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Abstract

Nonuniform buckled beam energy harvesting: experimental validation, modeling, and

dynamic analysis

by

Louis Van Blarigan

Vibrational energy harvesting is a subject that has received much attention as a pos-

sible replacement for remote battery-operated sensor networks. We describe a vibrational

energy harvester with an asymmetric buckled beam which is constructed out of commer-

cially available components, and has demonstrated a significantly increased bandwidth

compared to a device exhibiting linear resonance. This particular beam could not be

mathematically modeled by existing analytic techniques, so a method is developed to

produce a reduced order analytic model based on a finite element representation of the

system. Moreover, we present an argument for why common single-mode Galerkin pro-

jection models are incapable of accurately reproducing snap-through behavior at higher

than infinitesimal buckling levels. The model developed here demonstrates good agree-

ment with the behavior exhibited by the experimental system around the parameter

region of high power output, as evidenced by similar phase portraits and frequency re-

sponse plots. Further, an argument is presented for why current trends towards testing

non-linear systems with constant acceleration frequency sweeps are misleading, and an

alternative comparison platform is suggested. The model is analyzed from a dynamical

systems perspective, and it is shown that the transitions between high and low power

output can be associated with a period doubling cascade or a boundary crisis where a

chaotic attractor stabilizes through an intermittency transition. Chaotic behavior is ob-

served to be closely related to the high power output region, but it is possible to have

vi



appreciable power output with a periodic response. Potential future work involves ana-

lyzing alternate beam configurations in search of an optimal solution to the high power

output bandwidth problem.
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Chapter 1

Introduction

There are many environmental situations where energy is wasted in the form of vibrations.

These vibrations can be due to imperfect mechanical parts, resonances in otherwise rigid

structures, or as a result of ambient non-linear phenomena such as friction and slippage.

Often, the primary consideration is eliminating the source of the vibration, but this may

require excessive time and cost to realize, leading to diminishing returns where rising

costs associated with eliminating undesired vibrations outweigh potential benefits. In

other words, a practicing engineer performs reasonable actions to prevent the vibrations,

but realizes that we are going to have to live with them to some extent. As a result,

ambient vibrations can be found in many situations, particularly in proximity to moving

mechanical structures.

Operation of these structures often demands a method of monitoring activity either for

control or upkeep purposes. Electrical control and monitoring devices have traditionally

required a power source, which means either using batteries which must be regularly

replaced, or investing in wiring to supply all electrical devices. Recent advances in

wireless low power electrical systems have produced a situation where providing power

becomes a major challenge and expense. In response to this need, vibrational energy
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Introduction Chapter 1

harvesting devices are able to provide power without the need for batteries or wires, and

simply require an ambient vibration source to provide power for milliamp-level electronics.

Examples of this sort of system are abundant: retrofitting old airplanes with new sensors

without removing the fragile aluminum skin, monitoring processes at large scale industrial

facilities, remote sensing capabilities, etc..

While vibrational energy harvesting may seem to be an easy answer to this need to

retrofit old systems with new sensors, conversion from vibrational energy to electrical en-

ergy is not without challenges. An abundance of devices have been proposed, commonly

using electrical magnets and coils to produce electrical current [1], or using deforma-

tion of piezoelectric materials to generate charge separation which can be gathered with

intelligently placed electrodes and stored as electrical energy. To date, piezoelectric de-

vices have demonstrated the highest level of coupling [2, 3, 4], and show promise as the

vibrational energy harvesting mechanism of the future. Further challenges include devel-

opment of a device that is capable of harvesting energy from a broad range of mechanical

excitations, and storage of converted energy for future use. The most basic piezoelec-

tric energy harvester consists of a cantilevered beam which is allowed to resonate at a

frequency contained within the ambient spectrum. This method produces good results

if the ambient vibration has a large component at the resonant frequency of the beam,

but power generation falls off quickly as the difference between the resonant frequency of

the cantilever and the forcing frequency increases. Ambient vibrations commonly have a

time-varying aspect, or a relatively broad range of frequencies of excitation, and it can

be difficult to find a situation where an energy harvester is capable of performing under

all likely situations.

This is a common problem among energy harvesters designed to take advantage of a

resonance, and extensive research has been done to determine how to expand the range

of frequencies over which an energy harvesting device is functional. One method for

2
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increasing the bandwidth is to incorporate a “hardening” response in the material [5, 6, 7,

8, 9, 10, 11, 12], which can create a situation where there is a stable high amplitude branch

which spans a significantly wider frequency range than a linear resonance. However, there

is also a co-existing stable low amplitude branch [13, 14], and the initial conditions of the

system determine which branch will be reached as a stable long-term solution. Another

method is to use impact nonlinearities to produce a frequency up-conversion property

for a linear resonator [15, 16, 17]. The concept here is that an impact phenomenon has

frequency content that overlaps with the resonant frequency, and therefore a frequency

mismatch between the forcing and resonant frequencies results in a transient resonance

from which some energy can be harvested. A third method for expanding the bandwidth

of energy harvesting devices is to design with a double well potential such that high energy

transitions between wells can occur [11, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

A preferred method for realizing this double well potential is buckling a beam, although

this method has a drawback in the fact that if the forcing doesn’t contain enough power to

cause transitions between wells, the amount of power that can be extracted is extremely

small [32]. Several different methods for reducing the power barrier to snap-through

behavior have been proposed, such as attaching a mass to the center of the buckled

beam [30, 33]. Also considered are systems consisting of multiple resonant devices which

have various resonant frequencies in the expected range of forcing frequency content

[33, 34, 35, 36]. A final method for increasing bandwidth is to design the system with an

essential nonlinearity such that the linear stiffness vanishes and the behavior is dictated

by a cubic stiffness term [37].

Previous work done in the field of piezoelectric energy harvesting has deeply explored

the applications of linear cantilever resonance [38] under conditions of both stochastic

and single frequency excitations, including explorations of non-linearities associated with

material phenomena and lumped parameter models. Comparatively, there has been few
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Introduction Chapter 1

attempts to produce mathematical models that recreate the complex dynamics associated

with piezoelectric snap-through behavior [33, 39]. Modeling of buckled beams with the

goal of reproducing snap-through behavior has been extensively examined in [40, 41], and

resulted in an analytic model which was capable of recreating experimentally observed

snap-through behavior. This method involves finding the buckled equilibrium position

and calculating linear modes about this nonlinear operating point. These models re-

quire several modes to successfully recreate the snap-though effect. Utilization of this

methodology has been sparse for piezoelectric buckled beams, but has been explored at

buckling levels below the critical load, such that a double well potential does not exist

[42], and where the piezoelectric effect on the beam is ignored [33]. Other researchers

have utilized a single-mode Galerkin projection, which fails for several reasons [39, 43]. A

single mode is incapable of properly recreating the equilibrium positions, and moreover

at small but finite buckling levels this method violates the small strain approximation

used in derivation of the model, as will be presented in Section 4.3.

In this document, we will examine the use of asymmetric buckled beams where one

side of the device is much stiffer than the other side. This reduces the power barrier to

snap-through behavior, and is a version of a method known to produce chaotic vibrations

[13]. This concept has not been explored in the literature, but builds upon previous work

and expands the field. The device will be motivated in Chapter 2.1, and experimentally

demonstrated in Chapter 3. We will then proceed to examine the application of buckled

beam modeling techniques as developed by Nayfeh et al. in Section 4.1. However, the

complexity of this design produces a system of equations which is analytically intractable,

and direct application fails. To overcome this obstacle, we are required to generate linear

mode shapes and the respective equilibrium position via finite element modeling, which

is done in the remainder of Chapter 4. The mode shapes are then combined with the

principles of solid mechanics to construct an energy function where the independent
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variables are the amplitudes of the mode shapes. An additional mode representing the

amplitude of the equilibrium position is incorporated to allow the system to exist in either

of the stable configurations, and to transition dynamically between them. A Lagrangian

functional is used to create equations of motion for the beam subjected to single frequency

excitation signals. This model will be validated experimentally in Section 4.5, and used

to examine the regions where the beam produces significant power output in Chapter 5.

Several contributions to the understanding of how to model and analyze piezoelec-

tric buckled beam energy harvesters have resulted from this work. A method has been

developed to utilize finite element analysis about a nonlinear operating point to pro-

duce an analytic model appropriate for dynamic evaluation. Previously finite element

methods have been utilized to identify resonant regions of nonlinear systems, but to our

knowledge no one has successfully incorporated this information into an analytic model.

This method results in a model which shows good subjective agreement with the ex-

perimental system in a regime where traditional modeling techniques are intractable. A

mathematical argument demonstrating why a single mode projection violates the small

strain approximation is presented, as this method has historically been used to derive

buckled beam models of energy harvesting devices. Further, we have produced a dynamic

analysis utilizing techniques such as bifurcation diagrams and numerical bifurcation anal-

ysis, which describes the transitions between single-well and double-well oscillations.

One of the major challenges faced by the nonlinear energy harvesting community is

choosing the appropriate parameter space to produce meaningful comparisons between

devices. Linear analysis techniques make use of the property of superposition to report

frequency dependent gain as the ratio of the output amplitude to the amplitude of the

acceleration of the forcing signal. This produces a description which is independent of

the forcing amplitude and exposes the character of the underlying operator. However,

there is no simple extension to nonlinear operator analysis. Frequently, claims about the
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bandwidth of a nonlinear energy harvesting device are made based on forcing frequency

sweeps with a constant acceleration amplitude. This results in different forcing power

levels at different frequencies, and makes interpretation of the bandwidth dubious. We

propose that the proper parameter space for these examinations is the forcing power

level and frequency. Doing frequency sweeps with the power level fixed requires that

the acceleration amplitude is varied with the frequency, but allows for a much more

meaningful comparison between different power level sweeps.
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Chapter 2

Background

2.1 Basics of Piezoelectricity

Piezoelectricity is a material property wherein charge separation and mechanical de-

formation are coupled. This effect was discovered in 1880 by the Curie brothers, when

they deformed a crystal and were able to measure a voltage across the material. This is

known as the direct piezoelectric effect. Alternatively, when an applied voltage causes a

deformation of the material, it is known as the converse piezoelectric effect. These ef-

fects typically occur simultaneously, and must be considered together to form a complete

picture of the interplay between charge separation and deformation.

Natural crystals exist which exhibit the piezoelectric effect at varying levels, but in the

mid-1900’s piezoelectric ceramics were developed which exhibit a much higher coupling

constant than natural materials. The most commonly used piezoelectric ceramic material

is known as lead zirconium titanate, or PZT, which exists in several forms, most notably

PZT-5H and PZT-5A. Continued use of piezoelectrics in both sensor and actuator roles

led to development of the IEEE Standard on Piezoelectricity [44]. Piezoelectric materials

are manufactured by depositing a bulk layer of randomly poled material, and applying
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an electric field to the material which causes the poles to align with the electric field. As

a result the coupling constants are assigned in relation to the direction of poling. The 1

and 2 directions are perpendicular to the poling direction, and the 3 direction is parallel

to the poling. In general, poled piezoelectric materials are transversely isotropic in the

12-plane, and therefore exhibit symmetry about the 3-axis, or the poling direction.

Using electrodes attached to the surface of a piezoelectric material, it is possible to

measure voltages produced by deformation, or to induce a deformation by applying a

potential. Some of the energy stored in the beam configuration can be harvested by

placing a load between the electrodes and allowing any accumulated electrical potential

to dissipate. The orientation of the electrodes in relation to the poling direction has a

direct effect on the efficiency of conversion. The highest coupling between strain and

charge separation occurs in the 1-5 direction, meaning that we are causing a shear stress

and placing our electrodes in the 1 direction, or perpendicular to the poling direction.

While this is the largest coupling, it is not a practical way to use piezoelectric devices and

is not utilized for energy harvesting. The next highest coupling is in the 1-3 direction,

where the beam is being strained in the poling direction (3) and electrodes are placed

perpendicular to this direction. In a beam this can be interpreted as strain in the axial

direction and electrodes placed on the top and bottom of the beam. The lowest coupling

occurs in the 3-3 mode, where the electrodes are placed in the same direction as the

poling. This is the easiest arrangement to produce as the same electrodes can be used

for poling the raw material and for the sensing of charge separation. In this document

we will be examining piezoelectric beams in the 1-3 configuration to utilize the increased

coupling compared to the more readily constructed 3-3 configuration.

For any bounded piezoelectric volume, the rate of increase of energy is the rate at

which work is done by surface tractions minus the flux of electric energy across the sur-

face [45]. Under assumptions of infinitesimal strain, linear elasticity, and the absence of

8
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electric body force and coupling, we arrive at what is known as the first law of thermo-

dynamics for the piezoelectric medium [38]:

U̇ = TijṠij + EiḊi,

where U is the stored energy density, T is the stress, S is the strain, E is the electric

field, and D is the electric displacement. We have utilized the dot notation to represent a

time derivative and indices imply Einstein summation. This allows the electric enthalpy

density (H) to be defined for a linear piezoelectric medium as

H =
1

2
cEijklSijSkl − ekijEkSij −

1

2
εSijEiEj,

where cEijkl gives the elastic constants at constant electric field, ekij gives the piezoelectric

constants, and εSij is the permittivity evaluated at constant strain. Noting that the stress

and electric displacement tensors can be derived from the electric enthalpy density as

Tij = ∂H
∂Sij

and Di = − ∂H
∂Ei

, and the relation
∂Sij
∂Sji

= δij, where δij is the Kronecker delta

function, we arrive at

Tij = cEijklSkl − ekijEk, (2.1)

Di = eiklSkl + εSikEk. (2.2)
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This can also be represented in expanded matrix form as



T1

T2

T3

T4

T5

T6

D1

D2

D3



=



cE11 cE12 cE13 0 0 0 0 0 e31

cE12 cE11 cE13 0 0 0 0 0 e31

cE13 cE13 cE33 0 0 0 0 0 e33

0 0 0 cE55 0 0 0 e15 0

0 0 0 0 cE55 0 e15 0 0

0 0 0 0 0 cE66 0 0 0

0 0 0 0 e15 0 εS11 0 0

0 0 0 e15 0 0 0 εS11 0

e31 e31 e33 0 0 0 0 0 εS33





S1

S2

S3

S4

S5

S6

E1

E2

E3



(2.3)

where the symmetries of the transversely isotropic material behavior have been directly

applied.

In a structure modeled as a thin beam based on Euler-Bernoulli beam theory, the

stress components other than the one dimensional bending stress are negligible, and

placing the electrodes perpendicular to the poling direction, as with the beams used in

this document, we find the reduced piezoelectric constitutive equations to be [38]

 T1

D3

 =

cE11 −ē31

ē31 ε̄S33


 S1

E3

 , (2.4)

where ē31 = d31
sE11

and ε̄S33 = εT33 −
d231
sE11

.
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x1
x2

x3

Figure 2.1: Representative beam with primary directions indicated. Here x1 is
associated with the length of the beam, x2 is the width, and x3 is the thickness.

2.2 Solid Mechanics

2.2.1 Beam Applications

Here the term beam is used to denote a slender rectangular parallelepiped in which

the dimensions, denoted X1, X2, and X3, satisfy

X1 � X2 � X3, (2.5)

as seen in Figure 2.1. The beam material will be assumed to be homogeneous and linearly

elastic, in accordance with Hooke’s law. The bending stiffness of a beam is proportional

to the area moment of inertia, denoted

I =

∫∫
A

p2 dA. (2.6)

Beams considered in this examination will all be of rectangular shape and cross section,

with the centroid located at the geometrical center of the cross section. Thus the two

11
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bending stiffnesses of the beam are proportional to

IX1 =
X3

2 ·X3

12
, (2.7)

IX2 =
X2 ·X3

3

12
, (2.8)

X2 � X3 =⇒ IX2 � IX1 . (2.9)

From this it is clear that the beam dimensions make bending much more likely about the

x2 axis. Therefore the beam can be reduced to a cross section in the x1-x3 plane, and

we will assume that all motions remain in plane and motions out of plane are negligible.

Also, we will denote displacements in the x1 direction as u, and displacements in the x3

direction as w. All derivations will follow the methods of [46].

2.2.2 Strain Tensor Derivation

Consider a line segment designated dX
¯

that runs from point P to point Q, as shown

in Figure 2.2. This line undergoes an arbitrary stretch and translation, resulting in the

new deformed line segment running from P ′ to Q′ denoted dx
¯
. The length of segment

dX
¯

is dS =
√
dX

¯
· dX

¯
, while the length of segment dx

¯
is ds =

√
dx
¯
· dx

¯
. We will denote

the deformation gradient as F
¯

, which maps dX
¯

into dx
¯
:

dx
¯

= F
¯
· dX

¯
. (2.10)

Therefore the length of line segment dx
¯

can be written

ds2 = dX
¯
· F

¯
T · F

¯
· dX

¯
. (2.11)

12
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P

P'

Q

Q'

dX

dx

u

u+du

Figure 2.2: Deformation of a line segment.

We define the stretch ratio λ as the ratio between the final length and the initial length,

λ =
ds

dS
, (2.12)

or using (2.11),

λ2 =
dX

¯
· F

¯
T · F

¯
· dX

¯
dS2

= N
¯
· F

¯
T · F

¯
·N

¯
, (2.13)

where N
¯

= dX
¯dS

is the unit vector in the pre-deformed configuration. To maintain

consistency with methods used to determine the engineering strain, we will define the

strain E as

E =
1

2

(
λ2 − 1

)
, (2.14)

which leads to

E =
1

2

(
F
¯
T · F

¯
− I

¯

)
, (2.15)

13
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where I
¯

is the identity matrix. This strain formulation is known as the Green-Lagrange

strain tensor. In Cartesian coordinates it can be written

Eij =
1

2
(FkiFkj − δij) =

1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
, (2.16)

which under the basic beam assumptions laid out in the previous section can be reduced

to

E11 =
∂u

∂X1

+
1

2

(
∂u

∂X1

)2

+
1

2

(
∂w

∂X1

)2

. (2.17)

Figure 2.3 shows a cartoon depicting the behavior of a beam of non-negligible thickness

under a bending deformation. Note that z is the distance between the central axis of the

beam and the point of interest. We will denote the bending tensor as M
¯

, which is of unit

length:

M
¯
·M

¯
= 1, (2.18)

M
¯

= cos θj
¯
− sin θi

¯
, (2.19)

where i
¯

and j
¯

are the unit vector in directions x1 and x3, respectively. We can proceed

to define the trigonometric properties of the angle θ:

tan θ =
dy

dx
, (2.20)

sin θ =
dy
dx√

1 +
(
dy
dx

)2
, (2.21)

cos θ =
1√

1 +
(
dy
dx

)2
. (2.22)
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z

z

dx

dy

dX

θ
M

Figure 2.3: Beam subjected to bending moment.

This leaves us with

M
¯

=
j
¯
− dy

dx
i
¯√

1 +
(
dy
dx

)2
. (2.23)

Now we examine what effect this has on the axial displacement when removed from the

neutral axis of the beam by a distance z,

u = u0 −
dw0

dX
· z√

1 +
(
dw0

dX

)2
, (2.24)

where we have assumed that dx ≈ dX. Differentiating with respect to the spatial coor-

dinate X,

∂u

∂X
=
∂u0

∂X
−

d2w0

dX2 · z√
1 +

(
dw0

dX

)2
+

(
dw0

dX

)2 d2w0

dX2 · z[
1 +

(
dw0

dX

)2
] 3

2

. (2.25)
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Here the second term on the right hand side of the equation is representative of the

radius of curvature of the beam, denoted as κ. Under a small strain approximation, we

can conclude that the last term is much smaller than the second term and can therefore

be assumed negligible, and the denominator of the second term will be very close to

unity, leaving us with

∂u

∂X
≈ ∂u0

∂X
− d2w0

dX2
· z, (2.26)

which can be substituted into (2.17) to provide a complete description of the axial strain

in the beam.

2.2.3 Beam PDE

We will now proceed to derive the partial differential equation that governs the beam’s

motion under assumptions of small strain and small axial load. The kinetic energy (T )

of a differential element of the beam is

dT =
1

2
m

(
∂w

∂t

)2

dx, (2.27)

where m is the mass per unit length of the beam. Integrating over the domain of the

beam, we arrive at

T =
1

2
m

∫ L

0

(
∂w

∂t

)2

dx. (2.28)

Calculating the potential energy requires accounting for the axial deformation, bending

moment, and axial load. By integrating (2.26) over the domain of the beam, we gain a

measure of the midplane stretch (∆):

∆ = u(L)− u(0) +
1

2

∫ L

0

(
∂w

∂x

)2

dx. (2.29)
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Here we will assume that since the ends of the beam are fixed, u(L)− u(0) ≈ 0 allowing

us to reduce to

∆ ≈ 1

2

∫ L

0

(
∂w

∂x

)2

dx. (2.30)

The axial stiffness of the beam is calculated as EA/L, which can be combined with the

midplane stretch and the axial stiffness to produce the induced axial force:

S =
EA

2L

∫ L

0

(
∂w

∂x

)2

dx. (2.31)

The bending moment M is given by the flexural rigidity of the beam E · I, multiplied

with the radius of curvature κ, which we calculated in the previous section as having a

contribution from the second derivative of the transverse displacement:

κ ≈ ∂2w

∂x2
. (2.32)

Therefore the potential energy V due to bending is calculated as

Vb =
1

2

∫ L

0

M κ dx (2.33)

=
EI

2

∫ L

0

(
∂2w

∂x2

)2

dx. (2.34)

The energy contribution due to the axial force P is given by

Vp =P∆ (2.35)

=
P

2

∫ L

0

(
∂w

∂x

)2

dx. (2.36)
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The contribution from midplane stretch is

Vs =
1

2
S∆ (2.37)

=
EA

8L

[∫ L

0

(
∂w

∂x

)2

dx

]2

. (2.38)

This allows the full potential energy to be written as

V =
EI

2

∫ L

0

(
∂2w

∂x2

)2

dx− P

2

∫ L

0

(
∂w

∂x

)2

dx+
EA

8L

[∫ L

0

(
∂w

∂x

)2

dx

]2

. (2.39)

We can now use the Euler-Lagrange equations to derive the governing PDE for this beam

system. Recall that the Lagrangian is defined as the kinetic energy minus the potential

energy,

L = T − V (2.40)

=
1

2
m

∫ L

0

(
∂w

∂t

)2

dx−EI
2

∫ L

0

(
∂2w

∂x2

)2

dx+
P

2

∫ L

0

(
∂w

∂x

)2

dx− EA

8L

[∫ L

0

(
∂w

∂x

)2

dx

]2

.

(2.41)

The stationary values of this functional define the governing equations for the system by

Hamilton’s principle of stationary action. These stationary functions can be obtained

from the Euler-Lagrange equation defined by [47]

∂L
∂f

+
n∑
i=1

(−1)i
∂i

∂xµ1 ... ∂xµi

(
∂L

∂f,µ1... µi

)
= 0, (2.42)

f,i ≡
∂f

∂xi
, (2.43)

f,ij ≡
∂2f

∂xi∂xj
, (2.44)
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where µ indices employ Einstein notation. For our problem this can be reduced to

− ∂

∂t

(
∂L
∂ẇ

)
− ∂

∂x

(
∂L
∂w′

)
+

∂2

∂x2

(
∂L
∂w′′

)
= 0. (2.45)

Applying (2.45) to (2.41) results in

∂

∂t

(
m
∂w

∂t

)
+

∂

∂x

(
P
∂w

∂x
− EA

2L

∂w

∂x

∫ L

0

(
∂w

∂x

)2

dx

)
− ∂2

∂x2

(
−EI ∂

2w

∂x2

)
= 0, (2.46)

or if we assume constant parameters throughout the beam,

m
∂2w

∂t2
+ P

∂2w

∂x2
− EA

2L

∂2w

∂x2

∫ L

0

(
∂w

∂x

)2

dx+ EI
∂4w

∂x4
= 0, (2.47)

which can be generalized to

m
∂2w

∂t2
+ P

∂2w

∂x2
− EA

2L

∂2w

∂x2

∫ L

0

(
∂w

∂x

)2

dx+ EI
∂4w

∂x4
= q(x, t)− c∂w

∂t
, (2.48)

where q(x, t) is a an arbitrary forcing function and the second term on the right hand

side is a damping loss term.

2.3 Beam Development

Preliminary investigations of buckled piezoelectric beams for energy harvesting were

based on easily available and inexpensive beams from Advanced Cerametrics [48]. It was

presumed that by fixing a flexible beam in a buckled configuration and shaking, it would

cause snap-through behavior where the beam oscillates between equilibrium wells, causing

a relatively large amplitude oscillation which would presumably result in a relatively high

power output from the beam. However, due to the symmetry of a buckled beam, one
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Advanced Cerametrics Measured
width 14 mm 10 mm
height 0.3 mm 0.4 mm

mass/length 0.014 kg/m 0.015 kg/m

modulus 24.4 GPa 15.2 GPa

Table 2.1: Provided and measured beam parameters.

half of the beam created a positive voltage, while the other half of the beam created an

equal negative voltage, resulting in very little power output. Seeking to remedy this, the

book Chaotic Vibrations by Frank Moon [13] was consulted, where it is indicated that

a central mass with a spring on either side of different stiffness is a system that results

in chaotic response to periodic inputs. It was suggested that a composite beam with

different stiffnesses throughout the length would most likely result in chaotic behavior,

while eliminating the symmetry that reduces power in one continuously electroded beam.

The simplest configuration involved gluing a bimorph section beam to a single layer beam.

Exploring this concept led to very promising experimental results, which are presented

in the next section.
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Figure 2.4: Frequency response of the voltage output of the bimorph beam, indicating
resonance peaks from which material parameters can be extracted.

Experimental investigation of the beams began by ensuring that we could reproduce

a model of the observed experimental behavior of a simple cantilever. However, the
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Experimental (Hz) FEA (Hz) % error
mode 1 100.2 107.4 6.7
mode 2 659.2 670.8 1.7
mode 3 1826.5 1875.7 2.6

Table 2.2: Frequency comparison of experimental measurements and results from a
finite element model of the beam using experimentally extracted parameters.

parameters provided by the manufacturer did not produce a model that was remotely

reminiscent of the observed behavior. In order to assure agreement with our modeling

attempts, we needed to make sure our material parameters were correct. This was done

by statistical analysis of the bending of a single layer piezoelectric beam to extract the

modulus of the material after having carefully measured the physical dimensions. Build-

ing on this foundation, we can check the bending stiffness of the bimorph beam, plug

in the modulus of the piezoelectric portions, and extract the modulus of the steel shim.

The extracted parameters are compared to the parameters provided by Advanced Cer-

ametrics in Table 2.1. Now we can construct both analytic and finite element models

from the established parameters and compare the predicted resonant peaks to the ex-

perimental data, as seen in Figure 2.4. The analytic results are very close by design of

this experimental method, so we only show a comparison of the experimental and FEA

results in Table 2.2.
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Experimental Demonstration

3.1 Experimental Setup

The experimental setup consists of a purpose built fixture mounted vertically on a

shaker, which is driven by LabVIEW software. A cartoon of the fixture demonstrating

the design intention is shown in Figure 3.1. This harvester uses two flexible ceramic

piezoelectric elements from Advanced Cerametrics, Inc.: a single layer element (cata-

log #PFC-W14) and a bimorph element (catalog #PFCB-W14), each of which is 132

millimeters (mm) long and 14 mm wide, and 0.3 mm and 1.3 mm thick, respectively.

The bimorph has two piezo layers separated by a core. The bimorph element has ap-

proximately 40 times the stiffness of the single layer element. The elements are bonded

together as shown in the lower portion of Figure 3.1 with a 6 mm overlap, and the

other ends fixed to an aluminum mount so that at equilibrium the single layer element

is slightly buckled. Our harvesting results have proved to be robust to small changes in

overlap length, overall length, and bimorph length, but is very sensitive to the amount

of buckling. A picture of the actual fixture as used for these experiments is shown in

Figure 3.2. Note that a stabilizing bar has been included in the actual device to move any
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Bimorph Single
Layer

Shaker

Figure 3.1: A cartoon demonstration of the system used to test buckled piezoelectric
beams. Note that in this view, the shaker moves up and down vertically, and the
beam is depicted in its top equilibrium position and will proceed to move between
this position and the symmetric and downward buckled position.

fixture resonances outside of the range of interest. Also note the lightening holes in the

steel base to reduce the mass of the system while minimizing the impact on the flexural

rigidity. The first fixture built for proof of concept had a thin aluminum base plate with

no reinforcing rod, and suffered from resonances at frequencies in the region of interest.

A photo of the fixture mounted on the shaker can be seen in Figure 3.3. Also visible in

this photo is the amplifier that drives the shaker, and the charge amplifier used to mea-

sure the acceleration at the fixture. The shaker is a LabWorks ET-139 with a dedicated

amplifier that runs in constant current mode to reduce heating effects of the armature.

Moreover, the system is run with forced air cooling to reduce armature temperature dur-

ing extended operation. Early tests of this system were run with the shaker mounted to

an optical bench, but the range of frequencies that were being explored resulted in some

undesired noise levels ambient to the device, and a vibration isolation platform had to
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Figure 3.2: Photograph of the fixture used for gathering energy harvesting data from
the buckled beam. The main support is the steel beam on the bottom with the holes
drilled in it to reduce weight without sacrificing bending stiffness. The piezoelectric
accelerometer is mounted to this, and sits just underneath the supporting bar that
ensures rigidity of the system and pushes the natural resonances of the fixture out of
the region of interest. The end support on the left can be moved to accommodate
different lengths of beams, or to control the amount of bucking in the beam.

be developed to decouple the system from the ambient environment. This was accom-

plished by mounting the shaker on top of an approximately 100 pound steel plate, which

rests on sorbothane bumpers designed to give at least 90% isolation in the frequency

range of interest. Furthermore, an enclosure was built to contain the entire system and

provide a sound barrier. The system is driven by LabVIEW virtual instruments. The

program provides a voltage reference for the desired current level to the amplifier, and

measures the signal from the accelerometer to determine the actual amount of available

power. Typically, experiments are run by proposing a set of steps at different driving

frequencies and available power levels. The driving signal for each power level/frequency

pair is determined without the piezoelectric beams in place to eliminate any interplay

between the power generation and power harvesting systems. To determine the proper

forcing amplitude for a desired power level, the system is set to run at a fixed amplitude

24



Experimental Demonstration Chapter 3

Figure 3.3: The shaker mounted on its vibration isolation platform and surrounded
by a sound reducing enclosure. The amplifiers can be seen in the upper portion of the
picture, with the shaker amplifier on the left and the piezoelectric charge amplifier on
the right.

25



Experimental Demonstration Chapter 3

single frequency sinusoidal wave. This is allowed to run for 15 seconds for any transients

to dissipate, then the signal from the accelerometer is recorded for several seconds, then

analyzed to determine what the available power level (denoted P ) was. This is done by

running the signal through a lock-in amplifier to determine the true amplitude of the

resulting signal (acceleration),

∫
P

A sin (ωi · t) · sin (ωj · t) = 0 i 6= j, (3.1)∫
P

A sin (ωi · t) · sin (ωj · t) = 2A i = j. (3.2)

Then applying a correction factor to account for mass, frequency and the piezoelectric

calibration,

x = A sin (ω · t) , (3.3)

P = velocity · force,

force = m · acceleration,

velocity ∝ Aω,

acceleration ∝ Aω2,

P ∝ mA2 ω3,

acceleration2 ∝ A2 ω4,

P ∝ acceleration2

ω
.

The available power level is then calculated as the square of the acceleration amplitude

divided by the forcing frequency in radians/second. A series of these tests are run to deter-

mine the available power level as a function of the input signal amplitude at a specific

frequency. With the appropriate look-up tables established, we can proceed to test the
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power harvesting capabilities of a piezoelectric beam.

As a measurement of the power harvested by the piezoelectric beams, we have de-

cided to place a 3.3 kilo-Ohm (kΩ) load between the electrodes and measure the resulting

voltage. The variety of behaviors exhibited by the beam system can frequently have large

amplitude transients, or in some states a large amplitude continuous stable output. Volt-

age inputs to the DAQ card are limited to ±5 volts, restricting the maximum amplitude

which can be measured accurately. The load resistance of 3.3 kΩ was experimentally

determined to provide sufficient dynamic range to capture important large amplitude

effects without losing the small amplitude behavior into the background noise. Addition-

ally the data is oversampled at a rate of 100,000 samples per second (SPS), and reduced

to 10,000 SPS by utilizing a moving average, downsampling filter. The software used for

both look-up table generation and piezoelectric data gathering are detailed in Appendix

B.

3.2 Experimental Results

It was found that, depending on the vibrational power and frequency, the voltage

across this resistor can be periodic, quasi-periodic, or chaotic in time. Appreciable power

is only generated when the beam responds by moving between the two equilibrium posi-

tions.

Figure 3.4 shows the rich variety of responses that can occur for periodic forcing

of this device. These plots demonstrate the transition from periodic to quasi-periodic

to chaotic response. The range of forcing frequencies in this transition is quite small,

spanning approximately 6 Hz in going from from a period-5 periodic orbit to a fully

chaotic response. Transitions such as the one shown here occur throughout the examined

range of frequencies, and can be interpreted in terms of Arnold tongues in the amplitude-
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Figure 3.4: Poincaré maps demonstrating a typical transition from a periodic orbit to
chaotic oscillations as the forcing frequency is varied. The dots indicate instantaneous
values of V and V̇ once per forcing cycle. (a) shows a period-5 periodic orbit. (b) shows
a quasi-periodic orbit, which wrinkles and folds, as seen in (c), until all recognizable
order is lost and a chaotic response is achieved, as seen in (d).

frequency parameter space, with the transition to chaos showing the hallmarks of a torus

which wrinkles until it loses its form, giving chaos, as has been observed in [49, 50]. The

time series and broad power spectrum of a different chaotic response for forcing at 167

Hz, producing 0.4 mW, is shown in Figure 3.5.

Investigations of this energy harvester were focused on the frequency range of 20-

500 Hz, as dictated by the characteristics of the beams and the range of frequencies

over which we could acceptably control the shaker. This range was examined as a set

of 175 discrete frequencies recorded in Hertz (Hz) with approximately even logarithmic

spacing. A simple cantilevered beam has been subjected to the same series of tests for
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Figure 3.5: Example chaotic time series for shaking frequency 167 Hz, producing
0.4 mW of power. (lower) Power spectrum for time series shown above; the broad
spectrum is characteristic of chaotic behavior.

comparison; this cantilever was configured as a bimorph element of equal dimension as

used in the buckled device, but clamped approximately in the middle and allowed to

vibrate on both ends, with resonant frequencies in the neighborhood of 80 Hz. Figure

3.6 demonstrates the increased bandwidth our design produces compared to the linear

cantilever. Cantilever data is plotted as dashed lines, while the buckled device is plotted

as solid lines. The RMS input power is 13 watts (W) at the highest level, drawn as red

with dots, 7.5 W at the intermediate level, drawn as green with × markers, and 3.2 W

at the lowest level, drawn as blue with no markers. Observe that the two halves of the

cantilever have slightly different resonances, and the peaks are located at approximately

60 and 100 Hz, providing a maximum output power of 1.0 and 0.3 mW, respectively,

for the highest power input. The first snap-through mode of the buckled beam design

has been experimentally determined to be approximately 21 Hz. Due to the nonlinearity

associated with snap-through dynamics, linear resonance is not observed in the examined

range of frequencies and power levels.
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Figure 3.6: Response of the experimental system (solid) and reference cantilever
(dashed) to three different power input levels. RMS input power is 3.2 W for the
blue lines with no markers, 7.5 W for the green lines with x markers, and 13 W for
the red lines with dots.

Note that the largest peak in the power output of the buckled device is close in

magnitude to the resonant peak of the cantilever, and that the location of this peak

increases in frequency as the input power is increased. For example, at the lowest input

power level, the largest peak occurs at about 153 Hz producing 0.4 mW of power, and

maintains power generation over 0.1 mW from 130 to 250 Hz and from 400 to 475 Hz. The

cantilever produces peaks of 0.23 and 0.12 mW, and the output is only maintained over

0.1 mW near the resonant peak. At the highest input power level, the maximum peak of

the buckled device shifts to 213 Hz with power output of 1.1 mW. Power generation is

maintained over 0.2 mW from 165 Hz to 285 Hz and from 380 to 475 Hz. The cantilever

produces peaks of 1.0 and 0.3 mW, with no appreciable power generation away from

resonance. Note also that the peak of highest power generation for the buckled device

is followed closely by a dip, and a second peak, where none of these frequencies are

necessarily multiples of the resonant frequency. This shape remains consistent at all

tested input power levels.

While observing the system, it can be seen that the oscillations of the beam shift

30



Experimental Demonstration Chapter 3

0 50 100 150 200 250 300 350 400
−60

−40

−20

0

20

Frequency (Hz)
P

ow
er

 (
dB

)

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

Frequency (Hz)

P
ow

er
 O

ut
 (

m
W

)

Buckled Device

Cantilever

Figure 3.7: (upper) Example of broadband frequency input. (lower) Power output
from broadband input at different frequencies.

between periodic, quasi-periodic, and chaotic response as the forcing frequency is varied.

Observations indicate regions that produce a chaotic voltage output result in significant

power generation. An interesting viewpoint for understanding the large response over a

broad frequency range is the following: suppose we have an oscillator which can undergo

chaotic oscillations, which could be transient or attracting. It is known that embedded

within a chaotic set are an infinite number of unstable periodic orbits, each of which

generically has a different frequency [14]. Indeed, chaos can be viewed as the system

‘bouncing around’ amongst these unstable periodic orbits; this is an interpretation for

why the power spectrum for a chaotic signal is broadband [13]. The response of oscillators

in the chaotic regime might be related to resonances between the drive frequency and

the various unstable periodic orbits embedded in the chaotic set.

In addition to the single frequency tests, our design and the reference cantilever were

subjected to a series of inputs with a wide energy spectrum. A representative input

frequency response can be seen in the upper portion of Figure 3.7, with a comparison of
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the output of the buckled design and the cantilever arrangement in the lower portion.

This input shape was selected to mimic a vibration spectrum that might be available

for harvesting, rather than a specific single frequency input as was used in the prior

experiments. Tests were conducted through the same frequency range, but with reduced

frequency resolution. The buckled device harvested more energy over the range from

150-200 Hz than the cantilever device was able to harvest when excited near its resonant

frequency(s). This can be explained by the effects of spreading power over a range of

frequencies and the chaotic tendencies of the new design. Many unstable periodic orbits

are able to exist in the chaotic regime, allowing the experimental device to respond to

many different frequency components, which makes the total effective power being used

to excite the system larger than the input power at any specific frequency. The cantilever

only responds to input power at its resonant frequency, and thus effectively ignores a large

portion of the input power.

3.3 Further Experimental Exploration

In order to effectively describe the region of frequency/available power parameter

space where chaotic responses are produced by sinusoidal forcing, further investigation

was conducted to determine the periodicity of the resulting trajectory. For this exam-

ination, the phase space of interest is produced by plotting the voltage of the bimorph

(VB[i]) against the voltage of the single layer beam (VS[i]). The concept used is based

on breaking the phase space into discrete boxes (each labeled βmn) as demonstrated in

Figure 3.8, and at each time step denoting the box which the trajectory is currently in

as ”1”, and all other boxes as ”0”.
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Figure 3.8: Dividing the phase space, here denoted (x, y), into discrete boxes labeled
βmn. Here m and n have both been chosen as 4, with the indices starting in the upper
left corner, giving sixteen discrete boxes.

T [i] = (VB[i], VS[i]) (3.4)

βmn[i] = 1 T [i] ∈ βmn (3.5)

βmn[i] = 0 otherwise (3.6)

With this process completed, a time series for each box has been created. Many of the

boxes time series may be empty, having never been visited by the trajectory, while some

may have only been visited due to noise on an irregular basis. However, examining only

the boxes which are consistently visited provides some insight to the periodicity of the

trajectory. An FFT, or Fast Fourier Transform is performed on each boxes time series

that appears relevant to the problem, and the resulting set of coefficients is compared to

the forcing frequency. A locking behavior is indicated if a significant portion of the boxes
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show amplitude peaks at integer multiples of the forcing frequency. This information

can be used to determine where the resulting trajectory is periodic with the forcing,

and where the frequency of the forcing signal appears to have little direct effect on

the resulting signal. A demonstration of the frequency locking characteristics of this

system in our parameter space of interest can be seen in Figure 3.9, which also provides

a comparison between the frequency locking behavior and the power output level. The

frequency locking graph shows that for a significant portion of the parameter space, there

is consistent locking of the voltage signals to the forcing frequency, as illustrated by green

and white areas. Near 30 Hz, there is a region which indicates no apparent locking to

the forcing frequency, as indicated by red in Figure 3.9. In this regime, the beam can

be observed to move between equilibrium wells occasionally and gently, not exciting any

significant power output from the piezoelectric beams, but disturbing the voltage output

enough to appear aperiodic. A second region where the voltage signals don’t lock to

the forcing frequency occurs around 50 Hz. This is the region where the highest output

power is achieved. Note that the transition between periodic and aperiodic behavior

happens quite suddenly at this boundary. There is a correspondingly sharp boundary

present in the power output at the same point. This represents when the beam can

be observed to begin rapid and violent snap-through behavior. The region of aperiodic

behavior encounters a region of period-2 orbits before it returns to the same periodicity as

the forcing function. It is hypothesized that this region could indicate a period doubling

bifurcation as the system loses periodicity, and this subject will be explored further in the

analytic evaluation of the system. As the frequency is increased past about 70 Hz, another

region of primarily periodic behavior is observed. Beam behavior in this region primarily

consists of small single well motions, but there may be an occasional snap-through event.

However, these events are not frequent enough to make a significant change in the power

output, thus we see that the power remains quite low through this region. Around 120
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Figure 3.9: (left) Power output in parameter space of interest. (right) Locking be-
havior of trajectories whose power output is shown in the left panel. Note that the
high power output regions are associated with a lack of frequency locking, though this
is not a sufficient condition to predict high output power. Note also that regions of
parameter space where frequency locking occurs at a higher integer relation to the
forcing signal tend to be associated with the boundary of a region where no frequency
locking is detected.

Hz we observe another band of aperiodic behavior, and an associated high power output

region. In this range, the beam can be observed to exhibit rapid oscillations between

wells, and the high power output can be easily surmised from the observed behavior.

Once periodic behavior is observed again, it continues for the rest of the range of interest

without any noteworthy behavior.

35



Chapter 4

Modeling

4.1 Analytic Attempts

Following the approach of Nayfeh et. al [41], we can attempt to create an analytic

model of the beam system using separation of variables and Sturm-Liouville methods

to solve the PDE. We will start by dividing the system into two beams with different

physical parameters which each have a fixed boundary condition at one end and are

forced to match the other beam at the joint end. To faithfully represent the glued joint

we demand that both the displacement and the rotation at the joint remain continuous.

This union of beams requires that we deal with an eighth order system of equations

instead of a fourth order system, but it allows a representation of the discontinuous

physical parameters through the length of the beam. This complication of the problem

is critical for accurate representation of the original system. We will proceed by finding

the static or equilibrium solution by solving for the homogeneous solution to the PDE,

and then finding the particular solution to determine the response to a forcing function.

36



Modeling Chapter 4

4.1.1 Governing PDE

We start with the partial differential equation governing the motion of a beam under

compressive stress, with the possibility of buckling occuring as was derived in section 2.2

as equation (2.48):

M
∂2w

∂t2
+ EI

∂4w

∂x4
+ P

∂2w

∂x2
+ c

∂w

∂t
− EAr

2L

∂2w

∂x2

∫ L

0

(
∂w

∂x

)2

dx = F (x) cos Ωt, (4.1)

where P is the axial load on the beam, w(x, t) is the shape of the beam, E is the Young’s

modulus, I is the second moment of area about the x axis, M is the mass of the beam, c

is the damping coefficient, Ar is the cross-sectional area of the beam, and L is the length

of the beam.

4.1.2 Buckled Equilibrium

In determining the static buckled equilibrium state, we set the time derivatives to

zero, drop the forcing term, and change variables such that ψ(x) now represents the

buckled equilibrium shape:

EI
∂4ψ

∂x4
+ P

∂2ψ

∂x2
− EAr

2L

∂2ψ

∂x2

∫
L

(
∂ψ

∂x

)2

dx = 0. (4.2)

One way to look at our beam is to consider it to be a system of two beams which are

subject to coupled boundary conditions at the joint. Under this approach, the shape of

the beam will be split into left and right portions as follows:

ψ(x) =


ψL(x) −LL ≤ x ≤ 0

ψR(x) 0 ≤ x ≤ LR,

(4.3)
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where LL is the length of the bimorph beam, and LR is the length of the single layer

beam. With the beam descibed this way, we need to add a forcing term to our governing

equation (4.2) for each side of the beam to account for forces present at the junction in

the middle. Thus each side of the beam can be described by the equation

EiIi
∂4ψi
∂x4

+ P
∂2ψi
∂x2

− EiAri
2Li

∂2ψi
∂x2

∫
Li

(
∂ψi
∂x

)2

dx = W (x), i = L,R. (4.4)

This can be re-arranged to give:

∂4ψi
∂x4

+ λ2∂
2ψi
∂x2

= W (x), (4.5)

where λi =
√

P
EiIi
− Ari

2LiIi

∫
Li

(
∂ψi
∂x

)2
dx and is constant for a given buckled shape. From

beam theory, we know that W (x) describes a distributed load on the beam. For each

side of our beam, the only loading comes from the joint as an applied shear and moment.

Therefore the distributed load would be represented as a delta function. However, we can

calculate the resulting moment distribution throughout the beam. The second integral

of the distributed load is the moment distribution, so we can integrate (4.5) twice and

plug in our known moment distribution:

Mi(x) = Mj(0) + νj(0)(Li − x), i 6= j (4.6)

∂2ψi
∂x2

+ λ2
iψi = Mi(x) + κ1x+ κ2, (4.7)
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where Mj(0) and νj(0) are the moment and shear at x = 0, respectively. This admits a

general solution of the form:

ψi(x) = ci1 + ci2x− ci3 cos (λix)− ci4 sin (λix). (4.8)

The boundary conditions are defined as clamped at both ends and continuity of position,

slope, shear and moment at the point where the beams meet, which is at x = 0. This

allows us to construct an 8x8 matrix to determine the coefficients of the buckled shape:



1 0 −1 0 −1 0 1 0

0 1 0 −λL 0 −1 0 λR

0 0 −ELILλ2L 0 0 0 ERIRλ
2
R 0

0 0 0 −ELILλ3L 0 0 0 −ERIRλ3R
1 −LL − cos (−λL ·LL) − sin (−λL ·LL) 0 0 0 0

0 1 λL sin (−λL ·LL) −λL cos (−λL ·LL) 0 0 0 0

0 0 0 0 1 LR − cos (λR ·LR) − sin (λR ·LR)

0 0 0 0 0 1 λR sin (λR ·LR) λR cos (λR ·LR)





cL1

cL2

cL3

cL4

cR1

cR2

cR3

cR4



=



0

0

0

0

0

0

0

0



.

The determinant of the matrix is set to zero, and solved for λL and λR. These values

are plugged into the matrix equation to determine the values of the coefficients. With

parameters to mimic our experimental setup, this results in λL=21.2 and λR=53.1.

4.1.3 Vibrations about Buckled Equilibrium

If we define the shape found above as f(x), we are able to write the expected linear

vibration shapes about the buckled equilibrium as

w(x, t)=Af(x)+v(x, t), (4.9)

where v(x, t) is the vibration about the buckled shape, and A represents the amount of

buckling. This assumed shape can then be plugged back into (4.1) and analyzed. To

determine the linear vibration modes, we will drop the damping and forcing terms, giving
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the following equation:

M
∂2w

∂t2
+EI

∂4w

∂x4
+P

∂2w

∂x2
−EAr

2L

∂2w

∂x2

∫
x

(
∂w

∂x

)2

dx=0. (4.10)

We will now substitute our expected w(x, t) into (4.10) but we will switch notation such

that an overdot represents a time derivative and a prime indicates a spatial derivative:

Mv̈+EI (Af ′′′′+v′′′′)+P (Af ′′+v′′)−EAr
2L

(Af ′′+v′′)

∫
x

(Af ′+v′)2dx=0. (4.11)

Expanding the square inside the integral and gathering all the v terms on one side, we

arrive at the following,

M

EI
v̈+v′′′′+

(
P

EI
−ArA

2

2LI

∫
x

f ′2 dx

)
v′′−ArA

2

LI
f ′′
∫
x

f ′v′dx−ArA
LI

f ′′
∫
x

v′2dx (4.12)

− Ar
2LI

v′′
∫
x

(
2Af ′v′+v′2

)
dx=−

(
Af ′′′′+

P

EI
Af ′′−ArA

2LI
f ′′
∫
x

(Af ′)
2

dx

)
. (4.13)

The RHS of (4.13) can be seen to satisfy (4.2) and is therefore equal to zero. Since we are

looking for small vibrations about the equilibrium position, we can neglect terms higher

than first order in v, leaving us with

M

EI
v̈+v′′′′+

(
P

EI
−ArA

2

2LI

∫
x

f ′2 dx

)
v′′−ArA

2

LI
f ′′
∫
x

f ′v′dx=0. (4.14)

We can now perform a separation of time and space by assuming that the solutions take

the form

v(x, t)=χ(x)Γ(t). (4.15)
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Dropping the arguments and plugging into (4.14):

M

EI
χΓ̈+χ′′′′Γ+

(
P

EI
−ArA

2

2LI

∫
x

f ′2 dx

)
χ′′Γ−ArA

2

LI
f ′′
∫
x

f ′χ′Γdx=0. (4.16)

Putting the spatial terms on the RHS and the temporal terms on the LHS:

− 1

Γ

(
M

EI
Γ̈

)
=

1

χ

(
χ′′′′+

(
P

EI
−ArA

2

2LI

∫
x

f ′2 dx

)
χ′′−ArA

2

LI
f ′′
∫
x

f ′χ′dx

)
. (4.17)

From this it becomes clear that the only way these can be equivalent for all time and

space is for them to be equal to a constant (henceforth referred to as ’κ’), allowing us to

rewrite as

M

EI
Γ̈=−κΓ, (4.18)

χ′′′′+

(
P

EI
−ArA

2

2LI

∫
x

f ′2 dx

)
χ′′−κχ=

ArA
2

LI
f ′′
∫
x

f ′χ′dx. (4.19)

Solving for Γ we find that κ=Mω2

EI
and Γ(t)=eiωt where ω is representative of a frequency

in rad/sec. The integral on the RHS of (4.19) will be constant for a given χ, and the above

can be rewritten as

χ′′′′(x)+bχ′′(x)−κχ(x)=h(x), (4.20)

where b= P
EI
−ArA2

2LI

∫
x
f ′2 dx, κ=Mω2

EI
and h(x)=ArA2

LI

[∫
x
f ′χ′dx

]
f ′′(x). This can be viewed

as a fourth order ODE with a forcing term. We would like to find a solution to (4.20)

where χ(x) can be described as a series of eigenfunctions of a Sturm-Liouville problem.

The general form of a fourth order Sturm-Liouville problem is

d2

dx2

[
q(x)

d2u

dx2

]
+
d

dx

[
p(x)

du

dx

]
+z(x)u=λg(x)u. (4.21)
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Thus we want to find solutions of the form (where ϕ is now an eigenfunction),

u(x)=
∞∑
n=1

υnϕn(x) (4.22)

satisfying:

[q(x)u′′(x)]
′′
+[p(x)u′(x)]

′
+[z(x)−λ(g(x))]u(x)=0 (4.23)

for the homogeneous portion of the solution, and changing the 0 on the RHS to h(x) for

the particular solution. We can make examination of this problem significantly easier

by assigning values to the coefficient functions of (4.21). In this problem we find that

q(x)=1, p(x)=b, λg(x)=κ, and z(x)=0. Let’s look at the homogeneous portion first:

∞∑
n=0

[υnϕ
′′′′
n +bυnϕ

′′
n−κnυnϕn]=0. (4.24)

This differential equation allows solutions of the form

ϕn(x)=αn1 cos (ηnx)+αn2 sin (ηnx)+αn3 cosh (mnx)+αn4 sinh (mnx), (4.25)

ηn,mn=

√
± b

2
+

1

2

√
b2+4κn. (4.26)

Now lets turn to the particular solution:

∞∑
n=1

[υnϕ
′′′′
n +bυnϕ

′′
n−κϕn]=h(x). (4.27)

Adding and subtracting from RHS:

∞∑
n=1

[υnϕ
′′′′
n +bυnϕ

′′
n−κϕn]=h(x)+

∞∑
n=1

κnυnϕn−
∞∑
n=1

κnυnϕn, (4.28)
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rearranging,
∞∑
n=1

[υnϕ
′′′′
n +bυnϕ

′′
n−κnϕn]=h(x)+

∞∑
n=1

(κ−κn) υnϕn. (4.29)

Recognize the LHS is zero by the definition of the homogeneous solution, and we arrive

at
∞∑
n=1

(κn−κ) υnϕn=h(x). (4.30)

Multiply by ϕk and integrating over the region of interest,

∞∑
n=1

(κn−κ) υn

∫
L

ϕnϕk dx=

∫
L

h(x)ϕk dx. (4.31)

By the orthogonal propeties of ϕ we know that
∫
L
ϕkϕn dx=δnk, and the above can be

rewritten

(κk−κ) υk=

∫
L

h(x)ϕk dx (4.32)

or

υk=

∫
L
h(x)ϕk dx

κk−κ
. (4.33)

Therefore the particular solution to (4.20) can be written

χp(x)=
∞∑
k=1

∫
L
h(x)ϕk(x) dx

κk−κ
ϕk(x), (4.34)

implying the full solution can be written as

χ(x)=
∞∑
k=1

υkϕk(x)+
∞∑
k=1

∫
L
h(x)ϕk(x) dx

κk−κ
ϕk(x), (4.35)
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or alternatively,

χ(x)=
∞∑
k=1

(
υk+

1

κk−κ

∫
L

h(x)ϕk(x) dx

)
ϕk(x), (4.36)

allowing us to write the complete solution in terms of the homogeneous part. This method

has proven to be extremely difficult to solve for all necessary eigenvalues, owing in part

to the difficulty of finding roots to an eighth order transcendental equation. Moreover,

it has been found that this method is not capable of sustaining snap-through behavior

at above infinitesimal buckling levels, and therefore is insufficient for recreating the ob-

served behavior of our beam system. This behavior is consistent with the assumption

made in the derivation of the beam’s PDE in (2.30). Unfortunately, dropping in this

assumption results in an extremely complex potential energy function which produces an

analytically intractable PDE and does not assist in our attempt to produce a model of

the experimentally observed behavior.

4.2 Finite Element Representation

As an alternative approach,the FEA software ABAQUS [51] has been used to con-

struct a model of the beam. The model is constructed from two basic units: a steel

shim and a piezoelectric beam. The dimensions and important material parameters

(experimentally determined) of each section can be seen in Table 4.1, while a detailed

explanation of the process of constructing the ABAQUS model is contained in Appendix

A. These units are assembled into a structure equivalent to the experimental setup. Both

free ends of the assembly are constrained as fixed boundary conditions, allowing no trans-

lation or rotation to occur at the clamping points. To model the buckled equilibrium,

the axial degree of freedom is allowed to translate and an axial force is applied. A quasi-
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Steel shim Piezoelectric
width (mm) 14 10
height (mm) 0.4 0.4
length (mm) 116 116

mass/length (g/mm) 0.045 0.015
modulus (GPa) 180 15.2

Poisson ratio 0.3 0.3

Table 4.1: Material parameters for the two different sections used to build the finite
element model.

static analysis then determines the resulting buckled configuration, as seen in Figure

4.1. Thereafter the axial degree of freedom is fixed, and a linear frequency analysis is

performed to extract mode shapes (denoted [U ](i)) and the associated natural frequen-

cies about the buckled equilibrium configuration. The mode shapes and their associated

frequencies are not constant as the degree of buckling changes, similar to the analytic

solutions in [41] for a simple buckled beam. The dependence of the associated frequencies

on the compressive load can be seen in Figure 4.2. The linear mode shapes are computed

so that they are orthogonal with respect to the finite element mass matrix [M ]:

[0] = [U ]T(i+1) [M ] [U ](i) . (4.37)

However, these modes are not orthogonal to the buckled equilibrium shape. Examining

the components of the displacement, we find that the out of plane motions are several

orders of magnitude lower than those in the transverse and axial directions and will be

assumed to be negligible in the frequency range of interest. The axial motion (u) is

critical to determining the buckled configuration, but subsequently any axial motion due

to oscillations about the buckled equilibrium are very small compared to the transverse

motions. Therefore we will consider the axial motion fixed after the initial buckling,

and assume that only transverse motions (w) of the beam are significant to time varying
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Figure 4.1: Evolution of buckled equilibrium position with axial loads between 1 and
2.2 N. Note that the right hand side of the beam, which consists of the single layer
portion, exhibits much larger deviations from the centerline than the bimorph section.
In this paper, the curve at P=1.3 N will be used for analysis.
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Figure 4.2: Dependence of natural frequencies on the axial compressive load. Note
that eigenvalues two and three come very close together when the axial load is approx-
imately 1.25 N. Analytic predictions for buckled beams indicate that there should be
an eigenvalue crossing between the second and third eigenvalues. Examined closely it
is clear that these eigenvalues do not cross in this example, but independently evolve
through this region. The difference between observed model behavior and expected
analytic behavior is due to the symmetry breaking of the glued joint. The region
where these eigenvalues approach each other has been found to be a promising energy
harvesting region.
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energy storage. Assuming that the time and spatial dependence of w can be separated

and any arbitrary beam shape can be reconstructed by linear combinations of the mode

shapes, we write the displacement functions as

u(x) =uc(x), (4.38)

w(x, t) =
∞∑
i=0

ai(t)wi(x), (4.39)

or equivalently in vector notation,

w(x, t) = a(t) · w(x). (4.40)

Here uc is the function representing the axial displacement associated with beam buckling,

a(t) is a vector which contains the mode amplitudes, and w(x) is a vector of shape

functions, which are the transverse displacements of the mode shapes. The buckled

equilibrium transverse displacements are assumed to represent a fundamental mode of

the dynamic response of the system, with its contribution to the total displacements

varying according to a0(t), and the subscript 0 has been assigned to it. Increasing indices

in the summation (4.39) indicate increasing natural frequency for the associated mode

shape. The shape of the first three mode shapes with the respective buckled equilibrium

shape and axial load are shown in Figure 4.3.
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Figure 4.3: Buckled equilibrium state in terms of transverse displacement and the first
three normal modes with their associated frequencies about the buckled equilibrium
with axial load of 1.3 N. The horizontal axis represents the distance along the beam
from 0 to L, while the the vertical axis portrays the transverse deflection, actual for
the buckled equilibrium mode and normalized for the linear modes.

4.3 Energy Projection

4.3.1 Kinetic Energy

The kinetic energy can be expressed by superimposing the transverse beam motions

onto the base excitation, y(t):

T :=

∫ L

0

1

2
m(x)

(
∂w

∂t
+
∂y

∂t

)2

dx ≈ mb

2

∫ Lb

0

(ẇ + ẏ)2 dx+
ms

2

∫ L

Ls

(ẇ + ẏ)2 dx, (4.41)

where mb and ms are the mass per unit length of the bimorph and single layer, respec-

tively. The time derivative of the displacement can be written as

ẇ = ȧ0w0 +
∞∑
i=1

ȧiwi. (4.42)
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The buckled equilibrium displacement has been separated from the linear modes to pre-

serve the orthogonality properties. We obtain

ẇ2 = ȧ0
2w2

0 + 2
∞∑
i=1

(ȧiȧ0wiw0) +
∞∑
i=1

∞∑
j=1

(ȧiȧjwiwj) . (4.43)

From the orthogonality condition (4.37), the last term integrates to zero when i 6= j.

This allows the kinetic energy to be calculated as

T ≈mb

2

∫ Lb

0

[
ȧ0

2w2
0 +

n∑
i=1

(
2ȧiȧ0wiw0 + ȧi

2w2
i

)
+

n∑
i=0

(
2ȧiwiẏ + ẏ2

)]
dx

+
ms

2

∫ L

Ls

[
ȧ0

2w2
0 +

n∑
i=1

(
2ȧiȧ0wiw0 + ȧi

2w2
i

)
+

n∑
i=0

(
2ȧiwiẏ + ẏ2

)]
dx, (4.44)

where n is the number of mode shapes that we have included in a truncated calculation.

4.3.2 Potential Energy

The potential energy has contributions from both mechanical and electrical domains.

In the mechanical domain, the strain energy is calculated as one half the volume integral

of the product of stress and strain. In the electrical domain, the energy is calculated as

the negative of one half the volume integral of the product of electric displacement and

electric field:

U =
1

2

∫
V

σ ε dV − 1

2

∫
V

DE dV, (4.45)

where σ is the stress, ε is the strain, D is the electric displacement, and E is the electric

field. Piezoelectric constitutive equations as derived in section 2.2 [38] describe elastic

and dielectric behavior and provide the connection between the mechanical and electrical
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portions:

σij = cEijkl εkl − ekij Ek, (4.46)

Di = eikl εkl + εεik Ek, (4.47)

where cEijkl is the tensor of elastic constants evaluated at fixed electric field, ekij is the

tensor of piezoelectric coupling constants when electric field and strain are taken as the

independent variables, and εεik is the tensor of electric permittivity constants evaluated

at fixed strain. Euler-Bernoulli beam theory assumes that all stress components are

negligible except those in the axial direction. Piezoelectric theory defines the poling

direction as the 3-direction [44], which coincides in our case with the axial direction in a

d31 beam configuration. The constitutive equations can therefore be reduced to

 σ3

D1

 =

cE33 −e31

e31 εε11


 ε3

E1

 . (4.48)

Piezoelectric constants are provided in a slightly different form, as seen in Table 4.2. The

necessary coefficients are calculated as [38]

cE33 = Y, (4.49)

e31 = d31 · Y, (4.50)

εε11 = εσ11 − d2
33 · Y, (4.51)

where Y is the experimentally determined elastic modulus of the section being analyzed

as presented in Table 4.1 and εσ11 is the dielectric permittivity in the poled direction at

50



Modeling Chapter 4

Constant Value Units
d31 375 pm/V
εσ11/ε0 1725 n/a

Table 4.2: Piezoelectric constants provided by Advanced Cerametrics Inc. [48].

fixed stress. Combining (4.45) and (4.48), and dropping the subscripts we find that

U =
1

2

∫
V

Y ε2 dV −
∫
V

e εE dV − 1

2

∫
V

εE2 dV. (4.52)

First we will deal with the strain energy, then later we will come back to the electrical

contributions to the potential energy.

Equilibrium Strain Energy

At equilibrium, the electric field and electric displacement are zero, and only the

buckled mode shape contributes to the potential energy. Thus this potential energy can

be expressed as

Ueq =
1

2

∫
V

Y ε2 dV. (4.53)

Here the goal is to develop an expression for the strain energy that has the buckled equi-

librium mode amplitude as the independent variable. In order for a double well potential

to exist, the energy function must be quartic at minimum. Forcing the symmetric, stable

equilibrium positions to occur at a0 = ±1, the potential energy can be approximated as

Ueq =
1

2

∫
V

Y ε2 dV ≈ η0 − 2β a2
0 + β a4

0 +O(a6
0), (4.54)

where ∂Ueq
∂a0

must be equal to zero when evaluated at a0 = ±1. From the finite element

analysis, there is a reference for the strain energy at two configurations: the buckled

equilibrium position (a0 = ±1), and the constrained flat equilibrium (a0 = 0). Using
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these reference values allows one to solve for β.

Dynamic Contributions to Strain Energy

We note that for strains to be infinitesimal we must have

∣∣∣∣∣2∂u∂x +

(
∂u

∂x

)2

+

(
∂w

∂x

)2
∣∣∣∣∣� 1. (4.55)

This can occur when (
∂w

∂x

)2

= O
(
∂u

∂x

)
� 1. (4.56)

These conditions preclude even moderately large transverse deflections when compared

to the length of the beam. The other possibility for fulfilling the infinitesimal strain

condition is that

∂u

∂x
< 0 (4.57)

and the combination

2
∂u

∂x
+

(
∂u

∂x

)2

+

(
∂w

∂x

)2

(4.58)

is small because of cancellation of positive and negative terms. This can happen in

buckled beams, but if this condition prevails and the beam oscillates from a positive

deflection to a negative deflection by passing through its straight configuration, the ax-

ial strain could be large due to the absence of the positive transverse deflection term.

However, if we assume that the oscillation from positive deflection to negative deflection

occurs by a combination of modes of deformation, the beam may never be straight in

such motion, and large deflections may then be permitted. This relieves us of the re-

quirement (4.56), and instead we may rely on (4.55). Thus under assumptions of small

strain and moderate rotation, we approximate the axial strain at any point from the
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Green-Lagrange strain tensor [52] as

ε ≈ ∂uc
∂x
− z∂

2w

∂x2
+

1

2

(
∂uc
∂x
− z∂

2w

∂x2

)2

+
1

2

(
∂w

∂x

)2

, (4.59)

where z is the distance of the specified point from the neutral axis of the beam. Finite

element analysis does not provide enough reference points to generate a full description

of the strain energy using the amplitudes of the mode shapes. To overcome this obstacle,

it is necessary to use analytic predictions to determine the shape of the energy surfaces.

To generate these approximate surfaces, the buckled equilibrium amplitude will be fixed

at unity, and two mode amplitudes varied while all other amplitudes are equal to zero.

The resulting shape is then integrated over the approximate beam dimensions as

Ω ≈ 1

2

∫
V

Y ε2 dV, (4.60)

where ε is as in (4.59). This produces an analytic prediction of the strain energy (Ω) at

one particular combination of mode shapes. We repeat this procedure on a grid to span

the maximum mode amplitudes observed in simulation, which is an iterative process.

Now a surface has been produced describing the energy variation with two mode shapes

about the buckled equilibrium. This surface is fit with a fourth order polynomial in two

variables, remembering that symmetric solutions dictate which terms are needed. As an

example, the polynomial descibing the variation of strain energy with variation of modes

i and j is of the form:

Ω(ai, aj, a0) ≈ η1 +m1 a
2
i +m2 a

2
j +m3 ai aj +m4 a0 a

2
i aj +m5 a0 ai a

2
j

+m6 a0 a
3
i +m7 a0 a

3
j +m8 a

2
i a

2
j +m9 a

3
i aj +m10 ai a

3
j +m11 a

4
i +m12 a

4
j , (4.61)
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where the m’s are the coefficients to be solved for in the fit. Repeating this procedure

for all combinations of mode shapes, all of the planes can be combined to produce a

polynomial fit of the strain energy surface as a function of the mode amplitudes. The

approximate nature of this calculation leaves a discrepancy between the strain energy at

equilibrium as calculated above and the FEA result. To ensure consistency, the strain

energy surface is multiplied by an order one constant to make the strain energy at equi-

librium equal to the FEA results.

Piezoelectric Terms

Terms containing piezoelectric coupling and capacitive energy storage are:

Upiezo = −1

2

∫
V

εE2 dV −
∫
V

e εE dV. (4.62)

The first term captures the electrical energy stored in the capacitance of the piezoelectric

material, which can be expanded as

1

2

∫
V

εE2 dV ≈ εE2
B

2

[∫
P1

dV +

∫
P2

dV

]
+
εE2

S

2

∫
P3

dV, (4.63)

where P1 and P2 are the two piezoelectric layers of the bimorph, and P3 is the single

layer section of the beam. Separate electrical circuits are defined on the bimorph section

and the single layer section, therefore the electric field variable has been divided into

two contributions, one from each beam section. Calculation of capacitive energy storage

is easily accomplished utilizing the volume of each piezoelectric beam. The coupling

between the mechanical and electrical domains is contained in the second term and can
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be expanded as

∫
V

e εE dV ≈ EB

(
e1

∫
P1

ε dV + e2

∫
P2

ε dV

)
+ e3ES

∫
P3

ε dV. (4.64)

Note that the piezoelectric coupling coefficient e has been separated into different values

for each section of the beam. The absolute value of this parameter is the same for all

three layers, but due to coupling directions and orientation, the sign of the coefficient

can change. In the single layer section, we will define e3 as the same as the coupling

constant e. In the bimorph section, the coupling in the two layers is reversed, so we will

define e1 = e and e2 = −e. This produces

∫
V

e εE dV ≈ e

[
EB

(∫
P1

ε dV −
∫
P2

ε dV

)
+ ES

∫
P3

ε dV

]
. (4.65)

The contribution from the single layer is the electric field times the membrane stretch.

This integral will be converted to a quadratic polynomial of the mode amplitudes by

generating linear combinations of the mode shapes, which is accomplished by calculating

the arclength (s) of the resulting shape, dividing by the natural length to calculate the

stretch ratio, then taking the natural logarithm of the stretch ratio to determine the

volume average axial strain:

s(a0, a1, ..., an) =

∫ L

LS

√
1 +

(
∂u

∂x

)2

dx, (4.66)

1

V

∫
P3

ε dV = ln

(
s(a0, a1, ..., an)

L0

)
, (4.67)

where L0 is the natural, unstretched length of the beam. Repeating the above process

to span the expected mode amplitudes generates a surface which is fit with a quadratic
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polynomial with the mode amplitudes as the independent variables:

∫
P3

ε dV ≈ c1 + [c3] : [aTa], (4.68)

where ’:’ indicates a matrix dot product, or Frobenius inner product. The d33 beam is

configured such that a voltage difference is detected at the electrodes in response to an

axial deformation; in the bimorph beam this causes a voltage to develop at the electrodes

in response to a bending deformation, and we realize cancellation of any contribution from

an axial load. Therefore to leading order the mode amplitudes will affect this integral in

a linear fashion: ∫
P1

ε dV −
∫
P2

ε dV ≈ a · c2, (4.69)

where c is a vector of coefficients. The integrals on the left hand side of this equation

can be evaluated at various combinations of amplitudes, and this provides solutions for

these coefficients. The total potential energy can now be expressed as

U ≈− 2β a2
0 + β a4

0 + Ω− εE2
B

2
[VP1 + VP2 ] +

εE2
S

2
VP3

− e
[
EB(a · c2) + ES

(
c1 + [c3] : [aTa]

)]
. (4.70)

4.4 EOM and Testing

With the kinetic energy as defined in (4.44), and the potential energy defined as (4.70),

a Lagrangian function will be used to derive equations of motion based on the mode

amplitudes. The Lagrangian L is computed as the kinetic energy minus the potential

energy, and the equations of motion are generated via the Euler-Lagrange equation as
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[47]:

d

dt

(
∂L
∂ȧi

)
− ∂L
∂ai

= ζiȧi(t) i = 0, ..., n (4.71)

d

dt

(
∂L
∂Ḟj

)
− ∂L
∂Fj

=
Ḟj
Rj

j = B, S, (4.72)

where F is the time integral of the voltage, v, called the flux linkage (vj = Ḟj). The terms

on the right side of the equations represent losses in the system. Modes of the system are

assumed to have damping losses proportional to their velocity, ζi corresponding to the

ith mode. Current flowing out of the system removes energy from the electrical portion.

Deriving a model using a buckled equilibrium shape plus the first three mode shapes
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(referred to as a three mode model), we produce equations of the form:

¨ai−1 =b(i,1) a0 + b(i,2) a
3
0 + b(i,3) a1 + b(i,4) a0 a

2
1 + b(i,5) a

3
1 (4.73)

+ b(i,6) a2 + b(i,7) a0 a1 a2 + b(i,8) a
2
1 a2 + b(i,9) a0 a

2
2

+ b(i,10) a1 a
2
2 + b(i,11) a

3
2 + b(i,12) a3 + b(i,13) a0 a1 a3

+ b(i,14) a
2
1 a3 + b(i,15) a0 a2 a3 + b(i,16) a

2
2 a3

+ b(i,17)) a0 a
2
3 + b(i,18) a1 a

2
3 + b(i,19) a2 a

2
3 + b(i,20) a

3
3

+ b(i,21)Aω
2 sinωt+ b(i,22) vB + b(i,23) a0 vS

+ b(i,24) a1 vS + b(i,25) a2 vS + b(i,26) a3 vS

+ b(i,27) ȧ0 + b(i,28) ȧ1 + b(i,29) ȧ2 + b(i,30) ȧ3,

˙vB =d0 ȧ0 + d1 ȧ1 + d2 ȧ2 + d3 ȧ3 + d4 vB, (4.74)

v̇S =ȧ0(h0 a0 + h1 a1 + h2 a2 + h3 a3) (4.75)

+ ȧ1(h4 a0 + h5 a1 + h6 a2 + h7 a3)

+ ȧ2(h8 a0 + h9 a1 + h10 a2 + h11 a3)

+ ȧ3(h12 a0 + h13 a1 + h14 a2 + h15 a3) + h16 vS,

where b is a matrix of coefficients with as many rows as shape functions, and d and h are

vectors of coefficients. The matrices used for this examination can be found in Appendix

C. This three mode model consists of 10 degrees of freedom: eight for the shape functions

and two for the piezoelectric voltages. The primary motivation for generation of this

model is to replicate the behavior that generates the transition to high power output to

allow further dynamic analysis and optimization of the system. Therefore, the modes are

selected by determining the minimum number required to replicate experimental behavior

while keeping the degrees of freedom within the range which can be dynamically analyzed.
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Mode (i) Damping Ratio (ζi)
0 1× 10−11

1 12× 10−8

2 2× 10−7

3 2× 10−5

Table 4.3: Damping ratios prescribed to provide interwell behavior at similar excita-
tion level to experimental observations.

Eigenvalues at equilibrium
-76015
-55787
-27893
-4.73

-49.05±2185i
-75.67±719.3i
-16.84±130.5i

Table 4.4: Eigenvalues of Jacobian matrix at stable equilibrium.

4.4.1 Model Analysis

Evaluation of the model requires determination of damping coefficients. Experimen-

tal results are not indicative of modal damping ratios, so coefficients have been adjusted

to match the input power level at which inter-well oscillations begin, while ensuring that

higher mode numbers are increasingly damped and the unforced system when perturbed

returns to equilibrium quickly. The resulting coefficients can be seen in Table 4.3. Eval-

uation of the Jacobian matrix at one of the stable equilibrium positions shows that this

system is stiff, with the eigenvalues presented in Table 4.4. To deal with this, a backwards

differentiation formula is used for numerical integration, with an analytic Jacobian to aid

in convergence.
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Figure 4.4: A comparison of the power output of the experiment and the predicted
output of the model. Points marked as a through h will be used to compare dynamic
behavior of the experimental system and the model, as shown in Figure 4.5.

4.5 Comparison with Experimental Results

The comparison of power output of the model and experiment, both in response to

6.5 watts of input power, can be seen in Figure 4.4. The experimental setup is buckled

to a transverse maximum displacement of approximately 1.8 mm with an error bound

of approximately 0.5 mm, while the model is specified to have a compressive force of

1.3 N, which results in 1.34 mm maximum transverse deflection, which is within the

error bound of the experiment. Perfect agreement of results is not expected due to the

complex nature of the system and the severe truncation associated with our low order

model. Nevertheless every attempt has been made in the model to keep results for all

parameters within the expected error bounds of the experiment. Phase portraits for

dynamic comparison are constructed by plotting the voltage measured across the single

layer beam against the voltage measured across the bimorph. The system is first allowed

to evolve for several seconds to allow any transient to die out, then when a consistent

behavior is seen, data are gathered by measuring the voltage across a 2.2 kΩ resistor.
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The system is then strobed at the forcing frequency to create a Poincaré map, which is

overlaid on the phase portrait. These plots are shown in Figure 4.5, and it can be seen

that similar behavior in the chaotic region occurs in the model and the experiment. The

system starts as a twisted period-1 orbit which repeats indefinitely as seen in panels a

and e of Figure 4.5. As the forcing frequency is increased there is a torus which loses any

recognizable structure and ceases to repeat itself, resulting in chaotic behavior as seen in

panels b and f . Further increase of the forcing frequency returns to a twisted periodic

orbit (panels c and g), which simplifies and untwists until a much simpler period-1 orbit

is achieved which persists throughout the low power region, as seen in panels d and h.

Note that the experimental system contains much more high frequency content than the

model; however the model successfully captures the essential behavior of the system.

The power output of the model is indicated as being slightly lower than is measured in

the experiment, which is most likely due to the use of the nominal piezoelectric coupling

coefficient, which is expected to have some variation. Note that the high power output

frequencies for the model and experiment are slightly different, but indicate the same

sort of behavior around the high power output areas. The lower frequency peak exhibits

shoulders around the highest output area in both model and experiment, but the model

does not have quite as much bandwidth as the experimental peak. This is presumably due

to the severe truncation in the model used to reduce the system from infinite dimensional

to ten degrees of freedom. The second peak around 120-140Hz also demonstrates wider

bandwidth for the experiment than the model, and any higher frequency peaks are very

attenuated in the model. As the driving frequency of the system increases, the number

of modes required to capture the behavior seen in the experiment goes up. However, our

model has been truncated to allow accurate analysis of the lowest lobe of power output.

In spite of these discrepancies, the model appears to capture the critical behavior of

the system and gives a good indication of the power output over a significant frequency
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Figure 4.5: Phase plots around a chaotic regime in the experiment and the model.
Phase plots are generated with voltage output from the single layer beam on the
horizontal axis and voltage from the bimorph on the vertical axis. Poincaré maps are
overlaid on phase space plots, and the letter in each panel corresponds to the marked
locations in Figure 4.4. Upper plots represent the experiment, lower plots represent
the model. At frequencies lower than the chaotic regime, both have a complex period-1
orbit. Increasing the forcing frequency causes chaotic behavior, producing phase plots
and Poincaré maps that appear to have no structure. Continued increase of the
forcing frequency returns the behavior to a periodic response, which simplifies as the
forcing frequency moves further above chaos until a relatively simple period-1 orbit is
achieved.

range.

4.5.1 Model Conclusions

A model has been generated for a complex, nonlinear energy harvesting system. Finite

element analysis was used to determine a basis for projecting the system dynamics onto,

as well as a reference for stresses and strains in the equilibrium positions. This approach

allows a system to be modeled when analytic solutions are unavailable. It was found that

to properly capture the small strain snap-through effects of the system, it is necessary

to keep several modes in addition to the buckled equilibrium shape so that the system

never passes through the flat, unstable equilibrium where the strains would be relatively

high. The model demonstrates good quantitative agreement with the power output of the

experiment in both power level and frequency of occurrence. Experimental transitions
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between dynamic behavior patterns are replicated closely, indicating that the model is

appropriate for dynamic analysis of the underlying phenomena. We note that nominal

material parameters are used in this chapter; it was not necessary to tune these for

better agreement. Overall, the model provides a source for understanding and optimizing

energy harvesting ability with a system that exhibits a much broader response than a

linear resonator.

63



Chapter 5

Analysis of the Model

We propose that the critical parameters for examining a nonlinear energy harvesting

system are the forcing power level and the frequency and/or bandwidth of excitation.

Commonly, comparisons are made using the amplitude of the acceleration of the forcing

signal, without regard to the fact that the forcing power level is not constant or linear

as the frequency is changed when the acceleration amplitude is kept constant. This

results in higher frequency tests being done at significantly higher forcing power levels

which can skew the results to appear that the device works just as well or better at

higher frequencies, particularly damaging the perception of output bandwidth. The lack

of superposition in nonlinear devices compounds this phenomenon. Sweeps at constant

acceleration often result in overlapping power levels with another sweep which is presented

as a separate result, and interpolation or normalization are not possible. Only comparing

signals produced by the same input power level allows for a fair comparison of output

root mean squared (RMS) values without any skew based on frequency of excitation.

To begin examination of the model, we produce a plot of power output over the

parameter space of frequency and available forcing power. This can be seen in Figure

5.1. Here the forcing power is calculated as the forcing amplitude squared multiplied with
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Figure 5.1: Summed RMS power output in mW of both single layer beam and bimorph
beam. Note the sharp transition between low and high power on the high frequency
side of the tongue. Also note the ”bite” that seems to be taken out of the high power
region on the low frequency side.

the forcing frequency in radians/second cubed. This represents the maximum amplitude of

the acceleration multiplied with the maximum value of the velocity, providing a measure

of mechanical power. Though these quantities are never at their maxima at the same

instant, it provides a consistent and easily calculable reference for which to compare

forcing power levels, which we will denote as the available input power. The output

power is the sum of the RMS voltage output divided by the resistive load in kilo-ohms

for both the single layer and bimorph sections of the beam. Note that there is a region of

the parameter space where the power output is significantly higher. This region begins

at approximately 5 watts of available input power and a forcing frequency of 41 Hz,

where the bandwidth is quite small. As the available input power is increased there is

a significant increase of the bandwidth of the high power region. Interestingly, around

7 watts of available input power there is a region where the bandwidth shrinks. This

phenomenon is due to the existence of a non-attracting set of high power orbits that

settles to a small amplitude orbit after a period of high power transients, as will be

shown in more detail later in this paper. The high power region is associated with the
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Figure 5.2: Bifurcation diagram created by strobing the system at the forcing fre-
quency. The selected function is the equilibrium amplitude a0, and the available
input power is 6 watts. Frequencies with well defined discrete points have periodic
solutions, while frequencies where the Poincaré intersections fill in vertical bands of
parameter space are chaotic.

beam entering into a behavior which transitions between the two stable equilibria of the

buckled beam, which we will call a snap-through behavior. The region of parameter space

where the beam exhibits this snap-through behavior can be determined by examining

the long-time average of the amplitude of the equilibrium mode [53]. When the beam

is settled into single well behavior, the time average is very close to positive or negative

one, while during snap-through behavior the time average approaches zero. The black

trace in Figure 5.1 represents the boundary of the region where the snap-through behavior

represents the attracting set, and all orbits inside the region make well-to-well transitions.

Note that while this encompasses a large portion of the high power region, there is a

significant slice on the high frequency side where high power output is realized without

snap-through behavior, as well as a small lobe on the low frequency side. These regions

will be examined later in the paper.
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5.1 Bifurcation Diagrams

For a specified available input power level, a bifurcation diagram can be created.

To do so, a range of frequencies is selected with adequate density to catch interesting

phenomena, and a time series is run at each chosen excitation frequency. After discarding

any transient portion, a Poincaré section is created by strobing the time series once

per forcing period. Selecting one representative function and plotting the amplitude of

that function across the frequency range, a bifurcation diagram is generated; see Figure

5.2. For this example, an available input power level of 6 watts has been selected, and

the function we are examining is the amplitude of the equilibrium mode, a0. Periodic

behavior is expected to have all of the Poincaré iterates lie on top of each other, and

are therefore expected to correspond to a point or a well defined set of points at the

respective frequency. Beginning at the far right of the diagram, a period one oscillation

is noted for which a demonstrative time series can be seen in Figure 5.3(a). Decreasing

the forcing frequency results in this behavior splitting into a period two oscillation, as

seen in Figure 5.3(b), suggesting the existence of a period doubling cascade, which will

be examined shortly. Moving further down in frequency, chaotic response is found first

in just one well, panel (c), then the attractor expands until it fills the well, then snap-

through behavior begins with the attractor visiting both wells indiscriminately, see panel

(d). This behavior suggests that the transition from single well behavior to snap-through

behavior is governed by an attractor merging crisis [54] of the symmetry related attractors

in each well. Traveling for a while through the chaotic zone, suddenly a periodic window

is encountered. A time series with Poincaré map can be seen in panel (e) of Figure 5.3.

Further reduction in frequency carries us through several more chaotic zones and periodic

windows before we return to a period one oscillation. Note that at approximately 42.7

Hz in Figure 5.2 there is a discontinuity in the bifurcation branch of the period one orbit.
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Figure 5.3: A set of time series demonstrating qualitatively different behaviors. All
plots are of the equilibrium mode amplitude, with red dots overlaid at the Poincaré
sections used to create the bifurcation diagrams. Panel (a) demonstrates a simple
period 1 orbit which exists at 42.3 Hz. As the frequency is decreased to 42.14 Hz,
the orbit becomes period 2, as seen in panel (b). Chaos is first noted in a single well,
as shown in panel (c) at 42.05 Hz. Quickly this chaotic attractor merges with the
attractor existing in the other well, and snap-through behavior is noted, as seen in
panel (d) at 41.9 Hz. Moving down in forcing frequency through the chaotic zone, a
periodic window is encountered, as seen in panel (e) at 41.65 Hz.
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To determine the cause of this irregularity, we can use the numerical bifurcation software

AUTO [55] to follow the development of the period one orbit as we move through this

range of forcing frequencies. We will start on the stable period one orbit above the

discontinuity, and follow the orbit as the forcing frequency is decreased. We find that

there is a region where multiple saddle-node bifurcations create multiple stable orbits.

Figure 5.4 shows the evolution of the orbit through this frequency range. The red portions

of the trace are the unstable branch of the period one orbit, while the blue portions are

stable. The vertical axis represents the L2 norm of the voltage produced by this orbit,

so higher values are associated with higher power output. We note that between 42.39

and 42.71 Hz, there are multiple stable instances of this period one orbit, connected

through 4 saddle-node bifurcations (marked with black triangles on the figure). While

the intermediate stable orbit is not easily discovered with a time series exploration, the

low power and high power branches are both easily observed, and the switch between

them is what causes the discontinuity observed in Figure 5.2. Moreover, this jump

between stable orbits is the cause of the sudden jump in output power noted at the high

frequency side of the high power region in Figure 5.1. The stable high power branch of

the orbit doesn’t exist for long before it loses stability at a period doubling bifurcation

(such bifurcations are marked with black squares). The period doubled stable solution

can be traced to a second period doubling bifurcation, where a new branch leads to a

third bifurcation, and quickly the orbit becomes too complex and the bifurcations too

close together to identify any further, accumulating at approximately 42.075 Hz. Recall

that the Feigenbaum number (δ) can be calculated as

lim
n→∞

λn − λn−1

λn+1 − λn
= δ → 4.6692016, (5.1)
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Figure 5.4: Evolution of the period one orbit at the high frequency side of the high
power region. Blue traces indicate regions of stability of the period one orbit, the green
trace is a stable period two orbit, while the red lines indicate unstable branches. Saddle
node bifurcations are marked with black triangles, while period doubling bifurcations
are marked with black squares. The existence of multiple stable orbits at different
power output levels provides insight to the sudden change of output power observed
here. The period doubling cascade at the far left of the figure indicates the transition
to chaotic behavior.

where λn represents the frequency at which the nth bifurcation occurs [13] [56]. For

the present model this is calculated as 4.5 for the fourth period doubling bifurcation

(n = 4), which is reasonable close to the Feigenbaum number, suggesting that this period

doubling cascade obeys the universal scaling expected of a period doubling transition to

chaotic behavior. The period one orbit can be traced through the high power region,

where it remains unstable, until stability is regained as we drop back into single well

oscillations near a saddle-node bifurcation on the low frequency side of the high power

region, corresponding to 39.6 Hz with 6 watts of available input power. The saddle-

node bifurcation appears to trace the boundary, as can be seen in Figure 5.6, along the

low frequency side of the snap-through region. However, this bifurcation branch is not

responsible for the transition. There is a very small region where both the stable period

one orbit, which undergoes the saddle-node bifurcation, and the chaotic attractor coexist.

Furthermore, a time series including the transient portion can be seen in Figure 5.5. The
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Figure 5.5: On the low frequency side of the high power region, transient snap-through
behavior can be observed before the system settles into a single well oscillation. This
time series plots the equilibrium mode amplitude, with a forcing frequency of 39.7 Hz,
and an available input power of 6 watts.

transient portion produces snap-through behavior in a manner similar to trajectories

where snap-through is the attracting behavior. The overlap of stable period one and

chaotic regions combined with the presence of transient chaos indicates that an unstable

orbit has collided with the chaotic attractor, creating a boundary crisis [57]. The chaotic

set becomes non-attracting, but orbits near the boundary are able to jump onto this set

for a short period of time before moving off to a stable period one orbit. Therefore, we

see a high power output transient that settles to a low power output long term behavior.

Presumably small perturbations to the system could result in returning to the high power

non-attracting set through this region. Though all of this bifurcation analysis has been

developed at an available input power level of 6 watts, these phenomena persist across the

span of the high power region. Using AUTO to trace the bifurcation branches through

the frequency/available power parameter space and plot them on top of the power output

allows us to trace the boundaries of the high power region very accurately. Figure 5.6

shows this, where saddle node branches are traced in black, period doubling branches

in red, and the region of transient chaos highlighted in brown. Note that the region of

transient chaos fills in the ”bite” of low power output noted around 7-8 watts of available

input power. There is a high power lobe that occurs outside of the snap-through region

on the low frequency side, between about 5 and 7 watts of available input power. This is
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Figure 5.6: Power output over the parameter space, with bifurcation sets shown.
Black lines are associated with saddle-node bifurcations, and the red line is a period
doubling bifurcation at the start of the period doubling cascade. The brown high-
lighting indicates regions of transient chaos. The majority of the high power output
region is enclosed by the saddle-node bifurcations.

also traced by a saddle-node bifurcation, indicating that there is a sudden change from

a low power output behavior to a high power output behavior.

5.2 Periodic Windows

It is informative to examine the periodic windows that exist within the chaotic re-

gion. Reviewing Figure 5.2, we note that there are several windows where the period is

quite high. By measuring the time elapsed between crossings of the equilibrium mode

through zero in the positive direction, and averaging over a comparatively long time pe-

riod we can define an average crossing frequency. Plotting this for a sweep at 6 watts of

available input power, and overlaying integer multiples of the forcing frequency produces

Figure 5.7. Note that there are several regions where the frequency of the well-to-well

oscillations is locked to the forcing frequency. This is particularly obvious in this figure

between 40 and 40.5 Hz, where the oscillations are locked at 9 periods of the forcing
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Figure 5.7: Frequency locking in the well-to-well oscillation zone. Any time we are
experiencing well-to-well oscillations, this frequency is non-zero. Note the regions
where the crossing frequency locks to the forcing frequency. Locked oscillations of
several different periods are present, ranging from 5 forcing cycles up to 11.

cycle. Note also that Figure 5.2 indicates that the periodic windows exist at the same

frequencies which indicate a lock between the forcing frequency and the response of the

system. Moreover, the integer relation to the forcing frequency is coincident with the

periodicity of the associated window. This phenomenon can be visualized through Figure

5.8, where the periodic windows have been highlighted in a color pattern consistent with

their periodicity as determined from the locking behavior. In this plot, we have stacked

multiple bifurcation diagrams together to give a sense of the development of the periodic

windows and snap-through regions throughout the parameter space. Interestingly, we

note that the relatively low period orbits only occur at higher power levels, with higher

periodicities being present at lower available power levels. The expansion of the chaotic

region with its interspersed periodic windows is clearly apparent from this perspective.

The development of the chaotic region is closely associated with snap-through behavior,

as evidenced by the fact that nearly all chaotic frequencies have strobe points in both

wells. Therefore it is reasonable to assume that for this beam, the chaotic attractor be-

coming stable results in high power output, though it is possible to achieve high power

output without a chaotic attractor. The transition between periodic and chaotic be-
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Figure 5.8: Stacked bifurcation diagrams of the equilibrium mode show the evolution
of the snap-through region. Here some of the major periodic windows are highlighted:
yellow corresponds to a period 5 oscillation, green to a period 7, and red to a period
9. As the available input power level is decreased, the trend is towards higher period
periodic windows.
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Figure 5.9: Upper panels show time series of periodic response at 41.47 Hz, and chaotic
response at 41.49 Hz. Lower panels phase space of period 5 oscillation at 41.47 Hz, and
the response at 41.49 Hz where the Poincaré sections no longer form a periodic orbit.
Note that the behavior of the chaotic series is very similar to the periodic response
with bursts of different behavior interspersed that prevents the Poincaré map from
repeating.

havior within the chaotic attractor deserves some attention. A time series of a period

5 window with overlaid Poincaré map and a time series of a chaotic response very close

in frequency is displayed in Figure 5.9. The phase portraits associated with each trajec-

tory are also presented. The chaotic time series has sections that appear to behave in

a very similar way to the periodic time series. However, there are intermittent bursts

of aperiodic behavior that prevent the Poincaré map from repeating as it does in the

periodic case. From this it can be inferred that the transition between periodic behavior

and chaotic behavior is governed by an intermittency transition around these periodic

windows.

5.3 Wideband Forcing

In the experimental exploration of this beam shown in Chapter 3, a wide band excita-

tion was used to explore the performance in response to a more realistic vibration source

than a single frequency sinusoid. To generate this excitation, white noise is generated
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and bandpass filtered to allow only specific frequencies. Specifically, a central frequency

is selected, then the bandpass filter is set to allow a range of ±1 Hz around the central

frequency, with a 12th order crossover. A representative example of the time series pro-

duced by this method as well as the associated frequency spectrum and resulting output

can be seen in Figure 5.10. Spreading the power across several frequencies requires a

higher input power level to achieve a comparable output power level with the single si-

nusoid forcing, but it can be noted from Figure B.5 that the bandwidth is much wider in

response to this more complex forcing than it is with a single frequency sinusoid, partic-

ularly on the high frequency side of the high power region. The regions of transient chaos

observed in Figure 5.6 have blended into the high power region. It can be noted from

Figure 5.10 that the beam does not exhibit continuous snap-through behavior in response

to this excitation, rather it snaps through in response to the large amplitude sections of

the forcing signal. Due to the time-varying nature of a non-sinusoidal forcing signal, any

sort of behavior can be viewed as transient so the distinction between attracting and

non-attracting chaotic sets has been blurred to the point of becoming indistinguishable.
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Figure 5.10: Panel (a) demonstrates a time series of the widened band forcing, with
the power spectrum of this input shown in panel (c). The resulting amplitude of
the equilibrium mode from this input is shown in panel (b). For this combination,
the input RMS power is 5.4 watts, with an output RMS power of 0.35 mW. Note
that the widened band forcing signal has a beating effect where the forcing amplitude
goes through low amplitude sections and high amplitude sections. Unsurprisingly, the
beam responds with single well oscillations during the small amplitude portions, and
snap-through behavior during the large amplitude sections.
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Figure 5.11: Contour plot of power output in response to widened band forcing signal.
Contours are labeled with the associated power output in mW.
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Chapter 6

Conclusions and Future Work

In this document we have developed a device which is capable of harvesting vibrational

energy over a greater bandwidth than a linear resonant device. Experimental results

presented in Chapter 3 demonstrated this, and indicated that this device was particularly

attractive when used to harvest energy from broad spectrum forcing signals. The next

step was to develop a model of the system, so we started by attempting to use established

methods for buckled beams in Section 4.1, and found that the assumptions made in this

process were not compatible with the buckling levels we wanted to achieve, and were

therefore unacceptable for use as a dynamic model. As an alternative approach, the finite

element analysis software ABAQUS was used to produce both the buckled equilibrium

shape and linear modes about the nonlinear operating point, as was presented in Section

4.2. This information was used to develop energy equations based on the mode amplitudes

in Section 4.3, and then finally compared to experimental results in Section 4.5, where

good agreement for the different modes of operation is shown between the model and the

experimental results.

Analysis of this beam model in Chapter 5 indicates that the presence of a chaotic

attractor results in a relatively high power output. The chaotic attractor is associated
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with a period doubling cascade, an itermittency transition, and a crisis where an un-

stable period-one orbit collides with the attractor. There are regions where the power

output increases without a chaotic attractor, but these areas are bounded by saddle-

node bifurcations which are the start of a transformation of behavior which will result

in a chaotic attractor when the parameter of interest continues to evolve. The resulting

high power bandwidth is much greater than can be realized with a linear oscillator, and

performs particularly well in response to a widened band forcing signal, indicating that

this beam system is particularly well suited to the time varying characteristics that are

commonly present in ambient vibrations. This model performs quite well in comparison

with other nonlinear energy harvesting devices, though the lack of a well-defined and

properly normalized performance metric for other studies makes quantitative compari-

son very difficult. Analysis of the single-forcing frequency model provides understanding

of which transitions result in high power output.

Further investigations of the system should be oriented towards utilizing the char-

acteristics of the model to attempt to optimize the beam design in response to some

particular figure of merit, such as bandwidth or the integral of the power output, or per-

haps to ensure particularly good response to a certain range of forcing frequencies. Due

to the disconnect between beam physical parameters and the resulting model, it will be

necessary to build any variations of the model as a finite element representation, extract

the critical stress and strain values, and regenerate the model. This has been started to

the extent of building the models in ABAQUS and extracting the shapes, but general-

izing all of the subsequent analysis steps to varying beam parameters will be postponed

to future work.
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Appendix A

Finite Element Setup Process

• Sketch a 3D deformable solid extrusion for the steel beam, approximate size: 0.1.

– centered on x-axis, extending from 0-L

∗ start @ (0,−b
2

)

∗ opposite corner @ (L, b
2
)

– extrude to proper thickness

• repeat above for piezoelectric beam

• create materials and sections for each beam

• assign section to each beam

• Assembly

– instance piezo

∗ translate from (0,0,0) to (0,0,-0.0014)

– instance piezo

∗ translate from (0,0,0) to (0,0,+0.0014)
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– instance steel

– instance piezo

∗ translate from (0,0,0) to (Lsteel − Loverlap,0,+0.0024)

• Interaction

– Define surface-to-surface contact (standard) for all contacting surfaces

– Create tie constraint for all contact surfaces

• Create electrical BC on interior piezoelectric surfaces

• translate piezo’s into contact with appropriate surfaces

• create disp/rotat BC @ bimorph fixed end, constrain all DOF

• create disp/rotat BC @ single layer fixed end, constrain all DOF

• create linear frequency response step in un-deformed condition (9 freqs)

• create static general step NLGeom ON

– period: 0.1, 1e-15 min, 1e-3 max step, 1e-5 start, 10,000 iteration max

• in BC manager, change sliding end BC to be free in 1 direction

• create pressure load on end of single beam

– set total force applied

• create frequency step

– modify BC to fix U1 @ single end

– add additional general and linear steps as needed
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• Mesh

– seed all 4 long edges @0.001 /element

– seed all 4 widths @ 2 elements

– seed height @ 1 element

• create node set on midline of top of beam (named shapes)

• create field output request for the first step

– set:shapes

– Disp/Vel/Acc/UT/translations

• change element type to quadratic, full integration.
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Labview

B.1 Power Level Adjustment Controller

Figure B.1: Interface panel. Displays live data to the user, and allows for user input
live updates while running. Here we can adjust the tolerance to which we want to
control into, change the amount of time data is gathered for, and other time based ad-
justments to allow for proper human observation. Displayed statistics include current
driving amplitude, reference magnitude, and resulting wave magnitude.
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Figure B.2: This image shows the organization of the program and indicates important
parameters that are to be stored throughout the execution. The program is structured
as a state machine, which starts off with an initialization routine where the interface
with the experimental device is started and configured.

Figure B.3: Contour plot of power output in response to widened band forcing signal.
Contours are labeled with the associated power output in mW.
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Figure B.4: This state gathers data from the experimental device while syncronizing
a signal output. The first writing event triggers the reading to start, and both are
run for a specified number of synchronized time steps.

Figure B.5: This state takes the data gathered from the experiment, and decided
whether the applied signal resulted in the desired output. If it is within tolerance, we
record the acceptable data, change frequency and start over. If the results are out of
tolerance, the driving amplitude is adjusted and run again.
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B.2 Raw Data Collection

Figure B.6: The control panel for the raw data collection program. Here we can
control the sampling rates of both the input and the output, and we can control how
many samples are used to generate the signals. Feedback from the program comes as
the current frequency, and some tallies to keep track of where in the program it is at.

Figure B.7: The operations of this program are quite simple. The appropriate fre-
quency/amplitude pairs produced by the control loop are loaded, the signal is gener-
ated, the experiment starts and we wait for two seconds (variable) for transients to
die out. Then we gather samples from the accelerometer and both voltage signals,
which are then written to data files titled with their source and test number.

87



Labview Chapter B

B.3 Amplitude Extraction Program

Figure B.8: The cartoon demonstration of this program. It takes in an array of
experimental data along with the length of the signal, samples per period of the
forcing signal, and the index of the array to be analyzed. The output is the amplitude
of the input waveform at the frequency specified by the samples per period input.

Figure B.9: This vi starts by creating a sine and a cosine wave at the frequency
specified by the input samples per period. The desired array is selected via a user
selected input, and the signal is multiplied separately by both the sine and cosine
waves. From this we average the values over the array, and arrange at the true
amplitude at the specified frequency of the selected array.
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Appendix C

Model Matrices

These are the matrices used to evaluate the model according to equations of motion as

dictated by 4.74.

C.1 ”b” matrix

B(:,1-10)=



4.6792e6 −4.6792e6 3.0868e4 1.6238e4 5.7772e4 4.6283e3 −8.5506e4 1.2149e5 5.9335e4 2.7958e5

−3.1111e6 3.1111e6 −3.879e4 −1.2368e4 −5.6353e4 −1.5915e4 7.1771e4 −1.3911e5 −3.9728e4 −2.8698e5

2.2135e5 −2.2135e5 3.1832e4 −1.7494e4 1.6094e3 −3.9363e4 −5.2679e5 −2.0004e5 2.2235e5 −3.8841e5

−4.7753e6 4.7753e6 1.7122e3 −3.0519e4 −5.8959e4 2.6692e4 6.4494e4 −1.2398e5 −9.607e4 −2.8533e5



b(:,11-20)=



5.1763e5 1.6291e5 −4.2026e3 1.3573e5 3.5928e5 5.0641e5 1.8815e5 −2.9523e4 1.0784e5 1.6504e5

−4.0993e5 −1.0196e5 −2.5468e3 −7.2203e4 −2.3888e5 −3.3671e5 −1.2293e5 −2.2147e4 −7.1704e4 −9.797e4

−4.1559e5 −1.1694e3 −198.8071 6.4209e3 −1.0692e4 −1.9868e5 −6.5571e4 −1.3966e3 −2.2691e5 −3.4875e4

−7.1865e5 −3.6071e5 2.6893e4 −3.567e5 −7.4876e5 −1.112e6 −4.0661e5 2.1448e5 −4.3855e5 −4.5765e5


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b(:,21-30)=



217.5912 −853.4918 447.0109 −311.2155 −1.4341e3 −765.9379 −1.7956e9 1.1939e9 −8.4941e7 1.8325e9

−1.3515e3 431.6371 −336.9502 296.5459 1.1025e3 481.6803 1.1939e9 −1.1638e9 5.6477e7 −1.2184e9

−1.0979e3 −655.0989 −119.9638 288.6023 922.4949 263.1793 −8.4941e7 5.6477e7 −7.5716e8 8.6687e7

847.1166 1.5043e3 122.1378 173.5364 2.2317e3 2.2854e3 1.8325e9 −1.2184e9 8.6687e7 −3.8023e9



C.2 ”d” vector

d= h(1:10)= [
21.2556 22.5333 50.0881 −20.1127 −6.1366e7

]

C.3 ”h” vector

h(1:10)=

[
22.9956 −36.7379 −49.4305 9.1522 −161.3873 −48.7929 13.1824 −29.732 −49.4305 9.1522

]

h(11:17)= [
−60.3702 13.1824 22.9956 −36.7379 −48.7929 −95.5216 −1.2273e8

]
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Mathematica

D.1 Mathematica EOM

This section contains a Mathematica notebook that is used to generate the equations

of motion of the beam. We start by importing the mode shapes and the Matlab calcu-

lations of strain integrals. It then creates a grid of points by varying two mode shapes

and calculating the membrane stretch produced by the combination. A two dimensional

surface is fit to this grid of points to establish a smooth approximation of the membrane

stretch of these two mode shapes. This procedure is repeated for all combinations of

mode shapes, and the results are combined to make a complete description of the strain

in the beam as a function of the mode shapes. This is then used to calculate the po-

tential energy as a function of the mode shapes, and combined with the kinetic energy

to derive the equations of motion. The resulting coefficients are written to a file called

MatLink.txt which is used by Matlab to run simulations of the beam model.
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H*Clear any possible information in the kernel*L
ClearAll@"Global`*"D
Remove@"Global`*"DH*import and interpolate the mode shapes*L
h0 = Import@"C:\\Users\\louis\\Desktop\\abaM0.txt", "Table"D;

m0 = Interpolation@h0D;

h1 = Import@"C:\\Users\\louis\\Desktop\\abaM1.txt", "Table"D;

m1 = Interpolation@h1D;

h2 = Import@"C:\\Users\\louis\\Desktop\\abaM2.txt", "Table"D;

m2 = Interpolation@h2D;

h3 = Import@"C:\\Users\\louis\\Desktop\\abaM3.txt", "Table"D;

m3 = Interpolation@h3D;

H*Import the matlab computed integrals*L
matFit = Import@"C:\\Users\\louis\\Desktop\\matFit.txt", "Table"D
H*Import the beam end locations*L
u = Import@"C:\\Users\\louis\\Desktop\\abaL.txt", "List"D;

Ls = u@@1DD
Lb = u@@2DD
Lend = u@@3DD
H*Initialize some matrices for storing fit coefficients*LH*The first row will be used to accumulate fit coefficients,

and the second row will

be used to tally how many fits have been performed*L
b = K 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
O;

s = K 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
O;

99-1.65753 ´ 10
-12

, 0.0000144173, 31.71, -2.99839 ´ 10
-11

, -3.17863 ´ 10
-11

,

9.28 ´ 10
-7

, 0.0448, -1.14=, 9-9.93492 ´ 10
-12

, 0.0000224195, -30.41,

-7.0656 ´ 10
-11

, 2.83717 ´ 10
-11

, 4.63996 ´ 10
-7

, 0.0149998, 7.526 ´ 10
-9==

0.105993

0.115992

0.221957

H*Calculate coeffecients for a0 and a1*L
blahB = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m1@xD + i m0@xD, xDL2M, 8x, 0, Lb<EF,

8i, -2, 2, .2<, 8j, -5, 5, .5<F;

blahS = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m1@xD + i m0@xD, xDL2M, 8x, Ls, Lend<EF,

8i, -2, 2, .2<, 8j, -5, 5, .5<F;

blahB2 = Table@8i, j, blahB@@i 5 + 11, j 2 + 11DD<, 8i, -2, 2, .2<, 8j, -5, 5, .5<D;



blahB3 = Table@8i , j , blahB@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

blahS2 = Table@8i, j, blahS@@i 5 + 11, j 2 + 11DD<, 8i, -2, 2, .2<, 8j, -5, 5, .5<D;

blahS3 = Table@8i , j , blahS@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

doodB = Table@0, 8i, 441<D;

doodB2 = Table@0, 8i, 441<D;

doodS = Table@0, 8i, 441<D;

doodS2 = Table@0, 8i, 441<D;

For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodB@@i * 21 + jDD = blahB2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodB2@@i * 21 + jDD = blahB3@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodS@@i * 21 + jDD = blahS2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodS2@@i * 21 + jDD = blahS3@@i + 1, jDDDD
planeB = Fit@doodB, 81, a1^2, a0^2, a1 a0<, 8a0, a1<D
planeS = Fit@doodS, 81, a1^2, a0^2, a1 a0<, 8a1, a0<D
b@@1, 2DD = b@@1, 2DD + CoefficientAplaneB, a0

2E;

b@@2, 2DD = b@@2, 2DD + 1;

b@@1, 3DD = b@@1, 3DD + Coefficient@planeB, a0 a1D;

b@@2, 3DD = b@@2, 3DD + 1;

b@@1, 6DD = b@@1, 6DD + CoefficientAplaneB, a1
2E;

b@@2, 6DD = b@@2, 6DD + 1;

b@@1, 1DD = b@@1, 1DD + ChopAplaneB - CoefficientAplaneB, a0
2E a0

2
-

Coefficient@planeB, a0 a1D a0 a1 - CoefficientAplaneB, a1
2E a1

2E;

b@@2, 1DD = b@@2, 1DD + 1;

s@@1, 3DD = s@@1, 3DD + Coefficient@planeS, a0 a1D;

s@@2, 3DD = s@@2, 3DD + 1;

s@@1, 6DD = s@@1, 6DD + CoefficientAplaneS, a1
2E;

s@@2, 6DD = s@@2, 6DD + 1;

H*Calculate coeffecients for a0 and a2*L
blahB = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m2@xD + i m0@xD, xDL2M, 8x, 0, Lb<EF,

8i, -2, 2, .2<, 8j, -5, 5, .5<F;

blahS = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m2@xD + i m0@xD, xDL2M, 8x, Ls, Lend<EF,

8i, -2, 2, .2<, 8j, -5, 5, .5<F;

blahB2 = Table@8i, j, blahB@@i 5 + 11, j 2 + 11DD<, 8i, -2, 2, .2<, 8j, -5, 5, .5<D;

blahB3 = Table@8i , j , blahB@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

blahS2 = Table@8i, j, blahS@@i 5 + 11, j 2 + 11DD<, 8i, -2, 2, .2<, 8j, -5, 5, .5<D;

blahS3 = Table@8i , j , blahS@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

doodB = Table@0, 8i, 441<D;

doodB2 = Table@0, 8i, 441<D;

doodS = Table@0, 8i, 441<D;

doodS2 = Table@0, 8i, 441<D;

For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodB@@i * 21 + jDD = blahB2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodB2@@i * 21 + jDD = blahB3@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodS@@i * 21 + jDD = blahS2@@i + 1, jDDDD

2     StrainCalc.nb



For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodS2@@i * 21 + jDD = blahS3@@i + 1, jDDDD
planeB = Fit@doodB, 81, a2^2, a0^2, a2 a0<, 8a0, a2<D
planeS = Fit@doodS, 81, a2^2, a0^2, a2 a0<, 8a0, a2<D
b@@1, 2DD = b@@1, 2DD + CoefficientAplaneB, a0

2E;

b@@2, 2DD = b@@2, 2DD + 1;

b@@1, 4DD = b@@1, 4DD + Coefficient@planeB, a0 a2D;

b@@2, 4DD = b@@2, 4DD + 1;

b@@1, 7DD = b@@1, 7DD + CoefficientAplaneB, a2
2E;

b@@2, 7DD = b@@2, 7DD + 1;

b@@1, 1DD = b@@1, 1DD + ChopAplaneB - CoefficientAplaneB, a0
2E a0

2
-

Coefficient@planeB, a0 a2D a0 a2 - CoefficientAplaneB, a2
2E a2

2E;

b@@2, 1DD = b@@2, 1DD + 1;

s@@1, 4DD = s@@1, 4DD + Coefficient@planeS, a0 a2D;

s@@2, 4DD = s@@2, 4DD + 1;

s@@1, 7DD = s@@1, 7DD + CoefficientAplaneS, a2
2E;

s@@2, 7DD = s@@2, 7DD + 1;

H*Calculate coeffecients for a0 and a3*L
blahB = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m3@xD + i m0@xD, xDL2M, 8x, 0, Lb<EF,

8i, -2, 2, .2<, 8j, -5, 5, .5<F;

blahS = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m3@xD + i m0@xD, xDL2M, 8x, Ls, Lend<EF,

8i, -2, 2, .2<, 8j, -5, 5, .5<F;

blahB2 = Table@8i, j, blahB@@i 5 + 11, j 2 + 11DD<, 8i, -2, 2, .2<, 8j, -5, 5, .5<D;

blahB3 = Table@8i , j , blahB@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

blahS2 = Table@8i, j, blahS@@i 5 + 11, j 2 + 11DD<, 8i, -2, 2, .2<, 8j, -5, 5, .5<D;

blahS3 = Table@8i , j , blahS@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

doodB = Table@0, 8i, 441<D;

doodB2 = Table@0, 8i, 441<D;

doodS = Table@0, 8i, 441<D;

doodS2 = Table@0, 8i, 441<D;

For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodB@@i * 21 + jDD = blahB2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodB2@@i * 21 + jDD = blahB3@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodS@@i * 21 + jDD = blahS2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++, doodS2@@i * 21 + jDD = blahS3@@i + 1, jDDDD
planeB = Fit@doodB, 81, a3^2, a0^2, a3 a0<, 8a0, a3<D
planeS = Fit@doodS, 81, a3^2, a0^2, a3 a0<, 8a0, a3<D
b@@1, 2DD = b@@1, 2DD + CoefficientAplaneB, a0

2E;

b@@2, 2DD = b@@2, 2DD + 1;

b@@1, 5DD = b@@1, 5DD + Coefficient@planeB, a0 a3D;

b@@2, 5DD = b@@2, 5DD + 1;

b@@1, 8DD = b@@1, 8DD + CoefficientAplaneB, a3
2E;

b@@2, 8DD = b@@2, 8DD + 1;

StrainCalc.nb    3



b@@1, 1DD = b@@1, 1DD + ChopAplaneB - CoefficientAplaneB, a0
2E a0

2
-

Coefficient@planeB, a0 a3D a0 a3 - CoefficientAplaneB, a3
2E a3

2E;

b@@2, 1DD = b@@2, 1DD + 1;

CoefficientAplaneS, a0
2E

s@@1, 2DD = s@@1, 2DD + CoefficientAplaneS, a0
2E;

s@@2, 2DD = s@@2, 2DD + 1;

s@@1, 5DD = s@@1, 5DD + Coefficient@planeS, a0 a3D;

s@@2, 5DD = s@@2, 5DD + 1;

s@@1, 8DD = s@@1, 8DD + CoefficientAplaneS, a3
2E;

s@@2, 8DD = s@@2, 8DD + 1;

s@@1, 1DD = s@@1, 1DD + ChopAplaneS - CoefficientAplaneS, a0
2E a0

2
-

Coefficient@planeS, a0 a3D a0 a3 - CoefficientAplaneS, a3
2E a3

2E;

s@@2, 1DD = s@@2, 1DD + 1;

H*Calculate coeffecients for a1 and a2*L
cross0B =

TableBLogB 1

.116

NIntegrateA,I1 + HD@j m1@xD + i m2@xD + m0@xD, xDL2M, 8x, 0, Lb<EF,

8i, -5, 5, .5<, 8j, -5, 5, .5<F;

cross0S = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m1@xD + i m2@xD + m0@xD, xDL2M,

8x, Ls, Lend<EF, 8i, -5, 5, .5<, 8j, -5, 5, .5<F;

cross0B2 = Table@8i, j, cross0B@@i 2 + 11, j 2 + 11DD<, 8i, -5, 5, .5<, 8j, -5, 5, .5<D;

cross0B3 = Table@8i , j , cross0B@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

cross0S2 = Table@8i, j, cross0S@@i 2 + 11, j 2 + 11DD<, 8i, -5, 5, .5<, 8j, -5, 5, .5<D;

cross0S3 = Table@8i , j , cross0S@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

cdood0B = Table@0, 8i, 441<D;

cdood0B2 = Table@0, 8i, 441<D;

cdood0S = Table@0, 8i, 441<D;

cdood0S2 = Table@0, 8i, 441<D;

For@i = 0, i < 21, i++,

For@j = 1, j < 22, j++, cdood0B@@i * 21 + jDD = cross0B2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0B2@@i * 21 + jDD = cross0B3@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0S@@i * 21 + jDD = cross0S2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0S2@@i * 21 + jDD = cross0S3@@i + 1, jDDDD
plane0B = Fit@cdood0B, 81, a1, a2, a1^2, a2^2, a1 a2<, 8a2, a1<D
plane0S = Fit@cdood0S, 81, a1, a2, a1^2, a2^2, a1 a2<, 8a2, a1<D
b@@1, 7DD = b@@1, 7DD + CoefficientAplane0B, a2

2E;

b@@2, 7DD = b@@2, 7DD + 1;

b@@1, 9DD = b@@1, 9DD + Coefficient@plane0B, a2 a1D;

b@@2, 9DD = b@@2, 9DD + 1;

b@@1, 6DD = b@@1, 6DD + CoefficientAplane0B, a1
2E;

b@@2, 6DD = b@@2, 6DD + 1;
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b@@1, 3DD = b@@1, 3DD + Coefficient@plane0B, a1D �. a2 ® 0;

b@@2, 3DD = b@@2, 3DD + 1;

b@@1, 4DD = b@@1, 4DD + Coefficient@plane0B, a2D �. a1 ® 0;

b@@2, 4DD = b@@2, 4DD + 1;

s@@1, 7DD = s@@1, 7DD + CoefficientAplane0S, a2
2E;

s@@2, 7DD = s@@2, 7DD + 1;

s@@1, 9DD = s@@1, 9DD + Coefficient@plane0S, a2 a1D;

s@@2, 9DD = s@@2, 9DD + 1;

s@@1, 6DD = s@@1, 6DD + CoefficientAplane0S, a1
2E;

s@@2, 6DD = s@@2, 6DD + 1;

s@@1, 3DD = s@@1, 3DD + Coefficient@plane0S, a1D �. a2 ® 0;

s@@2, 3DD = s@@2, 3DD + 1;

s@@1, 4DD = s@@1, 4DD + Coefficient@plane0S, a2D �. a1 ® 0;

s@@2, 4DD = s@@2, 4DD + 1;

H*Calculate coeffecients for a1 and a3*L
cross0B =

TableBLogB 1

.116

NIntegrateA,I1 + HD@j m1@xD + i m3@xD + m0@xD, xDL2M, 8x, 0, Lb<EF,

8i, -5, 5, .5<, 8j, -5, 5, .5<F;

cross0S = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m1@xD + i m3@xD + m0@xD, xDL2M,

8x, Ls, Lend<EF, 8i, -5, 5, .5<, 8j, -5, 5, .5<F;

cross0B2 = Table@8i, j, cross0B@@i 2 + 11, j 2 + 11DD<, 8i, -5, 5, .5<, 8j, -5, 5, .5<D;

cross0B3 = Table@8i , j , cross0B@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

cross0S2 = Table@8i, j, cross0S@@i 2 + 11, j 2 + 11DD<, 8i, -5, 5, .5<, 8j, -5, 5, .5<D;

cross0S3 = Table@8i , j , cross0S@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

cdood0B = Table@0, 8i, 441<D;

cdood0B2 = Table@0, 8i, 441<D;

cdood0S = Table@0, 8i, 441<D;

cdood0S2 = Table@0, 8i, 441<D;

For@i = 0, i < 21, i++,

For@j = 1, j < 22, j++, cdood0B@@i * 21 + jDD = cross0B2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0B2@@i * 21 + jDD = cross0B3@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0S@@i * 21 + jDD = cross0S2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0S2@@i * 21 + jDD = cross0S3@@i + 1, jDDDD
plane0B = Fit@cdood0B, 81, a1, a3, a1^2, a3^2, a1 a3<, 8a3, a1<D
plane0S = Fit@cdood0S, 81, a1, a3, a1^2, a3^2, a1 a3<, 8a3, a1<D
b@@1, 8DD = b@@1, 8DD + CoefficientAplane0B, a3

2E;

b@@2, 8DD = b@@2, 8DD + 1;

b@@1, 10DD = b@@1, 10DD + Coefficient@plane0B, a3 a1D;

b@@2, 10DD = b@@2, 10DD + 1;

b@@1, 6DD = b@@1, 6DD + CoefficientAplane0B, a1
2E;

b@@2, 6DD = b@@2, 6DD + 1;
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b@@1, 3DD = b@@1, 3DD + Coefficient@plane0B, a1D �. a3 ® 0;

b@@2, 3DD = b@@2, 3DD + 1;

b@@1, 5DD = b@@1, 5DD + Coefficient@plane0B, a3D �. a1 ® 0;

b@@2, 5DD = b@@2, 5DD + 1;

s@@1, 8DD = s@@1, 8DD + CoefficientAplane0S, a3
2E;

s@@2, 8DD = s@@2, 8DD + 1;

s@@1, 10DD = s@@1, 10DD + Coefficient@plane0S, a3 a1D;

s@@2, 10DD = s@@2, 10DD + 1;

s@@1, 6DD = s@@1, 6DD + CoefficientAplane0S, a1
2E;

s@@2, 6DD = s@@2, 6DD + 1;

s@@1, 3DD = s@@1, 3DD + Coefficient@plane0S, a1D �. a3 ® 0;

s@@2, 3DD = s@@2, 3DD + 1;

s@@1, 5DD = s@@1, 5DD + Coefficient@plane0S, a3D �. a1 ® 0;

s@@2, 5DD = s@@2, 5DD + 1;

H*Calculate coeffecients for a2 and a3*L
cross0B =

TableBLogB 1

.116

NIntegrateA,I1 + HD@j m3@xD + i m2@xD + m0@xD, xDL2M, 8x, 0, Lb<EF,

8i, -5, 5, .5<, 8j, -5, 5, .5<F;

cross0S = TableBLogB 1

.116

NIntegrateA,I1 + HD@j m3@xD + i m2@xD + m0@xD, xDL2M,

8x, Ls, Lend<EF, 8i, -5, 5, .5<, 8j, -5, 5, .5<F;

cross0B2 = Table@8i, j, cross0B@@i 2 + 11, j 2 + 11DD<, 8i, -5, 5, .5<, 8j, -5, 5, .5<D;

cross0B3 = Table@8i , j , cross0B@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

cross0S2 = Table@8i, j, cross0S@@i 2 + 11, j 2 + 11DD<, 8i, -5, 5, .5<, 8j, -5, 5, .5<D;

cross0S3 = Table@8i , j , cross0S@@i, jDD<, 8i, 1, 21, 1<, 8j, 1, 21, 1<D;

cdood0B = Table@0, 8i, 441<D;

cdood0B2 = Table@0, 8i, 441<D;

cdood0S = Table@0, 8i, 441<D;

cdood0S2 = Table@0, 8i, 441<D;

For@i = 0, i < 21, i++,

For@j = 1, j < 22, j++, cdood0B@@i * 21 + jDD = cross0B2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0B2@@i * 21 + jDD = cross0B3@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0S@@i * 21 + jDD = cross0S2@@i + 1, jDDDD
For@i = 0, i < 21, i++, For@j = 1, j < 22, j++,

cdood0S2@@i * 21 + jDD = cross0S3@@i + 1, jDDDD
plane0B = Fit@cdood0B, 81, a3, a2, a3^2, a2^2, a3 a2<, 8a2, a3<D
plane0S = Fit@cdood0S, 81, a3, a2, a3^2, a2^2, a3 a2<, 8a2, a3<D
b@@1, 7DD = b@@1, 7DD + CoefficientAplane0B, a2

2E;

b@@2, 7DD = b@@2, 7DD + 1;

b@@1, 11DD = b@@1, 11DD + Coefficient@plane0B, a2 a3D;

b@@2, 11DD = b@@2, 11DD + 1;

b@@1, 8DD = b@@1, 8DD + CoefficientAplane0B, a3
2E;

b@@2, 8DD = b@@2, 8DD + 1;
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b@@1, 5DD = b@@1, 5DD + Coefficient@plane0B, a3D �. a2 ® 0;

b@@2, 5DD = b@@2, 5DD + 1;

b@@1, 4DD = b@@1, 4DD + Coefficient@plane0B, a2D �. a3 ® 0;

b@@2, 4DD = b@@2, 4DD + 1;

s@@1, 7DD = s@@1, 7DD + CoefficientAplane0S, a2
2E;

s@@2, 7DD = s@@2, 7DD + 1;

s@@1, 11DD = s@@1, 11DD + Coefficient@plane0S, a2 a3D;

s@@2, 11DD = s@@2, 11DD + 1;

s@@1, 8DD = s@@1, 8DD + CoefficientAplane0S, a3
2E;

s@@2, 8DD = s@@2, 8DD + 1;

s@@1, 5DD = s@@1, 5DD + Coefficient@plane0S, a3D �. a2 ® 0;

s@@2, 5DD = s@@2, 5DD + 1;

s@@1, 4DD = s@@1, 4DD + Coefficient@plane0S, a2D �. a3 ® 0;

s@@2, 4DD = s@@2, 4DD + 1;

H*Perform averaging to make a "best guess" at the true coefficients*L
st =J s@@1,1DD

s@@2,1DD s@@1,2DD
s@@2,2DD s@@1,3DD

s@@2,3DD s@@1,4DD
s@@2,4DD s@@1,5DD

s@@2,5DD s@@1,6DD
s@@2,6DD s@@1,7DD

s@@2,7DD s@@1,8DD
s@@2,8DD s@@1,9DD

s@@2,9DD s@@1,10DD
s@@2,10DD s@@1,11

s@@2,11N
bt = J b@@1,1DD

b@@2,1DD b@@1,2DD
b@@2,2DD b@@1,3DD

b@@2,3DD b@@1,4DD
b@@2,4DD b@@1,5DD

b@@2,5DD b@@1,6DD
b@@2,6DD b@@1,7DD

b@@2,7DD b@@1,8DD
b@@2,8DD b@@1,9DD

b@@2,9DD b@@1,10DD
b@@2,10DD b@

b@H*Assemble the coefficients into equations

for the strain in either section of the beam*L
pSb@t_D = st@@1, 1DD + st@@1, 2DD a0@tD2

+ st@@1, 3DD a0@tD a1@tD + st@@1, 4DD a0@tD a2@tD +

st@@1, 5DD a0@tD a3@tD + st@@1, 6DD a1@tD2
+ st@@1, 7DD a2@tD2

+ st@@1, 8DD a3@tD2
+

st@@1, 9DD a1@tD a2@tD + st@@1, 10DD a1@tD a3@tD + st@@1, 11DD a2@tD a3@tD;

pBb@t_D = bt@@1, 1DD + bt@@1, 2DD a0@tD2
+ bt@@1, 3DD a0@tD a1@tD + bt@@1, 4DD a0@tD a2@tD +

bt@@1, 5DD a0@tD a3@tD + bt@@1, 6DD a1@tD2
+ bt@@1, 7DD a2@tD2

+ bt@@1, 8DD a3@tD2
+

bt@@1, 9DD a1@tD a2@tD + bt@@1, 10DD a1@tD a3@tD + bt@@1, 11DD a2@tD a3@tD;H*Calculate the constant needed to provide the correct equilibrium strain*L
Vb = matFit@@1, 1DD � HpBb@tD �. 8a0@tD ® 1, a1@tD ® 0, a2@tD ® 0, a3@tD ® 0<L;

Vs = matFit@@2, 1DD � HpSb@tD �. 8a0@tD ® 1, a1@tD ® 0, a2@tD ® 0, a3@tD ® 0<L;H*Calculate the constant needed to

provide the correct strain energy at equilibrium*L
Yb = matFit@@1, 2DD � IExpandApBb@tD2E �. 8a0@tD ® 1, a1@tD ® 0, a2@tD ® 0, a3@tD ® 0<M;

Ys = matFit@@2, 2DD � IExpandApSb@tD2E �. 8a0@tD ® 1, a1@tD ® 0, a2@tD ® 0, a3@tD ® 0<M;

H*Use the calculated constants to build

functions of true strain and strain energy*L
ΕB@tD = Expand@Vb pBb@tDD
ΕS@tD = Expand@Vs pSb@tDD
seB@tD = ExpandAYb pBb@tD2E
seS@tD = ExpandAYs pSb@tD2E
-0.0000679281 + 0.0000185347 a0

2
+ 0.0000525187 a0 a1 + 0.0000389681 a1

2
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-0.000309293 + 0.000104647 a0
2

- 0.0000928824 a0 a1 + 0.000211663 a1
2

-0.0000674142 + 0.0000184938 a0
2

+ 0.0000462292 a0 a2 + 0.0000763954 a2
2

-0.000278343 + 0.00020877 a0
2

- 0.000158893 a0 a2 + 0.000559431 a2
2

-0.0000680715 + 0.0000185663 a0
2

- 0.0000223791 a0 a3 + 0.0000108986 a3
2

-0.000297077 + 0.000210046 a0
2

+ 0.000255112 a0 a3 + 0.000332653 a3
2

0.000210046

-0.0000476099 + 0.0000523102 a1 + 0.0000388347 a1
2

+

0.0000461181 a2 + 0.0000478771 a1 a2 + 0.0000762643 a2
2

-0.0000395199 - 0.0000907213 a1 + 0.000101279 a1
2

-

0.000158242 a2 + 0.000339437 a1 a2 + 0.00055627 a2
2

-0.0000491967 + 0.0000524875 a1 + 0.0000389481 a1
2

-

0.000022325 a3 - 0.0000265292 a1 a3 + 0.000010877 a3
2

-0.0000741582 - 0.0000914474 a1 + 0.000103277 a1
2

+

0.000254258 a3 - 0.0000629999 a1 a3 + 0.000331376 a3
2

-0.0000483036 + 0.0000461762 a2 + 0.0000763295 a2
2

-

0.0000222373 a3 - 0.0000558074 a2 a3 + 0.0000108289 a3
2

-5.4275 ´ 10
-6

- 0.000160968 a2 + 0.000553581 a2
2

+

0.000252572 a3 + 0.000331085 a2 a3 + 0.0003267 a3
2

88-0.000297077, 0.000210046, -0.0000916837, -0.000159368, 0.000253981, 0.00013874,

0.000556427, 0.000330243, 0.000339437, -0.0000629999, 0.000331085<<

88-0.0000678046, 0.0000185316, 0.0000524388,

0.0000461745, -0.0000223138, 0.0000389169, 0.0000763297,

0.0000108682, 0.0000478771, -0.0000265292, -0.0000558074<<

-2.28092 ´ 10
-12

+ 6.23396 ´ 10
-13

a0@tD2
+ 1.76402 ´ 10

-12
a0@tD a1@tD +

1.30915 ´ 10
-12

a1@tD2
+ 1.55329 ´ 10

-12
a0@tD a2@tD +

1.61057 ´ 10
-12

a1@tD a2@tD + 2.56771 ´ 10
-12

a2@tD2
- 7.50628 ´ 10

-13
a0@tD a3@tD -

8.92432 ´ 10
-13

a1@tD a3@tD - 1.87734 ´ 10
-12

a2@tD a3@tD + 3.65601 ´ 10
-13

a3@tD2

-3.39125 ´ 10
-11

+ 2.39776 ´ 10
-11

a0@tD2
- 1.04661 ´ 10

-11
a0@tD a1@tD +

1.58377 ´ 10
-11

a1@tD2
- 1.81925 ´ 10

-11
a0@tD a2@tD +

3.87481 ´ 10
-11

a1@tD a2@tD + 6.35184 ´ 10
-11

a2@tD2
+ 2.89929 ´ 10

-11
a0@tD a3@tD -

7.1917 ´ 10
-12

a1@tD a3@tD + 3.77947 ´ 10
-11

a2@tD a3@tD + 3.76986 ´ 10
-11

a3@tD2
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0.0000273013 - 0.0000149233 a0@tD2
+ 2.03934 ´ 10

-6
a0@tD4

-

0.0000422285 a0@tD a1@tD + 0.0000115414 a0@tD3
a1@tD - 0.0000313395 a1@tD2

+

0.0000248947 a0@tD2
a1@tD2

+ 0.0000242374 a0@tD a1@tD3
+ 8.99376 ´ 10

-6
a1@tD4

-

0.0000371839 a0@tD a2@tD + 0.0000101627 a0@tD3
a2@tD - 0.000038555 a1@tD a2@tD +

0.0000392948 a0@tD2
a1@tD a2@tD + 0.0000511597 a0@tD a1@tD2

a2@tD +

0.0000221289 a1@tD3
a2@tD - 0.0000614677 a2@tD2

+ 0.0000294607 a0@tD2
a2@tD2

+

0.0000737937 a0@tD a1@tD a2@tD2
+ 0.0000488917 a1@tD2

a2@tD2
+

0.0000418591 a0@tD a2@tD3
+ 0.0000434026 a1@tD a2@tD3

+ 0.000034598 a2@tD4
+

0.0000179691 a0@tD a3@tD - 4.91112 ´ 10
-6

a0@tD3
a3@tD + 0.0000213637 a1@tD a3@tD -

0.0000197359 a0@tD2
a1@tD a3@tD - 0.0000268358 a0@tD a1@tD2

a3@tD -

0.0000122619 a1@tD3
a3@tD + 0.0000449413 a2@tD a3@tD - 0.0000245197 a0@tD2

a2@tD a3@tD -

0.0000619933 a0@tD a1@tD a2@tD a3@tD - 0.0000408794 a1@tD2
a2@tD a3@tD -

0.0000508331 a0@tD a2@tD2
a3@tD - 0.000055783 a1@tD a2@tD2

a3@tD -

0.0000505918 a2@tD3
a3@tD - 8.75204 ´ 10

-6
a3@tD2

+ 5.34873 ´ 10
-6

a0@tD2
a3@tD2

+

0.0000137992 a0@tD a1@tD a3@tD2
+ 9.20267 ´ 10

-6
a1@tD2

a3@tD2
+

0.0000207498 a0@tD a2@tD a3@tD2
+ 0.0000237635 a1@tD a2@tD a3@tD2

+

0.0000283472 a2@tD2
a3@tD2

- 2.8802 ´ 10
-6

a0@tD a3@tD3
-

3.42431 ´ 10
-6

a1@tD a3@tD3
- 7.20347 ´ 10

-6
a2@tD a3@tD3

+ 7.01416 ´ 10
-7

a3@tD4

0.000261227 - 0.000369397 a0@tD2
+ 0.00013059 a0@tD4

+

0.000161239 a0@tD a1@tD - 0.000114003 a0@tD3
a1@tD - 0.000243994 a1@tD2

+

0.000197395 a0@tD2
a1@tD2

- 0.0000753012 a0@tD a1@tD3
+ 0.0000569745 a1@tD4

+

0.000280271 a0@tD a2@tD - 0.000198164 a0@tD3
a2@tD - 0.000596949 a1@tD a2@tD +

0.000508566 a0@tD2
a1@tD a2@tD - 0.000315121 a0@tD a1@tD2

a2@tD +

0.000278785 a1@tD3
a2@tD - 0.000978558 a2@tD2

+ 0.000767059 a0@tD2
a2@tD2

-

0.000622237 a0@tD a1@tD a2@tD2
+ 0.000798036 a1@tD2

a2@tD2
- 0.00052495 a0@tD a2@tD3

+

0.00111809 a1@tD a2@tD3
+ 0.000916423 a2@tD4

- 0.000446662 a0@tD a3@tD +

0.000315809 a0@tD3
a3@tD + 0.000110795 a1@tD a3@tD - 0.000216185 a0@tD2

a1@tD a3@tD +

0.000242792 a0@tD a1@tD2
a3@tD - 0.0000517428 a1@tD3

a3@tD - 0.000582261 a2@tD a3@tD +

0.000172071 a0@tD2
a2@tD a3@tD + 0.000390091 a0@tD a1@tD a2@tD a3@tD +

0.000145333 a1@tD2
a2@tD a3@tD + 0.000524246 a0@tD a2@tD2

a3@tD +

0.000457767 a1@tD a2@tD2
a3@tD + 0.00109058 a2@tD3

a3@tD - 0.000580781 a3@tD2
+

0.00060157 a0@tD2
a3@tD2

- 0.000273962 a0@tD a1@tD a3@tD2
+

0.000282982 a1@tD2
a3@tD2

+ 0.000186233 a0@tD a2@tD a3@tD2
+

0.000540116 a1@tD a2@tD a3@tD2
+ 0.00141226 a2@tD2

a3@tD2
+ 0.000496528 a0@tD a3@tD3

-

0.000123164 a1@tD a3@tD3
+ 0.000647266 a2@tD a3@tD3

+ 0.00032281 a3@tD4
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H*Define the electric field as the voltage divided by the thickness*L
Eb@t_D = vL'@tD � H2 hpL;

Es@t_D = vR'@tD � HhpL;H*Define the thickness of the piezo element*L
hp = 0.0004;

mS = matFit@@1, 7DD; H*mass�length steel*L
mP = matFit@@2, 7DD; H*mass�length piezo*L
Ε = matFit@@2, 8DD; H*dielectric constant*L
d31 = matFit@@1, 8DD; H*piezoelectric coupling constant*L
y@t_D = A Sin@Ω tD; H*base excitation of amplitude 'A' and frequency 'Ω'*L
H*construct the potential energy function*L
Pe@t_D = seB@tD + seS@tD - ImatFit@@1, 3DD + matFit@@2, 3DD a0@tD2M HΕB@tD + ΕS@tDL -

d31 HEb@tD HmatFit@@1, 4DD a0@tD + matFit@@1, 5DD a1@tD +

matFit@@2, 4DD a2@tD + matFit@@2, 5DD a3@tDL + Es@tD ΕS@tDL -

Ε

2

ImatFit@@1, 6DD Eb@tD2
+ matFit@@2, 6DD Es@tD2M �� Simplify

0.000288529 + 0.00013263 a0@tD4
+ 0.0000659683 a1@tD4

- 0.00104003 a2@tD2
+

0.000951021 a2@tD4
+ a1@tD3 H0.000300914 a2@tD - 0.0000640047 a3@tDL +

a0@tD3 H-0.000102462 a1@tD - 0.000188002 a2@tD + 0.000310899 a3@tDL -

0.000537321 a2@tD a3@tD + 0.00103999 a2@tD3
a3@tD - 0.000589534 a3@tD2

+

0.00144061 a2@tD2
a3@tD2

+ 0.000640063 a2@tD a3@tD3
+ 0.000323512 a3@tD4

-

1.00685 ´ 10
-7

a2@tD vL
¢@tD + 4.04297 ´ 10

-8
a3@tD vL

¢@tD - 1.09127 ´ 10
-8

vL
¢@tD2

+

a1@tD I0.00116149 a2@tD3
+ 0.000401984 a2@tD2

a3@tD - 0.000126588 a3@tD3
-

4.52955 ´ 10
-8

vL
¢@tD + a3@tD I0.000132159 - 2.04963 ´ 10

-8
vR

¢@tDM +

a2@tD I-0.000635506 + 0.00056388 a3@tD2
+ 1.10432 ´ 10

-7
vR

¢@tDMM +

a1@tD2 I-0.000275334 + 0.000846928 a2@tD2
+ 0.000104453 a2@tD a3@tD +

0.000292184 a3@tD2
+ 4.51374 ´ 10

-8
vR

¢@tDM +

a0@tD2 I-0.000384322 + 0.00022229 a1@tD2
+ 0.000796521 a2@tD2

+

a1@tD H0.000547862 a2@tD - 0.000235921 a3@tDL + 0.000147552 a2@tD a3@tD +

0.00060692 a3@tD2
+ 6.83362 ´ 10

-8
vR

¢@tDM - 9.66507 ´ 10
-8

vR
¢@tD +

1.81027 ´ 10
-7

a2@tD2
vR

¢@tD + 1.07715 ´ 10
-7

a2@tD a3@tD vR
¢@tD +

1.07441 ´ 10
-7

a3@tD2
vR

¢@tD - 2.18252 ´ 10
-8

vR
¢@tD2

+

a0@tD I-0.0000510639 a1@tD3
- 0.000483091 a2@tD3

+

a1@tD2 H-0.000263962 a2@tD + 0.000215956 a3@tDL - 0.000428694 a3@tD +

0.000473413 a2@tD2
a3@tD + 0.000493648 a3@tD3

- 4.27271 ´ 10
-8

vL
¢@tD +

a2@tD I0.000243088 + 0.000206983 a3@tD2
- 5.18485 ´ 10

-8
vR

¢@tDM +

a1@tD I0.000119011 - 0.000548443 a2@tD2
+ 0.000328097 a2@tD a3@tD -

0.000260163 a3@tD2
- 2.98283 ´ 10

-8
vR

¢@tDM + 8.26299 ´ 10
-8

a3@tD vR
¢@tDM
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Te@t_D =

mS � 2 Ia0'@tD2
NIntegrateAm0@xD2

, 8x, 0, Lb<E + 2 y'@tD a0'@tD NIntegrate@m0@xD,8x, 0, Lb<D + y'@tD2
+ 2 a0'@tD a1'@tD NIntegrate@m0@xD m1@xD, 8x, 0, Lb<D +

2 a0'@tD a2'@tD NIntegrate@m0@xD m2@xD, 8x, 0, Lb<D + 2 a0'@tD a3'@tD
NIntegrate@m0@xD m3@xD, 8x, 0, Lb<D + a1'@tD2

NIntegrateAm1@xD2
, 8x, 0, Lb<E +

a2'@tD2
NIntegrateAm2@xD2

, 8x, 0, Lb<E + a3'@tD2
NIntegrateAm3@xD2

, 8x, 0, Lb<E +

2 y'@tD a1'@tD NIntegrate@m1@xD, 8x, 0, Lb<D + 2 y'@tD a2'@tD
NIntegrate@m2@xD, 8x, 0, Lb<D + 2 y'@tD a3'@tD NIntegrate@m3@xD, 8x, 0, Lb<DM +

mP Ia0'@tD2
NIntegrateAm0@xD2

, 8x, 0, Lb<E + 2 y'@tD a0'@tD NIntegrate@m0@xD,8x, 0, Lb<D + y'@tD2
+ 2 a0'@tD a1'@tD NIntegrate@m0@xD m1@xD, 8x, 0, Lb<D +

2 a0'@tD a2'@tD NIntegrate@m0@xD m2@xD, 8x, 0, Lb<D + 2 a0'@tD a3'@tD
NIntegrate@m0@xD m3@xD, 8x, 0, Lb<D + a1'@tD2

NIntegrateAm1@xD2
, 8x, 0, Lb<E +

a2'@tD2
NIntegrateAm2@xD2

, 8x, 0, Lb<E + a3'@tD2
NIntegrateAm3@xD2

, 8x, 0, Lb<E +

2 y'@tD a1'@tD NIntegrate@m1@xD, 8x, 0, Lb<D + 2 y'@tD a2'@tD
NIntegrate@m2@xD, 8x, 0, Lb<D + 2 y'@tD a3'@tD NIntegrate@m3@xD, 8x, 0, Lb<DM +

mP � 2 Ia0'@tD2
NIntegrateAm0@xD2

, 8x, Ls, Lend<E +

2 y'@tD a0'@tD NIntegrate@m0@xD, 8x, Ls, Lend<D + y'@tD2
+

2 a0'@tD a1'@tD NIntegrate@m0@xD m1@xD, 8x, Ls, Lend<D +

2 a0'@tD a2'@tD NIntegrate@m0@xD m2@xD, 8x, Ls, Lend<D +

2 a0'@tD a3'@tD NIntegrate@m0@xD m3@xD, 8x, Ls, Lend<D +

a1'@tD2
NIntegrateAm1@xD2

, 8x, Ls, Lend<E + a2'@tD2

NIntegrateAm2@xD2
, 8x, Ls, Lend<E + a3'@tD2

NIntegrateAm3@xD2
, 8x, Ls, Lend<E +

2 y'@tD a1'@tD NIntegrate@m1@xD, 8x, Ls, Lend<D +

2 y'@tD a2'@tD NIntegrate@m2@xD, 8x, Ls, Lend<D +

2 y'@tD a3'@tD NIntegrate@m3@xD, 8x, Ls, Lend<DM �� Simplify

0.0448997 A
2

Ω
2

Cos@t ΩD2
+ 1.14697 ´ 10

-9
a0

¢@tD2
+ 4.04419 ´ 10

-6
A Ω Cos@t ΩD a1

¢@tD +

1.35153 ´ 10
-9

a1
¢@tD2

- 1.47141 ´ 10
-6

A Ω Cos@t ΩD a2
¢@tD + 6.63889 ´ 10

-10
a2

¢@tD2
+

a0
¢@tD I3.4445 ´ 10

-6
A Ω Cos@t ΩD + 1.79724 ´ 10

-9
a1

¢@tD - 6.28138 ´ 10
-11

a2
¢@tD +

5.28213 ´ 10
-10

a3
¢@tDM + 5.5338 ´ 10

-7
A Ω Cos@t ΩD a3

¢@tD + 2.58787 ´ 10
-10

a3
¢@tD2

Needs@"VariationalMethods`"D
VV1 = EulerEquations@Te@tD - Pe@tD,8a0@tD, a1@tD, a2@tD, a3@tD, vR@tD, vL@tD<, tD �� Expand

90.000768644 a0@tD - 0.000530519 a0@tD3
- 0.000119011 a1@tD +

0.000307385 a0@tD2
a1@tD - 0.00044458 a0@tD a1@tD2

+ 0.0000510639 a1@tD3
-

0.000243088 a2@tD + 0.000564005 a0@tD2
a2@tD - 0.00109572 a0@tD a1@tD a2@tD +

0.000263962 a1@tD2
a2@tD - 0.00159304 a0@tD a2@tD2

+ 0.000548443 a1@tD a2@tD2
+

0.000483091 a2@tD3
+ 0.000428694 a3@tD - 0.000932697 a0@tD2

a3@tD +

0.000471842 a0@tD a1@tD a3@tD - 0.000215956 a1@tD2
a3@tD -

0.000295104 a0@tD a2@tD a3@tD - 0.000328097 a1@tD a2@tD a3@tD -

0.000473413 a2@tD2
a3@tD - 0.00121384 a0@tD a3@tD2

+ 0.000260163 a1@tD a3@tD2
-

0.000206983 a2@tD a3@tD2
- 0.000493648 a3@tD3

+ 3.4445 ´ 10
-6

A Ω
2

Sin@t ΩD +

4.27271 ´ 10
-8

vL
¢@tD - 1.36672 ´ 10

-7
a0@tD vR

¢@tD + 2.98283 ´ 10
-8

a1@tD vR
¢@tD +

5.18485 ´ 10
-8

a2@tD vR
¢@tD - 8.26299 ´ 10

-8
a3@tD vR

¢@tD - 2.29394 ´ 10
-9

a0
¢¢@tD -

1.79724 ´ 10
-9

a1
¢¢@tD + 6.28138 ´ 10

-11
a2

¢¢@tD - 5.28213 ´ 10
-10

a3
¢¢@tD � 0,
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1.79724 ´ 10 a1
¢¢@tD + 6.28138 ´ 10 a2

¢¢@tD - 5.28213 ´ 10 a3
¢¢@tD � 0,

-0.000119011 a0@tD + 0.000102462 a0@tD3
+ 0.000550668 a1@tD - 0.00044458 a0@tD2

a1@tD +

0.000153192 a0@tD a1@tD2
- 0.000263873 a1@tD3

+ 0.000635506 a2@tD -

0.000547862 a0@tD2
a2@tD + 0.000527923 a0@tD a1@tD a2@tD - 0.000902742 a1@tD2

a2@tD +

0.000548443 a0@tD a2@tD2
- 0.00169386 a1@tD a2@tD2

- 0.00116149 a2@tD3
-

0.000132159 a3@tD + 0.000235921 a0@tD2
a3@tD - 0.000431912 a0@tD a1@tD a3@tD +

0.000192014 a1@tD2
a3@tD - 0.000328097 a0@tD a2@tD a3@tD -

0.000208907 a1@tD a2@tD a3@tD - 0.000401984 a2@tD2
a3@tD +

0.000260163 a0@tD a3@tD2
- 0.000584369 a1@tD a3@tD2

- 0.00056388 a2@tD a3@tD2
+

0.000126588 a3@tD3
+ 4.04419 ´ 10

-6
A Ω

2
Sin@t ΩD + 4.52955 ´ 10

-8
vL

¢@tD +

2.98283 ´ 10
-8

a0@tD vR
¢@tD - 9.02749 ´ 10

-8
a1@tD vR

¢@tD - 1.10432 ´ 10
-7

a2@tD vR
¢@tD +

2.04963 ´ 10
-8

a3@tD vR
¢@tD - 1.79724 ´ 10

-9
a0

¢¢@tD - 2.70305 ´ 10
-9

a1
¢¢@tD � 0,

-0.000243088 a0@tD + 0.000188002 a0@tD3
+ 0.000635506 a1@tD - 0.000547862 a0@tD2

a1@tD +

0.000263962 a0@tD a1@tD2
- 0.000300914 a1@tD3

+ 0.00208006 a2@tD -

0.00159304 a0@tD2
a2@tD + 0.00109689 a0@tD a1@tD a2@tD - 0.00169386 a1@tD2

a2@tD +

0.00144927 a0@tD a2@tD2
- 0.00348448 a1@tD a2@tD2

- 0.00380408 a2@tD3
+

0.000537321 a3@tD - 0.000147552 a0@tD2
a3@tD - 0.000328097 a0@tD a1@tD a3@tD -

0.000104453 a1@tD2
a3@tD - 0.000946825 a0@tD a2@tD a3@tD -

0.000803968 a1@tD a2@tD a3@tD - 0.00311996 a2@tD2
a3@tD -

0.000206983 a0@tD a3@tD2
- 0.00056388 a1@tD a3@tD2

- 0.00288122 a2@tD a3@tD2
-

0.000640063 a3@tD3
- 1.47141 ´ 10

-6
A Ω

2
Sin@t ΩD + 1.00685 ´ 10

-7
vL

¢@tD +

5.18485 ´ 10
-8

a0@tD vR
¢@tD - 1.10432 ´ 10

-7
a1@tD vR

¢@tD - 3.62055 ´ 10
-7

a2@tD vR
¢@tD -

1.07715 ´ 10
-7

a3@tD vR
¢@tD + 6.28138 ´ 10

-11
a0

¢¢@tD - 1.32778 ´ 10
-9

a2
¢¢@tD � 0,

0.000428694 a0@tD - 0.000310899 a0@tD3
- 0.000132159 a1@tD + 0.000235921 a0@tD2

a1@tD -

0.000215956 a0@tD a1@tD2
+ 0.0000640047 a1@tD3

+ 0.000537321 a2@tD -

0.000147552 a0@tD2
a2@tD - 0.000328097 a0@tD a1@tD a2@tD - 0.000104453 a1@tD2

a2@tD -

0.000473413 a0@tD a2@tD2
- 0.000401984 a1@tD a2@tD2

- 0.00103999 a2@tD3
+

0.00117907 a3@tD - 0.00121384 a0@tD2
a3@tD + 0.000520326 a0@tD a1@tD a3@tD -

0.000584369 a1@tD2
a3@tD - 0.000413966 a0@tD a2@tD a3@tD -

0.00112776 a1@tD a2@tD a3@tD - 0.00288122 a2@tD2
a3@tD - 0.00148094 a0@tD a3@tD2

+

0.000379765 a1@tD a3@tD2
- 0.00192019 a2@tD a3@tD2

- 0.00129405 a3@tD3
+

5.5338 ´ 10
-7

A Ω
2

Sin@t ΩD - 4.04297 ´ 10
-8

vL
¢@tD - 8.26299 ´ 10

-8
a0@tD vR

¢@tD +

2.04963 ´ 10
-8

a1@tD vR
¢@tD - 1.07715 ´ 10

-7
a2@tD vR

¢@tD -

2.14882 ´ 10
-7

a3@tD vR
¢@tD - 5.28213 ´ 10

-10
a0

¢¢@tD - 5.17574 ´ 10
-10

a3
¢¢@tD � 0,

1.36672 ´ 10
-7

a0@tD a0
¢@tD - 2.98283 ´ 10

-8
a1@tD a0

¢@tD - 5.18485 ´ 10
-8

a2@tD a0
¢@tD +

8.26299 ´ 10
-8

a3@tD a0
¢@tD - 2.98283 ´ 10

-8
a0@tD a1

¢@tD +

9.02749 ´ 10
-8

a1@tD a1
¢@tD + 1.10432 ´ 10

-7
a2@tD a1

¢@tD - 2.04963 ´ 10
-8

a3@tD a1
¢@tD -

5.18485 ´ 10
-8

a0@tD a2
¢@tD + 1.10432 ´ 10

-7
a1@tD a2

¢@tD + 3.62055 ´ 10
-7

a2@tD a2
¢@tD +

1.07715 ´ 10
-7

a3@tD a2
¢@tD + 8.26299 ´ 10

-8
a0@tD a3

¢@tD - 2.04963 ´ 10
-8

a1@tD a3
¢@tD +

1.07715 ´ 10
-7

a2@tD a3
¢@tD + 2.14882 ´ 10

-7
a3@tD a3

¢@tD - 4.36504 ´ 10
-8

vR
¢¢@tD � 0,

-4.27271 ´ 10
-8

a0
¢@tD - 4.52955 ´ 10

-8
a1

¢@tD - 1.00685 ´ 10
-7

a2
¢@tD +

4.04297 ´ 10
-8

a3
¢@tD - 2.18254 ´ 10

-8
vL

¢¢@tD � 0=
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PP = MatrixForm@VV1D;

P1e = PP@@1, 1DD;

P2e = PP@@1, 2DD;

P3e = PP@@1, 3DD;

P4e = PP@@1, 4DD;

P1m = P1e@@1DD;

P2m = P2e@@1DD;

P3m = P3e@@1DD;

P4m = P4e@@1DD;

V1Lk = PP@@1, 5DD;

V1Rk = PP@@1, 6DD;

Vrm = V1Lk@@1DD;

Vlm = V1Rk@@1DD;

vlf = -Coefficient@Vlm, vL''@tDD;

vrf = -Coefficient@Vrm, vR''@tDD;

Vint =

ExpandB 1

vlf
IVlm + vlf vL''@tD -

vL'@tD
Rll

MF
ExpandB 1

vrf
IVrm + vrf vR''@tD -

vR'@tD
Rlr

MF �� Simplify

::0. - 1.95768 a0
¢@tD - 2.07536 a1

¢@tD -

4.6132 a2
¢@tD + 1.85242 a3

¢@tD -

4.58182 ´ 10
7

vL
¢@tD

Rll

>,

:0. - 1.18781 a2@tD a0
¢@tD + 1.89299 a3@tD a0

¢@tD + 2.52992 a2@tD a1
¢@tD -

0.469557 a3@tD a1
¢@tD + 8.29442 a2@tD a2

¢@tD + 2.46767 a3@tD a2
¢@tD +

a1@tD H-0.683345 a0
¢@tD + 2.06813 a1

¢@tD + 2.52992 a2
¢@tD - 0.469557 a3

¢@tDL +

2.46767 a2@tD a3
¢@tD + 4.92279 a3@tD a3

¢@tD +

a0@tD H3.13107 a0
¢@tD - 0.683345 a1

¢@tD - 1.18781 a2
¢@tD + 1.89299 a3

¢@tDL -

2.29093 ´ 10
7

vR
¢@tD

Rlr

>>

M =

-Coefficient@P1m, a0''@tDD -Coefficient@P1m, a1''@tDD -Coefficient@P1m, a2''@tD
-Coefficient@P2m, a0''@tDD -Coefficient@P2m, a1''@tDD 0

-Coefficient@P3m, a0''@tDD 0 -Coefficient@P3m, a2''@tD
-Coefficient@P4m, a0''@tDD 0 0

Pint =

P1m + M@@1, 1DD a0''@tD + M@@1, 2DD a1''@tD + M@@1, 3DD a2''@tD + M@@1, 4DD a3''@tD
P2m + M@@2, 1DD a0''@tD + M@@2, 2DD a1''@tD
P3m + M@@3, 1DD a0''@tD + M@@3, 3DD a2''@tD
P4m + M@@4, 1DD a0''@tD + M@@4, 4DD a3''@tD

;

VV3 = Expand@LinearSolve@M, PintDD
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99716 023. a0@tD - 489 229. a0@tD3
- 574 962. a1@tD +

603 849. a0@tD2
a1@tD - 563 015. a0@tD a1@tD2

+ 263 872. a1@tD3
-

2.00316 ´ 10
6

a2@tD + 1.80187 ´ 10
6

a0@tD2
a2@tD - 1.90334 ´ 10

6
a0@tD a1@tD a2@tD +

1.59926 ´ 10
6

a1@tD2
a2@tD - 2.52459 ´ 10

6
a0@tD a2@tD2

+ 3.44769 ´ 10
6

a1@tD a2@tD2
+

3.83676 ´ 10
6

a2@tD3
- 1.18746 ´ 10

6
a3@tD + 255 426. a0@tD2

a3@tD +

381 518. a0@tD a1@tD a3@tD + 444 975. a1@tD2
a3@tD + 539 987. a0@tD a2@tD a3@tD +

1.65861 ´ 10
6

a1@tD a2@tD a3@tD + 4.64469 ´ 10
6

a2@tD2
a3@tD + 206 090. a0@tD a3@tD2

+

420 993. a1@tD a3@tD2
+ 3.57555 ´ 10

6
a2@tD a3@tD2

+ 1.27945 ´ 10
6

a3@tD3
+

217.584 A Ω
2

Sin@t ΩD + 105.283 vL
¢@tD - 125.195 a0@tD vR

¢@tD +

114.396 a1@tD vR
¢@tD + 391.575 a2@tD vR

¢@tD + 211.782 a3@tD vR
¢@tD=,

9-520 108. a0@tD + 363 191. a0@tD3
+ 586 009. a1@tD - 565 969. a0@tD2

a1@tD +

431 019. a0@tD a1@tD2
- 273 068. a1@tD3

+ 1.56699 ´ 10
6

a2@tD -

1.40074 ´ 10
6

a0@tD2
a2@tD + 1.46082 ´ 10

6
a0@tD a1@tD a2@tD -

1.39731 ´ 10
6

a1@tD2
a2@tD + 1.88148 ´ 10

6
a0@tD a2@tD2

- 2.91899 ´ 10
6

a1@tD a2@tD2
-

2.98073 ´ 10
6

a2@tD3
+ 740 644. a3@tD - 82 551.5 a0@tD2

a3@tD -

413 456. a0@tD a1@tD a3@tD - 224 825. a1@tD2
a3@tD - 480 414. a0@tD a2@tD a3@tD -

1.18008 ´ 10
6

a1@tD a2@tD a3@tD - 3.23694 ´ 10
6

a2@tD2
a3@tD -

40 780.2 a0@tD a3@tD2
- 496 104. a1@tD a3@tD2

- 2.58597 ´ 10
6

a2@tD a3@tD2
-

803 868. a3@tD3
+ 1351.49 A Ω

2
Sin@t ΩD - 53.2451 vL

¢@tD + 94.2767 a0@tD vR
¢@tD -

109.459 a1@tD vR
¢@tD - 301.21 a2@tD vR

¢@tD - 133.23 a3@tD vR
¢@tD=,

9-149 206. a0@tD + 118 447. a0@tD3
+ 451 424. a1@tD - 384 049. a0@tD2

a1@tD +

172 165. a0@tD a1@tD2
- 214 147. a1@tD3

+ 1.47181 ´ 10
6

a2@tD -

1.11454 ´ 10
6

a0@tD2
a2@tD + 736 066. a0@tD a1@tD a2@tD -

1.20005 ´ 10
6

a1@tD2
a2@tD + 972 071. a0@tD a2@tD2

- 2.46119 ´ 10
6

a1@tD a2@tD2
-

2.68349 ´ 10
6

a2@tD3
+ 348 502. a3@tD - 99 043.5 a0@tD2

a3@tD -

229 054. a0@tD a1@tD a3@tD - 57 617.2 a1@tD2
a3@tD - 687 545. a0@tD a2@tD a3@tD -

527 034. a1@tD a2@tD a3@tD - 2.13004 ´ 10
6

a2@tD2
a3@tD - 146 137. a0@tD a3@tD2

-

404 763. a1@tD a3@tD2
- 2.00081 ´ 10

6
a2@tD a3@tD2

- 421 528. a3@tD3
-

1097.88 A Ω
2

Sin@t ΩD + 80.8103 vL
¢@tD + 33.1264 a0@tD vR

¢@tD -

77.7589 a1@tD vR
¢@tD - 254.153 a2@tD vR

¢@tD - 71.1054 a3@tD vR
¢@tD=,

997 534.6 a0@tD - 101 400. a0@tD3
+ 331 438. a1@tD - 160 440. a0@tD2

a1@tD +

157 342. a0@tD a1@tD2
- 145 634. a1@tD3

+ 3.08249 ´ 10
6

a2@tD -

2.124 ´ 10
6

a0@tD2
a2@tD + 1.30855 ´ 10

6
a0@tD a1@tD a2@tD - 1.83395 ´ 10

6
a1@tD2

a2@tD +

1.66181 ´ 10
6

a0@tD a2@tD2
- 4.29523 ´ 10

6
a1@tD a2@tD2

- 5.92498 ´ 10
6

a2@tD3
+

3.48994 ´ 10
6

a3@tD - 2.60593 ´ 10
6

a0@tD2
a3@tD + 615 956. a0@tD a1@tD a3@tD -

1.58318 ´ 10
6

a1@tD2
a3@tD - 1.35091 ´ 10

6
a0@tD a2@tD a3@tD -

3.87164 ´ 10
6

a1@tD a2@tD a3@tD - 1.0307 ´ 10
7

a2@tD2
a3@tD -

3.07165 ´ 10
6

a0@tD a3@tD2
+ 304 093. a1@tD a3@tD2

- 7.35903 ´ 10
6

a2@tD a3@tD2
-

3.80597 ´ 10
6

a3@tD3
+ 847.124 A Ω

2
Sin@t ΩD - 185.562 vL

¢@tD - 31.8795 a0@tD vR
¢@tD -

77.1471 a1@tD vR
¢@tD - 607.739 a2@tD vR

¢@tD - 631.308 a3@tD vR
¢@tD==
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AbaPotlink =

Coefficient@VV3@@1, 1DD, a0@tDD �. 8a1@tD ® 0, a2@tD ® 0, a3@tD ® 0, vR'@tD
Coefficient@VV3@@2, 1DD, a0@tDD �. 8a1@tD ® 0, a2@tD ® 0, a3@tD ® 0, vR'@tD
Coefficient@VV3@@3, 1DD, a0@tDD �. 8a1@tD ® 0, a2@tD ® 0, a3@tD ® 0, vR'@tD
Coefficient@VV3@@4, 1DD, a0@tDD �. 8a1@tD ® 0, a2@tD ® 0, a3@tD ® 0, vR'@tD

Coefficient@Vint@@1, 1DD, a0'@tDD
Coefficient@Vint@@2, 1DD, a2@tD a0'@tDD

99716 023., -489 229., -574 962., 603 849., -563 015., 263 872.,

-2.00316 ´ 10
6
, 1.80187 ´ 10

6
, -1.90334 ´ 10

6
, 1.59926 ´ 10

6
, -2.52459 ´ 10

6
,

3.44769 ´ 10
6
, 3.83676 ´ 10

6
, -1.18746 ´ 10

6
, 255 426., 381 518., 444 975.,

539 987., 1.65861 ´ 10
6
, 4.64469 ´ 10

6
, 206 090., 420 993., 3.57555 ´ 10

6
,

1.27945 ´ 10
6
, 217.584, 105.283, -125.195, 114.396, 391.575, 211.782=,

9-520 108., 363 191., 586 009., -565 969., 431 019., -273 068., 1.56699 ´ 10
6
,

-1.40074 ´ 10
6
, 1.46082 ´ 10

6
, -1.39731 ´ 10

6
, 1.88148 ´ 10

6
, -2.91899 ´ 10

6
,

-2.98073 ´ 10
6
, 740 644., -82 551.5, -413 456., -224 825., -480 414.,

-1.18008 ´ 10
6
, -3.23694 ´ 10

6
, -40 780.2, -496 104., -2.58597 ´ 10

6
,

-803 868., 1351.49, -53.2451, 94.2767, -109.459, -301.21, -133.23=,

9-149 206., 118 447., 451 424., -384 049., 172 165., -214 147., 1.47181 ´ 10
6
,

-1.11454 ´ 10
6
, 736 066., -1.20005 ´ 10

6
, 972 071., -2.46119 ´ 10

6
,

-2.68349 ´ 10
6
, 348 502., -99 043.5, -229 054., -57 617.2, -687 545.,

-527 034., -2.13004 ´ 10
6
, -146 137., -404 763., -2.00081 ´ 10

6
,

-421 528., -1097.88, 80.8103, 33.1264, -77.7589, -254.153, -71.1054=,

997 534.6, -101 400., 331 438., -160 440., 157 342., -145 634., 3.08249 ´ 10
6
,

-2.124 ´ 10
6
, 1.30855 ´ 10

6
, -1.83395 ´ 10

6
, 1.66181 ´ 10

6
, -4.29523 ´ 10

6
,

-5.92498 ´ 10
6
, 3.48994 ´ 10

6
, -2.60593 ´ 10

6
, 615 956., -1.58318 ´ 10

6
, -1.35091 ´ 10

6
,

-3.87164 ´ 10
6
, -1.0307 ´ 10

7
, -3.07165 ´ 10

6
, 304 093., -7.35903 ´ 10

6
,

-3.80597 ´ 10
6
, 847.124, -185.562, -31.8795, -77.1471, -607.739, -631.308=,

9-1.95768, -2.07536, -4.6132, 1.85242, -4.58182 ´ 10
7
, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0=,

9-1.18781, 1.89299, 2.52992, -0.469557, 8.29442, 2.46767, -0.683345,

2.06813, 2.52992, -0.469557, 3.13107, -0.683345, -1.18781, 1.89299,

2.46767, 4.92279, -2.29093 ´ 10
7
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0==

Export@"C:\\Users\\louis\\Dropbox\\projectData\\LongLong\\p1o3\\abaFitlink.csv",

AbaPotlinkD
C:\Users\louis\Dropbox\projectData\LongLong\p1o3\abaFitlink.csv

Coefficient@VV3@@1, 1DD, a2@tD a0@tD a1@tDD
-1.90334 ´ 10

6

vlf

2.18254 ´ 10
-8
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Appendix E

Matlab programs

E.1 FEA integral computation

This code inputs the raw data from the FEA mode calculations and computes inte-

grals of stress, strain and strain energy for the different sections of the beam:

umax=-4.81e-5; %maximum end deflection at buckled equilibrium

P0=1.3; %compressive load at equilibrium

d31=2*(-75e-12); %piezoelectric coupling constant

epsilon=7.526e-9; %dielectric constant

eq(:,:,1)=equ(5952:10271,3:end); %load the equilibrium position data into a matrix

eq(:,:,2)=equ(10283:14602,3:end); %third index indicates which section of the beam

Seq(:,:)=equ(1:5940,3:end); %1: piezo1 in bimorph

eq(:,:,4)=equ(14614:18933,3:end); %2: piezo2 in bimorph

%3: single layer piezo

eq(:,1,:)=eq(:,1,:)*1e-9; %correct volume %4: steel bimorph shim
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Matlab programs Chapter E

Seq(:,1)=Seq(:,1)*1e-9;

const(:,:,1)=Const(5952:10271,3:end); %load the constrained data into a matrix

const(:,:,2)=Const(10283:14602,3:end);

Sconst(:,:)=Const(1:5940,3:end);

const(:,:,4)=Const(14614:18933,3:end);

const(:,1,:)=const(:,1,:)*1e-9; %correct volume

m(:,:,1,1)=M1(5952:10271,3:end); %stress/strain from first mode

m(:,:,2,1)=M1(10283:14602,3:end);

Sm(:,:,1)=M1(1:5940,3:end);

m(:,:,4,1)=M1(14614:18933,3:end);

m(:,:,1,2)=M2(5952:10271,3:end); %stress/strain from mode 2

m(:,:,2,2)=M2(10283:14602,3:end);

Sm(:,:,2)=M2(1:5940,3:end);

m(:,:,4,2)=M2(14614:18933,3:end);

m(:,:,1,3)=M3(5952:10271,3:end); %stress/strain from mode 3

m(:,:,2,3)=M3(10283:14602,3:end);

Sm(:,:,3)=M3(1:5940,3:end);

m(:,:,4,3)=M3(14614:18933,3:end);

a1=31.71; %load required for no deflection compression

a2=P0-a1; %load at equilibrium
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%rB is the integral of the strain of the bimorph in the equilibrium configuration

rB=eq(:,1,1)’*eq(:,2,1)+eq(:,1,2)’*eq(:,2,2)+eq(:,1,4)’*eq(:,2,4);

rBabs=eq(:,1,1)’*abs(eq(:,2,1))+eq(:,1,2)’*abs(eq(:,2,2))+eq(:,1,4)’*abs(eq(:,2,4));

rB1=eq(:,1,1)’*m(:,1,1,1)+eq(:,1,2)’*m(:,1,2,1)+eq(:,1,4)’*m(:,2,4,1);

rB1abs=eq(:,1,1)’*abs(m(:,1,1,1))+eq(:,1,2)’*abs(m(:,1,2,1))+eq(:,1,4)’*abs(m(:,1,4,1));

rB2=eq(:,1,1)’*m(:,1,1,2)+eq(:,1,2)’*m(:,1,2,2)+eq(:,1,4)’*m(:,2,4,2);

rB2abs=eq(:,1,1)’*abs(m(:,1,1,2))+eq(:,1,2)’*abs(m(:,1,2,2))+eq(:,1,4)’*abs(m(:,1,4,2));

rB3=eq(:,1,1)’*m(:,1,1,3)+eq(:,1,2)’*m(:,1,2,3)+eq(:,1,4)’*m(:,2,4,3);

rB3abs=eq(:,1,1)’*abs(m(:,1,1,3))+eq(:,1,2)’*abs(m(:,1,2,3))+eq(:,1,4)’*abs(m(:,1,4,3));

%rS is the integral of the strain of the single layer in the equilibrium configuration

rS=Seq(:,1)’*Seq(:,2);

rSabs=Seq(:,1)’*abs(Seq(:,2));

rS1=Seq(:,1)’*Sm(:,1,1);

rS1abs=Seq(:,1)’*abs(Sm(:,1,1));

rS2=Seq(:,1)’*Sm(:,1,2);

rS2abs=Seq(:,1)’*abs(Sm(:,1,2));

rS3=Seq(:,1)’*Sm(:,1,3);

rS3abs=Seq(:,1)’*abs(Sm(:,1,3));

%seB/S are the strain energy at the equilibrium in the bimorph/single

seB=.5*(eq(:,1,1)’*(eq(:,2,1).*eq(:,8,1))+eq(:,1,2)’*(eq(:,2,2).*eq(:,8,2))+eq(:,1,4)’*(eq(:,2,4).*eq(:,8,4)));

seS=.5*(Seq(:,1)’*(Seq(:,2).*Seq(:,8)));

se0=const(:,1,1)’*const(:,14,1)+const(:,1,2)’*const(:,14,2)+const(:,1,4)’*const(:,14,4)+Sconst(:,1)’*Sconst(:,14);

set=eq(:,1,1)’*eq(:,14,1)+eq(:,1,2)’*eq(:,14,2)+eq(:,1,4)’*eq(:,14,4)+Seq(:,1)’*Seq(:,14);
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se1=eq(:,1,1)’*m(:,13,1,1)+eq(:,1,2)’*m(:,13,2,1)+eq(:,1,4)’*m(:,13,4,1)+Seq(:,1)’*Sm(:,13,1);

se2=eq(:,1,1)’*m(:,13,1,2)+eq(:,1,2)’*m(:,13,2,2)+eq(:,1,4)’*m(:,13,4,2)+Seq(:,1)’*Sm(:,13,2);

se3=eq(:,1,1)’*m(:,13,1,3)+eq(:,1,2)’*m(:,13,2,3)+eq(:,1,4)’*m(:,13,4,3)+Seq(:,1)’*Sm(:,13,3);

%V1/2 are the volume of the piezoelectric elements in the bimorph/single

V1=(epsilon-(d312)/(15.2e9))*(sum(eq(:,1,1))+sum(eq(:,1,2)));

V3=(epsilon-(d312)/(15.2e9))*sum(Seq(:,1));

%d’s are the difference between the integral of the strain in the two

%piezoelectric layers of the bimorph

d0=(eq(:,1,1)’*eq(:,2,1))-(eq(:,1,2)’*eq(:,2,2)); %a0=1

d1=eq(:,1,1)’*m(:,1,1,1)-eq(:,1,2)’*m(:,1,2,1); %a0,a1=1

d2=eq(:,1,1)’*m(:,1,1,2)-eq(:,1,2)’*m(:,1,2,2); %a0,a2=1

d3=eq(:,1,1)’*m(:,1,1,3)-eq(:,1,2)’*m(:,1,2,3); %a0,a3=1

mS=8000*sum(eq(:,1,4))/.08; %mass per unit length of the steel shim

mP=3750*sum(eq(:,1,1))/.08; %mass/length of piezo material

matlink=[rB se0 se1 se3 d0 d1 V1 mS a1;rS set se2 d31*(15.2e9) d2 d3 V3 mP a2]

E.2 Model Time Simulation

This program inputs the data generated via mathematica, and simulates the time

evolution of the system under the sinusoidal forcing as indicated by the amplitude and

frequency variables.
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global w A Rlr Rll matlink zeta f tf;

Rlr=2200; %resistive load on right (single layer) piezo

Rll=2200; %resistive load on left (bimorph) piezo

load abaFitlink.csv; %load the Mathematica model

matlink=abaFitlink;

zeta=[1e-11 9e-8 2e-7 2e-5]; %damping

options=odeset(’Jacobian’,@beam jacAbaCross,’BDF’,’on’,’RelTol’,1e-4,’AbsTol’,1e-6);

Input=6.5;

f=39.2;

w=f*2*pi;

A=sqrt(Input/(w3));

tf=0;

Y0=[1 0 0 0 0 0 0 0 0 0];

[T,Y]=ode15s(@beam fnAbaCross,[0 3],Y0,options);

length(T)

Tt=T;

Yt=Y;

tf=T(end);

tet=T(end);

yet=Y(end,:);

Y0=Y(end,:);
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options=odeset(’Jacobian’,@beam jacAbaCross,’BDF’,’on’,’RelTol’,1e-4,’AbsTol’,1e-6,’Events’,@(t,Y)

poincare(t,Y,f));

for i = 1:10

[T,Y, te, ye, ie]=ode15s(@beam fnAbaCross,[0 1],Y0,options);

Tt=[Tt;T+tf];

Yt=[Yt;Y];

tet=[tet;te+tf];

yet=[yet;ye];

Y0=Y(end,:);

tf=tf+T(end);

end
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