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Abstract

Robust stability theory for stochastic dynamical systems

by

Anantharaman Subbaraman

In this work, we focus on developing analysis tools related to stability theory for

certain classes of stochastic dynamical systems that permit non-unique solutions. The

non-unique nature of solutions arise primarily due to the system dynamics that are

modeled by set-valued mappings. There are two main motivations for studying such

classes of systems. Firstly, understanding such systems is crucial to developing a robust

stability theory. Secondly, such system models allow flexibility in control design problems.

We begin by developing analysis tools for a simple class of discrete-time stochastic

system modeled by set-valued maps and then extend the results to a larger class of

stochastic hybrid systems. Stochastic hybrid systems are a class of dynamical systems

that combine continuous-time dynamics, discrete-time dynamics and randomness. The

analysis tools are established for properties like global asymptotic stability in probability

and global recurrence. We focus on establishing results related to sufficient conditions for

stability, weak sufficient conditions for stability, robust stability conditions and converse

Lyapunov theorems. In this work a primary assumption is that the stochastic system

satisfies some mild regularity properties with respect to the state variable and random

input. The regularity properties are needed to establish the existence of random solutions

and results on sequential compactness for the solution set of the stochastic system.

We now explain briefly the four main types of analysis tools studied in this work.

Sufficient conditions for stability establish conditions involving Lyapunov-like functions

satisfying strict decrease properties along solutions that are needed to verify stability
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properties. Weak sufficient conditions relax the strict decrease nature of the Lyapunov-

like function along solutions and rely on either knowledge about the behavior of the

solutions on certain level sets of the Lyapunov-like function or use multiple nested non-

strict Lyapunov-like functions to conclude stability properties. The invariance principle

and Matrosov function theory fall in to this category. Robust stability conditions de-

termine when stability properties are robust to sufficiently small perturbations of the

nominal system data. Robustness of stability is an important concept in the presence

of measurement errors, disturbances and parametric uncertainty for the nominal system.

We study two approaches to verify robustness. The first approach to establish robust-

ness relies on the regularity properties of the system data and the second approach is

through the use of Lyapunov functions. Robustness analysis is an area where the notion

of set-valued dynamical systems arise naturally and it emphasizes the reason for our

study of such systems. Finally, we focus on developing converse Lyapunov theorems for

stochastic systems. Converse Lyapunov theorems are used to illustrate the equivalence

between asymptotic properties of a system and the existence of a function that satisfies

a decrease condition along the solutions. Strong forms of the converse theorem imply

the existence of smooth Lyapunov functions. A fundamental way in which our results

differ from the results in the literature on converse theorems for stochastic systems is

that we exploit robustness of the stability property to establish the existence of a smooth

Lyapunov function.
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Notation

• R≥0 denotes the non-negative real numbers.

• Q denotes the set of rational numbers.

• Z≥0 denotes the non-negative integers.

• For S ⊂ Rn, the symbol IS denotes the indicator function of S i.e., IS(x) = 1 for

x ∈ S and IS(x) = 0 otherwise.

• For vectors f1, f2 ∈ Rn, 〈f1, f2〉 denotes the inner product.

• For c ≥ 0 and a function V : Rn → R≥0, LV (c) := {x ∈ Rn : V (x) = c} denotes the

level set of the function V .

• B, Bo denote the closed and open unit ball in Rn.

• ∂S, S and coS represents the boundary of the set S, closure of the set S and the

closed convex hull of the set S respectively.

• Given a closed set S ⊂ Rn and ε > 0, S + εB represents the set {x ∈ Rn : |x|S ≤ ε}

and S + εBo represents the set {x ∈ Rn : |x|S < ε}.

• B(Rm) denotes the Borel σ-field, the subsets of Rm generated from all open subsets

of Rm through complements and finite and countable unions.

• For a compact set A ⊂ Rn, a function V : Rn → R≥0 belongs to the class PD(A)

if V (x) = 0 for x ∈ A and positive elsewhere.

• For τ ≥ 0, we define the sets Γ≤τ :=
{

(s, t) ∈ R2 : s+ t ≤ τ
}

and Γ≥τ :=
{

(s, t) ∈

R2 : s+ t ≥ τ
}

xii



• The functions πi : R≥0 × R≥0 × Rn → R≥0 are such that πi(t1, t2, z) = ti for each

i ∈ {1, 2}.

• For sets S1, S2 ⊂ Rn, I⊂S1(S2) = 1−supx∈S2
IRn\S1(x) and I∩S1(S2) = supx∈S2

IS1(x)

with the convention that the maximum’s are zero when S2 = ∅.
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Chapter 1

Introduction

Stability theory for dynamical systems is one of the most well studied topics in control

theory and is pioneered by the work in [1]. For continuous-time systems, results for

certifying asymptotic stability of the origin are found in the seminal work by Lyapunov

in [1]. In particular, through the use of a Lyapunov function that is decreasing strictly

along solutions, asymptotic stability of the origin can be concluded for the system without

explicit knowledge of the actual solution to the ordinary differential equation.

The sufficient conditions proposed in [1] is one among the many different analysis tools

studied in the literature. A natural relaxation of the sufficient condition leads to the use of

Lyapunov-like functions satisfying non-strict decrease conditions to establish asymptotic

stability of the origin. The invariance principle in [2], [3] characterize the behavior of

complete, bounded solutions using the notion of Ω-limit sets which are invariant. Under

the additional assumption of a non-increasing Lyapunov-like function it is also established

that complete, bounded solutions converge to the largest invariant sets inside level sets

of the Lyapunov-like function. This key result is then used to establish weak sufficient

conditions for asymptotic stability that do not insist on the existence of a Lyapunov

function satisfying strict decrease properties.
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Introduction Chapter 1

In [4] and [5] instead of using one non-strict Lyapunov function, multiple non-strict

but nested functions (referred to as Matrosov functions) are utilized to conclude asymp-

totic stability. In essence, the invariance principle and Matrosov function theory provide

weak sufficient conditions for the asymptotic stability property. However, the invariance

principle requires knowledge about solution behavior on certain level sets of the Lya-

punov function to conclude asymptotic stability whereas the Matrosov function based

approach does not.

Another important problem studied in the literature relates to robustness of stability

properties. In particular, conditions for which the stability property of the nominal

system is preserved under the action of sufficiently small perturbations are studied. The

perturbations affecting the nominal system can be measurement errors related to the

state or modeling uncertainties in the system description. Robustness properties can be

studied from the viewpoint of the regularity properties of the nominal system ([6], [7]), or

through a Lyapunov function approach which usually involves an assumption regarding

the existence of a Lyapunov function satisfying good regularity properties for the nominal

system ([8], [7]) or by explicitly considering the disturbance/ noise inputs to the system

as in the various works on input to state stability ([9], [10]).

Converse Lyapunov theorems are used to establish the equivalence between asymp-

totic stability properties and the existence of Lyapunov-like functions that satisfy certain

decrease conditions along solutions. Converse Lyapunov theorems for a locally Lipschitz

differential inclusion appear in [11], with its discrete-time counterpart in [9]. Strong sta-

bility of the origin for a differential inclusion under mild regularity assumptions is proved

to be equivalent to the existence of a smooth Lyapunov function in [12]. For difference

inclusions under similar regularity assumptions a converse Lyapunov theorem is estab-

lished in [7], where sufficient conditions for existence of a smooth Lyapunov function for

difference equations with discontinuous right hand sides is also established. Results on

2



Introduction Chapter 1

the existence of smooth Lyapunov functions under the assumption of KL-stability with

respect to two measures for differential and difference inclusions is in [6],[13] respectively.

Next, we briefly discuss the development of analysis tools for a larger class of hybrid

systems. Hybrid systems are a class of dynamical systems that combines continuous-time

dynamics and discrete-time dynamics. The developments in area of stability analysis for

hybrid systems are a bit recent. In particular, [14] establishes Lyapunov function based

sufficient conditions for global asymptotic stability, converse Lyapunov theorems, robust

stability and the invariance principle under mild assumptions on the system data. The

work by [15] and [16] establish a Matrosov theorem and input to state stability results

respectively.

The literature on analysis tools for stability in stochastic systems has also taken a

similar route but is more diverse. The diversity arises primarily due to many variants

of the stability properties that can be studied for stochastic systems (See [17]). This is

a direct consequence of the different notions of convergence that exist for sequence of

random variables (See [18, Chapter 6]). In particular, for stochastic systems stability

properties can be studied based on convergence in mean, convergence in probability, al-

most sure convergence and convergence in distribution. Some of the stability properties

studied frequently in the literature are mean square asymptotic stability (asymptotic,

exponential), almost sure asymptotic stability, asymptotic stability in probability, stabil-

ity in distribution, positive recurrence and null recurrence. We refer the reader to [19],

[20], [21], [22] and [23] for results on Lyapunov function based conditions for certifying

stability, invariance principle and converse Lyapunov theorems.

Stochastic hybrid systems are a class of dynamical systems that combine continuous-

time dynamics, discrete-time dynamics and randomness. In stochastic hybrid systems

randomness can affect the system dynamics in a number of different ways and conse-

quently the modeling frameworks studied in the literature vary in complexity and scope.

3
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(See [24], [25], [23] and [26]). We also refer the reader to [27] for details on the many

different classes of stochastic hybrid systems and related developments in stability theory.

Stability analysis tools for stochastic systems modeled by set-valued mappings are

seldom studied in the literature. In this dissertation, we emphasize the key role set-valued

stochastic systems play in the development of a robust stability theory for stochastic

systems. We will focus on discrete-time stochastic systems and stochastic hybrid systems

modeled by set-valued mappings and establish a range of analysis tools related to stability

theory. We restrict our study and the development of analysis tools to global recurrence

of open, bounded sets and global asymptotic stability in probability of compact sets.

1.1 Outline of the results

In the following chapters we aim to establish a variety of analysis tools related to

stability theory for stochastic systems. In particular, we study properties like recurrence

and asymptotic stability in probability for a class of discrete-time stochastic systems and

stochastic hybrid systems.

In Chapter 2, we study the recurrence property for non-stochastic hybrid systems.

Under mild regularity properties for the hybrid system we establish that recurrence of

bounded sets is equivalent to the well studied property of ultimate boundedness. We

also establish that the recurrence property is robust to sufficiently small state dependent

perturbations and develop a converse Lyapunov theorem. Chapter 2 serves as an intro-

duction to the recurrence property and to the type of analysis tools that will be studied

for a more general class of stochastic systems in the subsequent chapters.

In Chapter 3, we introduce a class of discrete-time stochastic systems modeled by

set-valued mappings(stochastic difference inclusions). We characterize the notion of a

random solution to the stochastic difference inclusion and establish sufficient conditions

4



Introduction Chapter 1

for stability, an invariance principle, conditions for robust stability and a converse Lya-

punov theorem under good regularity properties for the stochastic difference inclusion.

In Chapter 4, we analyze robustness for a class of discrete-time stochastic systems

stabilized by discontinuous feedback laws. The results from Chapter 3 on robustness

are generally not applicable in the case of discontinuities in the control law. Hence, we

develop a Lyapunov function based approach to verify robustness as opposed to relying

on the regularity properties of the closed loop system.

In Chapter 5, we study a class of stochastic hybrid systems modeled by set-valued

mappings. In particular, we focus on systems where the randomness is restricted to

the discrete-time dynamics. For this class of systems, we present a result related to

the invariance principle for characterizing the behavior of bounded random solutions.

Application of this result to establishing weak sufficient conditions for recurrence and

asymptotic stability in probability is also presented.

In Chapter 6, we provide a Lyapunov function based characterization of the recurrence

property for the class of stochastic hybrid systems studied in Chapter 5. In particular,

we establish robustness results and a converse Lyapunov theorem for global recurrence

of open, bounded sets.

In Chapter 7, we summarize the contributions of this dissertation and point out future

research directions.

5



Chapter 2

Hybrid systems

2.1 Introduction

Hybrid systems are a class of dynamical systems that combine continuous-time dy-

namics and discrete-time dynamics. Several frameworks have been proposed in the liter-

ature for the modeling and analysis of hybrid systems. We refer the reader to [28], [29]

and [30] for details. The aim of this chapter is to review a mathematical framework for

hybrid system models proposed in [28], give the reader an introduction to the study of a

property called recurrence, and, establish a Lyapunov function based characterization for

the recurrence property. The main results presented in this chapter are from [31]. The

subsequent chapters will build upon the fundamental results in this chapter and extend

the results to a larger class of systems affected by randomness.

2.2 Preliminaries on hybrid systems

We follow the mathematical framework in [28] for modeling hybrid systems. As

explained in [14, Chapter 1] other models for describing hybrid systems can be encom-

6



Hybrid systems Chapter 2

passed within the framework of [28]. So, we consider a class of hybrid systems with a

state x ∈ Rn written formally as

ẋ ∈ F (x), x ∈ C (2.1a)

x+ ∈ G(x), x ∈ D (2.1b)

where C,D ⊂ Rn represent the flow and jump sets (where continuous and discrete evolu-

tion of the state is permitted) respectively and F : Rn ⇒ Rn, G : Rn ⇒ Rn represent the

set-valued flow and jump maps respectively. In essence, the continuous-time dynamics

is modeled by a differential inclusion and the discrete-time dynamics is modeled by a

difference inclusion.

2.2.1 Solution concept

We define solutions to the hybrid system on a generalized time domain that uses two

variables t, j to keep track of the continuous evolution of the state and the number of

jumps elapsed respectively. To define solutions to (2.1) we require the notion of a hybrid

time domain: a subset E of (R≥0 × Z≥0), which is the union of infinitely many intervals

of the form [tj, tj+1]×{j}, where 0 = t0 ≤ t1 ≤ t2 ≤ ..., or finitely many of such intervals,

with the last one possibly of the form [tj, tj+1]× {j}, [tj, tj+1)× {j}, or [tj,∞)× {j}. A

function φ : E → Rn that maps a hybrid time domain to the Euclidean space and for

which t 7→ φ(t, j) is locally absolutely continuous for fixed j is called a hybrid arc.

A hybrid arc is a solution to (2.1) if φ(0, 0) ∈ C ∪D and:

1) for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom φ: φ(t, j) ∈ C, φ̇(t, j) ∈

F (φ(t, j))

2) for all (t, j) ∈ dom φ such that (t, j+1) ∈ dom φ: φ(t, j) ∈ D, φ(t, j+1) ∈ G(φ(t, j)).

A solution to the hybrid system is called maximal if it cannot be extended, and

7
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φ(t, j)

t

j

t1 t2 = t3 t4

1

2

3

0

φ(0, 0)

Figure 2.1: A solution to a hybrid system - hybrid arc φ

complete if its domain is unbounded. See Figure 2.1 for a representation of a hybrid arc.

We will represent the hybrid system (2.1) through its data as

H := (C,F,D,G). (2.2)

We denote by SH(K) the set of all maximal solutions starting from the set K ⊂ Rn

for the hybrid system H. We assume throughout this chapter that H satisfies certain

regularity properties listed below.

Standing Assumption 2.1 The data H of the hybrid system (2.1) satisfies the follow-

ing conditions:

1. The sets C,D ⊂ Rn are closed.

2. The mapping F is outer semicontinuous, locally bounded, convex valued and non-

empty on C.

3. The mapping G is outer semicontinuous, locally bounded and non-empty on D.

8
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If F,G are single-valued mappings, then Standing Assumption 2.1 reduces to the

mappings f, g being continuous on C and D respectively. The system (2.1a) is said to

have no finite escape times if there are no solutions of (2.1a) that escape to infinity at a

finite time.

2.2.2 Systems modeled by set-valued mappings

In this section we explain the motivations for studying systems modeled by set-valued

mappings and the system regularity properties imposed in Standing Assumption 2.1.

The main reasons for studying systems modeled by set-valued mappings are listed

below.

• Firstly, set-valued mappings arise in the context of analysis of systems in the pres-

ence of disturbances. This notion is illustrated for the simple case of a discrete-time

system x+ = g(x) in Figure 2.2. Analysis of the nominal system x+ = g(x) in the

presence of measurement errors in the state x and modeling uncertainties in the

mapping g leads to the study of the difference inclusion x+ ∈ g(x+δB)+δB, where

δ > 0 is the size of the perturbation. Hence, the study of set-valued mappings

is crucial for the development of a robust stability theory for dynamical systems.

This aspect will be explored further in this chapter and in the subsequent chapters

for a larger class of stochastic systems. We refer the reader to [32, Chapter 1] for

more details.

• Secondly, allowing set-valued mappings can provide a degree of flexibility in the con-

trol design process and also be a useful technical tool in solving control synthesis

problems. For example, [33], [34, Chapter 7] and [32, Chapter 1] present scenarios

in the context of control system analysis related to optimal control synthesis, lo-

cal controllability analysis, study of constrained control systems where set-valued

9
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Nominal system Perturbed system

x+ = g(x) x+ ∈ g(x+ δB) + δB
Measurement error

Modeling error

x
x+ δB

g(x+ δB) + δB

Figure 2.2: Perturbation of nominal system models

mappings arise. We refer the reader to [35] for more examples that illustrate the

importance of set-valued analysis in control systems. Set-valued mappings arising

in control design oriented problems are in [36], [37], [38], [39] and [40].

• Finally, set-valued systems also arise frequently in the study of discontinuous sys-

tems of the form ẋ = f(x) or x+ = g(x) through the Krasovskii/ Filippov regular-

ization and in defining notions of generalized solutions for discontinuous systems.

For example, the Krasovskii regularization for discontinuous flow and jump maps

f, g are given by ∩δ>0conf(x+δB) and ∩δ>0g(x+ δB) where con refers to the closed

convex hull. The Krasovskii regularization can also be used to infer robustness of

stability properties for the original discontinuous system. We refer the reader to

[14, Lemma 5.16] for more details.

The primary motivation for imposing the regularity properties in Standing Assump-

tion 2.1 are now stated. Standing Assumption 2.1 is crucial to establishing the notion

of nominal well-posed and well-posed hybrid systems (See [14, Chapter 6] and the Ap-

pendix for more details). These notions are then used to prove the equivalence between

uniform and non-uniform versions of stability properties, establish robustness of stability

10
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properties and consequently aid in the development of converse Lyapunov theorems.

2.3 Recurrence and Uniform recurrence

In this section we define the notion of recurrence for sets. Recurrence is a weak

property that is frequently studied in the literature for stochastic systems. It is a weaker

property compared to asymptotic stability but nevertheless useful in many applications

where stronger properties are difficult to establish. Recurrence proves to be a useful

alternative particularly in the study of systems affected by persistent disturbances. In

this chapter, we study the recurrence property not for stochastic systems, but for a

class of non-stochastic hybrid systems. Subsequent chapters will explore the recurrence

property in detail for discrete-time stochastic systems and stochastic hybrid systems.

Definition 2.1 A set O ⊂ Rn is said to be globally recurrent for the hybrid system H

in (2.2) if there are no finite escape times for (2.1a) and for each complete solution

φ ∈ SH(C ∪D), there exists (t, j) ∈ dom φ such that φ(t, j) ∈ O.

Loosely speaking, the definition means that from every initial condition, solutions

either stop or hit the setO and solutions do not exhibit finite escape times. An illustration

of the recurrence property is in Figure 2.3. The recurrence definition does not impose

any invariance-like property for the set O. Hence, solutions that start from the set

O can leave the set. Recurrence of the set O also does not impose any stability-like

conditions since solutions that start close to the set O need not stay close. In this

respect, recurrence is different from the frequently studied asymptotic stability property.

Nevertheless, there are some connections between recurrence and properties like ultimate

boundedness and asymptotic stability which will be explored in the subsequent sections.

Another consequence of the recurrence property is that for complete solutions, recurrence

11
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O

x

Figure 2.3: Illustration of recurrence

for the set O implies that solutions have to visit the set O infinitely often.

Definition 2.2 A set O ⊂ Rn is said to be uniformly globally recurrent for H in (2.2) if

there are no finite escape times for (2.1a) and for each compact set K, there exists T > 0

such that for each solution φ ∈ SH(K), either t + j < T for all (t, j) ∈ dom φ or there

exists (t, j) ∈ dom φ such that t+ j ≤ T and φ(t, j) ∈ O.

Recurrence is a property that is studied with respect to open sets for a variety of

reasons. Firstly, we consider open, bounded sets to establish robustness of the recurrence

property. Secondly, equivalence between uniform and non-uniform versions of recurrence

hold only for open sets. These aspects will be illustrated through examples in the sections

that follow.

The following result establishes equivalence between uniform and non-uniform recur-

rence when O is open and bounded under mild regularity properties for H stated in

Standing Assumption 2.1.

12
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Proposition 2.1 An open, bounded set O is globally recurrent for H in (2.2) if and only

if it is uniformly globally recurrent for H.

Proof: ⇐ Follows immediately from the definitions.

⇒ Suppose O is not uniformly globally recurrent. Then, there exists a compact set

K such that for every i ∈ Z>0, there exists a solution φi ∈ SH(K) such that there exists

(t, j) ∈ dom φi satisfying t + j > i and for all (t, j) ∈ dom(φi) satisfying t + j ≤ i,

φi(t, j) /∈ O. Due to compactness of K, and absence of finite escape times, it follows

from [14, Prop 6.13] that the sequence of solutions φi is locally eventually bounded 1.

Then, [41, Thm 4.4] states that the sequence φi admits a converging subsequence ψi that

converges to a complete solution ψ ∈ SH(K). From recurrence of O, there exists (t, j)

such that ψ(t, j) ∈ O. From the definition of convergence of hybrid arcs, there exists

a sequence {ti, ji, ψi(ti, ji)} such that ti → t, ji → j and ψi(ti, ji) → ψ(t, j). Since O

is open, for i large enough ψi(ti, ji) ∈ O. This contradicts the initial assumption and

establishes uniform global recurrence of O.

Without Standing Assumption 2.1, Proposition 2.1 is not necessarily true and the

following example illustrates it.

Example 2.1 Consider H = (∅,∅,R, g) where g(x) = (max{0, x})2 if x < 1 and g(x) =

0 otherwise. Consider an open neighborhood of the origin of the form O := (−ε, ε) for

any ε ∈ (0, 1). Then for every initial condition x ∈ Rn, all solutions reach the set O and

hence O is globally recurrent. Now for every compact set K ⊂ R such that {1} ∈ int(K),

the solutions that start arbitrarily close to the left of x = 1 takes arbitrarily long times

to reach the set O and hence the set O is not uniformly globally recurrent. The mapping

g is discontinuous at the point x = 1 and hence does not satisfy Standing Assumption

1A sequence of solutions φi is called locally eventually bounded if for every τ ≥ 0, there exists i∗ and
M > 0 such that for all i ≥ i∗ and all (t, j) ∈ dom(φi) with t+ j ≤ τ , φi(t, j) ∈MB. We refer the reader
to [28] and [14, Definition 5.24] for more details.
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2.1.

The next example illustrates how Proposition 2.1 can fail if the set O is not open.

The equivalence between recurrence and uniform recurrence is crucial to the development

of the converse Lyapunov theorem established later in this chapter.

Example 2.2 Consider a continuous-time system with C = R2 and the following dy-

namics

ẋ1 = x2 − x1(x2
1 + x2

2 − 1), ẋ2 = −x1 − x2(x2
1 + x2

2 − 1).

Let ε ∈ (0, 1). It can be observed that the closed set O := {0}∪{x : |x| ∈ [1− ε, 1+ ε]} is

globally recurrent. Moreover, for solutions starting closer to the origin, it takes arbitrarily

long time to reach the set O. Hence, uniform recurrence fails even though the system

satisfies the conditions of Standing Assumption 2.1.

2.4 Recurrence and other properties

In this section we make connections between recurrence and other well studied prop-

erties like ultimate boundedness and asymptotic stability.

2.4.1 Connection to Ultimate boundedness

Definition 2.3 The solutions of H in (2.2) are uniformly ultimately bounded if there

are no finite escape times for (2.1a) and there exists M > 0 such that for each ∆ > 0

there exists T > 0 such that for every φ ∈ SH(∆B) either t+ j < T for all (t, j) ∈ dom φ

or φ(t, j) ∈MB for all (t, j) ∈ dom φ satisfying t+ j ≥ T .
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Proposition 2.2 The solutions of H in (2.2) are uniformly ultimately bounded if and

only if there exists an open, bounded set O that is globally recurrent for H.

Proof: It follows from the definition that ultimate boundedness of solutions of H

implies that the set O = (M + 1)Bo is globally recurrent for H.

Next, we establish that recurrence of an open, bounded set O for H implies uniform

ultimate boundedness of solutions of H. We first claim that the reachable 2 set (in

infinite hybrid time) from the compact set O is bounded. It follows from [14, Prop

6.13] that there exists a compact set K1 such that R≤2(O) ⊂ K1. Let T > 0 be such

that the condition of uniform recurrence holds from the set K1. Then, using [14, Prop

6.13], it follows that there exists a set K2 such that R≤T (K1) ⊂ K2. Then, we claim

that ∪τ≥0Rτ (O) ⊂ K2. Let φ ∈ SH(O). If t + j ≤ T + 2 for all (t, j) ∈ dom φ then

φ(t, j) ∈ K2 for all (t, j) ∈ dom φ. If not, there exists (t1, j1) such that t1 + j1 ∈ [1, 2] and

φ(s, i) ∈ K1 ⊂ K2 for s+i ≤ t1 +j1 and φ(t1, j1) ∈ O or φ(t1, j1) ∈ K1\O. For the second

case, there exists (t2, j2) such that 0 ≤ t2 + j2 − (t1 + j1) ≤ T such that φ(t2, j2) ∈ O

and φ(s, i) ∈ K2 for s + i ≤ t2 + j2. We now iterate the same argument to prove that

the reachable set from O is bounded. Next, we choose M > 0 sufficiently large so that

K2 ⊂MB. Now let ∆ > 0. From the definition of uniform global recurrence there exists

T > 0 such that for each solution φ ∈ SH(∆B), either t + j < T for all (t, j) ∈ dom φ

or there exists (t, j) ∈ dom φ such that t + j ≤ T and φ(t, j) ∈ O. Then, from O

being recurrent, and the reachable set from O being bounded, it follows that there are

no finite escape times and for every φ ∈ SH(∆B) either t + j < T for all (t, j) ∈ dom φ

or φ(t, j) ∈ MB for all (t, j) ∈ dom φ satisfying t + j ≥ T . This establishes uniform

ultimate boundedness.

2The reachable set from a set S within hybrid time τ is defined as R≤τ (S) := {φ(t, j) : φ(0, 0) ∈
S and t+ j ≤ τ}. The reachable set from a set S in infinite hybrid time is ∪τ≥0Rτ (S).
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2.4.2 Connection to asymptotic stability

Asymptotic stability is a widely studied property for dynamical systems. In this

section, we adopt the definition of asymptotic stability of closed sets for hybrid systems

from [28].

Definition 2.4 A closed set A is uniformly globally stable (UGS) for H, if there exists

a class-K∞ function α such that for every solution φ to H, |φ(t, j)|A ≤ α(|φ(0, 0)|A) for

every (t, j) ∈ dom(φ).

Definition 2.5 A closed set A is uniformly globally attractive for H, if there are no

finite escape times for (2.1a) and for every ε > 0, r > 0 there exists a T > 0 such that

for every solution φ to H with |φ(0, 0)|A ≤ r, (t, j) ∈ dom(φ) and t + j ≥ T imply

|φ(t, j)|A ≤ ε.

A closed setA is uniformly globally asymptotically stable (UGAS) forH it is uniformly

globally stable and uniformly globally attractive for H. In [25], it is established that

UGAS of a closed set can be expressed in terms of UGS and uniform global recurrence

of open neighborhoods of the closed set. The following result is proved in [25, Prop 2.2]

for a wide class of stochastic hybrid systems, so we only state the result here.

Proposition 2.3 If the closed set A ⊂ Rn is UGS for H and, for every ε > 0, the open

set A+ εBo is uniformly globally recurrent for H, then the set A is UGAS for H.

In fact, the existence of an open, bounded recurrent set O for H implies that there

exists a compact set A, that is UGAS for H. This is a consequence of the reachable

set from O being bounded and [14, Corollary 7.7]. The proof of the following result is

presented in the Appendix.

Proposition 2.4 Let the open, bounded set O ⊂ Rn be globally recurrent for H in (2.2).

Then, there exists a compact set A that is UGAS for H.
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2.5 Invariance principle for recurrence

In this section we state weak sufficient conditions for recurrence in terms of non-strict

Lyapunov-like functions. The invariance principle utilizes the existence of weak-Lyapunov

function that is non-increasing along solutions outside the set O and knowledge about

behavior of solutions in level sets of this weak-Lyapunov function to conclude global

recurrence. The invariance principle is proved in a subsequent chapter for a larger class

of stochastic hybrid systems and hence we only state the result here. Let SFC\O(x) refer

to solutions of the constrained system ẋ ∈ F (x), x ∈ C\O from initial condition x.

Definition 2.6 A continuous function V̂ : Rn → R≥0 is a weak-Lyapunov function

relative to an open, bounded set O ⊂ Rn for H in (2.2) if V̂ is radially unbounded and

satisfies

V̂ (φ(t)) ≤ V̂ (x0), ∀x0 ∈ C\O, t ∈ dom(φ), φ ∈ SFC\O(x0) (2.3)

max
g∈G(x0)∩(Rn\O)

V̂ (g) ≤ V̂ (x0),∀x0 ∈ D\O. (2.4)

The conditions (2.3) and (2.4) state that the function V̂ is non-increasing along flows

outside the set O and is non-increasing along jumps when the solutions are restricted to

points outside the set O. The next result states that by ruling out solutions that stay

in level sets of the function V̂ outside the set O, global recurrence can be established

without the existence of Lyapunov functions satisfying strict decrease properties.

Theorem 2.1 Let V̂ be a weak-Lyapunov function relative to an open, bounded set O ⊂

Rn for the system H. Then, O is globally recurrent if and only if for every c ≥ 0 for which

LV̂ (c)∩ (Rn\O) is non-empty there does not exist a complete solution φ that remains in

the set LV̂ (c) ∩ (Rn\O).
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The following sections will focus on establishing necessary and sufficient conditions

for global recurrence using Lyapunov functions satisfying strict decrease conditions. Ro-

bustness of recurrence is crucial to establishing the equivalence between recurrence of

open, bounded sets and the existence of smooth Lyapunov functions satisfying strict

decrease conditions.

2.6 Robust global recurrence and a converse Lya-

punov theorem

Robustness can be loosely defined as the stability property being preserved for the

nominal system under sufficiently small perturbations. In this section we present results

on robustness of recurrence to sufficiently small state dependent perturbations and also

describe a Lyapunov function based characterization for recurrence that relies on strict

decrease conditions along solutions.

We establish three types of robustness results. Firstly, we establish that recurrence

of an open bounded set implies recurrence of a smaller open set within the original set.

This type of result can be viewed as robustness to perturbations in the set. Secondly, we

prove recurrence is preserved when the data of the hybrid system is modified to slow down

recurrence. Slowing down the recurrence property loosely means that we make quantities

related to the worst case first hitting time to the recurrent set for solutions from every

initial condition increase with the distance of the initial condition to the recurrent set.

Finally, we show that by perturbing the system data in a sufficiently small manner we

preserve recurrence. This property establishes robustness of recurrence to measurement

noise, additive disturbances and parameter uncertainty in system data.

The robustness results developed in this section will play an important role in es-
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tablishing necessary conditions for recurrence in terms of Lyapunov functions. We also

illustrate using examples the importance of Standing Assumption 2.1 in issues relating

to robustness and the existence of smooth Lyapunov functions.

2.6.1 Robustness of recurrence to state dependent inflations

We now establish a series of robustness results that will eventually be applied to the

development of converse Lyapunov theorems. Firstly, since we do not insist on solutions

to H being complete we analyze an inflated system of H for which maximal solutions

are complete and for which recurrence properties are preserved. This inflated system is

later used in the construction of a Lyapunov function to certify recurrence of an open,

bounded set for H. If the open, bounded set O is globally recurrent for H, consider the

inflated system

Ĥ := (C,F,Rn, Ĝ), (2.5)

where Ĝ(x) = G1(x) ∪ G2(x) with G1(x) = G(x) for x ∈ D and G1(x) = ∅ for x /∈ D,

and G2(x) = x∗ for some x∗ ∈ O and for all x ∈ Rn. From the data of the hybrid system

Ĥ and recurrence of the set O for H, it follows that the maximal solutions of Ĥ are

complete.

Lemma 2.1 The data of the hybrid system Ĥ in (2.5) satisfies Standing Assumption

2.1.

Proof: Since H satisfies Standing Assumption 2.1, only the outer semicontinuity

and local boundedness of Ĝ needs to be verified. Since G1 and G2 are locally bounded,

this implies the local boundedness of Ĝ. The outer semicontinuity of G1 follows from

outer semicontinuity of G and the set D being closed. The mapping G2 is continuous.
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The outer semicontinuity of Ĝ follows from [42, Proposition 2] since it is the union of

two outer semicontinuous mappings.

Lemma 2.2 If the open, bounded set O is globally recurrent for H in (2.2), then O is

globally recurrent for Ĥ in (2.5).

Proof: Since the flow map for the hybrid system Ĥ is the same as H, the solutions

generated by Ĥ do not exhibit finite escape times. Let ψ be any solution to Ĥ. If ψ is a

solution of H, then there exists (t, j) such that ψ(t, j) ∈ O. If ψ is not a solution of H,

then there exists (t, j) such that ψ(t, j) = x∗ ∈ O. Hence global recurrence of O for Ĥ

follows.

The next theorem states that recurrence of an open bounded set O implies the exis-

tence of a smaller recurrent set inside O. This result is primarily used to obtain a smooth

Lyapunov function that certifies recurrence of O.

Theorem 2.2 If the open, bounded set O ⊂ Rn is globally recurrent for Ĥ in (2.5), then

there exists ε > 0 and an open set Ô satisfying Ô + εBo ⊂ O such that Ô is globally

recurrent for Ĥ.

Proof: We prove the theorem by contradiction. Suppose there does not exist a

smaller globally recurrent set inside O. Then, for every i ∈ Z≥1, there exists a complete

solution φi such that φi(t, j) ∈ Rn\O+ 1/iB for all (t, j) ∈ dom(φi) and φi(t̂i, ĵi) ∈ O for

some (t̂i, ĵi) ∈ dom(φi). We now define

t∗i := inf{t : φi(t, j) ∈ O}, j∗i := inf{j : φi(t, j) ∈ O}.

Define new solutions ψi such that ψi(t, j) = φi(t + t∗i , j + j∗i ). Hence ψi(0, 0) ∈ O for

all i ∈ Z≥1 and ψi(t, j) ∈ (Rn\O) + (1/i)B for all (t, j) ∈ dom(ψi). Since ψi(0, 0) ∈ O,
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and there are no finite escape times due to recurrence of the set O, it follows from

[14, Prop 6.13] that the sequence of solutions ψi is locally eventually bounded. Then,

from [41, Thm 4.4] there exists a subsequence (which we do not relabel) that converges

to a solution ψ which is complete since ψi are complete. The solutions ψi stay in the

closed set Si := (Rn\O) + 1/iB for all time. Let (t, j) ∈ dom(ψ). Then, there exists

(ti, ji, ψi(ti, ji)) → (t, j, ψ(t, j)) with ψi(ti, ji) ∈ Si. Then, the limit ψ(t, j) ∈ Rn\O.

Since (t, j) are arbitrary, this implies that the solution ψ stays in the set Rn\O for all

time. This contradicts the global recurrence of the set O.

The next inflation of the data of Ĥ results in preserving recurrence while slowing down

the worst case first hitting time for solutions. This inflation will help in constructing a

Lyapunov function that will be radially unbounded. If the open, bounded set O is

globally recurrent for Ĥ, let x∗ ∈ O and define the continuous set-valued mapping

Mν(x) := {x∗}+ ν(|x− x∗|)B where ν ∈ K∞. Consider the inflated mapping

Ĥν := (C,F,Rn, Ĝν), (2.6)

where Ĝ(x) = G1(x) ∪Mν(x). The proof of the next lemma is very similar to Lemma

2.1.

Lemma 2.3 For every ν ∈ K∞, the data of the hybrid system Ĥν in (2.6) satisfies

Standing Assumption 2.1.

The next theorem claims the existence of a ν ∈ K∞ small enough to preserve recur-

rence of the set O for the inflated system Ĥν if O is globally recurrent for Ĥ.

Theorem 2.3 If the open, bounded set O ⊂ Rn is globally recurrent for Ĥ in (2.5), then

there exists ν ∈ K∞ such that O is globally recurrent for Ĥν in (2.6).
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Proof: Let Si ⊂ Rn be a sequence of compact sets such that Si ⊂ Si+1, ∪i∈Z≥0
Si =

Rn and S0 is a small neighborhood of x∗ that is contained in the set O. It follows from

Proposition 2.2 that global recurrence ofO for Ĥ implies that the reachable set (in infinite

hybrid time) from O is bounded. Uniform global recurrence of O for Ĥ implies that for

every compact set Si, there exists a time Ji such that solutions from Si for the system Ĥ

reach the set O within time Ji. Then, the reachable set (in infinite hybrid time) from Si

is R(Si) := R≤Ji(Si) ∪ Γ where R≤Ji(Si) is the reachable set from Si within time Ji and

Γ is the reachable set from O for the system Ĥ. Since both Γ and R≤Ji(Si) are bounded,

R(Si) is also bounded. Define γi := supx∈R(Si)
|x − x∗| and ri = infx∈∂Si−1

|x − x∗| for

i ∈ Z≥1. Let ν ∈ K∞ be such that for every i ∈ Z≥1, ν(γi) < ri/2.

We now claim that for each i ∈ Z≥1, every solution φ ∈ SĤν (Si) there exists (t, j) ∈

dom(φ) such that φ(t, j) ∈ Si−1 ∪ O. Let a solution φ ∈ SĤν (Si) be given. If the

solution φ can also be generated by Ĥ from the set Si, then global recurrence of O for

Ĥ implies that there exists (t, j) ∈ dom(φ) such that φ(t, j) ∈ O. If φ is not a solution

generated by Ĥ , then there exists (t, j) ∈ dom(φ) such that (t, j) is the first jump time

satisfying φ(t, j + 1) ∈ {x∗} + ν(|φ(t, j)| − x∗). Then, necessarily φ(t, j) ∈ R(Si). From

the construction of the mapping ν, it follows that φ(t, j+ 1) ∈ Si−1. This establishes the

claim.

We now establish that for every solution φ ∈ SĤν (Rn), there exists (t, j) ∈ dom(φ)

such that φ(t, j) ∈ O. Let the φ ∈ SĤν (Rn) be given. Then, there exists i ∈ Z≥1 such

that φ(0, 0) ∈ Si. If φ is a solution of Ĥ , the result follows from global recurrence of

O for H. If φ is not a solution of Ĥ , it follows from the above claim that there exists

(ti, ji) ∈ dom(φ) such that φ(ti, ji) ∈ Si−1. We now apply the result of the above claim in

an iterative manner from the set Si−1 till the solution φ reaches the set S0. Hence, there

exists positive constants {tk}i−1
k=0 and {jk}i−1

k=0 such that φ(
∑i

k=j tk,
∑i

k=j jk) ∈ Sj−1 for

every j ∈ {1, ..., i}. Since S0 ⊂ O, it follows that φ(
∑i

k=1 tk,
∑i

k=1 jk) ∈ S0 ⊂ O. This
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establishes global recurrence of the set O for the hybrid system Ĥν .

Finally, we introduce state dependent perturbations typically used in robustness anal-

ysis. For a continuous, positive valued function δ : Rn → R>0, we denote the perturbed

version of Ĥ by

Ĥδ := (Cδ, Fδ,Rn, Ĝδ), (2.7)

where

Cδ := {x ∈ Rn : (x+ δ(x)B) ∩ C 6= ∅}

Fδ := conF ((x+ δ(x)B) ∩ C) + δ(x)B

Ĝδ := {v ∈ Rn : v ∈ g + δ(g)B, g ∈ Ĝ(x+ δ(x)B)}

and con refers to the closed convex hull. The next result follows from [14, Proposition

6.28].

Lemma 2.4 For every continuous δ : Rn → R>0, the data of the hybrid system Ĥδ in

(2.7) satisfies Standing Assumption 2.1.

We now establish that the recurrence property is robust is to sufficiently small state

dependent perturbation. So, under the regularity conditions in Standing Assumption 2.1

if there exists an open, bounded set that is globally recurrent for the nominal system,

then there exists a sufficiently small perturbation such that the recurrence property is

preserved for the inflated system Ĥδ in (2.7). The following lemma will be used to

construct the state dependent perturbation in the robustness result.

Lemma 2.5 Let the open, bounded set O be globally recurrent for Ĥ in (2.5). Then, for

each compact set K, there exists δ > 0 such that every solution from the set K reaches
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the set O for Ĥδ in (2.7).

Proof: We establish the result by contradiction. Suppose the statement of the

lemma is not true, then there exists a compact set K such that for every i ∈ Z≥1, there

exists a solution φi ∈ SĤ1/i
(K) such that φi(t, j) /∈ O for every (t, j) ∈ dom(φi). Since

the hybrid system is well posed [14, Def 6.29, Thm 6.30], it follows from [14, Thm 6.1,

Prop 6.33] that the sequence of solutions φi has a subsequence which we do not relabel

that converges to the solution φ ∈ SĤ(K) for the nominal system. Since the set O is

globally recurrent for the nominal system, there exists (t, j) such that φ(t, j) ∈ O. Then

from convergence of hybrid arcs, there exists a sequence (ti, ji, φi(ti, ji)) that converges

to (t, j, φ(t, j)). Then, since the set O is open, for large enough i, φi(ti, ji) ∈ O, which

contradicts the initial assumption.

Theorem 2.4 If the open, bounded set O ⊂ Rn is globally recurrent for Ĥ in (2.5), then

there exists a continuous function δ : Rn → R>0 such that O is globally recurrent for Ĥδ

in (2.7).

Proof: It follows from Proposition 2.4 that global recurrence of O for Ĥ implies

that there exists a compact set A that is uniformly globally asymptotically stable for Ĥ.

Then, from [14, Thm 7.21], it follows that there exists a continuous function ρ1 : Rn →

R≥0 that is zero on the set A and positive elsewhere such that A is uniformly globally

asymptotically stable for Ĥρ1 . Let ε ∈ (0, 1). It follows from [14, Lemma 7.20] that there

exists a constant ρ2 > 0 such that solutions of Ĥρ2 from the compact set A+B converge

to A + εB. Now choose a continuous function ρ : Rn → R>0 such that ρ(x) ≤ ρ2 for

x ∈ A + B and ρ(x) ≤ min{ρ1(x), ρ2} otherwise. Then, it follows that solutions of the

system Ĥρ reach the open set A+ Bo.

Let δ1 > 0 satisfy the condition of Lemma 2.5 for the compact set K = A + B. Let

δ : Rn → R>0 be a continuous function which satisfies δ(x) ≤ min{δ1, ρ(x)}. Let φ ∈
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SĤδ(R
n). Since δ(x) ≤ ρ(x) for all x ∈ Rn, it follows that there exists (t1, j1) ∈ dom(φ)

such that φ(t1, j1) ∈ A+Bo. Define a solution ψ(t, j) := φ(t1 + t, j1 + j) for all (t, j) such

that (t1 + t, j1 + j) ∈ dom(φ). From Lemma 2.5 there exists (t2, j2) ∈ dom(ψ) such that

ψ(t2, j2) ∈ O. Hence, we have φ(t1 + t2, j1 + j2) ∈ O. This establishes global recurrence

of the set O for Ĥδ.

The following example illustrates that recurrence is not necessarily robust to arbitrar-

ily small perturbations if the conditions of Standing Assumption 2.1 are not satisfied.

Example 2.3 Consider the system in Example 2.1. The Krasovskii regularization of

the mapping g (the smallest closed set that contains all the limit points of g) defined as

G(x) := ∩ρ>0g(x+ ρB) is set-valued at the point of discontinuity x = 1. So for x = 1

we have G(1) = {0, 1}. Hence, when the set O is a small neighborhood of the origin, the

point x = 1 becomes a fixed point and hence even for arbitrarily small perturbations, the

recurrence property fails and consequently the set O is not robustly recurrent for H.

The next example shows that the recurrence property is not necessarily robust if the

set O is not open.

Example 2.4 Consider the simple discrete-time system x+ = 0 for x ∈ R. Let the

set O = {0}. Global recurrence of the set O follows from the system dynamics. Let

δ : R → R>0 be any continuous function. Then, the perturbed system is represented as

x+ ∈ δ(x)B. Since δ(x) > 0, it is clear that not all solutions of the perturbed system

reach the set O and hence the set O is not robustly recurrent.

2.6.2 Necessary and sufficient conditions for recurrence

Converse Lyapunov theorems are used to establish the equivalence between asymp-

totic stability properties and the existence of Lyapunov-like functions that satisfy certain
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decrease conditions along solutions. Applications of converse theorems in stabilization

and robust stability analysis can be found in [43], [44] and [11]. For continuous-time sys-

tems converse theorems related to asymptotic stability are established in [11], [12] and

[6]. See [9], [7] and [13] for similar results in the discrete-time case. Converse theorems

for asymptotic stability of compact sets for a class of hybrid systems is established in

[45] and [46].

Converse theorems for recurrence in discrete-time deterministic systems is developed

in [22, Thm 11.2.1] although the Lyapunov function generated is merely upper semicon-

tinuous. Using the robustness of recurrence to various state dependent perturbations

we construct a smooth Lyapunov function for the converse theorem. We exploit the ro-

bustness to go from a preliminary non-smooth Lyapunov function to a smooth Lyapunov

function for recurrence by utilizing the construction in [45].

We now present a Lyapunov function based characterization of recurrence for open,

bounded sets.

Definition 2.7 A smooth function V : Rn → R≥0 is a Lyapunov function with respect

to an open, bounded set O for H if it is radially unbounded and there exists µ > 0 such

that

〈∇V (x), f〉 ≤ −1 + µIO(x), ∀x ∈ C, f ∈ F (x) (2.8)

V (g)− V (x) ≤ −1 + µIO(x), ∀x ∈ D, g ∈ G(x). (2.9)

In essence, the Lyapunov function in (2.8) and (2.9) satisfies a strict decrease condition

along solutions outside the set O as opposed to the non-strict decrease conditions in (2.3)

and (2.4). The robustness results are utilized to establish a converse Lyapunov theorem

for recurrence of an open, bounded set for the hybrid system H.

The outline of the construction of the Lyapunov function used in the converse theorem
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is as follows. Under the assumption that an open, bounded set O is globally recurrent

for H in (2.2), we apply the robustness results to establish that Ô ⊂ O+ εBo is globally

recurrent for the system Ĥν,δ for some ν ∈ K∞, ε > 0 and a continuous, positive function

δ. The system Ĥν,δ is a perturbed version of the system Ĥν in (2.6). We then construct a

preliminary (possibly non-smooth) Lyapunov function V0 to certify recurrence of the set

Ô for Ĥν,δ. The construction of V0 is related to worst-case first hitting for solutions to

the set O. A similar construction is used for discrete-time systems in [22]. The function

V0 is then smoothed to arrive at a smooth Lyapunov function V to certify recurrence of

O for the system H in (2.2).

We now state a necessary and sufficient condition for global recurrence of an open,

bounded set for H. The proof of the following theorem is in Section 2.8.

Theorem 2.5 The open, bounded set O ⊂ Rn is globally recurrent for H in (2.2) if and

only if there exists a smooth Lyapunov function relative to O for H.

The following result is a simple corollary of Theorem 2.5 and Proposition 2.2 that es-

tablishes the equivalence between the solutions of H being uniformly ultimately bounded

and the existence of a smooth Lyapunov function that satisfies in (2.8) and (2.9) with

respect to an open, bounded set O.

Corollary 2.1 The solutions of H in (2.2) are uniformly ultimately bounded if and only

if there exists an open, bounded set O and a smooth Lyapunov function that satisfies (2.8)

and (2.9) with respect to O for H.

The following example illustrates that the existence of even a continuous Lyapunov

functions is not necessarily guaranteed without the conditions of Standing Assumption

2.1.
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Example 2.5 Consider the system in Example 2.1. We show that there does not exist

a continuous Lyapunov function with respect to the set O = (−ε, ε) for any ε ∈ (0, 1).

We establish the claim by contradiction. Suppose V is a continuous Lyapunov function.

Then, V (g(x)) ≤ V (x) − 1 for x ∈ Rn\O. Let xi ∈ [ε, 1) be such that limi→∞ xi = 1.

Then limi→∞ g(xi) = 1 even though g(1) = 0. Then, limi→∞ V (g(xi))−V (xi) = 0, which

contradicts the strict decrease condition of V . Hence, there does not exist a continuous

Lyapunov function for the system. This is due to the non-robust nature of recurrence.

2.7 Hitting time to open sets - an equivalent char-

acterization

We now establish an equivalent characterization for recurrence in terms of functions

that will be used to construct the Lyapunov function in the converse theorem. Let

O ⊂ Rn be an open set. Let H̃ be a hybrid system whose data satisfies the conditions of

Standing Assumption 2.1, and for which the maximal solutions are complete. We define

for every hybrid arc φ ∈ SH̃(Rn) the function

WO(φ) := inf
(t,j)∈dom(φ),φ(t,j)∈O

(t+ j). (2.10)

For every φ, WO(φ) is related to the first time the solution φ hits the setO. If the solution

φ never hits the set O, then WO(φ) =∞. The worst first hitting time to the set O from

the initial condition x for the system H̃ is then related to the quantity supφ∈SH̃(x) W
O(φ).

In [47] a robust boundedness problem is studied for continuous-time systems that uses

the notion of first hitting times to certain forward invariant compact sets.

The following result then establishes the connection between global recurrence and the

first hitting times and the proof follows from the definition of recurrence and Proposition
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2.1.

Proposition 2.5 Let O ⊂ Rn be open and bounded. Then, the following statements are

equivalent.

1. O is globally recurrent for H̃.

2. O is uniformly globally recurrent H̃.

3. For every compact set K ⊂ Rn, there exists TK > 0 such that supφ∈SH̃(K) W
O(φ) ≤

TK.

4. For every x ∈ Rn and φ ∈ SH̃(x), WO(φ) <∞.

Proof: 1) ⇒ 2) The implication follows from Proposition 2.1. 2) ⇒ 3) Since the

set O is uniformly globally recurrent, this implies that for every compact K, there exists

TK > 0 such that for every φ ∈ SH̃(K) there exists (t, j) such that φ(t, j) ∈ O and

t + j ≤ TK . This implies that for every φ ∈ SH̃(K), WO(φ) ≤ TK . 3) ⇒ 4) This

implication is trivial. 4) ⇒ 1) For any φ such that WO(φ) < ∞ and every ε > 0

there exists (t, j) such that t + j ≤ WO(φ) + ε and φ(t, j) ∈ O. This establishes global

recurrence of the set O.

From now on we will use (2.10) only to characterize recurrence in hybrid systems

for which the maximal solutions are complete. Hence, in the later sections the results

of Proposition 2.5 will be applied to Ĥ, Ĥν or Ĥδ. The next result establishes that the

worst case hitting time to open sets is an upper semicontinuous function.

Proposition 2.6 If the open, bounded set O ⊂ Rn is globally recurrent for H̃, then the

mapping x 7→ supφ∈SH̃(x) W
O(φ) is well defined and upper semicontinuous.

Proof: Local boundedness of the mapping follows from Propositions 2.1 and 2.5

and hence, the mapping x 7→ supφ∈SH̃(x) W
O(φ) is well defined. Let φi be a sequence
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of hybrid arcs that converges graphically to the hybrid arc φ. We will establish that

lim supi→∞W
O(φi) ≤ WO(φ). Let ε > 0 be arbitrary. Let (t, j) be such that t + j ≤

WO(φ) + ε/2 and φ(t, j) ∈ O. Since φi converge to φ graphically, there exist sequences

(ti, ji)→ (t, j) and φi(ti, ji)→ φ(t, j). Since O is open, for i large enough φi(ti, ji) ∈ O.

Hence, without loss of generality for i large enough we have WO(φi) ≤ ti + ji and

ti + ji ≤ t+ j + ε/2. This implies that

lim sup
i→∞

WO(φi) ≤ ti + ji ≤ t+ j + ε/2 ≤ WO(φ) + ε.

Since ε > 0 is arbitrary, it follows that lim supi→∞W
O(φi) ≤ WO(φ). The upper semi-

continuity of the mapping x 7→ supφ∈SH̃(x) W
O(φ) follows directly from the proof of [25,

Lemma 8.3] using [41, Thm 4.4].

2.8 Proof of Theorem 2.5

2.8.1 Necessity

Preliminary Lyapunov function

In this section, we will construct a Lyapunov function for an inflated system which

while not necessarily smooth satisfies good regularity properties and decrease conditions.

The robustness results from the previous sections will then be used to establish the

smoothness of the Lyapunov function.

Let the open, bounded set O ⊂ Rn be globally recurrent for the system H. Then from

Lemma 2.1, O is globally recurrent for the system Ĥ. From Theorem 2.2, there exists a

smaller open set Ô2 such that Ô2 + ε2Bo ⊂ O for some ε2 > 0. From Theorem 2.3, there

exists a K∞ function ν such that Ô2 is globally recurrent for Ĥν . Finally, from Theorem
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2.4, there exists a continuous state dependent perturbation δ : Rn → R>0 such that Ô2

is globally recurrent for Ĥν,δ. We will construct a preliminary Lyapunov function using

the solutions of the system Ĥν,δ. Define V0 : Rn → R≥0 as

V0(x) := sup
φ∈SĤν,δ (x)

W Ô2(φ). (2.11)

Proposition 2.7 The function V0 is radially unbounded and upper semicontinuous.

Proof: The upper semicontinuity of V0 follows from Proposition 2.6. We just need

to establish the radial unboundedness of the function V0. Let Qi = Ô2 + (i+ 1)Bo\(Ô2 +

iBo) be a sequence of compact sets for i ∈ Z≥0. We now consider the solutions of the

system x+ ∈ Mν(x) = x∗ + ν(|x − x∗|)B for x ∈ Rn. It can be observed that solutions

generated by Mν are a subset of the solutions generated by Ĥν,δ. Let αi ∈ R>0 for each

i ∈ Z≥0 be such that αi = infx∈Qi supφ∈SMν (x) W
Ô2(φ). Since ν ∈ K∞, it follows from the

structure of Qi and Mν that the mapping i 7→ αi is increasing and unbounded. Then the

worst first hitting times generated by solutions hybrid system Ĥν,δ necessarily satisfies

αi ≤ supφ∈SĤν,δ (x) W
Ô2(φ) for x ∈ Qi. As i → ∞, then it follows that V0 is radially

unbounded.

Proposition 2.8 Let φ ∈ SĤν,δ(x) be such that graph(φ)∩([0, t]×{0, ...,max{0, j−1}}×

Rn) ⊂ R2 × Rn\Ô2 for some (t, j) ∈ dom(φ) then

V0(φ(t, j)) ≤ V0(x)− (t+ j). (2.12)

Proof:

Let φ̂∗ ∈ SĤν,δ(φ(t, j)) be a solution such that W Ô2(φ̂∗) = supφ̂∈SĤν,δ (φ(t,j))W
Ô2(φ̂).

Such a solution φ̂∗ exists due to regularity properties of hitting time function W Ô2 and
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similar reasoning used in the proof of [25, Lemma 8.3]. Now let φ∗ ∈ SĤν,δ(x) be a

solution satisfying φ∗(t̃, j̃) = φ(t̃, j̃) for t̃ ≤ t , j̃ ≤ j and φ∗(t + t̃, j + j̃) = φ̂∗(t̃, j̃)

otherwise. We consider two cases depending on φ(t, j). First, let φ(t, j) ∈ Rn\Ô2. Then,

it can observed that W Ô2(φ∗) = W Ô2(φ̂∗) + t + j. Next, we note that if φ(t, j) ∈ Ô2,

then from the assumptions on the solution φ we have W Ô2(φ̂∗) = 0, W Ô2(φ∗) = t+ j and

W Ô2(φ∗) = W Ô2(φ̂∗) + t+ j. Hence, it follows that

V0(φ(t, j)) = sup
φ̂∈SĤν,δ (φ(t,j))

W Ô2(φ̂)

= W Ô2(φ̂∗) = W Ô2(φ∗)− t− j

≤ sup
φ∈SĤν,δ (x)

W Ô2(φ)− (t+ j) = V0(x)− (t+ j).

Smoothing of Lyapunov function

Now choose the open set Ô1 such that Ô2 + (ε2/3)Bo ⊂ Ô1 and Ô1 + (ε2/3)Bo ⊂ O.

It follows that Ô1 is also globally recurrent for Ĥν,δ. Define ρ(x) := min{δ(x), ε2/3}. Let

% come from [14, Lemma 7.37] using ρ. Then, the function % is continuous and positive

on bounded sets. We can also conclude that if x ∈ Rn\Ô1, then x + %(x)B ⊂ Rn\Ô2.

Let Ψ : Rn → [0, 1] be any infinitely differentiable function such that Ψ(x) = 0 for x /∈ B

and
∫

Ψ(x)dx = 1.

Now define V (x) :=
∫
Rn V0(x + %(x)η)Ψ(η)dη. The local boundedness and radial

unboundedness follows from the properties of V0. The smoothness of V on Rn, follows

from the results in [14, Section 7.36].

From [14, Lemma 7.37], for every φ ∈ SĤν,%(Rn) and η ∈ B, there exists ψη ∈

SĤν,ρ(Rn) such that dom(φ) = dom(ψ), ψη(0, 0) = φ(0, 0) + %(φ(0, 0))η and ψη(t, j) =
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φ(t, j) + %(φ(t, j))η. Let φ be solution of Ĥν,% from x such that graph(φ) ∩ ([0, t] ×

{0, ...,max{0, j − 1}} ×Rn) ⊂ R2 ×Rn\Ô1 for some (t, j) ∈ dom(φ). It follows from the

properties of %, [14, Lemma 7.37] and Proposition 2.8 that

V (φ(t, j)) =

∫

Rn
V0(φ(t, j) + %(φ(t, j))η)Ψ(η)dη =

∫

Rn
V0(ψη(t, j))Ψ(η)dη

≤
∫

Rn
V0(ψη(0, 0))Ψ(η)dη − (t+ j) (2.13)

=

∫

Rn
V0(x+ %(x)η)Ψ(η)dη − (t+ j) = V (x)− (t+ j).

Then, from [45, Claim 6.3] and (2.13) it follows that for every x ∈ C ∩ (Rn\O) and

f ∈ F (x) and small t ≥ 0, V (x+ tf) ≤ V (x)− t. The smoothness of V implies that for

every x ∈ C ∩ (Rn\O) and f ∈ F (x) 〈∇V (x), f〉 ≤ −1. Similarly for x ∈ D ∩ (Rn\O),

φ(0, 1) = g we have V (g) ≤ V (x)− 1 for g ∈ G(x).

Finally, we establish the existence of µ > 0 such that (2.8) and (2.9) hold. Since

V is smooth, O is bounded, and F is locally bounded, there exists µ1 > 0 such that

〈∇V (x), f〉 ≤ µ1 for all x ∈ C ∩ O and f ∈ F (x). Similarly local boundedness of G

implies the existence of µ2 > 0 such that maxg∈G(x) V (g)− V (x) ≤ µ2 for all x ∈ D ∩O.

Then conditions (2.8) and (2.9) hold with µ = max{µ1, µ2}. An illustration of the

development of the converse theorem from the robustness results is presented in Figure

2.4.

2.8.2 Sufficiency

The proof of sufficiency follows from observing that the existence of a V satisfying

(2.8) and (2.9) satisfies the conditions of Theorem 2.1. However, we will present a

proof without appealing to the invariance principle in Theorem 2.1. Since V is radially

unbounded and O is bounded, there are no finite escape times for the solutions of H.
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Lyapunov sufficiency
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Ô2 recurrent for

Ô2 recurrent for

Slowing down recurrence

Recurrence of smaller set

(C,F,D,G)

(C,F,Rn, Ĝ)

(C,F,Rn, Ĝν)

(Cδ, Fδ,Rn, Ĝν,δ)

V0(x) = supφ∈SĤν,δ
(x)W

Ô2(φ)

Robustness

Theorem 2.2

Theorem 2.3

Theorem 2.4

Figure 2.4: Converse Lyapunov theorem for recurrence

We now show that for every compact set K, there exists a T > 0 such that for every

φ ∈ SH(K), either t + j < T for all (t, j) ∈ dom φ or there exists (t, j) such that

φ(t, j) ∈ O and t+j ≤ T . Let V ∗ = maxx∈K V (x). We show that the condition holds with

T := 2 + V ∗. Suppose not, then there exists a φ ∈ SH(K) such that length(dom φ) > T

and φ(t, j) /∈ O for t + j ≤ T . Then, it follows from the Lyapunov inequalities that for

all (t, j) ∈ dom(φ)

V (φ(t, j)) ≤ V (φ(0, 0))− (t+ j) ≤ V ∗ − (t+ j). (2.14)

Then, pick (t, j) ∈ dom(φ) such that V ∗ ≤ t + j ≤ T . This implies that V (φ(t, j)) < 0

which is a contradiction since V (x) ≥ 0 for all x ∈ Rn. This establishes uniform global

recurrence of O. A summary of the results on recurrence of open, bounded sets for (3.1)

is in Figure 2.5.
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Uniform

recurrenceRecurrence

Robust

recurrence
Smooth Lyapunov functions

Invariance principle

Proposition 2.1

Theorem 2.4 Theorem 2.5

Theorem 2.1

Figure 2.5: Summary of recurrence results for (2.1)

2.9 Summary of results for global asymptotic stabil-

ity

In this section we summarize the existing results on robustness, Lyapunov function

based necessary and sufficient conditions and weak sufficient conditions for global asymp-

totic stability of compact sets. The results presented in this section will be extended to

a larger class of stochastic systems in the subsequent chapters. We refer the reader to

[14, Chapters 3,7,8], [48] and [46] for more details.

Definition 2.8 A smooth function V : Rn → R≥0 is said to be a Lyapunov function

relative to a compact set A ⊂ Rn for (2.1) if it is radially unbounded, V ∈ PD(A), and

there exists a continuous function % ∈ PD(A) such that

〈∇V (x), f〉 ≤ −%(x), x ∈ C, f ∈ F (x)

max
g∈G(x)

V (g) ≤ V (x)− %(x), x ∈ D.

Theorem 2.6 The compact set A ⊂ Rn is globally asymptotically stable for (2.1) if and

only if there exists a smooth Lyapunov function relative to A for (2.1).
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We now state the corresponding results on robustness of asymptotic stability and the

invariance principle. The following system data

Cδ := {x ∈ Rn : (x+ δ(x)B) ∩ C 6= ∅} (2.15a)

Dδ := {x ∈ Rn : (x+ δ(x)B) ∩D 6= ∅} (2.15b)

Fδ := conF ((x+ δ(x)B) ∩ C) + δ(x)B (2.15c)

Gδ := {v ∈ Rn : v ∈ g + δ(g)B, g ∈ G(x+ δ(x)B)} (2.15d)

can be viewed a perturbation of the system data in (2.1).

Theorem 2.7 Let the compact set A ⊂ Rn be globally asymptotically stable for (2.1).

Then, there exists a continuous function δ ∈ PD(A) such that set A is globally asymp-

totically stable for (2.15).

Let SFC (x0) refer to solutions of the constrained system ẋ ∈ F (x), x ∈ C from initial

condition x0.

Definition 2.9 A continuous function V̂ : Rn → R≥0 is a weak-Lyapunov function

relative to the compact set A ⊂ Rn for the system (2.1) if V̂ is radially unbounded,

V̂ ∈ PD(A) and satisfies

V̂ (φ(t)) ≤ V̂ (x0), ∀x0 ∈ C, t ∈ dom(φ), φ ∈ SFC (x0) (2.16)

max
g∈G(x0)

V̂ (g) ≤ V̂ (x0),∀x0 ∈ D. (2.17)

Theorem 2.8 Let V̂ be a weak-Lyapunov function relative to a compact set A ⊂ Rn for

the system (2.1). Then, A is globally asymptotically stable if and only if for every c > 0

there does not exist a complete solution that remains in the set LV̂ (c).
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Stochastic difference inclusions

3.1 Introduction

Stochastic systems are a class of systems for which randomness can affect the system

dynamics. The randomness can be due to external noise or a part of the uncertainty in the

description of the system model. Stochastic systems analysis is an important aspect in

areas related to biological systems ([49], [50]), estimation theory ([51]), financial systems

([52]) and control systems ([53], [54]).

The main goal of this chapter is to introduce the reader to a class of discrete-time

stochastic systems modeled by set-valued mappings. For this class of systems, we study

stability properties like recurrence and asymptotic stability in probability. In particular,

we establish Lyapunov function based sufficient conditions, weak sufficient conditions

using the invariance principle and Matrosov functions, robust stability conditions and

converse Lyapunov theorems. The results in this chapter are established in [55], [42] and

[56].

We now present a brief discussion of the literature on set-valued stochastic systems.

The notion of set-valued transition probabilities (Markov transition correspondence) is
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introduced in [57] and the problem of existence of invariant measures is studied. In [58]

further extensions of the results in [57] related to Markov transition correspondence are

established. In [59] and [60] a class of stochastic differential equations modeled by set-

valued mappings are analyzed and its application in stochastic optimal control problems

is studied. In this chapter, we illustrate the importance of studying set-valued stochastic

systems in the context of developing analysis tools related to stability theory.

3.2 Preliminaries on difference inclusions with ran-

dom inputs

The mathematical framework used in this chapter is from [61] and [42]. We consider

a set-valued mapping G : Rn × Rm ⇒ Rn and a discrete-time stochastic system with

state x ∈ Rn and a random input v ∈ Rm written formally as

x+ ∈ G(x, v) . (3.1)

The following regularity conditions will be assumed throughout the chapter.

Standing Assumption 3.1 The set-valued mapping G in (3.1) satisfies the following

properties:

1. For each v ∈ Rm the mapping x 7→ G(x, v) is outer semicontinuous.

2. The mapping G is locally bounded.

3. The mapping v 7→ graph(G(·, v)) := {(x, y) ∈ Rn×Rn : y ∈ G(x, v)} is measurable.

The regularity conditions in Standing Assumption 3.1 will be used to guarantee ro-

bustness of stochastic stability notions and to generate solutions to (3.1) which are ran-
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dom processes. In particular, conditions 1-2 are motivated by existing results for de-

terministic discrete-time sytems to guarantee robustness of the stability property and

condition 3 is used to guarantee the existence of maximal pre-random solutions to (3.1)

described below. A consequence of conditions 1-2 is that G(x, v) is compact(though

possibly empty) for every (x, v) ∈ Rn × Rm. Condition 3 implies that the mapping

v 7→ G(x, v) is measurable.

3.2.1 Solution concept

Let Sc,m(x) denote the set of maximal pre-random solutions to (3.1) starting at x that

are causal, measurable functions of the inputs. That is, φ ∈ Sc,m(x) if φ comprises a se-

quence of measurable functions φi : dom φi ⊂ (Rm)i → Rn, i ∈ Z≥0, with φ0 = x such that

φi+1(v0, ..., vi) ∈ G(φi(v0, ..., vi−1), vi) for all i ∈ Z≥0 and all (v0, ..., vi) ∈ dom φi+1 with

the property that dom φi+1 = {(v0, ..., vi−1, vi) ∈ dom φi × Rm : G(φi(v0, ..., vi−1), vi) 6=

∅}. Under Standing Assumption 3.1, it is established in [61, Lemma 3] that Sc,m(x) is

non-empty for each x ∈ Rn.

A probability structure is now added to define random solutions to (3.1). Let (Ω,F ,P)

be a probability space. For i ∈ Z≥0, let vi : Ω → Rm be a sequence of independent,

identically distributed (i.i.d.) random variables. Hence v−1
i (F ) := {ω ∈ Ω : vi(ω) ∈

F} ∈ F for each F ∈ B(Rm). We denote by Fi the natural filtration of F with respect

to the random variables {vi}∞i=0, where Fi := σ{v−1
j (A)|j ∈ Z≥1, j ≤ i, A ∈ F}. Hence,

the natural filtration is the smallest σ-algebra on (Ω,F) that contains the pre-images of

B(Rm)-measurable subsets on Rm for times up to i. It follows from the i.i.d. property

that each random variable has the same probability measure µ : B(Rm)→ [0, 1] defined
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as µ(F ) := P{ω ∈ Ω : vi(ω) ∈ F} and for almost all ω ∈ Ω,

E[f(v0, ...vi,vi+1)|Fi](ω) =

∫

Rm
f(v0(ω), ...,vi(ω), v)µ(dv)

for each i ∈ Z≥0 and each measurable f : (Rm)i+2 → R.

As in [61], [42] a random process x from x ∈ Rn is a sequence of random variables

xi : dom xi ⊂ Ω → Rn, i ∈ Z≥0, with x0 = x for all ω ∈ Ω and dom xi+1 ⊂ dom xi.

A random process x is adapted to the natural filtration of v if xi+1 is Fi-measurable for

each i ∈ Z≥0. That is, x−1
i+1(F ) ⊂ Fi for each F ∈ B(Rn). A random process x from

x ∈ Rn, that is adapted to the natural filtration of v together with a random variable

Jx : Ω → Z≥0 ∪ {∞} (which denotes the number of elements in the sequence x), is a

random solution of (3.1) if xi+1(ω) ∈ G(xi(ω),vi(ω)) for all ω ∈ dom xi+1 := {ω ∈ Ω :

i+1 < Jx(ω)} and i ∈ Z≥0. A random solution (x,Jx) from x ∈ Rn is said to be maximal

if it cannot be extended, i.e., there does not exist another random solution (y,Jy) from

x such that dom xi ⊂ dom yi for all i ∈ Z≥0, yi(ω) = xi(ω) for all ω ∈ dom xi and all

i ∈ Z≥0, and dom xi 6= dom yi for some i ∈ Z≥0. We use Sr(x) to denote the set of

maximal random solutions of (3.1) from x ∈ Rn and write x ∈ Sr(x), suppressing the

associated random variable Jx.

In essence, the random solution x satisfies a measurability and causality condition.

The measurability property is required to discuss the behavior of random solutions in

terms of the associated probabilities. The causality property imposes a condition on how

the random solution x can depend on the i.i.d random variables {vi}∞i=0. The causality

condition plays a crucial role in stability analysis and will be discussed later in detail.

It follows from [42, Prop. 1] that, there exists x ∈ Sr(x) if and only if there exits
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φ ∈ Sc,m(x) such that, for each i ∈ Z≥0,

dom xi = {ω ∈ Ω : (v0(ω), ...,vi−1(ω)) ∈ dom φi}

xi(ω) = φi(v0(ω), ..,vi−1(ω)) ∀ ω ∈ dom xi. (3.2)

For x ∈ Sr(x) we use the convention that IS(xi(ω)) = 0 for ω /∈ dom xi and we define

graph(x(ω)) :=
⋃

i∈Z≥0

({i} × xi(ω)).

3.3 Recurrence and asymptotic stability in probabil-

ity

As noted in [17], there are many different notions of stability that are studied for

stochastic systems. The primary reason for such a variety of stability notions is due to

the different convergence criteria that are available for a sequence of random variables. In

particular, stability notions can be defined in a mean square sense, in an almost sure sense,

in the probability sense and in distribution. In this dissertation, we restrict our focus to

stochastic stability notions like asymptotic stability in probability and recurrence. We

refer the reader to the Appendix for detailed definitions of the various stability properties

studied in the literature.

Definition 3.1 An open, bounded set O ⊂ Rn is said to be globally recurrent for (3.1)

if for every x ∈ Rn and x ∈ Sr(x), E
[∏

i∈Z≥1
IRn\O(xi)

]
= 0.
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An equivalent characterization of recurrence is the condition that, for each x ∈ Rn

and each x ∈ Sr(x),

lim
k→∞

P
(

(graph(x) ⊂ (Z<k × Rn)) ∨ (graph(x) ∩ (Z≤k ×O)) 6= ∅
)

= 1 (3.3)

where ∨ denotes the logical “or” operation. Loosely speaking, the recurrence condition

requires that for every random solution, the sample paths of the random solution either

stop or hit the set O. For stochastic systems convergence of solutions to compact sets

with probability one is a strong requirement and in the absence of such convergence

properties it is useful to consider the weaker notion of recurrence.

Example 3.1 Consider the dynamical system x+ = vx, where v ∈ {0, 1} with µ({0}) =

µ({1}) = 0.5. For this system, we claim that for any ε > 0, the open set O = (−ε, ε) is

globally recurrent. Let the initial condition x ∈ Rn. It can be observed that any infinite

sequence {vi(ω)}∞i=0, the input 0 appears atleast once in an almost sure sense. Hence, for

almost every ω ∈ Ω, there exists k ∈ Z≥0 such that xk+1(ω) = 0. This establishes global

recurrence of the set O = (−ε, ε).

Definition 3.2 An open, bounded set O ⊂ Rn is said to be uniformly globally recurrent

for (3.1) if for every compact set K ⊂ Rn and ρ > 0 there exists J ∈ Z≥1 such that

E
[∏J

i=1 IRn\O(xi)

]
≤ ρ for every x ∈ Sr(K).

Next, we define the notion of global asymptotic stability in probability. This property

is a straightforward extension of the classical global asymptotic stability definition of

compact sets for deterministic systems studied in [7].

Definition 3.3 A compact set A ⊂ Rn is globally asymptotically stable in probability for

(3.1) if
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1. For every ε > 0 and ρ > 0 there exists a δ > 0 such that for all x ∈ Sr(A+ δB),

P(graph(x) ⊂ (Z≥0 × (A+ εBo))) ≥ 1− ρ.

2. For every x ∈ Sr(Rn), limi→∞ |xi(ω)|A = 0 for almost every ω ∈ Ω.

Definition 3.4 A compact set A ⊂ Rn is uniformly globally asymptotically stable in

probability for (3.1) if

1. For every ε > 0 and ρ > 0 there exists a δ > 0 such that for all x ∈ Sr(A+ δB),

P(graph(x) ⊂ (Z≥0 × (A+ εBo))) ≥ 1− ρ.

2. For every δ > 0 and ρ > 0 there exists a ε > 0 such that for all x ∈ Sr(A+ δB),

P(graph(x) ⊂ (Z≥0 × (A+ εBo))) ≥ 1− ρ.

3. For every ∆ > 0, δ > 0 and ρ > 0, there exists J ∈ Z≥0 such that for every

x ∈ Sr(A+ ∆B),

P(graph(x) ∩ (Z≥J × Rn) ⊂ (Z≥0 × (A+ δB))) ≥ 1− ρ.

The equivalence between global recurrence and uniform global recurrence, global

asymptotic stability in probability and uniform global asymptotic stability in proba-

bility will be established in the following sections and the proof relies primarily on the

conditions in Standing Assumption 3.1.
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3.3.1 The role of causality in stability analysis

We now explain in detail the importance of the causality condition in the definition of

a random solution x with respect to stability analysis. We illustrate the role of causality

through the following example.

Example 3.2 Consider the stochastic difference inclusion with state x = [x1 x2] satis-

fying

x+
1 ∈ {−0.6, 0.6}

x+
2 = (x1 + v)x2

where, v ∈ {−0.6, 0.6} with µ({0.6}) = µ({−0.6}) = 0.5. For this system, we analyze

the behavior of the state x2. It can be easily observed that for any causal selection of

the x1 random solution, the solution x2 converges to the origin almost surely. This can

also be verified using a Lyapunov function approach that will be discussed later in the

chapter. However, consider the non-causal selection x1,k(ω) = vk(ω). For this selection,

the solution x2 satisfies |x2,k+1(ω)| = 1.2|x2,k(ω)| and consequently x2 diverges away from

the origin almost surely.

The above example illustrates that non-causal selections can be adversarial in nature

and hence can lead to unstable behavior. Set-valued mappings can generate solutions that

are non-causal and hence for the purpose of stability analysis it is important to impose

a causality assumption in the solution definition. The one-step Lyapunov function based

conditions for certifying stability properties discussed later in this chapter can only be

used to analyze the behavior of causal solutions and in general cannot account for the

behavior of non-causal solutions.
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3.4 Stability in terms of probability functions

In Chapter 2, the notion of worst first hitting times of solutions to open sets is used to

aid the development of converse Lyapunov theorems for a class of non-stochastic hybrid

systems. In this section, we review analysis tools that are more suitable for the study

of stochastic systems. In particular, we focus on viability and reachability probabilities

introduced in [61].

3.4.1 Weak Viability

For any random solution x ∈ Sr(x) the condition

(
graph(x) ∩ (Z≥J × Rn) 6= ∅

)
∧
(

(graph(x) ∩ (Z≤J × Rn)) ⊂ (Z≥0 × S)

)

where ∧ denotes the logical “and” operation asks that for i ∈ {0, ..., J}, xi is not empty

and is contained in the set S. This condition is the complement of the condition used

to characterize recurrence in (3.3) when S = Rn\O and J →∞. The following integrals

that are independent of the solution x are used to bound the largest probability of this

condition. The weak viability probabilities for a closed set S ⊂ Rn and (i, x) ∈ Z≥0×Rn

are defined as

m⊂S(0, x) := 1

m⊂S(i+ 1, x) :=

∫

Rm
max

g∈G(x,v)
IS(g)m⊂S(i, g)µ(dv). (3.4)

The following result from [42, Prop. 4] establishes that the function m⊂S(k, x) is related

to the largest probability of solutions staying in the set S for k steps.

Proposition 3.1 Let S ⊂ Rn be closed. For each x ∈ Rn and k ∈ Z≥1 there exists
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x ∈ Sr(x) such that

m⊂S(k, x) = E
[ k∏

i=1

IS(xi)

]
= sup

z∈Sr(x)

E
[ k∏

i=1

IS(zi)

]
.

The weak viability probabilities m⊂S(k, x) provide an upper bound over all random

solutions from x for the probability of staying in the set S for k time steps. According to

[61, Lemma 3] the mapping x 7→ m⊂S(i, x) ∈ [0, 1] is well defined, upper semicontinuous,

and m⊂S(i+1, x) ≤ m⊂S(i, x) for each (i, x) ∈ Z≥0×Rn. The monotonicity and bounded-

ness implies that m̂⊂S(x) := limi→∞m⊂S(i, x) is well defined for each x ∈ Rn. For closed

sets S1, S2 such that S1 ⊂ S2 we have m⊂S1(i, x) ≤ m⊂S2(i, x) for all (i, x) ∈ Z≥0 × Rn.

The next result follows from [42, Prop. 5] and provides an equivalent characterization

for the recurrence property.

Proposition 3.2 Let O ⊂ Rn be an open, bounded set. The following statements are

then equivalent.

1. O is globally recurrent for (3.1).

2. O is uniformly globally recurrent for (3.1).

3. For each compact set K ⊂ Rn and ρ > 0 there exists ` ∈ Z≥0 such that m⊂Rn\O(`, x) ≤

ρ for all x ∈ K.

4. For each x ∈ Rn, m̂⊂Rn\O(x) = 0.

5. There exists γ ∈ [0, 1) such that, for each x ∈ Rn, m̂⊂Rn\O(x) ≤ γ.

3.4.2 Weak Reachability

For any random solution x ∈ Sr(x) the condition graph(x)∩ (Z≤J×S) 6= ∅ asks that

x reaches the set S within J time steps. The following integrals that are independent
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of the solution x are used to bound the largest probability of this condition. The weak

reachability probabilities for a closed set S ⊂ Rn and (i, x) ∈ Z≥0 × Rn are defined as

m∩S(0, x) := 0

m∩S(i+ 1, x) :=

∫

Rm
max

g∈G(x,v)
max{IS(g),m∩S(i, g)}µ(dv). (3.5)

The following result is from [42, Prop. 6] and establishes that the function m∩S(k, x) is

related to the largest probability of solutions reaching the set S within k steps.

Proposition 3.3 Let S ⊂ Rn be closed. For each x ∈ Rn and k ∈ Z≥1 there exists

x ∈ Sr(x) such that

m∩S(k, x) = E
[

max
i∈{1,..,k}

IS(xi)

]
= sup

z∈Sr(x)

E
[

max
i∈{1,..,k}

IS(zi)

]
.

The reachability probabilities m∩S(k, x) provide an upper bound over all random pro-

cess solutions from x for the probability of reaching the set S within k time steps. Due to

[61, Lemma 2], the functions x 7→ m∩S(i, x) ∈ [0, 1] are well defined, upper semicontinu-

ous, and m∩S(i, x) ≤ m∩S(i + 1, x) for each (i, x) ∈ Z≥0 × Rn. Hence limi→∞m∩S(i, x)

is well defined for each x ∈ Rn. For closed sets S1, S2 such that S1 ⊂ S2 we have

m∩S1(i, x) ≤ m∩S2(i, x) for all (i, x) ∈ Z≥0 × Rn.

The next result follows from [42, Prop. 5, 7, 8] and provides an equivalent character-

ization for the asymptotic stability in probability property.

Proposition 3.4 Let A ⊂ Rn be a compact set. The following statements are then

equivalent.

1. A is globally asymptotically stable in probability for (3.1).
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2. A is uniformly globally asymptotically stable in probability for (3.1).

3. The following conditions hold:

• For every ε > 0, ρ > 0, there exists δ > 0 such that limi→∞m∩Rn\(A+εBo)(i, x) ≤

ρ for x ∈ A+ δB.

• For each ε > 0 and x ∈ Rn, m̂⊂Rn\(A+εBo)(x) = 0.

3.4.3 Preliminary bounds on viability and reachability proba-

bilities

In this section we present some preliminary bounds related to viability and reacha-

bility probabilities that will be used to establish the main results of this chapter. The

proof of the bounds are established for a larger of class of stochastic hybrid systems in

a subsequent chapter and hence we only state the results in this section. The following

result relates the viability and reachability probabilities.

Lemma 3.1 Let S ⊂ Rn be closed and suppose S = S1 ∪ S2 where S1 and S2 are

closed.Then, for every (i, x) ∈ Z≥0 × Rn, m⊂S(i, x) ≤ m⊂S1(i, x) +m∩S2(i, x).

The next result relates the weak viability probabilities of two systems where there is an

appropriate containment between them. We use subscripts “a” and “b” for probabilities

associated with x+ ∈ Ga(x, v) and x+ ∈ Gb(x, v) respectively.

Lemma 3.2 Let S ⊂ Rn be a closed set and suppose there exists F ∈ B(Rm) with

µ(F ) = 0 such that Ga(x, v) = Gb(x, v) for (x, v) ∈ S × (Rm\F ). Then ma,⊂S(i, x) =

mb,⊂S(i, x) for all (i, x) ∈ Z≥0 × S.

The following result will be used to upper bound the viability probabilities and it can

be viewed as semi-group type property for discrete-time stochastic systems.
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Lemma 3.3 For closed sets S0, S1 ⊂ Rn satisfying S1 ⊆ S0 and (k, j, x) ∈ Z≥0 × Z≥0 ×

Rn,

m⊂S0(k + j, x) ≤ m⊂S1(k, x) + sup
ξ∈Rn\S1

m⊂S0(j, ξ). (3.6)

3.5 Global recurrence

In this section, we develop analysis tools related to global recurrence of open, bounded

sets for (3.1). In particular, we present a Lyapunov function based characterization for

recurrence, establish robustness of the recurrence property, and state relaxed conditions

for certifying the recurrence property which rely on Lyapunov-like functions satisfying

only a non-increasing on average property.

3.5.1 Sufficient conditions for global recurrence

Lyapunov-like criteria for certifying recurrence in both continuous and discrete-time

stochastic systems are in [62], [63] and [22]. In this section, we establish sufficient condi-

tions using Lyapunov functions for a class of discrete-time systems modeled by set-valued

mappings.

Definition 3.5 An upper semicontinuous function V : Rn → R≥0 is said to be a suf-

ficient recurrence-Lyapunov function1 relative to O for (3.1) if it is radially unbounded

and there exists a continuous function % : Rn → R>0 such that for all x ∈ Rn\O,

∫

Rm
max

g∈G(x,v)
V (g)µ(dv) ≤ V (x)− %(x). (3.7)

1If φ is upper semicontinuous and G(x, v) 6= ∅, then there exists g∗ ∈ G(x, v) such that
supg∈G(x,v) φ(g) = φ(g∗). Hence, we use maxg∈G(x,v) V (g) for supg∈G(x,v) V (g). We also use
maxg∈G(x,v) φ(g) = 0 when G(x, v) = ∅ and φ : Rn → R≥0.
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Theorem 3.1 Let O ⊂ Rn be an open bounded set. If there exists a sufficient recurrence-

Lyapunov function relative to O for (3.1) then the set O is globally recurrent for (3.1).

In essence, the sufficient recurrence-Lyapunov function V decreases strictly on average

along solutions outside the set O. We observe that for initial conditions from the set O

the function V need not satisfy any decrease properties. This can be attributed to the

fact that recurrent sets are not necessarily invariant in a probabilistic sense and when

the solutions hit the set O, the solutions can leave the set causing an increase in V on

average. We now define a stronger form of the sufficient recurrence-Lyapunov function

in (3.7) and it characterizes the behavior of the Lyapunov function along solutions from

the set O.

Definition 3.6 An upper semicontinuous function V : Rn → R≥0 is said to be a Lya-

punov function relative to O for (3.1) if it is radially unbounded and there exists a con-

tinuous function % : Rn → R>0 such that for all x ∈ Rn,

∫

Rm
max

g∈G(x,v)
V (g)µ(dv) ≤ V (x)− %(x) + IO(x). (3.8)

The decrease condition in (3.8) is stronger than (3.7) as it uniformly bounds the

expected valued of the Lyapunov function for solutions starting from O. Hence, it follows

that a Lyapunov function relative to O for (3.1) is also a sufficient recurrence-Lyapunov

function relative to O for (3.1). However, the following example shows that the converse

is not necessarily true.

Example 3.3 We consider the system x+ = g(x)v where v ∼ Cauchy(0, 1), g : R→ [0, 1]
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is continuous and satisfies

g(x) =





0 for |x| ≥ 2

1 for |x| ≤ 1.

Let O = (−2, 2), f(v) = 1
π(1+v2)

and V (x) = |x|. Then for |x| ≥ 2 we have

∫

R
V (g)µ(dv) =

∫ ∞

−∞
V (g)f(v)dv = 0 = V (x)− |x|.

This bound implies that V is a sufficient recurrence-Lyapunov function relative to O.

Now for |x| ≤ 1,

∫ ∞

−∞
V (g)f(v)dv =

∫ ∞

−∞
|v|f(v)dv =

∫ ∞

1

1

πu
du.

Then it follows that the expected value is not bounded for some solutions starting from

O. Hence V is not a Lyapunov function relative to O for this system.

The following result provides a more explicit relation between the two Lyapunov

functions.

Proposition 3.5 Let O ⊂ Rn be an open, bounded set. If V is a sufficient recurrence-

Lyapunov function relative to O for (3.1), then there exists a concave, K∞ function κ

such that κ(V ) is a Lyapunov function relative to O for (3.1).

3.5.2 Robust global recurrence

In this section we establish robustness of recurrence property to various state de-

pendent perturbations similar to Chapter 2. Robustness of global recurrence is a key

property that will be used in developing a converse Lyapunov theorem. The proofs of
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the results in this section are presented in the appendix.

Similar to the results regarding robustness of recurrence for non-stochastic hybrid

systems in Chapter 2, we consider robustness to three different types of perturbations.

We establish that recurrence of a set implies the existence of a smaller recurrent set,

slowing down quantities related to the average value of the worst first hitting times

to the set O can still preserve recurrence and recurrence is robust to sufficiently small

perturbations in the system data.

We begin by asserting that if O is globally recurrent for (3.1) then there exists a

subset of O that also preserves the same property.

Theorem 3.2 If an open bounded set O ⊂ Rn is globally recurrent for (3.1) then there

exists an open bounded set Ô and ε > 0 such that Ô+εB ⊂ O and Ô is globally recurrent

for (3.1).

In order to construct a smooth Lyapunov function for (3.1) that satisfies (3.8) we

initially build a Lyapunov function from solutions to a system that is an inflation of

(3.1). The first inflation that we consider is

x+ ∈ Gν(x, v) := G(x, v) ∪Mν(x) (3.9)

where Mν(x) = {x0} + ν(|x − x0|)B, where ν ∈ K∞ and x0 ∈ Ô. This inflation will

be used to guarantee radial unboundedness of the constructed Lyapunov function and it

slows down the recurrence property. The next result follows from [42, Prop. 2].

Proposition 3.6 For each ν ∈ K∞, the set-valued mapping Gν defined in (3.9) satisfies

the conditions of Standing Assumption 3.1.

If the open, bounded set Ô is globally recurrent for (3.1), we would like to assert

that Ô will be globally recurrent for (3.9) by picking ν small enough. The next result
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establishes that it is possible to find such a function ν in order to slow down the recurrence

property.

Theorem 3.3 If the open, bounded set Ô ⊂ Rn is globally recurrent for (3.1) then there

exists ν ∈ K∞ such that Ô is globally recurrent for (3.9).

The second inflation relative to (3.9) is used to guarantee smoothness of the con-

structed Lyapunov function in the converse Lyapunov theorem and has the form

x+ ∈ Gρ,ν(x, v) := {w ∈ Rn : w ∈ g + ρ(g)B, g ∈ Gν(x+ ρ(x)B, v)} (3.10)

where ρ : Rn → R>0 is continuous.

Proposition 3.7 For each ν ∈ K∞ and each continuous function ρ : Rn → R≥0, the

set-valued mapping Gρ,ν defined in (3.10) satisfies the conditions of Standing Assumption

3.1.

The previous result follows from [42, Prop. 3] and the next result states that global

recurrence is robust to sufficiently small state dependent perturbations.

Theorem 3.4 If the open bounded set Ô ⊂ Rn is globally recurrent for (3.9) then there

exists ρ : Rn → R>0 continuous such that Ô is globally recurrent for (3.10).

3.5.3 Necessary condition for global recurrence

Converse Lyapunov theorems for stochastic systems appear in [20], [64], [65] and [22].

In this section, we establish a converse Lyapunov theorem for the recurrence property for

a class of stochastic difference inclusions in (3.1). One of the fundamental ways in which

the main result in this section differs from other converse theorems in the literature is
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that we establish the existence of a smooth Lyapunov function as a necessary condition

for recurrence.

Theorem 3.5 The open bounded set O ⊂ Rn is strongly globally recurrent for (3.1) if

and only if there exists a smooth Lyapunov function relative to O for (3.1).

We now prove the above theorem. All probabilities in this proof are generated from

(3.10) with Ô ⊂ O, x0 ∈ Ô, ν ∈ K∞ and ρ : Rn → R>0 continuous chosen according to

Theorems 3.2, 3.3 and 3.4 so that the open, bounded set Ô ⊂ Rn is globally recurrent

for (3.10).

Let τ ∈ K∞. Then, for all x ∈ Rn define

W (x) :=
∞∑

i=1

τ(i)MÔ(i, x)IRn\Ô(x). (3.11)

where for all (i, x) ∈ Z≥1 × Rn,

MÔ(i, x) :=
(
m⊂Rn\Ô(i− 1, x)−m⊂Rn\Ô(i, x)

)
. (3.12)

Proposition 3.8 There exists τ ∈ K∞ such that Ŵ (x) :=
∑∞

i=1 τ(i)MÔ(i, x) is well

defined, locally bounded and upper semicontinuous.

Proof: Let K ⊂ Rn be a compact set. Since the set Ô is uniformly globally recurrent

for (3.10) we can uniformly bound m⊂Rn\Ô(i, x) for all (i, x) ∈ Z≥0 × K by a function

σK ∈ L such that m⊂Rn\Ô(i, x) ≤ σK(i) for all i ∈ Z≥0. It follows from global recurrence

of Ô and (3.12) that for all (j, x) ∈ Z≥0 ×K

∞∑

i=j+1

MÔ(i, x) =
∞∑

i=j+1

(
m⊂Rn\Ô(i− 1, x)−m⊂Rn\Ô(i, x)

)

= m⊂Rn\Ô(j, x) ≤ σK(j).
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Without loss of generality we can assume that σ2iB(j) ≤ σ2i+1B(j) ∀(i, j) ∈ Z≥0 × Z≥0.

Let ` : Z≥0 → Z≥0 be a strictly increasing unbounded mapping satisfying `(0) = 0 and

σ2iB(`(i)) ≤ 2−i for all i ∈ Z≥1. Let ˜̀∈ K∞ satisfy ˜̀(i) = `(i) for each i ∈ Z≥0. Define

τ(s) := ˜̀−1(s) for all s ≥ 0. Given x ∈ Rn, let k ∈ Z≥1 be such that x ∈ 2k−1B. Then

∞∑

i=1

τ(i)MÔ(i, x) =
∞∑

j=1

( `(j)∑

i=`(j−1)+1

τ(i)MÔ(i, x)

)

≤
∞∑

j=1

( `(j)∑

i=`(j−1)+1

jMÔ(i, x)

)

≤
∞∑

j=1

j

( ∞∑

i=`(j−1)+1

MÔ(i, x)

)
≤

∞∑

j=1

j σ2k−1B(`(j − 1))

≤
k−1∑

j=1

j σ2k−1B(`(j − 1)) +
∞∑

j=k

j σ2k−1B(`(j − 1))

≤
k−1∑

j=1

j σ2k−1B(0) +
∞∑

j=k

j σ2j−1B(`(j − 1))

≤ k(k − 1)

2
σ2k−1B(0) +

∞∑

j=k

j 2−(j−1).

Since
∑∞

j=1 j 2−(j−1) < ∞ it follows that x 7→ Ŵ (x) is well defined and bounded on

compact sets. From (3.12) we also have that for all x ∈ Rn,

Ŵ (x) =
∞∑

i=1

τ(i)
(
m⊂Rn\Ô(i− 1, x)−m⊂Rn\Ô(i, x)

)

=
∞∑

i=1

τ(i)m⊂Rn\Ô(i− 1, x)−
∞∑

i=1

τ(i− 1)m⊂Rn\Ô(i− 1, x)

=
∞∑

i=1

(
τ(i)− τ(i− 1)

)
m⊂Rn\Ô(i− 1, x). (3.13)

Then, from the local boundedness of Ŵ we have that for every x ∈ Rn, δ > 0 and γ > 0

there exists i∗ ∈ Z≥1 such that Ŵ (z) ≤ ∑i∗

i=1

(
τ(i) − τ(i − 1)

)
m⊂Rn\Ô(i − 1, z) + γ for
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all z ∈ x + δB. Since τ ∈ K∞, we have τ(i) − τ(i − 1) > 0 ∀i ∈ Z≥1. Let {xj}∞j=1 be a

sequence of points converging to x. Then, from the upper semicontinuity of the viability

probabilities we have that

lim sup
j→∞

Ŵ (xj) ≤ lim sup
j→∞

( i∗∑

i=1

(τ(i)− τ(i− 1))m⊂Rn\Ô(i− 1, xj)

)
+ γ

≤
i∗∑

i=1

(τ(i)− τ(i− 1))m⊂Rn\Ô(i− 1, x) + γ

≤ Ŵ (x) + γ.

Since γ > 0 is arbitrary, Ŵ is upper semicontinuous.

Proposition 3.9 There exists τ ∈ K∞ such that W in (3.11) is well defined, locally

bounded and upper semicontinuous.

Proof: Let τ ∈ K∞ be chosen according to 3.8 so that Ŵ (·) is well defined. Since

W (x) = Ŵ (x)IRn\Ô(x) for all x ∈ Rn, it follows that the mapping x 7→ W (x) is well

defined and bounded on compact sets. Then, from the upper semicontinuity of Ŵ (·) and

IRn\Ô(·) it follows that the product W (·) is upper semicontinuous.

Proposition 3.10 There exists % : Rn → R>0 continuous and λ > 0 such that for all

x ∈ Rn,
∫
Rm maxg∈Gρ,ν(x,v) W (g)µ(dv) ≤ W (x)− %(x) + λIÔ(x).
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Proof: Let κ(i) = τ(i)− τ(i− 1) for all i ∈ Z≥1. Then, from the definition of Ŵ in

(3.13) it follows that

∫

Rm
max

g∈Gρ,ν(x,v)
W (g)µ(dv) ≤

∫

Rm

∞∑

i=1

max
g∈Gρ,ν(x,v)

κ(i)m⊂Rn\Ô(i− 1, g)IRn\Ô(g)µ(dv)

=
∞∑

i=1

κ(i)

∫

Rm
max

g∈Gρ,ν(x,v)
IRn\Ô(g)m⊂Rn\Ô(i− 1, g)µ(dv)

=
∞∑

i=1

κ(i)m⊂Rn\Ô(i− 1, x)−
∞∑

i=1

κ(i)
(
m⊂Rn\Ô(i− 1, x)−m⊂Rn\Ô(i, x)

)

=
∞∑

i=1

κ(i)m⊂Rn\Ô(i− 1, x)
(
IRn\Ô(x) + IÔ(x)

)
− %̃(x)

≤ W (x)− %̃(x) + λIÔ(x)

where,

λ := sup
x∈Ô

∞∑

i=1

(
τ(i)− τ(i− 1)

)
m⊂Rn\Ô(i− 1, x)

%̃(x) :=
∞∑

i=1

(
τ(i)− τ(i− 1)

)(
m⊂Rn\Ô(i− 1, x)−m⊂Rn\Ô(i, x)

)
.

From (3.12) we have that λ = supx∈Ô
∑∞

i=1 τ(i)MÔ(i, x) = supx∈Ô Ŵ (x) and

%̃(x) ≤ ∑∞i=1

(
τ(i) − τ(i − 1)

)
m⊂Rn\Ô(i − 1, x) =

∑∞
i=1 τ(i)MÔ(i, x) ≤ Ŵ (x). Then, it

follows from the proof of Proposition 3.8 that λ is finite and ρ̃ is bounded. Also from the

definition we have that λ ≥ κ(1) > 0.

Now we prove that ρ̃ is bounded away from zero on compact sets. Let R > 0. Choose

` ∈ Z≥1 such that σRB(`) ≤ 0.5, where σRB ∈ L is such that mRn\Ô(i, x) ≤ σRB(i) for all

(i, x) ∈ Z≥0×RB. Such a function exists because of the uniform strong global recurrence

57



Stochastic difference inclusions Chapter 3

of the set Ô. Then, for x ∈ RB,

%̃(x) ≥
∑̀

i=1

(
τ(i)− τ(i− 1)

)(
m⊂Rn\Ô(i− 1, x)−m⊂Rn\Ô(i, x)

)

≥ min
k∈{1,...,`}

(
τ(k)− τ(k − 1)

)∑̀

i=1

(
m⊂Rn\Ô(i− 1, x)−m⊂Rn\Ô(i, x)

)

≥ min
k∈{1,...,`}

(
τ(k)− τ(k − 1)

)
(1−m⊂Rn\Ô(`, x))

≥ min
k∈{1,...,`}

(
τ(k)− τ(k − 1)

)
(1− σRB(`))

≥ 0.5 min
k∈{1,...,`}

(
τ(k)− τ(k − 1)

)
.

Since R is arbitrary and τ ∈ K∞, it follows that %̃ is bounded away from zero on compact

subsets of Rn. Then, let % : Rn → R>0 be such that it is continuous and satisfies

%(x) ≤ %̃(x) for all x ∈ Rn. Then, it follows that for all x ∈ Rn,

∫

Rm
max

g∈Gρ,ν(x,v)
W (g)µ(dv) ≤ W (x)− %(x) + λIÔ(x)

which establishes the result.

The next result is used to prove radial unboundedness of W by preventing big jumps

to the set Ô by some solutions starting from large initial conditions.

Proposition 3.11 For the system (3.10), for each ν ∈ K∞, x0 ∈ Ô, ρ : Rn → R>0

continuous and k ∈ Z≥0 there exists R > 0 such that m⊂Rn\Ô(k, x) = 1 for all x ∈

Rn\(Ô +RBo).

Proof: Let x0 ∈ Ô and R̂ > 0 be such that Ô ⊂ {x0}+ R̂Bo. Since Ô is bounded,

R̂ exists. Define Ŝ := {x0} + R̂Bo and S := Rn\Ŝ. From the definition of Gν in (3.9)

and Gρ,ν in (3.10) we have that {x0}+ ν(|x− x0|)B ⊂ Gρ,ν(x, v) for all (x, v) ∈ S × Rm
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and x0 ∈ Ô. We claim that for the system (3.10) and for all (k, x) ∈ Z≥0 × S,

m⊂S(k, x) ≥ I[R̂,∞)

(
min

i∈{1,...,k}
νi(|x− x0|)

)
. (3.14)

The bound holds by definition for k = 0. Suppose it holds for some k ∈ Z≥0 and every

x ∈ S. Then

m⊂S(k + 1, x) =

∫

Rm
max

g∈Gρ,ν(x,v)
IS(g)m⊂S(k, g)µ(dv)

≥
∫

Rm
max

g∈{x0}+ν(|x−x0|)B
IS(g)I[R̂,∞)

(
min

i∈{1,...,k}
νi(|g − x0|)

)
µ(dv)

= max
g∈{x0}+ν(|x−x0|)B

IS(g)I[R̂,∞)

(
min

i∈{1,...,k}
νi(|g − x0|)

)

= I[R̂,∞)(ν(|x− x0|))I[R̂,∞)

(
min

i∈{1,...,k}
νi+1(|x− x0|)

)

= I[R̂,∞)

(
min

i∈{1,...,k+1}
νi(|x− x0|)

)
.

By induction (3.14) holds for all k ∈ Z≥0. Now let k ∈ Z≥0 be given. Let R̃ = |x− x0|.

Pick R̃ > 0 such that mini∈{1,...,k} νi(R̃) ≥ R̂, which can be achieved since νi ∈ K∞ for

each i ∈ {1, ..., k}. Now pick R > 0 such that {x0}+ R̃Bo ⊂ Ô+RBo. With this choice,

it follows from (3.14) that m∩S(k, x) = 1 for all x ∈ Rn\(Ô + RBo). The result of the

proposition now holds as S ⊂ Rn\Ô.

Corollary 3.1 When constructed from the system (3.10) with ν ∈ K∞ and ρ : Rn → R>0

continuous, such that Ô is globally recurrent then the function W in (3.11) is radially

unbounded.
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Proof: Using Proposition 3.11, given i∗ ∈ Z>0, let R > 0 be such that m⊂Rn\Ô(i∗−

1, x) = 1 for all x ∈ Rn\(Ô +RBo). Then, for x ∈ Rn\(Ô +RBo),

W (x) =
∞∑

i=1

τ(i)MÔ(i, x) ≥ τ(i∗)
∞∑

i=i∗
MÔ(i, x)

= τ(i∗)m⊂Rn\Ô(i∗ − 1, x) = τ(i∗).

Since τ ∈ K∞ and i∗ is arbitrary, the corollary follows.

Now define V (x) := W (x)/λ and %(x) := %(x)/λ for all x ∈ Rn. Then, it follows that

V is upper semicontinuous, radially unbounded and satisfies (3.8). Now we smooth V to

get the results of Theorem 3.5.

Let σ∗ > 0 be such that Ô + σ∗Bo ⊂ O. Such a σ∗ exists because of Theorem

3.2. Following [66], define Vs(x) :=

∫

Rn
V (x + σ(x)ξ)ψ(ξ)dξ and %s(x) :=

∫

Rn
%(x +

σ(x)ξ)ψ(ξ)dξ for all x ∈ Rn, where ψ : Rn → R≥0 is smooth with support on B and

σ : Rn → R>0 is smooth on Rn. It follows that %s is continuous and positive for all

x ∈ Rn. We pick σ to satisfy σ(x) ≤ min{|x|+ c, σ∗} for some c > 0. Then we have that

Vs(x) ≥ infξ∈B V (x + σ∗ξ). Since V is radially unbounded, it follows that Vs is radially

unbounded. As in [42] we also choose σ sufficiently small so that

σ(x) ≤ 0.5ρ(x) ≤ ρ(x+ σ(x)ξ) ∀(x, ξ) ∈ Rn × B. (3.15)

If follows from (3.15) that

x ∈ {x+ σ(x)ξ}+ ρ(x+ σ(x)B) ∀(x, ξ) ∈ Rn × B. (3.16)
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It follows from (3.15), (3.16) that

g ∈ G(x, v), g̃ = g + σ(g)ξ, ξ ∈ B
}
⇒ g̃ ∈ Gρ,ν(x+ σ(x)ξ, v).

Define Ôσ := Ô + supx∈Rn σ(x)Bo. Then, from the definition of σ, it follows that Ôσ ⊂

Ôσ∗ ⊂ O. Then, we have that

∫

Rn
IÔ(x+ σ(x)ξ)ψ(ξ)dξ ≤ IÔσ∗ (x) ≤ IO(x).

Then, from the above conditions it follows that for all x ∈ Rn,

∫

Rm
max

g∈G(x,v)
Vs(g)µ(dv) =

∫

Rm
max

g∈G(x,v)

(∫

Rn
V (g + σ(g)ξ)ψ(ξ)dξ

)
µ(dv)

≤
∫

Rm

(∫

Rn
max

g∈G(x,v)
V (g + σ(g)ξ)ψ(ξ)dξ

)
µ(dv)

=

∫

Rn

(∫

Rm
max

g∈G(x,v)
V (g + σ(g)ξ)µ(dv)

)
ψ(ξ)dξ

≤
∫

Rn

(∫

Rm
max

g∈Gρ,ν(x+σ(x)ξ,v)
V (g)µ(dv)

)
ψ(ξ)dξ

≤
∫

Rn

(
V (x+ σ(x)ξ)− %(x+ σ(x)ξ) + IÔ(x+ σ(x)ξ)

)
ψ(ξ)dξ

≤ Vs(x)− %s(x) + IO(x).

Then, it follows that Vs is a smooth Lyapunov function relative to O for (3.1).

3.5.4 Weak sufficient conditions for global recurrence

In this section, we focus on relaxed sufficient conditions for certifying global recur-

rence. In particular, we do not rely on the existence of Lyapunov functions satisfying

strict decrease conditions on average along solutions outside the recurrent set. We present

two approaches to establish weak sufficient conditions for recurrence. The first approach
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is through the well studied concept of invariance principle. The second approach is

through the use of Matrosov functions.

Invariance principle

The invariance principle is an important tool to establish weak sufficient conditions

for stability properties in the absence of Lyapunov functions satisfying strict decrease

conditions along solutions. Typically, the invariance principle uses a Lyapunov function

satisfying non-strict decrease conditions along with the knowledge of behavior of solutions

on certain level sets of the Lyapunov function to conclude asymptotic stability properties.

For non-stochastic hybrid systems an invariance principle is established in [28] for global

asymptotic stability and in Chapter 2 for global recurrence. We now extend the results

to a class of stochastic difference inclusions.

Definition 3.7 A continuous function V̂ : Rn → R≥0 is a weak-Lyapunov function

relative to an open, bounded set O ⊂ Rn for the system (3.1) if V̂ is radially unbounded

and satisfies

∫

Rm
max

g∈G(x,v)∩(Rn\O)
V̂ (g)µ(dv) ≤ V̂ (x),∀x ∈ Rn\O. (3.17)

A random solution x is almost surely complete if for almost all ω ∈ Ω, x(ω) is

complete. The proof of the next result will be presented in a subsequent chapter for a

larger class of stochastic hybrid systems and hence we only state the result here.

Theorem 3.6 Let V̂ be a weak-Lyapunov function relative to an open, bounded set O ⊂

Rn for the system (3.1). Then, O is globally recurrent if and only if for every c ≥ 0

for which LV̂ (c) ∩ (Rn\O) is non-empty there does not exist an almost surely complete

random solution x that remains in the set LV̂ (c) ∩ (Rn\O) almost surely.
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Matrosov Theorem

The invariance principles developed in [67], [68] relaxes the typical Lyapunov sufficient

conditions required to establish global asymptotic stability for time-invariant differential

equations. equations. In [4] Matrosov established sufficient conditions for uniform global

asymptotic stability in time-varying systems by using the notion of multiple Lyapunov-

like functions with definitely non zero derivatives when the derivative of a Lyapunov

function satisfying a weak decrease condition is zero. Matrosov’s theorem in [4] used

only one auxiliary function, but this has been extended to the case of multiple auxiliary

functions in [5], [69]. Unlike the invariance principle, Matrosov function approach does

not require the knowledge of behavior of solutions to conclude asymptotic stability. Also,

the Matrosov function approach is applicable to time-varying systems. As illustrated in

the example in [70], the invariance principle cannot be used to analyze global asymptotic

stability for time-varying systems. In this section we present a Matrosov theorem for

characterizing global recurrence of open, bounded sets for (3.1). The proof of the result

is in the appendix.

Theorem 3.7 An open, bounded set O ⊂ Rn is globally recurrent for (3.1) if the follow-

ing conditions hold.

1. There exists an upper semicontinuous, radially unbounded function V : Rn → R≥0

such that,

∫

Rm
max

g∈G(x,v)∩(Rn\O)
V (g)µ(dv) ≤ V (x) x ∈ Rn\O. (3.18)

2. For each R > 0 there exists N ∈ Z≥1, upper semicontinous functions Wi : Rn →

R≥0 and continuous functions Yi : Rn → R, i ∈ {1, ..., N} such that for all x ∈
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RB\O,

∫

Rm
max

g∈G(x,v)∩(Rn\O)∩RB
Wi(g)µ(dv)−Wi(x) ≤ Yi(x), (3.19)

and with the definitions, Y0(x) := 0 for all x ∈ Rn and YN+1(x) := 1 for all x ∈ Rn,

we have the following property for each j ∈ {0, ..., N} : if x ∈ (Rn\O) ∩ RB and

Yi(x) = 0 for all i ∈ {0, ..., j} then Yj+1(x) ≤ 0.

3.5.5 Recurrence in stochastic systems vs non-stochastic sys-

tems

In this section we highlight some of the ways in which the recurrence property for

stochastic systems and non-stochastic systems differ. In Chapter 2, it is established

that recurrence of an open, bounded set for a non-stochastic hybrid system implies the

solutions are uniformly ultimately bounded and the existence of compact set that is

uniformly globally asymptotically stable. However, these implications are not true for

stochastic systems. The following example illustrates these issues.

Example 3.4 Consider the discrete-time stochastic system x+ = max{0, x+v} with x ∈

Z≥0, and the random variable v ∈ {−1, 1} with a distribution µ satisfying µ({−1}) = 0.6

and µ({1}) = 0.4. For this system V (x) = |x| is a Lyapunov function that guarantees

global recurrence of the set O = (−1, 1) since V is radially unbounded, and for x ∈ Z≥1,

E[V (x+)] = 0.4|x+ 1|+ 0.6|x− 1| = V (x)− 0.2.

Then, it follows that V guarantees global recurrence of the set O. We also have from

[22, Thm 8.1.2] that every set of the form Or = (r, r + 2) is recurrent for r ∈ Z≥1. This

implies that the reachable set from any such Or is not bounded in a probabilistic sense
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as solutions return to arbitrarily large sets infinitely often with probability one. It can

be observed that the set O does not have any invariance-like property or stability-like

property. Finally, no compact set A ⊂ Z≥0 can be asymptotically stable in probability,

since solutions starting from the set A can leave with positive probability. Hence, the

example highlights the differences in the recurrence property for stochastic and non-

stochastic systems.

A summary of the results on global recurrence for open, bounded sets for (3.1) is in

Figure 3.1.

Uniform

recurrenceRecurrence

Robust

recurrence
Smooth Lyapunov functions

Invariance principle Matrosov functions

Proposition 3.2

Theorem 3.4 Theorem 3.5

Theorem 3.6 Theorem 3.7

Figure 3.1: Summary of recurrence results for (3.1)

3.6 Global asymptotic stability in probability

In this section, we state results related to analysis tools for the global asymptotic

stability in probability property. We refer the reader to [42] for the proofs.

Definition 3.8 An upper semicontinuous function V : Rn → R≥0 is said to be a Lya-

punov function relative to the compact set A ⊂ Rn for (3.1) if it is radially unbounded,
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V ∈ PD(A), and there exists a continuous function % ∈ PD(A) such that for all x ∈ Rn,

∫

Rm
max

g∈G(x,v)
V (g)µ(dv) ≤ V (x)− %(x). (3.20)

Theorem 3.8 Let A ⊂ Rn be a compact set. If there exists a Lyapunov function relative

to A for (3.1) then the set A is globally asymptotically stable in probability for (3.1).

Example 3.5 Consider the stochastic difference inclusion in Example 3.2 with state

x = [x1 x2] satisfying

x+
1 ∈ {−0.6, 0.6}

x+
2 = (x1 + v)x2

We claim that the set A := {−0.6, 0.6} × {0} is globally asymptotically stable in proba-

bility. Consider the Lyapunov function V (x) = x2
2. Then,

E
[

max
g∈G(x,·)

V (x+)

]
= x2

2 − 0.28x2
2. (3.21)

Since V is radially unbounded and positive definite with respect to A, it follows that

A is globally asymptotically stable in probability. We note that the Lyapunov function

approach can only be used to analyze the behavior of causal random solutions. As

explained in Example 3.2, the non-causal selection x1,k(ω) = vk(ω) leads to unstable

behavior.

We now state the corresponding results on robustness of asymptotic stability in proba-

bility, converse Lyapunov theorem and the invariance principle. For a continuous function
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ρ : Rn → R≥0, define

x+ ∈ Gρ(x, v) := {w ∈ Rn : w ∈ g + ρ(g)B, g ∈ G(x+ ρ(x)B, v)}. (3.22)

Theorem 3.9 Let the compact set A ⊂ Rn be globally asymptotically stable in probability

for (3.1). Then, there exists a continuous function ρ ∈ PD(A) such that set A is globally

asymptotically stable in probability for (3.22).

Theorem 3.10 The compact set A ⊂ Rn is globally asymptotically stable in probability

for (3.1) if and only if there exists a smooth Lyapunov function relative to A for (3.1).

Definition 3.9 A continuous function V̂ : Rn → R≥0 is a weak-Lyapunov function

relative to a compact set A ⊂ Rn for the system (3.1) if V̂ is radially unbounded, V̂ ∈

PD(A) and satisfies

∫

Rm
max

g∈G(x,v)
V̂ (g)µ(dv) ≤ V̂ (x), ∀x ∈ Rn. (3.23)

Theorem 3.11 Let V̂ be a weak-Lyapunov function relative to relative to a compact set

A ⊂ Rn for the system (3.1). Then, A is globally asymptotically stable in probability

if and only if for every c > 0 there does not exist an almost surely complete random

solution x that remains in the set LV̂ (c) almost surely.

We note that weak sufficient conditions using Matrosov functions for asymptotic sta-

bility in probability are established in [71]. A summary of the results on global asymptotic

stability in probability of compact sets for (3.1) is in Figure 3.2.
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Figure 3.2: Summary of stability results for (3.1)
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Chapter 4

Robust stochastic stability under

discontinuous stabilization

4.1 Introduction

The aim of this chapter to study robustness of global asymptotic stability in prob-

ability for a class of constrained discrete-time stochastic systems under the action of

discontinuous control laws. In the previous chapters, the class of systems for which ro-

bustness is studied satisfied good regularity properties. In this chapter, we focus on

stochastic systems stabilized by discontinuous feedback laws for which the robustness re-

sults from Chapter 3 are not applicable. In particular, the closed loop stochastic system

under the action of a discontinuous control law need not satisfy the regularity conditions

listed in the Standing assumption from Chapter 3. The results of this chapter are from

[72] and the proofs are in the appendix.

Discontinuous control laws arise from control synthesis methodologies sometimes out

of necessity since there are controllable systems that are not continuously stabilizable.

69



Robust stochastic stability under discontinuous stabilization Chapter 4

The discrete-time cubic integrator with state x = (x1, x2) and control input u satisfying

x+
1 = x1 + u

x+
2 = x2 + u3

is a system for which there does not exist any continuous control law to stabilize the ori-

gin. See [73] for details. Discontinuous control laws also arise frequently in the context of

systems stabilized by model predictive control due to the presence of state and terminal

constraints. See [74] and [75] for details. In the case of stochastic model predictive con-

trol, the control policies are assumed only to be a measurable function of the state and

not necessarily continuous. See [76] for details. Studying robustness under discontinuous

stabilization is important as there are examples where the discontinuous control law can

stabilize the closed loop system, but the stability need not be robust. In particular, arbi-

trarily small perturbations can prevent convergence of the state to the desired attractor.

Consider a system with state x = (x1, x2) and control input u satisfying

x+
1 = − (x2

1 + x2
2) + x1

(1 + (x2
1 + x2

2)u2 − 2x1u)

x+
2 =

x2

(1 + (x2
1 + x2

2)u2 − 2x1u)
.

For this system, under the constraints |u| ≤ 1, x ∈ D := {x ∈ R2, |x1| ≤ c} for some

c ∈ (0, 1), a MPC control law that asymptotically stabilizes the origin is proposed in

[77]. In [77, Proposition 14] it is further established that the asymptotic stability of the

origin under the proposed MPC law is not robust with respect to measurement errors or

additive disturbances.
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4.2 Constrained stochastic systems with control in-

puts

In this section, we explain the class of constrained stochastic systems with control

inputs considered in the rest of this chapter and state the basic assumptions we impose

on the closed loop system.

Consider a function f : X ×U ×V → X , where X ⊆ Rn and U ⊆ Rm are closed sets,

V ⊆ Rp is measurable, and a stochastic controlled difference equation

x+ = f(x, u, v) (4.1)

with state variable x ∈ X , control input u ∈ U , and random input v ∈ V(eventually

specified as a random variable from a probability space (Ω,F ,P) to V). The random

variables vi : Ω → V , for i ∈ Z≥0, are independent and identically distributed (i.i.d.)

with a distribution function µ : B(V)→ [0, 1] defined as µ(F ) := P ({ω ∈ Ω | vi(ω) ∈ F})

.

We consider the following regularity conditions throughout this chapter.

Standing Assumption 4.1 The function f satisfies the following properties:

1. f is locally bounded;

2. for any v ∈ V, the mapping (x, u) 7→ f(x, u, v) is continuous;

3. for any (x, u) ∈ X × U , the mapping v 7→ f(x, u, v) is measurable.

Given a stochastic difference equation of the kind

x+ = g(x, v) (4.2)
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with g : X × V → X locally bounded, and v 7→ g(x, v) measurable for all x ∈ X , we

recall the notion of a Lyapunov function.

Definition 4.1 An upper semicontinuous function V : X → R≥0 is a Lyapunov function

relative to the compact set A ⊂ Rn for (4.2) if there exist functions α1, α2 ∈ K∞ and

ρ ∈ PD(A) such that for all x ∈ X we have α1(|x|A) ≤ V (x) ≤ α2(|x|A) and

∫

V
V (g(x, v))µ(dv) ≤ V (x)− ρ(x). (4.3)

We will now assume that there exists a locally bounded, possibly discontinuous, state-

feedback control law, associated with a continuous Lyapunov function as follows.

Assumption 4.1 The function κ : X → U is a locally bounded control law such that

V : X → R≥0 is a continuous Lyapunov function relative to the compact set A ⊂ X for

the closed-loop stochastic difference equation

x+ = f(x, κ(x), v). (4.4)

The main goal of this chapter is to analyze the robustness of the Lyapunov condition

4.3 for the system 4.4 and consequently make observations related to robustness of the

global asymptotic stability in probability property. In particular, when the control law is

discontinuous we study if the Lyapunov conditions in 4.3 are preserved under arbitrarily

small perturbations.
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4.3 Continuous Lyapunov function implies robust-

ness

In this section, we analyze the robustness properties of the closed loop system (4.4)

under the conditions of Standing Assumption 4.1 and Assumption 4.1. We first highlight

some of the differences that arise when this problem is studied for stochastic systems

instead of deterministic systems.

For deterministic systems, the existence of a continuous Lyapunov function V for the

closed loop system under assumptions similar to Standing Assumption 4.1 implies that

V is also a Lyapunov function for a perturbed version of the closed loop system if the

perturbation is sufficiently small. For stochastic systems, it is not necessarily true that

the Lyapunov function from Assumption 4.1 also works for a perturbed version of the

closed loop system (4.4). Finally, in stochastic systems, causality plays an important

role in the type of perturbations for which robustness can be achieved for (4.4). For

deterministic systems, the issue of causality does not arise in the robustness analysis.

We explain in more detail the above issues through examples later in this section.

Given a continuous Lyapunov function V relative to the compact attractor A for the

nominal closed-loop system (4.4), we first establish that there exists a concave function

Γ ∈ K∞ such that the function Γ(V ) is a continuous stochastic Lyapunov function relative

to A for a perturbed closed-loop system. The following results are a consequence of the

proof of Proposition 3.5. We also refer the reader to [72] for a proof.

Lemma 4.1 For any measurable function Φ : Rp → R≥0, there exists a concave function

Γ ∈ K∞ such that
∫
Rp Γ(Φ(v))µ(dv) <∞.

Lemma 4.2 If Assumption 4.1 holds, then for any concave Γ ∈ K∞, we have that Γ(V )

is a Lyapunov function relative to A for (4.4).
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Let us first consider the smallest set-valued inflation of the control law κ, i.e. its

regularization K : X ⇒ U defined as

K(x) :=
⋂

ρ>0

κ(({x}+ ρB) ∩ X ), (4.5)

which is locally bounded and outer semicontinuous [14, Lemma 5.16], even if κ is a

discontinuous function.

The following result shows some robustness of the Lyapunov condition for (4.4).

Proposition 4.1 If Assumption 4.1 holds, then there exists a concave Γ ∈ K∞ and

% ∈ PD(A) such that for all x ∈ X we have

max
u∈K(x)

∫

V
Γ(V (f(x, u, v)))µ(dv) ≤ Γ(V (x))− %(x). (4.6)

The following example highlights the role of causality in robustness analysis and

shows that we cannot derive a Lyapunov condition with the selection “ max
u∈K(x)

” inside the

integral in (4.6).

Example 4.1 Consider the stochastic controlled difference equation

x+ = f(x, u, v) = (u+ v)x

where V = {−0.6, 0.6}, and µ({−0.6}) = µ({0.6}) = 0.5. The state-feedback control law

κ(x) =





0.6 if x ∈ Q

−0.6 otherwise,

being Q the set of rational numbers, makes V (x) = |x| a continuous Lyapunov function

relative to A = {0}, as for all x ∈ R we have
∫
V |x+|µ(dv) ≤ 0.6|x|.
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We now consider the smallest perturbation of the control law κ, namely the controller

regularization K defined in (4.5). With the selection “maxu∈K(x)” inside the integral we

get

∫

V
max
u∈K(x)

|x+|µ(dv) =

∫

V
max
u∈K(x)

|(u+v)x|µ(dv) = 1.2|x| > |x|, therefore the Lyapunov

condition does not hold. The primary reason why the Lyapunov conditions fail is that,

“maxu∈K(x)” inside the integral allows for the possibility of non-causal selections. In

particular, the selection u = v is now admissible and it can be observed that the selection

is non-causal and adversarial.

In the following example we show that, in general, the use of a suitable concave

Γ ∈ K∞ is strictly necessary in Proposition 4.1, because arbitrarily small perturbations

can induce the integral in (4.3) to be unbounded.

Example 4.2 Consider the stochastic difference equation

x+ = f(x, u, v) = x− u+ |x/2− u|Φ(v)

where Φ : V → R≥0 is locally bounded and measurable, but such that
∫
V Φ(v)µ(dv) =∞.

The control law u(x) = x/2 induces the closed-loop system to be x+ = x/2 for which

V (x) = |x| is a Lyapunov function relative to A = {0}. However, for any δ > 0, the

control law u(x) = δ + x/2 induces the closed-loop to be x+ = x/2 − δ + δΦ(v). Then,

from Jensen’s inequality we get

∫

V
|x/2− δ + δΦ(v)|µ(dv) ≥

∣∣∣∣
∫

V
(x/2− δ + δΦ(v))µ(dv)

∣∣∣∣

=

∣∣∣∣
∫

V
(x/2− δ)µ(dv) + δ

∫

V
Φ(v)µ(dv)

∣∣∣∣

≥ δ

∣∣∣∣
∫

V
Φ(v)µ(dv)

∣∣∣∣ =∞.
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Therefore, for any δ > 0, we have

max
w∈{u(x)}+δB

∫

V
V (f(x,w, v))µ(dv) =∞,

even if V is a continuous Lyapunov function.

We now state one of the main result of this chapter. Under Standing Assumption 4.1,

if there exists a continuous Lyapunov funtion relative to the compact attractor A ⊂ X ,

then the Lyapunov condition (4.6) is robust to sufficiently small, state-dependent, strictly

causal, worst-case perturbations δ ∈ PD(A). We indeed consider the following set-valued

inflations Kδ : Rn ⇒ Rm, with domKδ = X , and fδ : Rn × Rm × Rp ⇒ Rn, with

domfδ = X × U × V , respectively of the mapping K and of the function f .

Kδ(x) := (K (({x}+ δ(x)B) ∩ X ) + δ(x)B) ∩ U ,∀ x ∈ domKδ (4.7)

fδ(x, u, v) := (f (({x}+ δ(x)B) ∩ X , u, v) + δ(x)B) ∩ X ,∀ (x, u, v) ∈ domfδ. (4.8)

Theorem 4.1 If Assumption 4.1 holds, then there exist δ ∈ PD(A), a concave Γ ∈ K∞
and % ∈ PD(A) such that for all x ∈ X we have

max
u∈Kδ(x)

∫

V
max

ϕ∈fδ(x,u,v)
Γ(V (ϕ))µ(dv) ≤ Γ(V (x))− %(x). (4.9)

If there exists a compact set C ⊆ V such that µ(C) = 1, then (4.9) holds with Γ := Id.

4.4 Strictly causal generalized random solutions

Now we study how Lyapunov conditions predict the stochastic stability properties for

random solutions associated with the stochastic difference equation x+ = f(x, κ(x), v)
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(4.4). We could consider random solutions of system (4.4) directly, but there are the

following two issues. First, since in Assumption 4.1 we have not assumed that the control

law κ : X → U is a measurable function, there is no guarantee that the iteration

xi+1(ω) := f(xi(ω), κ(xi(ω)),vi(ω)), for i ∈ Z≥0, (4.10)

x0(ω) := ξ0 ∈ X , yields measurable functions xi : Ω → X , for i ∈ Z≥0. Secondly, even

when the function κ is measurable, the behavior of the random solution that is generated

by the iteration (4.10) may not accurately predict the behavior of the system in the

presence of small, random or worst-case, perturbations. For these reasons, we choose

to define a notion of generalized random solution. Generalized random solutions do not

require the control law κ to be measurable and, as we will see, their behavior predicts the

behavior of the system under small, random or worst-case, strictly causal perturbations.

This later feature is also present for generalized solutions to non-stochastic differ-

ence inclusions as introduced in [7]. In the case of non-stochastic difference equa-

tions x+ = f(x, κ(x)), generalized solutions are the solutions of the difference inclusion

x+ ∈ f(x,K(x)), with K being the controller regularization as defined in (4.5). It fol-

lows from [7] that the existence of a continuous Lyapunov function for x+ = f(x, κ(x))

implies the existence of a continuous Lyapunov function for x+ ∈ f(x,K(x)) and even

for an inflation of this later system. However, Example 4.1 suggests that this result does

not hold for x+ ∈ f(x,K(x), v) (4.4) in the stochastic case. This fact and the results

of the previous section motivate an alternative definition of generalized solutions in the

stochastic case, that turns out to generate the same solutions as x+ ∈ f(x,K(x)) in the

non-stochastic case and yet yields a robust Lyapunov result in the stochastic case.

Our strictly causal generalized random solutions are random solutions to the stochas-
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tic difference inclusion




x

u




+

∈ G0(x, u, v) :=








f(x, u, v)

K(f(x, u, v))








if ((x, u), v) ∈ graph(K)× V ; ∅ otherwise. (4.11)

The types of perturbations to which the behaviors of the solutions will be robust are

strictly causal perturbations that appear in the stochastic difference inclusion




x

u




+

∈ Gδ(x, u, v) :=








ϕ

Kδ(ϕ)


 | ϕ ∈ fδ(x, u, v)





if ((x, u), v) ∈ graph(Kδ)× V ; ∅ otherwise, (4.12)

where fδ and Kδ are the inflations of f and K respectively, as defined in (4.7), (4.8).

The motivation for considering the above inclusions is that the selection u ∈ Kδ(x)

“does not depend” on the current random input v. This property is what we call strict

causality. We notice that, for each (x, u) ∈ X × U , if u ∈ Kδ(x), then we have u+ ∈

Kδ(x
+).

Let us first assert certain regularity properties of the set-valued mapping Gδ : X ×

U × V ⇒ X × U in (4.12), by exploiting Standing Assumption 4.1. The same regularity

properties hold for G0 defined in (4.11).

Proposition 4.2 For all continuous functions δ : Rn → R≥0, the set-valued mapping Gδ

defined in (4.12) satisfies the following regularity conditions:

1. for any v ∈ V the mapping (x, u) 7→ Gδ(x, u, v) is outer semicontinuous;

2. the mapping v 7→ graph(Gδ(·, ·, v)) := {(x, u, y) ∈ X×U×(X×U) | y ∈ Gδ(x, u, v)}
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is measurable;

3. the mapping Gδ is locally bounded.

Since Proposition 4.2 shows that G0 in (4.11) and Gδ in (4.12) have the same regu-

larity conditions given in [42, Standing Assumption 1] and Standing Assumption 3.1, we

can define the notion of solutions for the stochastic difference inclusion (4.12) having (ex-

tended) state variable z := ( xu ) ∈ (X × U). We also define generalized random solutions

to (4.4) as the solutions for the regularized stochastic difference inclusion (4.11).

We now show that (4.9) established in Theorem 4.1 is closely related to a Lyapunov

condition for the extended stochastic difference inclusion (4.12), with Lyapunov function

V̄ : X × U → R≥0 relative to the compact attractor Ā ⊂ X × U explicitly defined in the

following preliminary result.

Lemma 4.3 For any δ ∈ PD(A), the function W : X × U → R≥0 defined as

W (x, u) := |(x, u)|graph(Kδ) (4.13)

is such that W (x, u) = 0⇐⇒ u ∈ Kδ(x). The set

Ā := {(x, u) ∈ X × U | x ∈ A, (x, u) ∈ graph(K)} ⊆ X × U (4.14)

is compact. For any δ ∈ PD(A), Γ ∈ K∞ and V : X → R≥0 upper semicontinuous

(respectively, continuous), the function V̄ : X × U → R≥0 defined as

V̄ (x, u) := Γ(V (x)) +W (x, u) (4.15)

is upper semicontinuous (respectively, continuous). If there exist α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) for all x ∈ X , then there exist ᾱ1, ᾱ2 ∈ K∞ such that
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ᾱ1(|(x, u)|Ā) ≤ V̄ (x, u) ≤ ᾱ2(|(x, u)|Ā) for all (x, u) ∈ (X × U).

We now state the main result of this chapter. Under the conditions of Standing

Assumption 4.1, we can establish that the Lyapunov condition in Assumption 4.1 is

robust to sufficiently small strictly causal perturbations. In particular, the next result

establishes that the Lyaunov conditions in Assumption 4.1 implies the existence of a

Lyapunov function for a perturbed version of (4.4).

Theorem 4.2 If Assumption 4.1 holds, then δ ∈ PD(A), Γ ∈ K∞ and % ∈ PD(A)

satisfying (4.9), W in (4.13), Ā in (4.14), and V̄ in (4.15) are such that for all (x, u) ∈

X × U we have

∫

V
max

g∈Gδ(x,u,v)
V̄ (g)µ(dv) ≤ V̄ (x, u)− %̄(x, u), (4.16)

with %̄ ∈ PD(Ā) defined as %̄(x, u) := W (x, u)/2 + %(x).

Proof: With V̄ := Γ(V ) +W as in (4.15), which is such that V̄ ∈ PD(Ā) according

to Lemma 4.3, the Lyapunov condition (4.16) reads as

∫

V
max

( g1
g2 )∈Gδ(x,u,v)

(Γ(V (g1)) +W (g1, g2))µ(dv) ≤ Γ(V (x)) + W (x, u) − %̄(x, u). (4.17)

We notice that for any δ ∈ PD(A), we have Ā = {(x, u) ∈ X × U | x ∈ A, (x, u) ∈

graph(K)} = {(x, u) ∈ X × U | x ∈ A, (x, u) ∈ graph(Kδ)}. Now, for any δ ∈ PD(A), if

u /∈ Kδ(x) then by definition (4.12), we get Gδ(x, u, v) = ∅, so that max( g1
g2 )∈∅ Γ(V (g1))+

W (g1, g2) = 0. Then (4.17) can be trivially satisfied by choosing %̄(x, u) := W (x, u)/2 +

%(x), so that we get Γ(V (x)) − %(x) + W (x, u))/2 ≥ W (x, u))/2 ≥ 0. We notice that

%̄ ∈ PD(Ā). While if u ∈ Kδ(x), then W (x, u) = 0 in view of Lemma 4.3 and, according

to (4.12), g2 ∈ Kδ(g1), and hence W (g1, g2) = 0 also in view of Lemma 4.3. Therefore we
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get max
u∈Kδ(x)

∫

V
max

g1∈fδ(x,u,v)
Γ(V (g1))µ(dv) ≤ Γ(V (x)) − %(x), which is equivalent to (4.9).

It follows from the regularity properties of Gδ established in Proposition 4.2, the

inequality (4.16) in Proposition 4.2 and the definition of Lyapunov function that V̄ (4.15)

is an Lyapunov function relative to Ā defined in (4.14) for (4.12). In essence, the above

result establishes the robustness of global asymptotic stability in probability property

even under the action of a discontinuous control law for the closed loop stochastic system,

provided the perturbation is sufficiently small and strictly causal. Similar results for the

recurrence property also exist and we refer the reader to [72] for more details.
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Stochastic hybrid systems

5.1 Introduction

Stochastic hybrid systems (SHS) allow continuous-time evolution of the states, discrete-

time events and probabilistic behavior. In SHS, randomness can affect the continuous-

time dynamics, the discrete-time dynamics or the transition between the dynamics. Con-

sequently, SHS models with varying degrees of complexity are studied in the literature.

Frameworks for modeling SHS are in [23], [25], [24] and [78]. SHS models arise frequently

in the context of complex systems like air traffic management systems, networked control

systems and systems biology. See [79], [80], [81] and [26] for more details. The recent

survey paper [27] presents a unified modeling framework for the various SHS represen-

tations in the literature and addresses stability related issues. In particular, important

topics that are well studied in the case of non-stochastic hybrid systems like sufficient

conditions for stability, weak sufficient conditions for stability, invariance principle, ro-

bust stability conditions and converse Lyapunov theorems are analyzed in detail in [27]

for stochastic hybrid systems that produce unique solutions.

In this chapter, the class of systems we study are stochastic hybrid systems modeled by
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set-valued mappings for which the randomness is restricted to the discrete-time dynamics.

The system model we study can account for spontaneous transitions, forced transitions

and probabilistic resets. We adopt the framework for modeling SHS with non-unique

solutions proposed in [25] and [82]. This class of systems covers other frameworks such

as piecewise-deterministic Markov processes (PDMP) and Markov jump systems.

The main goal of this chapter is to introduce the reader to a class of stochastic hybrid

systems modeled by set-valued mappings and develop results related to the invariance

principle. We use the invariance principle to develop weak sufficient conditions for sta-

bility and recurrence. As a consequence of the invariance principle we also establish

sufficient conditions for stochastic stability properties that rely on Lyapunov-like func-

tions satisfying strict decrease properties. The results in this chapter are from [83]. Other

aspects related to stability theory like converse theorems and robustness are studied in

detail in a subsequent chapter.

5.2 Preliminaries on stochastic hybrid systems

We consider a class of stochastic hybrid systems introduced in [25] with a state x ∈ Rn

and random input v ∈ Rm written formally as

ẋ ∈ F (x), x ∈ C (5.1a)

x+ ∈ G(x, v+), x ∈ D (5.1b)

v ∼ µ(·) (5.1c)

where C,D ⊂ Rn represent the flow and jump sets (where continuous and discrete evo-

lution of the state is permitted) respectively and F,G represent the flow and jump maps

respectively. The continuous-time dynamics is modeled by a differential inclusion and
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the discrete-time dynamics is modeled by a stochastic difference inclusion.

The distribution function µ is derived from the probability space (Ω,F ,P) and a

sequence of independent, identically distributed (i.i.d.) input random variables vi : Ω→

Rm defined on (Ω,F ,P) for i ∈ Z≥1. Then µ is defined as µ(A) = P(ω ∈ Ω : vi(ω) ∈ A)

for every A ∈ B(Rm). We denote by Fi the collection of sets {ω : (v1(ω), ...,vi(ω)) ∈

A}, A ∈ B((Rm)i) which are the sub-σ fields of F that form the natural filtration of

v = {vi}∞i=1. We refer to the stochastic hybrid system in (5.1) by the notation H. For

simplicity we will refer to the stochastic hybrid system through its data as

H := (C,F,D,G, µ). (5.2)

We now define the notion of random solution to (5.1) under the following basic as-

sumptions that is a combination of Standing Assumptions 2.1 and 3.1.

Standing Assumption 5.1 The data of the stochastic hybrid system H satisfies the

following conditions:

1. The sets C,D ⊂ Rn are closed;

2. The mapping F : Rn ⇒ Rn is outer-semicontinuous, locally bounded with nonempty

convex values on C;

3. The mapping G : Rn × Rm ⇒ Rn is locally bounded and the mapping v 7→

graph(G(·, v)) := {(x, y) ∈ R2n : y ∈ G(x, v)} is measurable with closed values.

5.2.1 Solution concept

Let (Ω,F) be a measurable space. A stochastic hybrid arc is a mapping x defined on

Ω such that x(ω) is a hybrid arc for each ω ∈ Ω and the set-valued mapping from Ω to
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Rn+2 defined by

ω 7→ graph(x(ω)) := {(t, j, z) : φ = x(ω), (t, j) ∈ dom(φ), z = φ(t, j)}

is F -measurable with closed values. We define graph(x(ω))≤j := graph(x(ω)) ∩ (R≥0 ×

{0, ..., j} × Rn). An {Fj}∞j=0 adapted stochastic hybrid arc is a stochastic hybrid arc x

such that the mapping

ω 7→ graph(x(ω))≤j := graph(x(ω))) ∩ (R≥0 × {0, ..., j} × Rn

is Fj measurable for each j ∈ Z≥0. An adapted stochastic hybrid arc x is a solution

starting from x denoted x ∈ Sr(x) if x(ω) is a solution to (5.1) with inputs {vi(ω)}∞i=1;

that is with φω := x(ω) we have

1. φω(0, 0) = x;

2. if (t1, j), (t2, j) ∈ dom(φω) with t1 < t2 then, for almost every t ∈ [t1, t2], φω(t, j) ∈

C and φ̇ω(t, j) ∈ F (φω(t, j));

3. if (t, j), (t, j+1) ∈ dom(φω) then φω(t, j) ∈ D and φω(t, j+1) ∈ G(φω(t, j),vj+1(ω)).

We observe that the set of hybrid arcs with closed graphs can be thought of as a subset

in the space of not-identically empty-valued outer semicontinuous set-valued mappings

from R2 to Rn. It follows from [84, Theorem 5.50], equipped with the metric of graph

distance, this space is a separable, locally compact, complete (and σ-compact) metric

space, which we denote (X ,d).

The data (C,F,D,G, µ) of the stochastic hybrid system H are assumed to satisfy

the conditions of Standing Assumption 5.1 throughout the rest of this chapter and the

subsequent chapter. The main motivations for imposing such conditions are as follows.
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Firstly, the sequential compactness of solutions of SHS established in [85] uses Standing

Assumption 5.1, and are crucial to developing the invariance principle for SHS. Secondly,

under the conditions of Standing Assumption 5.1, it is established in [25] that the system

generates non-trivial random solutions. Finally, the equivalence between uniform and

non-uniform versions of stability and recurrence which holds under the conditions of As-

sumption Standing Assumption 5.1 will be required to establish weak sufficient conditions

for asymptotic stability in probability and recurrence.

5.3 Weak total recurrence

The rest of this chapter will be devoted to establishing a result similar to the invari-

ance principle for the class of stochastic hybrid systems satisfying Standing Assumption

5.1. In this section we introduce the reader to the concept of “weak total recurrence in

probability” of compact sets, explain the importance of this concept and present mo-

tivations for considering this concept over the more frequently studied “invariant” set

concept.

A notion of weak total recurrence of sets is presented in [61] for stochastic difference

inclusions. We note that we use a weaker definition of weak total recurrence introduced

in [86] that utilizes probabilities of certain events as opposed to expected values used in

[61]. The main reason for adopting the definitions in [86] is that the weaker version of

the definition is sufficient for establishing the main results of the chapter.

We now recall the notion of weak total recurrence introduced in [86]. Given compact

sets S,K ⊂ Rn, 0 ≤ τ1 < τ2 and φ a solution to the non-stochastic hybrid system
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(K,F,K,K) (with C = K, D = K and G(x) = K) starting from K we define

ϕτ1,τ2,S(φ) := max

(t1, j1), (t2, j2) ∈ domφ

τ1 ≤ t1 + j1 ≤ t2 + j2 ≤ τ2

∫ t2

t1

IS(φ(s, j(s)))ds+

j2∑

i=j1+1

IS(φ(t(i), i− 1))

where j(s) is the smallest index j such that (s, j) ∈ dom(φ) and t(i) is the smallest time t

such that (t, i) ∈ dom(φ). For the case when τ1 = 0 and τ2 = τ , we refer to the mapping

by ϕτ,S(·). The mapping ϕτ,S(·) refers to the total amount of time that a hybrid arc

spends in the set S within hybrid time τ . For the case when φ ∈ X is not in the set

of solutions generated by (K,F,K,K) we define ϕτ,S(φ) = 0. It can be observed that if

S1 ⊂ S2 then ϕτ,S1(φ) ≤ ϕτ,S2(φ). More generally,

S ⊂
n⋃

i=1

Si =⇒ ϕτ,S(φ) ≤
n∑

i=1

ϕτ,Si(φ). (5.3)

The next result is proved in the appendix and it establishes that the function ϕτ1,τ2,S is

upper semicontinuous with respect to the hybrid arcs generated by the system (K,F,K,K).

Lemma 5.1 Let K,S ⊂ Rn be compact. For each 0 ≤ τ1 < τ2, and a sequence of

solutions φi converging to a solution φ, we have lim supi→∞ ϕτ1,τ2,S(φi) ≤ ϕτ1,τ2,S(φ).

Let Ψ ⊂ Rn be compact. For each ε > 0 and compact set K ⊂ Rn, let Sεr (K) denote

the solutions of (Cε, F,Dε, Gε) from the set K where

Cε := C ∩ (Ψ + εB) (5.4a)

Dε := D ∩ (Ψ + εB) (5.4b)

Gε(x, v) := G(x, v) ∩ (Ψ + εB) . (5.4c)
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Definition 5.1 A point x ∈ Ψ is said to be weakly recurrent in probability relative to

Ψ for H if, for each ε > 0 there exists % > 0 and for each ∆ > 0 there exist τ > 0 and

x ∈ Sεr (Ψ + εB) such that, with the definitions Sε := {x}+ εB and (5.4),

P (∆ ≤ ϕτ,Sε(x)) ≥ %. (5.5)

In other words, a point is weakly recurrent relative to Ψ if, for every neighborhood of

the point, there exists a random solution visiting the neighborhood for arbitrarily large

times with positive probability while staying close to the Ψ. A compact set Ψ ⊂ Rn is said

to be weakly totally recurrent in probability for H if each point in Ψ is weakly recurrent

in probability relative to Ψ for H. The mapping ω 7→ ϕτ,Sε(x(ω)) is measurable due to

Lemma 5.1 and the mapping ω 7→ x(ω) being measurable from [85, Section II.B]. Hence,

the event {ω : ∆ ≤ ϕτ,Sε(x(ω))} is measurable.

The motivation for considering the concept of weak total recurrence as opposed to

the concept of invariance is that even for non-stochastic hybrid systems weakly totally

recurrent sets are typically smaller than weakly invariant ( forward and backward) sets

and hence, establishing convergence to weakly totally recurrent sets provides a sharper

characterization. For stochastic hybrid systems, similar connections between weakly

totally recurrent in probability sets, weakly forward invariant sets (in an almost sure

sense) and an intermediary quasi-invariance property are studied. Also, as observed

in [86], weak backward invariance does not seem to be a natural concept to study for

stochastic hybrid systems and hence only minimal observations regarding the property

are presented in this chapter.

For any compact set K, the union of all subsets of K that are weakly totally recurrent

in probability provides the largest set in K that is weakly totally recurrent in probability.

The main results in this chapter are stated in terms of such sets. The next result precisely
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establishes the notion of largest weakly totally recurrent in probability set inside compact

sets.

Lemma 5.2 Let K ⊂ Rn be compact and let R be a collection of subsets of K that are

weakly totally recurrent in probability for H. Then the set Ψ̂ :=
⋃

Ψ∈RΨ is a compact

subset of K that is weakly totally recurrent in probability for H.

Proof: The containment Ψ̂ ⊂ K is a result of K being compact and Ψ ⊂ K for

each Ψ ∈ R. Let ζ ∈ Ψ̂ and ε > 0 be arbitrary. From the definition of Ψ̂, there exist

Ψ ∈ R, η ∈ Ψ and ε1 ∈ (0, ε) satisfying Sε1 := {η} + ε1B ⊂ {ζ} + εB =: Sε. In turn,

it follows from the weak total recurrence in probability of Ψ that there exist % > 0 and

for each ∆ > 0 there exist x ∈ Sε1r (Ψ + ε1B) and τ > 0 such that (5.5) holds with Sε1

in place of Sε and, since Sε1 ⊂ Sε, (5.5) holds with Sε not replaced by Sε1 as well. Since

Ψ + ε1B ⊂ Ψ̂ + εB, it follows that x ∈ Sεr (Ψ̂ + εB), where the solutions Sεr come from the

data (5.4) with Ψ̂ in place of Ψ. It follows that ζ is weakly totally recurrent in probability

relative to Ψ̂.

5.4 The recurrence principles

In this section, we present the main results of this chapter related to the sets to

which bounded random solutions converge. Since we characterize convergence to sets

that are weakly totally recurrent as opposed to weakly invariant, we refer to our results

as “recurrence principles”. The proofs of the main results are presented in the Appendix.

5.4.1 Limit sets of random solutions

For the stochastic hybrid system in (5.1), we now define the notion of a limit set of

a bounded random solution. Given a compact set K ⊂ Rn, a random solution x is said
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to be almost surely contained in K if graph(x(ω)) ⊂ R2 × K for almost all ω ∈ Ω. A

random solution x is said to be complete with positive probability if there exists ρ > 0

such that P (dom x ∩ Γ≥i 6= ∅ ∀i ∈ Z≥0) ≥ ρ .

Definition 5.2 For a random solution z that is almost surely contained in a compact set

and complete with positive probability, we define its recurrent in probability set, denoted

Ψ(z), to be the set of points ζ ∈ Rn such that, for each ε > 0 there exists % > 0 and for

each ∆ > 0 there exists τ > 0 such that, with Sε := {ζ}+ εB, P (∆ ≤ ϕτ,Sε(z)) ≥ % .

In other words, the set Ψ(z) denotes the set of points such that the solution z visits

every neighborhood of the set for arbitrarily large times with a positive probability.

For non-stochastic hybrid systems (2.1) in Chapter 2, under Standing Assumption 3.1,

it is established in [14, Prop 6.21] that a complete, bounded solution of (2.1) converges to

its Ω-limit set which is non-empty, compact and satisfies a weak invariance property. The

first main result of this chapter establishes a similar characterization of the behavior of a

random solution z that is almost surely bounded and complete with positive probability.

In particular, we establish convergence properties with respect to the limit set Ψ(z) and

prove that Ψ(z) is non-empty, compact and satisfies a weak total recurrence property

Theorem 5.1 Let K∞⊂K⊂Rn be compact and z be almost surely contained in K, com-

plete with positive probability, and such that almost every complete sample path converges

to K∞. Then Ψ(z) is nonempty, compact, contained in K∞, weakly totally recurrent in

probability, and almost every complete sample path of z converges to Ψ(z).

5.4.2 Krasovskii-LaSalle functions

In this section we describe Lyapunov-like functions that are non-increasing during

flows and non-increasing on average during jumps.
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Let K ⊂ Λ ⊂ Rn be compact sets. A continuous function V : Λ→ R≥0 is a stochastic

Krasovskii-LaSalle function relative to (K,Λ) if

V (φ(t)) ≤ V (x)−
∫ t

0

κ(φ(s))ds, t ∈ dom(φ), φ ∈SFC∩Λ(x)
∫

Rm
max

g∈G(x,v)∩Λ
V (g)µ(dv) ≤ V (x)− κ(x),∀x ∈ D ∩ Λ,

where κ : Λ → R≥0 is continuous and κ(x) > 0 when x ∈ Λ\K and SFC∩Λ(x) refers to

the solutions of (5.1a) starting at x with the flow set C ∩ Λ. Since Λ is compact and V

is continuous there exist 0 ≤ c1 < c2 such that V (Λ) ∈ [c1, c2]. Under the existence of

Krasovskii-LaSalle functions, we will refine the sets to which bounded random solutions

converge.

For non-stochastic hybrid systems (2.1) in Chapter 2 , under Standing Assumption

3.1 and the existence of a non-increasing Lyapunov function, it is established in [14, Thm

8.2] that complete, bounded solutions of (2.1) converge to the largest weakly invariant

set within the level set of the Lyapunov function. The second main result of this chapter

establishes a similar characterization for the complete sample paths of a bounded random

solution x in the presence of a non-increasing on average Lyapunov-like function. In

particular, we establish that almost every complete path of x converges to the largest

weakly totally recurrent set within the level set of the Lyapunov-like function.

Theorem 5.2 Let V be a stochastic Krasosvskii-LaSalle function relative to (K,Λ).

Then, for every random solution x generated from the data (C ∩ Λ, F,D ∩ Λ, G ∩ Λ, µ)

almost every complete sample path x(ω) converges to the largest weakly totally recurrent

in probability set contained in K ∩ LV (c(ω)) for some c(ω) ∈ [c1, c2].
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5.5 Corollaries of the recurrence principle

In this section we present some important corollaries of Theorem 5.1 and also make

connections to the recurrence principle established for stochastic difference inclusions in

[61].

Corollary 5.1 Let K ⊂ Rn be compact, let z be a solution that is almost surely contained

in K and let K∞ be such that, for each ε > 0 and % > 0 there exists ∆ > 0 such that,

with Sε := K\(K∞ + εB◦), we have

P (∆ ≤ ϕτ,Sε(z)) ≤ % ∀τ ≥ 0. (5.6)

Under these conditions, almost every complete sample path of z converges to the largest

weakly totally recurrent set contained in K∞.

Proof: We claim that, under the conditions of the corollary, almost every complete

sample path converges to K∞. Indeed, if this is not the case then there exists ε > 0 and

% > 0 and for each ∆ > 0 there exists τ such that

P (∆ ≤ ϕτ,Sε(z)) > %. (5.7)

But this contradicts the assumption of the Corollary. Now the result follows from Theo-

rem 5.1.

Corollary 5.2 Let K ⊂ Rn be compact, let z be a solution that is almost surely contained

in K and let K∞ be such that, for each ε > 0 there exists ∆ > 0 such that, with

Sε := K\(K∞ + εB◦), we have

E [ϕτ,Sε(z)] ≤ ∆ ∀τ ≥ 0. (5.8)
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Under these conditions, almost every complete sample path of z converges to the largest

weakly totally recurrent set contained in K∞.

Proof: We claim that (5.8) implies (5.6). Indeed, suppose (5.8) holds but (5.6) does

not hold, i.e., there exists ε > 0 and % > 0 such that for ∆̂ > ∆/% there exists τ > 0

such that

P
(

∆̂ ≤ ϕτ,Sε(z)
)
≥ %. (5.9)

Then E [ϕτ,Sε(z)] ≥ ∆̂% > ∆, which contradicts the bound (5.8) and establishes the

result.

Given a compact set K ⊂ Rn, lower semicontinuous functions κ1, κ2 : K → R≥0, and

τ > 0, for each φ that is a solution of (K,F,K,K) we define

ϕτ,κ1,κ2(φ) := max
(t,j)∈domφ,t+j≤τ

(∫ t

0

κ1(φ(s, j(s)))ds+

j∑

i=1

κ2(φ(t(i), i− 1))

)
.

The following result will be used in the proof of Theorem 5.2 and is similar to the

result in [48, Corollary 5.6] for non-stochastic hybrid systems.

Corollary 5.3 Let K ⊂ Rn be compact, z be a solution that is almost surely contained in

K, and κ1, κ2 : K → R≥0 be lower semicontinuous functions such that, for some ∆ > 0,

E [ϕi,κ1,κ2(z)] ≤ ∆ ∀i ∈ Z≥0. (5.10)

Then almost every complete sample path of z converges to the largest weakly totally re-

current set contained in the union of the zero-level sets of κ1 and κ2.

Proof: We first note that the measurability of the mapping ω 7→ ϕi,κ1,κ2(x(ω))

follows from induction due to the measurability of ω 7→ x(ω) and the lower semicontinuity
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of κ1 and κ2. Define K∞ := {x ∈ K : κ1(x)κ2(x) = 0}. For each ε > 0, define the

compact set Sε := K\(K∞ + εB◦) and

κε := min
i∈{1,2}

inf
z∈Sε

κi(z). (5.11)

Since κ1 and κ2 are lower semicontinuous, it follows that κε > 0. Indeed, if κε = 0 then

there exist j ∈ {1, 2} and a sequence zi ∈ Sε converging to some z ∈ Sε with κj(zi)→ 0

as i → ∞. Then by lower semicontinuity κj(z) ≤ limi→∞ κj(zi) = 0, which contradicts

z ∈ Sε. Now the result follows from the bound

ISε(z) ≤ κj(z)/κε ∀z ∈ K, j ∈ {1, 2} (5.12)

which gives that without loss of generality (5.10) implies (5.8) with ∆/κε in place of ∆.

The main difference between the next theorem and Theorem 5.1 is the assumption of

the random solution being contained almost surely in a compact set. In particular, the

following result focuses only on convergence of sample paths of the random solution that

remains bounded. A similar result is established in [61, Thm 6] for stochastic difference

inclusions. The proof is presented in the appendix.

Theorem 5.3 Let K∞ ⊂ Rn be compact. Let x be a random solution and ΩK,∞ be the

set of all ω ∈ Ω such that x(ω) is complete and converges to K∞. Then, for almost

every ω ∈ ΩK,∞, x(ω) converges to the largest weakly totally recurrent in probability set

contained within K∞.
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5.6 Comparison to invariance properties

In this section, we will compare the weak total recurrence in probability concept to

well known invariance concepts. In particular, we establish that

1. Each compact set that is weakly forward invariant almost surely contains a weakly

totally recurrent in probability set

2. Each compact set that is weakly totally recurrent in probability is weakly forward

invariant almost surely.

Hence, our motivation to study weakly totally recurrent sets as opposed to weakly for-

ward invariant sets is justified since the former is usually smaller and provides a sharper

characterization when describing solution behavior. We will also describe a intermedi-

ary invariance property introduced in [86] called “weak quasi-return invariance” and the

proof for establishing the relationship between weak forward invariance and weak total

recurrence relies on this intermediate property.

5.6.1 Weak quasi-return invariance

A compact set Ψ ⊂ Rn is weakly long-time quasi-return-invariant in probability for H

if, for each x ∈ Ψ, τ > 0, and ε > 0, and with the definition Sε := {x}+ εB, there exists

x ∈ Sεr (Sε) (where, as before, Sεr denotes solutions of (Cε, F,Dε, Gε, µ) defined via (5.1a)

and (5.4)) such that

P (graph(x) ∩ (Γ≥τ × Sε) 6= ∅) ≥ 1− ε. (5.13)

In essence a set is weakly long-time quasi-return invariant in probability if for every

neighborhood of every point in the set there exists a random solution such that the
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probability of visiting the neighborhood after arbitrarily large times while staying close

to the set can be made arbitrarily close to one.

Theorem 5.4 If a compact set is weakly totally recurrent in probability for H then it is

weakly long-time quasi-return-invariant in probability for H.

The following lemma is used to prove Theorem 5.4. It establishes that a set that is

not weakly long-time quasi-return-invariant in probability forH is also not weakly totally

recurrent in probability for H.

Lemma 5.3 Suppose x ∈ Ψ, τ > 0 and ε > 0 are such that, with the definitions

Sε := {x}+ εB and (5.4), for each solution y ∈ Sεr (Sε),

P (graph(y) ∩ (Γ≥τ × Sε) 6= ∅) ≤ 1− ε. (5.14)

Under these conditions, for each ε1 ∈ (0, ε) and with the definitions Sε1 := {x}+ε1B and

(5.4), for each x ∈ Sε1r (Ψ + ε1B),

E
[
ϕjτ,Sε1 (x)

]
≤ τ

(
1 +

j−1∑

i=0

(1− ε)i
)

∀j ∈ Z≥1 (5.15)

so that

E
[
ϕτ̂ ,Sε1 (x)

]
≤ τ

(
1 + ε−1

)
∀τ̂ > 0. (5.16)

In particular, x is not weakly recurrent in probability with respect to Ψ for H.

Proof: We use the notation xω := x(ω). We define a sequence of hitting times as

follows: (T0(ω),J0(ω)) := (0, 0) and, for each i ∈ Z≥0, (Ti+1(ω),Ji+1(ω)) is the infimum

96



Stochastic hybrid systems Chapter 5

over (t, j) ∈ dom xω such that t + j ≥ τ + Ti(ω) + Ji(ω) and xω(t, j) ∈ {x} + εB◦. By

this construction,

jτ ≤ Tj(ω) + Jj(ω) ∀(j, ω) ∈ Z≥0 × Ω (5.17)

and the amount of hybrid time that a trajectory xω spends in the set Sε1 between

(Ti(ω),Ji(ω)) and (Ti+1(ω),Ji+1(ω)) is bounded by τ . Let ΩTi := {ω : Ti(ω) 6= ∅}.

Due to the assumption of the lemma,

P(ΩTi) ≤ (1− ε)i−1 ∀i ∈ Z≥1. (5.18)

It follows from these observations that, for each j ∈ Z≥1,

E
[
ϕjτ,Sε1 (x)

]
≤ τ

j∑

i=0

P(ΩTi) = τ

(
P(ΩT0) +

j∑

i=1

P(ΩTi)

)

= τ

(
1 +

j∑

i=1

(1− ε)i−1

)
= τ

(
1 +

j−1∑

i=0

(1− ε)i
)

which is (5.15). Then (5.16) follows from the fact that
∑∞

i=0(1 − ε)i = ε−1. In turn, x

cannot be weakly recurrent in probability with respect to Ψ for H since the condition

(5.5) and that the fact that ∆ > 0 can be made arbitrarily large by picking τ sufficiently

large implies that E
[
ϕjτ,Sε1 (x)

]
grows unbounded with τ .

We also refer the reader to [86, Example 1] which illustrates the gap between weakly

totally recurrent sets and weakly quasi invariant sets.

5.6.2 Weak forward invariance

A compact set Ψ ⊂ Rn is weakly forward invariant almost surely for H if, for each

x ∈ Ψ, there exists x ∈ Sr(x) such that, for almost every ω ∈ Ω, x(ω) is complete and
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remains in Ψ for all time. The next result establishes that a compact set that is weakly

forward invariant almost surely for H contains a weakly totally recurrent in probability

set and is a consequence of the recurrence principle in Theorem 5.1.

Proposition 5.1 Each compact set that is weakly forward invariant almost surely for H

contains a nonempty, compact set that is weakly totally recurrent in probability for H.

Proof: Let K denote the compact set that is weakly forward invariant almost surely.

According to this property, there exists a solution z that is complete and contained in

K almost surely. Define K∞ := K. By Theorem 5.1, the recurrent in probability set for

z is nonempty, compact, contained in K, and weakly totally recurrent in probability for

H, which establishes the result.

The next result relies on a sequential compactness result established [85] for the class

of stochastic hybrid systems studied in this chapter.

Theorem 5.5 If a compact set is weakly long-time quasi-return-invariant in probability

for H then it is weakly forward invariant almost surely for H.

Proof: Let x ∈ Ψ. Using weak long-time quasi-return-invariance in probability for

H, for each i ∈ Z≥1 there exists xi ∈ S i−1

r (Si−1) (with Si−1 := {x}+ 1/iB) such that

P (graph(xi) ∩ (Γ≥i−1 × Si−1) 6= ∅) ≥ 1− i−1. (5.19)

For each i ∈ Z≥1 ∪ {∞}, define ϕi : X → R≥0 as

ϕi(T ) :=





1 graph(T ) ⊂ (R2 × (Ψ + i−1B))

0 otherwise.

(5.20)

With ϕ := ϕ∞, it can be shown that [85, Assumption 2] holds. It follows from (5.4), the

fact that xi ∈ S i−1

r (Si−1), and (5.20) that 1 = E [ϕi(xi)] for all i ∈ Z≥1. It now follows
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from [85, Corollary 1] that for each x ∈ Ψ there exists x ∈ Sr(x) such that x is complete

and 1 = E [ϕ(x)], i.e., x remains in Ψ almost surely. In other words, Ψ is weakly forward

invariant almost surely for H.

Corollary 5.4 If a compact set is weakly totally recurrent in probability for H then it is

weakly forward invariant almost surely for H.

5.6.3 Weak backward invariance

A compact set Ψ ⊂ Rn is weakly backward invariant almost surely for H if, for each

ζ ∈ Ψ and τ > 0 there exists x ∈ Sr(Ψ) such that, for almost every ω ∈ Ω, x(ω) reaches

ζ after hybrid time τ and remains in Ψ before reaching ζ. The next result establishes a

connection between long-time quasi-return invariance and weak backward invariance for

the specific case of non-stochastic systems.

Proposition 5.2 If Ψ ⊂ Rn can be established to be weakly long-time quasi-return-

invariant in probability for H using solutions that are almost surely constant (as a func-

tion ω) then Ψ is weakly backward invariant almost surely for H.

Proof: Let ζ ∈ Ψ and τ > 0. Due to the assumption of the proposition, for each

i ∈ Z≥1 there exists xi ∈ S i−1

r (Si−1) such that

graph(xi) ∩ (Γ≥τ × Si−1) 6= ∅ a.s. (5.21)

where we have used that ω 7→ xi(ω) is almost surely constant and Si−1 = {ζ} + i−1B.

Again using this property and by applying a time shift to xi(ω) (similar to the proof of

[14, Prop 6.21]) we can assume that

graph(xi) ∩ ((Γ≥τ ∩ Γ≤τ+1)× Si−1) 6= ∅ a.s. (5.22)
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though we no longer can assume that the solutions start in Si−1 . Now, for i ∈ Z≥0∪{∞},

we let ϕi be the indicator function on mappings whose graphs are contained in R2 ×

(Ψ + i−1B) and that intersect the compact set (Γ≥τ ∩ Γ≤τ+1)×Si−1 . These functions and

ϕ := ϕ∞ satisfy [85, Assumption 2]. Moreover, ϕi(xi) = 1 almost surely. It thus follows

from [85, Theorem 1] that there exists x ∈ S0
r (Ψ) such that E [ϕ(x)] = 1. This solution

verifies almost sure weak backward invariance.

The importance of the assumption regarding the non-stochastic nature of the hybrid

system in Proposition 5.2 is illustrated through [86, Example 3]. The example highlights

that Proposition 5.2 is not true for general stochastic hybrid systems.

5.7 Application to stability theory

The definitions of stochastic stability properties for the class of SHS in (5.1) is stated

below, and are adopted from [25].

Definition 5.3 The compact set A ⊂ Rn is uniformly Lyapunov stable in probability for

(5.1) if for each ε > 0 and ρ > 0 there exists a δ > 0 such that, for ξ ∈ A+ δB,x ∈ Sr(ξ)

P
(

graph(x) ⊂ (R2 × (A+ εBo))
)
≥ 1− ρ. (5.23)

Definition 5.4 The compact set A is uniformly Lagrange stable in probability for (5.1)

if for each δ > 0 and ρ > 0, there exists ε > 0 such that the inequality (5.23) holds.

The set A is uniformly globally stable in probability for (5.1) if it is both Lyapunov

stable and Lagrange stable in probability for (5.1).

Definition 5.5 The set A is uniformly globally attractive in probability for (5.1) if for

100



Stochastic hybrid systems Chapter 5

each ε > 0, ρ > 0 and R > 0 there exists a τ ≥ 0 so that, for x ∈ Sr(A+RB),

P
(

(graph(x) ∩ (Γ≥τ × Rn)) ⊂ (R2 × (A+ εBo))
)
≥ 1− ρ. (5.24)

The compact set A ⊂ Rn is uniformly globally asymptotically stable in probability for

(5.1) if it is globally stable in probability for (5.1) and uniformly globally attractive in

probability for (5.1).

Definition 5.6 An open, bounded set O ⊂ Rn is uniformly globally recurrent for (5.1)

if there are no finite escape times for (5.1a) and for each ρ > 0 and R > 0 there exists

τ ≥ 0 such that for ξ ∈ RB and x ∈ Sr(ξ),

P
((

graph(x) ⊂ (Γ<τ × Rn)
)
∨
(
graph(x) ∩ (Γ≤τ ×O)

))
≥ 1− ρ. (5.25)

5.7.1 Relaxed sufficient conditions

In this section we present weak sufficient conditions for verifying stochastic stability

like asymptotic stability in probability and recurrence.

First, we present sufficient conditions for stability and recurrence based on the re-

currence principle in Theorem 5.1. Define C∩ := C ∩ (Rn\O), D∩ := D ∩ (Rn\O),

G∩(x, v) = G(x, v) ∩ (Rn\O) and Kδ,∆ := {x ∈ Rn : |x|A ∈ [δ,∆]} for 0 < δ < ∆ <∞.

An alternative way to establish uniform global asymptotic stability in probability

of a compact set A is by proving A is uniformly globally stable in probability and for

every δ,∆ > 0, the complement of the compact set Kδ,∆ is uniformly globally recurrent.

See [25, Section 2.3] and [27, Section 4] for more details. The following theorem uses

this equivalence to establish relaxed sufficient conditions for UGAS in probability of a

compact set A.
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Theorem 5.6 Suppose the compact set A is uniformly globally stable in probability for

H. The set A is uniformly globally asymptotically stable in probability for H if for each

0 < δ < ∆ < ∞, the set Kδ,∆ contains no compact set that is almost surely weakly

forward invariant for H.

Proof: We claim that the assumptions of the theorem imply global recurrence

of complement of Kδ,∆ for every 0 < δ < ∆ < ∞. The proof of uniformly globally

asymptotically stable in probability then follows from [25, Prop 3.1, 2.4, 2.2]. The proof of

the claim proceeds by contradiction. Suppose for some 0 < δ < ∆ <∞, the complement

of Kδ,∆ is not recurrent. Then, there exists a random solution z that is generated by

the system (C ∩Kδ,∆, F,D ∩Kδ,∆, G ∩Kδ,∆, µ), that is almost surely contained in Kδ,∆

and complete with positive probability. By definition, every complete sample path of z

converges to the compact set Kδ,∆. Hence, by the recurrence principle in Theorem 5.1 it

converges to the weakly totally recurrent in probability set contained in Kδ,∆. It follows

from Proposition 5.1 that the weakly totally recurrent in probability set contains an

almost surely weakly forward invariant set. Hence Kδ,∆ contains an almost surely weakly

forward invariant set. This contradicts the assumption of the theorem and establishes

global recurrence of complement of Kδ,∆ for every 0 < δ < ∆ <∞.

Similarly, an alternative way to establish uniform global recurrence of an open,

bounded set O is by proving O is uniformly Lagrange stable in probability and for every

∆ > 0, the complement of the compact set (O + ∆B)\O is uniformly globally recurrent

for the truncated system (C∩, F,D∩, G∩, µ). See [25, Section 2.3] and [27, Section 4] for

more details. The following theorem uses this equivalence to establish relaxed sufficient

conditions for uniform global recurrence of an open, bounded set O.

Theorem 5.7 Suppose the compact set O is uniformly Lagrange stable in probability for

(C∩, F,D∩, G∩, µ). Then, O is uniformly globally recurrent for H if for each ∆ > 0, there
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does not exist a almost surely weakly forward invariant set contained in the compact set

(O + ∆B)\O for the system (C∩, F,D∩, G∩, µ).

Proof: We claim that the assumptions of the theorem imply global recurrence of

complement ofO∆ := (O+∆B)\O for every 0 < ∆ <∞ for the system (C∩, F,D∩, G∩, µ).

The proof of uniform global recurrence of O follows from [25, Prop 3.1, 2.4, 2.3 ]. We

establish the claim by contradiction. Suppose for some 0 < ∆ < ∞, the complement of

O∆ is not recurrent. Then, there exists a random solution z that is generated by the sys-

tem (C ∩O∆, F,D∩O∆, G∩O∆, µ), that is almost surely contained in O∆ and complete

with positive probability. By definition, every complete sample path of z converges to

the compact set O∆. Hence by Theorem 5.1 it converges to the weakly totally recurrent

in probability set contained in O∆. From Proposition 5.1 it follows that the weakly to-

tally recurrent in probability set contains an almost surely weakly forward invariant set.

Hence O∆ contains an almost surely weakly forward invariant set. This contradicts the

assumption and establishes global recurrence of complement of O∆ for every 0 < ∆ <∞.

It can be observed that Theorems 5.6 and 5.7 do not utilize Lyapunov-like functions

that satisfy strict decrease conditions on average. In fact, the uniform globally stability

in probability and uniform Lagrange stability in probability assumptions in Theorems

5.6 and 5.7 can be achieved through Lyapunov functions satisfying non-strict decrease

conditions on average as established in [25, Thm 4.1, 4.2].

We now present a sharper version of the weak sufficient conditions for stability using

the Krasovskii-LaSalle function based recurrence principle from Theorem 5.2. In The-

orems 5.6 and 5.7, we need to rule out the presence of almost surely weakly forward

invariant sets in certain sets bounded away from the sets A and O respectively. Using

the results in Theorem 5.2, we can refine the results in Theorems 5.6 and 5.7 so that

103



Stochastic hybrid systems Chapter 5

we need to rule out the presence of almost surely weakly forward invariant sets only in

certain level sets of a Lyapunov-like function.

Definition 5.7 A continuous function V̂ : Rn → R≥0 is a weak-Lyapunov function

relative to a compact set A ⊂ Rn for the system (C,F,D,G, µ) if V̂ (x) = 0⇐⇒ x ∈ A,

V̂ is radially unbounded and satisfies

V̂ (φ(t)) ≤ V̂ (x), ∀x ∈ C, t ∈ dom(φ), φ ∈ SFC (x)
∫

Rm
max

g∈G(x,v)
V̂ (g)µ(dv) ≤ V̂ (x),∀x ∈ D.

A result on weak sufficient conditions for global asymptotic stability using non-

increasing Lyapunov-like functions is stated in [14, Thm 8.2] for a class of non-stochastic

hybrid systems modeled by (2.1). We now establish weak sufficient conditions for uni-

formly globally asymptotically stable in probability of compact sets for (5.1) using The-

orem 5.2. In particular, we establish uniformly globally asymptotically stable in prob-

ability of compact sets using the existence of a Lyapunov function and by ruling out

the existence of random solutions x that remain in non-zero level sets of the Lyapunov

function. The conditions of the theorem are sharper compared to the results from The-

orem 5.1 due to the refined convergence results established using the Krasovskii-LaSalle

functions.

Theorem 5.8 Let V̂ be a weak-Lyapunov function relative to a compact set A ⊂ Rn for

the system H. Then, A is uniformly globally asymptotically stable in probability if and

only if for every c > 0, there does not exist an almost surely complete solution x that

remains in the set LV̂ (c) almost surely.

Proof: ⇒ Uniform global asymptotic stability in probability of the set A implies

that there does not exist an almost surely complete solution x that remains in a non-
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zero level set of the weak-Lyapunov function almost surely since the existence of such

a solution would contradict almost sure convergence to the set A required by uniform

global asymptotic stability in probability.

⇐ The Lyapunov function V̂ satisfies the conditions of [25, Thm 4.2] from which

uniform global stability in probability follows. Since there are no almost surely complete

random solutions that remain in a non-zero level set of V̂ with probability one for all

time, we can conclude that no non-zero level set of V̂ contains an almost surely weakly

forward invariant set. Then, it follows from Corollary 5.4 that no non-zero level set of V̂

contains a weakly totally recurrent in probability set. We now establish that for every x

almost every complete sample path converges to A.

Suppose this is not true. Let x be any random solution with x ∈ Sr(x) for x ∈ A+δB

for some δ > 0 such that P(Ωc) ≥ ρ1 > 0, where for ω ∈ Ωc, x(ω) is complete and does

not converge to A. From uniform Lagrange stability in probability, there exists ε > 0

such that

P
(

graph(x(ω)) ⊂ (R2 × (A+ εB))

)
≥ 1− ρ1/2. (5.26)

Let xε be a truncated solution of x whose sample paths are restricted to the compact set

A+εB. Since no non-zero level set of V̂ contains a weakly totally recurrent in probability

set, this necessarily means that from Theorem 5.2 complete sample paths xε(ω) converge

to the zero level set, which is set A. Then, it follows that for almost all ω ∈ Ωc, x(ω)

cannot stay in the set A+ εB. Hence we have

P
(

graph(x(ω)) ∩ (R2 × Rn\(A+ εB)) 6= ∅
)
≥ ρ1. (5.27)
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We also have from (5.26) that

P
(

graph(x(ω)) ∩ (R2 × Rn\(A+ εB)) 6= ∅
)
≤ ρ1/2. (5.28)

This leads to a contradiction that establishes that ρ1 must be zero. Hence, every open

neighborhood of A is globally recurrent. Uniform global recurrence now follows from [85,

Thm 6] using sequential compactness results for solutions of (5.1). Then, uniform global

asymptotic stability in probability follows from [25, Prop 2.2].

Example 5.1 Let the state z = (x1, x2, τ) ∈ R3 and M ∈ Z>0. Consider the system

H := (C, f,D,G, µ) with state z and

C := R× R× [0,M ]

D := R× R× {M}

f(z) :=




x2 − x1

−x1 − x3
2

1




G(z, v) :=




[0, v]x2

[0, v]x1

0




where v is a random variable such that v ∼ Uniform[0,
√

3]. Then, E[v2] = 1. Consider

the Lyapunov function V (z) = x2
1 + x2

2 and the compact set A = {0} × {0} × [0,M ].

Then, V is radially unbounded, locally bounded and

〈∇V (z), f〉 ≤ −x2
1 − x4

2∫
max

g∈G(z,v)
V (g)µ(dv) = V (z).
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Hence, during jumps we do not have strict decrease in expected value for the Lyapunov

function due to the selection g(z, v) = [vx2, vx1, 0] ∈ G(z, v). We can rule out the

existence of random solutions that remain in non-zero level sets of V with probability

one since almost every sample path of the random solution flows for M seconds in between

jumps, and V decreases strictly during flows outside A.

Finally, we present a similar result for the recurrence property using Theorem 5.2.

Definition 5.8 A continuous function V̂ : Rn → R≥0 is a weak-Lyapunov function

relative to an open, bounded set O ⊂ Rn for the system H if V̂ is radially unbounded and

satisfies

V̂ (φ(t)) ≤ V̂ (x), ∀x ∈ C∩, t ∈ dom(φ), φ ∈ SFC∩(x)
∫

Rm
max

g∈G(x,v)∩(Rn\O)
V̂ (g)µ(dv) ≤ V̂ (x),∀x ∈ D∩.

We point that while the Krasovskii- LaSalle functions are defined with respect to compact

sets (K,Λ), the Lyapunov functions used in this section are defined on the set C ∪D ∪

G(D × V), where V := ∪ω∈Ω,i∈Z≥0
vi(ω).

A result on weak sufficient conditions for recurrence using non-increasing Lyapunov-

like functions is stated in [31, Thm 1] for a class of non-stochastic hybrid systems modeled

by (2.1). We now establish weak sufficient conditions for uniform global recurrence of

open, bounded sets for (5.1) using Theorem 5.2. In particular, we establish uniform global

recurrence of open, bounded sets using the existence of a Foster function and by ruling

out the existence of random solutions x that remain in level sets of the Foster function

outside the set O. The conditions of the following theorem are sharper compared to the

conditions in Theorem 5.7
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Theorem 5.9 Let V̂ be a weak-Lyapunov function relative to an open, bounded set O ⊂

Rn for the system H. Then, O is uniformly globally recurrent if and only if there does

not exist an almost surely complete solution x that remains almost surely in the set

LV̂ (c) ∩ (Rn\O) for every c ≥ 0 for which LV̂ (c) ∩ (Rn\O) is non-empty.

Proof: ⇒ If there exists an almost surely complete solution x that remains almost

surely in a level set of the weak-Lyapunov function that is completely contained in the

set LV̂ (c) ∩ (Rn\O) for some c ≥ 0, it contradicts the assumption that O is uniformly

globally recurrent.

⇐ The Lyapunov function implies Lagrange stability in probability of the setO for the

truncated system (C∩, F,D∩, G∩, µ). Since there are no almost surely complete random

solutions that remain in LV̂ (c) ∩ (Rn\O) for every c ≥ 0 for which LV̂ (c) ∩ (Rn\O) is

non-empty , we can conclude that no set of the form LV̂ (c)∩ (Rn\O) contains an almost

surely weakly forward invariant set. Then, it follows from Corollary 5.4 that such sets

do not contain a weakly totally recurrent in probability set.

We will now claim recurrence of O for every solution for the truncated system

(C∩, F,D∩, G∩, µ). Then, the proof follows from [25, Prop 2.3]. Suppose the claim is

not true. Let x be any random solution with x ∈ Sr(x) for x ∈ O + δB for some δ > 0

such that P(Ωc) ≥ ρ1 > 0, where for ω ∈ Ωc, x(ω) is complete and does not hit the set

O. From uniform Lagrange stability in probability, there exists ε > 0 such that

P
(

graph(x(ω)) ⊂ (R2 × (O + εB))

)
≥ 1− ρ1/2. (5.29)

Let xε be a truncated solution of x whose sample paths are restricted to the compact

set O+ εB. Since no level set of V̂ outside the set O contains a weakly totally recurrent

in probability set, this necessarily means that from Theorem 5.2 the sample paths xε(ω)

are not complete. Then, it follows that for almost all ω ∈ Ωc, since x(ω) is complete, the
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solutions cannot stay in the set O + εB. Hence we have

P
(

graph(x(ω)) ∩ (R2 × Rn\(O + εB)) 6= ∅
)
≥ ρ1. (5.30)

We also have

P
(

graph(x(ω)) ∩ (R2 × Rn\(O + εB)) 6= ∅
)
≤ ρ1/2. (5.31)

This leads to a contradiction which establishes that ρ1 must be zero.

Example 5.2 Consider the simple discrete-time system

x+ = g(x, v) = max{0, x+ v} (5.32)

where v takes values in the set {−1, 1} with equal probability and x ∈ D with D = Z≥0.

Consider the set O = (−1, 1). Let V (x) = |x|. Then for x ∈ D\O,

E[V (g(x, v))] = 0.5|x+ 1|+ 0.5|x− 1| = |x| = V (x) (5.33)

Hence, we do not have strict decrease in expected value along solutions. It follows that

for c ∈ Z≥1 the set LV (c) ∩ (D\O) := {c} is non-empty. For every c ≥ 1, it follows that

solutions cannot stay in the set LV (c) ∩ (D\O) almost surely since in one jump with

probability 0.5, solutions reach the point c− 1. This establishes global recurrence of the

set O.

It can be observed from the statements of Theorems 5.8 and 5.9 that the weak suf-

ficient conditions generated by Theorem 5.2 are sharper compared to the results from

Theorem 5.1 due to the refined convergence results established using the Krasovskii-

LaSalle functions.
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5.7.2 Sufficient conditions based on strict decrease properties

In this section we present sufficient conditions for asymptotic stability in probability

and recurrence that rely on Lyapunov functions satisfying strict decrease conditions on

average. The results are a direct consequence of the Krasovskii- LaSalle function based

weak sufficient conditions. We also refer the reader to [25, Thm 4.4, 4.5] for alternate

proofs.

Definition 5.9 A continuously differentiable function V : Rn → R≥0 is a Lyapunov

function relative to the compact set A ⊂ Rn for the system H if V is radially unbounded,

V ∈ PD(A) and there exists a continuous function ρ ∈ PD(A) such that

〈∇V (x), f〉 ≤ −ρ(x),∀x ∈ C, f ∈ F (x)
∫

Rm
max

g∈G(x,v)
V (g)µ(dv) ≤ V (x)− ρ(x),∀x ∈ D.

Theorem 5.10 Let V be a Lyapunov function relative to the compact set A ⊂ Rn for

the system H. Then, A is uniformly globally asymptotically stable in probability for H.

Definition 5.10 A continuously differentiable function V : Rn → R≥0 is a Lyapunov

function relative to an open, bounded set O ⊂ Rn for the system H if V is radially

unbounded and and there exists a continuous function ρ : Rn → R>0 such that

〈∇V (x), f〉 ≤ −ρ(x),∀x ∈ C\O, f ∈ F (x)
∫

Rm
max

g∈G(x,v)∩(Rn\O)
V (g)µ(dv) ≤ V (x)− ρ(x), ∀x ∈ D\O.

Theorem 5.11 Let V be a Lyapunov function relative to an open, bounded set O ⊂ Rn

for the system H. Then, O is uniformly globally recurrent for H.
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Chapter 6

Robust global recurrence in

stochastic hybrid systems

6.1 Introduction

In this chapter, we focus on the global recurrence property for the class of stochastic

hybrid systems in Chapter 5 and develop robustness results and a converse Lyapunov

theorem. A converse theorem for a stronger version of recurrence called positive recur-

rence is in [22] for discrete-time stochastic systems and in [23, Thm 3.26] for switching

diffusion processes. A converse theorem for the recurrence property in non-stochastic

hybrid inclusions is in [31] and for stochastic difference inclusions in [55]. In this chapter

we extend the results in Chapter 2 and Chapter 3 to a larger class of stochastic hybrid

systems modeled by set-valued mappings. The results in this chapter are from [87].
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6.2 Recurrence and Uniform recurrence

We briefly recall the stochastic hybrid system model in Chapter 5, the basic assump-

tions on the data of the model and the definitions of recurrence for open, bounded sets.

Let the state x ∈ Rn and the random input v ∈ Rm. The stochastic hybrid system is

written formally as

ẋ ∈ F (x), x ∈ C (6.1a)

x+ ∈ G(x, v+), x ∈ D (6.1b)

v ∼ µ(·) (6.1c)

We denote by Sr(x), the set of random solutions generated by H := (C,F,D,G, µ)

from the initial condition x. The data (C,F,D,G, µ) of the stochastic hybrid system

H are assumed to satisfy the conditions of Standing Assumption 5.1 which are restated

below.

Standing Assumption 6.1 The data of the stochastic hybrid system H satisfies the

following conditions:

1. The sets C,D ⊂ Rn are closed;

2. The mapping F : Rn ⇒ Rn is outer-semicontinuous, locally bounded with nonempty

convex values on C;

3. The mapping G : Rn × Rm ⇒ Rn is locally bounded and the mapping v 7→

graph(G(·, v)) := {(x, y) ∈ R2n : y ∈ G(x, v)} is measurable with closed values.

Definition 6.1 An open, bounded set O ⊂ Rn is globally recurrent for H if there are no
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finite escape times for (6.1a) and for each x ∈ Rn and x ∈ Sr(x),

lim
τ→∞

P
((

graph(x) ⊂ (Γ<τ × Rn)
)
∨
(
graph(x) ∩ (Γ≤τ ×O)

))
= 1.

Loosely speaking, the above condition insists that almost surely the sample paths of the

random solution x are either not complete or hit the set O.

Example 6.1 Consider a stochastic hybrid system with a state x ∈ R satisfying

ẋ = f(x), x ∈ C

x+ = g(x, v), x ∈ D

where f(x) = 1, g(x, v) = vx with v ∈ {0, 1}, µ(0) = µ(1) = 0.5, C = (−∞, 1] and

D = [1, 2]. For this system, it can be observed that any set of the form O = (−ε, ε) with

0 < ε < 1 is globally recurrent. For any initial condition x0 ∈ C such that x0 ∈ (−∞, ε),

solutions hit the setO due to the continuous-time dynamics. For initial conditions x0 ∈ C

such that x0 ≥ ε, the solutions reach the set D. Then, for solutions from the set D, almost

surely the random input v = 0 appears in a sequence of random inputs {vi}∞i=0. Hence

the solutions from the set D reaches the origin almost surely. This establishes global

recurrence of the set O. We can easily observe from this example that the set O is not

invariant in a probabilistic sense as the continuous-time dynamics ensures that solutions

leave the set O and reach D. Similarly, we can observe that the set O does not have any

stability-like property.

Definition 6.2 An open, bounded set O ⊂ Rn is uniformly globally recurrent for H if

there are no finite escape times for (6.1a) and for each ρ > 0 and compact set K there
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exists τ ≥ 0 such that for ξ ∈ K and x ∈ Sr(ξ),

P
((

graph(x) ⊂ (Γ<τ × Rn)
)
∨
(
graph(x) ∩ (Γ≤τ ×O)

))
≥ 1− ρ.

Example 6.2 Consider the stochastic hybrid system in Example 6.1. We are now going

to establish that the set O is uniformly globally recurrent. Let a compact set K and

ρ > 0 in the definition of uniform global recurrence be given. Choose τ ∗ ∈ Z≥0 such that

1 − (0.5)τ
∗ ≥ 1 − ρ. We first consider the case when the set K ⊂ D. In this case, we

can choose τ ≥ τ ∗. If the compact set K ⊂ [ε, 1], the time τ in the definition of uniform

global recurrence is chosen such that τ ≥ (1 − ε) + τ ∗. If the compact set K ⊂ (−ε, ε),

we can choose τ = 0. Similarly, if the compact set K ⊂ (−∞,−ε], the time τ can be

chosen such that τ ≥ maxx∈K(|x| − ε) + 1. The choice of τ for any other compact set K

can be derived from the above cases.

The following result establishes equivalence between uniform and non-uniform recur-

rence. We refer the reader to [85, Thm 6] for a proof.

Proposition 6.1 An open, bounded set O is globally recurrent for H if and only if it is

uniformly globally recurrent for H.

6.3 Viability and reachability probabilities

It can be observed from the definition of global recurrence that the recurrence property

needs to hold for every random solution generated from an initial condition. Hence, it

is useful to work with worst case probabilities related to the recurrence property. As in

[42] and [25] we characterize the recurrence property in terms of viability probabilities

defined below.
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For x ∈ Rn, τ ≥ 0 and closed set S ⊂ Rn, we define

m⊂S(τ, x) := (6.2)

sup
x∈Sr(x)

P
((

graph(x) ∩ (Γ≥τ × Rn) 6= ∅
)
∨
(
graph(x) ∩ (Γ≤τ × Rn) ⊂ R2 × S

))
.

The viability probability m⊂S(τ, x) is related to the largest probability that random

solutions starting from x stay in the set S for hybrid time less than or equal to τ and

not stop before that time. This probability condition is complementary to the condition

for recurrence when the set S = Rn\O and when τ →∞.

It is established in [25, Prop 10.2, Prop 9.1] that the supremum in the above definition

is achieved for some random solution and the mapping (τ, x) 7→ m⊂S(τ, x) is upper

semicontinuous. We refer the reader to [25, Section 9] for more details. Define

m̂⊂S(x) := lim
τ→∞

m⊂S(τ, x). (6.3)

The quantity m̂⊂S(x) is related to the largest infinite time viability probability. The limit

is well defined due to the mapping τ 7→ m⊂S(τ, x) being non-increasing for every x.

The following proposition proved in the appendix holds for any stochastic hybrid

system satisfying Standing Assumption 6.1 and provides an equivalent characterization

for global recurrence. Roughly, recurrence of a set O implies that solutions keep returning

to the set O infinitely often with probability one. This implies that solutions cannot stay

in the complement of the set O for all time and hence, the set Rn\O is not viable.

Proposition 6.2 Let O ⊂ Rn be an open, bounded set. The following statements are

equivalent:

1. O is globally recurrent.
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2. m̂⊂Rn\O(x) = 0 for all x ∈ Rn.

3. For every compact set K ⊂ Rn, and ρ > 0, there exists τ ≥ 0 such that

sup
x∈K

m⊂Rn\O(τ, x) ≤ ρ.

We also utilize reachability probabilities studied in [25, Section 8]. For x ∈ Rn,τ ≥ 0

and closed set S ⊂ Rn, we define

m∩S(τ, x) := sup
x∈Sr(x)

P
(

graph(x) ∩ (Γ≤τ × S) 6= ∅
)
. (6.4)

The reachability probability m∩S(τ, x) is related to the largest probability that random

solutions starting from x reach the set S within hybrid time τ . It can be established

similar to [25, Prop 10.2] that the supremum in the above definition is achieved for some

random solution.

6.4 Preliminary bounds on viability and reachability

probabilities

In this section, we focus of stochastic hybrid systems H̃ that satisfies the following

assumption. This assumption will be satisfied for the stochastic hybrid systems used in

generating the robustness results and it also simplifies some of the proofs.

Assumption 6.1 The data of the stochastic hybrid system H̃ are such that, for every

maximal random solution x generated by H̃, the sample paths x(ω) are almost surely

complete.
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The probability bounds in this section are generated for the system H̃. We now

present a series of bounds related to viability and reachability probabilities in this section

and the proofs are presented later in the appendix.

The first result establishes an equivalent characterization for the quantity m̂⊂S(x)

defined in (6.3) for every closed set S ⊂ Rn and x ∈ Rn.

Proposition 6.3 Let Assumption 6.1 hold, S ⊂ Rn be closed and x ∈ Rn. Then, there

exists a random solution x∗ ∈ Sr(x) such that

m̂⊂S(x) = P(graph(x∗) ⊂ (R2 × S)) = sup
x∈Sr(x)

P(graph(x) ⊂ (R2 × S)).

The following result when applied with the set S = Rn\O gives an alternative char-

acterization of recurrence of the set O similar to [55, Lemma 3].

Proposition 6.4 Let Assumption 6.1 hold, S ⊂ Rn be closed. If there exists γ < 1 such

that supx∈S m̂⊂S(x) ≤ γ, then m̂⊂S(x) = 0 for all x ∈ S.

The next result is motivated by the result in [42, Lemma 3] and is similar in nature

to the semi-group property for non-stochastic systems.

Proposition 6.5 Let Assumption 6.1 hold. For closed sets S0, S1 ⊂ Rn and (k1, k2, x) ∈

Z≥0 × Z≥0 × Rn,

m⊂S0(k1 + k2, x) ≤ m⊂S1(k1, x) + sup
ξ∈Rn\S1

m⊂S0(k2, ξ).

We now present a result that relates the viability and reachability probabilities. A similar

result for discrete-time stochastic systems is in [42, Lemma 1].
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Proposition 6.6 Let Assumption 6.1 hold. For closed sets S, S1, S2 ⊂ Rn such that

S ⊂ S1 ∪ S2 and for each x ∈ Rn and τ ≥ 0,

m⊂S(τ, x) ≤ m⊂S1(τ, x) +m∩S2(τ, x).

The next result establishes that the reachability probabilities m∩S(τ, x) can be made

arbitrarily small for a fixed τ ≥ 0 and initial conditions x in a compact set, when the set

S = Rn\RBo by choosing R > 0 sufficiently large. The proof is omitted as it follows along

the same lines as [42, Lemma 4] using the fact that the reachable set from a compact

set of initial conditions for finite time is bounded for x ∈ C, ẋ ∈ F (x) using [25, Lemma

6.16], the local boundedness G and the dynamic programming methods in [25, Section

8.1].

Proposition 6.7 For each k ∈ Z≥0, ε > 0 and r > 0 there exists R > 0 such that, with

S = Rn\RBo, m∩S(k, x) ≤ ε for all x ∈ rB.

6.5 Robustness of recurrence

In this section we establish robustness of the recurrence property to various state

dependent perturbations. We prove robustness of the recurrence property to three dif-

ferent types of perturbations. Firstly, we establish that recurrence of an open bounded

set implies recurrence of a smaller open set within the original set. This type of result

can be viewed as robustness to perturbations in the set. Secondly, we prove recurrence

is preserved when the data of the stochastic hybrid system is modified to slow down re-

currence. Slowing down the recurrence property loosely means that we make quantities

related to the average worst case first hitting time to the recurrent set for solutions from

every initial condition increase with the distance of the initial condition to the recurrent
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set. Finally, we show that by perturbing the system data in a sufficiently small manner we

preserve recurrence. This property establishes robustness of recurrence to measurement

noise, additive disturbances and parameter uncertainty in system data. The importance

of the results will become apparent in the next section which develops converse Lyapunov

theorems.

In this section, we will work with stochastic hybrid systems for which the maximal

random solutions have almost surely complete sample paths. This modification will

preserve recurrence and will play an important role in developing converse Lyapunov

theorems. If the open, bounded set O is globally recurrent for H, consider the inflated

system

Ĥ := (C,F,Rn, Ĝ, µ) (6.5)

where Ĝ(x, v) = G1(x, v) ∪ G2(x) with G1(x, v) = G(x, v) for x ∈ D, G1(x, v) = ∅ for

x /∈ D, and G2(x) = x∗ for some x∗ ∈ O and for all x ∈ Rn. From the data of the hybrid

system Ĥ , recurrence of the set O for H and solutions of (6.1a) not exhibiting finite

escape times it follows that for every random solution of Ĥ that is maximal, the sample

paths are almost surely complete. The proof of the next result follows directly using [42,

Prop 2] and [84, Prop 14.11 b].

Lemma 6.1 The data of the SHS Ĥ in (6.5) satisfies Standing Assumption 6.1 and

Assumption 6.1. �

The following result establishes that the recurrence property is preserved by the aug-

ment system Ĥ and the proof basically follows from the observation that maximal so-

lutions of Ĥ contains solutions of H augmented with additional jumps to the recurrent

set.
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Lemma 6.2 If the open, bounded set O is globally recurrent for H then O is globally

recurrent for Ĥ.

Proof: Since the flow map for the hybrid system Ĥ is the same as H, the solutions

generated by Ĥ do not exhibit finite escape times. We will now establish global recurrence

of O for Ĥ by contradiction. If O is not globally recurrent for Ĥ, then there exists ρ > 0

and a random solution x such that P(graph(x) ⊂ R2 × (Rn\O)) ≥ ρ. Without loss of

generality we can assume that the solution x is maximal and the sample paths are almost

surely complete. We also observe that for ω ∈ Ω such that graph(x(ω)) ⊂ R2 × (Rn\O),

xω(t, j) 6= x∗ for all (t, j) ∈ dom(x(ω)). We now define a solution x̃ for the system H

using x. For the case when ω is such that xω(t, j + 1) = G2(xω(t, j)) = x∗ occurs for the

first time (t, j) ∈ dom(x(ω)), we let x̃ω(t̄, j̄) = xω(t̄, j̄) for t̄ ≤ t, j̄ ≤ j and the sample

paths are stopped afterwards. Otherwise, we let x̃(ω) = x(ω). It can be easily observed

that x̃ is a truncation of the solution x, truncated at first jump times where the mapping

G2 is used in the sample paths. Then, we can establish that x̃ satisfies Fi measurability of

the mapping ω 7→ graph≤i(x̃(ω)) from [25, Prop 2.1]. Let Ωi := {ω : graph(x̃(ω))∩(Γ≥i×

Rn) 6= ∅} for i ∈ Z≥0. Then, Ωi ∈ F from [84, Thm 14.3(a), Prop 14.11(a)]. Since Ωi ∈ F

for all i ∈ Z≥0, it follows that ∩iΩi ∈ F . Let Ω2 := {ω : graph(x̃(ω)) ⊂ R2 × (Rn\O)}.

Then, Ω2 ∈ F follows from [84, Thm 14.3(i)]. Then, necessarily we have P(Ωc) ≥ ρ where

Ωc = {ω : x̃(ω) is complete and graph(x̃(ω)) ⊂ R2×(Rn\O)} = (∩iΩi)∩Ω2 and Ωc ∈ F .

This contradicts global recurrence of O for H and establishes the result.

We can also observe that since the solutions of H are a subset of solutions of Ĥ, if

any set Ô is globally recurrent for Ĥ, then Ô is also globally recurrent for H.

Example 6.3 Consider the stochastic hybrid system H in Example 6.1. Now consider

the inflated system Ĥ = (C, f,Rn, Ĝ, µ), where Ĝ(x, v) = g(x, v)∪G2(x) for x ∈ Rn with

G2(x) = {0}. It follows that solutions generated by the augmented system Ĥ that are

120



Robust global recurrence in stochastic hybrid systems Chapter 6

not solutions of the system H jump to the origin through the mapping G2. Hence, global

recurrence of the set O = (−ε, ε) where 0 < ε < 1 is preserved for the inflated system Ĥ.

6.5.1 Robustness to perturbations of the set

The probabilities used in this subsection are generated using the system Ĥ for which

the random solutions have almost surely complete sample paths. We define

m̃⊂S(`, ξ) := sup
x∈Sr(ξ)

P(graph(x) ∩ (Γ<` × Rn) ⊂ (R2 × S)). (6.6)

The motivation for defining the above quantity which is greater than or equal to m⊂S(`, ξ)

is that we can apply the sequential compactness results developed in [41] to prove the next

result. We establish that that finite time viability probabilities related to a perturbation

of a set S from a compact set of initial conditions can be made arbitrarily close to worst

case probabilities related to the original set S provided the perturbation is small enough.

Proposition 6.8 Let S ⊂ Rn be closed. For each (`, ρ) ∈ Z≥0 × R>0 and K ⊂ Rn

compact there exists a ε > 0 such that, for every x ∈ K,

m⊂S+εB(`, x) ≤ max
ξ∈K

m̃⊂S(`, ξ) + ρ.

We now state the first main result related to robustness of the recurrence property.

The following theorem establishes that recurrence of an open, bounded set implies the

existence of a smaller recurrent set within the original set. The proof is presented in the

appendix.

Theorem 6.1 Let the open bounded set O ⊂ Rn be globally recurrent for Ĥ in (6.5).

Then, there exists an open bounded set Ô and ε > 0 such that Ô + εBo ⊂ O and Ô is

globally recurrent for Ĥ.
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Example 6.4 Consider the SHS H in Example 6.1. It follows from Example 6.3 that

the set O = (−ε, ε), where 0 < ε < 1 is globally recurrent for Ĥ. It can be easily observed

from the discrete-time dynamics that solutions exhibit jumps to the origin in an almost

sure sense and hence the set Ô := {x : |x| < ε/2} is also globally recurrent for Ĥ and

satisfies Ô + (ε/3)Bo ⊂ O.

6.5.2 Robustness to slowing down recurrence

The next inflation of the data of Ĥ results in preserving recurrence while making

certain quantities related to the average value of worst case first hitting time for solutions

to the set O grow unbounded in the distance of the state to the set O. The result

is important in the context of developing converse Lyapunov theorems with radially

unbounded Lyapunov functions.

For ν ∈ K∞, define the continuous set-valued mapping Mν(x) := {x∗}+ ν(|x− x∗|)B

for x∗ ∈ Rn. Consider the inflated mapping

Ĥν := (C,F,Rn, Ĝν , µ) (6.7)

where Ĝ(x) = G1(x)∪Mν(x). The proof of the next result is very similar to Lemma 6.1.

Lemma 6.3 For every ν ∈ K∞, the data of the SHS Ĥν in (6.7) satisfies Standing

Assumption 6.1 and Assumption 6.1.

The next theorem claims the existence of a ν ∈ K∞ small enough to preserve recur-

rence of the set O for the inflated system Ĥν if O is globally recurrent for Ĥ and x∗ ∈ O.

A similar result is established for stochastic difference inclusions in [55, Theorem 4] and

the proof presented in the appendix differs only in the construction of the function ν.
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Theorem 6.2 Let the open, bounded set O ⊂ Rn be globally recurrent for Ĥ. Then, for

any x∗ ∈ O, there exists ν ∈ K∞ such that O is globally recurrent for Ĥν in (6.7). �

Example 6.5 Consider the SHS H in Example 6.1. Let the augmented system Ĥν =

(C, f,Rn, Ĝν , µ), where Ĝ(x, v) = g(x, v) ∪ Mν(x) for x ∈ Rn with Mν(x) = {x∗} +

ν(|x∗ − x|)B. We choose ν(s) = s/2 and x∗ = {0}. With this modification, it can be

observed that the recurrence property is preserved for the set O while making the worst

first hitting time for solutions to the set O increase with the size of the state. Compared

to the solutions of Ĥ in Example 3 where solutions from large initial conditions can reach

the set O in one jump, the solutions of Ĥν have a worst first hitting time to the set O

that is proportional to the size of the initial conditions. Hence, the recurrence property

is slowed in Ĥν by preventing some solutions from jumping to the origin in one step from

large initial conditions.

6.5.3 Robustness to perturbations of system data

Finally, we analyze the robustness of recurrence to sufficiently small state dependent

perturbations. For a continuous, positive-valued function δ : Rn → R>0, we denote the

perturbed version of Ĥ by

Ĥδ := (Cδ, Fδ,Rn, Ĝδ, µ) (6.8)

with the data defined as

Cδ := {x ∈ Rn : (x+ δ(x)B) ∩ C 6= ∅}

Fδ(x) := conF (x+ δ(x)B) ∩ C) + δ(x)B

Ĝδ(x, v) := {w ∈ Rn : w ∈ g + δ(g)B, g ∈ Ĝ(x+ δ(x)B, v)}
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where con refers to the closed convex hull. The next result follows from [14, Proposition

6.28] and [42, Prop 8].

Lemma 6.4 For every continuous δ : Rn → R>0, the data of the hybrid system Ĥδ in

(6.8) satisfies Standing Assumption 6.1 and Assumption 6.1.

The next result establishes closeness of probabilities between the perturbed and un-

perturbed SHS. For constant perturbations we use δ(x) ≡ δ for all x ∈ Rn. In this

subsection we denote the probabilities generated by the system Ĥδ with the subscript δ.

Proposition 6.9 Let S ⊂ Rn be closed. For each (`, ρ) ∈ Z≥0 × R>0 and K ⊂ Rn

compact there exists a δ > 0 such that, for every x ∈ K,

mδ,⊂S(`, x) ≤ max
ξ∈K

m̃⊂S(`, ξ) + ρ.

The next result establishes that recurrence of the set open, bounded O set can be

preserved when the state dependent perturbations are sufficiently small. The proof pre-

sented in the appendix follows along the same lines as [55, Thm 5].

Theorem 6.3 Let the open bounded set O ⊂ Rn be globally recurrent for Ĥ. Then, there

exists a continuous function δ : Rn → R>0 such that O is globally recurrent for Ĥδ in

(6.8).

6.6 Necessary and sufficient condition for global re-

currence

In this section we present a Lyapunov function based characterization of the recur-

rence property. A smooth function V : Rn → R≥0 is a Lyapunov function with respect
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to the set O for H if it is radially unbounded and there exists a continuous function

ρ : Rn → R>0 and µ > 0 such that

〈∇V (x), f〉 ≤ −ρ(x) + µIO(x), ∀x ∈ C, f ∈ F (x) (6.9)
∫

Rm
max

g∈G(x,v)
V (g)µ(dv) ≤ V (x)− ρ(x) + µIO(x), ∀x ∈ D. (6.10)

The conditions (6.9) and (6.10) imply that the Lyapunov function V decreases strictly

during flows outside the set O and decreases strictly on average along jumps outside the

set O. It can be noted that the Lyapunov function V can increase along solutions in the

set O.

We note that weak sufficient conditions for characterizing global recurrence that do

not rely on a Lyapunov-like function satisfying strict decrease conditions on average are

established in [25] in terms of Matorosov functions and in Chapter 4 using the invariance

principle. The following theorem establishes necessary and sufficient conditions for global

recurrence of open, bounded sets in terms of the Lyapunov conditions (6.9) and (6.10).

Theorem 6.4 An open, bounded set O ⊂ Rn is globally recurrent for H if and only if

there exists a smooth Lyapunov function V with respect to the set O for H.

The proof of Theorem 6.4 involves two parts. The sufficiency of the Lyapunov condi-

tion is already established in [25, Thm 4.3]. The necessity of the existence of a Lyapunov

function satisfying (2.8) and (2.9) is proved in detail in the subsections below. The

outline of the proof for the construction of the Lyapunov function is stated below.

A preliminary Lypaunov function V0 is constructed for a perturbed version of the

nominal system with respect to a set contained within the set O such that it it is radially

unbounded, satisfies strict decrease conditions during flows and strict decrease on average

along jumps. The preliminary Lyapunov function is not necessarily smooth. Hence, the
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final step involves constructing a smooth Lyapunov function V with respect to the set O

for the nominal system from V0 in a manner that preserves the main decrease properties

of the function V0.

6.6.1 Preliminary Lyapunov function

Since the set O is globally recurrent for the SHS H, it follows from Lemma 6.2 that O

is globally recurrent for Ĥ. Then, from Theorem 6.1 we have that there exists ε > 0 such

that Ô2 + εBo ⊂ O and Ô2 is globally recurrent for Ĥ. It now follows from Theorem 6.2

that there exists ν ∈ K∞ such that Ô2 is globally recurrent for the system Ĥν . Finally, it

follows from Theorem 6.3 that there exists a continuous function δ : Rn → R>0 such that

Ô2 is globally recurrent for the system Ĥν,δ where the SHS Ĥν,δ refers to a δ perturbation

of Ĥν . We now construct a preliminary Lyapunov function to certify recurrence of the

set Ô2 for the system Ĥν,δ. The probability functions used in this section are generated

from the system Ĥν,δ.

Proposition 6.10 There exist a locally absolutely continuous function κ ∈ K∞ such that

W (x) :=
∫∞

0
κ′(τ)m⊂Rn\Ô2

(τ, x)dτ is well defined, locally bounded and upper semicontin-

uous.

Proof: Since the set Ô2 is uniformly globally recurrent, for any compact set K

we can bound m⊂Rn\Ô2
(τ, x) for all (τ, x) ∈ R≥0 × K by a function σK ∈ L such that

m⊂Rn\Ô2
(τ, x) ≤ σK(τ) for all τ ∈ R≥0. Without loss of generality we can assume that

σ2iB(τ) ≤ σ2i+1B(τ),∀(i, τ) ∈ Z≥0 × R≥0. Let ` ∈ K∞ satisfy σ2iB(`(i)) ≤ 2−i for all

i ∈ Z≥1. Without loss of generality we can assume `(i + 1) ≥ `(i) + 1 for all i ∈ Z≥0.

The function ` can be linearly interpolated between the points i, i+ 1 for every i ∈ Z≥0.

Hence for every i ∈ Z≥0 and s ∈ (i, i + 1), we have `′(s) ≥ 1. Define κ(s) := `−1(s)

for all s ≥ 0. We observe that κ ∈ K∞. Also, for any interval [a, b], since the set
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E = {τ ∈ [a, b] : `′(τ) = 0} is of measure zero, it follows from [88, Exercise 3.21] that κ is

absolutely continuous on [a, b]. Given x ∈ Rn, let k ∈ Z≥1 be such that x ∈ 2kB. Then,

it follows that

∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ, x)dτ =

∞∑

j=0

∫ `(j+1)

`(j)

κ′(τ)m⊂Rn\Ô2
(τ, x)dτ

≤
∞∑

j=0

∫ `(j+1)

`(j)

κ′(τ)σ2kB(τ)dτ

≤
∞∑

j=0

σ2kB(`(j))

∫ `(j+1)

`(j)

κ′(τ)dτ

=
∞∑

j=0

σ2kB(`(j))[κ(`(j + 1))− κ(`(j))] =
∞∑

j=0

σ2kB(`(j))

≤
k−1∑

j=0

σ2kB(`(j)) +
∞∑

j=k

σ2jB(`(j))

≤ kσ2kB(`(0)) +
∞∑

j=k

2−j.

Since
∑∞

j=0 2−j < ∞, it follows that W is well defined and locally bounded on com-

pact sets. Next, we establish that W is upper semicontinuous. It follows from reor-

ganizing the calculations above that for every x ∈ Rn, δ > 0 and γ > 0 there ex-

ists τ ∗ ∈ Z≥1 such that W (z) ≤
∫ τ∗

0
κ′(τ)m⊂Rn\Ô2

(τ, z)dτ + γ for all z ∈ {x} + δB.

Let {xi}∞i=0 be a sequence of points that converges to x. Since κ is locally absolutely

continuous and the viability probabilities are upper bounded by one, it follows that
∫ τ∗

0
κ′(τ)m⊂Rn\Ô2

(τ, xi)dτ ≤
∫ τ∗

0
κ′(τ)dτ = κ(τ ∗). Then, from Fatou’s lemma we have
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that

lim sup
i→∞

W (xi) = lim sup
i→∞

∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ, xi)dτ

≤ lim sup
i→∞

∫ τ∗

0

κ′(τ)m⊂Rn\Ô2
(τ, xi)dτ + γ

≤
∫ τ∗

0

κ′(τ) lim sup
i→∞

m⊂Rn\Ô2
(τ, xi)dτ + γ

≤
∫ τ∗

0

κ′(τ)m⊂Rn\Ô2
(τ, x)dτ + γ

≤ W (x) + γ.

Since γ > 0 is arbitrary, the upper semicontinuity of W follows.

Proposition 6.11 The function W is radially unbounded.

Proof: We first establish that for every k ∈ Z>0, there exists R > 0 such that for

all x ∈ Rn\(Ô2 + RB), we have m⊂Rn\Ô2
(τ, x) = 1 for all τ ≤ k. Let k ∈ Z>0 be given.

Let R̂ > 0 be such that Ô2 ⊂ {x∗} + R̂B. We now pick R̃ > 0 such that νk(R̃) ≥ 2R̂,

where νk is the composition of the function ν for k times. Now pick R > 0 such that

{x∗} + R̃B ⊂ Ô2 + RB. We now consider a random process x generated by the system

x+ ∈ {x∗} + ν(|x − x∗|)B with initial condition x ∈ Rn\(Ô2 + RB). In particular, any

process satisfying xω(0, j + 1) ∈ ∂({x∗} + ν(|xω(0, j) − x∗|)B), where ∂S represents the

boundary of a set S ⊂ Rn. Then, it follows that xω(0, j) ∈ Rn\Ô2 for every j ∈ {0, ..., k}

and ω ∈ Ω when x ∈ Rn\(Ô2 +RB). Then, we have m⊂Rn\Ô2
(τ, x) = 1 for τ ≤ k.

Now, we prove radial unboundedness. Let k ∈ Z>0. Then, there exists R > 0 such

that for all x ∈ Rn\(Ô2 + RB), we have m⊂Rn\Ô2
(τ, x) = 1 for all τ ≤ k. It now follows
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that

W (x) =

∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ, x)dτ

≥
∫ k

0

κ′(τ)m⊂Rn\Ô2
(τ, x)dτ

≥
∫ k

0

κ′(τ)dτ = κ(k).

Since κ ∈ K∞ and k > 0 is arbitrary it follows that W is radially unbounded.

The preliminary Lyapunov function V0 that we will consider is given by V0(x) =
∫∞

0
κ′(τ)m⊂Rn\Ô2

(τ, x)dτ + αIRn\Ô2
(x) + β for some α, β > 0. We now explain the mo-

tivation for the structure of V0. For recurrence of open, bounded sets in non-stochastic

systems, it is established in [31] and [22, Thm 11.2.1] that the (worst-case) first hitting

time for solutions to the recurrent set is a Lyapunov function candidate. A natural ex-

tension to the case of stochastic systems would be to consider the average value of the

(worst-case) first hitting time for solutions to the recurrent set as a Lyapunov function

candidate. In general, the average value of the (worst-case) first hitting time for solu-

tions to the recurrent set need not be finite. In fact, it is finite and well defined only if a

stronger property like positive recurrence of the set is assumed. The function V0 is closely

related to the average value of the average value of the (worst-case) first hitting time for

solutions to the recurrent set and the role of the function κ is to make the function V0

well defined.

It follows that V0 is upper semicontinuous and radially unbounded. We first claim

that for every s > 0, essinfτ∈[0,s]κ
′(τ) > 0. Since the mapping ` in Proposition 6.10

has bounded derivatives almost everywhere it follows that for every s > 0, there exists

γs > 0 such that 1 ≤ `′(τ) ≤ γs for almost every τ ∈ [0, κ(s)]. Then, essinfτ∈[0,s]κ
′(τ) =

essinfτ∈[0,s]1/`
′(κ(τ)) ≥ 1/γs. Now, we establish the decrease properties along solutions
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for the function V0. In particular, we prove that the function V0 decreases strictly along

solutions during flows outside Ô2 and decreases strictly on average during jumps outside

the set Ô2.

Proposition 6.12 For each compact set K there exists γ > 0 such that for each x ∈

(Cδ\Ô2)∩K from which there exists a solution φ to (Cδ\Ô2, Fδ) with t > 0 and t ∈ dom(φ)

we have

V0(φ(t)) ≤ V0(x)− γt. (6.11)

Proof: Let the initial condition x ∈ Cδ\Ô2 and φ be a solution of ẋ ∈ Fδ(x), x ∈

Cδ\Ô2 with t ∈ dom(φ), t > 0. We first observe that m⊂Rn\Ô2
(τ, φ(t)) ≤ m⊂Rn\Ô2

(τ +

t, x). This inequality is a direct consequence of the definition of the viability probabilities

and the properties of the solution φ. Hence,

V0(φ(t)) =

∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ, φ(t))dτ + α + β

≤
∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ + t, x)dτ + α + β

≤
∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ, x)dτ + α + β − ρ̃c(t, x)

= V0(x)− ρ̃c(t, x)

where ρ̃c(t, x) =
∫∞

0
κ′(τ)[m⊂Rn\Ô2

(τ, x)−m⊂Rn\Ô2
(τ + t, x)]dτ .

We now establish that ρ̃c is positive on compact sets (Cδ\Ô2) ∩ K. From uniform

global recurrence of Ô2, it follows that m⊂Rn\Ô2
(τ, x) ≤ σK(τ) for all τ ≥ 0, x ∈ K and

some σK ∈ L. Let ` > 0 be such that σK(`) ≤ 0.5. From the construction of κ, it follows

that there exists γ0 > 0 such that essinfτ∈[0,`]κ
′(τ) = γ0. Let x ∈ K be such that there

exists a solution φ to (Cδ\Ô2, Fδ) from x with t ∈ dom(φ) and t > 0. We observe that
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m⊂Rn\Ô2
(τ, x) = 1 for 0 ≤ τ ≤ t due to the existence of a solution φ that remains in the

set Rn\Ô2 till time t. Then,

ρ̃c(t, x) ≥
∫ `

0

κ′(τ)[m⊂Rn\Ô2
(τ, x)−m⊂Rn\Ô2

(τ + t, x)]dτ

≥ essinfτ∈[0,`]κ
′(τ)

∫ `

0

[m⊂Rn\Ô2
(τ, x)−m⊂Rn\Ô2

(τ + t, x)]dτ

= γ0

∫ `

0

[m⊂Rn\Ô2
(τ, x)−m⊂Rn\Ô2

(τ + t, x)]dτ

= γ0

[ ∫ t

0

m⊂Rn\Ô2
(τ, x)dτ −

∫ `+t

`

m⊂Rn\Ô2
(τ, x)]dτ

]

≥ γ0[t− t/2] = γt

where γ = γ0/2. The result now follows and since t > 0, the bound (6.11) establishes

that the function V0 decreases strictly along solutions outside the set Ô2.

Proposition 6.13 There exists ρ̃d : Rn\Ô2 → R>0 such that for every compact set

K ⊂ Rn\Ô2, infx∈K ρ̃d(x) > 0 and

∫

Rm
max

g∈Ĝν,δ(x,v)
V0(g)µ(dv) ≤ V0(x)− ρ̃d(x),∀x ∈ Rn\Ô2. (6.12)
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Proof: Let x ∈ Rn\Ô2, then

∫

Rm
max

g∈Ĝν,δ(x,v)
V0(g)µ(dv) =

∫

Rm
max

g∈Ĝν,δ(x,v)

[ ∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ, g)dτ

+αIRn\Ô2
(g)

]
µ(dv) + β

≤
∫

Rm
max

g∈Ĝν,δ(x,v)

∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ, g)dτµ(dv)

+α

∫

Rm
max

g∈Ĝν,δ(x,v)
IRn\Ô2

(g)µ(dv) + β

≤
∫

Rm

∫ ∞

0

max
g∈Ĝν,δ(x,v)

κ′(τ)m⊂Rn\Ô2
(τ, g)dτµ(dv)

+α

∫

Rm
max

g∈Ĝν,δ(x,v)
IRn\Ô2

(g)µ(dv) + β

=

∫ ∞

0

κ′(τ)

∫

Rm
max

g∈Ĝν,δ(x,v)
m⊂Rn\Ô2

(τ, g)µ(dv)dτ

+α

∫

Rm
max

g∈Ĝν,δ(x,v)
IRn\Ô2

(g)µ(dv) + β

≤
∫ ∞

0

κ′(τ)m⊂Rn\Ô2
(τ + 1, x)dτ

+α

∫

Rm
max

g∈Ĝν,δ(x,v)
IRn\Ô2

(g)µ(dv) + β

= V0(x)− ρ̃d(x)

where

ρ̃d(x) :=

∫ ∞

0

κ′(τ)[m⊂Rn\Ô2
(τ, x)−m⊂Rn\Ô2

(τ + 1, x)]dτ

+α[1−
∫

Rm
max

g∈Ĝν,δ(x,v)
IRn\Ô2

(g)µ(dv)].

We now establish ρ̃d is bounded away from zero on compact subsets K ⊂ Rn\Ô2.

From uniform global recurrence of Ô2, it follows that m⊂Rn\Ô2
(τ, x) ≤ σK(τ) for τ ≥

0, x ∈ K and some σK ∈ L. Let ` > 0 be such that σK(`) ≤ 0.25. We also have
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essinfτ∈[0,`]κ
′(τ) = γ > 0. For x ∈ K, let ζ(x) =

∫
Rm maxg∈Ĝν,δ(x,v) IRn\Ô2

(g)µ(dv). Let

K1 := {x ∈ K : ζ(x) ≤ 0.5} and K2 := {x ∈ K : ζ(x) ≥ 0.5}. We observe that

K1 ∪K2 = K. Then, we have

ρ̃d(x) ≥
∫ `

0

κ′(τ)[m⊂Rn\Ô2
(τ, x)−m⊂Rn\Ô2

(τ + 1, x)]dτ

+α

[
1−

∫

Rm
max

g∈Ĝν,δ(x,v)
IRn\Ô2

(g)µ(dv)

]

≥ γ

[ ∫ 1

0

m⊂Rn\Ô2
(τ, x)dτ −

∫ `+1

`

m⊂Rn\Ô2
(τ, x)dτ

]

+α

[
1−

∫

Rm
max

g∈Ĝν,δ(x,v)
IRn\Ô2

(g)µ(dv)

]
.

It follows that for x ∈ K1, ρ̃d(x) ≥ α/2 and for x ∈ K2, ρ̃d(x) ≥ γ/4 and hence for

x ∈ K, ρ̃d(x) ≥ min{γ/4, α/2}. Hence ρ̃d(x) is bounded away from zero on compact sets

outside the set Ô2. The bound (6.12) establishes that the function V0 decreases strictly

on average along jumps outside the set Ô2.

6.6.2 Smoothing the preliminary Lyapunov function V0

The bounds (6.11) and (6.12) establish that the preliminary Lyapunov function V0

satisfies strict decrease conditions on average outside the set Ô2. The next step in

the development of the converse Lyapunov theorem is the smoothing process where the

preliminary non-smooth Lyapunov function is used to derive a smooth Lyapunov function

by exploiting the robustness of the recurrence property. We consider the discrete-time

and continuous-time Lyapunov conditions separately.
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Discrete-time condition

Define Vd(x) :=
∫
Rn V0(x + σd(x)ξ)Ψ(ξ)dξ where σd : Rn → R>0 is a continuous

positive function for all x ∈ Rn and Ψ : Rn → [0, 1] is any infinitely differentiable

function such that Ψ(x) = 0 for x /∈ B and
∫

Ψ(x)dx = 1. The next results involves

smoothing the discrete-time condition. The structure of the function Vd is motivated by

similar constructions in [45], [7], [31] and [55]. We will establish in the next proposition

that the function Vd, through appropriate choice of σd, satisfies a condition related to the

bound (2.9). We note that conditions related to radial unboundedness and smoothness

of Vd will be explained in the subsequent sections.

Proposition 6.14 There exists a concave function Γ ∈ K∞, continuous positive func-

tions σd, ρd : Rn → R>0, and µd > 0 such that

∫

Rm
max

g∈G(x,v)
Γ(Vd(g))µ(dv) ≤ Γ(Vd(x))− ρd(x) + µdIO(x), x ∈ D. (6.13)

Proof: We note that the proof of the proposition follows along the same lines as

the proof of [55, Theorem 2]. Let σ∗ > 0 be such that Ô2 + σ∗Bo ⊂ O. We pick σd to

satisfy σd(x) ≤ σ∗/2. We also choose σd sufficiently small so that

σd(x) ≤ 0.5δ(x) ≤ δ(x+ σd(x)ξ) ∀(x, ξ) ∈ Rn × B. (6.14)

If follows from (6.14) that

x ∈ {x+ σd(x)ξ}+ δ(x+ σd(x)B) ∀(x, ξ) ∈ Rn × B. (6.15)
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We also note that Ĝ(x, v) ⊂ Ĝν(x, v) for all (x, v) ∈ Rn × Rm and

Ĝν,δ(x+ σd(x)ξ, v) =

{w : w = {g}+ δ(g)B, g ∈ Ĝν(x+ σd(x)ξ + δ(x+ σd(x)ξ)B, v)}.

It follows from (6.14), (6.15) that

g ∈ Ĝ(x, v), g̃ = g + σd(g)ξ, ξ ∈ B
}
⇒ g̃ ∈ Ĝν,δ(x+ σd(x)ξ, v).

Since σd(x) ≤ σ∗/2, it follows that for x ∈ Rn\O, x + σd(x)ξ ∈ Rn\Ô2 for every ξ ∈ B.

Then, from the above conditions and (6.12) it follows that for all x ∈ Rn\O,

∫

Rm
max

g∈Ĝ(x,v)
Vd(g)µ(dv) =

∫

Rm
max

g∈Ĝ(x,v)

(∫

Rn
V0(g + σd(g)ξ)Ψ(ξ)dξ

)
µ(dv)

≤
∫

Rn

(∫

Rm
max

g∈Ĝ(x,v)
V0(g + σd(g)ξ)Ψ(ξ)dξ

)
µ(dv)

=

∫

Rn

(∫

Rm
max

g∈Ĝ(x,v)
V0(g + σd(g)ξ)µ(dv)

)
Ψ(ξ)dξ

≤
∫

Rn

(∫

Rm
max

g∈Ĝν,δ(x+σd(x)ξ,v)
V0(g)µ(dv)

)
Ψ(ξ)dξ

≤
∫

Rn

(
V0(x+ σd(x)ξ)− ρ̃d(x+ σd(x)ξ)

)
Ψ(ξ)dξ

= Vd(x)− %d(x)

where %d : Rn\O → R>0 is given by %d(x) :=
∫
Rn ρ̃d(x+σd(x)ξ)Ψ(ξ)dξ. We now establish

that %d is bounded away from zero on compact subsets of Rn\O. Let K ⊂ Rn\O be

compact. Then, K1 :=
⋃
x∈K(x+ σd(x)B) is a compact set which is a subset of Rn\Ô2.
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Hence, from (6.12) we have

%d(x) =

∫

Rn
ρ̃d(x+ σd(x)ξ)Ψ(ξ)dξ

≥
∫

Rn
inf
z∈K1

ρ̃d(z)Ψ(ξ)dξ = inf
z∈K1

ρ̃d(z) > 0.

We now analyze the quantity supx∈O
∫
Rm maxg∈Ĝ(x,v) Vd(g)µ(dv). As, illustrated in

[55, Example 1], it is not necessary for this quantity to be finite even though the function

Vd satisfies strict decrease conditions on average outside the set O. Hence, we adopt

the solution proposed in [55, Prop 1] which involves constructing a concave function

Γ ∈ K∞ such that supx∈O
∫
Rm maxg∈Ĝ(x,v) Γ(Vd(g))µ(dv) <∞. The concavity assumption

is needed to preserve the strict decrease on average property of Vd outside the set O.

From [55, Prop 1] we have that there exists Γ ∈ K∞, concave such that

∫

Rm
max

g∈Ĝ(x,v)
Γ(Vd(g))µ(dv) ≤ µd/2,∀x ∈ O

for some µd > 0. Since Γ is concave, it follows from Jensen’s inequality that for x ∈ Rn\O,

∫

Rm
max

g∈Ĝ(x,v)
Γ(Vd(g))µ(dv) ≤

∫

Rm
Γ( max

g∈Ĝ(x,v)
(Vd(g))µ(dv)

≤ Γ

(∫

Rm
max

g∈Ĝ(x,v)
Vd(g)µ(dv)

)

≤ Γ(Vd(x)− %d(x)).

Since Γ ∈ K∞ and %d is bounded away from zero on compact sets contained in Rn\O,

it follows that Γ(Vd(x) − %d(x)) < Γ(Vd(x)) for x ∈ Rn\O. Let the continuous function

%̃d : Rn\O → R>0 be defined such that Γ(Vd(x) − %d(x)) ≤ Γ(Vd(x)) − %̃d(x) for all

x ∈ Rn\O. Now choose a function %̂d : Rn → R>0 such that %̂d(x) ≤ min{µd/2, %̃d(x)}

where by convention %̃d(x) =∞ for x /∈ Rn\O. We now construct a continuous function
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ρd(x) := infξ∈Rn(%̂d(ξ) + |ξ − x|) for all x ∈ Rn. Since %̂d is bounded away from zero on

compact sets, it follows that ρd inherits the same property. Also, from the construction

we have that ρd(x) ≤ %̂d(x) for all x ∈ Rn. Hence,

∫

Rm
max

g∈Ĝ(x,v)
Γ(Vd(g))µ(dv) ≤ Γ(Vd(x))− ρd(x) + µdIO(x),∀x ∈ Rn.

It follows from the above bound and using G(x, v) ⊂ Ĝ(x, v),∀(x, v) ∈ D × Rm that

∫

Rm
max

g∈G(x,v)
Γ(Vd(g))µ(dv) ≤ Γ(Vd(x))− ρd(x) + µdIO(x),∀x ∈ D.

The result of the proposition is thus established.

Continuous-time condition

Define Vc(x) :=
∫
Rn V0(x+σc(x)ξ)Ψ(ξ)dξ where σc : Rn → R>0 is a continuous positive

function for all x ∈ Rn and Ψ : Rn → [0, 1] is any infinitely differentiable function such

that Ψ(x) = 0 for x /∈ B and
∫

Ψ(x)dx = 1. The next result involves smoothing the

continuous-time condition. We will establish in the next proposition that the function

Vc, through appropriate choice of σc, satisfies a condition related to the bound (2.8).

Proposition 6.15 There exist continuous positive functions σc, ρc : Rn → R>0 and

µc > 0 such that the function Vc satisfies

〈∇Vc(x), f〉 ≤ −ρc(x) + µcIO(x), ∀x ∈ C, f ∈ F (x). (6.16)

Proof: Let σ∗ > 0 be such that Ô2 + σ∗Bo ⊂ O. Choose the open set Ô1 such that

Ô2 + (σ∗/3)Bo ⊂ Ô1 and Ô1 + (σ∗/3)Bo ⊂ O. Define %c(x) := min{δ(x), σ∗/4}. Let σc

come from [14, Lemma 7.37] using %c. Then, the function σc is continuous and positive
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on bounded sets. We can also conclude that if x ∈ Rn\Ô1, then x + σc(x)B ⊂ Rn\Ô2.

The smoothness of Vc on Rn follows from the results in [14, Section 7.36].

From [14, Lemma 7.37], for every solution φ generated by (Cσc , Fσc) and η ∈ B,

there exists a solution ψη generated by (C%c , F%c) such that dom(φ) = dom(ψ), ψη(0) =

φ(0) + σc(φ(0))η and ψη(t) = φ(t) + σc(φ(t))η. Let i ∈ Z≥1 and Ki = 2iB be a sequence

of compact sets. For every i ∈ Z≥1, let γi > 0 come from Proposition 6.12 using the sets

Ki+σ∗/4B. Then, for solutions φ of (Cσc , Fσc) from x ∈ Ki satisfying graph(φ)∩ ([0, t]×

Rn) ⊂ R× Rn\Ô1 for some (t) ∈ dom(φ) with t > 0 we have

Vc(φ(t)) =

∫

Rn
V0(φ(t) + σc(φ(t))η)Ψ(η)dη

=

∫

Rn
V0(ψη(t))Ψ(η)dη

≤
∫

Rn
V0(ψη(0))Ψ(η)dη − γit

= Vc(x)− γit.

We can now conclude that for every i ∈ Z≥1, there exists γi > 0 such that

〈∇Vc(x), f〉 ≤ −γi, ∀x ∈ (C\O) ∩Ki, f ∈ F (x) (6.17)

For every x ∈ C\O, let i(x) = minj∈Z≥1
{j : x ∈ (C\O) ∩ Kj}. Define %̂c(x) :=

infξ∈C\O
(
γi(x) + |ξ − x|

)
. Since O is bounded, Vc is smooth and F is locally bounded,

there exists µc > 0 such that supf∈F (x)〈∇Vc(x), f〉 ≤ µc/2 for all x ∈ C ∩ O. Define the

function ρ̂c(x) = min{%̂c(x), µc/2} for all x ∈ Rn where %̂c(x) = ∞ for x /∈ C\O. Now

define the function ρc(x) = infz∈Rn(ρ̂c(z)+|x−z|). Then ρc is continuous, positive-valued

and bounded away from zero on compact sets. Then, it follows that

〈∇Vc(x), f〉 ≤ −ρc(x) + µcIO(x),∀x ∈ C.
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The result of the proposition is thus established.

6.6.3 Smooth Lyapunov function for recurrence

We now combine the results from Proposition 6.15 and 6.14 to establish a smooth

Lyapunov function with respect to the set O for the systemH. Define Vs(x) :=
∫
Rn V0(x+

σ(x)ξ)Ψ(ξ)dξ where σ : Rn → R>0 is a continuous positive function for all x ∈ Rn and

Ψ : Rn → [0, 1] is any infinitely differentiable function such that Ψ(x) = 0 for x /∈ B and
∫

Ψ(x)dx = 1. The next results completes the proof of Theorem 6.4.

Proposition 6.16 There exist continuous functions σ, ρ : Rn → R>0, µ > 0 and a

concave function Γ ∈ K∞ that is smooth on R>0 with Γ′(s) > 0 for s > 0 such that the

function Γ(Vs) is smooth, radially unbounded and satisfies

〈∇Γ(Vs(x)), f〉 ≤ −ρ(x) + µIO(x), ∀x ∈ C, f ∈ F (x)
∫

Rm
max

g∈G(x,v)
Γ(Vs(g))µ(dv) ≤ Γ(Vs(x))− ρ(x) + µIO(x), ∀x ∈ D.

Proof: It follows from the proof of [55, Prop 1] that without loss of generality, the

function Γ used in Proposition 6.14 can be taken to be smooth on R>0 with Γ′(s) > 0 for

s > 0. Let σc, ρc, µc come from Proposition 6.15 and Γ, σd, ρd, µd come from Proposition

6.14. Choose the continuous function σ such that σ(x) = min{σc(x), σd(x)}, choose

µ = max{supx∈O(µcΓ
′(Vs(x))), µd} and the continuous function ρ such that ρ(x) =

min{Γ′(Vs(x))ρc(x), ρd(x)}. Since Vs(x) ≥ β > 0, it follows that µ is well defined and

Γ(Vs) is smooth. Since V0 is radially unbounded and Γ ∈ K∞, it follows that Γ(Vs) is

radially unbounded. Finally, it follows from the results in Propositions 6.15 and 6.14
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that the function Γ(Vs) satisfies

〈∇Γ(Vs(x)), f〉 ≤ −ρ(x) + µIO(x), ∀x ∈ C, f ∈ F (x)
∫

Rm
max

g∈G(x,v)
Γ(Vs(g))µ(dv) ≤ Γ(Vs(x))− ρ(x) + µIO(x), ∀x ∈ D.

The proof of Theorem 6.4 is now complete. A summary of the results on global recurrence

of open, bounded sets for (6.1) is in Figure 6.1.

Uniform

recurrenceRecurrence

Robust

recurrence
Smooth Lyapunov functions

Recurrence principle

Proposition 6.1

Theorem 6.3 Theorem 6.4

Theorem 5.7, 5.9

Figure 6.1: Summary of results for recurrence in (6.1)
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Conclusions

In this chapter, we summarize the main contributions of the dissertation and point out

future research directions.

7.1 Summary

In Chapter 2, we studied hybrid systems modeled by set-valued mappings and pre-

sented a Lyapunov function characterization for a property called recurrence. In par-

ticular, under mild regularity properties for the system we establish that the existence

of a smooth Lyapunov function that decreases strictly along solutions outside an open,

bounded set is a necessary and a sufficient condition for recurrence of that set. Robust-

ness of the recurrence property to various state dependent perturbations is a key result

that aids the development of the converse theorem.

In Chapter 3, we introduced a class of systems called stochastic difference inclu-

sions and extend the results of Chapter 2 to stochastic systems. We present a solution

concept for stochastic difference inclusions, establish Lyapunov function based sufficient

conditions, weak sufficient conditions, converse Lyapunov theorems and robust stability
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conditions for recurrence of an open, bounded set. Similar results for asymptotic stability

in probability are also discussed.

In Chapter 4, constrained discrete-time stochastic systems stabilized by discontinuous

feedback laws are studied. In particular, robustness of asymptotic stability in probability

for the closed loop stochastic system is analyzed. Since robustness results from Chapter

3 are not necessarily applicable in this scenario, we establish a Lyapunov function based

approach to verify robustness as opposed to asserting robustness from system regularity

properties.

In Chapters 5, we study a class of stochastic hybrid systems modeled by set-valued

mappings where the randomness is restricted only to the discrete-time dynamics. We

introduce the concept of weakly totally recurrent in probability sets and establish con-

vergence of bounded random solutions to such sets. An extension of the result under

the existence of a non-increasing on average Lyapunov-like function is also presented and

convergence of sample paths of the random solution to weakly totally recurrent in proba-

bility sets inside level sets of the Lyapunov-like function is established. Application of the

results to establishing weak sufficient conditions for asymptotic stability in probability

and recurrence are also discussed.

Chapter 6 extends the results of Chapters 2-3 to a larger class of stochastic hybrid

systems studied in Chapter 5. In particular, we study the recurrence property in detail

and establish robustness results and a converse Lyapunov theorem.

7.2 Future directions

We now present possible research directions that expand upon the work in this dis-

sertation.

• A closely related property to recurrence is called positive recurrence. For non-
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stochastic systems, the recurrence property in Chapter 2 is equivalent to positive

recurrence but for stochastic systems they are not equivalent. It is a stronger prop-

erty than recurrence since positive recurrence also requires the expected value of

the time for solutions to hit the set be finite. Robustness of positive recurrence and

equivalence of positive recurrence to the existence of smooth Lyapunov functions are

problems that need to be explored further. Results on robustness of global asymp-

totic stability in probability and an associated converse Lyapunov theorem for the

class of systems studied in Chapters 5-6 also need to be established. Similarly,

analysis tools related to other asymptotic stability notions such as mean square

asymptotic stability and mean square exponential stability need to be established

to develop a more complete stability theory for set-valued stochastic systems.

• In this dissertation we have not investigated robustness of stability properties with

respect to uncertainties in the probability distribution. For example, consider the

system x+ = max{0, x+v} with v ∈ {−1, 1}, x ∈ Z≥0 and µ({−1}) = µ({1}) = 0.5.

It can be observed that V (x) = |x| is a weak-Lyapunov function for the set (−1, 1)

and using the invariance principle from Chapter 2, it can be concluded that the

set (−1, 1) is globally recurrent. However, even for arbitrarily small δ ∈ (0, 0.5), if

the distribution function of v is modified to µ({−1}) = 0.5 − δ, µ({1}) = 0.5 + δ,

the set (−1, 1) is no longer recurrent. Results related to robustness of stability

with respect to uncertainties in the probability distribution would be useful in the

analysis of networked control systems where exact statistical information might not

be available.

In [89], [90] results regarding robustness of positive recurrence in Markov chains to

perturbations in the transition probabilities are established. For a particular class of

stochastic hybrid systems like Markov jump linear systems, results on robustness of
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stability to perturbations in the transition rate matrices or transition probability

matrices are available in [91], [92], [93], [94] and [95]. However, the proofs rely

on a Lyapunov function assumption for the nominal system. A general robustness

result with respect to uncertainties in probability distributions for stochastic hybrid

systems without relying on Lyapunov function based assumption for the nominal

system needs to be explored further.

• Finally, an extension of the results in Chapters 3-6 to the general class of stochastic

hybrid systems studied in [82] and modeled by

dx ∈ F (x)dt+B(x)dW, x ∈ C

x+ ∈ G(x, v), x ∈ D

is a natural step towards understanding stability theory for complex systems. Re-

sults related to sequential compactness for stochastic hybrid systems in [82] will

likely be crucial to establishing equivalence between uniform and non uniform ver-

sions of stability, robustness of stability, invariance principle and converse Lyapunov

theorems.
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Appendix A

Mathematical review

• Let I ⊂ R be an interval. A function φ : I 7→ R is absolutely continuous on I, if

for every ε > 0, there exists a δ > 0 such that
∑l

k=1 |φ(bk) − φ(ak)| ≤ ε for every

finite number of non-overlapping intervals (ak, bk), k ∈ {1, .., l} with [ak, bk] ⊂ I

and
∑l

k=1 |bk − ak| ≤ δ. The function φ is locally absolutely continuous if it is

absolutely continuous on every interval [a, b] ⊂ I.

• A set-valued mapping M : Rp ⇒ Rn is outer semicontinuous if, for each (xi, yi)→

(x, y) ∈ Rp × Rn satisfying yi ∈M(xi) for all i ∈ Z≥0, y ∈M(x).

• A mapping M is locally bounded if, for each bounded set K ⊂ Rp, M(K) :=
⋃
x∈KM(x) is bounded.

• Let T be a topological space. A function Ψ : T → R≥0 is upper semicontinuous if

for every sequence {ti}∞i=0 such that ti → t, we have lim supi→∞Ψ(ti) ≤ Ψ(t). A

function κ : Rn → R≥0 is lower semicontinuous if for every converging sequence

{xi} → x, lim infi→∞ κ(xi) ≥ κ(x).

• For a measurable space (Ω,F), a mapping M : Ω ⇒ Rn is measurable [84, Def.

14.1], if for each open set O ⊂ Rn, the set M−1(O) := {ω ∈ Ω : M(ω) ∩O 6= ∅} ∈
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F . A measurable function T : Ω→ Z≥0 ∪ {∞} is a stopping time [84, § 11.3, Def.

5] with respect to the filtration {Fn}n∈Z≥0
if the event {T ≤ k} (or equivalently

the event {T = k}) ∈ Fk for every k ∈ Z≥0.

• A set F ⊂ Rm is measurable if F ∈ B(Rm)

• A function α : R≥0 → R≥0 is of class-K if it is continuous, strictly increasing and

α(0) = 0.

• A function α : R≥0 → R≥0 is of class-K∞ if it is of class-K and unbounded.

• A function ψ : Z≥0 → R>0 is of class L if it is non-increasing and lim`→∞ ψ(`) = 0.

• Fatou’s lemma: Let {fi}∞i=1 be a sequence of measurable functions defined on a

measure space (S,Σ, µ). If there exists an integrable function g such that fi ≤ g

for all i ∈ Z≥1, then

lim sup
i→∞

∫

S

fidµ ≤
∫

S

lim sup
i→∞

fidµ.

• Monotone convergence theorem: Let {fi}∞i=1 be a sequence of pointwise non-decreasing

measurable functions defined on a measure space (S,Σ, µ). Then,

lim
i→∞

∫

S

fidµ =

∫

S

lim
i→∞

fidµ.

• Dominated convergence theorem: Let {fi}∞i=1 be a sequence of measurable functions

defined on a measure space (S,Σ, µ). If there exists an integrable function g such

that fi ≤ g for all i ∈ Z≥1, then

lim
i→∞

∫

S

fidµ =

∫

S

lim
i→∞

fidµ.
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• Jensen’s inequality: If φ : Rn → R is a convex function and x : Ω→ Rn is a random

variable, then

φ(E[x]) ≤ E[φ(x)].

If φ : Rn → R is a concave function, then

E[φ(x)] ≤ φ(E[x]).

• Inf convolution: Let ρ : Rn → R≥0 be bounded away from zero on compact subsets

of Rn. Then, define the function

ρ̃(x) := inf
z∈Rn

(ρ(z) + |x− z|), x ∈ Rn

The function ρ̃ : Rn → R≥0 is bounded away from zero on compact subsets of Rn

and Lipschitz on Rn.

• Set convergence: Let {Si}∞i=1 be a sequence of sets in Rn.

1. The inner limit of the sequence {Si}∞i=1 is the set of all points x ∈ Rn such

that, there exists points xi ∈ Si, i ∈ 1, 2, ..., such that limi→∞ xi = x.

2. The outer limit of the sequence {Si}∞i=1 is the set of all points x ∈ Rn for which

there exists a subsequence {Sik}∞k=1 of {Si}∞i=1 and points xk ∈ Sik , k = 1, 2, ...,

such that limi→∞ xk = x.

When the inner limit and the outer limit of the sequence {Si}∞i=1 are equal, the

sequence {Si}∞i=1 is convergent, and its limit is given by

lim inf
i→∞

Si = lim sup
i→∞

Si = lim
i→∞

Si.
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Sequential compactness: Hybrid

systems and stochastic hybrid

systems

In this section, we state results on sequential compactness for hybrid systems studied

in Chapter 2 and stochastic hybrid systems studied in Chapter 5-6. A metric space

is sequentially compact if every sequence as a converging subsequence which converges

to a point in the metric space. In this section, we state results related to sequential

compactness for the solution space of hybrid systems and stochastic hybrid systems.

B.1 Hybrid systems

We briefly recall the framework for modeling hybrid systems and the Standing As-

sumptions imposed in Chapter 2. A hybrid system with a state x ∈ Rn is written formally
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as

ẋ ∈ F (x), x ∈ C (B.1a)

x+ ∈ G(x), x ∈ D (B.1b)

In this section we will assume that the conditions of Standing Assumption 2.1 are satisfied

by the data of the hybrid system. The conditions of Standing Assumption 2.1 are stated

below.

Assumption B.1 The data of the hybrid system (B.1) satisfies the following conditions:

1. The sets C,D ⊂ Rn are closed.

2. The mapping F is outer semicontinuous, locally bounded, convex valued and non-

empty on C.

3. The mapping G is outer semicontinuous, locally bounded and non-empty on D.

A sequence of hybrid arcs {φi}∞i=1 converges if the sequence of sets {graph(φi)}∞i=1

convergences in the sense of set convergence. A sequence of solutions {φi}∞i=1 for the

hybrid system (B.1) is said to be locally eventually bounded if for every τ ≥ 0, there

exists i∗ and M > 0 such that for all i ≥ i∗ and all (t, j) ∈ dom(φi) with t + j ≤ τ ,

φi(t, j) ∈MB.

We now state the main result related to sequential compactness for (B.1). The fol-

lowing result is from [14, Theorem 6.8].

Theorem B.1 Let the hybrid system (B.1) satisfy the conditions of Assumption B.1.

For every locally eventually bounded sequence {φi}∞i=1 of hybrid arcs generated by (B.1),

there exists a subsequence {φik}∞k=1 which converges graphically to a hybrid arc φ generated

by (B.1).
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B.2 Stochastic hybrid systems

We briefly recall the framework for modeling stochastic hybrid system and the Stand-

ing Assumptions imposed in Chapter 5. A stochastic hybrid system with a state x ∈ Rn

and random input v ∈ Rm is written formally as

ẋ ∈ F (x), x ∈ C (B.2a)

x+ ∈ G(x, v+), x ∈ D (B.2b)

v ∼ µ(·) (B.2c)

In this section we will assume that the conditions of Standing Assumption 5.1 are

satisfied by the data of the stochastic hybrid system. The conditions of Standing As-

sumption 5.1 are stated below.

Assumption B.2 The data of the stochastic hybrid system H satisfies the following

conditions:

1. The sets C,D ⊂ Rn are closed;

2. The mapping F : Rn ⇒ Rn is outer-semicontinuous, locally bounded with nonempty

convex values on C;

3. The mapping G : Rn × Rm ⇒ Rn is locally bounded and the mapping v 7→

graph(G(·, v)) := {(x, y) ∈ R2n : y ∈ G(x, v)} is measurable with closed values.

We recall that the set of hybrid arcs with closed graphs can be thought of as a subset

in the space of not-identically empty-valued outer semicontinuous set-valued mappings

from R2 to Rn. It follows from [84, Theorem 5.50], equipped with the metric of graph

distance, this space is a separable, locally compact, complete (and σ-compact) metric

space, which we denote (X ,d). For each j ∈ Z≥0 we define Ej := R≥0 × {0, ..., j} and
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for each hybrid arc φ, we define φ|Ej to be the hybrid arc with domain dom(φ)∩Ej such

that φ|Ej(t, j) = φ(t, j) for (t, j) ∈ dom(φ|Ej). For each S ∈ X , we use S|Ej to refer to

the outer semicontinuous set-valued mapping from R2 to Rn with domain dom(S) ∩ Ej
such that S|Ej(t, j) = S(t, j) for (t, j) ∈ dom(S|Ej).

A sequence of random solutions {xi}∞i=0 for the stochastic hybrid system (B.2) is said

to be almost surely locally eventually bounded if the sequence xi(ω) is locally eventually

bounded for almost every ω ∈ Ω. As noted in [85], in order for sequential compactness

results for stochastic hybrid system to be useful in the context of developing a robust

stability theory we also need to characterize and relate the statistical properties of the

sequence xi and the limiting solution. Hence, we impose the following assumption related

to the functions that characterize the behavior of the random solutions.

Assumption B.3 The functions ϕ, ϕi : X → R≥0, i ∈ Z≥0 are upper semicontinuous,

bounded and for each ε > 0, there exists i∗, j∗ ∈ Z≥0 such that for each i ≥ i∗ and each

hybrid arc φ,

ϕi(φ) ≤ ϕi(φ|Ej) + ε,∀j ≥ j∗ (B.3)

and, for each unbounded N ⊂ Z≥0 and each sequence of locally eventually bounded hybrid

arcs {Si}∞i=1 and each j ≥ j∗,

lim
i→∞,i∈N

Si = S =⇒ lim sup
i→∞,i∈N

ϕi(Si|Ej) ≤ ϕ(S|Ej). (B.4)

We now state the main result related to sequential compactness for (B.2). The fol-

lowing result is from [85, Theorem 1].

Theorem B.2 Let the SHS (B.2) satisfy the conditions of Assumption B.2 and let As-

sumption B.3 hold. Let {xi}∞i=1 generated by (B.2) be an almost surely locally eventually
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bounded sequence of solutions, let {∆i}∞i=0 be a sequence of non-negative real numbers

such that E[ϕi(xi)] ≥ ∆i for all i ∈ Z≥0. Then, there exists a solution x generated by

(B.2) in the pointwise outerlimit of the sequence xi such that E[ϕ(x)] ≥ lim supi→∞∆i.
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Stochastic stability properties

In this section, we will give definitions of stochastic stability properties that are frequently

studied in the literature. We state the definitions for the simpler class of stochastic

difference inclusions

x+ ∈ G(x, v), x ∈ Rn (C.1)

studied in Chapter 3. We refer the reader to [27] for equivalent definitions in the case of

stochastic hybrid systems. For completeness we also include the definitions of recurrence

and global asymptotic stability in probability.

Definition C.1 An open, bounded set O ⊂ Rn is said to be globally recurrent for (C.1)

if for every x ∈ Rn and x ∈ Sr(x), E
[∏

i∈Z≥1
IRn\O(xi)

]
= 0.

Definition C.2 An open, bounded set O ⊂ Rn is said to be uniformly globally recurrent

for (C.1) if for every compact set K ⊂ Rn and ρ > 0 there exists J ∈ Z≥1 such that

E
[∏J

i=1 IRn\O(xi)

]
≤ ρ for every x ∈ Sr(K).

Definition C.3 An open, bounded set O ⊂ Rn is globally positively recurrent for (C.1)

if for every x ∈ Sr(Rn), E[inf{k ∈ Z≥0,xk ∈ O}] <∞.
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Definition C.4 An open, bounded set O ⊂ Rn is uniformly globally positively recurrent

for (C.1) if for every compact set K ⊂ Rn, there exists M > 0 such that for all x ∈ Sr(K),

E[inf{k ∈ Z≥0,xk ∈ O}] ≤M .

Definition C.5 A compact set A ⊂ Rn is globally exponentially stable in the pth mean

for (C.1) if there exists λ ∈ [0, 1) and γ > 0 such that for every x ∈ Sr(x) E[|xk|pA] ≤

γλk|x|pA.

Definition C.6 A compact set A ⊂ Rn is globally asymptotically stable in the pth mean

for (C.1) if

1. limi→∞ supk∈Z≥0
E[|xk|pA] = 0 for each sequence xi ∈ Sr(xi) and each bounded se-

quence xi satisfying limi→∞ |xi|A = 0.

2. supk∈Z≥0
E[|xk|pA] <∞ for each x ∈ Sr(Rn).

3. limk→∞ E[|xk|pA] = 0 for each x ∈ Sr(Rn).

Definition C.7 A compact set A ⊂ Rn is uniformly globally asymptotically stable in the

pth mean for (C.1) if

1. For every ε > 0 there exists a δ > 0 such that for all x ∈ Sr(A + δB), E[|xk|pA] ≤

δ, ∀k ∈ Z≥0.

2. For every δ > 0 there exists a ε > 0 such that for all x ∈ Sr(A + δB), E[|xk|pA] ≤

δ, ∀k ∈ Z≥0.

3. For every ∆ > 0, δ > 0 there exists J ∈ Z≥0 such that for every x ∈ Sr(A+ ∆B),

E[|xk|pA] ≤ δ, ∀k ∈ Z≥J .

Definition C.8 A compact set A ⊂ Rn is globally asymptotically stable in probability

for (C.1) if
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1. For every ε > 0 and ρ > 0 there exists a δ > 0 such that for all x ∈ Sr(A+ δB),

P(graph(x) ⊂ (Z≥0 × (A+ εBo))) ≥ 1− ρ.

2. For every x ∈ Sr(Rn), limi→∞ |xi(ω)|A = 0 for almost every ω ∈ Ω.

Definition C.9 A compact set A ⊂ Rn is uniformly globally asymptotically stable in

probability for (C.1) if

1. For every ε > 0 and ρ > 0 there exists a δ > 0 such that for all x ∈ Sr(A+ δB),

P(graph(x) ⊂ (Z≥0 × (A+ εBo))) ≥ 1− ρ.

2. For every δ > 0 and ρ > 0 there exists a ε > 0 such that for all x ∈ Sr(A+ δB),

P(graph(x) ⊂ (Z≥0 × (A+ εBo))) ≥ 1− ρ.

3. For every ∆ > 0, δ > 0 and ρ > 0, there exists J ∈ Z≥0 such that for every

x ∈ Sr(A+ ∆B),

P(graph(x) ∩ (Z≥J × Rn) ⊂ (Z≥0 × (A+ δB))) ≥ 1− ρ.
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Proofs

D.1 Proof of Proposition 2.4

Since O is recurrent for H in (2.2), it follows from Lemma 2.2 that O is recurrent for

the modified system Ĥ in (2.5). From Proposition 2.2 it follows that solutions of Ĥ are

ultimately bounded with ultimate bound M . Let S = (M+1)B. Then, there exists T > 0

such that for φ ∈ SĤ(S) if (t, j) ∈ dom φ satisfies t + j ≥ T , then φ(t, j) ∈ MB. Then,

it follows that Ω(S) ⊂ MB ⊂ int(S). Since the maximal solutions of Ĥ are complete

Ω(S) is non-empty. Then, from [14, Corollary 7.7], it follows that Ω(S) is compact and

asymptotically stable with basin of attraction S. Since every solution eventually enters

the set S, it follows that Ω(S) is uniformly globally asymptotically stable for Ĥ. Since

the solutions of H are also solutions of Ĥ , it follows that A := Ω(S) is UGAS for H.

D.2 Proof of Theorem 3.1

We denote the weak viability probabilities for (3.1) asmG,⊂S(i, x) for (i, x) ∈ Z≥0×Rn.
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Proposition D.1 Let O ⊂ Rn be an open, bounded set. If there exists a sufficient

recurrence-Lyapunov function for (3.1) relative to O ⊂ Rn then, for every R > 0 such

that O ⊂ RB and for all x ∈ RB\O, m̂G,⊂RB\O(x) = 0.

Proof: Define S1 := RB\O. Let V : Rn → R≥0 be a sufficient recurrence-Lyapunov

function for (3.1) relative to O and % : Rn → R>0 continuous, satisfy (3.7). We begin

by proving that for every σ∗ > 0 there exists a function c ∈ L such that for all (i, x) ∈

Z≥0 ×RB\O,

mG,⊂S1(i, x) ≤ σ∗V (x) + c(i). (D.1)

Let c(0) ≥ 1. Then, the bounds holds when i = 0 for all x ∈ RB\O from the definition.

Now assume that the bound holds for some i ∈ Z≥0 and for all x ∈ RB\O. Now pick c

such that for all i ∈ Z≥0,

c(i) = max{0, c(0)− iσ∗ inf
x∈RB\O

%(x)}.

This choice gives a function that belongs to class-L as infx∈RB\O %(x) > 0 due to the

compactness of RB\O and continuity of %. Since x ∈ RB\O, it follows from (D.1) that

mG,⊂S1(i+ 1, x) =

∫

Rm
max

g∈G(x,v)
IS1(g)mG,⊂S1(i, g)µ(dv)

≤ σ∗
(∫

Rm
max

g∈G(x,v)
V (g)µ(dv)

)
+ c(i)

≤ σ∗V (x)− σ∗%(x) + c(i)

≤ σ∗V (x) + c(i+ 1).

Then (D.1) holds by induction. Now for x ∈ RB\O if m̂G,⊂S1(x) = ε > 0, choose σ∗

such that σ∗V (x) ≤ 1
2
ε. Since c ∈ L it follows from (D.1) that ε ≤ σ∗V (x) ≤ 1

2
ε. This
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is a contradiction which implies ε = 0. Then, it follows that m̂G,⊂RB\O(x) = 0 for all

x ∈ RB\O.

We now consider the set-valued mapping Ĝ defined as

Ĝ(x, v) :=





G(x, v) , (x, v) ∈ Rn\O × Rm

∅ , (x, v) ∈ O × Rm.
(D.2)

It can be noted from the definition that Ĝ(x, v) satisfies the conditions of Standing

Assumption 3.1. Since Ĝ(x, v) ⊆ G(x, v) for all (x, v) ∈ Rn×Rm it follows that if V is a

sufficient recurrence-Lyapunov function for (3.1) relative to O ⊂ Rn then, for all x ∈ Rn,

∫

Rm
max

g∈Ĝ(x,v)
V (g)µ(dv) ≤ V (x). (D.3)

For the system x+ ∈ Ĝ(x, v), we denote the weak reachability probabilities for a closed

set S ⊂ Rn as mĜ,∩S(i, x) for (i, x) ∈ Z≥0 × Rn. The proof of the following result is

similar to [61, Thm. 1].

Proposition D.2 If there exists a function that satisfies (D.3) for x+ ∈ Ĝ(x, v) then, for

every x ∈ Rn and γ ∈ (0, 1) there exists a R > 0 such that limi→∞mĜ,∩Rn\RBo(i, x) ≤ γ.

Proof: Let V satisfy (D.3). Since V is radially unbounded, there exists α1 ∈

K∞, c1 > 0 such that α1(|x|) ≤ V (x) + c1. Define S2 := Rn\RBo. To prove the above

statement we first establish that for all x ∈ Rn and i ∈ Z≥0,

α1(R)mĜ,∩S2
(i, x) ≤ V (x) + c1.

The bound holds for i = 0 by definition for all x ∈ Rn. Now assume that the bound

holds for some i ∈ Z≥0 and all x ∈ Rn. Then, from the bound α1(|x|) ≤ V (x) + c1 it
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follows that

α1(R)mĜ,∩S2
(i+ 1, x) =

∫

Rm
max

g∈Ĝ(x,v)
max

{
α1(R)IS2(g), α1(R)mĜ,∩S2

(i, g)
}
µ(dv)

≤
∫

Rm
max

g∈Ĝ(x,v)
max{V (g) + c1, V (g) + c1}µ(dv)

=

∫

Rm
max

g∈Ĝ(x,v)
V (g)µ(dv) + c1 ≤ V (x) + c1.

Then, the result follows by induction. This bound implies that for all (i, x) ∈ Z≥0 ×Rn,

mĜ,∩S2
(i, x) ≤ 1

α1(R)
(V (x) + c1).

So given x ∈ Rn, we can choose R > 0 such that 1
α1(R)

(V (x) + c1) ≤ γ. Then

limi→∞mĜ,∩Rn\RBo(i, x) ≤ γ.

Let γ ∈ (0, 1). Now given x ∈ Rn\O, it follows from D.2 that there exists a R > 0,

such that O ⊂ RB, x ∈ RB and limi→∞mĜ,∩Rn\RBo(i, x) ≤ γ. Then, from 3.1 we have

that for all i ∈ Z≥0,

mĜ,⊂Rn\O(i, x) ≤ mĜ,⊂RB\O(i, x) +mĜ,∩Rn\RBo(i, x).

Since x ∈ Rn\O, using 3.2 it follows that for all i ∈ Z≥0, mĜ,⊂Rn\O(i, x) = mG,⊂Rn\O(i, x)

and mĜ,⊂RB\O(i, x) = mG,⊂RB\O(i, x). Then

mG,⊂Rn\O(i, x) ≤ mG,⊂RB\O(i, x) +mĜ,∩Rn\RBo(i, x).

Then, from Propositions D.1 and D.2 it follows that

m̂G,⊂Rn\O(x) ≤ m̂G,⊂RB\O(x) + lim
i→∞

mĜ,∩Rn\RBo(i, x) ≤ γ.
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Therefore, for every x ∈ Rn\O we have m̂G,⊂Rn\O(x) ≤ γ. Then, from the definition of

mG,⊂Rn\O(i, x) for (i, x) ∈ Z≥0×Rn, we have that m̂G,⊂Rn\O(x) ≤ γ for all x ∈ Rn. Finally,

from Proposition 3.2 it follows that for all x ∈ Rn, m̂G,⊂Rn\O(x) = 0 and consequently

globally recurrent of O for (3.1) follows.

D.3 Proof of Proposition 3.5

We first establish conditions under which the two notions of sufficient recurrence-

Lyapunov functions and Lyapunov functions coincide. If V is a sufficient recurrence-

Lyapunov function and

sup
x∈O

∫

Rm
max

g∈G(x,v)
V (g)µ(dv) ≤ λ

for some λ > 0, then V/λ is both a sufficient recurrence-Lyapunov function and a Lya-

punov function. The existence of such a λ is also guaranteed if µ(·) has compact support,

due to the local boundedness of G.

If the conditions listed above are not satisfied, then the following proof explains

the construction of a concave, K∞ function κ such that if V is a sufficient recurrence-

Lyapunov function then, κ(V ) is a Lyapunov function.

Since V is upper semicontinuous, it follows that it is locally bounded. Also from

Standing Assumption 3.1, we have that G is locally bounded. Then, there exists γ ∈ K∞
and γ0 ∈ R≥0 such that, for all x ∈ O,

max
g∈G(x,v)

V (g) ≤ γ(|v|) + γ0.

Let B be the closed unit ball in Rm. Define Fi := 2iB, F−1 := ∅ and m(i) := µ(Fi\Fi−1)
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for all i ∈ Z≥0. We now prove that there exists τ ∈ K∞ such that

∞∑

i=0

τ(i+ 1)m(i) ≤ 1.

Since µ is a measure it follows that for j ∈ Z≥0,

∞∑

i=j

m(i) =
∞∑

i=j

µ(Fi\Fi−1) = µ

( ∞⋃

i=j

(Fi\Fi−1)

)
= µ(Rm\Fj−1).

Let σ ∈ L be such that µ(Rm\Fj−1) ≤ σ(j) for all j ∈ Z≥0. Then
∑∞

i=jm(i) ≤ σ(j). Let

` : Z≥0 → Z≥0 be a strictly increasing unbounded mapping satisfying `(0) = 0, `(1) > 1

and σ(`(j)) ≤ 2−j for all j ∈ Z≥0. Let ˜̀∈ K∞ satisfy ˜̀(i) = `(i) for each i ∈ Z≥0. Define

τ(s) := ˜̀−1(s) for all s ≥ 0. Then

∞∑

i=0

τ(i+ 1)m(i) =
∞∑

j=0

( `(j+1)−1∑

i=`(j)

τ(i+ 1)m(i)

)
≤

∞∑

j=0

( `(j+1)−1∑

i=`(j)

(j + 1)m(i)

)

≤
∞∑

j=0

(j + 1)

( ∞∑

i=`(j)

m(i)

)

≤
∞∑

j=0

(j + 1) σ(`(j)) ≤
∞∑

j=0

(j + 1) 2−j ≤ 4.

Now define τ(s) := τ(s)/4 for all s ≥ 0. Then
∑∞

i=0 τ(i + 1)m(i) ≤ 1. Let κ̂ ∈ K∞ be

such that κ̂(2γ(2i)) ≤ τ(i+ 1) for all i ∈ Z≥0. Then, it follows that

∫

Rm
κ̂(2γ(|v|))µ(dv) =

∞∑

i=0

∫

Fi\Fi−1

κ̂(2γ(|v|))µ(dv) ≤
∞∑

i=0

κ̂(2γ(2i))

∫

Fi\Fi−1

µ(dv)

=
∞∑

i=0

κ̂(2γ(2i))µ(Fi\Fi−1)

≤
∞∑

i=0

τ(i+ 1)m(i) ≤ 1.
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Define c := 2γ(1). We now prove that there exists a function κ ∈ K∞ that is concave

and satisfies κ(s) ≤ κ̂(s) for all s ≥ c. To prove the existence of κ, we first prove the

existence of a convex, K∞ function α such that κ̂−1(r) ≤ α(r) for all r ≥ c̃ := κ̂(c). Now

choose β ∈ K∞ such that β(s) ≥ (2/c̃)κ̂−1(2s) and define α(s) :=

∫ s

0

β(t)dt for all s ≥ 0.

Then, by construction α ∈ K∞ is convex and for r ≥ c̃,

α(r) ≥
∫ r

r/2

β(t)dt ≥ (r/2)β(r/2) ≥ (c̃/2)β(r/2) ≥ κ̂−1(r). (D.4)

Define κ(s) := α−1(s) for all s ≥ 0. Then κ ∈ K∞ is concave since α is convex and

strictly increasing. From the construction of κ it follows that κ(s) ≤ κ̂(s) for all s ≥ c,

∫

Rm
κ(2γ(|v|))µ(dv) ≤

∫

|v|<1

κ(2γ(|v|))µ(dv) +

∫

|v|≥1

κ(2γ(|v|))µ(dv)

≤ κ(2γ(1)) +

∫

|v|≥1

κ̂(2γ(|v|))µ(dv) ≤ κ(2γ(1)) + 1.

We now define W (x) := κ(V (x)) for all x ∈ Rn. Then, it follows from Jensen’s inequality

[96, Sec. 3.1.8] and the construction of κ that, for x ∈ Rn\O,

∫

Rm
max

g∈G(x,v)
W (g)µ(dv) =

∫

Rm
max

g∈G(x,v)
κ(V (g))µ(dv) ≤

∫

Rm
κ( max

g∈G(x,v)
V (g))µ(dv)

≤ κ

(∫

Rm
max

g∈G(x,v)
V (g)µ(dv)

)

≤ κ(V (x)− %(x)).

Since κ ∈ K∞, and % is bounded away from zero on compact sets, it follows that κ(V (x)−

%(x)) < κ(V (x)) = W (x). Hence, there exists a function ρ̃ : Rn → R>0 that is bounded

away from zero on compact sets such that κ(V (x)−%(x)) ≤ W (x)−ρ̃(x) for all x ∈ Rn\O.

We now construct a continuous function ρ(x) := infξ∈Rn(ρ̃(ξ) + |ξ − x|) for all x ∈ Rn.

Since ρ̃ is bounded away from zero on compact sets, it follows that ρ inherits the same
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property. Also from the construction we have that ρ(x) ≤ ρ̃(x) for all x ∈ Rn. Therefore

∫

Rm
max

g∈G(x,v)
W (g)µ(dv) ≤ W (x)− ρ(x) ∀x ∈ Rn\O. (D.5)

Finally, for x ∈ O,

∫

Rm
max

g∈G(x,v)
W (g)µ(dv) =

∫

Rm
max

g∈G(x,v)
κ(V (g))µ(dv)

≤
∫

Rm
κ(γ(|v|) + γ0)µ(dv)

≤
∫

Rm

(
κ(2γ(|v|)) + κ(2γ0)

)
µ(dv)

≤ 1 + κ(2γ0) + κ(2γ(1)). (D.6)

Now define ĉ := 1 + κ(2γ0) + κ(2γ(1)) + supx∈O ρ(x), κ(s) := 1
ĉ
κ(s) for all s ≥ 0,

%̂(x) := 1
ĉ
ρ(x) and W (x) := κ(V (x)) for all x ∈ Rn. Then, it follows from (D.5), (D.6)

that

∫

Rm
max

g∈G(x,v)
W (g)µ(dv) ≤ W (x)− %̂(x) + IO(x) ∀x ∈ Rn.

Hence W is a Lyapunov function relative to O for (3.1).

D.4 Proof of Theorem 3.2

We assume that O ⊂ Rn is globally recurrent for (3.1) and prove that there exists

ε > 0 and an open, bounded set Ô such that Ô + εB ⊂ O and Ô is strongly globally

recurrent for (3.1). In order to prove the theorem, we begin with some initial results.

The proof of the following result is similar to that used in [42, Prop. 15].

Claim D.1 Let {xi}∞i=1 be a sequence of points that converges to x ∈ Rn and φi : Rn →
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R≥0 be a sequence of upper semicontinuous, bounded, non-increasing functions (with

respect to i). Then, for every v ∈ Rm,

lim sup
i→∞

max
g∈G(xi,v)

φi(g) ≤ max
g∈G(x,v)

lim sup
i→∞

φi(g).

Proof: Let gi be such that for all i ∈ Z≥1, φi(gi) = maxg∈G(xi,v) φi(g). Due to local

boundedness of G we can assume without loss of generality that there exists at least a

subsequence converging to g∗. Then, by outer semicontinuity of G for a fixed v, it follows

that g∗ ∈ G(x, v). Also for every ε > 0, there exists i∗ ∈ Z≥0,

φi∗(g
∗) ≤ lim

i→∞
φi(g

∗) + ε.

Then, it follows that

lim sup
i→∞

max
g∈G(xi,v)

φi(g) = lim sup
i→∞

φi(gi) ≤ lim sup
i→∞

φi∗(gi)

≤ φi∗(g
∗) ≤ lim

i→∞
φi(g

∗) + ε

≤ max
g∈G(x,v)

lim sup
i→∞

φi(g) + ε.

Since ε > 0 is arbitrary the result of the claim follows.

Claim D.2 Let {xi}∞i=1 be a sequence of points converging to x ∈ Rn and S ⊂ Rn be

closed. Then, for all k ∈ Z≥0,

lim sup
i→∞

max
g∈G(xi,v)

IS+ 1
i
B(g)m⊂S+ 1

i
B(k, g) ≤ max

g∈G(x,v)
IS(g)m⊂S(k, g). (D.7)

Proof: Define φi(x) := IS+ 1
i
B(x)m⊂S+ 1

i
B(k, x) for x ∈ Rn. Then, from the upper

semicontinuity of IS+ 1
i
B(·) and m⊂S+ 1

i
B(k, ·) for each i ∈ Z≥1 and k ∈ Z≥0 it follows that
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φi is upper semicontinuous for each i. From the monotonicity of the viability proba-

bilities and the indicator function with respect to i, it follows that φi is monotonically

nonincreasing. Also φi(x) ≤ m⊂S+ 1
i
B(k, x) ≤ 1. Then, from Claim D.1 it follows that

lim sup
i→∞

max
g∈G(xi,v)

IS+ 1
i
B(g)m⊂S+ 1

i
B(k, g) ≤ max

g∈G(x,v)
lim sup
i→∞

IS+ 1
i
B(g)m⊂S+ 1

i
B(k, g)

≤ max
g∈G(x,v)

IS(g) lim sup
i→∞

m⊂S+ 1
i
B(k, g). (D.8)

We now prove that

lim sup
i→∞

m⊂S+ 1
i
B(k, x) ≤ m⊂S(k, x) ∀ (k, x) ∈ Z≥0 × Rn. (D.9)

The bound (D.9) holds for k = 0 and for all x ∈ Rn by definition. Now assume that

(D.9) holds for some k ∈ Z≥0 and for all x ∈ Rn. Then, by Fatou’s Lemma and (D.8) it

follows that

lim sup
i→∞

m⊂S+ 1
i
B(k + 1, x) = lim sup

i→∞

∫

Rm
max

g∈G(x,v)
IS+ 1

i
B(g)m⊂S+ 1

i
B(k, g)µ(dv)

≤
∫

Rm
lim sup
i→∞

max
g∈G(x,v)

IS+ 1
i
B(g)m⊂S+ 1

i
B(k, g)µ(dv)

≤
∫

Rm
max

g∈G(x,v)
IS(g) lim sup

i→∞
m⊂S+ 1

i
B(k, g)µ(dv)

≤
∫

Rm
max

g∈G(x,v)
IS(g)m⊂S(k, g)µ(dv) ≤ m⊂S(k + 1, x).

Then, the bound (D.9) holds by induction. The result of the claim then follows from

(D.8) and (D.9).

We then use the above results to prove the the following Lemma which illustrates the

effect of perturbations of the set on the weak viability probabilities.

Lemma D.1 For each (`, ρ) ∈ Z≥0 × R>0 and K ⊂ Rn compact there exists a ε > 0
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such that, for every x ∈ K compact,

m⊂S+εB(`, x) ≤ max
ξ∈K

m⊂S(`, ξ) + ρ.

Proof: Suppose the lemma is false, then there exists ` ∈ Z≥0 , ρ > 0 and K compact

such that, for each i ∈ Z≥1 there exists xi ∈ K satisfying

m⊂S+ 1
i
B(`, xi) > max

ξ∈K
m⊂S(`, ξ) + ρ.

Without loss of generality we assume that xi converges to some x ∈ K. Then, it follows

from Fatou’s Lemma and (D.7) that

lim sup
i→∞

m⊂S+ 1
i
B(`, xi) = lim sup

i→∞

∫

Rm
max

g∈G(xi,v)
IS+ 1

i
B(g)m⊂S+ 1

i
B(`− 1, g)µ(dv)

≤
∫

Rm
lim sup
i→∞

max
g∈G(xi,v)

IS+ 1
i
B(g)m⊂S+ 1

i
B(`− 1, g)µ(dv)

≤
∫

Rm
max

g∈G(x,v)
IS(g)m⊂S(`− 1, g)µ(dv)

= m⊂S(`, x).

The bound contradicts the initial assumption for i large and thus establishes the lemma.

Let `0 ∈ Z>0 be such that m⊂Rn\O(`0, x) ≤ 0.25/2 for all x ∈ O + Bo. This bound

follows from the uniform global recurrence of the set O. We now use the result of Lemma

D.1 with K := O + Bo. Then, there exists ε̃ ∈ (0, 1) such that, for every x ∈ K,

m⊂(Rn\O)+ε̃B(`0, x) ≤ max
ξ∈O+Bo

m⊂Rn\O(`0, ξ) + 0.25/2

≤ 0.25.
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Let the open, bounded set Ô be such that Ô := Rn\((Rn\O)+ ε̃B). Then |ξ|O = ε̃ for all

ξ ∈ ∂Ô. Hence, it follows that for ε = ε̃/2 > 0, Ô + εB ⊂ O. Since ε̃ < 1, O ⊂ Ô + Bo.

Then, for all x ∈ Ô + Bo,

m⊂Rn\Ô,(`0, x) ≤ m⊂Rn\O+εB(`0, x) ≤ 0.25. (D.10)

Now let Si := Rn\(Ô + iBo) be a sequence of closed sets for i ∈ Z≥0. Given x ∈ Rn,

there exists j ∈ Z≥1 such that x ∈ Rn\Sj+1. Since O ⊂ Ô + Bo, it follows from uniform

global recurrence of the set O that for all ξ ∈ Rn\Sj+1 there exists `j ∈ Z>0 such that

m⊂S1(`j, ξ) ≤ 0.25. (D.11)

Then, from Lemma 3.3, (D.10) and (D.11) it follows that

m⊂S0 (`j + `0, x) ≤ m⊂S1 (`j, x) + sup
ξ∈Rn\S1

m⊂S0(`0, ξ)

≤ 0.5.

Then, from the monotonicity of the viability probabilities we have that for every x ∈ Rn,

m̂⊂Rn\Ô(x) ≤ 0.5. Hence, it follows from Proposition 3.2 that for all x ∈ Rn, m̂⊂Rn\Ô(x) =

0. This equality implies that the set Ô is globally recurrent for (3.1).

D.5 Proof of Theorem 3.3

We begin with a result similar to [42, Lemma 4] that establishes that the reachability

probabilities m∩S(k, x) can be made arbitrarily small for a fixed k, for x in a compact set,

when S = Rn\RBo by using the local boundedness of G and choosing R > 0 sufficiently
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large.

Lemma D.2 For each k ∈ Z≥0, ε > 0 and r > 0 there exists R > 0 such that, with

S = Rn\RBo, m∩S(k, x) ≤ ε for all x ∈ rB.

We denote the probabilities of the system (3.9) with the subscript ν. Let Ô be chosen

according to Theorem 3.2. Now let Si = Rn\(Ô + iBo) be a sequence of closed sets and

εi ≤ (1
2
)i+2 for all i ∈ Z≥0. Then, for every i ∈ Z≥0, choose `i such that

m⊂Si(`i, x) ≤ 1

2
εi ∀x ∈ Rn\Si+1. (D.12)

This bound follows from the uniform global recurrence of the set Ô. Let βi ∈ Z≥0. Then,

choose βi ≥ i+ 1 such that, with ν(s) = s for all s ≥ 0,

mν,∩Sβi (`i, x) ≤ 1

2
εi ∀x ∈ Rn\Si+1. (D.13)

The values βi exists according to Lemma D.2. Without loss of generality we can assume

the function i 7→ βi is strictly increasing and unbounded. Define Ki := (Ô + βiBo)\(Ô+

iBo), γi := sup
x∈∂(Ô+βiBo)

|x − x0| and ri := inf
y∈∂(Ô+iBo)

|y − x0|. Then, it follows

that the functions i 7→ γi, ri are strictly increasing and unbounded. Let ν ∈ K∞ with

ν(s) < s for all s > 0 and satisfy ν(γi) < ri/2 for all i ∈ Z≥0. Then, we have that

{x0}+ ν(γi)B ⊂ {x0}+ 1
2
riB ⊂ Rn\Ki and hence

max
g∈{x0}+ν(γi)B

IKi(g) = 0. (D.14)

Next we show that for all x ∈ Rn\Sβi and all k ∈ Z≥0,

mν,⊂Ki(k, x) = m⊂Ki(k, x). (D.15)
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The equality (D.15) holds when k = 0 for all x ∈ Rn. Assume it holds for some k ∈ Z≥0

and for all x ∈ Rn\Sβi . Using (D.14), G(x, v) ⊂ Gν(x, v) for all (x, v) ∈ Rn × Rm, and

Ki ⊂ Ô + βiBo, it follows that if x ∈ Rn\Sβi then

max
g∈G(x,v)

IKi(g)m⊂Ki(k, g) ≤ max
g∈Gν(x,v)

IKi(g)mν,⊂Ki(k, g)

≤ max
g∈G(x,v)

IKi(g)mν,⊂Ki(k, g) + max
g∈{x0}+ν(γi)B

IKi(g)mν,⊂Ki(k, g)

= max
g∈G(x,v)

IKi(g)mν,⊂Ki(k, g)

= max
g∈G(x,v)

IKi(g)m⊂Ki(k, g).

Hence for all x ∈ Rn\Sβi

max
g∈Gν(x,v)

IKi(g)mν,⊂Ki(k, g) = max
g∈G(x,v)

IKi(g)m⊂Ki(k, g)

Therefore for all x ∈ Rn\Sβi

mν,⊂Ki(k + 1, x) =

∫

Rm
max

g∈Gν(x,v)
IKi(g)mν,⊂Ki(k, g)µ(dv)

=

∫

Rm
max

g∈G(x,v)
IKi(g)m⊂Ki(k, g)µ(dv)

= m⊂Ki(k + 1, x).

Then (D.15) holds for all k ∈ Z≥0 and all x ∈ Rn\Sβi by induction. Now using Lemma

3.1, (D.12), (D.13), (D.15) we have that for all i ∈ Z≥0 and every x ∈ Rn\Si+1,

mν,⊂Si(`i, x) ≤ mν,∩Sβi (`i, x) +mν,⊂Ki(`i, x)

≤ 1

2
εi +m⊂Ki(`i, x) ≤ 1

2
εi +m⊂Si(`i, x) (D.16)

≤ εi.
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Given x ∈ Rn, let i ∈ Z≥1 be such that x ∈ Rn\Si+1. Then, from (D.16) it fol-

lows that mν,⊂Si(`i, x) ≤ εi, and similarly we have that for every k ∈ {0, .., i − 1},

supξ∈Rn\Sk+1
mν,⊂Sk(`k, ξ) ≤ εk. Then, from Lemma 3.3, (D.16) it follows that

mν,⊂S0

(
i∑

j=0

`j, x

)
≤ mν,⊂S1

(
i∑

j=1

`j, x

)
+ sup

ξ∈Rn\S1

mν,⊂S0(`0, ξ)

≤ mν,⊂Si(`i, x) +
i−1∑

k=0

sup
ξ∈Rn\Sk+1

mν,⊂Sk(`k, ξ)

≤
i∑

k=0

εk ≤ 0.5.

Hence, from the monotonicity of the viability probabilities we can conclude that m̂ν,⊂S0(x) ≤

0.5 for all x ∈ Rn. Then, from Proposition 3.2 it follows that m̂ν,⊂Rn\Ô(x) = 0 for every

x ∈ Rn and global recurrence follows.

D.6 Proof of Theorem 3.4

In order to prove this theorem we use the following result from [42, Corollary 3] which

illustrates the effect of perturbations of the system on viability probabilities. Let ρ > 0.

We denote the probabilities of the perturbed system x+ ∈ Gρ(x, v) := {w ∈ Rn : w ∈

g + ρB, g ∈ G(x+ ρB, v)} with a subscript ρ.

Lemma D.3 For each closed set S ⊂ Rn, compact set K ⊂ Rn, ` ∈ Z≥0 and ε > 0 there

exists ρ > 0 such that, for all k ∈ {0, ..., `}

mρ,⊂S(k, ξ) ≤ max
ζ∈(ξ+εB)∩K

m⊂S(k, ζ) + ε ∀ξ ∈ K + ρB.

Let Ô be chosen according to Theorem 3.2 and ν ∈ K∞ be chosen according to Theorem

3.3. Now define Si := Rn\(Ô + iBo).
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Claim D.3 If the set Ô is globally recurrent for (3.9), then for every εi ≤ (1
2
)i+2 where

i ∈ Z≥0, there exists `i ∈ Z>0 and ρi > 0, such that maxx∈Rn\Si+1
mρi,⊂Si(`i, x) ≤ εi.

Proof: Let `i be chosen such that, for (3.9) we have that maxξ∈Rn\Si+1
m⊂Si(`i, ξ) ≤

1
2
εi. This bound follows from the uniform strong global recurrence of the set Ô. Since x

belongs to the compact set Rn\Si+1, it follows from Lemma D.2 that there exists ρi > 0

such that, for every x ∈ Rn\Si+1,

mρi,⊂Si(`i, x) ≤ max
ξ∈Rn\Si+1

m⊂Si(`i, ξ) +
1

2
εi ≤ εi.

Given x ∈ Rn, define i(x) := minj≥1{j : x ∈ Rn\Sj+1}. Then, from D.3 it follows

that there exists ρi, `i > 0 such that mρi,⊂Si(`i, x) ≤ εi. Similarly we have that for every

k ∈ {0, ..., i− 1} there exists ρk, `k > 0 such that supξ∈Rn\Sk+1
mρk,⊂Sk(`k, ξ) ≤ εk. Then,

define a continuous state dependent perturbation ρ : Rn → R>0 as follows,

ρ̂(x) := min
k∈{0,1,...,i(x)}

ρk

ρ(x) := inf
ξ∈Rn

(
ρ̂(ξ) + |ξ − x|

)
.

Since ρ̂(x) is bounded away from zero on compact sets, it ensures that ρ(x) is positive

for all x ∈ Rn. The choice of ρ implies that ρ(x) ≤ ρ̂(x). Then, it follows from Lemma
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3.3 that

mρ,⊂S0




i(x)∑

j=0

`j, x


 ≤ mρ,⊂S1




i(x)∑

j=1

`j, x


+ sup

ξ∈Rn\S1

mρ,⊂S0(`0, ξ)

≤ mρ,⊂Si(x)
(`i(x), x) +

i(x)−1∑

k=0

sup
ξ∈Rn\Sk+1

mρ,⊂Sk(`k, ξ)

≤
i(x)∑

k=0

εk ≤ 0.5.

Hence, from monotonicity of the viability probabilities we can conclude that m̂ρ,⊂S0(x) ≤

0.5, for all x ∈ Rn. Then, it follows from Proposition 3.2 that for all x ∈ Rn, m̂ρ,⊂Rn\Ô(x) =

0, which proves that global recurrence is robust to sufficiently small state dependent per-

turbations.

D.7 Proof of Theorem 3.7

We first begin by proving that for the modified system Ĝ(x, v) = G(x, v) ∩Rn\O we

have boundedness in reachability probabilities. It follows from the construction that, Ĝ

satisfies the conditions of the Standing assumption 3.1. The modified system Ĝ ensures

that solutions cannot grow arbitrarily large with probability one. Since the function V

is radially unbounded and locally bounded for all x ∈ Rn\O, there exists α1, α2 ∈ K∞
and c1, c2 > 0 such that,

α1(|x|) ≤ V (x) + c1

V (x) ≤ α2(|x|) + c2.

Proposition D.3 Under condition 1 of Theorem 3.7, for every x ∈ Rn\O and γ > 0,

there exists a R > 0 such that limi→∞mĜ,Rn\(RBo),∪(i, x) ≤ γ.
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Proof: Let S = Rn\RBo. To prove the above statement we first establish that for

all x ∈ Rn\O and i ∈ Z≥0,

α1(R)mĜ,S,∪(i, x) ≤ V (x) + c1.

The bound holds for i = 0 by definition for all x ∈ Rn\O. Now assume that the bound

holds for some i ∈ Z≥0 and all x ∈ Rn\O. Then from the bound α1(|x|) ≤ V (x) + c1 it

follows that,

α1(R)mĜ,S,∪(i+ 1, x) =

∫

Rm
max

g∈Ĝ(x,v)
max{α1(R)IS(g), α1(R)mĜ,S,∪(i, g)}µ(dv)

≤
∫

Rm
max

g∈Ĝ(x,v)
max{V (g) + c1, V (g) + c1}µ(dv)

=

∫

Rm
max

g∈Ĝ(x,v)
V (g)µ(dv) + c1 ≤ V (x) + c1.

Then the result follows by induction. This implies that for all (i, x) ∈ Z≥0 × Rn\O,

mĜ,S,∪(i, x) ≤ 1

α1(R)
(V (x) + c1) ≤ 1

α1(R)
(α2(|x|) + c2 + c1).

So given x ∈ Rn\O, we can choose R > 0 such that 1
α1(R)

(α2(|x|) + c2 + c1) ≤ γ. This

implies that limi→∞mĜ,Rn\RBo,∪(i, x) ≤ γ.

Next using the nested matrosov property, we establish that on compact sets bounded

away from the set O, the viability probabilities can be made arbitrarily small.

Proposition D.4 Under condition 2 of Theorem 3.7, for every R > 0 and γ > 0, there

exists a J > 0 such that mG,(Rn\O)∩RB,∩(J, x) ≤ γ for all x ∈ (Rn\O) ∩RB.
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Proof: From the result in [97] it can be shown that condition 2 in Theorem 3.7

implies the existence of positive real numbers {Ki}Ni=1 and ρ > 0 such that,

U(x) =
N∑

i=1

KiYi(x) ≤ −ρ ∀x ∈ (Rn\O) ∩RB.

Now define,

V (x) =
N∑

i=1

KiWi(x).

This implies that for all x ∈ (Rn\O) ∩RB,

∫

Rm
max

g∈G(x,v)∩(Rn\O)∩RB
V (g)µ(dv) =

∫

Rm
max

g∈G(x,v)∩(Rn\O)∩RB

( N∑

i=1

KiWi(g)
)
µ(dv)

≤
N∑

i=1

Ki

∫

Rm
max

g∈G(x,v)∩(Rn\O)∩RB
Wi(g)µ(dv)

≤
N∑

i=1

Ki(Wi(x) + Yi(x))

= V (x) + U(x) ≤ V (x)− ρ.

Let S = (Rn\O) ∩ RB. We now claim that ρjmG,S,∩(j, x) ≤ V (x) ∀(j, x) ∈ Z≥0 ×

(Rn\O) ∩ RB. This bound holds for j = 0 since 0 ≤ V (x) for all x ∈ (Rn\O) ∩ RB.

Assume that the bound holds for some j ∈ Z≥0 and all x ∈ (Rn\O) ∩RB. Then,

ρ(j + 1)mG,S,∩(j + 1, x) = (ρ+ ρj)

∫

Rm
max

g∈G(x,v)
I(Rn\O)∩RB(g)mG,S,∩(j, g)µ(dv)

≤ ρ+

∫

Rm
max

g∈G(x,v)∩(Rn\O)∩RB
V (g)µ(dv) ≤ V (x).

Then the bound holds by induction for all (x, j) ∈ (Rn\O)∩RB×Z≥0. Now pick J ∈ Z≥0

large enough so that, V (x) ≤ ρJγ. Then it follows that for all x ∈ (Rn\O) ∩ RB,
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mG,(Rn\O)∩RB,∩(J, x) ≤ γ.

Next we prove a result that relates the viability measures of the modified system to

that of the original system.

Lemma D.4 Let S ⊂ Rn be a closed set such that S ∩ O = ∅. Then mĜ,S,∩(i, x) =

mG,S,∩(i, x) for all (i, x) ∈ Z≥0 × S.

Proof: The equality holds by definition when i = 0 for all x ∈ S. Now assume that

the equality holds for some i ∈ Z≥0 and all x ∈ S. Then it follows that for (x, v) ∈ S×Rm,

max
g∈G(x,v)∩Rn\O

IS(g)mĜ,S,∩(i, g) = max
g∈G(x,v)

IS(g)mG,S,∩(i, g).

Then we have that,

mĜ,S,∩(i+ 1, x) =

∫

Rm
max

g∈G(x,v)∩(Rn\O)
IS(g)mĜ,S,∩(i, g)µ(dv)

=

∫

Rm
max

g∈G(x,v)
IS(g)mG,S,∩(i, g)µ(dv) = mG,S,∩(i+ 1, x).

The result now follows by induction.

So given x ∈ Rn\O and γ ∈ (0, 1) it follows from Proposition D.3 that there exists

a R > 0, such that limi→∞mĜ,Rn\RBo,∪(i, x) ≤ γ/2. Without loss of generality we can

assume that R > 0 is such that O ⊂ RB and x ∈ (Rn\O) ∩ RB = RB\O. Then using

the result of Lemma 3.1 we have that for all i ∈ Z≥0,

mĜ,Rn\O,∩(i, x) ≤ mĜ,RB\O,∩(i, x) +mĜ,Rn\RBo,∪(i, x).
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Since x ∈ (Rn\O)∩RB, using Lemma D.4 it follows that for all i ∈ Z≥0, mĜ,Rn\O,∩(i, x) =

mG,Rn\O,∩(i, x) and mĜ,RB\O,∩(i, x) = mG,RB\O,∩(i, x). Then we have that for all i ∈ Z≥0,

mG,Rn\O,∩(i, x) ≤ mG,RB\O,∩(i, x) +mĜ,Rn\RBo,∪(i, x).

Then from Propositions D.3 and D.4 it follows that there exists J > 0 such that,

mG,Rn\O,∩(J, x) ≤ mG,RB\O,∩(J, x) +mĜ,Rn\RBo,∪(J, x) ≤ γ/2 + γ/2 ≤ γ.

So for every x ∈ Rn\O, we have that m̂G,Rn\O,∩(x) ≤ γ < 1. Then from Proposition

3.2 it follows that for all x ∈ Rn, m̂G,Rn\O,∩(x) = 0. Finally using Proposition 3.2, it

follows that the set O is globally recurrent for (3.1).

D.8 Proof of Proposition 4.1

We first show that for any ε > 0 there exists a concave Γ ∈ K∞, M ∈ R>0 and

α ∈ K∞ such that for all x ∈ X we have

max
u∈K(x)

∫

V
Γ(V (f(x, u, v)))µ(dv) ≤ max

u∈K({x}+εB)

∫

V
Γ(V (f({x}+ εB, u, v)))µ(dv)

≤
∫

V
max

g∈f({x}+εB,K({x}+εB),v)
Γ(V (g))µ(dv)

≤
∫

V
Γ

(
max

g∈f({x}+εB,K({x}+εB),v)
V (g)

)
µ(dv) (D.17)

≤ M + α(|x|) <∞.

Since the mapping (x, v) 7→ max
g∈f({x}+εB,K({x}+εB),v)

V (g) is locally bounded, then there

exists M̃ > 0 and α̃ ∈ K∞ such that max
g∈f({x}+εB,K({x}+εB),v)

V (g) ≤ M̃ + α̃(|v|) + α̃(|x|),
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therefore

∫

V
Γ

(
max

g∈f({x}+εB,K({x}+εB),v)
V (g)

)
µ(dv) ≤

∫

V
Γ
(
M̃ + α̃(|v|) + α̃(|x|)

)
µ(dv)

≤
∫

V
Γ
(

2α̃(|v|) + 2M̃
)
µ(dv) + Γ (2α̃(|x|)) . (D.18)

It follows from Lemma 4.1 that we can choose a concave Γ ∈ K∞ and M > 0 such

that
∫
V Γ(2α̃(|v|) + 2M̃)µ(dv) ≤M . Then, (D.17) follows by choosing α(s) := Γ (2α̃(s))

for all s ∈ R≥0. Therefore from now on we fix Γ ∈ K∞ satisfying (D.17)–(D.18).

Since K (4.5) is the regularization of the control law κ, namely for every x ∈ X and

sequence xi → x ∈ X , K(x) is the smallest closed set containing the limit points of κ(xi),

for every x ∈ X and u ∈ K(x), there exists a sequence {(xi, ui)}∞i=1, with (xi, ui) ∈ X×U ,

ui := κ(xi), such that (xi, ui)→ (x, u). Let ε := 1. Then without loss of generality there

exists a subsequence, which we do not relabel, such that (xi, ui) ∈ ({x}+εB, K({x}+εB).

Therefore for all (x, u) ∈ graph(K) we have

∫

V
Γ(V (f(x, u, v)))µ(dv) =

∫

V
lim
i→∞

Γ(V (f(xi, ui, v)))µ(dv)

= lim
i→∞

∫

V
Γ(V (f(xi, κ(xi), v)))µ(dv) ≤ lim

i→∞
Γ(V (xi))− %(xi)

= Γ(V (x))− %(x).

The first equation is due to the continuity of Γ(V (f(·, ·, v))) for each fixed v. For the

second equation, we exploit the Lebesgue Dominated Convergence Theorem as func-

tions Γ(V (f(xi, κ(xi), ·))) are all upper bounded by v 7→ maxg∈f({x}+B,K({x}+B),v) Γ(V (g)),

which is integrable because of the choice of Γ. The inequality follows from Lemma 4.2,

while the last equality is due to the continuity of Γ(V ) and %. The proof follows as

u ∈ K(x) has been chosen arbitrarily.
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D.9 Proof of Theorem 4.1

It follows from the first part of the proof of Proposition 4.1 that for any ∆ ≥ 1, there

exists a concave Γ ∈ K∞, M ∈ R>0 and α ∈ K∞ such that for all x ∈ X we have

max
u∈K∆(x)

∫

V
max

g∈f∆(x,u,v)
Γ(V (g))µ(dv) ≤

∫

V
max

g∈f∆(x,K∆(x),v)
Γ(V (g))µ(dv)

≤
∫

V
Γ

(
max

g∈f∆(x,K∆(x),v)
V (g)

)
µ(dv) (D.19)

≤ M + α(|x|) <∞,

where K∆ and f∆ are, respectively, defined as in (4.7) and (4.8), but with constant

perturbation δ(x) ≡ ∆. We make this choice in order to address perturbations δ ∈

PD(A) upper bounded by ∆. We take an arbitrary ∆ ≥ 1 so that f∆(x,K∆(x), v) ⊇

f({x}+B, K({x}+B), v) for all (x, v) ∈ X ×V , therefore any concave Γ ∈ K∞ satisfying

(D.19) also satisfies (D.17) of the proof of Proposition 4.1.

Therefore from now on we fix Γ ∈ K∞ satisfying (D.19). It follows from Lemma

4.2 that for all x ∈ X we have
∫
V Γ(V (f(x, κ(x), v)))µ(dv) ≤ Γ(V (x)) − %(x), for some

% ∈ PD(A).

We now present some preliminary results in order to finally construct an admissible,

sufficiently small, perturbation δ ∈ PD(A).

Lemma D.5 For each ∆ ≥ 1, δ̄ ∈ PD(A) such that δ̄(x) ≤ ∆ for all x ∈ X , and

concave Γ ∈ K∞ satisfying (D.19), the function φ : X × U → R≥0 defined as

φ(x, u) :=

∫

V
max

g∈fδ̄(x,u,v)
Γ(V (g))µ(dv)

is upper semicontinuous.

Proof: Consider an arbitrary sequence {(xi, ui)}∞i=1, with (xi, ui) → (x, u). We
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can assume (xi, ui) ∈ ({x}+ B, K({x}+ B)) without loss of generality. Then by using

Fatou’s Lemma, where the function maxg∈f({x}+B,K({x}+B),·) Γ(V (g)) is integrable because

of the choice of Γ, and continuity of fδ̄(·, ·, v) we get

lim sup
i→∞

φ(xi, ui) = lim sup
i→∞

∫

V
max

g∈fδ̄(xi,ui,v)
Γ(V (g))µ(dv)

≤
∫

V
lim sup
i→∞

max
g∈fδ̄(xi,ui,v)

Γ(V (g))µ(dv)

≤
∫

V
max

g∈fδ̄(x,u,v)
Γ(V (g))µ(dv) = φ(x, u).

Lemma D.6 For each δ̄ ∈ PD(A), let φi : X × U → R≥0 be a sequence of upper

semicontinuous, bounded, monotonically non-increasing functions (with respect to i), and

let {ci}∞i=1 be a bounded sequence such that ci ∈ R>0, ci → 0. For all sequences {xi}∞i=1

such that xi ∈ X , xi → x ∈ X , we have

lim sup
i→∞

max
u∈Kciδ̄(xi)

φi(xi, u) ≤ max
u∈K(x)

lim sup
i→∞

φi(x, u).

Proof: For all i ∈ Z≥1, and xi ∈ X , let ui be such that maxu∈Kciδ̄(xi) φi(xi, u) =

φi(xi, ui). It follows from the proof of Proposition 4.2 that Kciδ̄ is outer semicontinuous

for each i ∈ Z≥1. From the proof of [42, Claim 1], we get that lim supi→∞Kciδ̄(xi) ⊆ K(x)

for all x ∈ X . Therefore we can assume without loss of generality that ui → u∗ ∈ K(x),

because Kδ̄ is compact valued. Then we can just follow the proof of [55, Claim 1]. For

every ε > 0, there exists i∗ ∈ Z≥0 such that φi∗(x, u
∗) ≤ limi→∞ φi(x, u∗) + ε. Then we
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have

lim sup
i→∞

max
u∈Kciδ̄(xi)

φi(xi, u) = lim sup
i→∞

φi(xi, ui) ≤ lim sup
i→∞

φi∗(xi, ui)

≤ φi∗(x, u
∗) ≤ lim

i→∞
φi(x, u

∗) + ε

≤ max
u∈K(x)

lim sup
i→∞

φi(x, u) + ε.

The proof follows as ε > 0 is arbitrary.

Lemma D.7 For each ∆ ≥ 1, δ̄ ∈ PD(A) such that δ̄(x) ≤ ∆ for all x ∈ X , and each

Γ satisfying (D.19), we have that for any compact set X̂ ⊂ X there exists a constant

ĉ ∈ (0, 1] such that

max
u∈Kĉδ̄(x)

∫

V
max

g∈fĉδ̄(x,u,v)
Γ(V (g))µ(dv) ≤ Γ(V (x))− %(x) (D.20)

for all x ∈ X̂ .

Proof: By contradiction, suppose not. Then for each i ∈ Z≥1 there exists xi ∈ X̂

such that for ci := 1/i we have

max
u∈Kciδ̄(xi)

∫

V
max

g∈fciδ̄(xi,u,v)
Γ(V (g))µ(dv) > Γ(V (xi))− %(xi) + ε, (D.21)

for some ε > 0. Since X̂ is compact, without loss of generality we can assume xi → x ∈ X̂ .

We now consider the functions φi(x, u) :=
∫
V maxg∈fciδ̄(x,u,v) Γ(V (g))µ(dv), i ∈ Z≥1,

which are upper semicontinuous according to Lemma D.5, bounded, monotonically non-

increasing (with respect to i), and hence satisfy the conditions of Lemma D.6.

Since the function v 7→ max
g∈fδ̄(x,Kδ̄(x),v)

Γ(V (g)) is integrable according to (D.19), we
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have

lim sup
i→∞

max
u∈Kciδ̄(xi)

∫

V
max

g∈fciδ̄(xi,u,v)
Γ(V (g))µ(dv) ≤ max

u∈K(x)

∫

V
lim sup
i→∞

max
g∈fciδ̄(x,u,v)

Γ(V (g))µ(dv)

= max
u∈K(x)

∫

V
Γ(V (f(x, u, v)))µ(dv)

≤ Γ(V (x))− %(x). (D.22)

The first inequality follows from Lemma D.6 and Fatou’s Lemma; the second inequality

follows from the second part of the proof of Proposition 4.1. The inequality (D.22)

contradicts the initial assumption (D.21) for i sufficiently large.

We now construct the state-dependent perturbation δ ∈ PD(A) starting from an

arbitrary perturbation function δ̄ ∈ PD(A) satisfying δ̄(x) ≤ ∆ for all x ∈ X .

For each i ∈ Z, we define the compact sets Xi := {x ∈ X | |x|A ∈ [2i, 2i+1]}.

According to Lemma D.7, for each Xi there exists ci > 0 such that for all x ∈ Xi we have

max
u∈Kciδ̄(x)

∫

V
max

g∈fciδ̄(x,u,v)
Γ(V (g))µ(dv) ≤ Γ(V (x)) − %(x). Then we define δ̃(x) := ciδ̄(x)

for all x ∈ Xi and i ∈ Z, and the continuous state-dependent perturbation δ(x) :=

infy∈X{δ̃(y) + |y − x|}. We notice that δ(x) ≤ δ̃(x) ≤ δ̄(x) for all x ∈ X . Since δ̃ is

bounded away from zero on compact sets disjoint from A, we have that δ ∈ PD(A).

For the second statement of the theorem, we assume there exists a compact set C

such that µ(V) = µ(C) = 1. We can follow the same proof of the first statement with

Γ(s) = s for all s ∈ R≥0. In fact, noticing that V is upper bounded by a K∞ function

and the mapping x 7→ maxg∈fδ̄(x,Kδ̄(x),C) V (g) is locally bounded, we have that (D.19)

can be satisfied with Γ(s) = s because for all x ∈ X we have M̃ + α̃(|v|) + α̃(|x|) ≤(
M̃ + max

v∈C
α̃(|v|)

)
+ α̃(|x|) <∞, as the set C is compact.
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D.10 Proof of Proposition 4.2

The set-valued mapping K (4.5) is locally bounded as κ is locally bounded from

Assumption 4.1; the controlled regularization K (4.5) is outer semicontinuous . For a

continuous δ : Rn → R≥0, define the set-valued mapping H : Rn ⇒ Rn as H(ξ) :=

{ξ}+ δ(ξ)B, which is locally bounded and outer semicontinuous. From [84, Proposition

5.52 (a), (b)] we get that the composition mapping K ◦H is locally bounded and outer

semicontinuous as well. Then also Kδ(x) = K(H(x)) + δ(x)B is locally bounded and

outer semicontinuous [84, Proposition 5.51 (a), (b)].

Therefore also the set-valued mapping H̄ : Rn ⇒ Rn+m defined as

H̄(ξ) :=
{( ϕ

Kδ(ϕ)

)
| ϕ = ξ

}
(D.23)

is locally bounded and outer semicontinuous. Noticing that for any v ∈ V the function

(x, u) 7→ f(x, u, v) is continuous from Standing Assumption 4.1 and that Gδ(x, u, v) =

H̄ (H(f(H(x), u, v))), according to [84, Prop. 5.52 (a), (b)] we have that for any v ∈ V

the mapping (x, u) 7→ Gδ(x, u, v) is outer semicontinuous; also, Gδ is locally bounded.

Let us now prove that the mapping v 7→ graph(Gδ(·, ·, v)) is measurable. Since,

from Standing Assumption 4.1, f : (X × U) × V → X is a Caratheodory mapping,

the proof of [84, Example 14.15] shows that v 7→ graph(f(·, ·, v)) is measurable. From

the proof of [42, Proposition 3], since v 7→ graph(f(·, ·, v)) is measurable, then also the

mapping v 7→ graph(H(f(H(·), ·, v))) is measurable, because H is locally bounded and

outer semicontinuous. But then, applying the same argument again, also the mapping

v 7→ graph(H̄(H(f(H(·), ·, v)))) = graph(Gδ(·, ·, v)) is measurable.
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D.11 Proof of Lemma 4.3

According to the definition of graph(Kδ), we have that u ∈ Kδ(x) ⇐⇒ (x, u) ∈

graph(Kδ)⇐⇒ W (x, u) = |(x, u)|graph(Kδ) = 0.

Since K is outer semicontinuous, it follows that graph(K) is a closed set. Now we

notice that Ā = (A× Rm) ∩ graph(K) is the intersection of two closed sets, therefore it

is closed as well. Since K is locally bounded and A is compact, it follows that K(A) is

compact. Then boundedness of Ā follows as Ā ⊆ A×K(A) which is a compact set. The

mapping W is continuous as it is the Euclidean distance to the closed set graph(Kδ).

Therefore Γ(V ) + W is continuous (upper semicontinuous) if V is continuous (upper

semicontinuous).

Let us now prove that for any α : X → R≥0 radially unbounded, the function (x, u) 7→

Ȳ (x, u) := Γ(α(x))+W (x, u) is radially unbounded as well. This claim is exploited later.

We consider a sequence {(xi, ui)}∞i=1, (xi, ui) ∈ Rn×Rm, with |(xi, ui)| → ∞. If |xi| → ∞

then Ȳ (xi, ui) = Γ(α(xi)) +W (xi, ui) ≥ Γ(α(xi))→∞ because α is radially unbounded

and Γ ∈ K∞. Otherwise, we can suppose there exists a subsequence, which we do not

relabel, and M > 0 such that |xi| ≤ M for all i ≥ 1. Since Kδ is locally bounded,

the set graph(Kδ) ∩ (MB × Rm) is compact. Then, as |xi| ≤ M , |(xi, ui)|graph(Kδ) =

|(xi, ui)|graph(Kδ)∩(MB×Rm). Since |(xi, ui)| → ∞, it follows that Ȳ (xi, ui) = Γ(α(xi)) +

W (xi, ui) ≥ W (xi, ui)→∞.

For the last statement of the lemma, we have that V̄ (x, u) = Γ(V (x)) + W (x, u) ≥

Γ(α1(|x|A)) + W (x, u), where x 7→ α1(|x|A) is continuous and radially unbounded. This

fact implies that Ȳ1(x, u) := Γ(α1(|x|A)) +W (x, u) is continuous and radially unbounded

as well, according to the previous parts of the proof. Moreover, we notice that α1(|x|A) =

0 ⇐⇒ x ∈ A, and indeed we prove that Ȳ1(x, u) = 0 ⇐⇒ (x, u) ∈ Ā. If Ȳ1(x, u) = 0,

then α1(|x|A) = 0 and W (x, u) = 0, that are equivalent to x ∈ A and u ∈ Kδ(x). Since
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δ(x) = 0 for x ∈ A, we have that u ∈ K(x) whenever x ∈ A. Hence (x, u) ∈ Ā.

Conversely, (x, u) ∈ Ā implies that x ∈ A and u ∈ K(x), therefore we get α1(|x|A) = 0

and W (x, u) = 0, so that Ȳ1(x, u) = Γ(α1(|x|A)) + W (x, u) = 0. Due to the properties

of Ȳ1, there exists ᾱ1 ∈ K∞ such that ᾱ1(|(x, u)|Ā) ≤ Ȳ1(x, u) for all (x, u) ∈ (X × U).

In turn we have that ᾱ1(|(x, u)|Ā) ≤ Ȳ1(x, u) = Γ(α1(|x|A)) + W (x, u) ≤ Γ(V (x)) +

W (x, u) = V̄ (x, u) for all (x, u) ∈ (X × U). Finally, we can follow the same arguments

for Ȳ2(x, u) := Γ(α2(|x|A)) +W (x, u), which is continuous, radially unbounded, and such

that Ȳ2(x, u) ⇐⇒ (x, u) ∈ Ā, proving that there exists ᾱ2 ∈ K∞ such that V̄ (x, u) ≤

Ȳ2(x, u) = Γ(α2(|x|A)) +W (x, u) ≤ ᾱ2(|(x, u)|Ā) for all (x, u) ∈ (X × U).

D.12 Proof of Theorem 5.1

We first show that Ψ := Ψ(z) is nonempty. Due to the assumption that z is almost

surely contained in the compact set K and is complete with positive probability, it follows

that there exists ρ > 0 such that

P (τ ≤ ϕτ,K(z)) ≥ ρ ∀τ ≥ 0. (D.24)

Let ` ∈ Z≥0 and, using that K is compact, let the points z`j ∈ K, j ∈ {1, . . . , N`}, satisfy

K ⊂
⋃

j∈{1,...,N`}
S`,j, S`,j := {z`j}+

1

`+ 1
B.

Then, combining (5.3) and (D.24), we have

P

(
τ ≤

N∑̀

j=1

ϕτ,S`,j(z)

)
≥ ρ ∀(τ, `) ∈ R≥0 × Z≥0. (D.25)
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We assert that, for each ` ∈ Z≥0 there exists j` ∈ {1, . . . , N`} such that

P
(
τ/N` ≤ ϕτ,S`,j` (z)

)
≥ ρ/N` ∀τ ∈ R≥0. (D.26)

Assuming (D.26) holds, the sequence z`j` is well-defined and contains a subsequence

converging to a point ζ ∈ K. Given ε > 0, let ` ∈ Z≥0 be sufficiently large so that

S`j` ⊂ {ζ}+ εB =: Sε. Then pick % = ρ/N` and, given ∆, pick τ = ∆N`. It follows that

P (∆ ≤ ϕτ,Sε(z)) ≥ %. Therefore, ζ ∈ Ψ. Let us establish (D.26). It is straightforward to

verify that, with the definitions

ΩΣ :=
{
ω ∈ Ω : τ ≤∑N`

j=1 ϕτ,S`,j(z(ω))
}

Ωj :=
{
ω ∈ Ω : τ/N` ≤ ϕτ,S`,j(z(ω))

}

that ΩΣ ⊂
⋃N`
j=1 Ωj. If (D.26) doesn’t hold for some j` ∈ {1, . . . , N`} then

P (ΩΣ) ≤ P

(
N⋃̀

j=1

Ωj

)
≤

N∑̀

j=1

P (Ωj) < N` (ρ/N`) = ρ

which contradicts (D.25) and thus establishes (D.26).

Next we show that Ψ is compact. Let the sequence {ζ`}∞`=0 satisfy ζ` ∈ Ψ for all

` ∈ Z≥0 and be convergent to some point ζ ∈ Rn. Let ε > 0 be given. Pick ` sufficiently

large so that

S` := {ζ`}+
1

`+ 1
B ⊂ {ζ}+ εB =: Sε.

Using that ζ` ∈ Ψ, there exists % > 0 and for each ∆ > 0 there exists τ > 0 such that

P (∆ ≤ ϕτ,S`(z)) ≥ %. It follows that P (∆ ≤ ϕτ,Sε(z)) ≥ %, which implies that ζ ∈ Ψ.

It is immediate from the compactness of Ψ, K and the assumption on z that Ψ ⊂ K.
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We show that Ψ ⊂ K∞. Since Ψ is compact, it is enough to show that for each ξ ∈ K

and some ε > 0 such that Sε := ({ξ}+ εB) ∩K∞ = ∅, we have the following property:

for each % > 0 there exists ∆ > 0 such that

P (∆ ≤ ϕτ,Sε(z)) ≤ % ∀τ ≥ 0. (D.27)

Due to the assumption that almost every complete solution converges to the compact set

K∞, for each % > 0 there exists τ̂ > 0 such that

P (graph(z) ∩ (Γ≥τ̂ × Sε) 6= ∅) ≤ %.

It turn, it follows with ∆ := τ̂ + 1 that (D.27) holds. This fact establishes the claim.

Next we establish that almost every complete solution converges to Ψ. If this claim

fails then, using the almost sure uniform continuity of zω(·, j), where zω := z(ω), (due to

the local boundedness of F and the fact that almost every solution remains in K for all

time), it follows that there exists a compact set K̂∞ ⊂ K∞ such that K̂∞ ∩ Ψ = ∅ and

ρ > 0 and for each ∆ > 0 there exists τ > 0 such that

P
(

∆ ≤ ϕτ,K̂∞(z)
)
≥ ρ.

The relationship between ∆ and τ implies the existence of a function α ∈ K∞ such that

P
(
α(τ) ≤ ϕτ,K̂∞(z)

)
≥ ρ ∀τ ≥ 0. (D.28)

Noticing the similarity between (D.28) and (D.24), it is now possible to follow the calcu-

lations above that show that Ψ is nonempty to show that there exist ζ ∈ K̂∞ ∩Ψ, which

contradicts K̂∞ ∩Ψ = ∅.
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Finally, we establish that Ψ is weakly totally recurrent in probability. That is, we

show that each ζ ∈ Ψ is weakly recurrently in probability relative to Ψ for H; more

specifically, for each ζ ∈ Ψ, ε > 0 there exists % > 0 and for each ∆ > 0 there exist τ > 0

and x ∈ Sεr (Ψ + εB) such that, with the definition Sε := {ζ}+ εB, (5.5) holds. Let %̂ > 0

be generated by ζ and ε via the definition of the recurrent in probability set for z. Using

that almost every complete sample path of z converges to Ψ, let τ̂ > 0 be such that

P (graph(z) ∩ (Γ>τ̂ × (Rn\ (Ψ + εB))) 6= ∅) ≤ %̂/2. (D.29)

Define

Ω⊂ := {ω ∈ Ω : ∅ 6= (graph (z(ω)) ∩ (Γ≥τ̂+1 × Rn)) ⊂
(
R2 × (Ψ + εB)

)}
. (D.30)

We claim that for each ∆ > 0 there exists τ > 0 such that

P ((∆ ≤ ϕτ̂+1,τ,Sε(z)) ∩ Ω⊂) ≥ %̂/2. (D.31)

Indeed, (D.29) and the opposite of (D.31) imply that there exists ∆ > 0 such that

P (∆ ≤ ϕτ̂+1,τ,Sε(z)) < %̂ ∀τ > 0 and in turn P (∆ + τ̂ + 1 ≤ ϕτ,Sε(z)) < %̂ ∀τ > 0

which is a contradiction to the assumption that (5.5) holds with %̂ in place of %.

Next we define

Ti(ω) := inf
{
t ∈ π1

(
graph≤i(z(ω)) ∩ (Γ≥τ̂+1 × Rn)

)}
(D.32a)

Ji(ω) := inf
{
j ∈ π2

(
graph≤i(z(ω)) ∩ (Γ≥τ̂+1 × Rn)

)}
. (D.32b)

According to [25, Proposition 2.1, (2e)-(2g)], Ti and Ji are Fi-measurable, as is the

mapping ω 7→ pi(ω) := zω(Ti(ω),Ji(ω)) where zω := z(ω). Note that Ti(ω) and Ji(ω)
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are infinite when the intersections used to define them are empty. If the intersections are

nonempty for some i∗ ∈ Z≥0 then they are nonempty for all i ∈ Z≥i∗ and for such i do

not vary with i and satisfy τ̂ + 1 ≤ Ti(ω) + Ji(ω) ≤ τ̂ + 2, and Ji(ω) ≤ dτ̂e + 1. For

i ∈ {0, . . . , dτ̂e+ 1}, we define

Ωi :={ω ∈ Ω : Ji(ω) = i} (D.33a)

Ωi,⊂ :={ω ∈ Ωi : graph(z(ω)) ∩ (R≥Ti(ω)×Z≥Ji(ω)×Rn)⊂R2 × (Ψ+εB)}. (D.33b)

Note that the sets Ωi,⊂ are disjoint and

dτ̂e+1⋃

i=0

Ωi,⊂ = Ω⊂. (D.34)

Using [98, Lemma 7, p. 411], there exists a measurable function γ, such that and pi(ω) =

γ(v1(ω), . . . ,vi(ω)). For each ω ∈ Ωi, define zi(ω) to be the hybrid arc satisfying

graph(zi(ω)) = graph(z(ω))− (Ti(ω),Ji(ω), 0) . (D.35)

Then, for each i ∈ {0, . . . , dτ̂e+ 1} and conditioned on Fi, zi is a random solution with

inputs (vi+1,vi+2, ...) starting at pi(ω). Since the sequence v is i.i.d, the statistics of zi

are unaffected by the shift in the inputs; cf. [98, Section 22.2]. We claim that for each

∆ > 0 there exist τ > 0 i ∈ {0, . . . , dτ̂e+ 1} and values (v1, . . . ,vi) such that

P
((

(∆ ≤ ϕτ,Sε(zi))∧
(
graph(zi)⊂R2×(Ψ + εB)

))
|Fi
)

(ω) ≥ %/2
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which would establish the weak total recurrence in probability. Suppose not. Then

%/2 ≤ P ((∆ ≤ ϕτ̂+1,τ,Sε(z)) ∩ Ω⊂)

=

dτ̂e+1∑

i=0

P ((∆ ≤ ϕτ̂+1,τ,Sε(z)) ∩ Ωi,⊂)

=

dτ̂e+1∑

i=0

E [P(∆ ≤ ϕτ,Sε(zi)) ∧
(
graph(zi) ⊂ R2 × (Ψ + εB)

))
|Fi
)
IΩi,⊂

]

<

dτ̂e+1∑

i=0

P(Ωi,⊂)%/2 = P(Ω⊂)%/2 ≤ %/2.

This contradiction establishes the result.

D.13 Proof of Theorem 5.2

We present the proof of Theorem 5.2 in three parts. The first part establishes conver-

gence of complete sample paths of the almost surely bounded random solution to the set

K. The second part proves convergence to the level set of the Krasovkii-LaSalle function.

Finally, in the third part we establish convergence to the largest weakly totally recurrent

in probability set contained in the level set of the Krasovkii-LaSalle function.

D.13.1 Convergence to K

In this section we prove that for every solution x that is almost surely contained in Λ,

the complete sample paths of x converges to the set K. This result is a consequence of

the Krasovskii-LaSalle function satisfying strict decrease conditions almost surely during

flows and in expected value during jumps along solutions outside K.

Proposition D.5 If there exists a stochastic Krasosvskii-LaSalle function relative to

(K,Λ), then for every random solution x generated from the data (C∩Λ, F,D∩Λ, G∩Λ, µ)
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almost all complete solutions converges to K.

Proof: Let x be a random solution generated by (C ∩ Λ, F,D ∩ Λ, G ∩ Λ, µ) from

initial condition x ∈ Λ. For every i ∈ Z≥0, the maximum of ϕi,κ(x(ω)) (defined in Section

VI) is achieved by some pair (ti(ω), ji(ω)) where

ti(ω) := sup{t ∈ π1(graph(x(ω)) ∩ (Γ≤i × Rn))} (D.36)

ji(ω) := sup{j ∈ π2(graph(x(ω)) ∩ (Γ≤i × Rn))}.

From now on we suppress the dependence of ω on the random variables for simplicity.

The F -measurability of ti, ji follows from [25, Prop 2.1(2i,2j)]. The continuity of V and

[25, Prop 2.1 (k)] imply F -measurability of V (x(ti, ji)). We now establish that for every

i ∈ Z≥0,

E[ϕi,κ(x)] ≤ V (x)− E[V (x(ti, ji))]. (D.37)

We observe that the bound (D.37) is similar to the bound in the proof of [14, Thm 3.18]

for non-stochastic hybrid systems. The proof proceeds by induction. For i = 0, ti = 0

and ji = 0 almost surely. It also follows from the definition that

0 = E[ϕ0,κ(x)] ≤ V (x)− E[V (x)].

We now assume that (D.37) is true for some i ∈ Z≥0 with times ti and ji. For ϕi+1,κ(x),

let the corresponding times be denoted by (ti+1, ji+1). We now observe that

ϕi+1,κ(x) = ϕi,κ(x) +

∫ ti+1

ti

κ(x(s, ji+1))ds+

ji+1∑

k=ji+1

κ(x(ti, k − 1)).
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The above equality arises due to the total hybrid time increased by one unit which

permits at most one jump and one period of flow. From the definitions it also follows

that ji+1 − ji ≤ 1 almost surely. Let Fji be the sigma algebra generated by the random

variable ji. Then,

E[ϕi+1,κ(x)] = E[ϕi,κ(x)] + E
[ ji+1∑

k=ji+1

κ(x(ti, k − 1)) +

∫ ti+1

ti

κ(x(s, ji+1))ds

]

≤ V (x)− E[V (x(ti, ji))] + E[V (x(ti, ji+1))− V (x(ti+1, ji+1))]

+E[V (x(ti, ji))− E[V (x(ti, ji+1))|Fji ]]

= V (x)− E[V (x(ti+1, ji+1))].

Hence we proved that there exists a ∆ > 0 such that for every i ∈ Z≥0, E[ϕi,κ(x)] ≤ ∆

where ∆ := maxx∈Λ V (x). Then without loss of generality it follows from Corollary 5.3

that almost every complete sample path of the random solution x converges to κ−1(0) ⊂

K.

D.13.2 Convergence to level sets of V

In this section we will establish that complete sample paths of random solution x

that is almost surely contained in Λ converge to level sets of V . The convergence to level

sets of V is primarily due to the non-increasing on average nature of V .

For a, b ∈ R≥0 define Sa1 := {x ∈ Λ : V (x) ∈ [c1, a]} and Sb2 := {x ∈ Λ : V (x) ∈

[b, c2]}. The sets Sa1 ,Sb2 are compact for every a, b ∈ R≥0. The proof ideas in this section

are motivated by [99, Chp. VII]. So, we define a sequence of times to keep track of the

upcrossings of V (xω(t, j)) through intervals of the form [a, b]. Define Rt
0(ω) ≡ 0 and

Rj
0(ω) ≡ 0 for every ω ∈ Ω. Then, for c1 < a < b < c2 and k ∈ Z≥1 define the random

variables Stk,S
j
k,R

t
k and Rj

k inductively as
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Stk(ω) :=inf{t∈π1(graph(x(ω))∩(R≥Rt
k−1(ω)×Z≥0×Sa1 ))}

Sjk(ω) :=inf{j∈π2(graph(x(ω))∩(R≥0×Z≥Rj
k−1(ω)×Sa1 ))}

Rt
k(ω) :=inf{t∈π1(graph(x(ω))∩(R≥Stk(ω)×Z≥0 ×Sb2))}

Rj
k(ω) :=inf{j∈π2(graph(x(ω))∩(R≥0×Z≥Sjk(ω)×Sb2))}.

The superscripts t, j are used to indicate the flow time and jump time respectively and

we assign the value ∞ to the variables if the intersection is empty. For c1 < a < b < c2,

let U[a,b](τ, ω) denote the number of upcrossings within hybrid time τ ∈ R≥0 for x(ω).

The number of upcrossings U[a,b](τ, ω) denotes the number of times in which x(ω) reaches

the set Sb2 starting from Sa1 within hybrid time τ . An equivalent characterization is given

by

U[a,b](τ, ω) = max{k : Rt
k(ω) + Rj

k(ω) ≤ τ}. (D.38)

For simplicity, we will suppress the dependence of the number of upcrossings on the

function V and the random solution x. Let U[a,b](∞, ω) denote the number of upcrossings

in the limit as hybrid time τ tends to ∞. So U[a,b](∞, ω) := limτ→∞U[a,b](τ, ω). The

limit is well defined (although may not be finite) since the mapping τ 7→ U[a,b](τ, ω) is

monotone with respect to τ . We also note that the number of upcrossings U[a,b](∞, ω) =

∞ only if for each k ∈ Z≥1, Rt
k(ω) + Rj

k(ω) < ∞ and limk→∞(Rt
k(ω) + Rj

k(ω)) = ∞.

Hence, only complete sample paths can achieve U[a,b](∞, ω) =∞. We now establish that

the times related to the upcrossings are random variables.

Lemma D.8 For every k ∈ Z≥1, τ ≥ 0 and c1 < a < b < c2, the mappings ω 7→

Stk(ω), ω 7→ Sjk(ω), ω 7→ Rt
k(ω), ω 7→ Rj

k(ω), ω 7→ U[a,b](τ, ω), ω 7→ U[a,b](∞, ω) are F-
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measurable.

Proof: We first observe that F -measurability of St1,S
j
1 follows from [25, Prop 2.1,

(2e), (2f)]. Next we note that if h : Ω→ R≥0 is F -measurable then the set valued map-

ping H(ω) := R≥h(ω) is also F -measurable. This follows from [84, Thm 14.13(a)](with

H = M◦h, with M(r) = [r,∞) a continuous set valued mapping). The F -measurability

of Rt
1,R

j
1 now follows from [84, Prop 14.11 (a),(d)] and [25, Prop 2.1]. The proof then pro-

ceeds by iteration over k > 1 on the mappings ω 7→ Stk(ω), ω 7→ Sjk(ω), ω 7→ Rt
k(ω), ω 7→

Rj
k(ω).

From [84, Prop 14.11 (c)] we know that for every k ∈ Z≥1, the mapping ω 7→ R̂k(ω) :=

Rt
k(ω) + Rj

k(ω) is F -measurable. Then, we define a set valued mapping Cτ (ω) := {k :

R̂k(ω) ≤ τ}. By definition C has closed values and is measurable for every τ ≥ 0.

Then define the function f τ (k, ω) := −k + δCτ (ω)(k) where δCτ (ω)(k) = 0 if k ∈ C(ω)

and δCτ (ω)(k) = ∞ otherwise. Then f τ is normal integrand from [84, Example 14.32]

and U(τ, ω) = argminf τ (·, ω). Then, F -measurability of U(τ, ω) then follows from [84,

Thm 14.37]. Without loss of generality we can consider U[a,b](∞, ω) = limi→∞U[a,b](i, ω)

where i ∈ Z≥0. Since ω 7→ U[a,b](i, ω) is measurable for each i and the limit of sequence

of measurable functions is measurable ([98, § 2.3, Corollary 12]), it follows that ω 7→

U[a,b](∞, ω) is F -measurable.

The next result is a hybrid version of Doob’s optional stopping theorem [99, Chp VII,

Thm 2.2].

Proposition D.6 If x is a random solution that is almost surely contained in Λ, V

is a stochastic Krasovskii-LaSalle function with respect to (K,Λ), Ti : Ω → R≥0, Si :

Ω→ Z≥0 are F-measurable for each i ∈ {1, 2}, S1,S2 are stopping times with respect to

{Fi}i∈Z≥0
, S2 ≤ n almost surely for some n ∈ Z≥0, T1 ≤ T2, S1 ≤ S2 almost surely and

(Ti(ω),Si(ω)) ∈ dom(x(ω)) for each i ∈ {1, 2} then E[V (x(T2,S2))] ≤ E[V (x(T1,S1))].
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Proof: For i ∈ Z[0,n], define t̂i(ω) := inf{t ∈ π1(graph(x(ω)) ∩ (R≥0 × {i} × Rn))}.

Then, let ti(ω) = t̂i(ω)IΩi1
(ω) + T2(ω)IΩi2

(ω) + T1(ω)IΩi3
(ω) where Ωi1 := {ω : S1(ω) <

i ≤ S2(ω)}, Ωi2 := {ω : i > S2(ω)} and Ωi3 := {ω : i ≤ S1(ω)}. It follows from

measurability of S2, S1 that Ωi1 ,Ωi2 and Ωi3 are measurable sets and since the indicator of

measurable set is measurable ([98, § 2.2, Corollary 10]), we have that ti is F - measurable

for each i ∈ Z[0,n]. We observe that since we have almost sure non-increase of V during

flows,

V (x(T2,S2)) = V (x(T1,S1)) +

S2∑

j=S1

(V (x(tj+1, j))− V (x(tj, j))

+

S2−1∑

j=S1

V ((x(tj+1, j + 1))− V (x(tj+1, j))

≤ V (x(T1,S1)) +

S2−1∑

j=S1

[
V ((x(tj+1, j + 1))− V (x(tj+1, j))

]

≤ V (x(T1,S1))

+
n∑

j=0

[
V ((x(tj+1, j + 1))− V (x(tj+1, j))

]
I[0,j](S1)I(j,n](S2).

Let FS1 be the sigma algebra generated by S1. Then, taking expectations conditioned

on FS1 on both sides and using the stopping time property of S1,S2 and non-increase of
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V on average during jumps we have

E[V (x(T2,S2))|FS1 ] ≤ E[V (x(T1,S1))|FS1 ]

+
n∑

j=0

[
E[V ((x(tj+1, j + 1))

−V (x(tj+1, j))I[0,j](S1)I(j,n](S2)|FS1 ]

]

≤ E[V (x(T1,S1))|FS1 ]

+
n∑

j=0

[
I[0,j](S1)E[V ((x(tj+1, j + 1))

−V (x(tj+1, j))I(j,n](S2)|Fj]
]

≤ E[V (x(T1,S1))|FS1 ]

+
n∑

j=0

[
I[0,j](S1)I(j,n](S2)E[V ((x(tj+1, j + 1))

−V (x(tj+1, j))|Fj]
]

≤ E[V (x(T1,S1))|FS1 ].

Taking expectations on both sides, we get E[V (x(T2,S2))] ≤ E[V (x(T1,S1))].

Next we establish a hybrid version of Doob’s upcrossing lemma similar to [99, Chp

VII, Thm 3.3] and [98, Chp 24, Lemma 18]. In order to prove Doob’s upcrossing lemma

we first prove that the assumptions of Proposition D.6 are satisfied by certain random

variables related to the upcrossing times. For every i ∈ Z≥0 and k ∈ Z≥1 define

Stk(i, ω) := min{Stk(ω), ti(ω)}, Sjk(i, ω) := min{Sjk(ω), ji(ω)}

Rt
k(i, ω) := min{Rt

k(ω), ti(ω)}, Rj
k(i, ω) := min{Rj

k(ω), ji(ω)}.

where ti, ji are from (D.36).
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Lemma D.9 For every i ∈ Z≥0 and k ∈ Z≥1, Stk(i, ω) ≤ Rt
k(i, ω) and Sjk(i, ω) ≤

Rj
k(i, ω) almost surely, the random variables Sjk(i, ω),Rj

k(i, ω) are stopping times and

Rj
k(i, ω) ≤ i almost surely.

Proof: It follows from the definition that for every i ∈ Z≥0 Stk(i, ω) ≤ Rt
k(i, ω),

Sjk(i, ω) ≤ Rj
k(i, ω) and Rj

k(i, ω) ≤ i almost surely. Now fix i ∈ Z≥0. We claim that for

every k ∈ Z≥1 Sjk(i, ω),Sjk(i, ω) are stopping times. We establish the claim for k = 1 and

the rest of the proof follows by iteration. We first note that ji,S
j
1 are stopping times with

respect to the filtration {Fn}n∈Z≥0
since the event ji = n and Sj1 = n depend only on the

mapping ω 7→ graph(x(ω))≤n which is Fn measurable. The same argument then applies

to the event Rj
1 = n with the additional constraint that Sj1 ≤ n (which is Fn measurable

since Sj1 is a stopping time). Then, since the minimum of two stopping times is also a

stopping time ([98, § 11.3, Prop 6]) the proof follows.

Lemma D.10 Let x be a random solution that is almost surely contained in Λ, V a

stochastic Krasovskii-LaSalle function with respect to (K,Λ). Then, for every c1 < a <

b < c2, E[U[a,b](∞, ·)] <∞.

Proof: For N ∈ Z≥1, i ∈ Z≥0, define U[a,b](i, N, ω) := min{U[a,b](i, ω), N}. Then,

we have that U[a,b](i, N, ·) is F -measurable. Define

y(i, N, ω) :=
N∑

k=1

[V (x(Rt
k(i, ω),Rj

k(i, ω)))− V (x(Stk(i, ω),Sjk(i, ω)))]. (D.39)

The function y is well defined from the continuity of V and F -measurability of y fol-

lows from the definition. We now observe from Lemma D.9 and Proposition D.6 that

E[y(i, N, ·)] ≤ 0. The function y is used to keep track of the number of upcrossings.

When an upcrossing is complete the difference of the term in the summation is greater

than b − a, since there are N terms there can a maximum of U[a,b](i, N, ω) upcrossings
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possible and there can be at most one uncompleted upcrossing. Then, it follows from

the construction that

a− c1 ≥ E[y(i, N, ·)] + a− c1

≥ (b− a)E[U[a,b](i, N, ·)] + E[V (x(ti, ji))]− c1

≥ (b− a)E[U[a,b](i, N, ·)].

We note that for every i ∈ Z≥0, and almost every ω ∈ Ω, U[a,b](i, N, ω) ≤ U[a,b](i, N+

1, ω) by definition and limN→∞U[a,b](i, N, ω) = U[a,b](i, ω). Then it follows from the

monotone convergence theorem ([98, § 4.3, Thm 11]) that limN→∞ E[U[a,b](i, N, ·)] =

E[limN→∞U[a,b](i, N, ·)] = E[U[a,b](i, ·)]. Using the monotone convergence theorem again

we establish that

(b− a)E[U[a,b](∞, ·)] = (b− a) lim
i→∞

E[U[a,b](i, ·)] ≤ a− c1.

Finally, we establish have almost sure convergence of complete sample paths to the

level set of the Krasovskii-LaSalle function V .

Lemma D.11 If E[U[a,b](∞, ·)] < ∞ for every c1 < a < b < c2, then almost every

complete sample path of x converges to a level set of V .

Proof: Since E[U[a,b](∞, ·)] < ∞ for every c1 < a < b < c2, it follows that

P(U[a,b](∞, ω) = ∞) = 0 for every c1 < a < b < c2. Let Ωc denote the set of ω ∈ Ω

for which sample paths of x are complete. We can establish that Ωc ∈ F similar to [61,

Prop 2]. Let Ω∗ := {ω ∈ Ω : limt+j→∞ V (xω(t, j)) exists}. Then Ω∗ ⊂ Ωc.

We first show that if limt+j→∞ V (xω(t, j)) does not exist for some ω∗ ∈ Ωc, then

necessarily for some c1 < a < b < c2, we have U[a,b](∞, ω∗) = ∞. Since we do not
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have convergence, it follows that lim inft+j→∞ V (xω∗(t, j)) < lim supt+j→∞ V (xω∗(t, j)).

Since Q is dense in R there exists a, b ∈ Q such that lim inft+j→∞ V (xω∗(t, j)) < a <

b < lim supt+j→∞ V (xω∗(t, j)). Then we can define a sequence of upcrossing times with

respect to such a, b and from the definition of lim sup, lim inf, we have that for k ∈ Z≥1,

Rt
k(ω

∗) + Rj
k(ω

∗) < ∞ and limk→∞(Rt
k(ω

∗) + Rj
k(ω

∗)) = ∞. Hence, we have that

U[a,b](∞, ω∗) = ∞. Similarly, we can conclude that if limt+j→∞ V (xω(t, j)) exists then

necessarily U[a,b](∞, ω) <∞ for every a < b.

Let Ω̂a,b := {ω ∈ Ωc : U[a,b](∞, ω) <∞}. Then, Ω̂a,b ∈ F and Ω∗ =
⋂
a,b∈Q∩(c1,c2),a<b Ω̂a,b

and Ω∗ ∈ F . We now show that P(Ωc\Ω∗) = 0. Let Ωa,b := {ω ∈ Ωc : U[a,b](∞, ω) =∞}

where c1 < a < b < c2. Then Ωa,b ∈ F . Then it follows that Ωc\Ω∗ ⊂
⋃
a,b∈Q∩(c1,c2),a<b Ωa,b.

Since P(U[a,b](∞, ω) = ∞) = 0 for every c1 < a < b < c2, it follows that P(Ωa,b) = 0.

Then since Q is countable we have that P(Ωc\Ω∗) ≤
∑

a,b∈Q∩(c1,c2),a<b P(Ωa,b) = 0. Then,

from the continuity of V it follows that for almost every ω ∈ Ωc, there exists c(ω) ∈ [c1, c2]

such that limt+j→∞ |xω(t, j)|LV (c(ω)) = 0.

D.13.3 Convergence to largest weakly totally recurrent in prob-

ability sets inside level sets

The proofs presented in this section are an extension of the results established in [61,

Section X.D] for a class of stochastic difference inclusions.

Lemma D.12 Let the compact sets K1, K2 ⊂ Rn satisfy K1 ⊂ K2 and let τ > 0. For

the solution x, let Ωa denote the set of ω ∈ Ω such that x(ω) is complete, belongs to

K2 for all time in its domain, and belongs to K1 for those times in its domain that are

greater than τ . Let Ωb ⊂ Ωa be those ω ∈ Ωa for which x(ω) converges to the largest

weakly totally recurrent in probability set contained in K1. Then P(Ωa) = P(Ωb).
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Proof: If P(Ωa) = 0 the statement of the lemma holds trivially. Thus we assume

that P(Ωa) > 0. Define a new solution z from the original solution x by truncating x(ω)

to K2, like in [25, Prop 2.1, (2d)], at the infimum over times such that the intersection

of the graph of x(ω) with the open set

(R2 × (Rn\K2)) ∪ (Γ>τ × (Rn\K1))

is nonempty. This truncation produces a mapping that satisfies the conditions for a

solution. Moreover, z(ω) is complete if and only if ω ∈ Ωa. In fact, z has the properties

assumed in Theorem 5.1 with K∞ = K1. It follows from Theorem 5.1 that the recurrent

in probability set for z, denoted Ψ(z), is nonempty, compact, contained in K1, weakly

totally recurrent in probability, and almost every complete sample path of z converges

to Ψ(z) and thus to the largest weakly totally recurrent set contained in K1. Since z(ω)

is complete for all ω ∈ Ωa, it follows P(Ωa) = P(Ωb).

The next result relies on the previous lemma.

Lemma D.13 Let the compact sets K∞, K̂ ⊂ Rn satisfy K∞ ⊂ K̂. For the solution x,

let Ωa denote the set of ω ∈ Ω for which x(ω) is complete, remains in K̂ for all time, and

converges to K∞; let Ωb ⊂ Ωa denote the set of ω ∈ Ωa for which x(ω) converges to the

largest weakly totally recurrent in probability set contained in K∞. Then P(Ωa) = P(Ωb).

Proof: If P(Ωa) = 0 the statement of the lemma holds trivially. Thus, we assume

that P(Ωa) > 0. For each i ∈ Z≥1, let Ψi denote the largest weakly totally recurrent in

probability set contained in K∞ + i−1B. Due to Lemma D.12 and the assumption that

the probability of converging to K∞ while remaining in K̂ is positive, it follows that Ψi

is non-empty for each i ∈ Z≥1. Moreover, by construction, Ψj ⊂ Ψi for all j ≥ i. Thus,

Ψ := limi→∞Ψi is well-defined, nonempty, compact, and contained in K∞. We also claim

that it is weakly totally recurrent in probability. Indeed, by [84, Theorem 4.10(a),(b)],
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for each ε > 0 and x ∈ Ψ there exist i∗ ∈ Z≥1 and {xi}∞i=1 with xi ∈ Ψi for all i ∈ Z≥1

such that

Ψi + 0.5εB ⊂ Ψ + εB ∀i ≥ i∗ (D.40a)

{xi}+ 0.5εB ⊂ {x}+ εB ∀i ≥ i∗ (D.40b)

the latter following from x ∈ {xi} + 0.5εB for all i ≥ i∗. Thus, weak total recurrence of

Ψ follows from weak total recurrence of Ψi∗ . We let Ψ̂ denote the largest weakly totally

recurrent in probability set contained in K∞.

For each ε > 0, let Ωε,τ,a ⊂ Ω denote the set of ω ∈ Ω for which x(ω) is complete,

remains in K̂, and belongs to K∞+ εB for all time greater than τ > 0. By construction,

Ωa = ∩∞i=1 ∪∞j=1 Ω1/i,j,a . (D.41)

Let Ω1/i,j,b ⊂ Ω1/i,j,a denote the subset of ω ∈ Ω1/i,j,a for which x(ω) converges to Ψi,

i.e., the largest weakly totally recurrent in probability set contained in K∞ + i−1B. By

Lemma D.12,

P(Ω1/i,j,b) = P(Ω1/i,j,a) ∀(i, j) ∈ Z≥1 × Z≥1. (D.42)

Define

Ω̂b := ∩∞i=1 ∪∞j=1 Ω1/i,j,b. (D.43)

For each ω ∈ Ω̂b let ji be such that ω ∈ Ω1/i,ji,b for all i ∈ Z≥1. Then x(ω) converges

to Ψi for each i ∈ Z≥1 and, in turn, to Ψ ⊂ Ψ̂. It follows that ω ∈ Ωb; in other words
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Ω̂b ⊂ Ωb. Finally, using (D.41)-(D.43),

P(Ωb) ≥ P(Ω̂b) = P
(
∩∞i=1 ∪∞j=1 Ω1/i,j,b

)

= lim
i→∞

lim
j→∞

P(Ω1/i,j,b) = lim
i→∞

lim
j→∞

P(Ω1/i,j,a)

= P(Ωa)

which establishes the result.

Theorem D.1 Let x be a random solution that is almost surely contained in the compact

set Λ. Then, almost every complete sample path of x that converges to a level set of V

converges to a level set that contains a weakly totally recurrent in probability set and

converges to the largest weakly totally recurrent in probability set contained in the level

set.

Proof: Let Q denote the rational numbers. For each (q, j) ∈ Q× Z≥1, define

Sqj :=
{
x ∈ Λ : V (x) ∈ {q}+ j−1B

}
(D.44a)

µqj := P
(

lim
τ+k→∞

|x(τ, k)|Sqj = 0

)
. (D.44b)

Observe that, for each q ∈ Q, and j ≤ k, Sqk ⊂ Sqj so that j 7→ µqj is non-increasing.

Let I denote those c ∈ [c1, c2] with the following property:

(P) there exists a sequence {(qi, ji)}∞i=0 with (qi, ji) ∈ Q×Z≥1 for all i ∈ Z≥0

such that limi→∞ qi = c, limi→∞ ji =∞, and µqiji > 0 for all i ∈ Z≥0.

Claim D.4 The set I ⊂ [c1, c2] is compact.

Proof: The set I is bounded since it is a subset of [c1, c2]. To see that it is closed,

suppose ck ∈ I for all k ∈ Z≥0 and limk→∞ ck = c. Necessarily c ∈ [c1, c2]. For each
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k ∈ Z≥0 let the sequence {(qi,k, ji,k)}∞i=0 verify property (P) for ck. For each k ∈ Z≥0 let

ik be sufficiently large so that |qik,k − ck| ≤ k−1 and jik ≥ k. It is now straightforward to

verify that the sequence {(qik,k, jik,k)}∞k=0 verifies property (P) for c.

Given a compact set J ⊂ R, Let V −1(J ) := {x ∈ Λ : V (x) ∈ J }. Let Ωa ⊂ Ω denote

the set of ω ∈ Ω for which the corresponding sample path is complete and converges to a

level set of V . Let Ωb ⊂ Ωa denote the set of ω ∈ Ωa for which limt+j→∞ |xω(t, j)|V −1(I) =

0.

Claim D.5 P(Ωb) = P(Ωa).

Proof: Let {Ki}∞i=0 be a nested sequence of closed subsets of R\I that cover the

open set R\I. We will prove that, with Ωi ⊂ Ωa denoting the set of ω ∈ Ωa for which

limt+j→∞ |xω(t, j)|V −1([c1,c2]∩Ki) = 0, that P(Ωi) = 0. The result then follows from the

fact that

P(Ωb) = P(Ωa)− lim
i→∞

P(Ωi). (D.45)

For each c ∈ [c1, c2]\I, define q(c) ∈ Q and j(c) ∈ Z≥1 as follows: let {(qi, ji)}∞i=1

with (qi, ji) ∈ Q×Z≥1 for all i ∈ Z≥0 be such that limi→∞ qi = c (such a sequence exists

since the rational numbers are dense in the set of real numbers), limi→∞ ji = ∞, and

c ∈ {qi}+ j−1
i B for all i ∈ Z≥0, let i∗ ∈ Z≥0 be the smallest nonnegative integer such that

uqiji = 0 for all i ≥ i∗ (such an integer exists for, otherwise, property (P) would hold as

verified by an appropriate subsequence of {(qi, ji)}∞i=1) and then define q(c) := qi∗ and

j(c) := ji∗ . Note that

[c1, c2] ∩Ki ⊂ [c1, c2]\I ⊂
⋃

c∈[c1,c2]\I

(
{q(c)}+ j(c)−1B

)
. (D.46)
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Define

Q0 := {q ∈ Q : q(c) = q for some c ∈ [c1, c2]\I} . (D.47)

For each q ∈ Q0, define

jq := min {j : j = j(c) for some c ∈ [c1, c2]\I s.t. q(c) = q} .

It is evident from these definitions and (D.46) that

[c1, c2] ∩Ki ⊂ [c1, c2]\I ⊂
⋃

q∈Q0

(
{q}+ j−1

q B
)
. (D.48)

We also claim that

µqjq = 0 ∀q ∈ Q0. (D.49)

This fact follows from the fact that µq(c)j(c) = 0 for each c ∈ [c1, c2]\I and the fact that

j 7→ µqj is monotonically non-increasing for each q ∈ Q.

It follows from (D.48), (D.44), and (D.49) that, for each i ∈ Z≥0,

P(Ωi) ≤
∑

q∈Q0

µqjq = 0. (D.50)

This bound and (D.45) establishes the claim.

For each c ∈ I, let Ψc denote the largest weakly totally recurrent in probability set

contained in the set {x ∈ Λ : V (x) = c}. Let Ω0 ⊂ Ωb denote the subset of ω ∈ Ωb for

which limt+j→∞ |xω(t, j)|Ψc = 0 for some c ∈ I.

Claim D.6 The set Ω0 ∈ F and P(Ω0) = P(Ωb).
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Proof: We first establish that Ω0 ∈ F . For each q ∈ Q and ε > 0, let Ψq,ε denote the

largest weakly totally recurrent in probability set contained in the set {x ∈ Λ : V (x) ∈

{q}+εB}. Define Ωq,ε ⊂ Ωb to be the subset of ω ∈ Ωb for which limt+j→∞ |xω(t, j)|Ψq,ε =

0. For each (q, ε) ∈ Q × R>0, since Ψq,ε is compact it follows that Ωq,ε ∈ F . Define

Ωε := ∪q∈QΩq,ε. Since Q is countable, it follows that Ωε ∈ F for each ε > 0. It is evident

from the definition of Ψq,ε that Ωε1 ⊂ Ωε2 for each 0 < ε1 ≤ ε2. The next two paragraphs

establish that Ω0 = ∩∞i=1Ω1/i.

First we establish that Ω0 ⊂ ∩∞i=1Ω1/i. Suppose ω ∈ Ω0 and let c ∈ I be such that

the corresponding sample path converges to Ψc. Let the sequence qk ∈ Q be such that

limk→∞ qk = c. Let the unbounded sequence ik ∈ Z≥1 be such that c ∈ {qk}+ i−1
k B for all

k ∈ Z≥1. It follows that Ψc ⊂ Ψqk,i
−1
k

for all k ∈ Z≥1. Therefore, ω ∈ Ωqk,i
−1
k
⊂ Ωi−1

k
for

all k ∈ Z≥1. In other words, ω ∈ ∩∞k=1Ωi−1
k

. Since the sequence {ik}k∈Z≥1
is unbounded

and the sets Ω1/i are nested, it follows that ω ∈ ∩∞i=1Ω1/i, i.e., Ω0 ⊂ ∩∞i=1Ω1/i.

Next we establish that ∩∞i=1Ω1/i ⊂ Ω0. Suppose that ω ∈ ∩∞i=1Ω1/i and let the

sequence {qi}i∈Z≥1
with qi ∈ Q for each i ∈ Z≥1 be such that the corresponding sample

path converges to Ψqi,1/i. It follows that the corresponding sample path converges to the

limit of any convergent subsequence of the sequence of sets
{

Ψqi,1/i

}
i∈Z≥1

. Let us use

{Ψk}k∈Z≥1
for such a converging subsequence and let us use Ψ for the limit. The set Ψ

is contained in {x ∈ Λ : V (x) = c} for some c ∈ I. We claim that Ψ is weakly totally

recurrent, and thus contained in the largest weakly totally recurrent in probability set

contained in {x ∈ Λ : V (x) = c}, i.e., ω ∈ Ω0. Indeed, by [84, Theorem 4.10(a),(b)], for

each ε > 0 and x ∈ Ψ there exists k∗ and {xk}∞k=1 with xk ∈ Ψk for each k ∈ Z≥1 such
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that

Ψk + 0.5εB ⊂ Ψ + εB ∀k ≥ k∗ (D.51a)

{xk}+ 0.5εB ⊂ {x}+ εB ∀k ≥ k∗ (D.51b)

the latter following from x ∈ {xk}+ 0.5εB for all k ≥ k∗. Thus, weak total recurrence of

Ψ follows from weak total recurrence of Ψk∗ .

Next we claim that P(Ω1/i) = P(Ωb) for each i ∈ Z≥1. To see this, we extract a finite

cover of the compact set I from the countable cover {{q}+ i−1B}q∈Q. Let Q0 ⊂ Q denote

the indices of the cover. Let Ω1,q,i denote the subset of ω ∈ Ωb such that x(ω) converges

to {x ∈ Λ : V (x) ∈ {q}+ i−1B} = Sqi and let Ω2,q,i denote the subset of ω ∈ Ω1,q,i for

which x(ω) converges to the largest weakly totally recurrent in probability set contained

in Sqi. By the definition of Ωb and that the fact that neighborhoods of size 1/i of the

points in Q0 provide a cover for I, it follows that Ωb = ∪q∈Q0Ω1,q,i. By the definition of

Ω1/i, it follows that ∪q∈Q0Ω2,q,i ⊂ Ω1/i. By Lemma D.13, P(Ω1,q,i) = P(Ω2,q,i) for each

q ∈ Q0. It now follows from the next claim and Ω1/i ⊂ Ωb that P(Ω1/i) = P(Ωb) for each

i ∈ Z≥1, and in turn that P(Ω0) = limi→∞ P(Ω1/i) = P(Ωb), which concludes the proof.

Claim D.7 If, for j ∈ {1, . . . , n}, Rj ⊂ Sj and P(Rj) = P(Sj) then P(∪nj=1Rj) =

P(∪nj=1Sj).

Proof: For general n, the result follows by induction after establishing the result

for n = 2. Since Rj ⊂ Sj for j = 1, 2, it follows that P(R1 ∪ R2) ≤ P(S1 ∪ S2). Now

205



Proofs Chapter D

observe that, using Rj ⊂ Sj and P(Rj) = P(Sj) for j = 1, 2,

P(S1 ∪ S2) = P(R1 ∪ (S1\R1) ∪R2 ∪ (S2\R2))

≤ P(R1 ∪R2) + P(S1\R1) + P(S2\R2)

= P(R1 ∪R2)+P(S1)−P(R1)+P(S2)−P(R2)

= P(R1 ∪R2)

which establishes the result for n = 2, and thus for general n.

The theorem now follows from the combination of Claims D.4 and D.6.

D.14 Proof of Lemma 5.1

We first note that the set of solutions starting from (K,F,K,K) is closed when F

satisfies Standing Assumption 1. Without loss of generality we consider two cases. If φi

is not generated by (K,F,K,K), then by the definition of ϕ, lim supi→∞ ϕτ,S(φi) = 0 and

hence lim supi→∞ ϕτ,S(φi) ≤ ϕτ,S(φ) holds trivially. If φi is generated by (K,F,K,K)

then the limit φ is also generated from (K,F,K,K). We then establish the result by

contradiction. Suppose not, then for every N ∈ Z>0, there exists i ∈ Z≥N and ε > 0

such that

ϕτ,S(φi) ≥ ϕτ,S(φ) + ε. (D.52)

We consider two possible consequences of (D.52) and establish that in both the cases

(D.52) is not true for N arbitrarily large.

For j ∈ {0, ..., bτc}, let ti(j) be the smallest time t such that (t, j) ∈ dom(φi).

Similarly, t(j) is defined for the solution φ. We first consider the case, where for some
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j ∈ {0, ..., bτc}, φ(t(j), j) /∈ S and φi(ti(j), j) ∈ S for some i arbitrarily large. Since

the set Rn\S is open and by convergence of hybrid arcs, ti(j) → t(j), it follows that

φi(ti(j), j) /∈ S for sufficiently large i and hence the above scenario during jumps cannot

occur for N sufficiently large.

If for some j ∈ {0, ..., bτc}, there exists 0 ≤ T1 < T2 such that φ(s, j) /∈ S for

s ∈ [T1, T2] and s + j ≤ τ . Let ε > 0 be such that φ(s, j) + εB /∈ S for s ∈ [T1, T2]. This

is possible since Rn\S is open. Then, from [14, Thm 5.25], there exists i0 such that for

all i ≥ i0, φi and φ are (τ, ε) close. Since φi converges graphically to φ, it follows that

in the limit as i → ∞, φi(s, j) /∈ S for s ∈ [T1, T2]. This argument ensures that (D.52)

cannot occur for N sufficiently large.

D.15 Proof of Theorem 5.3

The proof of the theorem follows directly from the next lemma.

Lemma D.14 Let the compact set K∞ be given. For the solution x, let Ωa denote the set

of ω ∈ Ω, such that x(ω) is complete and converges to K∞. Let Ωb ⊂ Ωa denote the set

of ω ∈ Ωa such that x(ω) converges to the largest weakly totally recurrent in probability

set contained in the set K∞. Then P(Ωa) = P(Ωb).

Proof: For every i ∈ Z≥1, define the compact set Ki := K∞ + iB and let the

solution xi be the truncated version of the solution x restricted to the set Ki. Apply

Lemma D.13 to the solution xi with K = Ki to get Ωai and an Ωbi satisfying P(Ωai) =

P(Ωbi). Then, it follows that Ωa = ∪iΩai and Ωb = ∪iΩbi . Consequently, we have

P(Ωa) = limi→∞ P(Ωai) = limi→∞ P(Ωbi) = P(Ωb).
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D.16 Proof of Proposition 6.3

We recall the definition of m̃ in (6.6) related to the largest viability probabilities for

a closed set S:

m̃⊂S(`, ξ) := sup
x∈Sr(ξ)

P(graph(x) ∩ (Γ<` × Rn) ⊂ (R2 × S)).

Next, we observe from the definition of m̂ in (6.3), and (6.2), (6.6) that for any closed

set S ⊂ Rn and x ∈ Rn,

m̂⊂S(x) = lim
τ→∞

m̃⊂S(τ, x).

We now establish using sequential compactness results in [85] that the supremum in the

characterization of m̃ is achieved for some random solution. Let ` ≥ 0. For hybrid arcs

φ, define the function ϕ such that ϕ(φ) = 1 if graph(φ) ∩ (Γ<` × Rn) ⊂ (R2 × S) and

ϕ(φ) is equal to 0 otherwise. Let x ∈ Rn and m̃⊂S(`, x) = ∆ ≥ 0. If ∆ = 0, then every

solution x ∈ Sr(x) achieves the supremum. We now consider the case when ∆ > 0. Let

∆i < ∆, i ∈ Z≥0 be a sequence that converges to the value ∆. Then, there exists a

sequence of solution xi such that E[ϕ(xi)] ≥ ∆i. Then, from [85, Thm 1], it follows that

there exists a random solution x∗ such that E[ϕ(x∗)] ≥ ∆. Since ∆ is the supremum, it

follows that E[ϕ(x∗)] = ∆ which establishes the result.

Next, we show that for every x ∈ Rn and closed set S ⊂ Rn,

lim
i→∞

sup
x∈Sr(x)

P
(

graph(x) ∩ (Γ<i × Rn) ⊂ (R2 × S)

)
= sup

x∈Sr(x)

P
(

graph(x) ⊂ (R2 × S)

)
.

(D.53)
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We first observe that

sup
x∈Sr(x)

P
(

graph(x) ⊂ (R2 × S)

)
= sup

x∈Sr(x)

lim
i→∞

P
(

graph(x) ∩ (Γ<i × Rn) ⊂ (R2 × S)

)

≤ lim
i→∞

sup
x∈Sr(x)

P
(

graph(x) ∩ (Γ<i × Rn) ⊂ (R2 × S)

)
.

(D.54)

For x ∈ Rn and i ∈ Z≥0, let ∆i = m̃⊂S(i, x) and ∆ = limi→∞ m̃⊂S(i, x). Then, the

sequence ∆i converges to ∆. For hybrid arcs φ, define the function ϕi such that ϕi(φ) = 1

if graph(φ)∩ (Γ<i×Rn) ⊂ (R2×S) and ϕi(φ) is equal to 0 otherwise. The function ϕ is

defined such that ϕ(φ) = 1 if graph(φ) ⊂ (R2 × S) and ϕ(φ) is equal to 0 otherwise. It

follows from the above discussion that there exists a random solution xi ∈ Sr(x) such that

E[ϕi(xi)] = ∆i. Then, from [85, Thm 1], there exists a solution x such that E[ϕ(x)] ≥ ∆.

Hence, we have

lim
i→∞

sup
x∈Sr(x)

P
(

graph(x) ∩ (Γ<i × Rn) ⊂ (R2 × S)

)
= ∆ = E[ϕ(x)]

≤ sup
x∈Sr(x)

lim
i→∞

P
(

graph(x) ∩ (Γ<i × Rn) ⊂ (R2 × S)

)
.

(D.55)

The bound (D.53) now follows from (D.54) and (D.55). Hence, we have

lim
i→∞

sup
x∈Sr(x)

P
(

graph(x) ∩ (Γ<i × Rn) ⊂ (R2 × S)

)
= sup

x∈Sr(x)

P
(

graph(x) ⊂ (R2 × S)

)
.

The proof of existence of a random solution x∗ ∈ Sr(x) such that

P
(

graph(x∗) ⊂ (R2 × S)

)
= sup

x∈Sr(x)

P
(

graph(x) ⊂ (R2 × S)

)

209



Proofs Chapter D

follows along the same lines as the proof for the random solution achieving the supremum

in the definition of m̃⊂S(`, x) and is thus omitted.

D.17 Proof of Proposition 6.4

Let x ∈ Rn and x ∈ Sr(x). Let Ωx
∞ := {ω : graph(x(ω)) ⊂ R2 × S}. Define

T(ω) := sup{t ∈ π1(graph(x(ω)) ∩ (Γ≤1 × Rn))} (D.56)

J(ω) := sup{j ∈ π2(graph(x(ω)) ∩ (Γ≤1 × Rn))}.

It follows from [25, Prop 2.1] that T,J are F1 measurable. Define the process y such that

graph(y(ω)) = graph(x(ω))− (T(ω),J(ω), 0). Without loss of generality the hybrid time

domain of x(ω) restricted to at most one jump is given by
⋃1
i=0([ti(ω), ti+1(ω)] × {i})

for Fi−1 measurable random variables ti for i = {1, 2} and t0 ≡ 0. See [25, Section

9.1] for more details. For hybrid arc φ, the function ϕ is defined such that ϕ(φ) = 1 if

graph(φ) ⊂ (R2× S) and ϕ(φ) is equal to 0 otherwise. We then have from [25, eqn (77)]

P(Ωx
∞) = E

[
max
i∈{0,1}

Πi
j=0I⊂R2×S(graphj,1(x))I∩R2×Rn(graphi(x))

IR≤0
(1− ti+1 − i))E[ϕ(y)|F1]

]

where

graphi(x) := graph(x) ∩ (R× {i} × Rn)

graphj,1(x) := graphj(x) ∩ (Γ≤1 × Rn).
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We now establish that for every k ∈ Z≥0 and x ∈ S,

m̂⊂S(x) ≤ γm⊂S(k, x). (D.57)

The bound holds for k = 0 and every x ∈ S since m̂⊂S(x) ≤ γ and m⊂S(0, x) = 1 for

every x ∈ S. We assume that the bound holds for some k and every x ∈ S. Then, let

x ∈ S and x ∈ Sr(x). Then, from [25, Prop 9.1, eqn(77)] we have

P(Ωx
∞) = E

[
max
i∈{0,1}

Πi
j=0I⊂R2×S(graphj,1(x))I∩R2×Rn(graphi(x))

IR≤0
(1− ti+1 − i)E[ϕ(y)|F1]

]

≤ E[ max
i∈{0,1}

Πi
j=0I⊂R2×S(graphj,1(x))I∩R2×Rn(graphi(x)

IR≤0
(1− ti+1 − i)m̂⊂S(y(0, 0))]

≤ γE[ max
i∈{0,1}

Πi
j=0I⊂R2×S(graphj,1(x))I∩R2×Rn(graphi(x)

IR≤0
(1− ti+1 − i)m⊂S(k,y(0, 0))]

≤ γm⊂S(k + 1, x).

Since this is true for any x ∈ S and x ∈ Sr(x), it follows from Proposition 6.3 that

m̂⊂S(x) ≤ γm⊂S(k + 1, x).

The bound (D.57) holds by induction. Then as k →∞ we have

m̂⊂S(x) ≤ γm̂⊂S(x).

Since γ < 1, it implies that supx∈S m̂⊂S(x) = 0.
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D.18 Proof of Proposition 6.5

Let x ∈ Rn and x ∈ Sr(x). For x ∈ Rn\S1, the bound holds automatically due to the

mapping τ 7→ m⊂S0(τ, x) being non-increasing. Now, we consider the case when x ∈ S1

and x ∈ Sr(x). We first show that

P(graph(x) ∩ (Γ≤k1+k2 × Rn) ⊂ R2 × S0) ≤ P(graph(x) ∩ (Γ≤k1 × Rn) ⊂ R2 × S1)

+ sup
ξ∈Rn\S1

m⊂S0(k2, ξ).

Let Ω0 := {ω : graph(x) ∩ (Γ≤k1+k2 ×Rn) ⊂ R2 × S0}, Ω1 := {ω : graph(x) ∩ (Γ≤k1 ×

Rn) ⊂ R2× S1} and Ω2 := {ω : ω ∈ Ω0, graph(x)∩ (Γ≤k1 ×Rn\S1) 6= ∅}. We claim that

Ω0 ⊂ (Ω1 ∪ Ω2). If not, there exists ω ∈ Ω0 such that ω /∈ Ω1 and ω /∈ Ω2. Since ω ∈ Ω0

and ω /∈ Ω1, then necessarily for some (t, j), xω(t, j) ∈ Rn\S1 and t + j ≤ k1 and x(ω)

remains in S0 till hybrid time k1 + k2. Hence, ω ∈ Ω2. This leads to a contradiction and

establishes the claim. Define

T(ω) := inf{t ∈ π1(graph(x(ω)) ∩ (Γ≤k1 × Rn\S1))}

J(ω) := inf{j ∈ π2(graph(x(ω)) ∩ (Γ≤k1 × Rn\S1))}

It follows from [25, Prop 2.1] that T,J are Fk1 measurable random variables. Then, we

have
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P(Ω0) ≤ P(Ω1 ∪ Ω2) ≤ P(Ω1) + P(Ω2)

≤ P(Ω1) + E[m⊂S0(k2,x(T,J))]

≤ P(Ω1) + sup
ξ∈Rn\S1

m⊂S0(k2, ξ).

Consequently, we have

P(graph(x) ⊂ Γ≤k1+k2 × S0) ≤ P(graph(x) ⊂ Γ≤k1 × S1) + sup
ξ∈Rn\S1

m⊂S0(k2, ξ).

The result of the proposition now follows as

m⊂S0(k1 + k2, x) = sup
x∈Sr(x)

P(graph(x) ⊂ Γ≤k1+k2 × S0)

≤ sup
x∈Sr(x)

P(graph(x) ⊂ Γ≤k1 × S1) + sup
ξ∈Rn\S1

m⊂S0(k2, ξ)

= m⊂S1(k1, x) + sup
ξ∈Rn\S1

m⊂S0(k2, ξ).

D.19 Proof of Proposition 6.6

The bound holds true for any x ∈ Rn\S trivially. We now prove the result for x ∈ S.

We claim that for every x ∈ S and x ∈ Sr(x),

P(graph(x) ∩ (Γ≤τ × Rn) ⊂ R2 × S) ≤ P(graph(x) ∩ (Γ≤τ × Rn) ⊂ R2 × S1)

+P(graph(x) ∩ (Γ≤τ × S2) 6= ∅).

Let Ω0 := {ω : graph(x(ω)) ∩ (Γ≤τ × Rn) ⊂ R2 × S}, Ω1 := {ω : graph(x(ω)) ∩

(Γ≤τ × Rn) ⊂ R2 × S1} Ω2 := {ω : graph(x(ω)) ∩ (Γ≤τ × S2) 6= ∅}. We claim that

213



Proofs Chapter D

Ω0 ⊂ (Ω1 ∪ Ω2). If not, for some ω ∈ Ω0 we have ω /∈ Ω1 and ω /∈ Ω2. If ω /∈ Ω1, it

implies that graph(x(ω)) ∩ (Γ≤τ × (S\S1)) 6= ∅. Since S ⊂ S1 ∪ S2, this means that

graph(x(ω)) ∩ (Γ≤τ × S2) 6= ∅ and hence ω ∈ Ω2. This leads to a contradiction. Then,

P(Ω0) ≤ P(Ω1) + P(Ω2). The result of the proposition then follows from taking the

supremum over all possible random solutions from x on both sides.

D.20 Proof of Proposition 6.2

1)⇒ 2) Since O is globally recurrent for H, from Lemma 6.2, O is globally recurrent

for Ĥ. Hence, for every x ∈ Rn and x ∈ Sr(x) (generated by Ĥ) , we have

P(graph(x) ∩ (R2 ×O)) = 1.

Then, it follows that for every x ∈ Rn and x ∈ Sr(x) (generated by Ĥ), we have

P(graph(x) ⊂ (R2 × Rn\O)) = 0.

It follows from Proposition 6.3 that for every x ∈ Rn, we have m̂⊂Rn\O(x) = 0 for the

SHS Ĥ. Since the solutions of H are also solutions of Ĥ, it follows that m⊂Rn\O,H(τ, x) ≤

m⊂Rn\O,Ĥ(τ, x) for every (τ, x) ∈ R≥0×Rn and consequently for every x ∈ Rn, m̂⊂Rn\O,H(x) =

0.

2) ⇒ 3) Follows from the proof of [42, Prop 5] using the upper semicontinuity of

(τ, x) 7→ m⊂Rn\O(τ, x).

3)⇒ 1) Follows from the definition of m⊂Rn\O(τ, x) in (6.2), the definition of uniform

global recurrence and Proposition 6.1.
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D.21 Proof of Proposition 6.8

We first claim that for each (`, ρ) ∈ Z≥0 × R>0 and K ⊂ Rn compact there exists a

ε > 0 such that, for every x ∈ K compact and x ∈ Sr(x),

P(graph(x) ∩ (Γ<` × Rn) ⊂ R2 × (S + εB)) ≤ max
ξ∈K

m̃⊂S(`, ξ) + ρ. (D.58)

If the claim is not true, then there exists (`, ρ) and a compact set K such that for every

i ∈ Z≥1 we have for some xi ∈ K and xi ∈ Sr(xi)

P(graph(xi) ∩ (Γ<` × Rn) ⊂ R2 × (S + 1/iB)) > max
ξ∈K

m̃⊂S(`, ξ) + ρ.

For hybrid arcs φ, define the function ϕi such that ϕi(φ) = 1 if graph(φ)∩ (Γ<` ×Rn) ⊂

R2× (S+(1/i)B) and 0 otherwise. Similarly, the function ϕ is defined using set S. Then,

E[ϕi(xi)] > max
ξ∈K

m̃⊂S(`, ξ) + ρ.

From [85, Theorem 1],we can establish that there exists a random solution x from K

such that

E[ϕ(x)] ≥ max
ξ∈K

m̃⊂S(`, ξ) + ρ.

Since E[ϕ(x)] ≤ maxξ∈K m̃⊂S(`, ξ) and ρ > 0, it leads to a contradiction that establishes

the result. Then, we observe that

P(graph(x) ∩ (Γ≤` × Rn) ⊂ R2 × (S + εB)) ≤ P(graph(x) ∩ (Γ<` × Rn) ⊂ R2 × (S + εB)).
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The result now follows from the bound (D.58) by taking the supremum over all possible

random solutions from the initial condition x for the SHS Ĥ.

D.22 Proof of Theorem 6.1

Let `0 ∈ Z>0 be such that m̃⊂Rn\O(`0, x) ≤ 0.25/2 for all x ∈ O + Bo. This bound

follows from the uniform global recurrence of the set O. We now use the result of

Proposition 6.8 with K := O + Bo and S = Rn\O. Then, there exists ε̃ ∈ (0, 1) such

that, for every x ∈ K,

m⊂(Rn\O)+ε̃B(`0, x) ≤ max
ξ∈O+Bo

m̃⊂Rn\O(`0, ξ) + 0.25/2.

Define the open, bounded set Ô := Rn\((Rn\O) + ε̃B). Hence, it follows that for ε =

ε̃/2 > 0, Ô + εB ⊂ O. Since ε̃ < 1, O ⊂ Ô + Bo. Then, for all x ∈ Ô + Bo,

m⊂Rn\Ô(`0, x) ≤ m⊂(Rn\O)+ε̃B(`0, x) ≤ 0.25.

We now complete the proof as follows. Let Si := Rn\(Ô + iBo) be a sequence of closed

sets for i ∈ Z≥0. Since O ⊂ Ô + Bo, it follows from uniform global recurrence of the set

O that for all ξ ∈ Rn\Si+1 there exists `i ∈ Z>0 such that m⊂S1(`i, ξ) ≤ 0.25. Then, for

all i ∈ Z≥1, x ∈ Rn\Si+1, we have from Proposition 6.5

m⊂S0 (`i + `0, x) ≤ m⊂S1 (`i, x) + sup
ξ∈Rn\S1

m⊂S0(`0, ξ)

≤ 0.5.

Then, from the monotonicity of the viability probabilities we have that for every x ∈ Rn,

m̂⊂Rn\Ô(x) ≤ 0.5. Hence, it follows from Proposition 6.4 that for all x ∈ Rn, m̂⊂Rn\Ô(x) =
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0. This equality implies that the set Ô is globally recurrent for Ĥ from Proposition 6.2.

D.23 Proof of Theorem 6.2

We denote the probabilities generated by the system Ĥν with the subscript ν. Let

O be the recurrent set. Now let Si := Rn\(O + iBo) be a sequence of closed sets and

0 < εi ≤ (1
2
)i+2 for all i ∈ Z≥0. Then, for every i ∈ Z≥0, choose `i such that

m⊂Si(`i, x) ≤ 1

2
εi ∀x ∈ Rn\Si+1. (D.59)

This bound follows from the uniform global recurrence of the set O for the system Ĥ.

Let βi ∈ Z≥0. Then, choose βi ≥ i+ 1 such that, with ν(s) = s for all s ≥ 0,

mν,∩Sβi (`i, x) ≤ 1

2
εi ∀x ∈ Rn\Si+1. (D.60)

The values βi exists according to Proposition 6.7. Without loss of generality we can

assume the function i 7→ βi is strictly increasing and unbounded. Define the compact set

Ki := (O + βiBo)\(O + iBo).

We use the fact that under the conditions of Standing Assumption 6.1 the infinite

time reachable set ([14, Sec 6.3.2]) from O denoted by Γ is bounded for solutions of

ẋ ∈ F (x), x ∈ C (from [31, Prop. 2]). Uniform global recurrence of O implies that

there exists a time Ji > 0 such that each solution of ẋ ∈ F (x), x ∈ C from O + βiBo

reaches the set O, or stops, within time Ji. Then, the reachable set in infinite time for

ẋ ∈ F (x), x ∈ C from O + βiBo, is given by R(O + βiBo) = R≤Ji(O + βiBo) ∪ Γ where

R≤Ji(O + βiBo) is the reachable set within time Ji. It follows from [14, Lemma 6.16]

that R(Ô + βiBo) is bounded.

We define γi := supx∈R(O+βiBo) |x − x∗| and ri := infy∈∂(O+iBo) |y − x∗|. Let ν ∈ K∞
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with ν(s) < s for all s > 0 and satisfy ν(γi) < ri/2 for all i ∈ Z≥0.

Next we claim that for all x ∈ Rn\Sβi and all τ ∈ Z≥0,

mν,⊂Ki(τ, x) = m⊂Ki(τ, x).

The proof of the above result follows along the same line as [55, Thm 4] using induction

and dynamic programming from [25, Sec 9] and is thus omitted.

Now using Proposition 6.6, we have that for all i ∈ Z≥0 and every x ∈ Rn\Si+1,

mν,⊂Si(`i, x) ≤ mν,∩Sβi (`i, x) +mν,⊂Ki(`i, x)

≤ 1

2
εi +m⊂Ki(`i, x) ≤ 1

2
εi +m⊂Si(`i, x)

≤ εi.

Given x ∈ Rn, let i ∈ Z≥1 be such that x ∈ Rn\Si+1. Then, we have mν,⊂Si(`i, x) ≤ εi,

and similarly we have that for every k ∈ {0, .., i − 1}, supξ∈Rn\Sk+1
mν,⊂Sk(`k, ξ) ≤ εk.

Then, from Proposition 6.5 it follows that

mν,⊂S0

(
i∑

j=0

`j, x

)
≤ mν,⊂S1

(
i∑

j=1

`j, x

)
+ sup

ξ∈Rn\S1

mν,⊂S0(`0, ξ)

≤ mν,⊂Si(`i, x) +
i−1∑

k=0

sup
ξ∈Rn\Sk+1

mν,⊂Sk(`k, ξ)

≤
i∑

k=0

εk ≤ 0.5.

Hence, from the monotonicity of the viability probabilities we can conclude that m̂ν,⊂S0(x) ≤

0.5 for all x ∈ Rn. Then, from Proposition 6.4 it follows that m̂ν,⊂Rn\O(x) = 0 for every

x ∈ Rn. Global recurrence of O for Hν follows from Proposition 6.2.
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D.24 Proof of Proposition 6.9

We first claim that for each (`, ρ) ∈ Z≥0 × R>0 and K ⊂ Rn compact there exists a

δ > 0 such that, for every x ∈ K compact and x ∈ Sδr (x),

P(graph(x) ∩ (Γ<` × Rn) ⊂ R2 × S) ≤ max
ξ∈K

m̃⊂S(`, ξ) + ρ (D.61)

where Sδr (x) refers to the set of random solutions generated by the Ĥδ system. If the

claim is not true, then there exists (`, ρ) and compact set K such that for every i ∈ Z≥1

we have for some xi ∈ K and xi ∈ S(1/i)
r (xi)

P(graph(xi) ∩ (Γ<` × Rn) ⊂ R2 × S) > max
ξ∈K

m̃⊂S(`, ξ) + ρ.

Define the function ϕi for hybrid arc φ such that ϕ(φ) = 1 if graph(φ)∩(Γ<`×Rn) ⊂ R2×S

and 0 otherwise. Then,

E[ϕ(xi)] ≥ max
ξ∈K

m̃⊂S(`, ξ) + ρ.

From [85, Thm 1] we have that there exists a random solution x from K for the nominal

system such that

E[ϕ(x)] ≥ max
ξ∈K

m̃⊂S(`, ξ) + ρ.

Since E[ϕ(x)] ≤ maxξ∈K m̃⊂S(`, ξ) and ρ > 0, it leads to a contradiction that establishes

the claim. The result now follows from the bound (D.61) by taking the supremum over

all possible random solutions from the initial condition x for the system Ĥδ.
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D.25 Proof of Theorem 6.3

For i ∈ Z≥0, let 0 < εi ≤ (1/2)i+2 and Si = Rn\(O + iBo). It follows from uniform

global recurrence of O for Ĥ that there exists `i be such that supξ∈Rn\Si+1
m̃⊂Si(`i, ξ) ≤

εi/2. Then, let δi > 0 come from the application of Proposition 6.9 with the compact set

K = Rn\Si+1 and ρ = εi/2.

Given x ∈ Rn, define i(x) := minj≥1{j : x ∈ Rn\Sj+1}. Then, we have the viability

probabilities satisfying mδi(x),⊂Si(x)
(`i(x), x) ≤ εi. Similarly we have that for every k ∈

{0, ..., i(x) − 1} there exists δk, `k > 0 such that supξ∈Rn\Sk+1
mδk,⊂Sk(`k, ξ) ≤ εk. Then,

define a continuous state dependent perturbation δ : Rn → R>0 as follows,

δ̂(x) := min
k∈{0,1,...,i(x)}

δk, δ(x) := inf
ξ∈Rn

(
δ̂(ξ) + |ξ − x|

)
.

Then, similar to the proof of Theorem 6.2 it follows from Proposition 6.5 that

mδ,⊂S0




i(x)∑

j=0

`j, x


 ≤ mδ,⊂S1




i(x)∑

j=1

`j, x


+ sup

ξ∈Rn\S1

mδ,⊂S0(`0, ξ)

≤ mδ,⊂Si(x)
(`i(x), x) +

i(x)−1∑

k=0

sup
ξ∈Rn\Sk+1

mδ,⊂Sk(`k, ξ)

≤
i(x)∑

k=0

εk ≤ 0.5.

Hence, from monotonicity of the viability probabilities we can conclude that m̂δ,⊂S0(x) ≤

0.5 for all x ∈ Rn. Then, it follows from Proposition 6.4 that for all x ∈ Rn, m̂δ,⊂Rn\O(x) =

0. The result now follows from Proposition 6.2.
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