c2r

)
(cdt)2 +

(
1− 2GM

c2r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
(2.1)

We consider the path a photon takes in this geometry. Light travels along null metrics

(ds2 = 0), and we can choose our coordinates such that throughout the photon’s travel

dφ = 0.

0 = −
(

1− 2GM

c2r

)
(cdt)2 +

(
1− 2GM

c2r

)−1
dr2 + r2dθ2 (2.2)

The static Killing field gives us a conserved momentum-like quantity, E.

E =

(
1− 2GM

c2r

)
cṫ (2.3)

The rotational Killing field gives us a conserved angular momentum-like quantity, L.

L = r2φ̇ (2.4)

Substituting L and E into the metric and rearranging produces

ṙ2 = E2 −
(

1− 2GM

c2r

)
L2

r2
(2.5)

We can now write an equation for the change of φ with respect to r by combining
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this latest equation with the equation for L.

dφ

dr
=
L

r2

(
E2 −

(
1− 2GM

c2r

)
L2

r2

)−1/2
(2.6)

Recognizing that a conserved angular momentum and a conserved momentum imply

an impact parameter, we write

L/E = b (2.7)

where b is the impact parameter the photon would have if the metric were flat and/or

M were zero. We can find b’s relation to the actual distance of closest approach, r0, by

finding the value of r for which ṙ = 0.

0 = E2 −
(

1− 2GM

c2r0

)
E2b2

r20
(2.8)

b2 =
r30(

r0 − 2GM
c2

) (2.9)

Note in the flat-space limit M = 0, we find that b = r0.

We simplify dφ/dr using L/E = b.

dφ

dr
=

1

r2

(
b−2 −

(
1− 2GM

c2r

)
1

r2

)−1/2
(2.10)

The total change in φ over the photon’s trajectory will be given by

∆φ = 2

∫ ∞
r0

dφ

dr
dr (2.11)
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This integral becomes easier to handle if we use a substitution ρ ≡ 1/r.

∆φ = 2

∫ 1/r0

0

dρ√
b−2 − ρ2 + 2GM

c2
ρ3

(2.12)

This is as simple as we can make the integral, but it is still not trivial to evaluate in

full. Instead, we will evaluate ∆φ at M = 0 and the derivative with respect to M at the

same point, creating a first-order expansion in M . Recall that for M = 0, b = r0.

∆φ|M=0 = 2 arcsin(b/r0) = π (2.13)

For the first derivative, we write b in terms of r0 and hold r0 constant.

∂φ

∂M

∣∣∣∣
M=0

= 2∂M

∫ 1/r0

0

dρ√
r−20 − 2GM

c2
r−30 − ρ2 + 2GM

c2
ρ3

∣∣∣∣∣∣
M=0

(2.14)

= 2

∫ 1/r0

0

(
r−30 − ρ−3

)
dρ(

r−20 − 2GM
c2
r−30 − ρ2 + 2GM

c2
ρ3
)3/2

∣∣∣∣∣
M=0

(2.15)

= 2

∫ 1/r0

0

2G
c2

(
r−30 − ρ−3

)
dρ(

r−20 − ρ2
)3/2 (2.16)

= − 4G

c2r0
(2.17)

Therefore the bending angle ∆φ (henceforth referred to as ε) is, to first-order approx-

imation,

ε =
4GM

r0c2
(2.18)
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2.3 The lens equation in the point source, point lens

case

Here we derive position of “images” produced when a background source is lensed,

i.e. where it appears to be to an observer. Original work on this subject can be found

in [Liebes, 1964,Refsdal, 1964].

Assumptions:

The gravitating object is spherical, is not rotating at relativistic speeds, and has a

radius significantly smaller than the impact parameter, and hence can be treated as a

point mass under relativistic mechanics.

The angle by which light is deflected is small.

The radius of the source star is much, much smaller than the distance from observer

to source star, and hence it can be treated as a point source of light.

The fraction of the distance where the light is being significantly influenced by the

lens’ gravity is much smaller than the total distance traveled, and hence we can approx-

imate the light’s path well by a sudden bending as it passes through the lens plane.

These assumptions taken together are often referred to as the “point source, point

lens” or PSPL case for a single lens.

Definitions (see fig. 2.1):

M is the mass of the lens star whose gravity deflects light from the source star.

r1,2 is the impact parameter i.e. distance of closest passage between the photon’s

trajectory and the gravitating mass. As we will see, this is a double-valued quantity for

the PSPL case.

α1,2 is the angular separation (from observer’s point of view) between the source and

the lens.

β1,2 are the angles between source true position and image locations.
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θ1,2 are the angles between lens and image locations in the lens plane; r1,2 = DLθ1,2.

ε1,2 are bending angles of light passing near a massive object, 4GM
r1,2c2

. Again, a solution

for each route light can take to the observer.

DS is the distance from observer to source star, DL is the distance from observer to

lens star, and DLS is the distance between source star and lens star.

Derivation:

We use two geometric identities involving the unnamed third angle in the β, β′ tri-

angle.

180− β1,2 − β′1,2 = 180− ε1,2 (2.19)

β1,2 + β′1,2 = ε1,2 (2.20)

Use small-angle approximation for source to source image distance in the lens plane, then

substitute in previous relation.

β1,2DL = β′1,2DLS (2.21)

β1,2 (1 +DL/DLS) = ε1,2 (2.22)

Define (1 +DL/DLS) ≡ µ.

β1,2 = ε1,2/µ (2.23)

Recall value of ε derived in §2.2; relate to θ and β.

ε1,2 = 4GM/r1,2c
2 (2.24)
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θ1,2DL = r1,2 (2.25)

β1,2 = 4GM/θ1,2DLµc
2 (2.26)

Relate β, α, and θ. Here, the ‘±α’ term takes the value of +α for the 1-subscript case

and −α for the 2-subscript case. Substitute for β.

β1,2 ± α = θ1,2 (2.27)

4GM/θ1,2DLµc
2 ± α = θ1,2 (2.28)

Define 4GM/DLµc
2 ≡ θ2E and solve the quadratic equation for θ1,2 with the restriction

that the value of θ must be real and positive.

θ1,2 = ±α
2

+
√

(α/2)2 + θ2E (2.29)

This equality is referred to as the lens equation.

Note that α changes as the source and lens move relative one another, but θE is a

constant composed of the physical quantities involved.

θE, the angular Einstein radius, or its equivalent distance in the lens plane rE ≡ DLθE,

the Einstein radius, is useful to keep in mind as the basic physical scale of a lensing

problem. We will be using units normalized by these quantities in much of this chapter.
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2.4 Magnification

Here we derive the solid-angle size of the images produced by microlensing, and the

resulting change in the source’s apparent brightness. Original work on this subject can

be found in [Liebes, 1964,Refsdal, 1964].

Assumptions:

We once again take the PSPL assumptions enumerated in previous sections, but we

now consider the fact that while the source is very, very small and appears pointlike to

the observer, it is not a point; it has some finite radius and its image spans some finite

albeit miniscule angle.

r1

r2

dθ1

dθ2

rE

dφ

Major
image

Minor
image

Lens

Source

θE

θ1

θ2

Figure 2.2: Diagram of lensing from the observer’s point of view. Distances r are
measured in lens plane. Proportions are greatly exaggerated for the purpose of illus-
tration.
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Definitions:

The coordinates we have been using so far tacitly acknowledge the lens mass as the

pole of the coordinate system. α and θ are both polar angles from the observer-lens line;

we now introduce φ, an azimuthal angle about the observer-lens axis; see fig. 2.2.

Derivation:

While the process of lensing changes an object’s apparent polar angle, it has no effect

on its azimuthal angle. Hence the object’s “width” in azimuthal angle, dφ, remains

constant, but the spatial extent of that apparent width varies. The true location of the

source is sin(α)dφ wide, but the source’s image is sin(θ)dφ wide. The width therefore

changes by a factor of sin θ/ sinα. Because we are in the small angle limit, this can be

approximated as θ/α, or

θ1,2
α

= ±1

2
+

√(
1

2

)2

+

(
θE
α

)2

(2.30)

To find the image’s “thickness” in the θ direction, we consider how a change in α

affects θ. We find this by taking the derivative of the lens equation found in section 2.3.

dθ1,2 = dα

(
±1

2
+

α/4√
(α/2)2 + θ2E

)
(2.31)

We now introduce u ≡ α/θE; this quantity will be useful to us. We re-write the expres-

sions for θ/α and dθ/dα.

θ1,2
α

=

(
±1

2
+

1

2u

√
u2 + 4

)
(2.32)

dθ1,2
dα

=

(
±1

2
+

u

2
√
u2 + 4

)
(2.33)
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Multiplying together the change in the object’s apparent width and the change in its

apparent thickness, we find the multiplicative change in image size, A:

A1,2 =

(
θ

α

dθ

dα

)
1,2

=
1

2
± u2 + 2

2u
√
u2 + 4

(2.34)

There are several things to note in this equation. First is that u is defined as positive

and so image 1, the major image, is always larger than image 2, the minor image. Second,

note that in the small u limit, i.e. when the source passes very close to the lens, the term

on the right is approximately 1/u. Hence for small u, the value of A2 is negative; this

reflects the fact that the second image created by lensing, the minor image, is reversed.

We are interested in the size of the image rather than its orientation, so in finding the

full magnification, we add the absolute value of the two images’ size.

|A1|+ |A2| = A =
u2 + 2

u
√
u2 + 4

(2.35)

This quantity, A, is the magnification. It is the change in size of the source’s image

as seen by an observer. It is also the change in the amount of light seen by an observer,

as we will demonstrate.

Consider figure 2.3, a visual representation of the finite spread of paths taken by light

to the observer. If unlensed, the source subtends a solid angle dαdφ ≡ dΩS of the ob-

server’s view, but its appearance has been split into two images with sizes dθ1,2dφ ≡ dΩ1,2

with total size dΩ. Our last calculation showed that dΩ/dΩS = (u2+2)/(u
√
u2 + 4) = A.

The physical extent of the source’s image projected in the lens plane occupies an area

equal to D2
LdΩ, whereas its unlensed image would have size D2

LdΩS.

For a moment, humor the notion (approximately correct, enumerated in our PSPL

assumptions) that light deflects instantaneously at an angle of ε as it passes through the
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Source
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Figure 2.3: As in figure 2.1, with the finite spread of light made explicit. Proportions
are greatly exaggerated for the purpose of illustration.

lens plane. Whatever light is radiated by the star and passes through the image in the

lens plane is redirected to the observer. Likewise we can imagine the unlensed case as

light passing through an image in the lens plane, being deflected by an angle of zero, and

continuing on to the observer. If this model holds true, then the amount of light sent to

the observer by the image is proportional to the amount of light received by the image

from the source star, and this holds true for any set of possible images in the lens plane,

so long as the small-angle approximation holds and we can consider all lens-plane images

to be equidistant from the source star. Hence the ratio of the lensed image size to the

unlensed image size is also the ratio of light received by the observer in the lensed case

to light received in the unlensed case; both quantities are the magnification A.

Please note that while it was necessary to assume the source had finite size for this

derivation, the term “finite source effects” is used in microlensing to refer to a much

more extreme case in which the source subtends a larger angle. This phenomenon will

be briefly discussed in §2.7.
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2.4.1 Phenomenology of microlensing light curves

We have derived the magnification A as a function of lens-source separation u; we

will now discuss the light curves that result from this. Original work on this subject can

be found in [Paczynski, 1986].

We can derive the basic microlensing light curve from our A(u) by imagining a lens

passing a source on a linear trajectory. Define (x, y) to be the source’s apparent position

from the observer’s view point projected onto the lens plane; define coordinates so that

the source’s y position is constant as it moves in x. Choosing t = 0 so that it is the time

of closest passage and assigning y = y0 and x = ωt, we obtain

u =
1

rE

√
(ωt)2 + y20 (2.36)

Moving the Einstein distance inside the square root, defining the “crossing time” tE ≡

rE/ω, and defining u0 ≡ y0/rE, this can be rewritten as

u(t) =

√(
t

tE

)2

+ u20 (2.37)

In this form, it is easy to see that the minimum value of u is u0.

Choosing a particular value of u0 and feeding the resulting u(t) curve into A(u) gives

us the magnification as a function of time, A(u). This function is plotted in figure 2.4

for a value of u0 = 0.6.

The smaller the value of u0, the greater the corresponding peak magnification A0.

We demonstrate this in figure 2.5, showing the light curves for a range of values of u0.

This iconic microlensing light curve, also known as the Paczynski curve, has several

properties worth noting.

First, the light curve is symmetrical about the time of closest passage t0, chosen
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Figure 2.4: A path with u0 = 0.6, showing images at selected times (bottom) and
corresponding light curve (top). Images shown here are actual size, shape, and po-
sition for the portrayed source-lens geometry; dotted lines connect associated source
positions and image positions.
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Figure 2.5: Paths with different values of u0 (bottom) and corresponding light curves (top).
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here to be t = 0. Asymmetry in an observed light curve may indicate a parallax effect,

described in §2.7, but more often simply indicates that the event being observed is not

microlensing.

Second, there is no wavelength dependency in the bending angle and magnification

equations; microlensing magnifies the source star without changing its color. This prop-

erty is useful in distinguishing microlensing events from other transients; it is also impor-

tant to disentangling microlensing magnification from any other unresolved stars in the

vicinity, including the lens star. Taking at least some multi-band photometry is standard

in microlensing observation.

Finally, there are three quantities that are directly determined from this light curve:

the time of closest approach t0, a parameter that tells us nothing about the properties of

the stars, the peak magnification A0, and the time scale or crossing time tE. While they

do provide information, these parameters do not directly determine the value of any of

the physical properties of the system; each depends on multiple quantities. Writing these

out explicitly, and invoking DL +DLS = DS to simplify θE:

A0 = A(u0) =
u20 + 2

u0
√
u20 + 4

(2.38)

u0 = α0/θE = α0

[
4GM

c2
DLS

DLDS

]−1/2
(2.39)

tE = θE/ω =
1

ω

[
4GM

c2
DLS

DLDS

]1/2
(2.40)

These quantities mix information about the apparent position and motion of the source

(α0, ω), the lens mass M , and the distances to the lens and source (DL, DLS). The light

curve of an archetypal lensing event does not, by itself, provide enough information for
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the study of the lens. For this, we will generally need additional observations, or a special

case that provides additional information; we will describe several such cases in §2.7.

2.5 Binary mass lensing

Although not strictly necessary to understand the rest of this thesis, this section will

help the reader understand how planets are detected using microlensing. The search

for planets is a driving motivation in many current microlensing projects, and a basic

understanding of binary lensing will be needed to read many papers in the field. Original

work on binary lenses can be found in [Mao and Paczynski, 1991]; the planetary case

described here can be found in [Gould and Loeb, 1992].

We take the PSPL assumptions and add the presence of a secondary mass or planet,

m � M , near the primary lens. We require the second mass to be close enough to the

lens that we can approximate it as being in the lens plane. Because we have assumed

m�M , we will treat the effects of the second lens as a perturbation on the effects of the

first lens. These assumptions together we will refer to as the planetary approximation.

We imagine the source’s true position being lensed by the primary lens, and then the

resulting major and minor images being lensed by the secondary lens. In most cases,

only one image passes close enough to the planet to be significantly affected; exceptions

are most likely to occur for very small u0, where both major and minor image sit close

to the Einstein radius. We can approximate this using the same tools as in the PSPL

case, but they grow increasingly inaccurate and the “source” being lensed is no longer so

simple in shape. More typically in scientific work, the actual image shapes are computed

and their area integrated to find the resulting total image area. An application of the

planetary approximation is demonstrated in figure 2.6.

Although a double application of PSPL transformations is not accurate enough for
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Figure 2.6: Diagram of planetary lensing from the observer’s point of view. On
the left, we show lensing in the approximation that only the primary lens mass is
considered. On the right, we show lensing in the approximation that one image is
affected by the secondary mass. Image size, shape, and positions are accurate for the
shown geometry and assumptions, but proportions are greatly exaggerated for the
purpose of illustration; shown here, rE,m = 0.25 rE,M , in which case the planetary
approximation would not ordinarily be applied because it is insufficiently accurate.

most scientific work, it can be used to gain some basic insight into how the resulting light

curve will appear. Recall that the physical scale of lensing rE ∝M1/2; likewise tE ∝M1/2.

A planetary lensing curve can look much like a microlensing light curve with another,

shorter microlensing event occurring in the midst of the event; Gould and Loeb [Gould

and Loeb, 1992] demonstrate a theoretical example where this approximation is close to

reality. By comparing the timescales of the two microlensing peaks, we can obtain an

estimate of their relative masses:

tE,m/tE,M ≈ (m/M)1/2 (2.41)
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2.5.1 Planet detection

A planet in orbit about a lens star will affect the light curve if one of the images passes

near it in the lens plane. Because the minor image goes to the lens star’s position at large

t, this can include planets in close orbits about the lens; because the major image goes

to the source’s true position at large t, this can include planets in distant orbits about

the lens star. However, the orbits best covered are those near the Einstein radius. For

most of a high-magnification lensing event, the major image is just outside the Einstein

radius, and the minor image is just inside.

The Einstein radius rE is typically of order a few astronomical units (see §2.8), signif-

icantly larger than the typical orbital radius of a planet discovered by radial velocity or

transit (REF). Unlike RV and transits, microlensing places no requirement on the orbital

orientation of a planet; any orbital orientation has a chance to be detected, and a face-on

orbit near the Einstein radius has a high detection probability indeed. Hence, lensing

detection is most likely in a region of parameter space that is very difficult to reach with

other methods.

More importantly, though, microlensing is the only planet-finding technique that does

not require the observer to directly observe the host star to detect the planets orbiting it.

This allows us to find planets about stars smaller and further away than other techniques

are sensitive to.

More extensive discussion of planetary detection probability and how it depends on

the properties of a microlensing event or of the lens system can be found in [Gould and

Loeb, 1992,Peale, 2001,Han and Kang, 2003,Han, 2011,Jung et al., 2014].
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2.6 Microlensing rate

We will now derive the microlensing rate, which will be a major focus of our thesis.

A discussion of lensing rate can be found in [Han, 2008].

Lensing events can be conceptualized as a two-dimensional collision rate problem. If

a source star (particle type 1) passes within a certain angular distance (cross section σ)

of a lens star (particle type 2), a microlensing event occurs (a collision). If all quantities

were constant and spatially uniform, the resulting rate could be calculated in seconds

using a simple collision rate equation.

Γ = n1n2σv (2.42)

The space in which these collisions occur is not three-dimensional; it is the two-

dimensional canvas of the sky, whose angular coordinates from the observer’s point of

view we will call (l, b). Where n(D, l, b) is the volume density of stars at a distance D

from earth, the contribution dη to the angular density of stars η from a volume element

dV = D2 dD dΩ is given by

dη dΩ = nD2 dD dΩ (2.43)

There is no angular distance where an alignment of stars goes abruptly from lensed

to not-lensed, but convention is to use α = θE as the dividing line. As we will see in §2.8,

this corresponds to a magnification of A ≈ 1.34. Our collisional cross section, then, is

σ = 2θE.

As for v, the first step is to find each object’s velocity relative an observer on earth;

we subtract away earth’s velocity, ~v⊕. We do not care about the portion of the velocity

that is parallel to our line of sight (~v‖, in the D̂ direction), only the portion that is

perpendicular (~v⊥, in the l̂ and b̂ directions). Angular velocity ω is given by v⊥/D, and
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the relative angular velocity of our lens star and source star in two-dimensional angular

space is

|~ω| =
∣∣∣∣(~vL − ~v⊕)⊥

DL

− (~vS − ~v⊕)⊥
DS

∣∣∣∣ (2.44)

We return to the rate equation with these values in hand:

Γ(l, b) =

∫
2 nS nL θE |~ω|D2

SD
2
L dDS dDL (2.45)

An astute reader will note that this expression does not explicitly integrate over a

number of variable quantities that we will need to account for in a detailed calculation:

θE depends on M as well as DS and DL, the velocities ~v of stars are by no means uniform,

and a full calculation of Γ will require integration over l and b. It is also important to

note that the integrand is not separable.

2.7 Second-order microlensing effects

There are a great many other variations on microlensing that do not directly pertain

to this thesis, but will be mentioned here to give the reader an idea of the effects that can

alter the iconic microlensing curve. Many of these effects would be novelties to a planet

hunter or stellar mass measurer if it were not for their value in breaking degeneracies in

microlensing curve fits, allowing for more precise mass measurements. We describe them

here in brief.

2.7.1 Parallax

As we will explain in §2.6, any combination of straight-line motions for observer, lens,

and source can be reduced to a single apparent straight-line motion, like the one we used

in §2.4.1 to produce the iconic microlensing light curve. However, straight-line motion
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is never quite an exact description; the observer, sitting on earth’s surface, is rotating

about earth’s center, and earth is orbiting the sun. When the observer’s deviation from

a straight-line motion is great enough to cause observable changes in the light curve, it

is known as parallax.

There are several ways to achieve enough deviation from a straight-line trajectory

to cause observable parallax; all fall under the common theme of observation events not

on a Newtonian inertial trajectory. In long timescale events, with tE of order a year,

the orbit of the earth about the sun can cause parallax. In high magnification events,

where a small change in u can make a significant change in A, smaller deviations like the

rotation of the earth can be enough to produce measurable parallax. Likewise, for events

with small rE and θE, a small change in observer position can cause a significant change

in u.

Because we know the motion of earth-based and satellite observatories to high preci-

sion, we can translate an observed parallax into a measure of the angular Einstein radius

θE [Gould and Yee, 2014]. DS can generally be measured well using the color of the

source star to infer its magnitude [Yoo et al., 2004], but there is still a DL-M degen-

eracy in θE. Follow-up astrometry in which the direction [Gould and Yee, 2014] or net

speed [Yoo et al., 2004] of source-lens separation is measured can provide the final piece

of information needed to fully disentangle the physical parameters of a lensing event.

Long-tE light curves with parallax are often noticed due to a slight asymmetry, as

was the case with the first parallax detection [Alcock et al., 1995]. In cases of high

magnification or small rE, observers from different locations on or around earth may

see significantly different light curves that become consistent when modeled as a par-

allax event. The further from the earth-average trajectory, in these cases, the better

the sensitivity to parallax; satellites in orbit about earth, for instance, can give greatly

distanced vantage points from earth-based observatories. Parallaxes that could not be
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detected from ground-based data alone have been observed by incorporating data from

satellite observatories such as the Spitzer Space Telescope [Yee et al., 2014], and it has

been proposed that most microlensing events will have measurable parallax if space-based

observations are combined with earth-based data [Gould and Yee, 2014].

2.7.2 Xallarap

Xallarap is the opposite of parallax. It occurs when the observer’s acceleration is not

significant to the light curve, but the source or lens undergoes significant acceleration,

typically due to being a member of a binary star system.

Note that this effect appears in systems very different from the planetary binaries

described in §2.5. The planetary case requires M � m, and that their separation be

of order rE. Xallarap, by contrast, is strongest when the lens star accelerates most,

when the binary companion is massive and/or close. Detectable xallarap may occur

when a massive planet is in a close orbit a small fraction of rE from the star [Rahvar

and Dominik, 2008], or when the companion is of comparable mass at a more distant

orbit [Miyake et al., 2012].

Xallarap can serve much the same function as parallax in breaking degeneracies if

observers are able to determine the orbits of the stars involved.

2.7.3 Multiple lens masses

The M � m binary lens case, typical of planetary observations, can be further

complicated by additional planets in the sensitive region. As the number of lens masses

goes up, so does the potential complication of the light curve. Multiple local maxima,

abrupt local maxima, plateaus, and wildly asymmetric light curves are all common results

of multi-lens systems; the phenomenology of these systems is very rich and far beyond
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the scope of this thesis. Theoretical triple-lens curves are discussed in [Song et al., 2014],

and an observed multi-lens system is analyzed in [Gaudi et al., 2008a, Bennett et al.,

2010].

2.7.4 Finite source effects

When dα, the angular size of the source star, is not small enough to allow the approx-

imations used in §2.4, the result is known as “finite source effects” in the microlensing

community. While one part of the source is strongly magnified, the remainder is only

slightly magnified. The net effect is a light curve that plateaus near a constant value

while the source star crosses the lens. As the source approaches the lens, its magni-

fication increases, but once its near edge reaches the peak-magnification position, the

total magnification will remain almost constant until the far edge passes that position;

as the image leaves the lens, the magnification goes back down to resting values. A more

detailed discussion can be found in [Gould and Gaucherel, 1996].

Finite source effects are often observed with red giant source stars, due to their

large radius, but can occur for a source star of any size if it passes close enough to a

magnification peak. The width of the plateau region allows an observer to determine the

ratio of the source size dα to angular Einstein radius θE [Gould and Gaucherel, 1996].

2.8 Numeric values of microlensing quantities

It is useful to have a sense of just how large the quantities involved in microlensing

are, so we include this section giving worked examples of typical values. Note also that

we prefer to express quantities in units that render them a small number, between one

and twenty or so, as it is helpful to human intuition to work in small numbers; thus this

section will reveal our motives for many of our favorite units throughout this thesis.
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The masses and radii of stars we will measure by comparing them to our sun. 1M�

is the mass of the sun, and 1R� is the sun’s radius.

The deflection of light by a star ε that we calculated in §2.2, a first order approxima-

tion, has been experimentally verified as accurate to a few parts in 104 [Bodenner and

Will, 2003]. We express it here in arcseconds, notated with ”.

ε = 1.7504′′ ·
[
M

M�
· R�
r

]
(2.46)

The bending of background star light around our sun was the first major experimental

proof of general relativity.

Rearranging the equation for the Einstein radius rE, using the identity DL +DLS =

DS, we can write

rE =

√
4GM

c2
DLDLS

DS

(2.47)

Using a substitution DL = xDS and DLS = (1 − x)DS, where x can take values from

zero to one, gives us an illuminating form for this equation:

rE =

√
4GMDS

c2
x(1− x) (2.48)

If we hold DS constant and take the derivative with respect to x, we will find that rE is

greatest for DL = 0.5DS. This provides a useful rule of thumb for us; all other things

being constant, the lens is most likely to be halfway between the observer and the source.

We find rE’s value in astronomical units, or AU:

rE = 4.0346 AU ·
[
M

M�
· DLDLS

DS · 2 kpc

]1/2
(2.49)

For most microlensing observations, done towards the galactic bulge, the source is in the
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bulge itself and the lens is about halfway between us and the source; DS ≈ 8 kpc, DL ≈

4 kpc, and DLS ≈ 4 kpc; we will measure most lens and source distances in kiloparsecs.

Hence a typical value for a sun-like star towards the bulge would be:

rE(1M�) ≈ 4 AU (2.50)

For this same sun-like star towards the bulge, we can calculate the angular Einstein

radius θE = rE/DL. Arcseconds are far too large; we’ll express this in milliarcseonds,

abbreviated mas.

θE ≈ 1 mas (2.51)

Note that the resolution of ground-based telescopes are generally of order a few arcsec-

onds, and world-class telescopes in favorable weather can reach resolutions of about 0.5”.

A typical bulge microlensing event, therefore, is not resolvable; the two images of the

source star and any light that may be coming from the lens will be unresolved.

In §2.6, we use u0 ≤ 1 as the minimum threshold for a microlensing event. The

corresponding peak magnification is A0 ≥ 1.3416.

At very small u, we have previously noted, the value of A approaches 1/u; the first-

order Taylor expansion is

lim
u→0

A(u) =
1

u

(
1 +

3

8
u2
)

(2.52)

Note, however, that this expression of A(u) is only accurate as long as the PSPL ap-

proximations hold, and the smaller the value of u, the greater the likelihood that those

assumptions will fail.

We can obtain a very naive estimate of microlensing rates towards the bulge using

the equations found in §2.6. We assign “typical” values for a bulge-ward microlensing

event, taking nS near the center of the bulge using a model from [Jurić et al., 2008], nL
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from halfway to the bulge, θE for a solar mass lens, and choose a value for ω using a

model from [Bond et al., 2010]. This gives nL ≈ 0.16 pc−3, nS ≈ 4.1 pc−3, θE ≈ 1 mas,

and ω ≈ 2.3 mas/yr; we treat these quantities as constants with this typical value. This

gives a very rough estimate of

Γ ≈ 2 nS nL θEω
1

3
D3
S

1

3
D3
L ≈ 80 year−1 deg−2 (2.53)

towards the bulge.
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Chapter 3

Introduction to Numerical

Integration

The term “Monte Carlo method” can technically be applied to almost any method of

computation or solution-finding that involves repeated random selection of variable val-

ues. In this thesis, we use Monte Carlo integration (henceforth MC integration), one

of the simpler MC techniques, as a major component of our simulation. This chapter

will help the reader understand both our choice of integration technique and the math

behind it. We will describe the basics of numerical integration, compare the effectiveness

of various techniques when applied to different integrands, and demonstrate the inherent

difficulties of multidimensional numeric integration. We will also describe techniques for

increasing the efficiency, and therefore the accuracy, of our numerical integration.

3.1 Numerical integration methods

When it is not possible to analytically solve an integral, the alternative is numer-

ical integration. I will cover one-dimensional integration in §3.1.1, then describe the
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generalization to multiple dimensions in §3.1.2.

3.1.1 One-dimensional integration techniques

The simplest of all numerical integration methods is integration on a grid. The

method used is to divide the range into N small, equal intervals, use a polynomial of

order k to approximate the function in each interval, and analytically compute the integral

over that polynomial approximation. A more detailed description of these methods can

be found in [Press et al., 1992, p. 130-136].

In practice, this boils down to a very simple algorithm, where each interval is sampled

at evenly spaced points, the values at those points are multiplied by constants, and the

lot are added together.

F =

∫ x2

x1

f(x)dx ≈
N∑
i

h∑
j

∆xijcjf(xij) =
x2 − x1
N

N∑
i

h∑
j

cjf(xij) (3.1)

where

∆xi = (x2 − x1)/N

∆xij = ∆xi/h

xi = x1 + i∆xi

xij = xi + j∆xij

See figs. 3.1 and 3.2 for illustration.

In general, a method of order k requires k + 1 terms within each interval ∆xi, i.e.

h = k+1. In some cases, the symmetry of the polynomial being used to approximate the

integrand allows some terms to cancel, allowing for a integral of order k to be performed

with fewer than k + 1 terms. Notably, an integral of order 3 requires only 3 terms, and
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Figure 3.1: A function which would require numerical integration, divided into equal
intervals for integration on a grid. For a 0th or 1st order approximation, the values
at the marked locations are the only samples needed.

an integral of order 5 requires only 5 terms.

This method is exact for integrands that are polynomials of order k or less; for other

functions, their error is of order ∆xk+2f(x)(k+1), where f(x)(n) is the nth derivative of

f(x).

∆Fi ≈ ∆xk+2
i f(xi)

(k+1) (3.2)

∆xi = const.

Adaptive integration improves on the accuracy of grid integration by sampling more

densely in the regions where the integrand diverges heavily from the polynomial approxi-

mation, i.e. where the (k+1)th derivative f(x)(k+1) is largest. Once again, the integration
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Figure 3.2: The same function as fig. 3.1 with the same number of intervals, but a
higher-order approximation applied. Each interval is sampled at three evenly spaced
locations; the value of the function at these locations is used to approximate the
function locally as a 3rd order polynomial, which in turn is analytically integrated.
This approximation is generally more accurate than a 1st-order approximation based
on the same number of samples.

is given by

F =

∫ x2

x1

f(x)dx ≈
N∑
i

h∑
j

∆xijcjf(xij) =
N∑
i

∆xi
h

h∑
j

cjf(xij) (3.3)

where

∆xij = ∆xi/h

xij = xi + j∆xij

but we can no longer make the simplifications that depend on the ∆xi being equal.

By adjusting the step size ∆xi for each step, the error estimate for each step ∆Fi ≈
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∆xk+2
i f(x)(k+1) is kept within some acceptable range; a predetermined standard of accu-

racy is maintained, and excessively fine steps over well-approximated regions are avoided.

The effectiveness of this approach ultimately stems from minimizing the summed squared

errors of the individual steps,
∑

∆F 2
i , relative to the number of steps taken, by bringing

the ∆Fi to a near-constant value. The resulting error per step is the same as the one

given for grid integration, but the step size is chosen so the error estimates each interval

are nearly equal.

∆Fi ≈ ∆xk+2
i f(xi)

(k+1) ≈ const. (3.4)

A demonstration of this method, and one of its potential pitfalls, is given in fig. 3.3.

Most methods of adaptive integration will therefore require the integrand to be dif-

ferentiable k + 1 times so that an error estimate can be obtained. This is generally not

a problem, although it can become one when integration over data is required. A more

comprehensive description of an adaptive integration algorithm can be found in [Press

et al., 1992, p. 707-722].

More importantly to the general problem of integration, the sampling locations are

not known beforehand and are chosen based on local conditions. Two one-dimensional

paths through a multi-dimensional integrand may choose very different samplings, which

will make generalizing to an n-dimensional integration difficult. This issue presents a

major barrier to attempts to generalize one-dimensional adaptive integration.

Simple Monte Carlo integration, by contrast, chooses its samples without any refer-

ence to the locations of already-existing samples. In the most basic possible implementa-

tion, sample locations xi are drawn randomly from a flat probability distribution between

x1 and x2. The integral is then given by

F =

∫ x2

x1

f(x)dx ≈ x2 − x1
N

N∑
i

f(xi) = (x2 − x1) 〈f〉 (3.5)
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Figure 3.3: Simple adaptive sampling of an integrand which is to be evaluated using
a first-order approximation. At each step, the second derivative is computed and
used to estimate an appropriate step size. Practical adaptive integration schemes will
include safeguards against very large steps, such as the one near the minimum on
the left, caused by a sample falling near an inflection point in the integrand, where
the curvature changes from positive to negative. Samples do not fall very close to
the other two inflection points on each side of the peak, and so the sampling there is
smooth. If a sample were to fall directly on an inflection point where the curvature is
equal to zero, this naive algorithm would choose an infinitely large step size. Avoiding
this problem is the primary reason most adaptive algorithms do not force the error
estimate for each step to be exactly equal.

with an error estimate of

∆F ≈ x2 − x1
N

(
N∑
i

(f(xi)− 〈f〉)2
)1/2

= (x2 − x1)

(
〈f 2〉 − 〈f〉2

N

)1/2

(3.6)

Note that, unlike previous equations which gave the one-step error estimate ∆Fi, this

equation gives an error estimate for the entire Monte Carlo integral.

This simple MC integration is analogous to the k = 0 case of grid or adaptive inte-
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gration. It has similar accuracy to 0th-order grid integration, but generally less accuracy

than 0th-order adaptive integration. A demonstration of this sampling is given in fig.

3.4.

Figure 3.4: A simple Monte Carlo sampling of an integrand using the same total
number of samples as fig. 3.3. The same sampling algorithm, if run again, would
choose a different set of points for its sampling locations, and more intelligent ran-
domized sampling is possible. In one-dimensional integration, simple MC integration
is outperformed by methods that make better use of our knowledge of the integrand.

In one-dimensional integration tasks, MC integration is usually unnecessary (see

§3.2.3 for exceptions) and not particularly accurate. It uses a poor-man’s sampling

algorithm (one that requires no record of past samples) combined with a poor-man’s

approximation (the lowest possible polynomial approximation). The relative simplicity

that comes with such a low-effort algorithm, however, will become its greatest strength

when confronting more complex problems.
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3.1.2 Multidimensional integration

Generalizing one-dimensional grid or adaptive integration techniques to a multi-

dimensional integration problem is not trivial [Press et al., 1992, p. 161-164]. The number

N of function evaluations f(xi) needed for an n-dimensional integration scales as the nth

power; an integrand that can be evaluated to sufficient accuracy with 100 samples in one

dimension will require 106 samples for a three-dimensional evaluation of comparable fi-

nesse. We will elaborate on the need for more samples and discuss some further practical

concerns in §3.1.2.

In addition to the increased number of required samples, boundaries of integration

tend to become more complex as the dimensionality of the integrand increases, which

leads to a drop in computational efficiency. We will discuss this at length in §3.2.1.

Adaptive integration like techniques can be applied to multidimensional integration,

but the technique outlined in §3.1.1 cannot be applied practically to a repeated one-

dimensional integration. One practical alternative is Markov chain Monte Carlo integra-

tion, which can be applied with relative safety to many-dimensional problems. Our own

approach will be discussed in §3.2.2 and §3.3.2.

It is possible to reduce a multi-dimensional integration to a series of one-dimensional

integrations, but generally inadvisable for an integrand of more than three dimensions

due to the N(n) scaling mentioned above. The organizational costs of the calculation

also become increasingly overwhelming, for reasons explained in §3.1.2. The problem

addressed in this thesis has of order ten dimensions to integrate over, and will need

another method.

If the integrand is flat in any dimension, separable, or even reasonably simple and

uncoupled from other dimensions, a canny investigator will search out ways to reduce the

number of dimensions that must be simultaneously numerically integrated. The count of
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approximately ten dimensions given above was made after every possible simplification.

Despite all of these issues, which present significant barriers to grid and adaptive

integration in the style of §3.1.1, multidimensional MC integration remains almost as

simple as one dimensional integration to implement. It shares the need for large samples

counts N , but has minimal additional organizational costs. Where V is the n-dimensional

volume integrated over, the Monte Carlo integral F is given by

F =

∫
V

f(~x)dV ≈ V 〈f〉 (3.7)

with an error estimate

∆F ≈ V

(
〈f 2〉 − 〈f〉2

N

)1/2

(3.8)

where

〈f〉 =
1

N

N∑
i

f(~xi) (3.9)

〈
f 2
〉

=
1

N

N∑
i

(f(~xi)− 〈f〉)2 (3.10)

Computational overhead

Both grid integration and adaptive integration become computationally difficult in

a space with more than a couple of dimensions. The reason is simple: you cannot

reduce your data below a certain complexity if you need to keep track of where you’ve

sampled the integrand and take that into account. For some problems - not all, but

many-dimensional problems are especially prone to this, for reasons I’ll explain below -

it is entirely possible for this complexity to overrun the RAM of even modern computing

clusters.

Suppose that you have an equation to integrate over in n dimensions, and a way of
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checking how closely your answer mimics the truth, even though you do not know exact

value of the integral. (This case is broadly analogous to the problem of simulating the

galactic lensing rate; we cannot expect that calculation to be accurate unless certain

other, better-known galactic properties are reproduced accurately.) You naively start

out with a number of samples N that seems reasonable to run on the computing power

you have, and check your metrics to see whether there are clear signs that the answer

you got is far from the truth.

However, you find this falls short. Your metrics indicate undersampling even in

lower-dimensional projections of the problem, ones you understand well. You need more

samples.

Perhaps you simply need to double the sampling density in each dimension. In a one-

dimensional problem, this is a very modest increase in density, but for our n-dimensional

problem you must take 2n times as many samples, for a new total of N ′. With a value of

n = 10, close to the value in this problem, this translates to three orders of magnitude

more samples.

If you want to record all N ′ samples, you need 2n times as much storage space. If

your calculation needs to compare each sample to some fraction of the other samples, this

will take at least 22n times as many operations. Common sorting algorithms have scaling

efficiencies running from ∝ N log2N to ∝ N2 for large N [Press et al., 1992, p. 329-338],

so again you may get an increased cost of n2n to 22n.

And these changes in computation time assume that you haven’t overrun the available

computing resources entirely. At one extreme, you may just crash your computer trying

to run the new large sample size all in one batch; you’ll need to add in a lot of code

structure to allow you to divide the job into smaller batches. At another extreme, your

computer operating system or software can divide the task without further interference,

but now needs to read and write data between hard disk and memory mid-calculation at
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a rate much slower than it can read from RAM. While a good enough programmer can

avoid the former case, ultimately the latter will come into play when your calculation gets

large enough. It becomes unavoidable that at some sufficiently large N , the calculation’s

a in tcalc ∝ Na grows.

In short, a very modest increase in sampling (such as doubling the sampling rate

in each dimension) can lead to very dramatic, horribly expensive outcomes (like the

calculation taking longer than writing the code did).

3.2 Computational efficiency in multidimensional prob-

lems

As the number of dimensions n of an integrand increases, the fraction of the enclosed

n-volume that contributes significantly to the integral tends to decrease. There are two

reasons that this tends to be true, and although neither is universal, both are common

in physical problems, and both are relevant to our project. We will cover these in §3.2.1

and §3.2.2. We will discuss the special cases in which Monte Carlo integration methods

are vastly superior in §3.2.3.

3.2.1 Complex boundary conditions

When nonlinear expressions of multiple variables, piecewise expressions, or worse, ac-

tual data dictate part of the integration boundaries of a problem, the “region of interest”

that you want to integrate over can become quite complicated. An otherwise manageable

integrand can be rendered non-analytic by such a choice of boundaries. When this hap-

pens, one way to deal with it is to choose a region of integration that entirely encloses the

region of interest, and define the integrand to be zero outside the region of interest. We
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define the fractional relevant volume (FRV) as the size of the region of interest divided

by the size of the region of integration. A two-dimensional example is demonstrated in

fig. 3.5.

Figure 3.5: A complicated two-dimensional region of interest (solid black) and simple
regions of integration (dashed lines), a rectangle and an ellipse, that might be used to
encompass it. The fractional relevant volume in this case is of order 0.5.

I’ll give three simplistic examples to demonstrate how scaling dimensionality can

affect the fractional relevant volume (FRV). First, a uniform function, completely filling

the volume of integration; second, an n-dimensional top hat function that does not

necessarily fill the volume of integration; third, an n-ball, i.e. an n-dimensional analogue

of a spherical volume. All three of these examples are simple and handled analytically;

they are intended to be illustrative of FRV, not of complex boundary conditions.

In all cases, the volume of integration will be bounded by uniform values in each
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dimension, i.e., the integral will be over an n-dimensional analogue to a rectangular

prism. These values will be labeled a1, b1, a2, b2, . . . an−1, bn−1,an, bn, and the total

volume of the integrated region will be

V =

∫
V

n∏
i=1

dxi =

∫
V

dV =
n∏
i=1

(bi − ai). (3.11)

Example 1: Uniform function

Our integrand in this case is simply a uniform function f(~x) = f0; integrating over it

returns the volume of integration times a constant.

∫
V

f0dV = f0Vn (3.12)

The total volume we have integrated over is Vn, and the volume we needed to integrate

over to find the final value is Vn. The fractional relevant volume is 1, the theoretical

maximum.

Example 2: Top hat function

We define the function f(~x) as the product of n one-dimensional top hat functions

fi(xi), i.e.:

fi(xi) =


0 : xi ≤ a′i

1 : xi ≤ b′i

0 : xi > b′i

f(~x) =
n∏
i=1

fi(xi) (3.13)

The integral over this function is

∫
V

f(~x)dV =
n∏
i=1

(b′i − a′i) = V
n∏
i=1

(b′i − a′i)
(bi − ai)

(3.14)
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Defining ci ≡ (b′i − a′i)/(bi − ai), we can write this as

∫
V

f(~x)dV = V

n∏
i=1

ci (3.15)

The fractional relevant volume is

FRV =
n∏
i=1

ci (3.16)

We have not yet said anything about what the values of ci are, but they represent

fractional coverage in a given dimension. They can range in value from 0 to 1. If all

values of ci are one, the FRV is one; if even one value of ci is zero, the value of the FRV

is zero. We can gain some insight, however, by manipulating the equation for FRV, and

by proposing distributions of values for ci.

log (FRV ) = log

(
n∏
i=1

ci

)
=

n∑
i=1

log (ci) (3.17)

If the distribution of values of ci is such that there is a well-defined average value of

log(ci), we can write

〈log (FRV )〉 = n 〈log (ci)〉 (3.18)

and therefore a typical value of the FRV would be

FRV ≈ exp (〈log (ci)〉)n (3.19)

where, we note, exp (〈log (ci)〉) must be a number between one and zero.

If all values of ci are the same number c between one and zero, the value of FRV is

FRV = cn (3.20)
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While the actual value of FRV depends on the detailed choice of ci, these two equations

both follow the form of FRV = an, where a is a number between one and zero. We can

safely guess that this is the general form of FRV (n) in this case.

Example 3: N-ball

The general formula for the volume of an n-ball with radius R is

Vn(R) =
πn/2

Γ(n
2

+ 1)
Rn (3.21)

where Γ is Euler’s gamma function, a continuous analogue to the factorial, given by

Γ(t) =

∫ ∞
0

xt−1e−xdx (3.22)

For even and odd integers n, respectively, Vn(R) takes the form of

V2k(R) =
πk

k!
R2k (3.23)

V2k+1(R) =
2(k!)(4π)k

(2k + 1)!
R2k+1 (3.24)

We divide these volumes by the rectangular prism like volume V of space we must

integrate over to contain them, (2R)n.

FRV2k =
πk

k!
2−2k (3.25)

FRV2k+1 =
2(k!)(4π)k

(2k + 1)!
2−(2k+1) (3.26)

These relations are plotted in fig. 3.6.
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Figure 3.6: Relationship between fractional relevant volume and number of dimen-
sions for spherical analogue regions of interest enclosed by cubic analogue regions of
integration. Note the logarithmic scaling. Odd integer n are marked with open circles,
even n with closed circles; these are computed using the exact relations in eqns. 3.25
and 3.26. The trace in the background is the continuous approximation provided by
eqn. 3.28.

To get a better idea of how these expressions scale with dimensionality, we will use

Stirling’s approximation for large factorials.

n! ≈
√

2πn
(n
e

)n
(3.27)

We will also substitute back in the number of dimensions, n = 2k in the even case,
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n = 2k + 1 in the odd case.

FRVeven n ≈
1√
nπ

(eπ
2n

)n/2
(3.28)

FRVodd n ≈
√

e

nπ

(
eπ(n− 1)

2n2

)n/2
(3.29)

From these formulas, we conclude that an n-sphere’s FRV goes by

FRVn ≈ abnn(n−1)/2 (3.30)

where a and b are constants. Unlike the previous example, b here is a number greater

than one; however, the exponential bn and power law n−1/2 are overwhelmed by the

superexponential n−n/2 term. This is visible in fig. 3.6; in logarithmic space, the relation

FRV (n) has negative curvature.

Putting it together

The uniform function and the top hat function initially appear to represent two

conceptual extremes. One’s FRV is unaffected by dimensional scaling, the other expo-

nentially affected. The n-ball, however, reveals that the scaling of FRV (n) can be even

more punishing than a mere exponential relation, for even the simplest of geometric

constructions.

While for one special case, when the region of interest exactly matches the region of

integration, there is no affect of dimensional scaling, that is untrue of any case where the

boundaries of the two regions do not exactly match. For all other cases, an increase in

dimensionality implies a decrease in the FRV. As a rule of thumb,

FRV ∝ an (3.31)
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where a is a number less than one and n is the number of dimensions.

Although we chose our boundaries of integration the “hard way” in these examples,

there are of course easy ways to bound both the top-hat problem and the n-sphere problem

so that the FRV is one. When dealing with multidimensional integrals, it is important

to be on the lookout for such opportunities. We will, of course, make every effort to

maximize the FRV of the problem described in this thesis by choosing our boundaries

and sampling strategies carefully. Some of these methods will be described in §3.3.

3.2.2 High sensitivity regions

Recall from §3.1.1 that an integral technique of order k has an accuracy of order

∆Fi ≈ ∆xk+2
i f(xi)

(k+1) over a single step, where f(x)(n) is the nth derivative of f(x).

The one-dimensional adaptive integration technique we described allows a user to get

higher accuracy for the same number of samples by varying the individual step sizes ∆xi,

taking smaller steps and hence sampling more frequently where f(xi)
(k+1) is larger.

The same idea can be applied in Monte Carlo and multidimensional integration,

although the implementation we will need to use is different. Broadly speaking, we will

make it more probable that a sample will be chosen where samples are most needed, and

we will decrease the statistical weighting of samples in that area. Mathematical details

of this process will be given in §3.3. Our one-dimensional adaptive algorithm performed

both tasks at once by decreasing ∆xi.

For all the same reasons that the fractional relevant volume FRV tends to decrease

as the number of dimensions n increases, the fraction of the region of interest that

contributes significantly to the integral also tends to decrease as n increases. Choosing our

sample locations accordingly will give us the same kind of advantage adaptive integration

has over grid integration in one dimension, but the payout is even higher.
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3.2.3 Special cases

There are a few cases where Monte Carlo integration has a special advantage over

other methods of numerical integration.

The first and most notable of these is when the integrand has a periodic component.

Periodically sampling a periodically varying integrand can lead to drastic misinterpreta-

tions known as “aliasing”, as demonstrated in fig. 3.7. Monte Carlo sampling, even in

its simplest implementation, is much more robust against aliasing than grid integration.

Likewise, one-dimensional adaptive integration techniques need to be formulated with

special care to avoid inappropriate step sizes.

MC integration is more easily adapted to problems with complex boundaries than

other numeric methods. While any method using a polynomial approximation above

order zero assumes some degree of smoothness and differentiability of the integrand, MC

has no such requirement; hence choosing a larger volume of integration, and defining

the integrand to be zero outside the volume of interest, has no negative impact on the

functioning of MC integration. Sudden changes in value are not an issue.

Simple MC integration does not tend to work well for functions with strongly localized

peaks; multidimensional numerical integration in general is often stymied by strongly

localized peaks. This is because, as we explained in §3.2.1 and 3.2.2, the fraction of the

integration volume taken up by that peak has a tendency to plummet as n increases,

and sampling frequently enough near the peak is generally important to obtaining an

accurate integral. Although k = 0 grid integration suffers from the same loss of accuracy,

and neither technique can be adapted without some knowledge of the peak locations, we

will describe ways to rephrase the integral and diminish the impact of an integrable peak

on total integral accuracy in §3.3.2.

The integrand we will treat in this thesis is “peaky”, but only in a few of the ten
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Figure 3.7: Possible effects of aliasing. Each graph shows an integrand in solid black
line, tick marks representing sample locations, and a dashed line indicating a lower-fre-
quency function that would produce the same sample values. Whenever the sampling
does not have at least twice the frequency of the integrand’s variability, as is the case
in the top graph, the integrand will appear to have lower frequency than it truly does,
and usually a different phase as well. If the sampling is close to an integer multiple of
the integrand’s variability, as in the bottom graph, the integrand may appear to have
little or no variability, and the odds of badly misestimating the integral are high.

or so dimensions, and that peakiness can be reduced using the methods described in

§3.3; this goes a long way towards lessening the primary objection to using Monte Carlo

integration in our project.

3.3 Monte Carlo Integration

We will now cover important topics that often go unmentioned in descriptions of

Monte Carlo integration: producing arbitrary probability distributions using a random

number generator, and changing variables in MC integration. Both topics are extremely
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important to coding an efficient MC integration. When computing resources are limited,

such efficiency can make a considerable difference to the net accuracy of an integration.

Source: [Press et al., 1992, p. 316-328]

3.3.1 Mapping an arbitrary probability distribution to linear

space

Most existing random number generation algorithms, including those included in the

NumPy suite of mathematical tools that we used to code our simulation, are made to

produce numbers drawn from a flat probability distribution, i.e. equally likely to be at

any point, between zero and one. Tools elaborating on this theme are common - NumPy,

for instance, has functions that accept arbitrary limits, or generate values at discrete

intervals - but almost all can be mapped back to this central tool, a flat probability

distribution.

Although it is common to need other probability distributions for practical purposes,

the flat probability distribution can be transformed into almost any other sensible prob-

ability distribution with minimal difficulty. The only requirement is that the desired

probability distribution be integrable in the region of interest. We will show how to do

this here.

w is a random number between zero and one, the output of a basic random number

generator. x is the parameter for which we are trying to produce a value, and P (x) the

probability distribution we wish to sample x with. x1 and x2 are the lower and upper

limits we allow for values of x. We stipulate that the fraction of probability space between

w and w + dw be the same as the fraction of probability space between x and x+ dx.

P (w)dw∫ w2

w1
P (w′)dw′

=
P (x)dx∫ x2

x1
P (x′)dx′

(3.32)
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The integrals in the denominator of each side of this equation are equal to one. We

simplify on the left, but leave the right in its current form, which will allow us to avoid

errors due to misplaced normalizing constants. We then integrate over each side, over a

range of w1 = 0 to w on the left, and over the corresponding x1 to x on the right.

w =

∫ x
x1
P (x′)dx′∫ x2

x1
P (x′)dx′

(3.33)

The right side of this equation is also known as the cumulative probability distribu-

tion. For practical purposes, using this expression generally means integrating over P (x),

evaluating, and solving for x in terms of x1, x2, and w.

For instance, sampling a power law distribution with a probability of the form P (x)dx =

axbdx, we can evaluate and solve to obtain

w =

(
xb+1 − xb+1

1

)(
xb+1
2 − xb+1

1

) (3.34)

x =
(
w ·
(
xb+1
2 − xb+1

1

)
+ xb+1

1

)1/(b+1)
(3.35)

Note that the probability distribution need not even be analytically integrable, so

long as it is integrable in the sense of encompassing a finite region of parameter space.

One useful example of this is a gaussian distribution. A flat distribution can be converted

to a gaussian distribution by means of an error function, the integral over a gaussian.

To do so oneself is more trouble than it is worth, since the programmer would need to

numerically integrate the gaussian and then numerically interpret to the variable of inter-

est, all with sufficient precision for whatever task was at hand; the result, coming from a

person not formally trained in computational methods, would likely be inefficient as well.

Fortunately for us, a gaussian distribution generator is a very common supplemental tool
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in random number generation suites, including NumPy.

We will make extensive use of this probability distribution mapping technique through-

out this thesis and the corresponding code.

3.3.2 Variable substitution in MC integration

Suppose you wish to integrate some function f(~x) over a spherical volume with radius

r0 centered on coordinate zero.

∫
V

f(~x)dV =

∫ r0

−r0
dx

∫ √r20−x2

−
√
r20−x2

dy

∫ √r20−x2−y2

−
√
r20−x2−y2

dz f(x, y, z) (3.36)

As we’ve noted previously, you can simplify the boundaries in this coordinate system

by choosing a simple region of integration that contains the region of interest, e.g.

∫
V

f(~x)dV =

∫ r0

−r0
dx

∫ r0

−r0
dy

∫ r0

−r0
dz δ(~x) f(~x) (3.37)

where δ(~x) = 1 if ~x is inside the volume of interest, and 0 if ~x is outside the volume of

interest. The Monte Carlo equivalent of this integral can be written

∫
V

f(~x)dV ≈ V

∑N
i δi(~xi)f(~xi)∑N

i δi(~xi)
(3.38)

where the values of ~xi are obtained by choosing randomly a value of x between −r0 and

r0, y between −r0 and r0, and z between −r0 and r0.

We can rewrite the sums to count over i′, indicating only those samples that fall

within the volume of interest, up to N ′, the total number of samples that fall in the

volume of interest. Although the exact value of N ′ is left to chance, we know it will be
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approximately FRV ·N .

∫
V

f(~x)dV ≈ V

N ′

N ′∑
i′

f(~xi′) ≈
V

FRV ·N

N ′∑
i′

f(~xi′) (3.39)

This is somewhat inefficient. This scheme gives us a fractional relevant volume of

π/6 ≈ 0.523, meaning that nearly half of our samples fall outside the volume of interest

and are effectively wasted.

We can improve on this scheme by choosing a coordinate system in which our spher-

ical volume of interest is much simpler to express. We re-express the integral in polar

coordinates.

∫
V

f(~x)dV =

∫ r0

0

dr

∫ π/2

−π/2
dθ

∫ 2π

0

dφ r2 cos θ f(r, θ, φ) (3.40)

Changing coordinates is not always a trivial business when one is trying to analytically

solve an integral. An expression that is compact and elegant in one coordinate system can

become sprawling and cumbersome in another. Not only is such a change aesthetically

offensive, it can move the expression outside of the mathematician’s repertoire, becoming

something that can barely be comprehended, much less solved.

In numeric integration, however, this is not a concern. The expression being inte-

grated doesn’t have to be simple; no human mind needs to hold a working model of it.

All that is needed is that the expression be evaluable by a computer, transcribable in

code. Traditional grid and adaptive integration also ask that the integrand be differen-

tiable in order to obtain an error estimate, but even that much is unnecessary when using

MC integration.
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We can rewrite our polar coordinates expression in MC terms as

∫
V

f(~x)dV ≈ V

N

N∑
i

r2i cos θif(ri, θi, φi) (3.41)

where ri is chosen randomly between 0 and r0, θi is chosen between −π/2 and π/2, and

φi between 0 and 2π. Our FRV is now one. None of our samples are wasted. However,

a disturbing pattern remains.

Our samples are more dense in integration volumes near r = 0 than in volumes with

large r. A quick calculation will show that half of the samples (on average) are between

0 and r0/2, a volume of πr30/6, and the other half in the volume between r0/2 and r0, a

volume of 7πr30/6. The sampling in θ has a similar problem; samples are more dense in

volumes near the poles, θ = π/2 and θ = −π/2, than near the equator, θ = 0. Sampling

in φ is still uniform.

This does not invalidate the calculation. The factor of r2i cos θi that has appeared

next to the function f(ri, θi, φi) is counterbalancing it. Effectively, this term increases

the weight of samples at high r above those at low r, increases the weight of samples

near the equator above those near the poles. The integral will still converge to the right

answer as N increases, for the exact same reasons that the analytic version of the integral,

eqn. 3.40, is still correct.

The pattern remains disturbing. Suppose we know that the integrand does not have

higher sensitivity at the poles than at the equator, does not have higher sensitivity at

low r than high r. Our integral accuracy will be driven by the region with the highest

sensitivity per sampling density; if sensitivity is similar throughout, we want sampling

to be similar throughout. In the general case, where we have no special knowledge of the

integrand’s sensitivity, we would like the sampling to be uniform in V .

Fortunately, this isn’t hard to achieve! We can do this simply by drawing our coor-
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dinate values from probability distributions given by

P (r) ∝ ∂V

∂r
∝ r2 (3.42)

P (θ) ∝ ∂V

∂θ
∝ cos θ (3.43)

P (φ) ∝ ∂V

∂φ
∝ const. (3.44)

where the relation between the probability on the left and the expression on the right

becomes exact with the application of a normalizing constant such that the integral of

P over the permitted range of values is equal to one.

These probability distributions we have found are, up to a constant, identical to the

volume element prefix that appeared before the function f(~x) when we converted to polar

coordinates. This is no coincidence. This change in our sampling is a reflection of the

volume element.

For practical purposes, we will need to convert a flat, zero-to-one random number w

to these probability distributions. We described how to do so in §3.3.1. The result in

this case is

r = r0 · w1/3
r (3.45)

θ = arcsin (1− 2wθ) (3.46)

φ = 2πwφ (3.47)

When we are choosing our ~xi according to this scheme, the MC integral reverts to a
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simpler form, no longer requiring a volume element prefix.

∫
V

f(~x)dV ≈ V

N

N∑
i

f(ri, θi, φi) (3.48)

This integral is now as efficient as it can possibly become without additional informa-

tion about the integrand. Although our work on improving this expression stops here,

we have one more lesson to learn from this final re-phrasing.

We made this last change in the expression of the integral motivated by a physical

phenomenon we could easily understand, the idea of a volume element. However, the

same sort of operations can be applied regardless of motive, without compromising the

convergence of the integral, as follows.

F =

∫
V

f(x1, . . . xn)dV ≈ V

N

N∑
i

f(x1,i, . . . xn,i) (3.49)

where flat sampling of the variables of integration is used

x1,i = (x1,max − x1,min) · w1,i + x1,min (3.50)

. . .

xn,i = (xn,max − xn,min) · wn,i + xn,min (3.51)

Choose some probability function, P (x1), you wish to use for sampling x1, and define

h(x1, . . . xn) ≡ f(x1, . . . xn)/P (x1) (3.52)
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Redefine your sampling accordingly.

∫ x1,i

x1,min

P (x1)dx1 = w1,i

∫ x1,max

x1,min

P (x1)dx1 (3.53)

x2,i = (x2,max − x2,min) · w2,i + x2,min (3.54)

. . .

xn,i = (xn,max − xn,min) · wn,i + xn,min (3.55)

And re-write the integral using this sampling as

F =

∫
V

f(x1, . . . xn)dV ≈ V

N

N∑
i

h(x1,i, . . . xn,i) (3.56)

This operation can be done for any integrable, nonzero P (x) over the range of possible

values of x. This operation does not change the value that F converges to with large N ,

but it does change the speed and accuracy with which the integral converges. A wise

investigator will use these transformations to bring the integrand as close to a constant

as possible, allowing the integral to converge as quickly and as accurately as possible.
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Astrophysical inputs to the code

4.1 Summary of inputs

The starting point and inspiration for our galactic model is the one used by [Han,

2008] to estimate field microlensing rates, but we strove to update and improve nearly

every aspect of that model. We sought out up-to-date and data-driven models for all

major components of the simulation.

We focus on the galactic disk and halo, as they are the most important components

in the sparse fields we are considering.

Our model does not currently include a bulge component. It is not intended for

and should not be used to determine lensing rates towards the bulge. Our science focus

is the areas of the sky away from the bulge, and preferably, away from the galactic

plane; our choices throughout the development of the code reflect this. In choosing

among the available models of the galaxy, we gave precedence to those best supported

by observations towards high galactic latitudes.

We could not find a single galactic model that included descriptions of every property

important to microlensing. Properties essential to estimating lensing rates include the

72



Astrophysical inputs to the code Chapter 4

spatial distribution of stars, the velocity distribution, stellar mass, luminosity, stellar

color, and color-dependent extinction by dust. Other details such as stellar radius can

provide additional information, allowing us to determine whether effects such as finite

source extent will be observable.

In the absence of a coherent pre-made model, we found and combined multiple up-

to-date sources describing various galactic properties and did our best to bring them

into agreement with one another, changing as little as possible, favoring the stronger

observational case where conflicts arose.

The coordinate systems we use and how they relate to one another are described

in §4.1.1. We draw the physical locations of stars from the SDSS tomography papers,

described in §4.1.2. Our model of velocity combines SDSS tomography with Sofue’s

measurements over a wide range of radii R in §4.1.3. §4.1.4 is devoted to stellar masses,

ages, and absolute magnitudes, assembled from a variety of sources. Schlegel et al.’s

map of galactic dust forms the core of our dust model, described in §4.1.5 along with the

associated extinction. We compare our model to previous work on the same subject in

§4.2.

We hope to make the full code, including reference data, available to the scientific

community.

4.1.1 Coordinate systems

In order to describe galactic properties in the simplest way possible, and to unify

information from multiple sources, we employ several coordinate systems. One group

of closely related coordinate systems has its origin on the galactic center and its z = 0

plane through the galactic disk; we describe a galactocentric cartesian, cylindrical, and

polar system. Another group is centered on our sun; we describe solarcentric cartesian
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and polar systems. We demonstrate the relationship between our solarcentric cartesian

and galactocentric cartesian coordinate systems in figs. 4.1, 4.2, and 4.3.

Our coordinate choices throughout this thesis are motivated by a desire to express

physical quantities as simply as possible. Galactic properties are easiest described in

galactocentric cylindrical coordinates, due to the galaxy’s approximate cylindrical sym-

metry. Observations from earth, by contrast, are best described using solarcentric polar

coordinates, as are descriptions of lensing properties such as the Einstein radius. Galacto-

centric and solarcentric cartesian coordinates are useful for comparing absolute velocities

of stars, and form a stepping stone between galactocentric cylindrical and solarcentric

polar coordinates.

This profusion of coordinate systems would be a considerable obstacle in an analyti-

cally evaluated problem; in our numerically evaluated, machine-computed problem, it is

only a minor inconvenience.

Galactrocentric coordinates

From our vantage point about the sun, the galactic center is roughly eight kiloparsecs

away in the direction of Sagittarius. Sagittarius A* (Sgr A*), a bright radio source

and supermassive black hole [Ghez et al., 2008], is generally acknowledged as the best

observable landmark for the center of our galaxy.

Most papers, however, do not carefully describe their coordinate systems, and some

coordinate systems predate our knowledge of Sgr A*. In this thesis, our coordinates do

not necessarily center precisely on Sgr A*; we set our coordinate zero at the hypothetical

galactic center of mass, presumably very close to Sgr A* itself. We define galactocentric

(0, 0, 0) at this point.

The galactic bulge and halo each form rough spheroidal clouds of stars about the

galactic center. Around this, a thin, fuzzy plane of stars known as the galactic disk
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rotates, with density perturbations giving the appearance of spiral arms. We define

galactic z = 0 to be in the plane of this disk.

We choose positive z pointing towards the conventional north galactic pole, and

positive x from the galactic center towards the point in the z = 0 plane closest to

our sun. We choose y so that the coordinate system is right-handed.

We note that in these coordinates, the galactic disk has approximate mirror symmetry

about the xy plane, and rotates about the z axis. Galactic rotation is in the −y direction

at the location of the sun.

Our galactic cylindrical coordinates (R, φ, z) are easily expressed in terms of galactic

x, y, and z. The z coordinate is identical in both systems.

R =
√
x2 + y2 (4.1)

φ = arctan(y/x) (4.2)

z = z (4.3)

Likewise, polar coordinates (r, θ, φ) are simply expressed, with φ identical to cylindric

φ.

r =
√
x2 + y2 + z2 (4.4)

θ = arctan(z/R) (4.5)

φ = arctan(y/x) (4.6)

Solarcentric coordinates

Our sun orbits the galactic center at a distance R� ≈ 8 kiloparsecs, and is cur-

rently z� ≈ 25 parsecs above the galactic plane [Jurić et al., 2008]. This location,
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(x, y, z) = (8000, 0, 25) parsecs relative to the galactic origin, will be the coordinate zero

for our solarcentric coordinate systems. To distinguish them from galactocentric cartesian

coordinates, we name our solarcentric cartesian coordinates (xsol, ysol, zsol).

One of the solarcentric systems we will describe is commonly called “galactic coordi-

nates” by astronomers. It is chosen so that the galactic center lies at angular (0, 0); the

azimuthal angle l is called the “galactic longitude” and the polar angle b the “galactic

latitude”. This system of angular coordinates is in wide use among astronomers and we

will employ it extensively ourselves.

Unfortunately, it does not match up well with the axes we chose to simply describe the

galaxy itself. Our sun is slightly out of the galactic plane. For an axis to run between the

sun and the galactic center, our solar axes must be slightly tilted relative to our galactic

axes. The difference between our galctocentric and solarcentric coordinates, then, is not

just a translation, but a small rotation as well. The relative tilt between the two I will

call ∆b.

xsol = (x−R�) cos(∆b) (4.7)

+(z − z�) sin(∆b)

ysol = y (4.8)

zsol = (z − z�) cos(∆b) (4.9)

−(x−R�) sin(∆b)

where

∆b ≡ arctan(z�/R�) (4.10)

is a small angle, about a fifth of a degree. Figures 4.1, 4.2, and 4.3 demonstrate the

relationship between our two cartesian systems graphically; table 4.1 demonstrates by
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giving the same locations in different systems.

y+

x+

R⊙

φ+

l+

Figure 4.1: Relationship between our galactocentric and solarcentric coordinates in
the galactic xy plane. The spiral symbol represents the galactic center, and the circle
represents our sun.

z+

x+

R⊙

θ+

Δb z⊙

Figure 4.2: Relationship between our galactocentric and solarcentric coordinates in
the galactic xz plane. The spiral symbol represents the galactic center, and the circle
represents our sun. The size of ∆b is exaggerated for legibility.

We then define polar coordinates; distance from our sun is D, l is galactic longitude,

and b is galactic latitude.

D =
√
x2sol + y2sol + z2sol (4.11)

l = arctan(ysol/xsol)− π (4.12)

b = arcsin(zsol/D) (4.13)
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z+

x+
Δb
xsol+

zsol+

b+

Figure 4.3: Relationship between our galactocentric and solarcentric coordinates in
the solar xz plane. The spiral symbol represents the galactic center, and the circle
represents our sun. The size of ∆b is exaggerated for legibility.

Note that the azimuthal angle l does not have its zero along the positive xsol axis, but

rather the negative axis.

As our coordinate systems are generally not identical to the systems used in our

various source papers, and on occasion the source papers do not explicitly describe their

coordinates, we take care throughout this thesis to give values and equations in our own

coordinate systems in the most unambiguous way possible.

Table 4.1 gives the coordinates of three notable locations within each of four coordi-

nate systems we use.

Point on
Galactic Solar galactic plane
center location nearest sun

(x, y, z), [kpc, pc, pc] (0, 0, 0) (8, 0, 25) (8, 0, 0)
(R, φ, z), [kpc, deg, pc] (0, ∅, 0) (8, 0, 25) (8, 0, 0)

(xsol, ysol, zsol), [kpc, pc, pc] (-8, 0, 0) (0, 0, 0) (0, 0, -25)
(D, l, b), [pc, deg, deg] (8e3, 0, 0) (0, ∅, ∅) (25, 0, ∆b− 90)

Table 4.1: Coordinates of three locations in each of four coordinate systems discussed
in §4.1.1.

Although astronomers also commonly use right ascension (RA) and declination (DEC)

to indicate the location of stars, that earth-centric system is not useful for describing

galactic positions intuitively. Our program does not use RA and DEC at all, but instead
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indicates coordinates in galactic latitude and longitude.

4.1.2 Stellar number density model

Our model of the spatial distribution of stars comes primarily from [Jurić et al., 2008],

which drew upon an SDSS catalog of 47.7 million stars over 6500 square degrees of sky

and up to 20 kpc from the sun. The number of objects catalogued, the large volume

probed, and the pointing out of the galactic plane align well with our scientific goal of

estimating lensing rates away from the galactic center.

In addition, the completeness of the study was enormously appealing. While this

paper, by itself, described only the physical distribution of stars in the galaxy, companion

papers [Ivezić et al., 2008] and [Bond et al., 2010] described stellar metallicity and stellar

velocities, respectively. We use Bond et al. 2010 extensively in our model of stellar

velocities (see §4.1.3).

Jurić et al.’s model of the galaxy includes a thin disk, a thick disk, and a halo. They

neglected a bulge component because their sample gives no insight on areas near the

bulge; none of their sampled stars are within five kiloparsecs of the galactic center.

The number density of stars belonging to the thin and thick disks are each represented

by double exponentials in z and R. The exponential length scale in R is notated L, and

the height scale in z is called H; L and H have different values in the two disks. The

absolute normalization of disk density is provided by n(R�, z�) and f , where n(R�, z�)

is the thin disk’s stellar number density in the vicinity of the sun, and f is the ratio of

thick disk stars to thin disk stars in the solar neighborhood.

nthin(R, z) = n(R�, z�) (4.14)

· exp

(
−R−R�

Lthin
− |z| − z�

Hthin

)
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nthick(R, z) = n(R�, z�) · f (4.15)

· exp

(
−R−R�

Lthick
− |z| − z�

Hthick

)

The number density of halo stars is represented by an ellipsoid power law, slightly

flattened by the overall rotation of the galaxy. The ratio of halo height to halo width is

given by qH , the power law scaling by nH , and fH is the ratio of halo stars to thin disk

stars in the solar neighborhood.

nhalo(R, z) = n(R�, z�) · fH (4.16)

·
(
R2 + (z/qH)2

R2
� + (z�/qH)2

)nH

Table 4.2 holds the values of these parameters determined by Jurić et al. and used

in our simulation to describe the galactic distribution of stars.

R� 8000 pc
z� 25 pc ± 20%

Lthin 2600 pc ± 20%
Hthin 300 pc ± 20%

f 0.12 ± 10%
Lthick 3600 pc ± 20%
Hthick 900 pc ± 20%

fH 0.0051 ± 25%
qH 0.64 ± <

∼ 0.1
nH 2.77 ± <

∼ 0.2

Table 4.2: Parameter estimates from Jurić et al. 2008, used in our simulation, and
Jurić et al.’s estimated errors on those parameter values. Their value of R� was not
measured but taken from literature, and no error estimate was given.

In the future, we do hope to add a bulge component to our model. We consider this

outside the scope of the present paper, though we do realize it would provide us additional

credibility to reproduce known bulge lensing event properties. The primary barrier to

this was the lack of empirically rigorous studies that included both the bulge and the
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out-of-plane regions of the galaxy; every study we found focused on either the bulge or

high latitudes, always to the exclusion of the other. This is unsurprising; studying the

bulge and studying stars out-of-plane present vastly different technical challenges.

4.1.3 Velocity model

The primary source for our stellar velocity model was [Bond et al., 2010], companion

paper to Jurić et al. 2008, the source of our stellar number density model. We drew

additional, complementary information from [Sofue, 2012]. Bond breaks their model into

two components, providing separate velocity distributions for disk and halo.

Bond et al. find that their data are consistent with non-rotating halo that has spatially

uniform velocity dispersion, where the probability distribution in each dimension can be

written as a normalized gaussian G with variance σi:

G(x, σ, x0) =
1

σ
√

2π
exp

(
−(x− x0)2

2σ2

)
(4.17)

P (vi)dvi = G(vi, σi, 0)dvi (4.18)

We use the values for the dispersions σi given in cylindrical coordinates rather than those

given in spherical coordinates in part because the former are most directly derived from

the data, and in part because the oblate spheroid of our halo density model has cylindrical

symmetry but not spherical symmetry. These values are tabulated in table 4.3.

The stellar disk’s velocity distribution is slightly more complicated. While the radial

and vertical components are simply gaussian distributions with zero mean as in eqn. 4.18,

the rotational speed requires a more complex description. Bond describes this as a pair
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vφ,H
<
∼ 10 km s−1

σR 135 km s−1

σφ 85 km s−1

σz 85 km s−1

Table 4.3: Parameter estimates for the halo velocity model from Bond et al. 2010,
used in our simulation. Their measurement of a net halo rotation component was
uncertain and is neglected in our model.

of offset gaussians

P (vφ)dvφ = [0.75 G(v̄φ, σφ,1, v1) + 0.25 G(v̄φ, σφ,2, v2)] dvφ (4.19)

where

v2 = v1 − 34 km s−1 (4.20)

0.75v1 + 0.25v2 = vφ (4.21)

This distribution is distinctly asymmetrical about the mean rotational velocity.

Additionally, Bond et al. describe a z−-dependence of each quantity in the disk

velocity distribution out to a distance of 5 kpc from the galactic plane of the form

f(z) = a+ b |z|c (4.22)

Bond cautions, however, that the model is not reliable beyond a distance of 5 kpc from

the galactic plane. With this warning in mind, we hold the properties of the velocity

distribution constant at the 5 kpc values for heights higher than that. We list parameters

for the disk velocity model, including z-dependence, in table 4.4.

Bond’s sample has poor coverage in R near the galactic plane and hence no R-

dependence, so we supplement their model with Sofue 2012, which deals solely with
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a b c
vφ -194 19.2 1.25
σφ,1 12 1.8 2.0
σφ,2 34 1.2 2.0
σR 40 5.0 1.5
σz 25 4.0 1.5

Table 4.4: Parameter estimates for the disk velocity model of Bond et al. 2010, used
in our simulation. Bond gives uncertainty estimates of ∼10 km s−1 for a, ∼ 20% for b,
and 0.1-0.2 for c. The dependence of each parameter on z is given by f(z) = a+b |z|c.

the dependence of rotational velocity on R. We give the Bond paper precedence due to

its larger sample size and due to its sample’s better coincidence with our target region,

the area out of the galactic plane.

Sofue assembles data from many sources in order to determine the R-dependence of

the galactic rotation over a wide dynamic range, and normalizes each source datum to

assume the same solar radius and velocity.

The Sofue paper ultimately focuses on deriving a mass distribution for the galaxy

rather than on the rotation velocity curve for its own sake, and as such does not explicitly

provide a formula for the rotation curve. However, it does provide the data to which

the rotation curve was fit, a set of 128 radius and velocity pairs. These are not raw

measurements of individual objects but rather an intentionally smoothed curve formed

by averaging over sets of objects that are close together in galactocentric radius, with

the exception of the eight data points within 2 kpc of the galactic center; these were left

in their original form in order to preserve a higher spatial resolution near the bulge.

In order to construct a rotation curve for our code, we connect the data forming the

rotation curve using cubic spline interpolation. In addition, we add one point at the

galactic center, chosen by extrapolating linearly between the two innermost points of

Sofue’s data. We show the resulting rotation curve in fig. 4.4.

Bond models only the z−dependence of rotation speed, while Sofue models only
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the R-dependence. Both papers use a value of eight kiloparsecs for R�. Both the z−

and R−dependencies could be applied without conflict if they assumed the same speeds

for the local disk rotation and the same velocities for our sun. They do not, and so we

give precedence to Bond’s model, using Bond’s local disk rotation speed and Bond’s solar

velocity, (vx, vy, vz)� = (−10,−225, 7) km/s. We incorporate Sofue’s R−dependence into

Bond’s model by multiplying Sofue’s entire rotation curve by vrot,Bond(R�)/vrot,Sofue(R�),

and treating Bond’s z−dependence and Sofue’s R−dependence as multiplicative.

4.1.4 Stellar properties

Both the lens and the source in a microlensing event, in general, will be stars; by and

large, they will be drawn from the same population. A microlensing simulation, then,

should have a coherent, consistent description of both stellar mass and stellar luminosity.

Unifying the two considerations will require us to make some provision for stellar age,

as well; the largest and brightest stars are also the most short-lived, and the remains of

spent stars litter the galaxy, no longer shining, but still gravitating.

Because we wish to unify several concerns - mass, luminosity, and age - into a single

model, and we wish to do so over the entire range of the main sequence from the coolest

hydrogen-burning dwarf (a likely lens star) to the hottest blue giant (a likely source star),

we will need to assemble several sources of information into a coherent whole. Some of

these sources take very simple forms; their lack of precision is a necessary price to pay

for their generality and compatibility.

Initial mass

One of the first and simplest pieces we will need is an initial mass function (IMF),

a relation describing how often stars of a given mass are formed. We draw this relation
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from [Kroupa et al., 1993], who gives a three-part broken power law

ξ(m) =


0.035m−1.3 if 0.08 ≤ m < 0.5

0.019m−2.2 if 0.5 ≤ m < 1.0

0.019m−2.7 if 1.0 ≤ m <∞

where m is stellar mass in units of M�, and ξ is proportional to the probability that a

star is formed with mass m; ξ(m)dm ∝ P (m)dm.

We extend this mass function down to 0.07 M� and cap it at 117.5 M�, the limits

over which our luminosity relation will extend in §4.1.4.

This relation, as given, has no dependence on metallicity, location in the galaxy, or

population membership.

Main-sequence luminosity

In keeping with our use of Kroupa’s initial mass function, we use the mass-luminosity

relation he employed to construct the IMF, given in the appendices of [Kroupa et al.,

1993]. However, Kroupa’s listed luminosities trail off quite rapidly above 1.6 M�, fitting

with his emphasis on low-mass stars. We need a relation that treats the entire main

sequence, and so we must supplement Kroupa’s relation with another.

We find the necessary complement in [Zombeck, 2007]. Zombeck’s mass-luminosity

relation is, in fact, just a broken power law, but it will do admirably for our purposes.

Where Kroupa’s more detailed relation is available, we use Kroupa’s; where Kroupa’s

relation grows sparse, we transition to Zombeck’s. The result can be seen in fig. 4.5. The

two relations line up well at the transition, and no further adjustment is necessary.

This mass-luminosity relation applies only to the V band magnitude. In order to

examine the effect of observing bandpass on event detection, we must also know the
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Figure 4.5: Zombeck gives a broken power law mass-luminosity relation, marked
with black squares. Kroupa’s mass-luminosity relation provides superior detail at
low masses, but becomes sparse above a few M�. We use Kroupa’s relation where it
is well-sampled, and Zombeck’s relation at high masses; our relation is marked with
a solid blue line.

magnitude in other bands. We obtain colors for stars between −6 and 12 visual mag-

nitudes from [Zombeck, 2007], and extrapolate to obtain colors for stars as dim as 18

V magnitudes. We use these colors to calculate U, B, R, and I band magnitudes. Our

color-magnitude relation is illustrated in fig. 4.6.

Population age

Our initial treatment of the galactic model showed us that applying dust extinction

to a zero-age population could not reproduce known star counts with sufficient accuracy.
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Figure 4.6: Zombeck provides colors for stars with V magnitudes between −6 and 12.
We interpolate linearly in magnitude-color space to form a continuous relation, and
extrapolate to find colors for stars between 12 and 18 magnitudes.

We needed an additional qualifier on the stellar population; we chose to apply ages to

each star.

For this, we referred to the highly respected Besançon model, described in [Robin

et al., 2003]. Their primary claim to fame is an excellent reproduction of known galactic

properties using a synthetic model, i.e. one in which stars are generated and allowed to

evolve.

The Besançon model treats the galactic halo as consisting entirely of stars formed 14

billion years ago, the thick disk as populated by 11 billion-year-old stars, and the thin
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disk as having been steadily forming stars at a uniform rate for the past 10 gigayears.

We adopt this same scheme for our own stellar population ages.

Lifetime

We use the relationship

tnuc ≈ 1010

(
M

M�

)(
L�
L

)
(4.23)

drawn from Hansen, Kawaler, and Trimble [Hansen et al., 2004] to estimate stellar main-

sequence lifetimes. This relation should be very generally applicable.

We estimate bolometric luminosity as a function of mass using our mass-V magnitude

relation, plus the definition of absolute magnitudes

Mbol −Mbol,� = −2.5 log10(L/L�) (4.24)

We plot the result in fig. 4.7.

This approximation does clearly overestimate the lifetimes of high-mass stars. Stars

with mass of order one hundred solar masses have lifetimes of order a million years; this

approximation estimates their lifetime to be of order one hundred million years. This

approximation has given us the marked improvements in matching stellar populations

we needed, and so stands as it is for the time being. A more accurate lifetime estimate

could be obtained by using bolometric magnitudes instead of V magnitudes.

Stellar evolution

A full description of stellar evolution is far beyond the scope of this thesis, but

some consideration of stellar aging is necessary for our purposes. We therefore treat
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Figure 4.7: Estimated main-sequence lifetime as a function of mass.

all main-sequence stars as being freshly formed, on the zero-age main sequence. Post-

main-sequence stars are reduced to zero luminosity and so cannot act as sources; their

mass remains the same, allowing them to still act as lenses. This approximation appears

to be sufficient for our purposes.

Present day population

As stated in §4.1.4, we model the halo and thick disk each as population of uniform

age. Combined with our approach to stellar evolution, this corresponds to a sharp turn-

off at a mass slightly below one solar mass; all stars smaller than the given age-dependent
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limit are still on the main sequence, and all stars larger than the limit have burnt out.

The thin disk, by contrast, is modeled as having undergone continuous star formation

for the past ten gigayears. A star of arbitrarily high mass has a chance to be still on

the main sequence, if it was formed recently enough. We must use a more sophisticated

description for the thin-disk population.

Out of ten stars with lifetimes one gigayear, formed at random times within the last

ten gigayears, on average one will still be burning; the “main sequence fraction” is one-

tenth. Using the calculated lifetimes from §4.1.4, we determine what fraction of stars of

a given mass were born recently enough to still be on the main sequence. The result is

shown in fig. 4.8. Stars with masses below about one solar mass are guaranteed to still

be burning, and have a main sequence fraction of one.

Multiplying this main sequence fraction by the initial mass function produces a

present day mass function (PDMF) of main sequence stars, shown in fig. 4.9. This

PDMF is the distribution from which we draw source stars, which must still be shining.

Lens stars, by contrast, are drawn from the IMF; they may or may not be on the main

sequence.

4.1.5 Extinction model

The high-resolution dust maps produced by [Schlegel et al., 1998] form the core of

our extinction model. They map the infrared emission throughout the sky, correcting for

instrumental artifacts, point sources, and other systematic effects to produce a map solely

of the dust emission. They then relate dust quantity to extinction at large distances in

the V band.

The V band extinction, in turn, is related to extinction in other bandpasses. Schlegel

et al. give both a table of many common bandpasses and an analytic approximation of
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Figure 4.8: Fraction of stars on the main sequence as a function of mass in a population
that has experienced ten gigayears of constant star formation.

extinction as a function of wavelength. We show the latter relation in fig. 4.10.

This falls slightly short of what we need, however; these maps describe the variance

of extinction in only two dimensions, galactic latitude and longitude. They provide the

extinction due to dust upon a star beyond all of that dust, potentially implying a stellar

distance of kiloparsecs or more. We must use some scheme by which to apply a distance-

dependent extinction effect, so that nearby stars are not unduly dimmed.

The traditional solution is to assume that dust is organized with falling-exponential

density about the galactic plane. Our source for stellar distribution in space, Jurić et al.

2008, concluded that most of the dust was within 70 parsecs of the galactic plane based

92



Astrophysical inputs to the code Chapter 4

10-2 10-1 100 101 102 103

Mass, M¯

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

S
ta

rs
 p

c−
3
M

−
1

¯
 

Kroupa IMF
PDMF in 10-Gyr disk

Figure 4.9: Total stars (white) and main-sequence stars (black) in a population that
has experienced ten gigayears of constant star formation.

on their analysis of stellar colors. Other papers focused on the dust itself, however, have

published a variety of contradicting opinions about the dust scale height, most of which

seem to indicate larger scale heights for the dust. [Marshall et al., 2006], for instance,

estimates the dust scale height to be 134+44
−11 pc. We use a scale height of 100 pc in this

paper, and in an attempt to alleviate the asymmetry of dust about the galactic center

implied by this relation, we introduce an exponential scale length in R of 2140 parsecs.

We integrate over this simple relation to find what fraction of the total dust is between

us and a star along a given line of sight.
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Figure 4.10: Dependence of extinction on wavelength from Schlegel 1998. We inter-
polate in log-log space to form a continuous relation.

4.2 Comparison to earlier work

A great many papers have been written regarding the lensing rate towards the galactic

bulge; what makes our project unusual is the focus on fields away from the bulge. This

subject has been very rarely treated. We will cover the few papers we are aware of on

field microlensing rates and properties in this section.

The inspiration for our work, and our guide in the basic process of assembling the

necessary model components, is [Han, 2008]. We have tried to improve on his work in

almost every respect.

Han modeled the stellar density distribution as a double exponential disk of the form
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n(R, z) ∝ exp

(
−R
L
− z

h

)
(4.25)

using a constant value for L, but varying h for different stellar populations separated by

absolute magnitude, with values ranging from h = 90 pc for V magnitudes of less than

three to a scale height of 600 pc for stars with V magnitudes of seven or greater. This

was meant to approximate the general pattern that bright young stars are generally near

to the plane, while older and dimmer ones may be further. Han’s stellar density model

does not include a halo component, and includes no solar offset from the galactic plane.

After building this model, he applies an unspecified normalization to the stellar number

density in order to match observed star counts.

Han entirely neglects non-main-sequence stars, using the same mass and spatial dis-

tribution for source and lens stars. Stellar masses are drawn from the [Kroupa et al.,

1993] initial mass function.

Han models the velocity of stars as a spatially independent three-dimensional gaus-

sian dispersion with widths (σR, σφ, σz) = (38, 25, 20) km s−1 about a bulk velocity of

(vR, vφ, vz) = (0, 220, 0) km s−1. Where we have separately recorded latitudinal and lon-

gitudinal angular velocity components for use in parallax measurements, Han recorded

only total angular velocity.

Han describes dust distribution using a falling exponential in z with a dust scale

height of 150 pc. He applies no R-dependence to the location of dust, and does not

describe the relation between dust density and extinction. Han does not record color

dependence, but considers only V band magnitudes of events.

Han’s primary concession to event observability is in the matter of source star magni-

tude; he does not discuss the effects of event time scale upon observability, for instance,

nor does he make predictions for any telescope or survey’s observations.
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Han gives event property distributions of timescale, lens mass, and lens and source

distances. However, these properties are presented neither as a normalized distribution

nor as an absolute distribution with definite quantity.

Han neglects to include a halo component in the stellar populations, and neglects

our offset from the galactic plane. Han does not give normalizations for stellar density

or dust density. Han does not use dust maps, but simply a mathematical relation, to

describe extinction by dust, and provides no description of color. Han’s model of velocity

is spatially uniform, without dependence on R or z. Han does not allow for post-main-

sequence stars to act as lenses. Han’s paper, while good work, is somewhat lacking in

detailed explanation of that work. In all of these respects we have improved upon Han’s

2008 paper.

[Gould, 2013] is the only other paper we are aware of on the same topic. His choices

were in many respects similar to Han’s. Like Han, Gould used an exponential in R and

z to describe the spatial distribution of stars; he also acknowledged a solar displacement

from the galactic plane. Gould gives a luminosity function of stars which does not extend

above two solar masses. Gould’s velocity model was very similar to Han’s, using slightly

different numbers and adding a solar proper velocity Where Han used an exponential

in z only to describe the placement of dust, Gould used an exponential in R and z.

Where Han did make predictions on distributions of some observable quantities, Gould

reveals only two very simple metrics: total lensing rate, and lensing rate as a function of

pointing.

Gould 2013’s primary shortcoming, however, is a shortage of checks against reality.

Where Han made an attempt to compare his model galaxy against known star counts

before applying an arbitrary and unspecified normalization to make them consistent,

Gould does not record even this much effort to verify his results. In this respect, too, we

have made a great effort to build a superior code, demonstrably consistent with known
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galactic properties.

Finally, though it is not a microlensing prediction tool, we wish to remark on the

Besançon model, described in [Robin et al., 2003]. While their model is extraordinarily

successful in replicating known galactic properties and takes an admirably self-consistent

description of stellar populations, their published description of that model is not com-

plete enough that we could reproduce their work in the context of a microlensing code.
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Code design

5.1 Summary of simulation design

To calculate microlensing rates and properties, I wrote a Monte Carlo integration

code in Python. Its accuracy can be improved by running it longer, and it is easy to

parallelize.

I made my code as modular as possible, constructing the code so that most elements

were capable of working independently of one another, and of being tested independently.

I built in safeguards to ensure that obvious mistakes were not made. I strove for efficiency,

as much as I could, in the choice of Monte Carlo variable distributions. I took steps to

make the code more human-readable, recording outputs in clear formats and providing

commentary within the code itself.

Our model inputs focus on the galactic disk and halo, as they are the most important

components in the sparse fields we are considering. Our model inputs do not currently

include a bulge component; our code is not intended for and should not be used to

determine lensing rates towards the bulge. The astrophysical inputs to our code are

described at length in chapter 4.
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An description of how events are generated in my code is found in §5.1.1. §5.1.2

briefly explains the dimensions of integration we must handle, and §5.1.3 describes how

we transform this problem into a Monte Carlo integral. §5.1.4 explains observational cuts.

Our method of parallelizing code for large runs is described in §5.1.5. §5.1.6 describes an

important component of our code, the units-handling library I created.

We hope to make the full code and instructions on its use available to the scientific

community.

5.1.1 Outline of information flow

My code can be conceptually divided into three major sections. The first section is

the galactic model; it generates the properties, extrinsic and intrinsic, of every star in the

simulation, one lens and one source for each event. The second section is the observational

constraints; it determines whether a given event can be observed by a given observing

program, configured by the user. The third section is output; it sorts and sums the

events into meaningful quantities and useful formats. A schematic visual representation

of information flow in my code can be found in fig. 5.1.

Description of event generation

Source star positions are chosen within the allowed volume, VS. The number densities

of thin disk, thick disk, and halo components are calculated at that location. Component

membership is chosen for the source star. A location for the lens star is chosen; its local

density and component membership are also determined.

The source star is assigned a mass from its component’s present day mass function

of main-sequence stars; the lens mass is chosen from the initial mass function. Ages are

assigned; halo stars and thick disk stars all have uniform ages, but thin disk lens stars
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may have formed any time within the past ten gigayears, and thin disk sources must have

formed at some time less than their main sequence lifetime in the past.

Velocities are chosen for both source and lens stars according to their component

membership and position in the galaxy. From this velocity and their positions, their

proper motion and relative angular velocity are calculated.

The source stars’ absolute magnitudes and colors are calculated based on their mass.

The extinction by dust applying to a source star is calculated based on its position and

color, the distance modulus is calculated based on its position, and apparent magnitude

is calculated.

5.1.2 Dimensions of integration

As we explained at length in chapter 3, making a multidimensional integration efficient

is paramount if your computing resources have some practical limit. We claimed in that

chapter that our integration problem has of order ten dimensions; we will justify that

claim now.

We derived an expression for a local lensing rate in chapter 2:

Γ(l, b) =

∫
2 nS nL θE |~ω|D2

SD
2
L dDS dDL (5.1)

This expression explicitly integrates over DL and DS, and a rate for a solid-angle

patch of sky would require integration over l and b (four spatial dimensions). However,

there are additional variables hiding in this problem, and the boundaries of integration

have not yet been described.

The relative angular velocity, ~ω, depends on the source star’s velocity (three dimen-

sions) and the lens star’s velocity (three dimensions), as well as DL and DS. The angular

cross section 2θE depends on a less-than-straightforward function of DL and DS, plus
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the mass of the lens (one dimension).

Other dependencies still will creep in when we consider the boundaries of integration,

but the dimensions we have named here alone add up to a count of eleven dimensions.

Arguably two dimensions of velocity could be neglected because motion towards and

away from the viewer is far too small to have an effect on the lensing event, but that

only brings the count down to nine dimensions.

5.1.3 Calculating lensing rate

Bearing the full eleven dimensions in mind, we transform the analytic expression of

Γ to a Monte Carlo integral.

Explicitly integrating over angles l and b in eqn. 5.1, we have

Γ =

∫
2 nS nL θE |~ω|D2

LD
2
S dDS cos b db dl dDL (5.2)

Note that D2
S dDS cos b db dl ≡ dVS is the volume element of physical space in which a

source star is found. We begin our transformation to a proper MC integral by indicating

some volume VS in which a source may be found, and choosing the source position ~xS

with constant probability within that volume.

Γ =
VS
N

N∑
i

2 nS

∫
nL θE |~ω|D2

LdDL (5.3)

where

P (~xS)dVS =
1

VS
dVS (5.4)

The upper limit for DL is always DS. As this is not a constant, it cannot be moved
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outside the integral sum, but rather remains inside.

Γ =
VS
N

N∑
i

DS · 2 nSnL D2
L

∫
θE |~ω| (5.5)

where

P (DL)dDL =
1

DS

dDL (5.6)

and eqn. 5.4 apply.

From chapter 4, we use the velocity distribution - already in the form of a normalized

probability distribution - as the probability distribution from which we draw velocities.

Γ =
VS
N

N∑
i

2 nSnL DSD
2
L |~ω|

∫
θE (5.7)

where P (~vS) and P (~vL) are each given by the velocity distributions described in chapter

4, and eqns. 5.4 and 5.9 apply.

Finally, we draw our lens masses from a normalized initial mass function, completing

the conversion to Monte Carlo.

Γ =
VS
N

N∑
i

DS · 2 nSnL D2
L |~ω| θE (5.8)

where

P (M)dM =
IMF(M)dM∫
IMF(M)dM

(5.9)

and all previous constraints apply.

5.1.4 Limits of integration and observational constraints

A small subset of the boundaries of integration we use are what might be termed

artificial boundaries, boundaries that do not directly relate to the observability of an
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event. Foremost among these is the volume from which we draw source locations, VS.

We wished to allow source stars from anywhere in the galaxy, in a meaningful sense;

however, the galaxy does not have neatly demarcated boundaries. We settled for choosing

a large spheroid extending to 20 kpc in R, and to qH · 20 kpc in z, so that the volume of

integration mirrors the symmetry of the halo component described in ch. 4.

Our other boundaries of integration are natural, directly related to event observability.

We impose boundaries based on event position in the sky, which determines whether a

given telescope can be pointed towards it. We cut out source stars that are too dim, such

that a given telescope cannot detect them to reasonable precision. We eliminate events

with short timescales; a survey that scans once a day may entirely miss a 24-hour-long

event. We eliminate events with long timescales; a pointing that can only be observed

six months out of the year will not allow complete coverage of a year-long event.

All of these natural limits are adjustable by the user. Cutoffs in different passbands,

field of view, and minimum and maximum timescale can all be set by the user. We

designed the code this way for use as an observation-planning tool.

5.1.5 Parallelization

Our code is parallelized in the simplest way possible; it is designed to run multiple

times using the same input parameters, and then combine the results.

In each run of the code, event sources and lenses are generated by the process de-

scribed in §5.1.1. They are then pared down to observable events only, using the cuts

described in §5.1.4. The results are then coadded to get the complete lensing rate, and

binned in various ways to produce plottable distributions, many of which are shown in

chapters 6 and 7. The ultimate data product stored by each run of the code is a python

dictionary of interesting quantities and arrays of plot data.
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After enough runs have been executed and enough data points have been generated,

the code can be ordered to combine the full set of outputs generated from a given set of

inputs.

5.1.6 Units-handling module

Mistakes in unit conversion are a scourge upon engineers, scientists, and programmers

everywhere. A high-profile demonstration of the severity of the problem is provided by

the Mars Climate Orbiter, which on September 23, 1999, went into an unplanned orbital

insertion and subsequent crash landing. The problem was ultimately traced back to a

software glitch in which thrust was expressed in pounds-force instead of Newtons.

I do not wish to highlight the costliness of this mistake, but rather the rarified en-

vironment in which it occurred. The National Aeronautics and Space Administration

(NASA) has planned and executed countless space missions, the grand majority of which

concluded successfully despite the extraordinary precision required, despite the continual

exploration of new technological territory, despite the inevitability of human error, due

to their extremely thorough and meticulous organization.

At NASA, everything that can be tested, is tested. Hypothetical failure scenarios

are constructed, and procedures are developed to prevent those failures, and to recover if

they occur. Processes are in place for filing reports of any anomalous spacecraft behavior.

Despite these many precautions, an error in unit conversion slipped through the cracks,

and evaded all the tests designed to find such errors. The failure investigation board

ultimately identified eight points of technical and managerial failure that allowed the

initial error to reach the catastrophic conclusion it did [NASA-JPL, 1999].

There came a point in debugging my code when I realized that the precautions I had

taken up to that point were not enough, and a unit conversion error had slipped through,
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due to the fact that my variables did not have explicit units. Rather than spend a truly

excessive amount of time and energy combing over my code for similar mistakes, I built

a tool to catch and forestall all such errors.

To avoid errors due to unit ambiguities and to simplify unit conversion tasks, I wrote a

handful of modules in Python for the purpose of tracking and calculating units of scalars

and arrays. These modules are not only friendly to but require NumPy, a numerical

calculation library in common use amongst the Python programmers of the scientific

world.

The resulting library is fairly easy to learn and use, reasonably efficient, and depen-

dent only on NumPy and the Python standard library. While there are certainly ways it

can be improved, I hope that this library, by itself, might be of use to other scientists.

It is worth noting that a similar project, the AstroPy.units module, has attempted

to address the same concerns for the python-using astronomer community as a whole,

with functions including notation and conversion of units [AstroPy Developers, 2015].

AstroPy.units has a similar but not identical feature set to my own units module; my

module was built specifically for my needs in this code. However, my own solution to

the problem was written before AstroPy.units was publicly available, has all the features

needed for my code, and includes a complete library of the units I need for my own

calculations.

Core features

These are the basic tasks my units module was designed to perform.

1. If you add or subtract quantities of the same type but with different units, it

converts the arguments to a shared unit.

E.g.: 1 meter + 50 centimeters = 1.5 meters.
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2. If you multiply, divide, or raise to a power a quantity with units, it works out what

the units of the resulting quantity will be.

E.g.: 1 meter · 1 Newton = 1 Joule.

3. If you need a quantity converted from one unit to another, it can do so.

E.g.: 1 pc = 2.06 ×105 AU.

4. If you feed it a quantity expressed in unnecessarily convoluted units, it can simplify.

E.g.: 1 ft2· 1 in = 2.359 ×10−3 cubic meters.

5. It adapts many standard NumPy functions so that it is not possible to overlook

their requirements on the unit of the argument.

E.g.: sin(45 degrees) = 1/
√

2, but sin(45 grams) throws an error.

Method

I will explain how the module works using the examples listed in §5.1.6, explaining

the steps the code takes to handle inputs, and how it reaches the results.

Example 1: Addition with conversion

We begin by opening an interactive Python interpreter. In line [1], we import the

units module, calling it u for short.

In [1]: import MCL_units as u

We create a variable a that represents a one meter length in line [2]. In the code,

this object is a member of the hasUnit object class.

In [2]: a = u.hasUnit(1., ’m’)

The code recognizes ‘m’ as an abbreviation for meter. It uses the full name of the

unit internally. It determines that meters are a measure of distance. We confirm this by

asking it to repeat a back to us, and querying a’s unit type.
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In [3]: a

Out[3]: hasUnit(1.0, meter)

In [4]: a.unitType

Out[4]: ’distance’

If we multiply by a plain number, the result still has appropriate units.

In [5]: 2*a

Out[5]: hasUnit(2.0, meter)

We make a fifty centimeter length and add it with a.

In [6]: b = u.hasUnit(50., ’cm’)

In [7]: a + b

Out[7]: hasUnit(1.5, meter)

In line [6], the code created a fifty-centimeter length. In line [7], it added one meter

with fifty centimeters. Several things happened behind the scenes in the process.

The code first asked whether centimeters and meters can be added. Because they are

both units of distance, it allowed the addition to go forward.

Had both units been the same, it would have added without any further manipulation,

but in this case it needs to do a unit conversion. To keep that process as simple as possible,

it converts each addend to MKS units, in which the basic units of distance, mass, and

time are meters, kilograms, and seconds. a is still represented as one meter, but b is

now represented as 0.5 meters.

Finally, the code adds, creating a new, 1.5-meter object.

Example 2: Multiplication and powers

To understand how multiplication is done in the code, you must first understand how

units are classified and stored. We create a unit mass, distance, and time.

In [8]: x = u.hasUnit(1., ’kg’)
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In [9]: y = u.hasUnit(1., ’m’)

In [10]: z = u.hasUnit(1., ’s’)

The human-readable versions of the unit types listed are as we would expect:

In [11]: x.unitType

Out[11]: ’mass’

In [12]: y.unitType

Out[12]: ’distance’

In [13]: z.unitType

Out[13]: ’time’

These are mostly for the sake of the user, however. The code’s machinery mostly deals

in a different expression, unitUnit. The unitUnit variable is a series of four numbers.

The first represents powers of mass; the second represents powers of distance; the third

is powers of time.

In [14]: x.unitUnit

Out[14]: array([ 1., 0., 0., 0.])

In [15]: y.unitUnit

Out[15]: array([ 0., 1., 0., 0.])

In [16]: z.unitUnit

Out[16]: array([ 0., 0., 1., 0.])

The fourth digit, powers of temperature, was added as a quick way to use kelvins

without accounting for degrees of freedom and other fiddly details. This feature should

be considered incomplete.

When two units-bearing quantities are multiplied, their unitUnits add.

In [17]: r = x*y

In [18]: r.unitUnit

Out[18]: array([ 1., 1., 0., 0.])
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The code creates a human-readable version for the user based on the value of unitUnit.

In [19]: r.unitType

Out[19]: ’mass distance’

If the unit type has a common name, it will give that instead of a stilted description.

In [20]: v = y/z

In [21]: v.unitUnit

Out[21]: array([ 0., 1., -1., 0.])

In [22]: v.unitType

Out[22]: ’velocity’

If a quantity is raised to a power, the unitUnit is multiplied by that power.

In [23]: q = y**2

In [24]: q.unitUnit

Out[24]: array([ 0., 2., 0., 0.])

In [25]: q.unitType

Out[25]: ’area’

The code can even handle non-integer powers, which are occasionally necessary,

though rarely physically meaningful alone.

In [26]: p = z**0.5

In [27]: p.unitUnit

Out[27]: array([ 0. , 0. , 0.5, 0. ])

In [28]: p.unitType

Out[28]: ’time**0.5’

These operations form the basics of unit manipulation. We can now return to the

problem of multiplying two quantities.

We once again create some quantities with units, and query them.
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In [29]: a = u.hasUnit(1., ’m’)

In [30]: b = u.hasUnit(1., ’n’)

In [31]: a.unitUnit

Out[31]: array([ 0., 1., 0., 0.])

In [32]: b.unitUnit

Out[32]: array([ 1., 1., -2., 0.])

The product of a force with unitUnit = [ 1., 1., -2., 0.] and a distance with

unitUnit = [ 0., 1., 0., 0.] will have unitUnit = [ 1., 2., -2., 0.] and will

be an energy.

In [33]: c = a*b

In [34]: c.unitUnit

Out[34]: array([ 1., 2., -2., 0.])

In [35]: c.unitType

Out[35]: ’energy’

To reach the final expression for c, the code converted both a and b to MKS units (a

trivial operation, in this case), and multiplied those MKS units, knowing that in metric

systems, one unit of force times one unit of distance equals one unit of mass.

The program’s final description of c expresses it as

In [36]: c

Out[36]: hasUnit(1.0, joule)

Example 3: Unit conversion

Suppose we want to convert from one non-metric unit, like parsecs (abbreviated

‘pc’), to another, such as astronomical units (abbreviated ‘AU’). We create a one-parsec

distance, and ask the code to convert to AU.

In [37]: a = u.hasUnit(1., ’pc’)

In [38]: a.convert(’au’)
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The code does not store any information directly relating the size of a parsec to the

size of an AU. Instead, it stores information relating each unit to its metric equivalent.

The code can convert any distance quantity to meters, and can convert meters to any

other distance quantity.

To convert parsecs to AU, the code first converts parsecs to meters, then converts

meters to AU.

In [39]: a

Out[39]: hasUnit(206264.805734, astronomicalunit)

Any unit conversion in my code uses the same scheme, although the details can

become more complicated. For instance, converting kilometers per hour to feet per

minute requires a total of four conversion operations.

In [40]: b = u.hasUnit(1., ’km hour**-1’)

In [41]: b.convert(’foot min**-1’)

In [42]: b

Out[42]: hasUnit(54.6806649169, foot minute**-1)

In this example, kilometers is converted to meters, and then to feet, while per-hour

is converted to per-second, and then to per-minute.

Example 4: Unit simplification

When given a problem in absurd units, my code will generally simplify by converting

everything to its favorite metric units.

In [43]: a = u.hasUnit(1., ’foot**2’)

In [44]: b = u.hasUnit(1., ’inch’)

In [45]: a*b

Out[45]: hasUnit(0.002359737216, meter**3)
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If a more complicated unit expression is needed, it can always be restored by use of

the convert command. In the meantime, the actual value of the quantity is preserved

in a clear and unambiguous format.

Example 5: Implied unit checking

Many mathematical functions have an implied requirement that their arguments be

unitless. The expression arctan(2 grams) does not have any clear meaning, for instance.

Because of this, we have built in checks on our version of many of the standard NumPy

functions and operations.

Angles are a special case. sin(45 degrees) does have meaning. Our treatment of angles

in our code ultimately centers around the fact that angles are technically unitless. Two

meters divided by one meter might be two radians, or it might be simply two, depending

on the physical relationship between those two lengths.

As the saying goes, “Never send a computer to do a human’s job.” The rules governing

whether something is an angle or just a number depend on information that the computer

most likely will not have. That decision is left in the hands of the user, and tools are in

place for the user to specify which case they are invoking.

In the absence of an obvious metric equivalent, we use radians as the basic measure

of angle in our code. This preserves compatibility with the NumPy and SciPy packages,

which also assume by default that the argument of a trigonometric function is given in

radians. Conversions to other measures of angle, such as degrees and arcseconds, work

as usual.

Other features

Advanced users can choose which system they prefer to have quantities expressed in.

Whenever the code has to simplify an expression, it converts to the user-defined preferred

system. For instance if the user chooses MKS as the preferred system of units, one dyne
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is re-expressed as 10−5 newtons.

Several common systems of units (MKS, CGS) are described in the code, as well as a

few less-common ones and a number of physical constants. Many astronomical units such

as solar masses, parsecs, and arcseconds are included because of their usefulness for my

calculations. Although the set of units and systems described in my library at present is

not comprehensive, it is extensible, and advanced users can easily define additional units,

unit systems, and physical constants with relative ease.

It is useful to note that my hasUnit objects can contain NumPy arrays as the data

at their heart, and that while units-handling operations are handled by my own code

wrapped around the data, the multiplication and other arithmetic operations of those

data arrays still falls back on NumPy’s efficiently coded methods. There should be

no significant slowdown of code re-written for use with my units package, as the core

computational operations are still done by the reliable and efficient NumPy.
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Code verification

The final code written for this project was thousands of lines long. Although I made

every effort to modularize the code, fool-proof the calculations, and generally construct

as clean and simple a design as possible, software development does not stop when the

code has been written. Code must be tested.

Relying solely on my own good sense to debug such a large, interconnected program

would be foolhardy in the extreme. My strategy has been to take two major avenues of

attack. I have included coded tests to check elements of code functionality every time

the program runs, described in §6.1. I have also performed extensive tests to verify that

the known physical properties of the galaxy are being accurately reproduced; these are

described in §6.2.

6.1 Coded persistent tests

These tests are computationally cheap, and can reasonably be run every time the

code is executed.

Their purpose is not only in the value of the initial check they provided when first
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performed; these tests stand guard against meaningful changes, either in my own code

or in the Python installation being used, as other aspects of development continue.

6.1.1 Module tests

The development of the units-handling code library greatly increased how robust the

code overall was to errors, but more testing and verification was needed. To help find

and pinpoint errors, to prove that the code was working as intended, and to ensure that

once-corrected errors did not recur, I built a set of functionality tests permanently into

the code.

The first of these tests were simply problems with known answers, verifying that the

output given by the code was correct. Many of these early tests were performed with

several input values, to eliminate the possibility that they functioned correctly for certain

special cases but not in general. In modules with random elements, expectation values

and expected variances were computed, and the answers were compared to see if they fell

reasonably close. In others tests, I set the code problems whose randomized answers had

to fall within certain limits, and ran the problem many times to be sure that it always

obeyed those limits.

Later tests compared the properties of the Monte Carlo generated stars to the con-

straints posed by the model used and the known properties of the real galaxy. However,

for the bulk of our verification of the galactic-model components, we rely on comparing

them to known galactic properties, demonstrated in §6.2.

The modules I consider foundational - modules such as the units-handling library, the

binning of data points, and the calculation of errors - I tested with particular thorough-

ness, creating of order a dozen tests each that run every time the code runs.
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6.2 Comparison to models and observations

The outputs of my code all take the form of histograms due to the discrete nature of

the data involved, inherent to Monte Carlo methods. Interpreting the data products as

continuous inevitably lowers the precision.

Where there is more than one data point in a particular histogram bin, an error

estimate is calculated based on the variance of the data in that bin. Note that this is a

one-sigma error estimate, and it will not always be a particularly accurate estimate, but

it is the best estimate available given the data, and is generally decent. See the chapter

on Monte Carlo integration for further details on how this estimate is obtained. This

error estimate is visually represented on the graph by a vertical line segment through the

histogram bin.

Bins that contain only one data point cannot have an error estimate derived by the

same means. These bins are capped by a circular marker to designate their lack of

a proper error estimate. These bins should be viewed as highly suspect; their values

should not be relied upon. They represent under-sampled regions of parameter space.

Bins that have x-marks are bins in which no samples fell. This does not mean that

the value of these bins is zero, nor does it necessarily mean that the value is low; it means

that these bins were very under-sampled. In some cases this is perfectly acceptable, e.g.

unpopulated and uninteresting areas of parameter space. It is not surprising, for instance,

to have empty bins five standard deviations away from the average value of a normally

distributed quantity.

Finally, note that a high value in a bin does not necessarily mean that it is well-

sampled, nor that it necessarily contains more data points than other, lower-value bins.

The contribution of a data point to a histogram bin depends on the value of the quantity

portrayed (e.g., lensing rate) at that data point.
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The following plots were made using a dataset of 5.1 × 107 generated lens-source

pairs. Such high sampling is, in most cases, overkill where these metrics are concerned,

and hence error bars are very small in most bins. In some cases error bars may be too

small to see, but they have been plotted nonetheless.

This high sampling will become necessary in the next chapter, when we present

our results; only about one out of a hundred of these hypothetical events is actually

observable. Please note for graphs throughout this chapter that the error bars are of

very reasonable magnitudes. Where there is a definite model to compare to, the one-

sigma error bars usually encompass that model. Even in cases where they do not, it is

common to see larger error bars on wilder data bins.

The nature of Monte Carlo methods means that wild values far from the expected

value will occur, but with sufficient sampling, they usually show correspondingly large

error estimates.

6.2.1 Distribution of stars in space

Figure 6.1 shows the density of stars in space as a function of height z out of the

galactic plane. Each bin is averaged over the volume of integration in R and φ. Over-

plotted are the upper model limit, i.e. the density at zero R where disk and halo are

thickest, and the lower model limit, the density at large R where stars are few and far

between.

Figure 6.2 shows the density of stars in space as a function of galactocentric cylindric

distance R. Each bin is averaged over the volume of integration in z and φ. Overplotted

are the upper model limit, i.e. the density at zero z where the disk dominates, and the

lower model limit, the density at large z where scarce outer halo stars are the majority.

The upturn at large R in figure 6.2 is an effect of the spheroidal integration volume
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chosen. Figure 6.3 illustrates.

a b c

Figure 6.3: Represented are the volume of integration (large ellipse), galactic disk
(horizontal bar), halo (small ellipse), and three bins from plot 6.2 (labeled a, b, c).
a: At small R, the density is dominated by the power-law halo. b: At moderate R,
the density is dominated by the disk, which occupies only a small fraction of the total
space. c: At large R, the total density is still dominated by the disk, but the disk
occupies a much larger fraction of the volume of integration. As a result, the average
density in c is higher than the average density in b.

Figure 6.4 shows the density of stars in space as a function of galactocentric spherical

radius r. Each bin is averaged over the volume of integration in θ and φ. Overplotted

are the upper model limit, i.e. the density at zero z where the disk dominates, and the

lower model limit, the density at large z where scarce outer halo stars are the majority.

The upturn at high r, also noted in fig. 6.2, has the same cause, illustrated in fig. 6.3.

Figure 6.5 shows the density of stars in space as a function of galactocentric azimuthal

angle φ, averaged over z and R. In other words, if you stood at the galactic center and

rotated about the pole, this is what you would see; the graph should be essentially a

constant, with variation about the mean galactic density. The heavy line on this plot is
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the mean density of source stars, calculated using

nS =
1

N

N∑
i

nS,i (6.1)

Figure 6.5 has higher variance than the others in this section because each bin emcom-

passes values from the very densest parts of the galactic center out to the furthest tail

of the dish and halo, meaning that the data averaged within that bin have orders of

magnitude of intrinsic variation. No limiting upper bound can be plotted because our

expression for the halo component diverges at the galactic center; the lower bound is of

order 5e-5, and would not be visible with linear scaling.

6.2.2 Velocity distribution

Figures 6.6, 6.7, and 6.8 display the distributions of stellar velocity in the radial (R),

vertical (z), and rotational (φ) directions respectively.

These distributions are averaged over the entire volume of integration, and so are

a mishmash of halo and disk star velocity distributions. This is not very apparent in

plots 6.6 and 6.7, where all populations are gaussians symmetric about zero; however, in

figure6.8, the rotational velocity, the distinction becomes much more obvious.

Here, the majority of stars are offset some 200 km s−1 from zero due to the bulk

rotation of the disk. A long tail towards zero is composed at least partially of halo stars,

which we modeled as having no net rotation, but is also contributed to by disk stars

far from the galactic plane. Our final relation very closely resembles the original data

of [Bond et al., 2010].

On each velocity plot, we plot three traces representing three of the many velocity

distributions that contribute to the whole. One represents the halo’s velocity distribu-

tion; one the local velocity distribution of disk stars; the third the distribution of stars
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five kiloparsecs out of the plane from our location. Each of these distributions is inde-

pendently normalized to nS as given in eqn. 6.1. Although these three distributions are

not the sole contributors to the total velocity distribution, it is easily visible that some

combination of these three could describe the whole reasonably well.

6.2.3 Stellar populations

Figure 6.9 gives the mass distribution of lens stars. It follows the initial mass function

described in ch. 4 so closely that it is difficult to distinguish the histogram from the

comparison trace.

Figure 6.10, the mass distribution of source stars, falls off from the initial mass

function above one solar mass, as expected. The total distribution closely resembles

our PDMF given in ch. 4, but becomes somewhat undersampled at high masses, where

living main-sequence stars are rare.

Figure 6.11 represents the last metric still reporting badly in our code. After all our

refinements, the star counts predicted by our model still show a significant mismatch

with the known galactic star counts, roughly an order of magnitude from the observed

counts we used.

We are not yet certain where, exactly, the fault lies in this disagreement. We note that

[Han, 2008] also had difficulty reproducing known star counts when using a similar model,

resorting to applying an unspecified scale factor. We note that the source of our model

is backed by very recent, extremely rigorous observations and modeling efforts applied

to a population of nearly fifty million stars. We note that our code has demonstrated

sensible results in a very great number of other metrics, failing only here. And finally,

we note that the source of our comparison star counts is incredibly antiquated.

We drew these star counts from [Cox, 2000], better known as Allen’s Astrophysical

128



Code verification Chapter 6

1
0

-1
1

0
0

1
0

1
1

0
2

M
a
ss

, 
M

¯

1
0

-8

1
0

-7

1
0

-6

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

Stars per cubic parsec per solar mass

M
a
ss

 d
is

tr
ib

u
ti

o
n
 o

f 
le

n
s 

st
a
rs

In
it

ia
l 
m

a
ss

 f
u
n
ct

io
n

F
ig

u
re

6
.9

:
T

h
e

d
is

tr
ib

u
ti

o
n

of
le

n
s

m
as

se
s,

w
h

ic
h

m
ay

b
e

of
an

y
ag

e,
co

m
p

ar
ed

to
th

e
in

it
ia

l
m

as
s

fu
n

ct
io

n
.

129



Code verification Chapter 6

1
0

-1
1

0
0

1
0

1
1

0
2

M
a
ss

, 
M

¯

1
0

-1
2

1
0

-1
1

1
0

-1
0

1
0

-9

1
0

-8

1
0

-7

1
0

-6

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

Stars per cubic parsec per solar mass

M
a
ss

 d
is

tr
ib

u
ti

o
n
 o

f 
so

u
rc

e
 s

ta
rs

In
it

ia
l 
m

a
ss

 f
u
n
ct

io
n

F
ig

u
re

6
.1

0
:

T
h

e
d

is
tr

ib
u

ti
o
n

of
so

u
rc

e
st

ar
m

as
se

s,
w

h
ic

h
w

e
re

q
u

ir
e

st
il

l
b

e
on

th
e

m
ai

n
se

q
u

en
ce

.
T

h
e

in
it

ia
l

m
as

s
fu

n
ct

io
n

is
p

lo
tt

ed
fo

r
co

m
p

ar
is

on
.

T
h

e
fi

n
al

d
is

tr
ib

u
ti

on
cl

os
el

y
re

se
m

b
le

s
th

e
m

as
s

fu
n

ct
io

n
of

m
ai

n
se

q
u

en
ce

st
ar

s
af

te
r

a
p

p
ly

in
g

th
e

a
gi

n
g

eff
ec

ts
d

es
cr

ib
ed

in
ch

.
4.

130



Code verification Chapter 6

1
0

0
5

0
0

5
0

1
0

0
G

a
la

ct
ic

 l
a
ti

tu
d
e

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

Stars per magnitude per square degree

S
ta

r 
co

u
n
ts

F
ig

u
re

6
.1

1
:

T
h

is
p

lo
t

sh
ow

s
st

el
la

r
co

u
n
ts

u
lt

im
at

el
y

d
er

iv
ed

fr
om

[S
ea

re
s

et
al

.,
19

25
,S

ea
re

s
an

d
J
oy

n
er

,
19

28
,v

an
R

h
ij

n
,

19
2
9
],

p
lo

tt
ed

a
s

sy
m

b
ol

s,
co

m
p

ar
ed

to
st

ar
co

u
n
ts

ge
n

er
at

ed
b
y

ou
r

ow
n

si
m

u
la

ti
on

,
sh

ow
n

as
so

li
d

li
n

es
.

T
h

e
li

n
es

ar
e

sh
o
u
ld

m
a
tc

h
u

p
w

it
h

th
e

sy
m

b
ol

s
of

th
e

sa
m

e
co

lo
r.

F
ro

m
to

p
to

b
ot

to
m

,
th

e
tr

ac
e/

sy
m

b
ol

co
m

b
in

at
io

n
s

re
p

re
se

n
t

2
0,

18
,

1
6
,

1
4,

an
d

12
V

m
ag

n
it

u
d

e
p

op
u

la
ti

on
s,

re
sp

ec
ti

ve
ly

.
T

h
e

d
ip

at
eq

u
at

or
ia

l
la

ti
tu

d
es

is
ca

u
se

d
b
y

d
u

st
ex

ti
n

ct
io

n
n
o
t

b
a
la

n
ce

d
ou

t
b
y

a
b

u
lg

e
co

m
p

on
en

t.

131



Quantities, a text respected and widely used amongst astronomers, recently updated to

a fourth edition. However, investigating the sources used ultimately led us to a set of

papers published in the 1920s: [Seares et al., 1925, Seares and Joyner, 1928, van Rhijn,

1929]. The original work by which these numbers were determined was done in the era

of photographic plate astronomy.

Age alone does not, of course, disqualify any scientific work. Photographic plates

would doubtless introduce minor errors, but we would ordinarily expect those to be small,

less than an order of magnitude. Star counts determined a hundred years ago should be

just as valid today. However, we find ourselves somewhat skeptical nonetheless. We

intend to look further into this problem at a later date, looking for more up to date star

counts, and making additional checks for errors in the code.

One possible explanation for the discrepancy is found in the fact that old photographic

plates were more sensitive in the blue than the red. Old observations were also conducted

almost entirely from the northern hemisphere, where the bulge is obscured by a high

airmass that preferentially scatters blue light. The two effects could combine to cause a

major underestimate of star count at equatorial latitudes.

We intend, ultimately, to find and use more modern sources of star counts from

sources such as SDSS and Gaia, and bring our model in line with them.
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Chapter 7

Results

7.1 Results

7.1.1 Whole-sky lensing rates and properties

The following plots are made from the same set of 5.1× 107 datapoints as the graphs

in ch. 6, but have been subjected to several observational cuts. Events with timescales

shorter than one day or longer than one hundred days are rejected as unobservable.

Events with source quiescent magnitudes dimmer than 23.9 in U band, 25.0 in V band,

24.7 in R band, or 24.0 in I band are discarded, approximating the requirement that an

event source be visible in four of the filters used by LSST [LSST Science Collaboration

et al., 2009]. Events from the whole sky are kept and displayed.

This set of restrictions leaves roughly one event in one hundred observable. As a

result, these plots are not as well-sampled as the corresponding plots of ch. 6, but they are

sufficiently sampled to provide an extremely illuminating look at lensing event properties.

Note that the comments in ch. 5 on my histogram plotting format apply, and are

important to understanding the plots in this chapter. I would strongly recommend that
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the reader familiarize themselves with that material before continuing.

Distribution of events in space

Figure 7.1 shows the distribution of observable events in b, summed over D and l.

The dip in event rate at the equator is not surprising in light of the dip in star counts

at the equator; however, it is suspect as long as our star counts remain suspect. Further

investigation on that front will hopefully reveal whether this effect is real and observable.

Additionally, note that any adjustment to the dust model will likewise change the width

and depth of the excluded region about the equator.

We were surprised to see the asymmetry of event rate about the equator. This is

almost certainly an effect of our sun’s offset from the galactic plane. As we are slightly

north (positive galactic z direction) of the galactic plane, more stars are south of us than

north.

We included our z offset from the plane more out of a sense of duty than of clever

suspicion; we did not think an offset of 25 pc and a tilt of ∆b ≈ 0.17 degrees were likely

to have a noticeable effect.

Figure 7.2 displays the distribution of events in galactic longitude l, summed over D

and b.

This distribution also appears to have an asymmetry in the for of a dip around -20 to

-40 degrees. We believe this to be caused by dust lanes in our dust maps from [Schlegel

et al., 1998].

Figure 7.3 shows the distribution of event source distances, summed over l and b.

The peak of this distribution at about eight kpc is entirely unsurprising; it is consistent

with stars near the dense galactic center being the most common source stars. The near-

symmetry of the distribution is interesting; it implies that the decreasing availability of

sufficiently bright sources counterbalances the increasing availability of lenses.
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Figure 7.4 shows the distribution of event lens distances, summed over l and b.

As with event source stars, the lens distance distribution peaks around eight kilopar-

secs, the distance to the galactic center. It does, however, appear to be convex instead

of concave in the lead up to that peak, and falls off more dramatically afterwards.

Angular velocity distribution of events

Figure 7.5 shows the relative angular velocity of stars in the b direction.

This distribution appears to be symmetrical, as expected. The shape, however, is

odd; the distribution is sharply peaked and distinctly non-gaussian.

Figure 7.6 shows the relative angular velocity of stars in the l direction.

As with the rotational velocity distribution shown in ch. 6, this distribution is asym-

metrical and has a definite nonzero mean. This is unsurprising, although not particularly

expected.

Figure 7.7 shows the total relative angular velocity of event stars. This holds no

particular surprises; we expect it to look similar to a Maxwell distribution constructed

for two dimensions instead of the usual three, and indeed it does. We learn from this plot

that the typical lens-source pair separate at a rate of 0 to 20 milliarcseconds per year.

Stellar populations

Figure 7.8 shows the distribution of lens masses. We see that the distribution is

dominated by low-mass stars. Although small stars have smaller cross-sections to lensing,

the numeric advantage of low mass stars causes them to overwhelmingly outweigh high

mass stars in the lens mass distribution.

Figure 7.9 shows the distribution of source masses. A given massive star, being

brighter, is more likely to be visible to act as a source star, but bright stars are fewer in

138



0
5

1
0

1
5

2
0

2
5

S
o
u
rc

e
 d

is
ta

n
ce

 D
L

, 
kp

c

02468

1
0

Events per year per kpc

E
v
e
n
t 

le
n
s 

st
a
r 

d
is

ta
n
ce

 d
is

tr
ib

u
ti

o
n

F
ig

u
re

7
.4

:
D

is
tr

ib
u
ti

on
of

ev
en

t
le

n
s

d
is

ta
n

ce
s
D
L

.
N

ot
e

th
at

th
es

e
av

er
ag

e
sm

al
le

r
th

an
D
S

.

139



1
0
0

5
0

0
5
0

1
0
0

A
n
g
u
la

r 
v
e
lo

ci
ty

 i
n
 b

 d
ir

e
ct

io
n
, 
m

a
s/

y
r

0123456
Events per year per mas/yr

E
v
e
n
t 

lo
n
g
it

u
d
in

a
l 
a
n
g
u
la

r 
v
e
lo

ci
ty

 d
is

tr
ib

u
ti

o
n

F
ig

u
re

7.
5:

R
el

a
ti

ve
a
n

gu
la

r
ve

lo
ci

ty
of

so
u

rc
e

an
d

le
n

s
al

on
g

th
e

lo
n

gi
tu

d
in

al
d

ir
ec

ti
on

,
b̂.

T
h

es
e

av
er

ag
e

ab
ou

t
ze

ro
,

as
ex

p
ec

te
d

.

140



1
0

0
5

0
0

5
0

1
0

0
A

n
g
u
la

r 
v
e
lo

ci
ty

 i
n
 l
 d

ir
e
ct

io
n
, 
m

a
s/

y
r

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Events per year per mas/yr

E
v
e
n
t 

la
ti

tu
d
in

a
l 
a
n
g
u
la

r 
v
e
lo

ci
ty

 d
is

tr
ib

u
ti

o
n

F
ig

u
re

7.
6:

R
el

a
ti

ve
an

g
u

la
r

ve
lo

ci
ty

of
so

u
rc

e
an

d
le

n
s

al
on

g
th

e
la

ti
tu

d
in

al
d

ir
ec

ti
on

,
l̂.

L
ik

e
th

e
ro

ta
ti

on
al

ve
lo

ci
ty

d
is

tr
ib

u
ti

o
n

,
th

is
d

is
tr

ib
u

ti
on

is
as

y
m

m
et

ri
ca

l
w

it
h

n
on

ze
ro

m
ea

n
.

141



0
5
0

1
0
0

1
5
0

2
0
0

A
n
g
u
la

r 
v
e
lo

ci
ty

, 
m

a
s/

y
r

01234

Events per year per mas/yr

E
v
e
n
t 

to
ta

l 
a
n
g
u
la

r 
v
e
lo

ci
ty

 d
is

tr
ib

u
ti

o
n

F
ig

u
re

7.
7:

T
ot

al
an

gu
la

r
ve

lo
ci

ty
.

A
p

p
ea

ra
n

ce
as

ex
p

ec
te

d
.

142



1
0

-1
1

0
0

1
0

1
1

0
2

M
a
ss

, 
M

¯

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

Events per year per solar mass

E
v
e
n
t 

le
n
s 

m
a
ss

 d
is

tr
ib

u
ti

o
n

F
ig

u
re

7.
8:

D
is

tr
ib

u
ti

on
of

ev
en

t
le

n
s

m
as

se
s.

D
om

in
at

ed
b
y

lo
w

-m
as

s
st

ar
s.

143



1
0

-1
1

0
0

1
0

1
1

0
2

M
a
ss

, 
M

¯

1
0

-3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5
Events per year per solar mass

E
v
e
n
t 

so
u
rc

e
 m

a
ss

 d
is

tr
ib

u
ti

o
n

F
ig

u
re

7
.9

:
D

is
tr

ib
u

ti
on

of
ev

en
t

so
u

rc
e

m
as

se
s.

P
ea

k
s

at
ab

ou
t

0.
9

so
la

r
m

as
se

s.

144



number. These two effects create a peak at about 0.9 solar masses, with power law like

tails to each side.

7.1.2 Other results of interest

The most exclusive observational cut we made was the exclusion of events with source

stars too dim to be seen by our hypothetical telescope. This was expected; a great many

stars exist in our galaxy that are too dim to see.

We did not expect the effect of our timescale cuts, however. Requiring that no events

with timescales shorter than one day be detected excluded about one percent of events.

This is an interesting result in itself because it speaks to the rarity of short-duration

star-star lensing events, but more interesting is the effect of the long-event cutoff.

Excluding events with timescales longer than one hundred days eliminated approxi-

mately one half of the events generated. Although the exact cutoff for what constitutes

a “too long” event is uncertain, 100 days is order of magnitude correct, erring high, for

most surveys. Bulge-facing ground-based surveys, for instance, can only run effectively

for about half the year; an event with timescale 100 days is not likely to fit entirely into

that half-year window. Long events may be observed by combining multiyear data, and

OGLE presently does so for many large-tE events.

These long-timescale events represent an population of events likely to be neglected

by standard survey strategies. They must be accounted for in any survey seeking to

capture lensing events. We intend to investigate this further before publication.

7.2 Discussion

Our results so far indicate that LSST will indeed observe microlensing events at a

rate of a few tens per year, but the yield can be optimized with a suitable observing
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strategy. My software provides a tool to test these observing strategies before first light.

The results we showed here are for all-sky observation, and even very wide surveys

like LSST will not cover the entire sky; they will be able to survey some 50% to 70% at

any given time, weather permitting, and the portion of the sky they have access to will

change throughout the year. Our final estimates for LSST lensing event rates will take

this into account.

Additionally, we uncovered unexpected trends in event timescale, and an unexpect-

edly strong effect of our small displacement from the galactic plane.

7.2.1 Experiments

There are a few easily accessible and interesting experiments we can do with our code,

and are likely to perform before publication.

Foremost among these is to create plots, like those in this chapter, describing lensing

event time scale distributions. The unexpected result of many long-timescale events is

very much deserving of additional investigation on the effects of observing strategies on

the capture of these events.

We can use the tools we have already built to apply constraints comparable to the sur-

vey observing plans of the upcoming LSST, ATLAS, and Evryscope surveys, estimating

the lensing rates and event property distributions they can expect to find.

A number of small but potentially interesting experiments can be performed by vary-

ing our sun’s modeled displacement from the galactic plane and the shape of the dust

distribution, and relating these to the effect on lensing event properties.
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7.2.2 Outstanding problems

As discussed in chapter 6, our generated star counts do not presently match the

antiquated observed star counts we compared them against. We are actively investigating

this, and have identified possible causes of the effect, as well as identified modern sources

to use as a comparison.

7.2.3 Potential future directions

There is always more to investigate, and this section covers a few of the major avenues

of investigation we have identified as interesting.

Galactic model improvements

We are very interested in expanding the range of lens types considered in our code.

We would very much like to extend the mass function of lens objects down to brown dwarf

and planetary masses, although we note the existing estimates of these populations are

very much ongoing work. If sufficient constraints on their population should become

available, we would like to incorporate them. Alternatively, we could make predictions

of the relationship between observed rate and population size.

Similarly, we would like to properly handle mass loss at end of main sequence life.

Presently our stars do not undergo a change in mass at any point in their evolution; this

is not an accurate reflection of stellar evolution, and we would like to amend it.

We would also be pleased to add a bulge component to our model for comparison

against known bulge lensing event properties.
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Units code improvements

While my units-handling code is something I am very proud of, I can see a number

of avenues by which it could be improved.

My code relies on NumPy, but as an unfortunate side effect of otherwise useful be-

havior, multiplying a NumPy array by a hasUnit array can cause a major error. While

workarounds exist, I would not expect a casual user to employ them. Finding a solution

to this, perhaps in the form of creating array subclasses that NumPy itself will recognize,

would be a major step in improving the usefulness of my code to others.

Adding units and unit systems such as imperial units is easy to do, and an efficient

use of my time when it comes to making the code useful for other users.

My code does not currently have any description of electricity and magnetism, as it

was not necessary for my purposes. This seems like a major candidate for improvement.

Likewise, putting in proper handling of temperature seems like it would broaden the

applicability.

Currently, every unit in my code that can be converted is “zeroed” and “linear”.

Zeroed means that a value of unit zero indicates an absolute zero (kelvins are zeroed,

but degrees fahrenheit are not). Linear means that doubling a physical quantity doubles

the unit measurement that describes it (lumens are linear, but absolute magnitudes are

not). This allowed some important simplifications in the baseline code, but ultimately

it might be useful to include proper descriptions of conversions to and from nonlinear,

nonzeroed units.

I have some interest in adding provisions for the unit equivalencies used by some

physicists. Relativists, for example, often equate mass to distance via the Schwarzschild

radius, and equate distance to time by means of the speed of light. I do not yet consider

my understanding of this concept deep enough to determine whether implementing such
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a system is feasible, much less how to do it, but I do consider it a potential long-term

goal for development.

I also wish to note that the basic method I used to apply units to arrays can be used

to apply error estimates that transform properly under arithmetic operations. This, as

with the units code, would be a broadly useful tool, but is less urgently needed, and

likewise represents a possible long-term development goal.

I intend to publish all of my simulation code, but the units-handling library in par-

ticular takes high priority for independent publication, due to its extremely broad appli-

cability.

7.3 Final words

My code is a well-verified software tool which can be adapted to simulate a wide

range of potential survey strategies and parameters. As a result, it will be a useful tool

for the community to optimize the design of the deep, wide-angle surveys coming on line

in the next decades, such as ATLAS, Evryscope, and LSST.
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