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ABSTRACT 

Flow duration curve prediction for ungauged basins: A data-driven study of the contiguous 

United States 

by 

Geoffrey George Fouad 

 The flow duration curve (FDC) is one of the most widely used tools for displaying 

streamflow data, and percentile flows derived from the FDC provide essential information 

for managing rivers. These statistics are generally not available since most basins are 

ungauged. Percentile flows are frequently predicted using regression models developed using 

streamflow and ancillary data from gauged basins. Many potential independent variables are 

now available to predict percentile flows due to the ready availability of spatially distributed 

physical and climatic data for basins. A subset of the variables is often selected using 

automated regression procedures, but these procedures only evaluate a portion of the possible 

variable combinations. Other approaches for exploiting the information from physical and 

climatic data may produce stronger models for predicting percentile flows. The overarching 

hypothesis guiding this dissertation research was that more extensive approaches for 

extracting information from large sets of independent variables may improve percentile flow 

predictions. The dissertation was organized into the following three linked studies: (1) a 

performance evaluation of various approaches for selecting the independent variables of 

percentile flow regression models, (2) a comparison of different sets of variables for 

percentile flow regression modeling with increasing amounts of information in terms of the 

number of variables and their description of the statistical distribution of the data, and (3) a 

proof-of-concept study using a neural network approach called the self-organizing map 
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(SOM) to account for the noise and non-linearity of predictive relations between the 

independent variables and percentile flows. Key findings from these studies were as follows: 

(1) random forests was the best approach for selecting the independent variables for 

regression models used to predict percentile flows, but variables selected based on a 

conceptual understanding of the FDC performed nearly as well, (2) a set of only three 

variables (mean annual precipitation, potential evapotranspiration, and baseflow index) 

performed as well as models with larger sets of variables representing more physical and 

climatic information, and (3) the SOM performed similarly to global regression models based 

on all the basins, but did not outperform regression models developed for regions composed 

of similar basins. This may be due to the SOM using all the independent variables, whereas 

the regression models discarded irrelevant variables that could increase the error in percentile 

flow predictions. All the studies of this dissertation were performed using 918 basins in the 

contiguous US, and the resulting predictive models provide a tool for local watershed 

managers to predict 13 percentile flows along with an estimate of the predictive error. These 

models could be improved through future research that (1) emphasizes the role of geology as 

this provided the most valuable information for predicting the percentile flows, (2) exploits 

new sources of remotely sensed information as classic topographic variables provided little 

predictive information, and (3) develops specialized models designed for high and low flows 

as these were the most difficult to predict.
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Chapter 1: Introduction 

 The flow duration curve (FDC) is one of the most important graphical representations 

of streamflow data that shows flow versus the percent of time it is equaled or exceeded 

(Smakhtin, 2001). The flow magnitude associated with a given percent of time is a percentile 

flow, and these statistics are a common diagnostic for water resource planning, such as 

hydropower feasibility, water use permitting, and wasteload allocation (Vogel and 

Fennessey, 1995). Percentile flows are calculated using long-term streamflow records. 

However, such records do not exist for most basins, and water resource planning for these 

ungauged basins must rely on predicted percentile flows. 

 The most common approach for predicting percentile flows uses information from 

gauged basins to infer values for ungauged basins (Hrachowitz et al., 2013). This process is 

called hydrologic regionalization, and can be used to predict percentile flows directly 

(Mohamoud, 2008) or parameters of statistical distributions (e.g. lognormal) or analytical 

equations (e.g. polynomial) for representing the FDC (Castellarin et al., 2004). Approaches 

based on statistical distributions or analytical equations assume the general shape of the FDC 

for a geographic region (see Castellarin et al., 2004; Mendicino and Senatore, 2013; Viola et 

al., 2011), and may not be suitable for large study areas, such as the US, with a wide variety 

of FDCs. Directly predicting percentile flows requires no assumptions on the shape of the 

FDC, and can be accomplished using percentile flows from gauged basins and independent 

variables describing physical and climatic basin characteristics associated with streamflow. 

 The simplest form of percentile flow predictions uses values from nearby gauged 

basins and rescales them for differences in drainage area (Smakhtin et al., 1997). However, 

this approach may not be reliable for ungauged basins far from gauged basins (Archfield and 



2 

 

Vogel, 2010) and heterogeneous regions with large spatial variability in streamflow (Patil 

and Stieglitz, 2012). An alternative approach that may be more robust to the distance 

between basins and different regional conditions is the development of empirical relations 

between percentile flows and independent variables. These relations are used to predict 

percentile flows based on the independent variables of ungauged basins. A common method 

for developing relations between percentile flows and independent variables is multivariate 

regression (see Holmes et al., 2002; Hope and Bart, 2012; Mohamoud, 2008). 

 The independent variables used for the multivariate regression are critical, yet few 

studies have investigated their effect on percentile flow predictions (Hope and Bart, 2012; 

Ssegane et al., 2012a). These studies have tested the use of remotely sensed vegetation 

variables (Hope and Bart, 2012) and a variety of variable selection methods for a small 

sample of 26 basins in the mid-Atlantic US (Ssegane et al., 2012a). Despite the recent 

attention, independent variables are still normally selected using stepwise regression 

procedures that evaluate a sequence of variable combinations using model performance 

criteria (see Boscarello et al., 2015; Mendicino and Senatore, 2013; Zhang et al., 2015 for 

recent examples). Stepwise regression is widely criticized in the statistical literature for only 

identifying locally optimum variable combinations (see Flom and Cassell, 2007; Harrell, 

2001; Miller, 2002 for critiques). A global optimum could be identified by evaluating every 

variable combination in an all-models approach, but this is often not feasible given the 

number of available variables (> 300 in a national database for the US called GAGES-II). 

The growth of these variables is due to the proliferation of geographic information system 

and remote sensing data that can be used to create a variety of variables potentially 

associated with percentile flows. Access to this information and the potential to improve 
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predictions prompts the question of how to select the independent variables for percentile 

flow regression models. 

 A related question is how much information the initial set of independent variables 

should have in order to predict percentile flows. The data used to create the independent 

variables is distributed in space and time, and this information is typically aggregated (or 

lumped) as variables describing the average conditions for the basins. For example, 

precipitation time series may only be expressed as mean annual precipitation (see Archfield 

et al., 2009; Castellarin et al., 2004; Viola et al., 2011), or a digital elevation model is 

summarized using mean elevation and slope (see Hashmi and Shamseldin, 2014; Kim and 

Kaluarachchi, 2014; Zhang et al., 2015). The information from distributed data can be 

extended to include its statistical distribution and special features that may be related to 

percentile flows. The previous examples could be extended in the following manner to 

possibly improve percentile flow predictions: (1) the distribution of precipitation throughout 

the year and its peak could be quantified to capture the storms that contribute to high and 

average flows (Cheng et al., 2012) and (2) depressional storage may be represented as a 

proxy for groundwater recharge and associated low flows (Chiang et al., 2002b). These more 

detailed variables are now common in data-driven studies that use many independent 

variables (see Hashmi and Shamseldin, 2014; Mohamoud, 2008; Ssegane et al., 2012a). 

 Data-driven studies stand in contrast to a simple set of variables chosen based on a 

conceptual understanding of the processes that control the FDC. These processes were 

recently investigated by a series of studies. The first of these studies (Yokoo and Sivapalan, 

2011) used simulations in hypothetical basins to deconstruct the FDC into two components: 

(1) high (fast) flows associated with precipitation and (2) average to low (slow) flows largely 
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contributed by groundwater with adjustments for evaporative losses. Follow-up studies were 

conducted using a relatively large sample of basins in the US, and found that (1) the fast and 

slow flow components largely explained the variability in the FDC (Cheng et al., 2012), (2) 

additional information may be needed to explain differences due to regional groundwater 

levels, snow, and vegetation (Ye et al., 2012), and (3) average flows are influenced by 

regional patterns in precipitation (Coopersmith et al., 2012). The knowledge developed from 

these studies could be converted into a simple set of variables for explaining the FDC. The 

number of independent variables used to predict percentile flows can therefore range from a 

simple set of hydrologically-based variables to the many variables of data-driven studies, and 

the amount of information for predicting percentile flows should be investigated to guide 

future modeling efforts. 

 It has been established that the a priori identification of regions improves percentile 

flow predictions (see Boscarello et al., 2015; Isik and Singh, 2008; Sauquet and Catalogne, 

2011). These studies divide the basins into homogeneous regions with the goal of reducing 

the variance in percentile flows and improving their predictability. Homogeneous regions are 

identified using multivariate cluster analysis, but this involves decisions, such as the input 

variables, clustering method, and number of clusters, that can lead to predictive uncertainty. 

An alternative approach called the self-organizing map (SOM) can be used to cluster the data 

and generate predictions without the decisions of identifying regions a priori. The SOM is a 

neural network that iteratively adapts to the input data, revealing its cluster structure in an 

output layer (or grid) of neurons (Kohonen, 1998). The grid is a representation of the input 

data with neurons linked to the input data by a vector of values equal in length to the number 

of input variables. The neuron vectors can be used to predict percentile flows and show their 



5 

 

connection to the independent variables. The SOM has been used to cluster basins for 

prediction (Boscarello et al., 2015) and for exploratory analysis of controls on streamflow 

(Toth, 2012), but these two objectives (prediction and exploration) have not been pursued in 

the same study. Despite its ability to cluster data and avoid the decisions of a priori region 

identification, the SOM has not been used as a predictor for percentile flows. 

A. Dissertation overview 

 The chapters of this dissertation address the uncertainty of percentile flow predictions 

stemming from (1) independent variable selection, (2) the content and quantity of 

information in the initial set of independent variables, and (3) a priori region identification. 

Each chapter presents research on predicting 13 percentile flows for 918 basins in the US. 

The large scale was chosen to produce more generally relevant results for future studies. 

Chapter 2 is titled “Independent variable selection for regression modeling of the flow 

duration curve for ungauged basins in the US”, and evaluates different methods for selecting 

the independent variables of percentile flow regression models. An automated regression 

procedure for selecting the independent variables was used as a reference for assessing the 

performance of alternative variable selection methods including (1) knowledge-based 

variable selection according to the literature on controls of the FDC, (2) principal component 

analysis, (3) correlation analysis, (4) random forests, (5) symbolic regression driven by 

genetic programming, and (6) Bayesian networks. The methods were chosen from a review 

of the literature on variable (feature) selection, and represent different types of variable 

selection. Comparing the predictive performance of these methods addresses the following 

research question: How should independent variables be selected for the regression modeling 

of FDC percentile flows? 
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 Chapter 3 investigates the research question in its title, “How much physical and 

climatic information is necessary for regional regression modeling of the flow duration 

curve?”. Different sets of independent variables were used to perform a regional regression 

that first split the basins into regions and then developed percentile flow regression models. 

A regional regression was performed to improve the predictions from Chapter 2 that used all 

the basins to develop the regression models (rather than regions). The variable selection 

method that performed the best in Chapter 2 was applied in this study. The regional 

regression was repeated using three sets of variables with increasing amounts of information 

as follows: (1) three hydrologically-based variables for explaining the shape of the FDC, (2) 

22 lumped variables describing average conditions in the basins, and (3) 37 distributed 

variables describing average conditions and the statistical distribution of the basin’s data. The 

predictive performance of the three sets of variables was evaluated to assess the amount of 

information necessary for the regional regression of percentile flows. 

 Chapter 4 applies the SOM to both predict percentile flows and explore their 

associations with the independent variables, and is titled “Predicting and visualizing relations 

to the flow duration curve using the self-organizing map”. The SOM was used to predict the 

percentile flows, and its output was used to conduct an exploratory analysis of variables 

related to the FDC. Data visualizations were created to compare the cluster structure and 

variation between the percentile flows and independent variables, and inferences were drawn 

on the factors controlling the FDC for future modelling efforts. The SOM clusters the data as 

it generates predictions, and can therefore be used to avoid the decisions of identifying a 

priori regions for percentile flow predictions. It was used to generate global percentile flow 

predictions based on all the basins as well as within the regions previously identified in 
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Chapter 3. The performance of the resulting predictions was assessed to test the hypothesis 

that the SOM could be used to predict percentile flows without the aid of a priori regions. 

The regional regression results from Chapter 3 were also included in this study as a reference 

for comparing the predictive performance of the SOM. Application of the SOM for both 

prediction and an exploratory analysis of percentile flows was conducted to answer the 

following two research questions: (1) How do global percentile flow predictions generated 

using the SOM compare to regional predictions? and (2) What can be learned from the SOM 

regarding the variables related to percentile flows? 

 The final chapter synthesizes the major findings of the dissertation, and concludes 

with future research recommendations.
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Chapter 2: Independent variable selection for regression modeling of the flow duration 

curve for ungauged basins in the US 

A. Abstract 

 The flow duration curve (FDC) is a widely used tool for hydrologic applications, and 

predictions of its percentile flows are frequently needed for ungauged basins. These 

predictions are traditionally produced using regression models with basin characteristics as 

independent variables. Due to the large number of potential independent variables, a subset 

must be selected for percentile flow regression models. An evaluation of all the possible 

regression models is impractical given the dimensionality of current basin databases with 

many independent variables. Instead, a portion of the possible variable combinations is 

typically evaluated using automated regression procedures based on model performance 

criteria. This represents the baseline approach for selecting the independent variables of 

percentile flow regression models, but alternative methods from the field of variable (feature) 

selection may identify a more optimum subset of variables. This study constructed regression 

models for predicting the FDC percentile flows of 918 basins in the United States, and tested 

a baseline regression procedure against alternative methods for selecting the independent 

variables of the regression models. The alternative methods either created latent variables 

without cross-correlation (principal component analysis) or selected variables based on their 

relation to the percentile flows (knowledge-based variable selection, correlation analysis, 

random forests, symbolic regression, and Bayesian networks). Performance of all the variable 

selection methods was evaluated using 184 validation basins excluded from any phase of 

regression model development. The predictive performance of the baseline regression 

procedure was only better than principal component analysis, which was the only method 
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that did not use the percentile flows to identify the independent variables. All other methods 

that used the percentile flows for variable selection performed better than the baseline 

regression procedure. The predictive error and complications with multicollinearity strongly 

suggest that baseline regression procedures should not be the first choice for selecting the 

independent variables of percentile flow regression models. Another notable result from the 

performance evaluation was that independent variables selected from subject matter 

knowledge performed nearly as well as the best data-based methods. Subject matter 

knowledge and data-based variable selection both emphasized the importance of geologic 

characteristics in shaping the FDC, and the geologic variable of baseflow index had the 

largest effect on predictive performance. All of the models suffered from unacceptable 

predictive error, and modeled percentile flows may be improved by (1) novel independent 

variables more representative of the processes that control streamflow, (2) regression models 

developed for regions with similar basins that constrain streamflow variability and increase 

predictability, and (3) more powerful predictive models, like artificial neural networks, 

capable of dealing with the noise and non-linearities in the relations between basin 

characteristics and percentile flows. 

B. Introduction 

 The flow duration curve (FDC) is one of the most widely used tools for displaying 

streamflow data (Smakhtin, 2001). Flow magnitude is plotted against the probability it is 

equaled or exceeded (i.e. exceedance probability). This essentially gives a cumulative 

distribution function for daily streamflow, and is used for a variety of applications, such as 

hydropower, water quality, and water use assessments (Vogel and Fennessey, 1995). These 
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applications are often concerned with the probability of exceeding critical flows, which can 

readily be determined from gauged streamflow data. 

 A far more challenging problem lies in predicting statistics of the FDC where 

streamflow data is insufficient or unavailable. The ungauged basin problem is widely 

acknowledged as the ultimate challenge in hydrology (Seibert and Beven, 2009), and a large 

body of literature has developed around predicting streamflow variables for ungauged basins. 

Despite its widespread use, the FDC has garnered little attention compared to predicting 

flood and low flow statistics (Castellarin, 2014). 

 Predicting the FDC of ungauged basins can be accomplished by a variety of methods 

overviewed in Castellarin et al. (2004). A rainfall-runoff model can be parameterized for the 

ungauged basin, and the subsequent discharge estimates can be used to calculate the FDC. 

However, the parameterization of rainfall-runoff models for ungauged basins is open to great 

uncertainty (He et al., 2011), and simpler empirical methods have been shown to provide 

similar results (Zhang et al., 2014). 

 Empirical methods use data from surrounding gauged basins to infer values of the 

FDC for ungauged basins. The simplest of these methods transfers the nearest gauged FDC 

to the ungauged basin by scaling it according to the difference in drainage area (Stedinger et 

al., 1993). More advanced methods along these lines use gauged FDCs to produce 

predictions from distance-based weighting schemes (Ganora et al., 2009) or spatial 

interpolation methods (Castellarin, 2014). Methods that rely solely on gauged FDCs become 

less reliable in sparsely gauged regions, and alternative methods based on the FDC’s physical 

foundation are needed. 
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 The climate and physical setting of a basin influence its FDC (Yokoo and Sivapalan, 

2011), and can subsequently be used as independent variables to predict the FDC. The 

advantage of this approach is that it is not dependent on the location of the gauges, and 

nearby gauges may not be the best way to predict the FDC in areas prone to high variability 

and non-linearities in streamflow, such as in dry climates (Patil and Stieglitz, 2012). 

 Basin characteristics can be used in regression models to predict either (1) the 

parameters of a statistical distribution for representing the FDC (Viola et al., 2011) or (2) the 

flows of specified exceedance probabilities called percentile flows (Mohamoud, 2008). The 

latter method is appealing because assumptions on the shape of the FDC are not required. 

Predicting percentile flows is also useful for evaluating the performance of regression models 

from low to high flows (Hope and Bart, 2012). Percentile flow regression models are fitted 

using basin characteristics thought to influence streamflow. 

 Developments in data collection facilitated by geographic information systems and 

remote sensing have greatly increased the number of basin characteristics that can serve as 

independent variables in percentile flow regression models, and over 300 of these variables 

are now available in a nationwide database for the United States (US) called GAGES-II 

(Falcone, 2011). A recent survey of the literature by Ssegane et al. (2012a) revealed that 251 

different basin characteristics have been used to predict percentile flows and other 

streamflow statistics. 

 The growing number of basin characteristics readily available to investigators poses 

the question of which variables should be used in regression models for predicting the 

percentile flows of the FDC. Variable selection is a necessary step in building regression 

models in order to (1) eliminate irrelevant variables that introduce unnecessary variance in 
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model estimates, (2) reduce the number of model parameters for smaller sample sizes, and 

(3) shed redundant variables that can destabilize models applied to new data (Miller, 2002). 

 An optimum subset of independent variables could be identified if every combination 

of the proposed variables in a study were evaluated in an all possible models (all-models) 

regression. However, this approach can quickly become impractical considering that the 

number of possible models is given by 2
x 
– 1, where x is the number of independent 

variables. Computational limits are reached even for a small fraction of the variables 

available in basin databases (> one trillion possible models for only 40 variables). Most FDC 

regression modeling studies avoid the all-models approach due to the computational cost. In 

fact, only two studies from the same authors (Hope and Bart, 2011; Hope and Bart, 2012) 

were discovered that used all-models regression to predict percentile flows, but these studies 

were obligated to use a manageable number of variables that do not reflect the dimensionality 

of current basin databases. 

 Due to the number of independent variables proposed in most studies, an all-models 

approach is not feasible for selecting the independent variables of percentile flow regression 

models. Instead, non-exhaustive methods are used to select a subset of variables. These 

methods either evaluate different combinations of variables for the regression model or they 

do not use regression to select the independent variables for the regression model. The 

former option is more common as it directly assesses how well each subset of variables 

performs for the regression model. 

 Different combinations of variables are typically evaluated using automated 

regression procedures that search a portion of the variable space for an optimum subset of 

variables. This represents a baseline approach widely applied to develop percentile flow 
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regression models. The baseline regression procedures limit the variable space by (1) 

evaluating a sequence of variables (stepwise regression) or (2) eliminating entire branches of 

variable combinations not expected to improve the model (branch-and-bound regression; 

Miller, 2002). These procedures have the advantage of directly evaluating the variables for 

the regression model, but are widely criticized in the field of statistics because they tend to 

produce biased models that underperform on new data used for model validation (see Copas, 

1983; Flom and Cassell, 2007; Harrell, 2001 for critiques). The limitations of baseline 

regression procedures are further explained in the next section, and justify the need to test 

alternative methods for selecting the independent variables of percentile flow regression 

models. 

1. Limitations of baseline regression procedures 

 Baseline regression procedures apply automated routines to test numerous models 

with the goal of identifying the best subset of variables for predicting the dependent variable. 

These procedures are used when an exhaustive search of all possible models is not feasible 

due to the number of variables. Instead, an automated search of the variable space is guided 

by the level of significance of the variables as in stepwise regression (Flom and Cassell, 

2007) or performance criteria that quantify how well the model fits the data as in branch-and-

bound searches (Miller, 2002). 

 Stepwise regression is by far the most common method for selecting the variables 

used to predict FDC statistics including percentile flows (see Archfield et al., 2009; 

Castellarin et al., 2004; Mohamoud, 2008; Ssegane et al., 2012a; Viola et al., 2011). This 

method adds or removes variables sequentially from the regression model according to their 

level of significance. In forward stepwise regression, the most significant variable is added to 
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the model at each step. The reverse occurs for backward stepwise regression, where the 

variable with the least significance is removed from the model at each step. Both of these 

processes continue until all the variables in the model are significant at a specified level. 

 Reliance on a variable’s level of significance is the main criticism of stepwise 

regression because the significance of a variable can vary depending on the order it enters the 

regression model (Copas, 1983). This can lead to spurious regression models that may not 

contain the best variables for predicting percentile flows. In addition, the variables are 

selected from a limited search of the variable space that may only reach a poor local optimum 

of predictive performance (Miller, 2002). 

 The limitations of stepwise regression described above have prompted more extensive 

search procedures that evaluate different variable combinations based on their fit with the 

observed data rather than the significance level of individual variables. Subsets of variables 

are evaluated by branch-and-bound algorithms that approximate an all-models regression. 

The branch-and-bound approach is generally considered an improvement to stepwise 

regression since the broader search may provide a more global optimum for the variable 

space (Miller, 2002). 

 The basic principle of branch-and-bound algorithms is that the predictive 

performance of a regression declines as variables are removed from the model (Miller, 2002). 

Therefore, a larger set of variables can be abandoned if another smaller set of variables 

produces a better model. For example, if a set of only three variables outperformed a 

different set of five variables, then the larger set of variables can be dismissed since 

removing variables will not improve the resulting model. 
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 All baseline regression procedures that evaluate multiple models are problematic for 

estimating model parameters because they do not account for the model selection process 

(Flom and Cassell, 2007). The distribution of the modeling results is not represented, and this 

introduces bias into the model parameters and associated statistics that cannot be corrected 

(Flom and Cassell, 2007). The consequences of this bias are summarized in Harrell (2001) as 

follows: (1) overinflated significance levels for the variables, (2) overestimated absolute 

values of the model parameters, and (3) underestimated errors for the model parameters 

resulting in narrow confidence intervals. The bias resulting from regression procedures can 

reduce the model’s predictive performance on validation data withheld from the model 

selection process. 

 Predictive performance on validation data is also diminished by multicollinearity in 

the form of cross-correlated variables (Dormann et al., 2013). This is a common problem 

with basin characteristics describing climatic and physical conditions that have coevolved 

over geologic timescales (Wagener et al., 2010). Multicollinearity is exacerbated by 

regression procedures because cross-correlated variables are selected if they happen to 

improve the model (Flom and Cassell, 2007). This results in models that are unstable for 

validation data that may not have a similar correlation structure between the independent 

variables (Dormann et al., 2013). 

 Strategies for dealing with multicollinearity in regression procedures screen models 

according to diagnostics derived from the correlation matrix of the variables (Belsley et al., 

2004). This process requires arbitrary thresholds that are typically drawn from the literature 

(Dormann et al., 2013). Such thresholds are proposed for general use, although 

multicollinearity diagnostics may be sensitive to the type of data, sample size, and model 
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specifications (Snee and Marquardt, 1984). Acceptable levels of multicollinearity may also 

depend on the variable targeted for prediction (Snee and Marquardt, 1984). All of this makes 

setting the multicollinearity threshold a dubious task. 

 In light of the problems with baseline regression procedures, alternative variable 

selection methods that do not use regression may be better suited to select the independent 

variables for percentile flow regression models. 

2. Alternative variable selection methods 

 The following review covers the main categories of alternative variable selection 

methods that do not use regression. Alternative variable selection methods can be most 

broadly categorized as those that use subject matter knowledge of the given phenomenon or 

are strictly based on the data. Methods from either category are rarely used to select the 

independent variables of regression models in hydrology (Ssegane et al., 2012a), although 

they avoid the bias introduced by regression procedures and the need to set arbitrary 

multicollinearity thresholds. Despite these advantages, few studies have compared alternative 

variable selection methods to baseline regression procedures for predicting streamflow 

statistics (Wan Jaafar et al., 2011), and only one study from a review of FDC regression 

modeling research compared different variable selection methods (Ssegane et al., 2012a). 

2.1 Variable selection based on subject matter knowledge 

 The knowledge-based approach is particularly suited for streamflow because it is 

controlled by physical properties that can be expressed as basin characteristics. Over a 

century of hydrologic research has investigated the relations between measurable basin 

characteristics and different flow magnitudes (Dawdy et al., 2012). This information can be 
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used to hypothesize the basin characteristics that would be most effective for predicting the 

percentile flows of the FDC. 

 Knowledge of the factors that shape the FDC is typically only exercised to identify 

the initial set of independent variables (Castellarin et al., 2004), and seldom used to select the 

final independent variables because of the subjective nature of knowledge-based variable 

selection. Despite its subjectivity, knowledge-based variable selection is recommended in 

widely cited regression modeling textbooks, which advise against automated regression 

procedures that select variables without substantive theory of the subject matter (see Harrell, 

2001; Judd et al., 2009; Miller, 2002). This same concern has been voiced in hydrology 

because variables selected based on process controls are less likely to yield results that are an 

artifact of the dataset and more likely to maintain a connection with the targeted streamflow 

variable in ungauged basins (Bowden et al., 2005). 

 Physically relevant variables can be selected by reviewing the literature on the 

climatic and geomorphologic controls of long-term streamflow regimes. The earliest studies 

of this kind connected drainage area to the flow magnitude of a basin (O’Connell, 1868), and 

later studies have used more sophisticated statistical and simulation tools to elucidate the 

factors that influence a basin’s response to precipitation (Hrachowitz et al., 2013), including 

how such factors shape the FDC (Yokoo and Sivapalan, 2011). 

 The physical underpinning of the FDC has long been recognized since its early use 

(Foster, 1934), and many studies have substantiated the link between FDC statistics and 

simple basin characteristics, such as mean annual precipitation, land surface slope, and 

geologic units (see Cheng et al. (2012), Searcy (1959), and Yaeger et al. (2012) among many 

others). Previous research has disaggregated the FDC into three main segments composed of 
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high, average, and low flows (Yokoo and Sivapalan, 2011). The processes affiliated with 

each of these segments and their controls were characterized by Yokoo and Sivapalan (2011) 

as follows: (1) high flows are contributed by surface runoff during storm events with a loss 

factor for infiltration, (2) average flows reflect long-term storage dictated by climatic and 

geologic conditions, and (3) low flows are groundwater contributions during the dry season 

influenced by evapotranspiration rates. This information could be interpreted to select the 

independent variables of regression models for predicting the percentile flows of the FDC, 

and at the very least, should be used to cross-check the physical relevance of selected 

variables. 

2.2 Variable selection based on the data 

 Other alternative methods for selecting variables are strictly based on the data, and 

originate from the field of variable (or feature) selection. This field is dedicated to creating 

novel data-based variable selection methods for improving predictive models. Variable 

selection methods are rapidly evolving in response to the increasing dimensionality of 

modern datasets. Like baseline regression procedures, data-based variable selection methods 

automate the process of identifying variables to make predictions, but they operate 

independent of regression modeling. 

 The goal of data-based variable selection methods is either to (1) identify variables 

with a specified numerical relation (explanatory or probabilistic) to the targeted variable or 

(2) limit statistical redundancy (multicollinearity) in the dataset. The latter methods may 

suffer from the disadvantage of not using the variable targeted for prediction, but are 

advantageous for maximizing the information content of the dataset used to generate 

predictions (Abdi and Williams, 2010). Limiting multicollinearity is particularly critical for 
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handling basin databases prone to having statistically redundant variables. Such variables fail 

to provide additional information, and can be detrimental for regression modeling because 

the resulting multicollinearity may diminish the portability of the model (Dormann et al., 

2013). 

 The risk of multicollinearity can be reduced through dimensionality reduction 

methods or correlation analysis. Dimensionality reduction methods transform a dataset into 

latent variables that are uncorrelated to each other. The most popular dimensionality 

reduction method is principal component analysis (PCA), which is the most common 

alternative to baseline regression procedures for hydrologic variable selection (Ssegane et al., 

2012a). The original variables undergo PCA to produce a new set of uncorrelated variables 

known as principal components (PCs), which are a linear combination of the variables 

calculated as in Abdi and Williams (2010). Using the PCs as independent variables has the 

advantage of eliminating multicollinearity in the regression model, but does not incorporate 

information on the variable targeted for prediction. 

 Another method for minimizing the risk of multicollinearity is correlation analysis. 

This method is based on the correlation matrix of the variables. Cross-correlated sets of 

variables are identified, and a single variable from each set is selected on the basis of subject 

matter knowledge (Yadav et al., 2007) or correlation with the modeled variable (Povak et al., 

2014). This is a hybrid of methods that attempts to limit multicollinearity while establishing a 

connection to the dependent variable of the regression. The weakness of correlation analysis 

is that it requires arbitrary correlation thresholds for screening variables. Another potential 

problem is that correlation analysis only compares pairs of variables, and the relations 
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between two variables is known to change in the presence of other variables (Dormann et al., 

2013). 

 The other major category of data-based variable selection methods that do not use 

regression evaluate the predictive potential of the independent variables. Predictive potential 

is quantified as explanatory power or probabilistic associations with the targeted variable. 

Like baseline regression procedures, alternative variable selection methods concerned with 

explanatory power treat variable selection as an optimization problem. However, these 

approaches differ from baseline regression procedures in how they evaluate variables, and 

may select better variables through iterative processes that evaluate the predictive potential of 

the variables on different subsets of the data (i.e. bootstrapping; Breiman, 2001) or heuristic 

searches driven by an independent training algorithm (i.e. genetic programming; Koza, 

1994). Both approaches focus on minimizing model residuals (error) through different 

iterative processes for evaluating the predictive potential of the variables. 

 Data partitioning is achieved by regression trees that split the modeled variable into 

more manageable groups. The average of the group then serves as an effective prediction. 

The partitions of the regression tree are determined by conditional statements regarding the 

values of affiliated independent variables. This process is repeated to produce random 

forests, which are an ensemble of regression trees. 

 Random forests were introduced by Breiman (2001) as an improvement to the use of 

single regression trees. The random part of the forest is the sample selected to build each 

regression tree. Data withheld from the tree is then used to generate predictions that are 

averaged over all the trees. The error associated with these predictions is called the out-of-

bag error, and the independent variables can be ranked according to the out-of-bag error 
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produced by randomly permuting, or essentially removing, each independent variable from 

the regression trees. Variables that produce more out-of-bag error are considered more 

important. 

 An alternative form of optimization employs a heuristic search to test various models 

for predicting a quantity, such as percentile flows. This process is similar to baseline 

regression procedures except it employs a genetic program to solve the regression problem. 

This specialized form of genetic programming, called symbolic regression, evaluates a set of 

variables and mathematical operators using a training algorithm that mimics the evolution of 

a population. The variables and mathematical operators are the members of the population, 

and they are iteratively combined and evaluated using an objective function, such as root-

mean-square error. Characteristics of the best models are passed on to the next generation via 

genetic operators, like mutation and crossover. The evolutionary process eventually 

converges on an optimum set of models, and little to no change in the objective function is 

observed. For a more detailed review of genetic programming and its application for 

symbolic regression, the reader is referred to Koza (1994). 

 The drawback of optimization methods is that they are susceptible to selecting 

irrelevant variables due to their focus on minimizing predictive error and limited attention to 

the conditional relation between variables (Ssegane et al., 2012a). Irrelevant variables may be 

selected as a result of Simpson’s paradox (Simpson, 1951), a phenomenon in which the 

relation between two variables changes when a third variable is introduced. This problem can 

be mitigated by identifying causal (probabilistic) associations between variables (Pearl, 

2014). 
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 The term causal association refers to a variable’s effect on the probability of a certain 

outcome (or dependent variable), and variables that exhibit this behavior are suited to predict 

the associated variable. Causal associations are discovered using Bayesian networks that 

evaluate the conditional probability of a variable changing in the presence of other variables 

(Meganck et al., 2006). Bayesian networks are composed of nodes (variables) and edges 

(arrows) that connect variables with causal associations. Edges are drawn when a variable is 

more likely to change in the presence of another variable rather than without it. Variables 

with edges toward the dependent variable are then selected as the final set of independent 

variables. 

C. Study objectives 

 Regression modeling is the traditional approach for predicting streamflow statistics, 

including percentile flows, in ungauged basins. However, the appropriate method for 

selecting the independent variables of these models remains unclear. Most studies adopt 

baseline regression procedures that automatically test regression models to identify the 

independent variables for predicting percentile flows. Studies that compare commonly used 

baseline regression procedures against alternative variable selection methods may help to 

uncover the best methods for developing percentile flow regression models. An overview of 

the methods available to select the independent variables of percentile flow regression 

models is provided in Figure 1, and the methods applied in this study are specified. 
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Figure 1. Overview of variable selection methods for percentile flow regression models with the 
methods applied in this study as follows: baseline regression, knowledge-based (expert), Bayesian 
network (BN), random forests (RF), symbolic regression (SR), correlation analysis (corr), and 
principal component analysis (PCA). 

 The overarching objective of this study was to develop regression models for 

predicting the percentile flows of ungauged basins in the US. The specific focus of the 

research was to compare variable selection methods for percentile flow regression models. A 

large number of independent variables are now available for the regression modeling of 

percentile flows in the US (see the GAGES-II database). These variables can be selected 

using a variety of variable selection methods. However, a recommended method has yet to 

emerge from the literature on FDC regression modeling. This study is designed to evaluate 

variable selection methods for predicting the percentile flows of the FDC using regression 

models, and addresses the following question: 

How should independent variables be selected for the regression modeling of FDC percentile 

flows? 

 A hypothesis on which variable selection method may perform the best could not be 

formulated from the literature, but the basis for selecting the independent variables provided 

some insight into which methods may perform better. Variable selection methods based on 

relations between the independent and dependent variable were expected to perform better 

than those that only evaluated the independent variables. Another expectation was that 
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methods concerned with the correlation between independent variables may reduce 

redundancy in the regression models and improve their stability for ungauged basins. 

 The rest of the paper is organized into the following sections. The methods section 

describes the overall research design, basins and variables used in this study, application of 

the variable selection methods, and the subsequent performance evaluation. The performance 

of the variable selection methods and interpretations are presented in the results and 

discussion section. Key findings and final recommendations are then provided in the 

conclusions section. 

D. Methods 

 Competing variable selection methods were evaluated according to the predictive 

performance and multicollinearity of resulting regression models. Multicollinearity was a 

concern because correlated independent variables in regression models can hinder their 

transferability to ungauged basins. The performance of a baseline regression procedure was 

compared to alternative variable selection methods. The alternative methods operated 

independent of the regression to select independent variables using literature on the controls 

of the FDC and data-based methods, including PCA, correlation analysis, random forests, 

symbolic regression, and Bayesian networks. 

 The scope of this study was intended to produce generalizable results for future 

studies confronted with the question of how to select independent variables for FDC 

regression models. It has been recommended that generalizable results can be achieved by 

using many basins with an array of conditions (Andréassian et al., 2007). In light of this, 918 

basins in the US were used to test the performance of variable selection methods. A larger 

variety of variable selection methods was tested than in previous studies, with a single 



25 

 

method chosen to represent each major category of variable selection (baseline regression 

procedures, knowledge-based, dimensionality reduction, optimization, and probabilistic). The 

performance of these methods was evaluated on a full range of FDC percentile flows to 

determine which methods performed better for low to high flows. 

1. Study basins 

 Basins classified as “near-natural” in the GAGES-II database (Falcone, 2011) were 

used in this study. The near-natural designation is given to basins with minimal human 

impacts and water use. All of these basins were used provided they were in the contiguous 

US and had at least 30 years of continuous daily streamflow records. The minimum length of 

30 years was used because it covers multidecadal shifts in climate and has been shown to 

produce stable streamflow statistics (Kennard et al., 2010). Streamflow records were not 

selected for a concurrent time period given the length of record and need for a large sample 

size. Nested basins were excluded from the analysis by removing any upstream basins. This 

ensured that the streamflow data was from hydrologically separate basins. The final number 

of basins was 918 after applying the above screening criteria. 

 The basins were then split into calibration and validation datasets (Figure 2). The 

calibration basins were used to select the independent variables and develop subsequent 

regression models, while the validation basins were withheld from these steps in order to 

assess how well the regression models resulting from the different variable selection methods 

were able to predict FDC percentile flows. The number of validation basins was set at 184 

based on a review of 25 hydrologic prediction studies in which an average of about 20% of 

the basins were reserved for validation (see Heuvelmans et al., 2006; Holmes et al., 2002; 

Hope and Bart, 2011). 
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Figure 2. Location of the calibration and validation basins in the contiguous US. 

 A holdout validation approach was adopted given the large sample size. The diversity 

of the basins mimicked an ungauged situation, and a more complex cross-validation 

approach was deemed unnecessary. Following the recommendation of Klemeš (1986), a 

holdout validation should use basins that are representative of the entire sample in an 

approach called the “proxy-basin test”. This validation approach can be accomplished using a 

sampling scheme that extracts a subset of basins which reflect the distribution of 

hydrologically critical variables in the entire sample. 

 A stratified random sampling scheme was used to select the validation basins for the 

proxy-basin test. Validation basins were extracted based on climate, geology, and drainage 

area because these are some of the most influential factors on the FDC (Yokoo and 

Sivapalan, 2011). First, the basins were geographically stratified by the broadest Köppen 

climate classes and major rock types as delineated by Peel et al. (2007) and Reed and Bush 

(2007), respectively. The geographic stratification was intentionally left as broad as possible 
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to limit any influence on the predictions, and this resulted in 11 groups for the contiguous 

US. A proportional number of basins were then extracted from each group. These basins 

were randomly selected within bins designed to sample across the group’s drainage area 

distribution. The resulting validation basins have key characteristics that closely resemble the 

calibration basins (Table 1), and statistical tests (Kolmogorov-Smirnov and Mann-Whitney) 

were used to confirm that the calibration and validation datasets are from the same parent 

distribution. 

Table 1. Distribution of key hydrologic characteristics for the calibration (C) and validation (V) basins. 

  

Mean annual 

flow (mm) 

Mean annual 

precipitation (mm) 

Baseflow 

index (%) 

Drainage 

area (km
2
) 

Mean 

elevation (m) 

  C V C V C V C V C V 

Minimum 1 4 234 287 5 3 2 4 9 16 

25
th

 percentile 231 247 798 797 35 32 100 101 276 264 

Median 409 412 1106 1100 48 46 292 303 498 470 

75
th

 percentile 657 582 1308 1283 61 59 718 751 1194 1090 

Maximum 3607 3507 4117 3965 85 82 25791 8265 3646 3435 

2. Basin variables 

 A total of 13 percentile flows were predicted in this study. These included percentile 

flows at increments of ten from 10-90% and the extreme flows of 1%, 5%, 95%, and 99%. 

The percentile flows were calculated using 30 years of continuous daily streamflow records 

from potentially different time periods. The record length was more than adequate 

considering a previous study found that only five years are needed to reliably estimate the 

long-term FDC (Castellarin et al., 2007). Percentile flows were calculated using the Weibull 

plotting position as in Castellarin et al. (2004), and subsequently normalized to control for 

differences in magnitude between the basins. Normalization was achieved using the mean of 
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nonzero flows (Hope and Bart, 2011) since the mean and median flow equaled zero for some 

basins. 

 The percentile flows were predicted using 22 basin characteristics that served as the 

independent variables in regression models. A summary of these variables is provided in 

Table 2. Potential independent variables were chosen based on a review of the literature 

regarding FDC prediction and datasets covering the contiguous US. A representative variety 

of independent variables typically used to predict the FDC was then created from the 

available data. These variables are comprised of climatic, topographic, land cover, soil, and 

geologic variables. 

Table 2. Dependent and independent variables created for the basins in this study. 

Variable Units Description Key reference Data source 

Dependent     

Qp (e.g. Q01 for 

1%) 

- Normalized percentile flows for 

1, 5, 10, 20, 30, 40, 50, 60, 70, 

80, 90, 95, and 99% 

Castellarin et al. 

(2004) 

NWIS 

Independent     

Climate     

MAP mm Mean annual precipitation Hope and Bart (2011) PRISM 

Precip_SD mm Standard deviation of annual 

precipitation 

Hope and Bart (2011) PRISM 

Precip_1D_Max mm Median of annual 1-day 

maximum precipitation 

Yadav et al. (2007) PRISM 

Precip_Intensity mm/d Precipitation per rainy day Kroll et al. (2004) PRISM 

Mean_Temp °C Average daily mean 

temperature 

Hope and Bart (2011) PRISM 

PET mm Mean annual potential 

evapotranspiration calculated 

using the Oudin et al. (2005) 

equation 

Oudin et al. (2005) PRISM 

Aridity - Aridity index calculated as PET 

divided by MAP 

Ssegane et al. (2012a) PRISM 

Percent_Snow % Percent of precipitation as snow Falcone (2011) GAGES-II 

Topography     

Area km
2
 Drainage area Falcone (2011) GAGES-II 

Table continued on next page    
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Variable Units Description Key reference Data source 

Density km/km
2 

Drainage density calculated as 

stream length divided by 

drainage area 

Ssegane et al. (2012a) NHDPlusV2, 

GAGES-II 

Orientation °N Basin angle along main channel Di Prinzio et al. 

(2011) 

GAGES-II 

Elev m Mean elevation Ssegane et al. (2012a) NED 

Relief_Ratio % Relief ratio calculated as 

elevation range divided by 

basin length along main 

channel 

Berger and Entekhabi 

(2001) 

NED, 

GAGES-II 

Slope % Mean slope Ssegane et al. (2012a) NED 

Aspect °N Mean aspect Ssegane et al. (2012a) NED 

Accumulation km
2
 Mean flow accumulation 

expressed as upslope area 

Povak et al. (2014) NED 

TWI - Mean topographic wetness 

index calculated as 

ln(accumulation/tan(slope)) 

Ssegane et al. (2012a) NED 

Land cover     

Forest % Percent forest cover Ssegane et al. (2012a) NLCD 1992 

Soil     

Soil_Porosity % Mean soil porosity expressed as 

percent pore volume 

Hope and Bart (2011) CONUS-

SOIL 

Water_Capacity % Mean water capacity expressed 

as percent volume at field 

capacity 

Mohamoud (2008) CONUS-

SOIL 

Poorly_Drained % Percent poorly drained 

including hydrologic soil 

groups C and D 

Ssegane et al. (2012a) CONUS-

SOIL 

Geology     

BFI % Mean baseflow index derived 

from a baseflow grid 

Hope and Bart (2011) BFI48GRD 

Data sources: NWIS, National Water Information System (http://waterdata.usgs.gov/nwis); PRISM, 

Precipitation-elevation Regressions on Independent Slopes Model (http://prism.oregonstate.edu); GAGES-II, 

Geospatial Attributes of Gages for Evaluating Streamflow, version II (Falcone, 2011); NHDPlusV2, National 

Hydrography Dataset Plus Version 2 (http://www.nhdplus.com); NED, National Elevation Dataset 

(http://ned.usgs.gov); NLCD 1992, National Land Cover Dataset 1992 (Vogelmann et al., 2001); CONUS-

SOIL, Conterminous US multilayer soil characteristics dataset (Miller and White, 1998); BFI48GRD, Base-

flow index grid for the conterminous US (Wolock, 2003) 

 Climatic variables were generated from data temporally concurrent with the 

streamflow data except for variables requiring daily data (i.e. Precip_1D_Max and 

Precip_Intensity) and the only variable not produced specifically for this study (i.e. 

Percent_Snow). The daily climatic data did not span the period-of-record for the streamflow 

data, and the two climatic variables derived from daily data were generated for a 30-year 
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time period (1981-2010) with the most overlap in streamflow data. Percent_Snow is a 

GAGES-II variable for the average percent of precipitation delivered as snow from 1901-

2000. The effect of snow was also accounted for using variables typically cross-correlated 

with snowfall, like elevation and temperature. 

 The only land cover variable was percent forest cover (Forest) since the amount of 

forest in a basin is known to affect its FDC (Brown et al., 2013b), and other vegetation 

classes have less of an effect on streamflow (see Bart and Hope, 2010; Brown et al., 2005; 

Wilcox and Huang, 2010). 

 Finally, the impact of geology on streamflow was represented using the baseflow 

index (BFI), which is the percent of streamflow contributed by groundwater. BFI is strongly 

linked to geologic conditions and was used instead of geologic units because it offers a way 

to quantify the effect of geology on streamflow (Bloomfield et al., 2009). A grid of BFI 

values has been produced for the contiguous US by spatially interpolating BFI values from 

gauged basins (Wolock, 2003). Although this product was derived from gauged streamflow 

data, it can be used for ungauged prediction since it is a pre-existing dataset with spatially 

contiguous coverage for the entire country. Similar products have been used for ungauged 

prediction in the past (see Hope and Bart, 2011; Wan Jaafar et al., 2011; Yadav et al., 2007). 

 The magnitude of the variables influenced some of the variable selection methods 

(i.e. PCA, symbolic regression, and Bayesian networks). For these methods, all the variables 

were converted to z-scores with a mean of zero and unit variance. This ensured that the 

magnitude of the variables did not influence the variable selection results. 
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3. Application of variable selection methods 

 The application of the variable selection methods in this study is described in the 

following sections (see the introduction for an overview of the different methods). Each 

variable selection method was limited to five variables. The number of variables was 

arbitrarily chosen in order to compare the performance of the different variable selection 

methods. Untransformed and natural log-transformed variables were assessed for the final 

regression models to accommodate linear and non-linear relations with the dependent 

variable. The performance of these models was evaluated in terms of their multicollinearity 

and accuracy for predicting the 13 percentile flows. All regression modeling and the 

accompanying performance evaluation were carried out in the R programming language (R 

Core Team, 2014). 

3.1 Baseline regression procedure using a branch-and-bound search 

 A total of 44 independent variables were considered in this study including the 

untransformed and natural log-transformed variables listed in Table 2. This results in 2
44

 – 1 

independent variable combinations, which would take a typical computer over 5000 years to 

complete if it solved one regression equation every hundredth of a second. Computing 

technology may be able to solve this combinatorial problem in the future, but for now, 

reductionist methods are required to limit the variable space. 

 This study used a branch-and-bound search because it explores more of the variable 

space than stepwise regression and is the closest approximation to an all-models regression. 

The branch-and-bound search was conducted using the algorithm described in Miller (2002) 

and coded in the R leaps package (Lumley, 2009). This algorithm limits the variable space 
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based on the principle that removing variables from a model only increases the residuals. 

Larger sets of variables were completely eliminated if another smaller set performed better. 

 Model performance was assessed according to the residual sum of squares. A model 

averaging approach was adopted to identify the top five variables from a set of the best 

models. The top 40 models were returned by the branch-and-bound search for each level of 

complexity up to 20 independent variables. This produced a total of 800 candidate models. 

These models were then screened for multicollinearity using the condition number (CN) 

defined as 

 𝐶𝑁 =  √𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  , (1) 

where 𝜆 are the maximum and minimum eigenvalues of the cross-product matrix given by 

the selected independent variables (Belsley et al., 2004). Larger values signify greater 

multicollinearity between the independent variables of the regression model, and models with 

a CN .> 30 were discarded (Dormann et al., 2013). The remaining models were ranked 

according to their adjusted coefficient of determination (R
2
) in order to compare models of 

varying complexity. 

 The top five variables were then discerned according to the number of times that each 

variable appeared in the top ten regression models. Ties between independent variables that 

appeared the same number of times in the top ten models were broken by the R
2
 values 

resulting from univariate regressions with the percentile flow. This process was repeated to 

obtain the top five independent variables for each percentile flow. 

3.2 Knowledge-based variable selection 

 Knowledge-based variable selection used previously developed understanding of the 

factors that control the FDC to identify the independent variables for the percentile flow 
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regression models. As previously discussed in the introduction, the FDC can be divided into 

three main segments: (1) high flows, (2) average flows, and (3) low flows. The high flows of 

the FDC are surface runoff during storms, and can be approximated by a precipitation 

duration curve adjusted for groundwater losses (Yokoo and Sivapalan, 2011). Average flows 

are associated with groundwater storage influenced by climate and geology (Coopersmith et 

al., 2012), and closely follow a groundwater (baseflow) duration curve (Yokoo and 

Sivapalan, 2011). Groundwater is also the source for the low tail of the FDC, except these 

flows are subject to evaporative demands during the dry season (Yaeger et al., 2012). 

 Based on the processes and related controls previously affiliated with the FDC, 

regression models for the percentile flows used the five independent variables listed below: 

1. MAP – High flows are a function of rainfall, and average flows are related to climate. 

2. PET – Low flows are suppressed by evapotranspiration, and PET is indicative of 

climate. 

3. Slope – Surface runoff associated with high flows is affected by the slope of the land. 

4. Soil_Porosity – Storage capacity and attendant subsurface drainage feed average and 

low flows. 

5. BFI – Baseflow contributes to both average and low flows. 

 Although drainage area influences the overall magnitude of the FDC, it was omitted 

because normalizing the FDC by an index flow, such as the mean of nonzero flows, 

minimizes the effect of drainage area (Smakhtin, 2001). The final form of the variables was 

either untransformed or natural log-transformed depending on whichever had a higher R
2 

in 

univariate regressions with each percentile flow. 
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3.3 Principal component analysis (PCA) 

 PCA was applied on the independent variables to produce uncorrelated PCs through 

orthogonal transformations of the data (Abdi and Williams, 2010). This was accomplished 

using the “prcomp” function in R (R Core Team, 2014). The same number of PCs as 

variables was produced, but only the first five PCs were used for the percentile flow 

regression modeling since all other variable selection methods were limited to five variables. 

Both untransformed and natural log-transformed variables were tested for the PCA, and 

natural log-transformed variables were used to compute the final PCs since they explained 

more variance than PCs based on the untransformed variables. The first five PCs of the 

natural log-transformed independent variables accounted for 76% of the variance in the data. 

 The PCs and independent variables representing the PCs were both tested for the 

percentile flow regression models. Representative variables for the PCs were selected using 

the method proposed in Lu et al. (2007). The first five PCs were used to generate five k-

means clusters of the variable weights associated with each PC, and the independent 

variables with weights closest to the cluster centroids were selected to represent the PCs. The 

predictive performance of the models containing the PCs and independent variables 

representing the PCs was then compared to determine which variables should be used to 

predict the percentile flows. 

3.4 Correlation analysis 

 Correlation analysis was used to identify groups of correlated independent variables, 

and select a representative variable from each group in order to reduce multicollinearity 

(Dormann et al., 2013). Correlation was quantified using Pearson’s and Spearman’s 

coefficients to account for linear and non-linear relations between variables. A correlation 
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threshold of 0.7 was used to identify groups of correlated independent variables. This 

threshold was used based on a recent review that reported 0.7 as the most commonly used 

correlation threshold (Dormann et al., 2013). The same review also found that the simple 

correlation threshold of 0.7 performed as well as other more sophisticated methods for 

dealing with multicollinearity. The correlation threshold identified groups of correlated 

independent variables and uncorrelated independent variables. These results were then used 

to select the top five independent variables for each percentile flow regression model as 

follows: 

1. The variables from each correlated group were ranked by the R
2
 values from 

univariate regressions with the percentile flow. The univariate regressions used both 

the untransformed and natural log-transformed variables to accommodate linear and 

non-linear relations with the dependent variable. 

2. Correlated variables that did not have the strongest association with the percentile 

flow were excluded from further consideration. 

3. The remaining variables were then ranked as in the first step, and the top five 

variables were used in the regression model for the percentile flow. 

4. This process was then repeated for each percentile flow. 

3.5 Random forests 

 Random forests were applied to rank the independent variables. This was 

accomplished by evaluating the variable’s effect on the error associated with predicting the 

percentile flows (Breiman, 2001). Ensembles of regression trees were generated to 

recursively split the data into similar groups, which were averaged to produce percentile flow 

predictions. These predictions were then used to quantify the out-of-bag error for the random 
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sample of basins withheld from each regression tree. The out-of-bag error was used to rank 

the independent variables by randomly permuting one variable at a time. Variable rankings 

were quantified according to the change in out-of-bag error, with larger increases in out-of-

bag error leading to higher rankings. 

 The variables were ranked by random forests generated using the randomForest 

package in R (Liaw and Wiener, 2002). Random forests split the data into ordinal groups. 

Therefore, natural log-transformed variables were not included because the monotonic 

transformation would yield the same results. These variables were considered after using 

random forests to rank the untransformed variables. 

 Random forests have three free parameters: (1) the number of variables used to 

recursively split the data (mtry), (2) the minimum size of the final groups in the regression 

trees (terminal nodes), and (3) the number of regression trees in the ensemble (ntree). The first 

parameter is the only one that requires tuning because the last two can be set based on 

previously established guidelines (Svetnik et al., 2003). The default value for mtry is one-third 

of the number of independent variables rounded down to the nearest whole number (seven in 

this case). This tends to give reasonable results comparable to or better than the other 

possible values (Svetnik et al., 2003). Nonetheless, a full scale test of all possible mtry values 

was conducted using ten random forests for each percentile flow. An ensemble of random 

forests was employed because results can vary depending on the random samples used to 

build the regression trees, and numerous random forests may be required to obtain stable 

results (Saeys et al., 2008). The default value of seven was adopted because none of the other 

mtry values were consistently better than the default. 
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 The last two parameters were set according to recommended guidelines. These 

guidelines suggest that the terminal nodes have little effect on predictions if they are a small 

fraction of the data (Svetnik et al., 2003). This parameter was set to only five basins, or about 

1% of the basins used to generate the regression trees. The last parameter was determined 

using the traditional approach of plotting ntree versus the out-of-bag error. The resulting graph 

usually shows a relation of exponential decay toward a limit where an increase in ntree no 

longer reduces the out-of-bag error. The point where out-of-bag error stabilizes should be 

used to set ntree (Svetnik et al., 2003). The random forests used for the mtry tuning were 

inspected to set ntree, and the out-of-bag error stabilized after 100 regression trees for each 

percentile flow, which was then adopted as the ntree value. 

 The independent variables were ranked according to 1000 random forests because an 

ensemble approach has been recommended to obtain stable variable rankings (Saeys et al., 

2008). Average rankings from the 1000 random forests were used to select the top five 

independent variables for each percentile flow. Natural log-transformed independent 

variables were introduced at this stage, and the variable with a higher R
2
 value in univariate 

regressions with the percentile flow was selected as the final independent variable. The above 

variable ranking process was repeated to formulate the regression model for each percentile 

flow. 

3.6 Symbolic regression 

 Symbolic regression is similar to a baseline regression procedure in that it searches 

the variable space for an optimum model. However, the search also includes a set of 

mathematical operators (symbols) for testing different model structures. An independent 

algorithm called a genetic program drives the search for better models. The genetic program 
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attempts to mimic the evolution of a population (Koza, 1994). The symbols and independent 

variables are combined to produce a population of model formulations that evolve toward a 

set of optimum solutions. This process was implemented using the rgp package in R (Flasch 

et al., 2014). Mathematical operators were limited to addition, subtraction, and natural log to 

be consistent with the other variable selection methods. Given this restriction, the genetic 

program was essentially used as a means for selecting the best variable combinations. The 

resulting model solutions were evaluated according to their root-mean-square error, as is 

customary in symbolic regression (Flasch et al., 2014). 

 Characteristics of the models with less error were passed along to the next generation 

of models. This evolutionary process was influenced by four parameters: (1) the number of 

models considered in the first generation, (2) the number of models produced for subsequent 

generations, (3) the probability that models with less error will be combined to produce new 

models, and (4) the number of new models created for each generation. These parameters 

were optimized for each percentile flow using the sequential parameter optimization toolbox 

(SPOT) in R (Bartz-Beielstein and Zaefferer, 2012). The authors of the rgp package created 

SPOT as a companion package to automatically parameterize their genetic program. 

 Independent variables were ranked based on the final population of models for each 

percentile flow. At least 924 models were included in the final population, but few of these 

models were unique, indicating convergence toward an optimum set of variable 

combinations. The top ten models were then used to rank the independent variables as in the 

baseline regression procedure. The primary ranking criterion was the number of times that 

the independent variables appeared in the top ten models, and ties were broken according to 
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the R
2
 values from univariate regressions with the percentile flow. The top five independent 

variables associated with each percentile flow were then used in the final regression model. 

3.7 Bayesian networks 

 A variety of Bayesian networks have been developed for variable selection (Ssegane 

et al., 2012a). These methods differ in terms of how the Markov blanket is computed. Rather 

than computing the probabilistic relation between all variables, a Markov blanket identifies a 

subset of independent variables that makes the dependent variable probabilistically unrelated 

to all the other variables. The conditional probability of the dependent variable is explained 

by the subset of variables, and no further information is gained from the remaining variables. 

This process is detailed in Aliferis et al. (2010). Markov blankets can be produced by either 

constructing a portion of the Bayesian network or focusing directly on the probabilistic 

connections of the dependent variable (Aliferis et al., 2010). 

 Both approaches for computing the Markov blanket were tested for selecting the 

independent variables of the percentile flows. LCD2 is a revised version of the local causal 

discovery algorithm, which constructs an incomplete Bayesian network surrounding the 

dependent variable (Mani and Cooper, 1999). The other method used only evaluates 

connections to the dependent variable, and is called HITON-MB (Aliferis et al., 2003). These 

two methods were also chosen because they outperformed their Bayesian network 

counterparts in a previous study on selecting percentile flow independent variables (Ssegane 

et al., 2012a). 

 Bayesian network methods were implemented using the causal explorer toolkit in 

MATLAB. The input data consisted of individual percentile flows and the untransformed 

independent variables. Natural log-transformed independent variables were considered after 
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running the Bayesian networks. HITON-MB requires discrete data for the dependent 

variable. Percentile flow data was discretized using the minimum description length 

principle, a common method for preprocessing Bayesian network input data (Friedman et al., 

1997). The HITON-MB algorithm has one more requirement of setting the maximum 

number of variables evaluated as the Markov blanket is assembled. All values of this 

parameter were tested to assess the sensitivity of variable selection results, and little change 

was observed, with an average of 98% agreement between parameter values. The default 

value of three was used given the lack of sensitivity to the parameter. 

 The output of the Bayesian networks was a list of selected independent variables for 

each percentile flow. These lists contained over five independent variables, so the following 

procedure was applied to rank the variables: 

1. A random sample of 20% of the basins was removed from the calibration data. 

2. The Bayesian network was then run on the remaining data, and selected variables 

were recorded. 

3. A total of five runs were performed by replacing the basins and removing a different 

sample of basins on the next run. 

4. The lists of selected variables were then tallied across the runs to rank the variables. 

5. Ties between variables were broken by the R
2
 values from univariate regressions with 

the percentile flow. This step considered the untransformed and natural log-

transformed independent variables, and whichever explained more variance in the 

percentile flow was adopted to assign the final variable rankings. 

The above steps were performed to identify the top five independent variables for the final 

regression model, and this process was repeated for each percentile flow. 
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4. Performance evaluation 

 The performance of the variable selection methods was tested on 13 percentile flow 

regression models, creating parallel experiments on flows ranging from low to high. 

Percentile flow regression models used the top five independent variables from each of the 

variable selection methods, and were evaluated in terms of their multicollinearity and 

predictive performance. The same regression model structure was used in order to compare 

the variable selection methods, and remove any effect from the regression modeling. The 

structure of the regression models was as follows 

 𝑙𝑛(𝑄𝑛)  =  𝛽0 +  𝛽1𝑋1 … +  𝛽5𝑋5 , (2) 

where 𝑋1-𝑋5 are the top five independent variables selected by the variable selection method 

either untransformed or natural log-transformed, and 𝛽0-𝛽5 are the estimated parameters of 

the regression. Linear and non-linear relations to the percentile flows were accommodated by 

considering untransformed and natural log-transformed independent variables. 

 Percentile flows were predicted in log space because they were highly skewed, and 

this can lead to violating the basic regression assumption of homoscedastic (evenly varying) 

model residuals (Harrell, 2001). The natural log transformation has been recommended for 

the regression modeling of skewed flows (Archfield et al., 2009), and is widely used to 

predict percentile flows (Booker and Snelder, 2012; Over et al., 2014; Zhang et al., 2014). It 

is not mathematically possible to compute the natural log transformation on zero flows, so a 

constant of one was added to the percentile flows (Kilmartin and Peterson, 1972). 

 Regression models were assessed for multicollinearity since this condition can limit 

the predictive potential of the model on new data. Multicollinearity was quantified using the 
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CN specified in Equation 1. Higher values of the CN signify greater multicollinearity 

between the independent variables in the regression model. 

 Validation was then conducted to evaluate the predictive performance of the 

regression models and their associated variable selection method. Predictions were made for 

the validation basins not used to select the independent variables or calibrate subsequent 

regression models. Predictive performance was quantified using three performance metrics, 

namely, the R
2
 of the observed and predicted percentile flows, the Nash-Sutcliffe coefficient 

of efficiency (Nash and Sutcliffe, 1970), and the relative error (RE). Each metric was 

calculated in log space to deemphasize the effect of large values in the skewed percentile 

flows (Sauquet and Catalogne, 2011). The Nash-Sutcliffe coefficient of efficiency (NSE) is 

calculated as 

 
𝑁𝑆𝐸 = 1 −  

∑ (𝑄𝑖 − �̂�𝑖)
2𝑛

𝑖=1

∑ (𝑄𝑖 −  �̅�)𝑛
𝑖=1

2  , (3) 

where 𝑄𝑖 and �̂�𝑖 are the observed and predicted percentile flow for basin i, �̅� is the mean of 

the percentile flow across all basins, and n is the number of basins. The metrics thus far have 

an upper bound of one indicating perfect performance, and lower values signify poorer 

performance. 

 The error of individual predictions was expressed as relative error (RE) obtained from 

 
|𝑅𝐸|  =  

�̂�𝑖 − 𝑄𝑖

𝑄𝑖 +  1
 (4) 

where 𝑄𝑖 and �̂�𝑖 are as previously defined, one was added to the denominator to allow for 

zeros, and the absolute value of the relative error was used to calculate the sum of the error. 
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The performance metrics were calculated for each percentile flow, and summary statistics 

were taken to compare the predictive performance of the variable selection methods. 

E. Results and discussion 

 Percentile flow regression modeling results focus on the model’s (1) 

multicollinearity, (2) predictive performance, and (3) independent variables to elucidate the 

preferred variable selection method. Model multicollinearity is discussed first as it is a 

concern in the variable selection process and can subsequently degrade model performance in 

validation. The predictive performance of the models is then presented to show which 

variable selection methods chose better independent variables for predicting the percentile 

flows. Finally, the independent variables chosen by each variable selection method are 

summarized to reveal the variables associated with better percentile flow predictions. This 

information is interpreted to identify important variables for predicting the different 

percentile flows and make recommendations for future variable development. The figures 

and tables for the results use the following abbreviated names for the variable selection 

methods: baseline regression procedure (baseline), knowledge-based variable selection 

(expert), principal component analysis (PCA), correlation analysis (corr), random forests 

(RF), symbolic regression (SR), and Bayesian network (BN). 

 Regression models from the PCA either used the PCs as the independent variables or 

represented each PC in the model with an independent variable. The latter method is 

preferred for model interpretation. However, it does not ensure that multicollinearity will be 

eliminated in subsequent models, and some of the information contained in the PCs may be 

lost. PCs were represented using the independent variables closest to the cluster centroids of 

the PCs (Lu et al., 2007). As expected, the use of independent variables to represent the PCs 
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increased the multicollinearity of the models to a CN over 400, and some of the information 

content of the PCs was lost. Models that directly used the PCs explained an average of 29% 

of the variance in the percentile flows of the validation basins, while models that used 

independent variables to represent the PCs only explained 19%. In light of this, the PCs were 

used as the independent variables in the regression models, and these models are used to 

represent the PCA in the results. 

 Only one of the Bayesian networks are presented in the results since they both had 

very similar predictive performance. LCD2 was chosen to represent the Bayesian networks 

because it eliminated far more variables than HITON-MB. This was unexpected because 

HITON-MB has the potential to be more selective than LCD2 by only evaluating the 

probabilistic relations to the dependent variable. The poor selectivity of HITON-MB 

disagrees with previous findings on its ability to derive compact variable selections (Aliferis 

et al., 2010). 

1. Multicollinearity 

 Multicollinearity was quantified as the CN. The average and range of the CN for the 

13 percentile flow regression models resulting from each variable selection method are given 

in Table 3. There were no clear patterns in the variation of the CN for the percentile flows, 

and the discussion of multicollinearity focuses on the differences between the variable 

selection methods. 

Table 3. The average and range of multicollinearity quantified as the CN for the 13 percentile flow 
regression models of each variable selection method. 

  Baseline Expert PCA Corr RF SR BN 

Minimum 32 1142 2 191 337 31 191 

Average 68 8575 2 2124 22129 6502 6810 

Maximum 158 31437 2 9892 68792 28011 21849 
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 The baseline regression procedure had the second lowest multicollinearity next to 

PCA. However, the recommended CN threshold < 30 (Dormann et al., 2013) was still 

violated by the baseline regression procedure despite screening the models for 

multicollinearity. This occurred because the final models from the baseline regression 

procedure used a combination of independent variables from the top ten models identified by 

the branch-and-bound search. Subsequent variable combinations violated the recommended 

CN threshold. This approach was adopted because none of the top models from the branch-

and-bound search at a complexity level of five independent variables passed the 

multicollinearity screening. Despite the high level of multicollinearity, the number of 

variables used for the regression models was not decreased below five given the large 

number of basins and variability in their percentile flows. The branch-and-bound method 

proceeded by selecting the top five variables according to the number of times that each 

variable appeared in the best models. 

 Only ten models were used to identify the final independent variables because the 

recommended CN threshold was highly restrictive. The CN threshold left just 13-27 eligible 

models out of the 800 best models for each percentile flow. Most of these models (82%) only 

contained a single independent variable, thereby eliminating any chance of multicollinearity. 

The most complex models contained three independent variables, but they only accounted for 

less than 1% of the models. These results indicate that the independent variables with 

predictive power were highly redundant, and few of them provided new information to 

explain the variance in the percentile flows. 

 The CN threshold in baseline regression procedures is an arbitrary value. Setting this 

value can be problematic since the CN may be sensitive to the data (Snee and Marquardt, 
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1984). This problem was briefly explored by increasing the CN threshold to 40. Loosening 

the threshold had the expected effect of increasing the number of eligible models (26% more 

models) and their complexity (78% more models with multiple independent variables). More 

interestingly, the average agreement between the observed and predicted percentile flows 

increased 7% in validation. The main difference in the resulting models was that some of 

them included BFI, which was completely excluded using the more restrictive CN threshold 

of 30. BFI is later identified as a critical variable for the predictive performance of the 

models (see the selected independent variables section). The slight increase in validation 

performance was attributable to the models that included BFI. 

 Increasing the CN threshold allowed an important independent variable to enter the 

models, and did not decrease model performance in validation. These results highlight the 

uncertainty of setting the CN threshold in baseline regression procedures. An additional 

source of uncertainty is that alternative multicollinearity diagnostics, such as the variance 

inflation factor or determinant of the correlation matrix (Belsley et al., 2004), may be more 

suited to screen percentile flow regression models. The question of how to screen for 

multicollinearity in baseline regression procedures used to predict percentile flows deserves 

further investigation in future studies. In this study, the widely cited CN threshold of 30 was 

retained because the goal was to compare a typical baseline regression procedure versus 

alternative variable selection methods. 

 Overall, the methods that addressed the correlation between independent variables 

(baseline regression procedure, PCA, and correlation analysis) limited multicollinearity more 

than other methods based on relations to the percentile flows. This confirmed the expectation 

of reducing the redundancy in regression models by using methods that account for the 
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correlation between the independent variables. The baseline regression procedure limited 

multicollinearity using the CN to reject models with redundant information. PCA virtually 

eliminated multicollinearity by producing uncorrelated PCs for the percentile flow regression 

models. The correlation analysis was the least successful of the methods that directly 

attempted to limit multicollinearity. This method limited multicollinearity by selecting one 

variable from a group of correlated variables, but the correlation threshold for identifying the 

groups needed to be lowered to further reduce the multicollinearity in resulting regression 

models. Pairwise correlation values may also fail to account for interactions between 

independent variables that can induce multicollinearity. 

 The other methods driven by relations to the percentile flows suffered from severe 

multicollinearity far greater than the acceptable threshold of 30 (Dormann et al., 2013). Only 

one model from these methods strayed from this trend with a CN of 31, while the rest had a 

CN of at least 172 and most models (73%) above 1000. This is a concern as multicollinearity 

can increase the divide between calibration and validation performance, which is discussed in 

the next section. The high multicollinearity of certain methods indicates that they selected 

redundant independent variables which contributed little information to the percentile flow 

regression models. 

 Random forests were the worst violator of selecting redundant independent variables, 

and might be because it is the only method that weighed the importance of one variable at a 

time rather than evaluating sets of variables. Knowledge-based variable selection had the 

second highest multicollinearity although an effort was made to select variables thought to be 

unrelated that would provide separate information to the regression models. This effort was 

thwarted by an unanticipated correlation between PET and BFI (Pearson = 0.58 and 
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Spearman = 0.63). The correlation between the rest of the knowledge-based independent 

variables was weak at < 0.5 and the majority of values < 0.3 for both correlation coefficients. 

This further demonstrates the sensitivity of the CN to the correlation among independent 

variables and the need to prescreen variables for cross-correlation. 

 Symbolic regression and Bayesian networks had the lowest multicollinearity of the 

methods based on relations to the percentile flows, but they were still far over any 

recommended CN thresholds. Both methods resulted in similar levels of multicollinearity, 

with the exception of a higher maximum for the symbolic regression. This was not expected 

because an advantage of Bayesian networks is that they evaluate the conditional probability 

between variable combinations, and therefore, should limit multicollinearity more than 

optimization methods like symbolic regression that only seek to maximize model fit 

(Sebastiani and Perls, 2008). Bayesian networks failed to produce such results in this 

application. 

2. Predictive performance 

 Calibration and validation performance was compared to assess the stability and 

accuracy of the regression models on ungauged basins. As one would expect, overall model 

performance declined in validation (Table 4). However, the difference in R
2
 from calibration 

to validation was small, and could be due to random error. Thus, the models resulting from 

each variable selection method appeared to be stable for ungauged basins. The stability of the 

models was not impaired by the elevated levels of multicollinearity discussed in the last 

section. This may be because the independent variables were similarly correlated in the 

calibration and validation data. 
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Table 4. Average R
2
 in calibration (C) and validation (V). 

  Baseline Expert PCA Corr RF SR BN 

C 0.35 0.48 0.32 0.50 0.53 0.48 0.50 

V 0.33 0.45 0.29 0.46 0.49 0.44 0.47 

 The baseline regression procedure had a similar decline in R
2
 as the other methods, 

but its R
2
 values were only higher than PCA. The baseline regression procedure and PCA 

both had little predictive value, only explaining about one third of the variance in percentile 

flows. Both of these methods limited multicollinearity more than the others, but it appears 

that they paid for this with reduced model fit. 

 The other methods all explained about half of the variance in the percentile flows. 

Random forests distinguished itself by having slightly higher R
2
 values on average, but it can 

be concluded from the average R
2
 values that none of the regression models formulated by 

the different variable selection methods performed at a high level. This indicates a deficiency 

in the predictive potential of the entire set of independent variables and alternative variables 

may be needed to explain more variance in the percentile flows. 

 The R
2
 values in Table 4 should be evaluated in the context of the study area and 

results from previous studies. The contiguous US is a far larger study area than in previous 

FDC regression modeling studies that assume a regional scope (see Archfield et al., 2009; 

Castellarin et al., 2004; Mohamoud, 2008). The heterogeneity of this study area leads to 

much larger variance in the percentile flows. This can diminish the predictive power of the 

independent variables. It is expected that dividing the study area into more homogeneous 

regions would reduce the variance in percentile flows and improve resulting predictions as in 

previous studies (see Chiang et al., 2002; Mohamoud, 2008; Sauquet and Catalogne, 2011). 

Percentile flow regression models developed for the Mid-Atlantic US, a subregion of this 
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study, achieved R
2
 values > 0.7 (Mohamoud, 2008). Another study reported R

2
 values < 0.2 

for FDC regression models covering all of France, but the R
2
 of the models improved to > 0.5 

upon using homogeneous regions (Sauquet and Catalogne, 2011). In light of these past 

results, the R
2
 values in this study are more impressive. 

 The average R
2
 values of the knowledge-based regression models were nearly 

equivalent to those of the other more complex data-based methods. The knowledge-based 

independent variables also produced models with similar R
2
 values in calibration and 

validation. These results suggest that the knowledge-based models are at least as portable as 

the models derived from the data. 

 To test the portability of the knowledge-based models, a cross-validation experiment 

was conducted in which 20% of the basins were randomly removed, and the remaining data 

was used to calibrate regression models with the knowledge-based variables. This process 

was repeated five times, and revealed that the average R
2
 values in calibration (0.49) and 

validation (0.50) were similar to the R
2
 values from the original set of calibration and 

validation basins. Thus, the performance of the knowledge-based models appears to be stable 

when transported to different data, and remains competitive with the data-based methods. 

The portability of the knowledge-based variables indicates that they are physically 

meaningful. 

 Model performance is shown as the NSE for each percentile flow in Figure 3. 

Performance of the regression models produced by the variable selection methods typically 

peaked at Q20, with the exception of the baseline regression procedure and symbolic 

regression peaking at Q10 and Q40, respectively. A steady decline in model performance was 

the general trend for flows below Q20. All methods had their lowest performance for the 
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highest flows at either Q01 or Q05. These results differ from previous studies that did not have 

a marked decline in predictive performance for the high percentile flows (Hope and Bart, 

2012) and obtained the best predictions for the average percentile flows around the middle of 

the FDC (Mohamoud, 2008). 

 

Figure 3. NSE of the models formulated by the variable selection methods for each percentile flow in 
validation. 

 Previous studies have also achieved better overall predictions for the percentile flows 

(Hope and Bart, 2012; Mohamoud, 2008; Ssegane et al., 2012a). However, those studies 

were conducted in homogeneous regions, whereas this study covered a much larger area with 

far more heterogeneous conditions. This likely introduced more variance in the percentile 

flows, and rendered them more difficult to predict because of weakened relations between the 

dependent and independent variables in the regressions. 

 Predictions at the extremes of the FDC suffered the most, which may be due to the 

increased variability and non-linearity of extreme flows (Salinas et al., 2013). The two 
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highest percentile flows were more difficult to predict than the low percentile flows. This 

may be because high flows are prone to more variance than low flows (Douglas et al., 2000). 

 Another reason why the extreme flows may have been poorly predicted is because of 

the independent variables, which may not have effectively represented the processes that 

control the high and low flows. This is especially evident considering that symbolic 

regression only selected two independent variables to predict percentile flows below Q70, but 

still performed nearly as well as any other method. Independent variables for high flows 

should represent storm runoff, and additional variables may have been needed to describe the 

magnitude of storms, such as precipitation percentiles complementary to the percentile flows 

(Ssegane et al., 2012a). The number of rainy days is a surrogate for antecedent moisture 

conditions that may offer predictive information for high flows during storms 

(Jothityangkoon et al., 2001). The conversion of storms into runoff may have been better 

captured by land surface variables related to lateral flow, such as percent bare soil (Hashmi 

and Shamseldin, 2014). Both high and low flows are influenced by subsurface properties that 

may not have been adequately represented. Subsurface soil characteristics impact infiltration 

and lateral flow during storms (Merz and Blöschl, 2008), but the soil variables included in 

this study may have been affected by uncertainty or insufficient for representing the 

heterogeneity of soils at the basin scale. Low flows are contributed by groundwater. 

Although the independent variables included BFI, additional variables characterizing the 

subsurface drainage of a basin, such as a hydrologically sensitive geologic classification 

(Tague and Grant, 2004), may have improved low flow predictions. 

 In addition to the independent variables, the low percentile flows may have been 

poorly predicted because they contained zero flows. Approximately 12% of the flows below 
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Q80 were equal to zero. Predicting the FDC of intermittent streams is a special area of 

research with predictive models designed to accommodate zero flows (Hope and Bart, 2011). 

Such models would likely improve the predictions of the low percentile flows. 

 Relative performance of the different methods was variable across the percentile 

flows. No method clearly performed the best, but like the average R
2
 values, the worst 

performance was typically associated with the baseline regression procedure and PCA. The 

baseline regression procedure offered the second poorest performance next to PCA for most 

of the percentile flows, but its performance reversed for the high percentile flows of Q05 and 

Q10, where the baseline regression procedure was one of the better methods. This may be the 

case because there were not any strong independent variables for the high percentile flows. 

The other method that had particularly poor performance was PCA, which had the worst 

performance for every percentile flow except Q01. PCA was the only method that did not use 

information on the percentile flows to select independent variables, and its predictive 

performance may have decreased as a result. 

 No method had consistently better performance across the percentile flows. The best 

performance was achieved by a variety of methods, and differences in the best performance 

for each percentile flow were mostly small with several methods near the top. The best 

method was typically random forests, symbolic regression, and Bayesian networks, which 

each had the best performance for three different percentile flows. These are all data-based 

methods that related the independent variables to the percentile flows via data partitioning, 

optimization, or causal associations. 

 Random forests performed the best at Q20 and Q30 where overall performance peaked 

and a variety of independent variables helped the models. This may be the case because 
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random forests were the most effective at ranking independent variables with predictive 

power. Random forests ranked the variables according to their effect on predictive error, 

whereas the other methods could result in ties between the best variables that had to be 

broken using univariate regressions with the percentile flows. Random forests also had the 

best performance at Q70, but the difference was negligible and could be due to random error. 

 Symbolic regression achieved the best performance for the average percentile flows 

from Q40-Q60. This occurred although symbolic regression selected less than five independent 

variables for percentile flows below Q50. The strong performance of symbolic regression 

with less than five independent variables highlights the redundancy (multicollinearity) of the 

independent variables. Few of the variables added information to the predictions, even for the 

average flows typically related to a wide variety of basin characteristics for climate, 

topography, and geology (Coopersmith et al., 2012). Symbolic regression employed an 

optimization routine that converged on the few independent variables with predictive 

relations to the average flows and successfully ruled out the other variables. The selectivity 

of symbolic regression was detrimental for the low percentile flows because it ruled out 

independent variables that contributed marginally to the predictions. 

 Bayesian networks were the best method for predicting the lowest percentile flows 

from Q90-Q99. Independent variables were selected based on their probabilistic relation with 

the percentile flows. The lowest percentile flows from Q90-Q99 had a large fraction of zero 

flows (14%). The probabilistic relations developed by the Bayesian networks may have been 

more effective at handling the zero flows because they were treated as a single outcome 

linked to certain conditions (independent variables). This could account for the better 

performance of the Bayesian networks from Q90-Q99. 
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 The simpler methods based on correlation and theoretical understanding of controls 

on the FDC performed nearly as well as the more complex data-based methods. Correlation 

and knowledge-based variable selection were typically among the best methods, and 

respectively scored the highest NSE values for Q80 and Q01. Both methods performed 

similarly, but correlation typically outperformed knowledge-based variable selection because 

it selected the independent variables based on their predictive power in univariate regressions 

with the percentile flows. The performance of these methods peaked at the same percentile 

flows as the other methods from Q20-Q40, while their relative performance to the other 

methods was best for the highest percentile flow and those below Q70. Predictions for these 

percentile flows were not improved by the more complex data-based methods due to an 

apparent lack of independent variables with predictive power. 

 The performance of the methods across the percentile flows was summarized using 

the average and range of the NSE for the regression models in validation (Table 5) and their 

cumulative error (Table 6). These results substantiated the findings on the predictive 

performance of the different methods discussed thus far. Nearly the same pattern in 

performance emerged using the mean NSE and sum of RE for all percentile flows. The lone 

exception was that Bayesian networks had a higher average NSE than the correlation analysis 

and symbolic regression, but all these methods had the same cumulative error. Besides this 

discrepancy, overall performance of the methods remained the same. 

Table 5. The average and range of validation performance quantified as the NSE for the 13 percentile 
flow regression models of each variable selection method. 

  Baseline Expert PCA Corr RF SR BN 

Minimum 0.09 0.20 0.09 0.29 0.37 0.21 0.32 

Average 0.33 0.50 0.27 0.52 0.54 0.51 0.53 

Maximum 0.60 0.65 0.45 0.68 0.71 0.67 0.68 
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Table 6. The sum of the RE in validation for the 13 percentile flow regression models of each variable 
selection method. Lower values indicate better performance. 

  Baseline Expert PCA Corr RF SR BN 

Sum (%) 170 147 181 145 139 145 145 

 The baseline regression procedure and PCA were once again the only methods that 

stood out because of their poor performance. Both of these methods had the lowest ranges in 

NSE and the most RE. NSE values for predicting percentile flows were categorized in 

Castellarin et al. (2004) as poor (NSE < 0.50), fair (0.50 < NSE < 0.75), and good (NSE > 

0.75). This categorized most of the models generated by the baseline regression procedure 

and all of the models from the PCA as poor. 

 The range of NSE values implied that neither the baseline regression procedure or 

PCA produced reliable models for predicting the percentile flows, and improvements are 

required to use these methods for applications in ungauged basins. The performance of the 

baseline regression procedure and PCA was comparable to one study covering all of France 

(Sauquet and Catalogne, 2011), which is a smaller study area with presumably less 

heterogeneity than the contiguous US. Predictive performance would likely be improved by 

dividing the basins into homogeneous regions as previously discussed for the poor R
2
 values. 

Developing separate regression models for homogeneous regions typically improves 

predictions by reducing the variance in percentile flows (see Chiang et al., 2002; Mohamoud, 

2008; Sauquet and Catalogne, 2011). 

 The poor performance of the baseline regression procedure and PCA is noteworthy 

since they are the two most common methods in hydrology for identifying the variables of 

flow-related regression models. Baseline regression procedures are particularly dominant in 

the realm of FDC regression modeling, yet these results suggest that other methods 

independent of regression may select better independent variables. 
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 The other methods tested in this study had nearly the same performance. These 

methods had a higher range of NSE values and lower cumulative error than the baseline 

regression procedure and PCA, but they still only produced poor to fair models according to 

the categories in Castellarin et al. (2004). As discussed above, model performance is 

expected to increase if they are developed for homogeneous regions. 

 Random forests had the best overall performance with the highest range of NSE 

values and the least cumulative error. The correlation analysis and Bayesian networks closely 

followed random forests in both NSE and cumulative error. Symbolic regression was the 

least successful of the complex data-based methods, and had similar performance to 

knowledge-based variable selection. Previously developed knowledge of the FDC’s physical 

controls proved useful in comparison to the more complex data-based methods, and the 

knowledge-based selection of variables may be preferable as a more parsimonious method 

with a physical foundation. A process-based understanding of the FDC is at least necessary 

to identify the initial set of variables for percentile flow regression models. Then, one of the 

data-based methods employing data partitioning, correlation, probability, or model 

optimization can be used to objectively select among physically meaningful variables for 

predicting FDC percentile flows. 

3. Selected independent variables 

 The independent variables have been placed in categories (i.e. climate, topography, 

land cover, soil, and geology) to summarize the type of variables selected to predict high, 

average, and low flows (Table 7). These categories were devised from the major functional 

controls on streamflow identified in Wagener et al. (2004), and correspond to the categories 

in Table 2. The percentages in Table 7 have been normalized by the number of variables in 
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each category to show the relative importance of the different types of variables. Average 

flow is from Q30-Q70, and the outlying percentile flows are considered high and low flows. 

Discussion of the selected independent variables does not include PCA and knowledge-based 

variable selection since PCs are combinations of the variables and the knowledge-based 

variables are the same for each percentile flow (MAP, PET, Slope, Soil_Porosity, and BFI). 

Table 7. Percent of selected independent variables from each variable category normalized by the 
number of variables in the category. Percentile flows are separated as high (Q01-Q20), average (Q30-
Q70), and low (Q80-Q99). 

  Baseline Corr RF SR BN 

High 

     Climate 46.7 16.0 15.1 11.1 17.8 

Topography 8.9 2.6 4.5 3.7 4.3 

Land cover 26.7 46.5 13.4 44.4 38.9 

Soil 17.8 0.0 13.4 7.4 0.0 

Geology 0.0 34.9 53.6 33.3 38.9 

Average 

     Climate 20.5 10.8 16.6 5.6 14.5 

Topography 1.3 0.0 6.7 5.0 0.0 

Land cover 58.6 39.3 0.0 44.7 41.4 

Soil 19.5 10.5 16.1 0.0 2.8 

Geology 0.0 39.3 60.5 44.7 41.4 

Low 

     Climate 27.3 9.7 5.1 0.0 20.0 

Topography 0.0 0.0 3.4 1.6 0.0 

Land cover 50.3 38.7 30.5 42.2 13.3 

Soil 22.4 12.9 20.3 0.0 13.3 

Geology 0.0 38.7 40.7 56.3 53.3 

 The most frequently selected types of variables for any flow were land cover and 

geology. Both of these variable categories were only comprised of a single variable (Forest 

and BFI). The recurring selection of these variables highlights their relations to the percentile 

flows and subsequent importance for modeling the FDC. The importance of Forest over 

climatic variables was unexpected, but it should be noted that Forest covaries with climate 

both in a general sense and as demonstrated by fairly large correlation coefficients in this 
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study (0.58 and -0.62 with MAP and Aridity, respectively). Forest was an important variable 

because it (1) moderates high flows during storm events through interception (Yokoo and 

Sivapalan, 2011), (2) is an indicator of long-term climatic factors that control average flows 

(Coopersmith et al., 2012), and (3) is related to evapotranspiration rates that affect low flows 

during the dry season (Yaeger et al., 2012). This indicates that additional vegetation 

information for canopy density and transpiration may be useful for predicting percentile 

flows. Such variables could be created using widely available remote sensing products, like 

the vegetation indices of the Moderate Resolution Imaging Spectroradiometer. Vegetation 

indices, such as leaf area index, may account for the effects of interception and transpiration 

on the FDC. Meanwhile, BFI was an important variable because the percent of streamflow 

delivered as groundwater is related to infiltration during storm events (high flows) and 

climatic and geologic conditions that influence the average and low flows of the FDC 

(Bloomfield et al., 2009). 

 Future work may benefit from including more land cover and geologic variables 

given their importance in this study. Land cover and geologic variables are typically 

categorical, but the inclusion of certain categories may be beneficial if they have a reasonable 

association to streamflow. For instance, the percent of sedimentary bedrock and water bodies 

in a basin may be useful as an indicator of storage conditions. Prior studies have also had 

success using baseflow recession statistics as a quantitative alternative to categorical 

geologic variables (Kroll et al., 2004). However, these statistics require streamflow data, and 

can only be used in an ungauged context if an interpolated product already exists for the 

study area. This is akin to the use of the BFI grid in this study, only the values of the grid 

represent other elements of baseflow recession related to geology. 
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 The second most selected types of variables for any flow were climate and soil. 

Climatic variables were more consistently selected for high and average flows, which aligns 

with prior research linking the high tail and middle of the FDC to surface runoff generating 

processes and long-term climatic conditions (Yokoo and Sivapalan, 2011). Soil variables 

were more often selected for low flows. This is also consistent with prior research, which 

found that the low flows of the FDC are contributed by groundwater and subsequently 

influenced by soil storage properties (Yokoo and Sivapalan, 2011). The most surprising 

result of examining the variable categories was that topographic variables were the least 

frequently selected type of variable. This was unexpected given the widespread use of 

topographic variables to predict percentile flows and other streamflow statistics (Ssegane et 

al., 2012a). Results from this study downplay the importance of topographic variables. 

 The type of independent variables selected by the different methods was also 

compared. The baseline regression procedure was the only method not to select the lone 

geologic variable of BFI, whereas the other methods frequently used BFI to predict the 

percentile flows. The correlation analysis revealed that BFI was typically among the 

strongest independent variables in univariate regressions with the percentile flows, and 

influenced model performance as evidenced by the poor performance of methods that did not 

use BFI (i.e. baseline regression procedure and PCA). 

 BFI was excluded from the baseline regression procedure because it inflated 

multicollinearity in the regression models, and as a result, models containing BFI were 

rejected during the multicollinearity screening. It is not surprising that BFI heightened the 

multicollinearity of regression models since groundwater flows are related to other climatic, 

topographic, and soil variables (Santhi et al., 2008). Climate influences the amount of 
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precipitation available for groundwater flows, while topography and soil dictate groundwater 

infiltration. 

 The end result of excluding BFI was that the baseline regression procedure had 

poorer predictive performance than all other methods except PCA. BFI was clearly an 

important independent variable, yet its effect on multicollinearity led to its exclusion in the 

baseline regression procedure. This prompts the question of whether or not important 

independent variables should be sacrificed to guard against multicollinearity. This question 

may be resolved by using a more powerful predictive model, such as an artificial neural 

network, which is potentially robust to the adverse effects of multicollinearity (Dormann et 

al., 2013). 

 The remaining methods all heavily emphasized BFI alongside a mix of other 

independent variables. Correlation analysis, symbolic regression, and Bayesian networks all 

selected a similar distribution of independent variables for high, average, and low flows. In 

addition to BFI, these methods mainly selected land cover and to a lesser extent climatic 

variables. Similarity in the selected independent variables was reflected in predictive 

performance, where correlation analysis, symbolic regression, and Bayesian networks were 

nearly inseparable. 

 Random forests exhibited more variation in the independent variables selected to 

accompany BFI for the different types of flow. These changes in the independent variables 

selected for the various percentile flows resulted in random forests having the best overall 

predictive performance. Random forests made the best use of the independent variables, but 

its regression models still only achieved fair predictive performance at best. 
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 The gap in predictive performance may be due to a shortage in useful independent 

variables. This calls for new variables more strongly associated with percentile flows and 

their governing processes. Current variables typically provide average values for the entire 

basin, but alternative variables that attempt to capture the temporal dynamics of climate and 

spatial distribution of physical features may improve percentile flow predictions. The FDC is 

influenced by subsurface properties that are underrepresented in current basin databases. 

Percentile flow predictions may benefit from new soil and geologic variables that quantify 

basin storage characteristics associated with the average and low flows of the FDC. Efforts 

are currently underway to better characterize subsurface properties that affect streamflow at 

Critical Zone Observatories in the US (see Takagi and Lin, 2010), and findings from these 

studies should be extrapolated to larger scales for predictions in ungauged basins. 

 A sample of the independent variables selected for one high, average, and low 

percentile flow is provided in Table 8. There is a strong level of agreement between the 

variables selected by each method. For instance, all the methods chose Aridity to predict Q10, 

and four of the five methods predicted Q10 using BFI, Percent_Snow, and MAP. Similar 

degrees of overlap between the methods were present for the other percentile flows. 
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Table 8. Selected independent variables for a sample of percentile flows (see Table 2 for variable 
descriptions). Note that the baseline regression procedure contains Aridity twice as an untransformed 
and natural log-transformed variable. 

Flow Baseline Corr RF SR BN 

Q10 Aridity Aridity Aridity MAP Aridity 

 

Precip_Intensity BFI MAP Aridity BFI 

 

Water_Capacity Percent_Snow BFI Forest Percent_Snow 

 

Aridity Forest Percent_Snow Orientation Forest 

 

Percent_Snow MAP PET BFI MAP 

Q50 Aridity BFI BFI BFI BFI 

 

Aridity Aridity Aridity Forest Aridity 

 

Forest Forest Elev Aspect Forest 

 

Percent_Snow MAP MAP Elev MAP 

 

Poorly_Drained Soil_Porosity Soil_Porosity - Soil_Porosity 

Q90 Poorly_Drained BFI BFI BFI BFI 

 

Mean_Temp Poorly_Drained Poorly_Drained Forest Poorly_Drained 

 

Forest Percent_Snow Aridity - Percent_Snow 

 

Aridity Forest Forest - PET 

  Aridity Aridity TWI - Mean_Temp 

 The method that departed the most from the others was the baseline regression 

procedure because, as previously noted, BFI was rejected for all percentile flows. Another 

noteworthy result from the baseline regression procedure was that the branch-and-bound 

search returned models with Aridity as both an untransformed and natural log-transformed 

variable. Both Aridity variables were used in the same model during the branch-and-bound 

search since they improved model performance. These models also passed the 

multicollinearity screening, but including both forms of Aridity was a questionable result 

from the branch-and-bound search. The baseline regression procedure also selected 

independent variables that did not appear in any other method. This all contributed to the 

poor performance of the baseline regression procedure. 

 It should be noted that symbolic regression used less than five variables to predict all 

flows below Q50. Despite this, symbolic regression remained among the best performing 
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methods. Only two independent variables were used for the percentile flow models below 

Q70, yet these models were still among the best in predictive performance. This further 

confirms the lack of useful independent variables, particularly for the low percentile flows. 

F. Conclusions 

 A variety of variable selection methods were tested to formulate regression models 

for predicting FDC percentile flows in ungauged US basins. Independent variables for 

percentile flows and other streamflow statistics are normally selected using stepwise 

regression procedures, but branch-and-bound regression procedures are an improvement to 

stepwise regression that search more of the variable space to find a more global optimum 

(Miller, 2002). Both of these procedures represent the baseline approach for identifying the 

independent variables of percentile flow regression models. Baseline regression procedures 

are used because an exhaustive search of all possible models is no longer feasible given the 

dimensionality of current basin databases. This problem, coupled with the model bias and 

multicollinearity introduced by baseline regression procedures (Harrell, 2001), motivated the 

use of alternative variable selection methods independent of the regression modeling. 

 A baseline regression procedure was compared to knowledge-based variables, PCA, 

correlation analysis, random forests, symbolic regression, and Bayesian networks. The 

variable selection methods were assessed according to resulting regression model 

multicollinearity and predictive performance. Regression models were developed to predict 

13 percentile flows for 918 basins in the US, and the predictive performance of these models 

was evaluated using validation basins withheld from regression model development. 

 Regression model multicollinearity was only limited by the methods that assessed the 

correlation between independent variables. Multicollinearity was identified and removed in 
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the baseline regression procedure. However, this process diminished the predictive 

performance of the resulting models. The removal of multicollinearity using PCA also had 

the same effect on model performance. Thus, removing multicollinearity had the 

unanticipated effect of reducing the predictive performance of the regression models. 

 Multicollinearity removal was problematic in the baseline regression procedure 

because models had to be screened using an arbitrary threshold. A widely cited threshold was 

applied, but it restricted the number of eligible models along with their complexity. The 

arbitrary threshold was also responsible for rejecting one of the most important independent 

variables in BFI and reduced the predictive performance of resulting regression models. BFI 

greatly increased multicollinearity, but that did not hamper the predictive performance of the 

regression models. 

 Higher multicollinearity generally translated into better predictive performance in 

validation, which contradicts the assumption that multicollinearity degrades the 

transferability of regression models. Multicollinearity is a problem for transferring regression 

models to a dataset with a different correlation structure (Dormann et al., 2013). The 

validation data in this study likely had a similar correlation structure as the calibration data, 

and the predictive performance of the regression models was not negatively impacted by the 

presence of multicollinearity. Variable selection methods that resulted in elevated 

multicollinearity should be used with caution if the correlation structure may differ between 

the calibration and validation data. 

 The predictive performance of all the regression models was poor (NSE < 0.50) to 

fair (0.50 < NSE < 0.75), but these results may be improved by developing regression models 

for homogeneous regions in the US. Most of the regression models achieved similar 
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predictive performance despite using different variable selection methods. However, some of 

the variable selection methods performed better than the others, and the comparison of the 

variable selection methods revealed the following key findings: 

 The baseline regression procedure only performed better than PCA, and both of these 

methods performed worse than the other methods. Baseline regression procedures and 

PCA are the two most common methods used to devise regression models in 

hydrology, but future studies may benefit from alternative variable selection methods 

that use knowledge of the controls on streamflow and numerical relations to the 

targeted streamflow variable established via correlation, regression trees, optimization 

algorithms, or causal associations. 

 Methods other than the baseline regression procedure and PCA performed similarly, 

and consistently generated better regression models for predicting percentile flows. 

Random forests produced the best overall regression models. However, the best 

method for a given percentile flow varied, and the difference was often negligible. 

 Knowledge-based variable selection performed similarly to the best data-based 

methods, and produced stable regression models for ungauged basins. This 

underscores the importance of using independent variables grounded in the physical 

understanding of runoff processes, which should at least be taken into consideration 

when formulating the initial set of independent variables. 

 A small portion of independent variables was repeatedly selected by the best 

methods. These variables contributed redundant information as indicated by their 

high degree of multicollinearity, and had limited predictive power. Regression 

modeling of percentile flows requires new independent variables that better represent 
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the processes associated with streamflow generation. This was especially the case for 

the high and low flows with the most predictive error. These flows are both 

influenced by subsurface processes poorly characterized by current independent 

variables. New variables for the subsurface processes of infiltration and storage may 

improve regression models for high and low flows. Precipitation variables describing 

the statistical distribution of storm magnitude may also be critical for predicting high 

flows produced by storms. 

 Widely used independent variables were mostly ineffective for predicting the 

percentile flows. Topographic variables are some of the most common independent 

variables, but they did not exhibit strong relations to the percentile flows, and, as a 

result, were not frequently selected by the variable selection methods. 

 Geology and land cover were the most important independent variables, with BFI 

having the strongest influence on predictive performance. Given these results, future 

studies should more heavily emphasize geologic and land cover variables, and the 

development of such variables is needed to improve the representation of surface 

runoff and groundwater flows associated with the most difficult to predict percentile 

flows at the tails of the FDC. 

 Even the best independent variable combinations had limited predictive potential, 

signifying that there was no underlying regression model solution for the given set of 

variables and basins. This could be due to missing information in the independent 

variables as previously discussed, but it could also stem from inadequacies in the 

regression modeling approach. For instance, regression models could be developed 

for hydrologically homogeneous regions in order to reduce the variability in 



68 

 

percentile flows and increase their predictability (see Chiang et al., 2002; Sauquet and 

Catalogne, 2011; Ssegane et al., 2012b). Another possibility is the use of a more 

powerful predictive model, like artificial neural networks, capable of assimilating the 

noise and non-linearities between percentile flows and basin characteristics. Both of 

these potential improvements to percentile flow predictions will be tested in future 

studies on clustering and neural network modeling of the basins. 

 Future research could exploit new datasets, such as the Gridded Soil Survey 

Geographic Database (Soil Survey Staff, 2014) and Soil Moisture Active Passive (Brown et 

al., 2013a), to account for subsurface processes that influence high and low flows prone to 

more predictive error. Modern datasets contain spatial and temporal information that is 

typically condensed into average values for the entire basin. Future studies could evaluate the 

utility of alternative variables that characterize the spatial distribution and temporal dynamics 

of the data. Such variables have corresponded to regional streamflow patterns (Toth, 2012), 

and may be effective independent variables for predicting percentile flows. An analysis of the 

factors related to the predictive error in the percentile flows was out of the scope of this 

study, but could lend insights into the information needed to improve predictions. A critical 

factor contributing to predictive error is the prediction of zero flows, and future studies 

should design predictive models specifically for intermittent streams. 

 The best method for the regression modeling of percentile flows remained unclear at 

the large scale of this study. A future study should be performed for a smaller, more 

homogeneous region to determine if one method is clearly better than the others. The 

percentile flow regression models developed for the US had poorer predictive performance 

than models developed for more homogeneous regions in previous studies (see Archfield et 
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al., 2009; Hope and Bart, 2012; Mohamoud, 2008). Identifying homogeneous regions with 

hydrologically similar basins may be a critical preliminary step in developing percentile flow 

regression models for the US. Subsequent regional regression models may achieve greater 

predictive performance than the global regression models developed in this study. 

 Percentile flow predictions may also be improved through the use of a more powerful 

predictive model, such as an artificial neural network. An advantage of artificial neural 

networks is that variable selection is not necessary since they are nonparametric models 

robust to noise and multicollinearity in the data (Coulibaly and Evora, 2007). Subsequent 

chapters of this dissertation will address the remaining uncertainty in the percentile flow 

regression models by employing a regional approach and artificial neural networks. 
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Chapter 3: How much physical and climatic information is necessary for regional 

regression modeling of the flow duration curve? 

A. Abstract 

 The flow duration curve (FDC) expresses the percent of time a flow is exceeded, and 

its percentile flows are widely used in water resource applications. However, percentile flows 

are often needed for ungauged basins with insufficient flow data, and hydrologic 

regionalization approaches are used that pool data from gauged basins to predict percentile 

flows at ungauged sites. These approaches typically use regression models based on 

independent variables. The regression models are often developed for regions consisting of 

basins with similar independent variables in a process called regional regression modeling. 

Most regional regression studies have not focused on how the selection of independent 

variables can influence the predictive performance of subsequent models. This question was 

investigated in terms of the approach for selecting the initial set of variables and the amount 

of information necessary to develop regional regression models for 918 basins in the US. The 

regional regression modeling used three different sets of independent variables with varying 

levels of information as follows: (1) a simple set of three variables chosen based on 

hydrologic understanding of the FDC and subsequently called “hydrologic” variables, (2) a 

typical set of variables that summarize basin characteristics as average statistics called 

“lumped” variables, and (3) a more complex set of variables consisting of the typical 

variables and additional variables quantifying the statistical distribution of basin data. The 

different sets of variables were used to cluster the basins into regions and develop regional 

regression models for predicting 13 percentile flows. The regional regression approach 

achieved fair predictive performance based on validation results from 184 basins. Predictive 
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performance varied with the percentile flows and the different sets of independent variables. 

The approach performed best for percentile flows related to average conditions and worst for 

high and low flows subject to more regional variability. Predictive performance declined 

using the set of independent variables with the most information, and was similar for the 

hydrologic and lumped variables. This result indicates that variables typically used to predict 

the FDC offer little predictive information, and variables based on a physical understanding 

of the FDC are far more important. Future regional regression studies may consider 

developing new independent variables in light of the limited predictive potential of typical 

variables. Some of the predictive uncertainty detected in this study may be due to the use of 

regression, and the next study of this dissertation will evaluate a machine learning method for 

predicting the percentile flows. 

B. Introduction 

 The flow duration curve (FDC) expresses flow as the percent of time it is equaled or 

exceeded. These values are called percentile flows, and they are widely used in water 

resource applications that depend on a minimum flow for a certain percent of time (Vogel 

and Fennessey, 1995), such as hydropower planning, water use permitting, and water quality 

management. The shape of the FDC is also strongly tied to the physical and climatic 

conditions of the contributing drainage basin (Yaeger et al., 2012; Ye et al., 2012; Yokoo and 

Sivapalan, 2011). This makes the FDC a valuable tool for investigating the basin 

characteristics associated with regional streamflow patterns. 

 Percentile flows are frequently needed for basins without flow data or insufficient 

data to construct a long-term FDC. For these ungauged basins, percentile flows must be 

predicted using information from surrounding gauged basins. This process is known as 
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hydrologic regionalization. The types of information used in a hydrologic regionalization 

procedure can vary depending on the situation (targeted streamflow variable, density of 

stream gauge network, and data availability). Since stream gauge networks are often too 

sparsely distributed to directly extrapolate percentile flows, the most common approach is to 

use basin characteristics to predict percentile flows at ungauged basins (Booker and Woods, 

2014). The flow generated by a basin is related to its physical and climatic characteristics 

(e.g. drainage area, slope, and annual precipitation). These relations are then used in 

regionalization procedures to predict percentile flows. The performance of regionalization 

procedures largely depends on the region and independent variables used to develop the 

predictive relations. 

1. Regional regression 

 In large study areas with potentially heterogeneous basins, regions composed of 

similar basins are often identified for the process of hydrologic regionalization (Sauquet and 

Catalogne, 2011). The purpose of these regions is to reduce the variance in percentile flows 

and enhance their predictability. A variety of prediction methods can be applied in each 

region in order to predict percentile flows. The most common approach calibrates a 

regression model to the region in a process called “regional regression”. The term was 

popularized by Stedinger and Tasker (1985), and refers to the two-phase process of (1) 

designating hydrologic regions and (2) calibrating regression models to predict flow statistics 

for a region of interest. The region’s basin characteristics are used as independent variables 

to calibrate the regression model. This approach has been adopted as a governmental 

standard for predicting flow statistics in the US (Ries, 2007) and UK (Robson and Reed, 

1999). It has also been widely used to predict percentile flows (see Holmes et al., 2002; Hope 
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and Bart, 2012; Mohamoud, 2008). Critical components of regional regression are the 

regions and variables used to formulate the regression models. These two components are 

reviewed in the following sections, which outline the options for designating regions and 

different types of variables used for regional regression. 

2. Hydrologic regions 

 Regional regression relies on hydrologic regions consisting of basins with similar 

percentile flows. Hydrologic regions are often identified geographically under the 

assumption that the basins of a geographic region have similar flow (see Archfield et al., 

2009; Booker and Woods, 2014; Castellarin et al., 2004). However, that may not always be 

the case, particularly for drier climates where the variability in flow among basins increases 

(Patil and Stieglitz, 2012). In light of this, analytical methods are also applied to designate 

hydrologic regions (see Ganora et al., 2009; Holmes et al., 2002; Sauquet and Catalogne, 

2011). A common method used in flood prediction is to establish a “region of influence” with 

a set number of nearby basins (Merz and Blöschl, 2008), but again, this method may be 

unreliable in drier climates and depends on the spatial density of the stream gauge network. 

 Other methods utilize the characteristics of basins to place them into clusters that may 

not be geographically contiguous. Specialized clusters for each basin can be assigned by 

ranking the most similar basins according to a set of characteristics (Oudin et al., 2008). 

However, this method requires an arbitrary limit to the number of basins included in the 

specialized clusters, and may inadvertently include dissimilar basins. Cluster analysis avoids 

this problem, and has become the preferred method for clustering basins based on a large 

number of hydrologically relevant characteristics (Sauquet and Catalogne, 2011). 
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3. Cluster analysis 

 The goal of cluster analysis in regional regression is to identify hydrologic regions 

with similar percentile flows. These “regions” are determined in the attribute space of basin 

characteristics, and are often formulated completely independent of basin location (see Laaha 

and Blöschl, 2006; Sanborn and Bledsoe, 2006; Srinivas et al., 2008). This means the 

resulting regions are clusters of basins with similar characteristics that may not be in the 

same geographic region. 

 Basin characteristics must be chosen for the cluster analysis. This involves subjective 

judgment of which basin characteristics should be used to create hydrologic regions. The 

obvious choice is to cluster the basins based directly on their percentile flows, but ungauged 

basins cannot be included in the clustering, and they may not be assigned to the appropriate 

cluster (Sanborn and Bledsoe, 2006). Percentile flows are usually excluded from the cluster 

analysis so that both gauged and ungauged basins can be included. In lieu of percentile flows, 

physical and climatic characteristics related to flow are used to identify hydrologic regions 

via cluster analysis (Olden et al., 2012). 

 Cluster analysis can take on many forms, but a common aspect of these methods is 

that they can be used to compute the distance between basins in multivariate attribute space. 

This measure of basin similarity is then used to assign clusters based on an objective function 

that attempts to maximize the similarity within clusters and dissimilarity between clusters. A 

number of these methods have been used for regional regression in hydrology (e.g. k-means, 

regression trees, and hierarchical), and some studies have compared their performance for 

predicting flow statistics (see Isik and Singh, 2008; Laaha and Blöschl, 2006; Lin et al., 

2010). No method was clearly the best for clustering basins as their performance was likely 
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data specific. However, an important finding from this research is that clustering methods 

benefit from using derived input variables that reduce the dimensionality of the original basin 

data (see Di Prinzio et al., 2011; Farsadnia et al., 2014; Srinivas et al., 2008). 

 The purpose of creating derived input variables with reduced dimensionality is to 

treat the data for redundant information, noise (erroneous variation), and non-linearities, all 

of which can be problems for clustering methods. Derived input variables can be created 

using traditional statistical techniques that generate new variables based on the correlation 

structure of the data (e.g. principal component analysis) or machine learning techniques that 

produce new variables according to the underlying patterns in the data (e.g. the self-

organizing map). The latter approach has gained ground in hydrology because machine 

learning accounts for the often complex and non-linear relations between hydrologic 

variables (Kalteh et al., 2008). 

 The self-organizing map (SOM) is a machine learning technique that transforms the 

input variables for the cluster analysis into a set of neuron vectors composed of generalized 

values for representing the data. The neuron vectors are derived through an iterative training 

process designed to reduce noise and capture non-linearities in the data (Kohonen et al., 

1996). The trained neurons are arranged in a topologically preserving space that represents 

clusters in the data. Individual neurons could act as clusters in a small SOM. However, this 

does not allow the clusters to emerge in the SOM and requires the selection of an a priori 

number of clusters. Using a SOM with far more neurons than potential clusters creates a 

space in which the data can be organized according to its attributes. The resulting “map” of 

the attribute space can then be used to explore and define clusters. Exploration of the clusters 

is carried out through visualization and analysis of the neuron vectors, and clustering 
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methods are applied on the neuron vectors to cluster the input data. This process is becoming 

increasingly common for clustering the basins of regional regression studies (see Hall and 

Minns, 1999; Jingyi and Hall, 2004; Srinivas et al., 2008). The SOM is particularly appealing 

for clustering basins because of the noise and non-linearity often present in hydrologic data. 

Unlike other methods to create derived input variables for clustering basins, the SOM 

provides a platform for characterizing the clusters and their interconnections (Coleman, 

2008). 

4. Regional regression variables 

 Regional regression uses physical and climatic basin characteristics as variables for 

cluster analysis and regression. These variables are collectively referred to as independent 

variables. They are derived from ancillary data related to flow, and used to identify 

hydrologic regions and calibrate regression models for the resulting regions. Independent 

variables used in regional regression typically describe the central tendency of basin 

characteristics using mean or median statistics (Toth, 2012), and are called “lumped” 

variables because they use a single value to summarize the distributed data from a basin (e.g. 

.mean elevation, slope, and soil porosity). 

 A large variety of lumped variables have been used to predict the FDC, but an 

effective approach for selecting the variables may be to conceptualize the FDC as a gradient 

of flows consisting of two end members contributed by storms (highest flow) and 

groundwater (lowest flow). Flows between the end members are moderated by evaporative 

losses. Therefore, the factors that shape the FDC are storm and groundwater flows adjusted 

for evaporative losses. These factors could be represented for a simple, but hydrologically-

based regional regression of the FDC using the following “hydrologic” variables: 
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1. Mean annual precipitation (MAP) accounts for the rainfall and antecedent moisture 

conditions associated with storm flows (Ye et al., 2012). 

2. Baseflow index (BFI) quantifies groundwater flows as the percent of flow contributed 

by groundwater. 

3. Potential evapotranspiration (PET) approximates evaporative losses that moderate the 

entire FDC (Yokoo and Sivapalan, 2011). 

 In contrast to the hydrologic variables, the complexity of the independent variables 

typically used for regional regression studies could be increased by including a variety of 

lumped variables along with statistics on the deviation about those variables. This set of 

variables would more closely account for the spatial and temporal distribution in basin data, 

and are therefore called “distributed” variables. These variables could be derived to 

characterize the spatial distribution of physiographic data (e.g. standard deviation in soil 

properties) and temporal components of climatic data (e.g. precipitation seasonality). 

Regional differences in the FDC may be better explained by distributed variables considering 

the factors that shape the FDC. This is illustrated by the following examples: (1) precipitation 

seasonality affects the variability in flow throughout the year and the slope of the FDC (Ye et 

al., 2012), (2) forest cover in the riparian corridor may reduce the low end of the FDC due to 

the transpiration from trees (Hope et al., 2009), and (3) variability in soil storage properties 

may reflect the middle of the FDC since these average flows are largely a function of the 

storage in a basin (Yokoo and Sivapalan, 2011). Despite the possible explanatory power of 

distributed variables, few regional regression studies have used them (Toth, 2012), and even 

fewer studies have investigated the effect of different independent variables on the flow 

predictions of a regional regression (Hope and Bart, 2012; Ilorme, 2011). More studies are 
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needed to resolve which type of variables (hydrologic, lumped, or distributed) and how much 

information is necessary to develop regional regression models. These questions are 

addressed for a regional regression using physical and climatic variables to cluster basins and 

model their percentile flows (Figure 4). 

 

Figure 4. Regional regression approach applied to address the question of how much information is 
necessary to develop regional regression models. Solid lines indicate the methodological options 
chosen for this study. 

C. Research design 

 Regional regression to predict percentile flows consists of two phases: (1) clustering 

basins into regions and (2) calibrating regression models for the resulting regions. Both 

phases involve the selection of variables used to approximate hydrologic conditions and 

predict percentile flows. Prior studies have primarily focused on how the basins should be 

clustered, but far less attention has been given to the variables used to formulate regional 

regressions. These variables may affect the regional regression results, and can be 

represented with varying amounts of information ranging from a simple set of 

hydrologically-based variables to variables describing many factors possibly related to the 

FDC. The amount of information refers to the number of variables and also how they 

aggregate the spatiotemporal data of the basins. The variables can either describe the average 
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of the data or additional information on the distribution of the data. Increasing the amount of 

information requires more computational effort to derive the independent variables. This 

regional regression study tests different sets of variables with varying amounts of information 

to answer the following question: 

How much information is necessary for regional regression modeling of percentile flows? 

 The research question was evaluated using three sets of variables that can be viewed 

as a hierarchy with increasing numbers of variables and greater computational costs. The first 

level of the hierarchy only included three “hydrologic” variables chosen based on a 

conceptual understanding of the FDC gathered from the literature. “Lumped” variables were 

added to the second level of the hierarchy to describe the average for a variety of basin 

characteristics. This level of the hierarchy was intended to represent a typical set of variables 

used for regional regression modeling. The final level of the hierarchy included the lumped 

variables and additional “distributed” variables that characterize the statistical distribution of 

the basin data. Each level of the variable hierarchy was tested in a regional regression 

including a large sample of 918 basins in order to create more generalizable results for future 

studies (Andréassian et al., 2007). The study consisted of three steps in the evaluation of the 

different sets of variables: (1) designate hydrologic regions for the entire US according to 

physical and climatic basin characteristics, (2) develop regional regression models to predict 

the percentile flows of the FDC, and (3) compare the performance of the regional regression 

using the three different amounts of information on the basins. Hydrologic regions derived 

from the most parsimonious set of variables were then characterized to better understand 

regional patterns associated with percentile flows. This research was motivated by the 

hypothesis that the regional patterns derived from distributed variables would be more 
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closely tied to percentile flows due to the complexity of the processes that shape the FDC. A 

conceptual diagram of this research is given in Figure 5. 

 

Figure 5. Research design of this study. 

D. Methods 

1. Overview 

 A regional regression routine was repeated using three different sets of independent 

variables (hydrologic, lumped, and distributed). Each set of variables was first fed into a 

SOM to create a new set of variables based on the neuron vectors generated by the SOM. 

This intermediary step is described further in the SOM section, and was performed to 

account for non-linearities and reduce noise in the data. The neuron vectors were then 

clustered using the k-means method as it has proven to be compatible with the SOM (Skupin, 

2004). Neuron clusters were linked to the basins according to the neurons that best matched 

the basins (best-matching unit). Subsequent basin clusters were used as the hydrologic 

regions for regional regression models to predict 13 percentile flows including the high flow 

exceeded only 1% of the time (Q01), low flow exceeded 99% of the time (Q99), and flows 

between that range (Q05, Q10, Q20,…Q95). 

 Regional regression models were calibrated using the independent variables. For the 

more complex sets of variables (lumped and distributed), a subset of variables was selected 

using random forests since it performed best in a prior study (see the first paper of this 



81 

 

dissertation) and offers a method for ranking variables based on their potential to predict 

percentile flows. Variables were selected for each hydrologic region, and used to calibrate 

the regional regression model. Calibration basins were used to develop the regression 

models, and their predictive performance was assessed using an independent set of validation 

basins. Results from the three sets of variables were then compared to determine which 

amount of information was most parsimonious for the regional regression of percentile flows. 

The preferred method was used to describe the physiographic and climatic characteristics of 

the US hydrologic regions. The entire regional regression study is summarized in Figure 6. 

 

Figure 6. Summary of the regional regression study comparing different sets of independent 
variables. 

2. Basins and variables 

 This study included 918 basins in the contiguous US classified as “near-natural” by 

the US Geological Survey’s GAGES-II database (Falcone, 2011). The basins all had 30 years 

of continuous daily streamflow data, which was used to calculate 13 percentile flows (Q01, 

Q05, Q10, Q20,…Q95, Q99). A streamflow record of 30 years is more than sufficient to compute 
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reliable percentile flows regardless of the record’s starting date (Kennard et al., 2010). The 

percentile flows were computed using the Weibull plotting position (Castellarin et al., 2004), 

and normalized by the mean of nonzero flows in order to create dimensionless statistics less 

influenced by drainage area (Hope and Bart, 2011). The dimensionless percentile flows were 

used as the dependent variables in the regional regression models. 

 The dataset was split into calibration and validation basins for regression model 

development (Figure 7). Regression models were tested on 184 (20%) of the basins. A 

widely used split sampling technique called the “proxy-basin test” (Klemeš, 1986) was 

applied to split the basins. This technique tests the geographic transferability of the 

regression model using validation basins that are representative of the calibration basins. A 

representative sample of validation basins was selected using a stratified sampling approach 

that grouped the basins according to key factors related to the FDC (climate class, rock type, 

and drainage area). The validation therefore assessed the performance of the regression 

models for a variety of conditions with presumably different streamflow regimes. Percentile 

flows were not used to sample different streamflow regimes to avoid corrupting the 

validation. 
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Figure 7. Location of the calibration and validation basins. The study included 918 basins, with 734 
calibration and 184 validation basins. 

 Independent variables were used to cluster the basins into hydrologic regions and 

develop regional regression models to predict the percentile flows. These variables described 

the climate, topography, land cover, soil, and geology of the basins. Climatic variables were 

computed using 30 years of data. Most of them used monthly data concurrent with the 

streamflow data, but those concerned with storm intensity (Precip_1D_Max and 

Precip_Intensity) used a fixed timeframe (1981-2010) since the daily precipitation data did 

not cover all of the streamflow data. Land cover was represented using percent forest cover 

because it affects the FDC more than other major types of vegetation, such as shrub and 

grassland (Brown et al., 2005). Percent forest cover was quantified using the National Land 

Cover Dataset for 1992 as this year coincided with the most 30-year streamflow time periods. 

The influence of geology on streamflow was depicted using a spatially interpolated grid for 

BFI (percent of streamflow from groundwater). BFI values from gauged basins were 

spatially interpolated for the contiguous US (Wolock, 2003). It is acknowledged that the BFI 
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grid may have been derived using streamflow data from the validation basins. However, the 

BFI grid was used to create independent variables since it is a preexisting product that can be 

used by water resource managers to predict percentile flows (Wolock, 2003). 

 This study included three different sets of variables, and the variables in each set are 

given in Table 9 as hydrologic (H), lumped (L), and distributed (D). The different sets of 

variables are nested, with 37 distributed variables and the same, but fewer, variables in the 22 

lumped and three hydrologic variables. The hydrologic variables included MAP, PET, and 

BFI based on a conceptual model of the factors that shape the FDC proposed in the 

introduction. The next set of variables included lumped variables that summarize 

physiographic and climatic data distributed in space and time using a single value. The most 

complex set of distributed variables used additional variables to describe the spatiotemporal 

distribution of basin data in more detail. The distribution of spatial physiographic data was 

quantified by its standard deviation in the basins, and percent forest cover was calculated 

within riparian corridors critical for groundwater discharge. The distributed variables also 

characterized the temporal dynamics of the climatic data. This was accomplished using (1) 

the standard deviation of annual storm intensity and aridity statistics, (2) the Fourier 

transform of the potential evapotranspiration time series to describe its amplitude and peak 

timing (Dalton, 2005), and (3) the autocorrelation function (Toth, 2012) and circular statistics 

(Dingman, 2001) to respectively describe the amplitude and peak timing of the precipitation 

time series. All the variables used in this study are described further in Table 9. 
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Table 9. Variables used in this study. The final column shows the variables included in the hydrologic 
(H), lumped (L), and distributed (D) sets of variables. 

Variable Units Description Data source Set 

Dependent     

Qp (e.g. Q01 for 1%) - Normalized percentile flows for 1, 

5, 10, 20, 30, 40, 50, 60, 70, 80, 

90, 95, and 99% exceedance 

NWIS - 

Independent     

MAP mm Mean annual precipitation PRISM H, L, D 

PET mm Mean annual potential 

evapotranspiration calculated 

using the Oudin et al. (2005) 

equation 

PRISM H, L, D 

BFI % Mean baseflow index derived 

from a baseflow grid 

BFI48GRD H, L, D 

Precip_SD mm Standard deviation of annual 

precipitation 

PRISM L 

Forest % Percent forest cover NLCD 1992 L 

Precip_1D_Max mm Median of annual 1-day maximum 

precipitation 

PRISM L, D 

Precip_Intensity mm/d Precipitation per rainy day PRISM L, D 

Spring_Temp °C Average temperature from April-

June 

PRISM L, D 

Aridity - Aridity index calculated as PET 

divided by MAP 

PRISM L, D 

Percent_Snow % Mean annual percent of 

precipitation as snow 

GAGES-II L, D 

Area km
2
 Drainage area GAGES-II L, D 

Density km/km
2 

Drainage density calculated as 

stream length divided by drainage 

area 

NHDPlusV2, 

GAGES-II 

L, D 

Orientation °N Basin angle along main channel GAGES-II L, D 

Elev m Mean elevation NED L, D 

Relief_Ratio % Relief ratio calculated as elevation 

range divided by basin length 

along main channel 

NED, 

GAGES-II 

L, D 

Slope % Mean slope NED L, D 

Aspect °N Mean aspect NED L, D 

Accumulation km
2
 Mean flow accumulation 

expressed as upslope area 

NED L, D 

TWI - Mean topographic wetness index 

calculated as 

ln(accumulation/tan(slope)) 

NED L, D 

Soil_Porosity % Mean soil porosity expressed as 

percent pore volume 

CONUS-SOIL L, D 

Water_Capacity % Mean water capacity expressed as 

percent volume at field capacity 

CONUS-SOIL L, D 

Table continued on next page    
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Variable Units Description Data source Set 

Poorly_Drained % Percent poorly drained including 

hydrologic soil groups C and D 

CONUS-SOIL L, D 

Precip_Lag1 - Lag-1 autocorrelation coefficient 

of monthly precipitation data 

PRISM D 

Wet_Season - Binary variables indicating season 

with peak precipitation calculated 

using circular statistics as in 

Dingman (2001) 

PRISM D 

Precip_Seasonality - Distribution of monthly 

precipitation throughout the year 

calculated using circular statistics 

as in Dingman (2001) 

PRISM D 

Precip_1D_Max_SD mm Standard deviation of 

Precip_1D_Max 

PRISM D 

Precip_Intensity_SD mm/d Standard deviation of annual 

Precip_Intensity 

PRISM D 

PET_Amp mm Amplitude of the first term of the 

Fourier transform as in Dalton 

(2005) 

PRISM D 

PET_Ph rad Phase of the first term of the 

Fourier transform as in Dalton 

(2005) 

PRISM D 

Aridity_SD - Standard deviation of annual 

Aridity 

PRISM D 

Elev_SD m Standard deviation of elevation NED D 

Slope_SD % Standard deviation of slope NED D 

Aspect_SD °N Standard deviation of aspect NED D 

Accumulation_SD km
2
 Standard deviation of flow 

accumulation 

NED D 

TWI_SD - Standard deviation of topographic 

wetness index 

NED D 

Forest_Rip % Percent forest cover within 800 m 

of a stream channel 

GAGES-II D 

Soil_Porosity_SD % Standard deviation of soil porosity CONUS-SOIL D 

Water_Capacity_SD % Standard deviation of water 

capacity 

CONUS-SOIL D 

BFI_SD % Standard deviation of baseflow 

index 

BFI48GRD D 

Data sources: NWIS, National Water Information System (http://waterdata.usgs.gov/nwis); PRISM, 

Precipitation-elevation Regressions on Independent Slopes Model (http://prism.oregonstate.edu); GAGES-II, 

Geospatial Attributes of Gages for Evaluating Streamflow, version II (Falcone, 2011); NHDPlusV2, National 

Hydrography Dataset Plus Version 2 (http://www.nhdplus.com); NED, National Elevation Dataset 

(http://ned.usgs.gov); NLCD 1992, National Land Cover Dataset 1992 (Vogelmann et al., 2001); CONUS-

SOIL, Conterminous US multilayer soil characteristics dataset (Miller and White, 1998); BFI48GRD, Base-

flow index grid for the conterminous US (Wolock, 2003) 

3. Identifying hydrologic regions 

 Hydrologic regions were identified using the independent variables. To deal with 

noise and non-linearities in the data, the SOM was applied as a preliminary step to cluster the 
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basins into hydrologic regions. The basins were clustered according to k-means clusters of 

the trained SOM neuron vectors. Finally, the appropriate number of clusters was determined 

based on the number of calibration basins per cluster and a variety of cluster validity indices 

for assessing the optimal number of clusters. 

3.1 Self-organizing map (SOM) 

 The SOM was used to preprocess the data before clustering the basins. This step was 

performed to create SOM neuron vectors that represent the cluster structure of data 

containing non-linearities and noise. A separate SOM was produced for each set of 

independent variables using all the basins. In order to give the variables equal weight, they 

were normalized using their z-scores calculated as: 

 𝑧 =
𝑥𝑖−�̅�

𝜎𝑥
, (1) 

where 𝑥𝑖 is the value of the variable for basin 𝑖, �̅� is the mean of the variable, and 𝜎𝑥 is the 

standard deviation of the variable. This rescales the variables to have a mean of zero and 

variance of one. 

 The rescaled variables were fed through a SOM, which is a grid of neurons with 

vectors equal in size to the number of variables. The layout of the neurons must be specified 

to create the SOM. Hexagonal neurons were used instead of squares so that all neighboring 

neurons share a side. The dimensions of the SOM had an equal number of neurons on either 

side (x and y) to limit the boundary effect problem in which neurons at the edge of the SOM 

fit the data less than internal neurons (Schmidt, 2008). The number of neurons was 

determined by testing two SOM sizes and assessing the number of neurons that did not 

represent any of the basins. Limiting the “empty” neurons helped ensure that the neuron 

vectors were representative of the basin data and subsequent neuron clusters could be 
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mapped back to the basins. The final SOM had 15 × 15 neurons based on the above 

conditions and the dimensions used in another study that evaluated various SOM sizes for 

clustering basins (Srinivas et al., 2008). 

 SOM neuron vectors were initialized with random values rather than using linear 

estimates for the initial neuron vectors. Random initialization is preferred for actual self-

organization into clusters (Skupin and Hagelman, 2005). The self-organization process 

iteratively changed the neuron vectors as follows: 

1. The data from a basin (𝑏) was compared to every neuron vector (𝑛𝑖), and the most 

similar neuron vector (𝑛𝑐) was determined using the Euclidean metric: 

 ‖𝑏 − 𝑛𝑐‖ = min𝑖{‖𝑏 − 𝑛𝑖‖} (2) 

2. The neuron vectors for 𝑛𝑐 and its neighbors were updated to more closely match the 

incoming basin data as follows: 

 𝑛𝑖(𝑡 + 1) = 𝑛𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝑏(𝑡) − 𝑛𝑖(𝑡)], (3) 

where 𝑡 is the iteration number, 𝛼 is the learning rate, and ℎ𝑐𝑖 is the neighborhood 

function. 

3. The learning rate controlled the magnitude of the updates to the neuron vectors and 

decreased monotonically with each iteration. 

4. The neighborhood function decreased the effects on neurons farther from 𝑛𝑐 using the 

following Gaussian equation: 

 ℎ𝑐𝑖(𝑡) = exp (−
𝑑𝑐𝑖

2

2𝛩2(𝑡)
), (4) 

where 𝑑𝑐𝑖 is the horizontal distance between 𝑛𝑐 and the neighboring neuron 𝑖, and 𝛩 

is the width of the neighborhood, which decreased along with the learning rate. 
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5. The above steps were repeated over all the basins a set number of times to train the 

SOM. 

 SOM training was performed as recommended by Kohonen et al. (1996) in two 

stages: (1) a global training stage outlined the major clusters of the basin data, and (2) the 

SOM was then fine-tuned using a local training stage to reveal more detailed clusters. The 

different training stages were accomplished using three parameters: (1) training length 

(number of runs over all the basin data), (2) learning rate (magnitude of neuron vector 

updates), and (3) neighborhood radius (number of neurons updated around the central 

neuron). Training length was determined by plotting the quantization error for each training 

run. The quantization error summarized the agreement between the neuron vectors and basin 

data. This value initially decreased and then flattened out during training. The number of runs 

needed to flatten out the quantization error was then used as the training length. Global 

training required a much shorter training length than local training since it used a larger 

learning rate and neighborhood radius for broad-scale effects on the SOM. The learning rate 

and neighborhood radius both decreased monotonically during training. Initial values for 

these parameters were chosen based on the training stage and SOM size. The training 

parameters used for this study are listed in Table 10. 

Table 10. SOM training parameters for the first stage of global training and second stage of local 
training. 

Training stage Training length (runs) Learning rate (α) Neighborhood radius (neurons) 

Global 50 0.04 8 

Local 4,000 0.03 5 

3.2 Basin clustering 

 Basins were clustered into hydrologic regions using the trained SOMs. Each basin 

was assigned to its most similar neuron, or best-matching unit (BMU), using Equation 2. The 
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BMUs were then used to assign basins to clusters based on the neuron vectors. The neuron 

vectors were clustered using the k-means method since it creates similar-shaped clusters as 

the SOM (Skupin, 2004). This is because the k-means method uses a similar Euclidean 

metric to establish clusters: 

                                                     𝑆𝑆 =  ∑ ∑ ‖𝑛𝑖 − �̅�𝑗‖
2𝑠

𝑖=1
𝑘
𝑗=1                                                (5) 

Neuron clusters were determined using the sum of squared distances (𝑆𝑆) within the clusters 

(𝑘). Within-cluster distances were calculated for all the neurons (𝑠) as the difference between 

the vector from neuron 𝑖 and the average of neuron vectors in cluster 𝑗. The sum of squared 

distances was used as the objective function to find k clusters as follows: 

1. Cluster centroids (�̅�) were randomly placed in the input data space of neuron vectors. 

2. Each neuron was clustered according to the closest cluster centroid. 

3. Cluster centroids were then recalculated to fit the clusters. 

4. Steps 2 and 3 were repeated until the cluster centroids no longer changed, and the 

sum of squared distances within clusters was minimized. 

5. The above process was repeated 1,000 times due to the random initialization of 

cluster centroids, and the cluster solution with the minimum sum of squared distances 

was used as the final neuron clusters. 

Finally, the basins were clustered according to the cluster membership of their BMU. 

3.3 Determining the number of basin clusters 

 The number of basin clusters (k) was determined using an approach that considered 

(1) the range of hydrologic conditions in the US, (2) the number of calibration basins per 

cluster for subsequent regression model development, and (3) various cluster validity indices 

to indicate the optimal number of clusters for the dataset. The number of clusters had to be 
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large enough to accommodate the wide range of hydrologic conditions in the study area. This 

served as a lower limit for identifying a reasonable number of clusters given the diversity of 

the basins. A reasonable number of clusters was gathered from previous work on splitting the 

US into hydrologic regions, which used 12 (Bailey, 1983), 15 (Commission for 

Environmental Cooperation, 1997), and 20 (Wolock et al., 2004) regions. The number of 

calibration basins per cluster served as an upper limit for the number of clusters since the 

clusters had to contain enough basins to calibrate regression models. At least 20 calibration 

basins have been recommended for regional streamflow predictions (Hosking and Wallis, 

1997). This number permits simple regression models based on a small number of 

independent variables since the small sample size restricts the number of model parameters 

(Berger, 2004). 

 The optimal number of clusters was assessed using the following cluster validity 

indices: (1) silhouette, (2) Davies-Bouldin, (3) Xie-Beni, (4) Calinski-Harabasz, and (5) 

Dunn. All cluster validity indices were implemented as in Desgraupes (2013), and rescaled 

so that values closer to zero indicated more optimal cluster solutions. The different indices 

were chosen to represent the two main categories of methods for identifying the optimal 

number of clusters. The first category evaluated the number of clusters based on their 

compactness (Xie-Beni), and the second category considered both cluster compactness and 

the separation between clusters (remaining indices). Results from the different indices were 

then compared, and the appropriate number of clusters was identified. 

4. Regression model development 

 Regression models were developed for each hydrologic region, and used to predict 13 

percentile flows of the FDC. Model development included (1) independent variable selection 
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and (2) model calibration using the selected variables. Independent variables from the 

lumped and distributed datasets were selected using random forests to rank the variables. 

Random forests used a random sample from the calibration basins to create a regression tree 

for predicting percentile flows. Regression trees split the data into smaller and smaller bins 

until they approximated the percentile flow values. The entire process of randomly sampling 

and creating regression trees was repeated until the error in the withheld basins stabilized. 

The error in the withheld basins was also used to quantify the importance of the independent 

variables. Variable importance was quantified by removing the variable from the regression 

trees, and the error increased for more important variables. Variable rankings derived from 

random forests may change due to the random sampling. To improve the reliability of the 

variable rankings, 100 random forests were run, and the average error was used to rank the 

variables. 

 Regression models were calibrated using the ordinary least squares method. The 

number of independent variables used to calibrate the regression model depended on the 

sample size of the hydrologic region. An independent variable was added to the regression 

model for every ten calibration basins in the sample. This was an ample sample size 

considering regional regression studies often use less than ten basins per model parameter 

(e.g. Archfield et al., 2009; Hashmi and Shamseldin, 2014; Hope and Bart, 2011). The given 

number of variables was selected from the lumped and distributed variables ranked using 

random forests. All three hydrologic variables were used in the regression models (sample 

size > 30). The final phase of model development accounted for both linear and non-linear 

relations to the percentile flows. Untransformed and natural log-transformed variables were 

evaluated for the final regression model, and the variable that explained more variance (R
2
) 
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in the percentile flow was adopted. The natural log of the percentile flow was used for all 

regression modeling due to the skew in flows and risk of violating the assumption that model 

errors vary evenly (Harrell, 2001). A constant of one was added to the percentile flows 

because the natural log cannot be calculated for zero values. 

5. Regression model validation 

 The regional regression models were tested on validation basins withheld from all 

phases of regression model development. Model validation was conducted to assess the 

performance of the regional regression approach, and determine the effect of using the 

different sets of independent variables on the performance of the regional regression. 

Performance was quantified using the following metrics (or goodness-of-fit criteria) as 

defined in the accompanying references: (1) relative error (RE; Hope and Bart, 2012), (2) 

coefficient of determination (R
2
; Sauquet and Catalogne, 2011), and (3) Nash-Sutcliffe 

efficiency (NSE; Nash and Sutcliffe, 1970). The performance metrics were calculated using 

the natural log of percentile flows to diminish the influence of large values in skewed flows 

(Sauquet and Catalogne, 2011). Due to zero flows, a constant of one was added to calculate 

RE, and its absolute value was used to calculate the sum of RE. The distribution of predictive 

performance was evaluated using the RE of individual predictions. These values were also 

mapped and regressed against the independent variables to investigate the factors 

contributing to predictive error. 

 Predictive performance was summarized for each percentile flow using the sum of 

absolute RE and the R
2
 and NSE between observed and predicted values. Overall 

performance was quantified using the sum of absolute RE and average R
2
 and NSE for all the 

percentile flows. 
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6. Describing the hydrologic regions of the US 

 The hydrologic regions used for the regional regression were described to identify 

regional characteristics associated with the percentile flows. A regional description was 

performed for the hydrologic regions defined using the preferred set of independent variables 

based on the results from the regression model validation. The regions were described using 

the mean z-score (Equation 1) of key independent variables. The key variables included the 

hydrologic variables conceptually associated with the FDC plus drainage area and mean 

elevation as they are commonly associated with streamflow. The z-scores were used along 

with geographic location to assign descriptive labels to the regions and short summaries of 

their conditions. Regional conditions were then descriptively linked to median FDCs for a 

sample of regions. 

E. Results and discussion 

1. SOM size 

 The SOM was used to map the basins according to their independent variables. A 

large SOM was initially used to evaluate the distribution of the basins in the SOM and assess 

the number of empty neurons without information for clustering the basins. The large SOM 

had 30 × 30 neurons to give nearly every basin a chance of belonging to their own neuron. 

The number of basins per neuron was mapped according to their BMU (Figure 8). The large 

number of empty neurons in the large SOM indicated that it should be reduced in size, and 

this task was accomplished based on the experiments of Srinivas et al. (2008), who evaluated 

a number of SOM sizes to cluster basins. The most suitable size from that study was used as 

a reference to scale down the SOM to 15 × 15 neurons. This adequately reduced the number 

of empty neurons. A larger size was subsequently ruled out since it could only increase the 
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number of empty neurons. A smaller size was also not considered because the neurons were 

beginning to accumulate more basins, and individual neurons were not intended to act as 

clusters. The neurons were instead used to map the basins in a new space according to their 

similarity. The distribution of the basins using the hydrologic variables is shown in Figure 8. 

This was the smallest dataset, yet it occupied the most space in the SOM. Larger datasets 

occupied less of the SOM possibly because the clusters became more well-defined as the 

basins were described by more variables. 

 

Figure 8. Number of basins assigned to each neuron for the (a) 30 × 30 and (b) 15 × 15 SOM trained 
using the hydrologic variables. Black neurons indicate empty neurons without basins. 

2. Number of basin clusters 

 The number of basin clusters was determined based on (1) the number of calibration 

basins per cluster for subsequent model development and (2) the optimal number of clusters 

according to cluster validity indices. A minimum of 20 calibration basins per cluster was 

used as an upper limit for the number of clusters. This follows the recommendation that 

regional streamflow predictions should not use less than 20 calibration basins (Hosking and 

Wallis, 1997). The maximum number of clusters meeting this requirement is provided in 

Table 11 for each set of independent variables. 



96 

 

Table 11. Maximum number of clusters (k) with at least 20 calibration basins per cluster. Values 

provided for each set of independent variables. 

  Hydrologic Lumped Distributed 

k 15 17 16 

 The optimal number of clusters was evaluated using five different cluster validity 

indices. These values were calculated for each cluster solution of the SOM neuron vectors, 

and the results for each SOM trained using the different sets of independent variables are 

shown in Figure 9. Values closer to zero indicate better cluster solutions. The cluster validity 

indices either steadily decreased (Davies-Bouldin and Dunn) or increased (silhouette, Xie-

Beni, and Calinski-Harabasz) with the number of clusters for each set of variables. This is 

not a useful trait for a cluster validity index because it will give a similar value regardless of 

the dataset. The cluster validity indices produced similar values (Table 12), and this resulted 

in an optimal number of clusters that was either greater than the upper limit for regional 

streamflow predictions (< 20 calibration basins per cluster) or unreasonably low for the 918 

basins of the US used in this study. 
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Figure 9. Cluster validity indices for each number of clusters (k) starting at two based on the (a) 
hydrologic, (b) lumped, and (c) distributed variables. Values closer to zero are more optimal cluster 
solutions, and the dashed line is the upper limit for k according to a minimum of 20 calibration basins 

per cluster. 

Table 12. Optimal number of clusters for the different sets of independent variables and cluster 
validity indices. The upper limit for regional streamflow predictions is also shown for comparison. 

  Silhouette Davies-Bouldin Xie-Beni Calinski Dunn Upper limit 

Hydrologic 3 24 3 5 45 15 

Lumped 3 47 3 3 48 17 

Distributed 3 46 14 2 48 16 

 The only optimal clustering solution that had enough calibration basins and a 

reasonable number of clusters for the US was produced by the Xie-Beni index for the 

distributed variables, which returned a value of 14 clusters (Table 12). This value was within 

the upper limit for each set of independent variables (Table 11), and it was reasonable given 

the number of hydrologic regions previously identified for the US ranging from 12-20 

regions (Bailey, 1983; Commission for Environmental Cooperation, 1997; Wolock et al., 
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2004). Fewer regions than this range may include more diverse basins in the same region. 

This could increase the variance in percentile flows and decrease the performance of regional 

models. A value of 14 was chosen for the final number of clusters based on the combined 

information of the number of calibration basins per cluster, optimal cluster solutions 

indicated by the cluster validity indices, and prior hydrologic regions for the US. The 

resulting regions for each set of independent variables are mapped in Figure 10. 
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Figure 10. Regions for the (a) hydrologic, (b) lumped, and (c) distributed variables. 
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3. Regression models 

 Regression models were developed to predict 13 percentile flows for each region 

identified using the different sets of independent variables. There was a total of 546 

regression models (3 sets of variables × 14 regions × 13 percentile flows). The independent 

variables for the regression models were selected based on their predictive potential, as 

measured by univariate regression for the three hydrologic variables and random forests for 

the more complex lumped and distributed variables. A sample of the regression models is 

provided in Table 13. The sample includes models from regions that clearly correspond 

between the separate cluster solutions and represent geographic regions with different 

hydrologic conditions (Figure 10). For each region, the models for predicting a high (Q05), 

average (Q50), and low (Q95) flow are shown along with their adjusted R
2
 and condition 

number (CN). The adjusted R
2
 measures how well the model explains the flow’s variance, 

and penalizes models with more independent variables. The CN was reported to show the 

degree of cross-correlation between the independent variables. A CN > 30 is often used to 

identify high cross-correlation in regression models (Belsley et al., 2004). 

Table 13. Sample of regression models for predicting a high (Q05), average (Q50), and low (Q95) flow 
of selected regions. All models formulated using the natural log of the percentile flows. 

 Regression model Adj. R
2 

CN 

Region 1 - Central 

Plains 

   

Hydrologic    

Q05 0.37 + 0.62ln(BFI) - 0.16ln(PET) + 2×10
-5

MAP 0.11 37764 

Q50 -0.37 + 2.8×10
-4

MAP + 4.2×10
-3

BFI + 3.4×10
-4

PET 0.44 4057 

Q95 -0.21 + 2.8×10
-4

PET + 2.1×10
-3

BFI - 6.2×10
-7

MAP 0.28 4057 

Lumped    

Q05 1.8 + 0.12ln(Poorly_Drained) + 0.32ln(BFI) - 4.3×10
-4

Elev - 

0.26ln(MAP) - 0.19Aridity + 0.063ln(Percent_Snow) 

0.46 68762 

Table continued on next page   
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 Regression model Adj. R
2 

CN 

Q50 -1.8 + 0.19ln(BFI) - 0.031ln(Poorly_Drained) + 0.0094Slope 

+ 0.14ln(MAP) + 0.1ln(Precip_SD) +                          

3.5×10
-4

Precip_1D_Max 

0.69 2056 

Q95 0.19 - 0.025ln(Poorly_Drained) + 1.7×10
-3

BFI - 

0.065ln(Aridity) + 6.3×10
-3

Slope + 4.3×10
-5

MAP - 

0.075ln(TWI) 

0.57 56205 

Distributed    

Q05 0.058 + 0.34ln(BFI) + 0.21ln(Percent_Snow) -            

1.6×10
-3

Elev_SD - 0.23Aridity 

0.58 2286 

Q50 -1.7 + 0.23ln(BFI) + 0.18ln(MAP) - 0.23Precip_Seasonality 

+ 1.1×10
-3

Precip_1D_Max 

0.59 2753 

Q95 -0.12 + 1.5×10
-3

BFI + 1.3×10
-4

MAP + 3.8×10
-3

Slope_SD - 

9×10
-3

ln(Aridity_SD) 

0.35 2401 

Region 2 - Southwest    

Hydrologic    

Q05 -5.4 + 0.85ln(MAP) + 0.36ln(BFI) - 3.3×10
-5

PET 0.52 18997 

Q50 -0.76 + 5.3×10
-3

BFI + 0.13ln(MAP) - 1.2×10
-4

PET 0.25 17883 

Q95 -0.025 + 1.2×10
-3

BFI + 2.7×10
-5

MAP - 1.2×10
-5

PET 0.13 9248 

Lumped    

Q05 -1.6 + 0.25ln(Forest) + 0.29ln(MAP) - 0.049Aridity + 

0.027ln(Precip_SD) 

0.63 342 

Q50 -4.8 + 2.3ln(TWI) + 0.016Slope + 3.8×10
-3

BFI +              

1.8×10
-3

Precip_Intensity 

0.43 4663 

Q95 -1.4 + 0.74ln(TWI) + 4.9×10
-3

Slope + 1.2×10
-3

BFI - 

0.045ln(Spring_Temp) 

0.31 4976 

Distributed    

Q05 6.2 - 1.5ln(Aridity) - 0.65ln(MAP) 0.47 767 

Q50 -0.6 + 0.4TWI_SD - 0.084ln(Precip_Intensity) 0.27 74 

Q95 0.083 - 0.043ln(Precip_Intensity) + 4.2×10
-5

Area 0.33 4113 

Region 11 - Northeast    

Hydrologic    

Q05 5.8 - 0.3ln(MAP) - 0.35ln(PET) + 9.2×10
-4

BFI 0.21 4076 

Q50 -0.65 + 3.4×10
-4

PET + 0.14ln(MAP) - 2.5×10
-3

BFI 0.08 40143 

Q95 0.33 + 0.15ln(BFI) - 0.14ln(PET) + 8.1×10
-5

MAP 0.12 90576 

Lumped    

Q05 3.5 - 0.32ln(MAP) + 0.075ln(Water_Capacity) + 

0.068ln(Percent_Snow) - 7.8×10
-3

Spring_Temp + 

0.019ln(Density) 

0.50 558 

Table continued on next page   
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 Regression model Adj. R
2 

CN 

Q50 0.086 - 0.86Aridity - 2×10
-3

Percent_Snow - 0.19ln(MAP) + 

0.32ln(PET) + 0.011Spring_Temp 

0.47 8128 

Q95 -0.047 - 0.034Density - 0.11ln(Aridity) + 1.7×10
-4

Precip_SD 

+ 0.019ln(Spring_Temp) - 1.9×10
-6

MAP 

0.28 77136 

Distributed    

Q05 6.6 - 0.26ln(BFI) - 0.21ln(Precip_1D_Max) - 

0.064ln(Precip_Seasonality) - 0.062ln(Elev) - 0.45ln(PET) - 

0.093ln(Percent_Snow) + 0.032ln(Poorly_Drained) +      

9.7×10
-3

ln(Elev_SD) - 0.022ln(Precip_1D_Max_SD) +    

1.8×10
-3

PET_Ph 

0.61 1000 

Q50 0.1 + 0.21ln(BFI) + 0.065ln(Precip_Seasonality) + 

0.2ln(Percent_Snow) - 0.04ln(Poorly_Drained) - 0.68Aridity 

+ 1.3×10
-3

PET + 0.035ln(Aridity_SD) - 

0.028ln(Precip_1D_Max) - 0.14ln(MAP) -                     

5×10
-3

Spring_Temp 

0.56 184073 

Q95 0.059 + 4.2×10
-3

BFI + 5.1×10
-5

Elev + 

0.019ln(Soil_Porosity_SD) + 0.28Aridity_SD - 

0.025ln(Poorly_Drained) + 0.016Density - 0.045ln(TWI) - 

9.3×10
-3

ln(PET) - 7.6×10
-6

Elev_SD +                               

2.8×10
-3

ln(Percent_Snow) 

0.63 149194 

 The adjusted R
2
 values of all the models ranged from poor (< 0.2) to good (> 0.8), 

and averaged 0.48. Variation in the adjusted R
2
 values for the different models depended on 

the region and percentile flow. Regions with more calibration basins tended to have models 

with larger adjusted R
2
 values. Models using the lumped and distributed variables benefited 

from having additional independent variables in regions with more calibration basins. Adding 

more independent variables typically increased the adjusted R
2 

values although this statistic 

penalizes more complex models. The number of independent variables did not change for the 

models that used the three hydrologic variables, and these models demonstrate how well the 

hydrologic variables explained the variance in flow for regions with different conditions. 

 The hydrologic variables produced regional models with average adjusted R
2
 values 

ranging from 0.11-0.70. This indicates large variability in the predictive potential of the 

hydrologic variables depending on regional conditions. A sample of this variability is shown 

for three regions in Table 13. None of the three regions were adequately modeled using the 
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hydrologic variables. However, the relative fit of the models can provide some insight into 

the connection between the hydrologic variables and regional conditions. The hydrologic 

variables were most effective for the Central Plains and Southwest regions. Streamflow in the 

Central Plains region is associated with groundwater discharge from the northern Great 

Plains aquifer system (Downey and Dinwiddie, 1988), and this component of the percentile 

flows for this region may have been adequately represented using the BFI. The Southwest 

region is characterized by intermittent streams with percentile flows generated by storms 

(Yaeger et al., 2012). The hydrologic variables were related to storm flow generation (MAP) 

and losses (PET and BFI). The Northeast region had the weakest connection to the 

hydrologic variables because they did not account for the effect of snow on the percentile 

flows. This is evident from the inclusion of snowfall (Percent_Snow) and snowmelt 

(Spring_Temp) in the more complex models for the Northeast region, and previous efforts to 

model the FDC in the northeastern US have highlighted the importance of snowmelt (Ye et 

al., 2012). 

 The adjusted R
2
 of the models created using the different sets of variables varied with 

the percentile flows. Regional models were summarized by high (Q01-Q20), average (Q30-

Q70), and low (Q80-Q99) flows. Average flows were modeled the most effectively, with the 

largest average adjusted R
2
 value (0.53). The average adjusted R

2
 value decreased to 0.46 for 

the high flows, and was smallest for the low flows at 0.42. Regression models of percentile 

flows in previous studies have also explained more variance for average flows and less for 

extreme flows (Archfield et al., 2009; Hashmi and Shamseldin, 2014; Mohamoud, 2008). 

This indicates that the independent variables used in these models are less effective at 

representing the lateral transport of water during high flows and subsurface drainage 



104 

 

sustaining low flows. The models in this study likely explained the low flows the least 

because they included zero flows. 

 The cross-correlation between the independent variables was high according to the 

sample of CNs provided in Table 13. The minimum CN of all the regression models was 

greater than the threshold used to identify high cross-correlation (CN > 30). Thus, all the 

models had high cross-correlation. Models with high cross-correlation are a concern for two 

reasons: (1) the effects of individual independent variables can no longer be evaluated and 

(2) the model may generate less accurate predictions for a dataset with different cross-

correlation between the independent variables (Baguley, 2012). The high cross-correlation in 

this study was not a concern since quantifying the effects of basin characteristics on 

percentile flows was not a goal and percentile flow predictions were generated for a 

representative sample of the basins. 

 Although cross-correlation was not a concern from a regression modeling standpoint, 

it is reported to highlight the redundancy in the independent variables. The lumped and 

distributed variables used in the regression models were selected based on their predictive 

potential. Therefore, it can be concluded that the variables with the most predictive potential 

provided redundant information to the regression models. The three hydrologic variables 

were chosen to represent different components of the FDC, but two of these components 

were related. The groundwater flows of the FDC were represented by BFI, while the 

evaporative losses that moderate the FDC were approximated using PET. Both of these 

variables were moderately correlated (Pearson = -0.58 and Spearman = -0.63), and this 

resulted in high multicollinearity for the regression models that used the hydrologic 

variables. However, neither variable was eliminated because screening variables for 
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multicollinearity impeded the performance of regression models in the first paper of this 

dissertation. 

 The independent variables for the regression models that used the lumped and 

distributed variables changed for the different percentile flows. The percent of models that 

included the variables can be viewed as a measure of variable importance, and is summarized 

for high (Q01-Q20), average (Q30-Q70), and low (Q80-Q99) flows in Table 14. BFI was included 

in the most models for each type of flow, and was the most important variable for predicting 

percentile flows from the lumped and distributed variables. BFI was expected to be a strong 

predictor of average and low flows because they are fed by groundwater (Cheng et al., 2012). 

High flows are strongly related to annual precipitation (Yokoo and Sivapalan, 2011), and 

these flows may have been associated with BFI since it varies with climatic conditions 

(Santhi et al., 2008). 

Table 14. Importance of the independent variables as indicated by the percent of regression models 
that used the lumped and distributed variables to predict high (Q01-Q20), average (Q30-Q70), and low 
(Q80-Q99) flows. 

Lumped Distributed 

High Average Low High Average Low 

BFI 

(62.5) 

BFI 

(81.4) 

BFI 

(76.8) 

BFI 

(60.7) 

BFI 

(75.7) 

BFI 

(80.4) 

Aridity 

(55.4) 

MAP 

(52.9) 

MAP 

(44.6) 

Aridity 

(41.1) 

Aridity_SD 

(40.0) 

Poorly_Drained 

(44.6) 

MAP 

(48.2) 

Aridity 

(45.7) 

Aridity 

(44.6) 

Percent_Snow 

(32.1) 

Elev 

(37.1) 

Percent_Snow 

(28.6) 

Percent_Snow 

(39.3) 

Elev 

(37.1) 

Poorly_Drained 

(42.9) 

Precip_Seasonality 

(30.4) 

Poorly_Drained 

(34.3) 

Elev 

(25.0) 

Spring_Temp 

(37.5) 

Percent_Snow 

(34.3) 

Spring_Temp 

(35.7) 

PET 

(30.4) 

Aridity 

(30.0) 

MAP 

(21.4) 

 BFI was one of the three hydrologic variables proposed as the most important for 

predicting percentile flows. The other two hydrologic variables (MAP and PET) were used 

less frequently for the regression models based on the lumped and distributed variables 



106 

 

(Table 14). MAP was consistently included in the models that used the lumped variables, but 

was only in the top five of the distributed variables for low flows. PET was absent from the 

top five, except for models that used the distributed variables to predict high flows. The 

information from MAP and PET may have been adequately represented using Aridity 

(PET/MAP), which was commonly used in the models for different flows. Aridity was 

especially important for predicting high and average flows based on its place in the top five 

of both the lumped and distributed variables. High flows are generated by storms that 

transport water via shallow subsurface and surface runoff (Cheng et al., 2012). These 

processes are enhanced as antecedent moisture increases (Yokoo and Sivapalan, 2011), and 

Aridity quantifies excess water that may contribute to antecedent moisture. The amount of 

excess water approximated by Aridity may also indicate the groundwater storage of a basin 

that supplies average flows. 

 The distributed variables included the lumped variables and additional variables for 

characterizing the statistical distribution of the lumped variables. The additional variables did 

not consistently enter the regression models that used the distributed variables (Table 14). 

Only two of the additional variables (Precip_Seasonality and Aridity_SD) were among the 

top five of the distributed variables used most often to predict the different types of flow. 

This indicates that the additional variables had limited potential for predicting the percentile 

flows, and the typically used lumped variables were sufficient for the regional regression 

models. Although the additional variables were not commonly used in the regression models, 

the lumped variables that were selected for the models changed. This may have occurred 

because the importance of the lumped variables changed alongside the distributed variables. 

The distributed variables may have accounted for some of the information in the lumped 
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variables, and the importance of certain lumped variables may have been reduced. This could 

have changed the order in which the lumped variables entered the regression models. 

 Lumped variables that also ranked among the most used distributed variables for the 

same type of flow were considered important for predicting that component of the FDC. A 

few of these variables have not been discussed (Percent_Snow, Elev, and Poorly_Drained), 

but their importance should not be overlooked. Percent_Snow was important for predicting 

the high flows of snow-dominated regions (see Regions 1 and 11 in Table 13). This variable 

helped explain the high flows during the spring snowmelt season. Elev was used in over a 

third of the models for predicting average flows because it is related to climatic conditions 

and groundwater flows that influence the middle of the FDC. Elev is strongly associated with 

precipitation and snowfall (Grünewald et al., 2014), which in turn have an effect on average 

flows (Kult et al., 2014). Groundwater flows that contribute to average flows may diminish 

in higher elevation, headwater basins (Schaller and Fan, 2009). Poorly_Drained is an 

indicator of infiltration capacity, and was commonly used to predict low flows produced by 

groundwater. 

4. Predictive performance 

 The regional regression approach was tested on 184 validation basins to (1) assess its 

predictive performance and (2) determine the amount of information required for the 

independent variables. Predictive performance was assessed using the relative error (RE), 

coefficient of determination (R
2
), and Nash-Sutcliffe efficiency (NSE) between observed and 

predicted percentile flows. The distribution of predictive performance was examined using 

the RE of individual predictions, and the results are summarized by the box plots in Figure 

11. Overall, the regional regression approach predicted the percentile flows with < 5% RE for 
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more than half of the basins and < 10% RE for more than three quarters of the basins. The 

whiskers of the box plots extend to 1.5 times the interquartile range, which is a common 

method for identifying outliers (Tukey, 1977, pp. 43-44). The upper range of RE (without 

outliers) was < 20%. 

 

Figure 11. Box plots of absolute RE expressed as a percent for the percentile flows predicted using 
the (a) hydrologic, (b) lumped, and (c) distributed variables. The boxes show the median, first quartile, 
and third quartile, and the whiskers extend to 1.5 times the interquartile range. Points outside the 
whiskers are outliers. 

 The distribution of RE varied with the percentile flows (Figure 11), decreasing from 

Q01-Q10, increasing from Q20-Q80, and decreasing once more from Q90-Q99. The largest RE 

was often encountered for the highest flow (Q01) and average to low flows (Q60-Q80). The 

highest flow represents flood events, which are notably difficult to predict due to potentially 
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large variability between basins (Salinas et al., 2013). The precipitation variables used in this 

study may have inadequately depicted extreme storms responsible for the highest flow. 

Average and low flows are mostly contributed by groundwater, and larger RE associated 

with these flows may reflect the uncertainty of BFI estimates or the need for variables to 

better represent subsurface storage, such as aquifer thickness or water table depth. The 

smallest RE was often achieved for high to average flows (Q10-Q30) and the lowest flow 

(Q99). High to average flows integrate both precipitation and groundwater inputs (Yokoo and 

Sivapalan, 2011), which were sufficiently explained using MAP, Aridity, and BFI (see Table 

14). Although RE is a normalized statistic, the small magnitude of the lowest flow may have 

given it the smallest range of RE. 

 The box plots in Figure 11 show the RE results for the different sets of independent 

variables, but the differences in predictive performance were minor at this level of detail. 

Summary statistics were used to further investigate the effect of the independent variables 

and overall performance of the regional regression approach. 

 Predictive performance was summarized for each percentile flow using the sum of 

absolute RE, R
2
, and NSE (Table 15). The latter two performance metrics have an upper limit 

of 1 (perfect performance), and were used to evaluate the overall performance of the regional 

regression approach. Both metrics indicate similar performance, but NSE is consistently 

slightly lower. The regional regression approach had NSE values ranging from 0.39-0.76 

depending on the independent variables and percentile flows. NSE increased for the 

percentile flows from Q01-Q30, and decreased thereafter for the lower percentile flows. This 

trend resulted in stronger predictive performance for the average flows in the middle of the 

FDC and weaker predictive performance for the extreme flows at the tails of the FDC. The 
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sum of absolute RE did not follow this trend as it was likely influenced by the magnitude of 

the percentile flows. 

Table 15. Predictive performance of the different sets of independent variables for the percentile flows 
quantified as (a) the sum of absolute RE, (b) R

2
, and (c) NSE. Bold numbers indicate the set of 

independent variables that performed the best for each percentile flow according to the given 
performance metric. 

(a) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Hydrologic 9.89 9.00 8.93 8.83 9.01 9.46 9.80 9.89 9.64 9.23 8.31 7.61 6.69 

Lumped 11.5 10.1 8.51 8.24 8.36 8.70 8.83 8.92 8.97 9.03 8.76 8.14 7.15 

Distributed 11.5 9.32 9.05 9.01 9.14 9.31 9.45 10.0 9.54 9.56 8.81 8.11 6.97 

(b) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Hydrologic 0.60 0.67 0.71 0.71 0.72 0.72 0.69 0.66 0.64 0.63 0.64 0.64 0.63 

Lumped 0.47 0.58 0.71 0.77 0.77 0.75 0.74 0.71 0.68 0.64 0.58 0.56 0.52 

Distributed 0.42 0.60 0.67 0.71 0.72 0.71 0.69 0.64 0.63 0.60 0.58 0.55 0.52 

(c) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Hydrologic 0.59 0.67 0.70 0.71 0.72 0.71 0.69 0.66 0.63 0.63 0.63 0.62 0.60 

Lumped 0.45 0.58 0.70 0.75 0.76 0.74 0.74 0.71 0.68 0.63 0.58 0.56 0.51 

Distributed 0.39 0.60 0.66 0.69 0.70 0.70 0.68 0.63 0.62 0.59 0.58 0.54 0.51 

 Predictive performance was strongest for the percentile flows in the middle of the 

FDC (Table 15b and c). This is typical of regional FDC studies (Booker and Woods, 2014; 

Hope and Bart, 2012; Sauquet and Catalogne, 2011), and may be due to the diminished 

variability of average flows for regions with similar physical and climatic conditions. 

Particularly useful variables for predicting the average flows were Aridity, Elev, and BFI 

(see Table 14), and their connection to average flows is described in the previous section on 

the regression models. Although the average flows were predicted best, the performance of 

the regional regression approach still typically only qualified as fair (NSE < 0.75) according 

to the NSE categories of Castellarin et al. (2004). The gap in predictive performance for the 
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average flows may be due to (1) uncertainty in the estimation of important variables like 

MAP, PET, and BFI, (2) large variance in the percentile flows of the regions used for the 

regression models, and (3) a limitation in the regression method for predicting the percentile 

flows. The regression method required a subset of the independent variables in order to 

reliably estimate the model parameters. A method that assimilates all the information from 

the variables may produce improved predictions. The variables of the regression models 

often had non-linear relations (see Table 13), and may be subject to noise (error in the 

independent variables and percentile flows). These complexities may be more effectively 

modeled using a machine learning method, such as the SOM. Machine learning methods may 

improve predictions because they can be used to develop non-parametric models that can 

account for non-linearities and give less weight to outliers that may be the product of noise 

(Maier et al., 2010). 

 The worst performance occurred for the extreme percentile flows at the tails of the 

FDC (Table 15b and c). High flows generated by storms were not well represented by the 

independent variables, and additional variables may be needed to quantify storms and the 

physical factors that affect storm flows. Storms were quantified using intensity statistics 

(Precip_1D_Max and Precip_Intensity) and their annual standard deviation 

(Precip_1D_Max_SD and Precip_Intensity_SD), but these variables were not frequently used 

in the regional regression models for high flows (see Table 14). Alternative variables for 

quantifying the magnitude of large storms may be more closely related to the high flows, and 

this could be accomplished using precipitation percentiles calculated like percentile flows. 

Another helpful variable for predicting high flows may be storm frequency as it relates to 

antecedent moisture conditions that can affect storm flows (Yokoo and Sivapalan, 2011). 
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Physical factors may also affect storm flows through rainfall interception and infiltration. 

These processes can be represented using land cover and soil variables, but land cover is 

preferred because it can be accurately measured using remote sensing. Forest cover was used 

in this study to account for the effect of land cover on storm flows, but it was not frequently 

used to predict high flows (see Table 14). Additional land cover variables, such as canopy 

density and bare soils, may have improved high flow predictions. 

 Predictive performance declined for the low percentile flows (Table 15b and c). This 

is commonly reported in the literature (Holmes et al., 2002; Hope and Bart, 2012; Ries, 

2007), and may be due to increased variability of low flows between basins. Low flow 

variability is especially large in arid climates, where extremely low flows are prone to 

measurement error (Best et al., 2003) and zero flows are difficult to predict (Snelder et al., 

2013). Arid climates are common in the western US (Peel et al., 2007), and may have 

decreased the performance of the regional regression models for the low flows. A possible 

solution to this problem is to screen the dataset for arid basins and develop predictive models 

specifically designed for intermittent streams (Croker et al., 2003; Hope and Bart, 2011; 

Pumo et al., 2014). 

 The decline in predictive performance for the low flows may also be due to a lack of 

useful independent variables. Low flows are supplied by groundwater during dry periods, and 

are therefore controlled by subsurface storage and evaporative losses when conditions are dry 

(Yokoo and Sivapalan, 2011). Subsurface storage was represented using BFI, which proved 

to be an important variable for predicting the low flows (see Table 14). BFI seems to have 

adequately represented subsurface storage because the regional regression models that all 

used BFI (hydrologic variables) performed better than the models that may not have included 
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BFI (lumped and distributed variables). However, additional variables describing subsurface 

drainage, such as a hydrogeologic classification (Tague and Grant, 2004), may improve low 

flow predictions. Low flows are also moderated by evaporative losses that may not have been 

adequately represented by any of the independent variables. Alternative variables describing 

evaporative losses during dry periods may be more useful, and this could be represented by 

PET during dry days or over the course of the dry season. Due to the error in calculating 

PET, another useful variable may be to simply quantify the duration of dry periods as a 

surrogate for the evaporative losses during low flows. Evaporative losses are influenced by 

the transpiration from vegetation, and the transpiration in riparian corridors can influence low 

flows by decreasing groundwater seepage into the stream (Smakhtin, 2001). Riparian 

vegetation conditions characterized using remotely sensed vegetation indices are strongly 

related to transpiration (Nagler et al., 2005), and can be used to produce variables that may 

help to predict low flows. 

 The different sets of independent variables (hydrologic, lumped, and distributed) used 

to perform the regional regression approach affected the predictive performance for the 

percentile flows (Table 15). The relative performance between the different sets of variables 

was similar for the various performance metrics. The simple set of hydrologic variables 

produced the best regional regression models for predicting the extreme percentile flows at 

the tails of the FDC, whereas the lumped variables typically used for regional regression 

slightly improved performance for the percentile flows in the middle of the FDC. The set of 

distributed variables with the most complexity consistently resulted in the worst performance 

for all the percentile flows. The additional variables that described the statistical distribution 

of the basin characteristics were not useful (see Table 14), and altered the percent of models 
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that used the more important variables. The use of MAP and Aridity declined for regression 

models developed with distributed variables, although MAP and Aridity helped the 

performance of the regional regression based on the lumped variables. This indicates that the 

distributed variables added an unnecessary layer of complexity that obscured the more 

important variables. The increased complexity of the distributed variables was not necessary 

for the regional regression approach, contradicting the hypothesis that the statistical 

distribution of basin characteristics are tied to percentile flows. 

 The hydrologic variables composed of only three variables resulted in similar 

predictive performance to the more complex set of lumped variables for the different 

percentile flows (Table 15). The additional information of the lumped variables only slightly 

improved predictive performance for the percentile flows in the middle of the FDC, while the 

simple set of three hydrologic variables produced the best performance for the more 

challenging to predict percentile flows at the tails of the FDC. These results demonstrate the 

importance of using independent variables with a physical connection to the streamflow 

variable targeted for prediction, and deemphasize the use of many independent variables as in 

data mining approaches. Such approaches may produce models with weak physical 

connections to the streamflow variable that are less reliable in ungauged basins. The use of 

many independent variables may be unnecessary in light of the redundancy and limited 

predictive potential of the variables used in this study. Only three carefully selected variables 

were necessary to perform the regional regression approach, and other typically used 

variables offered little, if any, improvement. 

 The effectiveness of the hydrologic variables was further confirmed by the overall 

performance of the regional regression approach summarized for all the percentile flows 
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(Table 16). The hydrologic variables produced the best overall performance for the regional 

regression approach according to the average R
2
 and NSE, and only resulted in slightly more 

RE than the lumped variables. The success of the hydrologic variables hinged on 

representing the three major components of the FDC (storm flow, groundwater flow, and 

evaporative losses). These components were respectively represented using MAP, BFI, and 

PET. However, results from this study indicate that the hydrologic variables may be 

improved by combining the information from MAP and PET into an aridity index and using 

the third variable to account for evaporative losses during the low flows of dry periods. 

Alternatively, high and low flows may require currently unavailable variables for 

groundwater-surface water interactions, such as detailed soil moisture measurements for 

large areas, or national aquifer mapping efforts to characterize subsurface drainage. Despite 

these potential improvements, the hydrologic variables were still effective for executing the 

regional regression approach, and the regional regression results based on the hydrologic 

variables are used to investigate the factors related to RE and regional relations to the FDC in 

the following sections. 

Table 16. Overall performance of the different sets of independent variables quantified as the sum of 
absolute RE and average R

2
 and NSE for all the percentile flows. Bold numbers indicate the set of 

independent variables that performed the best overall according to the given performance metric. 

  RE R
2
 NSE 

Hydrologic 116 0.67 0.66 

Lumped 115 0.65 0.65 

Distributed 120 0.62 0.61 

5. Factors related to relative error 

 The factors related to RE were investigated to identify the conditions associated with 

predictive error. This was done using the RE from the validation of the regional regression 

models based on the hydrologic variables since these simple models were highly effective for 
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predicting the percentile flows. Values of RE were categorized according to their percentile, 

and mapped to evaluate the geographic variation of RE for a high (Q05), average (Q50), and 

low (Q95) flow of the validation basins (Figure 12). The maps illustrate that RE varied 

throughout the validation basins, and there were no obvious regional clusters of RE. This was 

a favorable result for the regional regression since it means that the approach did not produce 

large RE for certain parts of the country. The maps do, however, indicate that the RE of the 

high and average flow varied with aridity. This is evident from the larger RE in drier regions 

(see the Southwest and Central Plains) and smaller RE in wetter regions (see the Northwest 

and Northeast). The flow between basins may vary more in drier regions (Salinas et al., 

2013), and this likely made the percentile flows more difficult to predict. The RE of the low 

flow was not clearly related to any factor based on the maps, and the factors related to RE 

were further examined using the independent variables. 
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Figure 12. Geographic variation of RE for predicting one (a) high (Q05), (b) average (Q50), and (c) low 
(Q95) flow of the validation basins. Values of RE are categorized according to their percentile, with 
lower percentiles indicating less RE. 
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 The correlation between RE and the independent variables were evaluated using the 

Pearson correlation coefficient (Table 17). These statistics were calculated using the RE of a 

high (Q05), average (Q50), and low (Q95) flow from the validation. Both the untransformed 

and semi-log transformed correlation coefficients were evaluated to account for linear and 

non-linear correlation to RE. The larger of the two correlation coefficients was then used to 

rank the independent variable. This process confirmed that Aridity was the dominant factor 

related to the RE of the high and average flow. The effect of Aridity on predictive error is 

well-documented in the literature (Salinas et al., 2013), and is attributed to the increased 

variability of streamflow generating processes in more arid regions. Precipitation can vary 

more between basins in arid regions due to complex terrain and local storm systems (Pilgrim 

et al., 1988), and this may be the reason why the RE of the high flow increased with Aridity 

in this study. The RE of the high flow also varied with forest cover, which is likely due to a 

correlation with Aridity, but worth noting because it further demonstrates the difficulty of 

predicting flows in drier environments with less forest cover. 
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Table 17. Relations between RE and the independent variables ranked according to the Pearson 
correlation coefficient (r). The largest correlation coefficient between the two untransformed or semi-
log transformed variables was used to account for linear and non-linear relations to RE, and these 
values were generated for the RE of a high (Q05), average (Q50), and low (Q95) flow in validation. All 
statistically significant relations to RE are shown (p-value < 0.05). 

Q05 Q50 Q95 

Variable r Variable r Variable r 

Aridity 0.49* Aridity 0.34* BFI 0.34* 

Aridity_SD 0.45* Aridity_SD 0.34* Poorly_Drained -0.25* 

Forest -0.36* MAP -0.22* Slope_SD -0.17* 

Forest_Rip -0.34* PET 0.2* Slope -0.16* 

MAP -0.29* Precip_Seasonality 0.19* Soil_Porosity_SD -0.15* 

Precip_Seasonality 0.29* Percent_Snow -0.18* PET 0.15* 

Soil_Porosity -0.22* Soil_Porosity -0.18* Spring_Temp 0.14 

BFI_SD 0.19* Precip_Intensity_SD 0.17* PET_Amp 0.13 

Precip_Lag1 0.18* Spring_Temp 0.16* Precip_SD -0.13 

PET_Amp 0.16* Forest_Rip -0.16* Precip_1D_Max_SD 0.12 

Percent_Snow -0.16* Aspect_SD -0.14 Elev_SD -0.12 

Precip_Intensity_SD 0.15* Water_Capacity -0.11 Density -0.12 

Precip_SD -0.13 Relief_Ratio 0.11 TWI 0.12 

Precip_1D_Max -0.11 Area 0.11 Precip_Lag1 -0.11 

Area -0.11 PET_Amp 0.1 MAP -0.11 

*p-value < 0.05 

 The average flow encountered more RE as Aridity increased (Table 17), and this may 

be explained by the increased spatial variability of precipitation and resulting saturated areas 

contributing to average flows in arid regions (Morin et al., 2006). Unsaturated areas in arid 

regions can lead to considerable amounts of bank recharge (Pilgrim et al., 1988), which may 

increase the uncertainty of predicting percentile flows in arid regions. Error may also be 

greater in arid regions with smaller flows subject to increased gauging error (McMillan et al., 

2012). The complexity of arid regions warrants the development of streamflow models 

specifically designed for such conditions (Pilgrim et al., 1988), and treating the arid basins 

separately may reduce the error in predicting their percentile flows. 

 The high and average flow shared an interesting relation with snowfall 

(Percent_Snow). As snowfall increased, the RE of the high and average flow decreased 
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(Table 17). The smaller RE associated with more snowfall may be due to more uniform 

runoff in snow-dominated regions (Saco and Kumar, 2000). In these regions, large storm 

systems deliver the winter snowpack, and subsequent runoff in the spring snowmelt season 

may be fairly consistent from basin to basin. The other side of this is that warmer regions 

with less snowfall may have more spatial variation in climatic patterns that affect flow, and 

this may increase the error in predicting high and average flows. 

 The main factor related to the RE of the low flow was BFI and other variables related 

to basin storage (see Poorly_Drained and Slope in Table 17). The correlation coefficients of 

these variables indicate that the RE of the low flow increased with basin storage. Larger 

groundwater contributions (BFI) were associated with more error. An increase in error also 

occurred for soils with more vertical drainage (Poorly_Drained) and flatter basins (Slope) 

with potentially more storage. The increase in RE with storage indicates that the low flows of 

basins connected to groundwater sources were more difficult to predict. More information on 

the subsurface drainage of these basins may improve the prediction of their low flows. Basins 

with more storage likely have larger low flows, and the dynamics affecting larger low flows, 

such as evaporative losses (Yokoo and Sivapalan, 2011), may have been a source of 

uncertainty. 

6. US hydrologic regions 

 The regions derived from the hydrologic variables were adopted as the hydrologic 

regions of the US since they produced regional regression models with similar, if not better, 

performance than the other sets of variables for predicting the percentile flows. The US 

hydrologic regions were described to identify regional characteristics associated with the 

percentile flows. Regional characteristics were summarized using the mean z-score (Equation 
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1) of key independent variables (Figure 13). The combination of MAP and PET was used to 

describe the climate of the region, and other variables were used as an indicator of basin 

storage (Area, Elev, and BFI). Drainage area relates to storage, and elevation provides basic 

physiographic information that also often covaries with snowfall. 

 

Figure 13. Regions derived from the hydrologic variables described by their (a) location and (b) mean 
z-score of key independent variables. 

 Descriptive labels were assigned to the regions based on their geographic location 

(Figure 13a) and key independent variables (Figure 13b), and the resulting classes are listed 

in Table 18. Geographic location was used to develop the classes since the hydrologic 

regions displayed geographic contiguity and spatial proximity was a first order indicator of 

basin similarity. The climate and storage of the regions were then qualitatively characterized 

using the key independent variables. The resulting classes are open to interpretation, but their 

value is briefly demonstrated by relating the characteristics from a sample of regions to the 

FDC. The same sample of regions from Table 13 (Regions 1, 2, and 11) are used to continue 
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the discussion of their characteristics and how they relate to the median FDC of the basins 

from each region (Figure 14). 

Table 18. Descriptive classes assigned to the regions derived from the hydrologic variables. 
Classification developed based on geographic location and basin characteristics representing climate 
and storage. 

Location Climate Storage Description Region 

NW   Northwest  

 vw  Very wet  

  M Moderate 5, 10 

 w  Wet  

  S Snow 13 

RM   Rocky Mountains  

 c  Cold  

  S Snow 12 

MW   Midwest  

 sa  Semi-arid  

  LB Large basins 1 

 c  Cold  

  S Snow 4 

 t  Temperate  

  L Low 14 

NE   Northeast  

 t  Temperate  

  M Moderate 7, 9, 11 

 w  Wet  

  H High 6 

SE   Southeast  

 w  Wet  

  M Moderate 8 

  L Low 3 

SW   Southwest  

 a  Arid  

  L Low 2 
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Figure 14. Median FDC of the basins from a sample of the hydrologic regions including regions 1, 2, 
and 11. 

 Region 1 was located in the Central Plains, and its semi-arid climate produced 

somewhat variable high flows and occasional periods of zero flow. The basins of the Central 

Plains were the largest of any region, and this added to their storage capacity and potential to 

sustain average flows. Region 2 occupied the Southwest, and was characterized by arid 

conditions with highly variable flows overall. The streams of the Southwest were 

disconnected from the water table, and received little flow from groundwater. These 

conditions produce streams that only flow in response to rainfall or during the wet season. 

Region 11 was mostly restricted to the New England portion of the Northeast, and its 

temperate climate produced perennial streams sustained by both rain and snowfall. High 

flows were the product of the summer storm season (Saco and Kumar, 2000), and average to 
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low flows are contributed by consistent year-round precipitation and local groundwater 

sources (Olcott, 1995). 

F. Conclusions 

 A regional regression approach was applied on 918 basins in the US to predict 13 

percentile flows of the FDC. The first phase of the approach split the basins into regions 

according to independent variables and a SOM-based cluster analysis to deal with noise and 

non-linearities in the data. The resulting regions were then used to develop regional 

regression models for predicting the percentile flows. The predictive performance of the 

regional regression models was assessed using 184 validation basins, and the entire regional 

regression approach was repeated using three different sets of independent variables to 

determine the necessary amount of information for predicting the percentile flows. The most 

efficient set of variables was then used to investigate the factors associated with predictive 

error and the regional conditions related to the percentile flows. 

 The regional regression approach achieved NSE values ranging from 0.39-0.76 and 

averaging 0.64. The predictive performance of the approach depended on the percentile flow 

and the set of independent variables used to formulate the regional regression models. The 

approach performed the best on the percentile flows in the middle of the FDC (average 

flows) and worst on percentile flows at the tails of the FDC (extreme flows). Average flows 

were modeled better than extreme flows likely because they have less variability (Salinas et 

al., 2013), and the extreme flows are controlled by processes, such as storm flows and 

subsurface drainage, that are more difficult to represent in the regression models. Additional 

variables may be needed to more closely represent the processes that control extreme flows, 



125 

 

such as the magnitude of extreme storms that produce high flows and the evaporative losses 

during dry periods that moderate low flows. 

 The performance of the regional regression approach was affected by the different 

sets of independent variables that were used to predict the percentile flows. The sets of 

independent variables represented the following three different amounts of information: (1) a 

simple set of hydrologic variables to represent the three components of the FDC, (2) a larger 

set of lumped variables typically used in regional regression studies to describe the average 

for a variety of basin characteristics, and (3) a more complex set of distributed variables 

including the lumped variables and additional variables to describe the statistical distribution 

of basin data. The distributed variables were used to test the hypothesis that variables 

describing the statistical distribution of basin conditions would improve percentile flow 

predictions by representing the variability of conditions that influence the FDC. However, the 

results do not support this hypothesis, and the distributed variables consistently produced the 

lowest performance for predicting the percentile flows. Variables describing the statistical 

distribution of basin conditions did not contribute useful information to the regional 

regression approach, and the simpler sets of variables were more effective for predicting the 

percentile flows. 

 The hydrologic variables consisted of only three variables to represent the dominant 

physical processes that control the FDC, and these variables (MAP, PET, and BFI) produced 

similar predictive performance to the more complex set of lumped variables. This means that 

additional variables typically used for regional regression added little information to the 

percentile flow predictions. The limited predictive potential of the typical variables was 

highlighted for the extreme flows, which were more effectively predicted using the three 
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process-oriented hydrologic variables. These results indicate that considerable time and effort 

could be saved by targeting independent variables to represent specific processes related to 

the FDC. The success of the hydrologic variables demonstrates the importance of using 

independent variables with a strong physical connection to the streamflow variable and the 

need to develop independent variables based on process understanding. 

 Results from the hydrologic variables were further investigated to understand the 

factors related to predictive error and regional conditions associated with the FDC. Predictive 

error increased with aridity and basin storage. This suggests that separate models should be 

developed to predict the percentile flows of arid basins and alternative variables may be 

needed to model the flows generated from basins with large storage components, such as 

snow or aquifers. The regions derived to predict the FDC showed strong geographic 

contiguity, and spatial proximity was a first order indicator of basin similarity. The regions 

distinguished different climatic and storage conditions, and these regional conditions were 

related to the FDC for a sample of regions. 

 The regional regression approach resulted in a range of predictive performance, and 

future research should target possible sources of uncertainty. The regions may have 

contained unacceptable levels of variability in the percentile flows, and regional homogeneity 

tests could be applied to identify problematic regions. This can be useful for adjusting the 

regions to make them more hydrologically homogeneous and improve subsequent predictions 

(Hosking and Wallis, 1997). The regions imposed discrete boundaries between the basins 

although their conditions varied along a continuum. A more appropriate way to identify the 

regions may be to give the basins partial membership in each region using fuzzy cluster 

analysis (Srinivas et al., 2008). Predictions could then be weighted according to the regional 
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membership of the basins, and this may improve predictions for basins that lie in the 

periphery of the regions. The regional regression models suffered from a lack of variables 

with predictive potential, and future work should focus on developing new variables for 

representing the processes that control the FDC. Finally, uncertainty in the regional 

regression approach may stem from the regression method used to generate the predictions, 

and a machine learning method, such as the SOM, may be better equipped to handle the noise 

and non-linearities in the data (Booker and Woods, 2014). The SOM is a particularly 

interesting option since its training routine clusters the data and may eliminate the need to 

identify hydrologic regions. This possibility is tested for the prediction of percentile flows in 

the final paper of this dissertation. 
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Chapter 4: Prediction and exploratory analysis of the flow duration curve using the 

self-organizing map 

A. Abstract 

 Percentile flows of the flow duration curve (FDC) represent the flow magnitude 

exceeded for a given percent of time, and are widely used to manage water resources. These 

important statistics often need to be predicted for ungauged basins with insufficient 

streamflow data. A typical approach for predicting percentile flows uses independent 

variables consisting of physical and climatic characteristics to identify a priori regions and 

develop regional regression models. Identifying the regions can be a time-consuming process 

with uncertainties such as the appropriate clustering method and number of regions. A neural 

network approach, called the self-organizing map (SOM), is an alternative for clustering the 

basins and predicting percentile flows all in one step. It can also be used to inform future 

modeling efforts through an exploratory analysis of the factors related to the percentile flows. 

The SOM approach was used on 918 basins in the US for the prediction and exploratory 

analysis of 13 percentile flows. Global predictions using all the basins were generated using 

the SOM. A priori regions based on a cluster analysis of the independent variables for the 

subject basins were also used for SOM-based predictions to test the hypothesis that a priori 

regions do not improve predictions generated by the SOM. In addition, the predictive 

performance of the SOM was compared to a typical regional regression approach. Global and 

regional predictions of the SOM achieved similar performance, which confirms the 

hypothesis that a priori regions do not improve SOM predictions. Although the SOM did not 

benefit from the regions, it failed to outperform the regional regression. This may be because 

the regional regression used a subset of the independent variables based on their predictive 
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potential, and the SOM may have included irrelevant variables since it used all the 

independent variables. Future studies should pair the SOM with a variable selection method 

to discard irrelevant variables for predicting the percentile flows. The exploratory analysis 

using the SOM revealed that high flows were associated with the overall wetness of the basin 

and its snowfall possibly because of the spring snowmelt season or rain-on-snow events. 

Average and low flows were primarily associated with the groundwater contributions of 

baseflow. The overall relation between the percentile flows and independent variables was 

weak according to the discordancy between clusters derived from the two datasets, and future 

work should investigate new sets of variables to improve the connection to percentile flows. 

Such research would advance the identification of regions and independent variables for 

predicting percentile flows, and could be performed using the SOM. 

B. Introduction 

 A widely used tool for representing streamflow data is the flow duration curve (FDC). 

This graphical representation of streamflow shows the flow magnitude equaled or exceeded 

for a given percent of time as percentile flows. These statistics are critical information for 

stream uses with flow requirements, such as hydropower, wasteload allocation, and habitat 

maintenance (Vogel and Fennessey, 1995). Percentile flows are readily calculated using 

sufficiently long streamflow records, but they must be predicted for most locations with 

insufficient or no streamflow data. This falls under the Predictions in Ungauged Basins 

problem (Sivapalan et al., 2003), and is addressed using information from gauged basins to 

predict percentile flows for ungauged basins. 

 Information from gauged basins is either used to establish functional relations 

between measurable basin characteristics and percentile flows or estimate the parameters of a 
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rainfall-runoff model. The latter approach is subject to both parameter and model uncertainty, 

whereas empirical approaches that relate basin characteristics to percentile flows require less 

effort and have achieved similar performance in comparative studies. (Booker and Woods, 

2014; Müller and Thompson, 2015; Zhang et al., 2014). The basin characteristics used to 

predict percentile flows can include spatial proximity, but this may provide misleading 

information in drier climates with larger fluctuations in flow between neighboring basins 

(Patil and Stieglitz, 2012). Physical and climatic basin characteristics are preferred since they 

are related to the hydrologic processes that control percentile flows and may produce robust 

predictive models for a variety of environments (Sivapalan, 2005). Predictive models based 

on physical and climatic characteristics are often used to predict the parameters of statistical 

distributions for representing the FDC, but a suitable statistical distribution can vary 

depending on regional conditions (Castellarin et al., 2004). Predicting individual percentile 

flows is advantageous because assumptions on the statistical distribution of the FDC are not 

necessary. 

 A growing number of studies are using physical and climatic characteristics as 

independent variables to predict percentile flows (Hashmi and Shamseldin, 2014; Hope and 

Bart, 2012; Mohamoud, 2008). These studies have focused on particular geographic regions, 

such as the Auckland Region of New Zealand (Hashmi and Shamseldin, 2014), Cape 

Floristic Region of South Africa (Hope and Bart, 2012), and Mid-Atlantic Region of the US 

(Mohamoud, 2008). The success of these studies has varied possibly due to regional 

conditions affecting the heterogeneity of percentile flows and ability to model their relation 

to independent variables. Regional heterogeneity of percentile flows can diminish predictive 

performance. In order to control for such heterogeneity, the basins are often assigned to 



131 

 

regions (or groups) based on independent variables related to flow (Olden et al., 2012). 

Identifying a priori regions via independent variables is a longstanding research theme in 

flood prediction (Acreman and Sinclair, 1986), and this approach has recently been employed 

to predict the FDC (Boscarello et al., 2015). The first two papers of this dissertation 

demonstrated the importance of identifying a priori regions for predicting percentile flows. 

Global predictions based on all the basins were improved using a priori regions identified 

using cluster analysis. However, the use of cluster analysis is an additional step that involves 

decisions which may impact the predictive performance of subsequent models developed for 

each region (i.e. regional models). 

 A neural network approach, called the self-organizing map (SOM), is an alternative to 

identifying a priori regions for regional models. The SOM clusters features, such as basins, 

according to their attributes in a grid of neurons that can be used to generate predictions. This 

is an appealing alternative to identifying a priori regions because the SOM can cluster basins 

and generate percentile flow predictions in one step. Identifying a priori regions requires 

more effort and decisions that may influence predictive performance. The choice of a 

clustering method to identify the regions can affect the predictive performance of the 

regional models. This has been documented by studies that have compared the predictive 

performance of regional models developed using different clustering methods (see Boscarello 

et al., 2015; Di Prinzio et al., 2011; Sauquet and Catalogne, 2011). 

 Another decision that can affect predictive performance is the number of clusters (or 

regions) for the dataset. An optimal number of clusters can be identified using cluster validity 

indices, but these metrics can give conflicting results that either indicate a small or large 

number of clusters (Shim et al., 2005). This problem was observed using a variety of cluster 
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validity indices in the second paper of this dissertation, and an alternative strategy had to be 

developed to determine the number of clusters. Resulting clusters impose borders on 

continuously varying fields of data. This can be problematic for basins located along cluster 

borders with weak associations to individual clusters. The SOM avoids this issue by mapping 

the basins in a grid of neurons that represents the continuous variation in the data. 

 The neurons of the SOM are linked to the data through a vector of values equal in 

length to the number of input variables. These “neuron vectors” are incrementally adjusted 

according to the data during an iterative training process. Input data from a basin is presented 

to the SOM, and assigned to the most similar neuron, or best-matching unit (BMU). The 

BMU and its neighbors are then adjusted to more closely match the incoming input data. The 

resulting neurons can be thought of as representative samples of the basins (Kalteh et al., 

2008), and the neuron vectors can serve as predictions if they include the percentile flows. 

 Application of the SOM for ungauged prediction has been an active area of research 

for nearly two decades (Hall and Minns, 1999), but using the SOM as a predictor for 

streamflow variables, like percentile flows, would be a new area of research. In the past, the 

SOM has been primarily used as a preliminary step towards identifying a priori regions (see 

the second paper of this dissertation and Boscarello et al., 2015; Di Prinzio et al., 2011; Hall 

and Minns, 1999). The purpose of using the SOM in this capacity is to organize the data for 

subsequent cluster analysis and account for non-linearities in the data. Output from the SOM 

has also been used for the exploratory analysis of the controls on streamflow to advance 

modeling efforts (see Farsadnia et al., 2014; Ley et al., 2011; Toth, 2012). These studies 

exploit the SOM’s ability to visualize the structure of the data and connections between 

variables. The SOM has not been used extensively as a predictive method in hydrology. 
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These applications have been limited to estimating the parameters for a rainfall-runoff model 

(Wallner et al., 2013) and infilling missing data in hydroclimatic time series (see Kalteh and 

Berndtson, 2007; Mwale et al., 2012; Rustum and Adeloye, 2007). Applying the SOM for 

prediction and an exploratory analysis of the results would serve to illuminate future 

modeling needs for better predicting streamflow variables, such as percentile flows. 

 The SOM is a particularly suited approach to predict percentile flows for several 

reasons. Hydrologic data used to predict percentile flows are prone to noise (i.e. variation 

unrelated to the observed phenomenon). Streamflow data contains error due to gauging 

malfunctions and uncertainty in the rating curve used to estimate discharge (McMillan et al., 

2012). Environmental data, like precipitation, have error introduced by spatial and temporal 

interpolation techniques (Daly et al., 2008). Noise in streamflow and environmental data may 

degrade the relations developed to predict percentile flows, but the SOM is resilient to 

reasonable levels of noise because the neuron vectors are computed using local 

neighborhoods less influenced by random variations in the data (Vesanto and Alhoniemi, 

2000). Another reason why the SOM may be suited to predict percentile flows is that it is 

capable of modeling both linear and non-linear associations between variables (Kohonen, 

1998). The relation between basin characteristics and percentile flows can take on a variety 

of functional forms, and the SOM may be more flexible than traditional statistical methods, 

like multivariate regression, since it adapts to the data based on an iterative training process 

(Kohonen, 2001). This is a common feature of artificial neural networks, but the output layer 

of the SOM allows the user to explore associations in the data that may otherwise be hidden 

in artificial neural networks (Kalteh et al., 2008). Associations to the percentile flows (or lack 

thereof) may be used to develop better predictive models. 
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 The SOM’s output layer consists of neuron vectors that reflect patterns in the input 

data. The neuron vectors can be used to conduct an exploratory analysis of the factors related 

to percentile flows, which could provide information for the future evolution of percentile 

flow modeling. The number of neurons for the exploratory analysis should be a fairly large 

fraction of the basins in order to use the SOM as a “spatial layout” tool for displaying the 

distribution of the data on a continuous surface (Skupin and Esperbé, 2011). Subsequent data 

visualizations are then capable of showing the cluster structure and connection between 

variables in the output layer of the SOM. The connection between percentile flows and 

independent variables is a critical aspect of identifying regions for ungauged predictions, and 

percentile flow predictions hinge on a strong connection to the independent variables. Data 

visualizations of the SOM can be used to examine the connection between percentile flows 

and independent variables. This can be accomplished by displaying how the data is ordered 

in the SOM. Data ordered in a similar fashion are related. This style of data visualization may 

reveal discordancy between the percentile flows and independent variables that can be 

interpreted to recommend future modeling directions. 

 The objective of this research was to predict percentile flows and evaluate their 

relations to independent variables using the SOM. This study highlights the SOM because of 

its (1) tolerance to noise (Vesanto and Alhoniemi, 2000), (2) modeling flexibility (Kohonen, 

1998), and (3) exploratory component (Skupin and Esperbé, 2011). Another advantage of the 

SOM is that its clustered output may be a substitute for identifying a priori regions. The 

SOM was applied with and without a priori regions to test the hypothesis that a priori regions 

would not be needed to improve SOM predictions. Predictive performance of the SOM was 

compared to a typical regional approach that developed regression models for the individual 
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regions. This served as a baseline reference for assessing the applicability of the SOM for 

predicting percentile flows in ungauged basins. The study included three separate sets of 

percentile flow predictions produced using (1) the SOM without a priori regions, (2) the 

SOM with a priori regions, and (3) regional regression. The performance of these predictions 

was compared to test the hypothesized advantage of the SOM (i.e. a prior regions are not 

necessary) and its performance relative to a typical approach (i.e. regional regression). An 

exploratory analysis of the SOM predictions was conducted to reveal potential areas of 

improvement for modeling percentile flows. Results from the SOM were evaluated to answer 

the following two research questions: 

How do percentile flow predictions generated using the SOM compare to regional 

predictions, and what potential improvements to percentile flow modeling can be identified 

using the SOM? 

C. Methods 

1. Overview 

 The SOM was used to predict 13 percentile flows ranging from a high flow exceeded 

1% of the time (Q01) to a low flow exceeded 99% of the time (Q99) and 11 flows between that 

range (Q05, Q10, Q20,…Q95). The percentile flows and a set of independent variables were 

used to train the SOM, and the output neuron vectors served as the percentile flow 

predictions. The performance of the predictions was assessed using validation basins treated 

as ungauged, and their percentile flows were withheld from any step to generate predictions 

using the SOM. Validation basins were assigned to SOM neurons according to their 

independent variables. The neuron with the most similar output vector to the independent 
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variables was designated the BMU, and its output vector was used to predict the percentile 

flows for the given validation basin. 

 A variety of approaches for training the SOM were tested since several options exist 

for generating ungauged predictions and these options may affect the predictive performance 

of the SOM. The SOM can be trained with missing data, and this meant that the SOM could 

be trained with the validation basins missing percentile flow data. This type of training 

originates from studies on infilling missing data (see Mwale et al., 2012 as an example). All 

the data was used to train the SOM including the missing percentile flow data from the 

validation basins. The SOM was also trained without the validation basins as in traditional 

neural network training (see Ssegane et al., 2012b as an example), and missing data was 

excluded from the SOM. Both types of training (with and without missing data) were used to 

generate SOMs including all 13 and individual percentile flows. This step was performed to 

determine if a single SOM could be used to predict all 13 percentile flows at once or 

individual SOMs had to be trained for each percentile flow. 

 The training approach with the best results was then applied in regions previously 

identified in the second paper of this dissertation. Global predictions based on all the basins 

and regional predictions were produced using the SOM to compare its performance with and 

without a priori regions. The utility of the SOM for predicting percentile flows was further 

evaluated relative to a typical regional regression from the second paper. Finally, the SOM 

was used to create data visualizations for an exploratory analysis of the percentile flows to 

illuminate potential modeling improvements. The methods of this study are summarized as a 

flow chart in Figure 15. 
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Figure 15. Flow chart of the methods for testing the SOM to predict percentile flows and improve 
future models. 

2. Training data 

 The data used to train the SOM consisted of 13 percentile flows and 22 independent 

variables. These values were calculated for 918 basins in the contiguous US classified as 

“near-natural” (Falcone, 2011) and with at least 30 years of continuous daily streamflow 

data. The length of streamflow data was chosen to reliably calculate percentile flows for 

different time periods (Kennard et al., 2010). Normalized percentile flows were calculated 

using the Weibull plotting position and the mean of nonzero flows to control for differences 

in drainage area (Castellarin et al., 2004). The natural log transformation was applied on the 

percentile flows to minimize the potential influence of outliers (Allende et al., 2004). 

Percentile flow data was excluded from 184 validation basins (20% of the basins) to assess 

the performance of the SOM predictions. The validation basins were a representative sample 

of the basins selected according to climate class, rock type, and drainage area. Key 

hydrologic factors were used instead of the percentile flows to maintain the independence of 
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the validation. A map of the validation basins along with the other basins used in this study is 

provided in Figure 16. 

 

Figure 16. Map of the 918 basins used in this study, with the 184 validation basins highlighted in 
white. 

 The independent variables were used to indicate hydrologic similarity and assign the 

validation basins to SOM neurons. A typical set of independent variables was used to 

characterize the climate, topography, land cover, soil, and geology of the basins. Climatic 

variables were calculated using 30 years of data to effectively represent long-term conditions 

(Arguez et al., 2012). The only land cover variable was percent forest because the percent 

cover of the different land cover classes was related and differences in forest cover are 

strongly tied to the FDC (Brown et al., 2013). Geology was represented using a preexisting 

baseflow index (BFI) grid for the US expressing the percent of streamflow contributed by 

groundwater. This variable quantifies the effect of geology on streamflow and is very useful 

for predicting the FDC (see previous papers of this dissertation and Yokoo and Sivapalan, 

2011). The rest of the independent variables are described in Table 19. 
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Table 19. Percentile flows and independent variables used to train the SOM. 

Variable Units Description Key reference Data source 

Percentile flows     

Qp (e.g. Q01 for 

1%) 

- Normalized percentile flows for 

1, 5, 10, 20, 30, 40, 50, 60, 70, 

80, 90, 95, and 99% 

Castellarin et al. 

(2004) 

NWIS 

Independent     

Climate     

MAP mm Mean annual precipitation Hope and Bart (2011) PRISM 

Precip_SD mm Standard deviation of annual 

precipitation 

Hope and Bart (2011) PRISM 

Precip_1D_Max mm Median of annual 1-day 

maximum precipitation 

Yadav et al. (2007) PRISM 

Precip_Intensity mm/d Precipitation per rainy day Kroll et al. (2004) PRISM 

Spring_Temp °C Average temperature from 

April-June 

Boscarello et al. 

(2015) 

PRISM 

PET mm Mean annual potential 

evapotranspiration calculated 

using the Oudin et al. (2005) 

equation 

Oudin et al. (2005) PRISM 

Aridity - Aridity index calculated as PET 

divided by MAP 

Ssegane et al. (2012b) PRISM 

Percent_Snow % Percent of precipitation as snow Falcone (2011) GAGES-II 

Topography     

Area km
2
 Drainage area Falcone (2011) GAGES-II 

Density km/km
2 

Drainage density calculated as 

stream length divided by 

drainage area 

Ssegane et al. (2012b) NHDPlusV2, 

GAGES-II 

Orientation °N Basin angle along main channel Di Prinzio et al. 

(2011) 

GAGES-II 

Elev m Mean elevation Ssegane et al. (2012b) NED 

Relief_Ratio % Relief ratio calculated as 

elevation range divided by 

basin length along main 

channel 

Berger and Entekhabi 

(2001) 

NED, 

GAGES-II 

Slope % Mean slope Ssegane et al. (2012b) NED 

Aspect °N Mean aspect Ssegane et al. (2012b) NED 

Accumulation km
2
 Mean flow accumulation 

expressed as upslope area 

Povak et al. (2014) NED 

TWI - Mean topographic wetness 

index calculated as 

ln(accumulation/tan(slope)) 

Ssegane et al. (2012b) NED 

Land cover     

Table continued on next page    
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Variable Units Description Key reference Data source 

Forest % Percent forest cover Ssegane et al. (2012b) NLCD 1992 

Soil     

Soil_Porosity % Mean soil porosity expressed as 

percent pore volume 

Hope and Bart (2011) CONUS-

SOIL 

Water_Capacity % Mean water capacity expressed 

as percent volume at field 

capacity 

Mohamoud (2008) CONUS-

SOIL 

Poorly_Drained % Percent poorly drained 

including hydrologic soil 

groups C and D 

Ssegane et al. (2012b) CONUS-

SOIL 

Geology     

BFI % Mean baseflow index derived 

from a baseflow grid 

Hope and Bart (2011) BFI48GRD 

Data sources: NWIS, National Water Information System (http://waterdata.usgs.gov/nwis); PRISM, 

Precipitation-elevation Regressions on Independent Slopes Model (http://prism.oregonstate.edu); GAGES-II, 

Geospatial Attributes of Gages for Evaluating Streamflow, version II (Falcone, 2011); NHDPlusV2, National 

Hydrography Dataset Plus Version 2 (http://www.nhdplus.com); NED, National Elevation Dataset 

(http://ned.usgs.gov); NLCD 1992, National Land Cover Dataset 1992 (Vogelmann et al., 2001); CONUS-

SOIL, Conterminous US multilayer soil characteristics dataset (Miller and White, 1998); BFI48GRD, Base-

flow index grid for the conterminous US (Wolock, 2003) 

3. SOM training and predictions 

 The SOM was trained using the percentile flow and independent variable data. Prior 

to training the SOM, the data underwent z-score normalization in order to equally weight the 

input variables. This produced variables with a mean of zero and variance of one. The 

normalized variables were then used to train the SOM, which consisted of a set of output 

neurons arranged in a two-dimensional grid. The output neurons each had a vector equal in 

length to the number of input variables. The neuron vectors were first given random values, 

and then adjusted to more closely match the input data through an iterative training process. 

The input data was iteratively presented to the SOM, and assigned to the most similar 

neuron, or BMU, according to Euclidean distance. The neuron vectors of the BMU and its 

neighbors were adjusted to be more similar to the input data. This process was controlled by 

the learning rate and neighborhood function. The learning rate altered the magnitude of the 
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neuron vector adjustments, and decreased monotonically for each iteration of the training. 

The neighborhood function used the typical Gaussian equation to moderate the adjustments 

to neurons neighboring the BMU and decrease the radius of the neighborhood throughout 

training. Equations for the above SOM training process are supplied in the second paper of 

this dissertation. 

 As recommended by the creator of the SOM (Kohonen et al., 1996), training was 

conducted in two stages to first capture global structures in the data and then refine those 

structures with a local training stage. The global training used a larger learning rate (0.04) 

and neighborhood (half of the SOM) to make broad-scale adjustments to the SOM, while the 

local training was accomplished using a smaller learning rate (0.03) and neighborhood (one 

third of the SOM). 

 The only remaining parameters for training the SOM were the number of neurons and 

iterations. Both of these parameters were set relative to the number of input vectors (i.e. 

basins), and this was initially established using all the basins in experiments from the second 

paper of this dissertation. The number of neurons was determined by testing different sized 

SOMs and evaluating the number of “empty” neurons that did not serve as a BMU for any of 

the basins. The final SOM size of 15 × 15 neurons was selected to limit the number of empty 

neurons that were not linked to the data. The number of iterations was then selected to 

adequately train the neurons. This was determined based on the quantization error, which is a 

measure of how well the neurons match the data. The SOM with 15 × 15 neurons required 50 

iterations for the global training and 4,000 iterations for the local training. The size of the 

SOM and number of training iterations established using all the basins were proportionally 

reduced to train the SOM using a subset of the basins. 
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 Several approaches were used to train the SOM because the options for generating 

ungauged predictions may affect the SOM’s predictive performance. The SOM was trained 

including and excluding the validation basins with missing percentile flow data. The 

approach that included the validation basins was akin to previous studies that have used the 

SOM to infill missing data (see Mwale et al., 2012). The SOM was also trained without the 

validation basins as in traditional neural network (NN) training (see Ssegane et al., 2012b). 

Both of the above training approaches were repeated to produce SOMs including all the 

percentile flows and individual percentile flows, and this resulted in four different training 

approaches for predicting percentile flows (Table 20). Each training approach used the same 

method for generating percentile flow predictions. Validation basins were assigned to the 

neurons using the independent variables. The BMU was identified based on Euclidean 

distance, and the output neuron vector of the BMU was used to predict the percentile flows. 

Table 20. SOM training approaches used to predict percentile flows in this study. 

SOM training approach Validation basins Percentile flows 

Infill_All Included All 

Infill_Individual Included Individual 

NN_All Excluded All 

NN_Individual Excluded Individual 

4. SOM performance assessment 

 The performance of the SOM was assessed for predicting 13 percentile flows. 

Predictive performance was evaluated using 184 validation basins that were treated as 

ungauged. The difference between predicted and observed percentile flows was summarized 

using the sum of absolute relative error (RE), coefficient of determination (R
2
), and Nash-

Sutcliffe efficiency (NSE). These metrics were selected because they are widely used to 

assess the performance of percentile flow predictions (see Mendicino and Senatore, 2013 for 
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mathematical definitions). A normalized measure of error is provided by RE, which can be 

summed to assess the overall error of the predictions. The amount of variance in the 

observations explained by the predictions is given by R
2
, with larger values signifying more 

accurate predictions. Like R
2
, larger NSE values signify better predictive performance. The 

value of NSE also indicates if the predictions performed better than simply using the mean of 

observed values (NSE > 0). The performance assessment was conducted using the natural log 

of percentile flows to reduce the influence of outliers (Di Prinzio et al., 2011). Results from 

the performance assessment were compared for the four different approaches used to train 

the SOM, and the preferred approach was adopted to represent the global predictions from 

the SOM. Regional predictions using the SOM were generated using the preferred training 

approach and the regions from the second paper of this dissertation. Results from the regional 

regression of the second paper were also included as a reference for assessing the predictive 

performance of the SOM. Global predictions from the SOM were compared to the regional 

predictions to determine if the SOM could be used as an alternative to regional methods for 

predicting percentile flows. 

5. Exploratory analysis using SOM data visualizations 

 An exploratory analysis of the percentile flows was conducted using data 

visualizations based on the SOM. The goal of the visualizations was to identify potential 

improvements for future predictive models by assessing the relation between the percentile 

flows and independent variables. The two sets of data were compared using the trained 

neuron vectors of the SOM. The neuron vectors were split in order to compare the percentile 

flows to the independent variables. Correspondence between the datasets was evaluated using 

the following visualization methods: 
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1. Pie charts were created to show the number of basins assigned to each neuron 

according to the Euclidean distance between the different input data and the neuron 

vectors. 

2. The unified distance matrix (U-matrix) was used to visualize the cluster structure of 

the SOM by calculating the Euclidean distance between neighboring neurons. This 

calculation created a new representation of the SOM with map units equal to the 

distance between pairs of neighboring neurons and the average distance between all 

the neighboring neurons. Small distances between neurons represent clusters in the 

data, and large distances between neurons signify cluster borders. 

3. Component planes were generated to map the value of individual variables in the 

SOM, and variables with similar component planes are related. 

4. Independent variables related to the percentile flows were selected based on the 

component planes. The relative values of the selected independent variables were 

displayed as pie charts for each neuron, and overlaid on the component planes of 

individual percentile flows to show their relation to the independent variables. 

5. Finally, the neuron vectors were clustered using the k-means method as described in 

Isik and Singh (2008). A comparison of the two cluster solutions was performed to 

assess the relation between the percentile flows and independent variables. The 

number of clusters (k) was determined using the “elbow” method. The sum of squared 

error (SSE) was plotted for consecutive clustering solutions with up to 50 clusters, 

and the point at which the decrease in SSE flattened out was chosen as the 

appropriate number of clusters. This approach was applied to cluster the neuron 

vectors for both the percentile flows and independent variables, and the resulting 
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clusters were mapped on the SOM. Neuron clusters were assigned to the basins 

according to their BMU. Basins were represented geographically using the Thiessen 

polygons of their gauge locations, and the clusters based on the SOM were mapped 

for the US. Cluster borders were mapped for the SOM and US to show the 

correspondence (or lack thereof) between the percentile flows and independent 

variables. 

D. Results and discussion 

1. Predictive performance of the different SOM training approaches 

 The performance of four different approaches for training the SOM to generate global 

percentile flow predictions was summarized for each percentile flow using the sum of 

absolute RE, R
2
, and NSE (Table 21). The different training approaches affected the 

predictive performance of the SOM. Training approaches that included the validation basins 

with missing percentile flow values (Infill_All and Infill_Individual) consistently performed 

better than traditional NN training that excluded the validation basins (NN_All and 

NN_Individual). The data infilling approaches included the independent variables of the 

validation basins, and this may have improved how the validation basins were assigned to the 

SOM neurons. Training the SOM for individual percentile flows (Infill_Individual and 

NN_Individual) was not a clear advantage for generating predictions using the SOM. This 

may be the case because SOM training adjusts the values of the neuron vectors individually, 

and including all the percentile flows did not have a major effect on the neuron vectors. 

Based on these results, the preferred approach for training the SOM included the validation 

basins and all the percentile flows (Infill_All). This conclusion was confirmed by two of the 
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three metrics used to summarize the overall performance of the training approaches for all 

the percentile flows (Table 22). 

Table 21. Predictive performance of the different SOM training approaches summarized for each 
percentile flow using (a) the sum of absolute RE, (b) R

2
, and (c) NSE. Bold numbers indicate the 

SOM training approach that performed the best for each percentile flow according to the given 
performance metric. 

(a) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Infill_All 12.4 10.6 9.81 9.64 10.4 11.2 11.7 11.9 11.9 11.6 10.5 9.49 8.06 

Infill_ 

Individual 
12.8 12.4 10.4 10.6 11.5 12.2 12.2 12.4 12.0 11.9 10.1 9.44 7.93 

NN_All 13.0 11.5 10.1 10.3 11.5 12.4 12.9 13.1 12.9 12.3 11.1 10.1 8.52 

NN_Individual 12.7 11.7 10.9 10.8 12.6 12.2 12.8 12.6 12.8 12.0 11.1 9.75 8.13 

(b) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Infill_All 0.44 0.50 0.58 0.57 0.58 0.55 0.51 0.46 0.42 0.39 0.38 0.38 0.36 

Infill_Individual 0.41 0.37 0.57 0.59 0.55 0.54 0.53 0.45 0.50 0.37 0.41 0.38 0.43 

NN_All 0.38 0.41 0.55 0.54 0.52 0.49 0.44 0.40 0.37 0.35 0.34 0.34 0.32 

NN_Individual 0.36 0.42 0.50 0.55 0.48 0.54 0.46 0.42 0.36 0.37 0.35 0.38 0.45 

(c) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Infill_All 0.42 0.49 0.57 0.55 0.56 0.54 0.48 0.42 0.38 0.36 0.35 0.36 0.34 

Infill_Individual 0.41 0.37 0.57 0.59 0.55 0.54 0.53 0.44 0.49 0.36 0.41 0.37 0.42 

NN_All 0.36 0.41 0.54 0.53 0.50 0.46 0.41 0.37 0.34 0.32 0.30 0.31 0.30 

NN_Individual 0.36 0.42 0.50 0.54 0.48 0.54 0.46 0.42 0.35 0.37 0.35 0.37 0.43 

Table 22. Overall performance of the different SOM training approaches summarized as the sum of 
absolute RE and average R

2
 and NSE for all the percentile flows. Bold numbers indicate the SOM 

training approach that performed the best overall according to the given performance metric. 

  RE R
2
 NSE 

Infill_All 139 0.47 0.45 

Infill_Individual 146 0.47 0.47 

NN_All 150 0.42 0.40 

NN_Individual 150 0.43 0.43 

 The predictive performance of the SOM varied for the percentile flows (Table 21). 

The sum of absolute RE was influenced by the magnitude of the flow (larger error for higher 
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flows and smaller error for lower flows), but the other performance metrics indicated the 

relative performance of the SOM for the various percentile flows. The values of R
2
 and NSE 

ranged from 0.32-0.59 and 0.30-0.59, respectively, and indicated a similar pattern of 

performance for predicting the percentile flows. Predictive performance plateaued for the 

percentile flows from Q10-Q40, and decreased for higher and lower flows. This has been a 

typical outcome in the other papers of this dissertation and prior studies on predicting 

percentile flows (Archfield et al., 2009; Hashmi and Shamseldin, 2014; Ssegane et al., 

2012b). These studies have used a variety of methods to predict percentile flows, such as 

multivariate regression, symbolic regression, and neural networks, and this indicates that the 

independent variables used for these methods were not sufficiently representing the processes 

that control the higher and lower flows. The input variables were one source of uncertainty 

for the SOM predictions. Additional sources of uncertainty were (1) the parameters used to 

train the SOM, such as the number of neurons, learning rate, and the neuron neighborhood 

settings, (2) assigning the validation basins to the neurons of the SOM, and (3) the smoothing 

of the neuron vectors oversimplified the variability of the percentile flows. 

2. Global versus regional percentile flow predictions 

 Global percentile flow predictions using all the basins were compared to regional 

predictions to determine if the SOM could be used to forego the process of identifying 

regions. The preferred SOM training approach from the comparison of different approaches 

(Global_SOM) was applied in previously identified regions from the second paper of this 

dissertation (Regional_SOM). The performance of the global and regional SOM predictions 

was assessed using the sum of absolute RE, R
2
, and NSE for each percentile flow (Table 23). 

These metrics were also summarized for all the percentile flows to compare overall 
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performance of the global and regional SOM predictions (Table 24). The performance of the 

global and regional SOM predictions was similar for each percentile flow and overall. This 

result confirms the hypothesis of this study that a priori regions would not be needed to 

improve SOM predictions. The a priori regions were not needed presumably because of the 

clustering that occurs during SOM training. 

Table 23. Performance of the global (Global_SOM) and regional predictions using the SOM 
(Regional_SOM) and regression (Regional_Reg) summarized for each percentile flow using (a) the 
sum of absolute RE, (b) R

2
, and (c) NSE. Bold numbers indicate the global or regional method that 

produced the best predictions for each percentile flow according to the given performance metric. 

(a) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Global_SOM 12.4 10.6 9.81 9.64 10.4 11.2 11.7 11.9 11.9 11.6 10.5 9.49 8.06 

Regional_ 

SOM 
12.7 11.0 9.77 9.61 10.5 11.3 11.9 12.1 12.0 11.3 10.4 9.45 8.00 

Regional_Reg 11.5 10.1 8.51 8.24 8.36 8.70 8.83 8.92 8.97 9.03 8.76 8.14 7.15 

(b) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Global_SOM 0.44 0.50 0.58 0.57 0.58 0.55 0.51 0.46 0.42 0.39 0.38 0.38 0.36 

Regional_SOM 0.34 0.42 0.57 0.62 0.61 0.57 0.52 0.46 0.41 0.38 0.35 0.33 0.31 

Regional_Reg 0.47 0.58 0.71 0.77 0.77 0.75 0.74 0.71 0.68 0.64 0.58 0.56 0.52 

(c) 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Global_SOM 0.42 0.49 0.57 0.55 0.56 0.54 0.48 0.42 0.38 0.36 0.35 0.36 0.34 

Regional_SOM 0.32 0.41 0.56 0.62 0.61 0.57 0.51 0.45 0.40 0.36 0.33 0.32 0.30 

Regional_Reg 0.45 0.58 0.70 0.75 0.76 0.74 0.74 0.71 0.68 0.63 0.58 0.56 0.51 

Table 24. Overall performance of the global (Global_SOM) and regional predictions using the SOM 
(Regional_SOM) and regression (Regional_Reg) summarized as the sum of absolute RE and 
average R

2
 and NSE for all the percentile flows. Bold numbers indicate the global or regional method 

that produced the best overall predictions according to the given performance metric. 

  RE R
2
 NSE 

Global_SOM 139 0.47 0.45 

Regional_SOM 140 0.45 0.44 

Regional_Reg 115 0.65 0.65 
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 The predictive performance of the SOM was compared to a typical regional 

regression from the second paper of this dissertation (Regional_Reg). This served as a 

reference for assessing the SOM’s predictive performance. The SOM did not perform as well 

as the regional regression for every percentile flow according to each performance metric of 

Table 23, and this was reflected in the overall performance of the predictions summarized for 

all the percentile flows (Table 24). An advantage of the SOM is that it adapts to the input 

data. However, this can be a detriment if the SOM is over-fit to the input data and possibly 

less transferable to data excluded from the training (i.e. ungauged basins). This may be the 

result of a limited training sample that inadequately represents the entire population of the 

data. For this research, more basins may have been needed to capture the full range of 

hydrologic conditions in the US. This may have produced a more robust SOM for a wider 

variety of ungauged basins. 

 The SOM may not have performed as well because it included all of the independent 

variables, whereas the regional regression applied a variable selection method to discard 

irrelevant variables unrelated to the percentile flows. These variables may have diminished 

the predictive performance of the SOM, and applying a variable selection method to discard 

irrelevant variables may improve SOM predictions. 

 The SOM may be a viable alternative to regional predictions based on a priori regions 

provided that the independent variables used to train the SOM are associated with the 

percentile flows. This could be accomplished by paring the SOM with a variable selection 

method for identifying a relevant subset of independent variables to predict the percentile 

flows. Input variable selection has improved the predictions of neural networks for 

streamflow forecasting by enhancing the connection between model inputs and observed 
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flows (Bowden et al., 2005), and may be similarly needed to improve SOM percentile flow 

predictions for ungauged basins. The SOM produces unsupervised predictions that are not 

adjusted to minimize the error of an objective function. Supervised predictors that minimize 

error while clustering the data may perform better than regional predictions. The potential of 

supervised predictors that cluster the data, such as random forests, has been demonstrated in 

a pair of studies from New Zealand (Booker and Snelder, 2012; Booker and Woods, 2014), 

and such methods may be a substitute for identifying a priori regions to predict percentile 

flows in the US. 

 The independent variables used in this study were not suited to predict the high and 

low percentile flows as indicated by the poorer performance of both the global and regional 

predictions (Table 23). Extreme flows are notably difficult to predict due to large variability 

between basins (Salinas et al., 2013), and independent variables were needed to better 

represent the processes that control the high and low flows. The high flows are essentially 

flood events driven by heavy storms and antecedent moisture conditions (Cheng et al., 2012). 

High flow predictions may be improved by additional variables on the magnitude of given 

precipitation percentiles (Ssegane et al., 2012b) and average soil moisture conditions related 

to the runoff generated by storms (Brown et al., 2013). Low flows can be approximated using 

baseflow adjusted for evaporative losses (Yokoo and Sivapalan, 2011). This study included 

baseflow as an independent variable, but additional information on subsurface drainage, such 

as a hydrogeologic classification (Tague and Grant, 2004) or the hydraulic characteristics of 

underlying aquifers (Smakhtin, 2001), may have improved low flow predictions. Evaporative 

losses to low flows may have been better represented using variables focused on inter-storm 

periods, such as the number or PET of dry days (Carrillo et al., 2011). The independent 
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variables of this study largely neglected the effect of vegetation on flow, but remotely sensed 

vegetation indices related to transpiration may improve percentile flow predictions (Troch et 

al., 2009). 

3. SOM data visualizations of percentile flows versus independent variables 

 The SOM was used to create data visualizations for an exploratory analysis of the 

relations between the percentile flows and independent variables. The correspondence 

between the two datasets was examined to reveal potential improvements for future 

predictive models. The SOM trained without the validation basins was used for this analysis 

because the missing percentile flow data from the validation basins appeared in subsequent 

visualizations and detracted from the information that could be extracted from the SOM. The 

first visualization illustrates the number of basins assigned to each SOM neuron according to 

the two different sets of data for the percentile flows and independent variables (Figure 17). 

A backdrop of the U-matrix calculated using all the input data is provided to show the 

clusters of the SOM (blue colors with low dissimilarity) where there should be more basins 

assigned to the neurons. The visualization confirmed that there were more basins located in 

the clusters of the SOM, but the basins also accumulated along the edges of the SOM. This is 

a common problem known as the “edge effect” (Schmidt et al., 2011), and occurs because the 

neurons at the edge of the SOM have fewer neighbors. Basins located at the edge of the SOM 

therefore had fewer neurons to which they could be reassigned, and were less likely to be 

relocated away from the edge. 
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Figure 17. U-matrix of all the input variables with pie charts showing the number of basins assigned to 
each neuron according to the percentile flows (black) and independent variables (white). The size of 
the pie charts indicates the total number of basins assigned to each neuron based on both sets of 
input variables. 

 The pie charts of Figure 17 show the relative number of basins assigned to each SOM 

neuron based on the percentile flows and independent variables. Although this does not show 

the identity of the basins assigned to the neurons, it does give an indication of the difference 

in mapping the basins on the SOM using the two different sets of input data. Pie charts that 

are split in half indicate agreement between the two datasets, whereas disagreement between 

the datasets is shown as pie charts dominated by a single color. Agreement between the 

datasets was important for the SOM predictions since the independent variables were used to 

assign the basins to the neurons, and a possible source of uncertainty was that the 

independent variables assigned the basins to different neurons than the percentile flows. The 

pie charts of Figure 17 are representative of that uncertainty, and show that some basins were 

incorrectly assigned to the neurons (all black or white pie charts). Other pie charts show a 
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mix of correspondence between the percentile flows and independent variables, and the 

similarity of these two sets of data was further examined using continuous surfaces 

illustrating patterns in the SOM. 

 The first visualization comparing continuous surfaces of the SOM shows the U-

matrix calculated using (a) the percentile flows and (b) independent variables (Figure 18). 

The U-matrix represents the clusters (low dissimilarity between neurons) and cluster borders 

(high dissimilarity between neurons), and was used to compare the cluster structure of the 

two datasets. The percentile flows have less well-defined clusters than the independent 

variables. These results indicate that it is difficult to distinguish clusters using the percentile 

flows of the FDC. A possible reason for this may be large variability in the percentile flows. 

Evidence for this is that a large number of basins (Figure 17) were assigned to areas of the 

SOM with high dissimilarity in percentile flows. Despite having dissimilar percentile flows, 

these basins were assigned to the same neurons. Clusters of the percentile flows and 

independent variables had some agreement (see the clusters toward the center and upper right 

corner of the SOM), but disagreements between the datasets mark differences that may have 

led to uncertainty in predicting the percentile flows. The sources of (dis)agreement between 

the percentile flows and independent variables were investigated by comparing the values of 

individual variables in the SOM. 
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Figure 18. U-matrix of (a) percentile flows and (b) independent variables. 

 The values of individual variables in the SOM were visualized as component planes 

(Figure 19). A representative high (Q05), average (Q50), and low (Q95) percentile flow was 

compared to all the independent variables. Overall, it is difficult to identify individual 

variables similar to the percentile flows, which is not surprising given the complexity of the 

processes and combination of variables that control percentile flows. Some parts of the 

variables were, however, related to the percentile flows as illustrated by the following 

examples: (1) the largest high flows (upper left corner of the SOM) corresponded with snow-

dominated climates (Percent_Snow) perhaps due to the spring snowmelt season or rain-on-

snow events known for generating floods (McCabe et al., 2007), (2) the smallest high flows 

(lower right corner of the SOM) were associated with arid regions (Aridity) characterized by 

low flows throughout the FDC (Pumo et al., 2014), (3) groundwater (BFI) is the main source 

of average flows (Yaeger et al., 2012), and tracked with the largest and smallest average 

flows (upper center and lower right corner of the SOM, respectively), (4) an additional area 

of large average flows (lower left corner of the SOM) was related to wetter climates (Aridity) 

able to generate more flow (Cheng et al., 2012), and (5) the largest low flows (upper center 
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of the SOM) overlapped with the largest groundwater contributions (BFI) as low flows are 

often a function of subsurface drainage (Tague and Grant, 2004). 

 

Figure 19. Component planes of representative flows (Q05, Q50, and Q95) and all the independent 
variables. 

 The component planes of Figure 19 could be used to identify more connections 

between the percentile flows and independent variables, but explaining all the patterns in the 

percentile flows would be difficult using the given set of independent variables. Limitations 

in the explanatory power of the independent variables may be responsible for the uncertainty 

of predicting the percentile flows in this study. Additional variables may be needed to more 

fully capture the complexity of the percentile flows. For instance, the measures of storm 

magnitude (Precip_1D_Max and Precip_Intensity) were not well-related to the high flow 
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(Figure 19), and the connection between high flows and storms may be strengthened by 

variables that quantify the magnitude of large storms, such as precipitation percentiles 

(Ssegane et al., 2012b). The average flow was previously associated with BFI and Aridity, 

but other parts of the average flow’s component plane are not clearly connected to the 

independent variables. This may be because the average flow is affected by the combined 

influence of small storms, groundwater discharge, and evaporative losses that cannot be 

encapsulated in a single variable. The component plane of the low flow consisted of mostly 

low values with subtle variations, and none of the variables reflected these subtle variations, 

which are likely the function of subsurface drainage properties (Tague and Grant, 2004). 

With the exception of BFI, the subsurface variables of this study (Soil_Porosity, 

Water_Capacity, and Poorly_Drained) were not strongly related to the low flow as they 

focused on soil properties and low flows may be the product of deeper groundwater flows 

(Schaller and Fan, 2009). A geologic classification could be developed to represent deep 

groundwater flows and the low flows that they produce (Tague and Grant, 2004). 

 Some other noteworthy observations were made using the component planes (Figure 

19). The percentile flows were autocorrelated as order statistics derived from the same time 

series (see the similar structure of the component planes). Similar patterns in magnitude were 

observed for the different percentile flows, but the area with the largest magnitude changed 

location from the average flow (upper center of the SOM) to the high flow (upper left corner 

of the SOM). As previously mentioned, this was related to snow-dominated climates with the 

potential for large flows produced during the spring snowmelt season or rain-on-snow events. 

The pocket of snow-dominated climates persisted in the component planes of the percentile 

flows including those not pictured in Figure 19. This highlights the unique hydrology of 
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snow-dominated climates (Bales et al., 2006), and suggests that percentile flows may need to 

be predicted using models specifically designed for this special type of environment (Kim 

and Kaluarachchi, 2014). 

 Another special type of environment that emerged in the component planes of Figure 

19 was the arid to semi-arid region located in the lower right quadrant of the SOM. This 

region contained a large number of zero flows for the low flow (dark blue color dominating 

the lower right quadrant of the SOM), and certain variables, such as MAP, Aridity, and BFI, 

only accounted for a portion of the zero flows. Specific variables may need to be developed 

to explain zero flows, such as the number of dry days or stream channel permeability to 

represent the possibility of bank recharge (Snelder et al., 2013). Finally, some independent 

variables were cross-correlated (see the component planes of Spring_Temp and PET for an 

example), and many of the widely used topographic variables, such as Density, Slope, and 

TWI, were not strongly associated with the percentile flows. The variables that stood out 

from the previous discussion of connections to the percentile flows were Aridity, 

Percent_Snow, and BFI, and these variables were related to the percentile flows for the next 

visualization. 

 The values of the three variables connected to the percentile flows (Aridity, 

Percent_Snow, and BFI) are shown as pie charts for each neuron in Figure 20, and the 

previously displayed component planes of the high (Q05), average (Q50), and low (Q95) 

percentile flows are laid underneath to further examine their connection to the three 

variables. This visualization confirms the previous discussion of the connections between the 

selected variables and percentile flows, but it repackages the information in an integrated 

format (independent variables and percentile flows shown together). The result gives a 
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clearer view of the transition between environmental conditions and their relation to the 

percentile flows. This is illustrated by the following examples: (1) the high flow increased 

from the lower right corner of the SOM as Aridity decreased possibly due to more antecedent 

moisture and effective rainfall that can be transformed into flow during a storm (Ye et al., 

2012), (2) average flows varied with BFI (see the transitions from the lower right corner and 

between the two high areas of the SOM) as groundwater is the main source of average flows 

(Yaeger et al., 2012), and (3) the low flow increased as Aridity decreased and BFI increased 

from the lower right corner of the SOM, which reflects the relation between groundwater 

flow and climate (Santhi et al., 2008) and their combined effect on low flows (Yokoo and 

Sivapalan, 2011). The three variables were of course not able to explain all the percentile 

flow patterns (see areas with changes in the variables but similar percentile flow values), and 

the relation between all the variables and percentile flows was investigated for the final 

visualization of clusters in the two datasets. 
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Figure 20. Component planes of (a) high (Q05), (b) average (Q50), and (c) low (Q95) flows with pie 
charts showing the corresponding value of Aridity (white), Percent_Snow (gray), and BFI (black). 

 The final visualization compares k-means clusters of the SOM neuron vectors for the 

percentile flows versus the independent variables. The clustering was performed to view how 

the two datasets were organized in the SOM. Independent variables are widely used to 

identify regions for streamflow predictions as in the second paper of this dissertation. This 

approach assumes that the regions identified using independent variables follow the variation 

in streamflow. To test this assumption, two cluster solutions based on the independent 

variables and percentile flows were compared. An appropriate number of clusters for the two 

datasets was identified as ten using the elbow method of plotting the SSE for larger numbers 

of clusters. The agreement between the two cluster solutions was tabulated in a confusion 
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matrix (Table 25), and these results were visualized on the SOM and mapped for the US 

according to the BMU of the basins (Figure 21). Cluster borders were mapped for the US 

using Thiessen polygons of the gauge locations for the basins. The confusion matrix shows a 

wide range of agreement between the two cluster solutions, but the agreement was mostly 

poor (< 50%). The overall agreement of the two cluster solutions was assessed using a 

common metric called the adjusted Rand index (see Hubert and Arabie, 1985 for the 

mathematical definition), which ranges from ± 1 with zero indicating agreement due to 

chance and larger values signifying better agreement. The adjusted Rand index for the two 

cluster solutions was 0.19. This value is only slightly better than chance agreement, and 

confirms the poor agreement of the confusion matrix. 

Table 25. Confusion matrix of the clusters based on the neuron vectors for the percentile flows (rows) 
and independent variables (columns) with bold numbers along the diagonal indicating agreement 
between the same cluster identified using the two different datasets. The percent agreement between 
the two cluster solutions is displayed in the last row and column. 

Cluster 1 2 3 4 5 6 7 8 9 10 Agreement (%) 

1 3 0 0 5 0 0 0 0 0 0 38 

2 7 6 5 0 3 0 0 0 0 0 29 

3 10 3 2 3 0 0 0 0 0 0 11 

4 0 0 0 3 0 0 0 0 0 0 100 

5 7 2 3 0 7 0 4 1 0 3 26 

6 0 0 0 0 0 17 0 0 2 0 89 

7 1 0 0 0 0 2 6 0 4 5 33 

8 3 0 0 0 13 0 5 16 2 7 35 

9 0 0 0 0 0 1 2 0 8 0 73 

10 3 0 0 0 2 3 5 5 4 3 12 

Agreement (%) 9 55 20 27 28 74 27 73 40 17   
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Figure 21. Clusters based on the neuron vectors for the percentile flows (black) and independent 
variables (white) shown on the (a) SOM and (b) mapped for the US using Thiessen polygons of the 
gauge locations. 
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 The poor agreement between the percentile flows and independent variables was 

reflected in the maps of the cluster borders (Figure 21). The cluster borders frequently 

intersected, and the overall structure of the clusters was quite different. The clusters of the 

independent variables were cohesive in the attribute space of the SOM and the geographic 

space of the US. The geographic contiguity of clusters based on independent variables was 

previously observed in the second paper of this dissertation. Meanwhile, the percentile flow 

clusters were complex and fragmented, occurring as linear shapes spanning the entire SOM 

and geographically disconnected clusters. Some of the percentile flow clusters were clearly 

linked to the high and low flow areas previously discussed for the component planes (see the 

high flow cluster in the upper center and low flow cluster in the lower right of the SOM). The 

snow-dominated area in the upper left of the SOM was also demarcated, but the linear 

clusters between areas of high and low flow indicate a weak cluster structure dividing a 

continuous field. 

 The weak structure of the percentile flow clusters may be partially attributed to two 

factors: (1) the elbow method identified too many clusters and (2) the previously discussed 

autocorrelation of the percentile flows. The latter factor may have influenced the clusters 

because the autocorrelated percentile flows for a given basin were possibly larger or smaller 

than the other basins, and this resulted in neuron vectors ordered primarily by magnitude. 

The effects of autocorrelation on the SOM have previously been documented in a spatial 

context where closer features are more related (Bação et al., 2008), and this paper documents 

the effect of autocorrelation between the attributes used to train the SOM. The autocorrelated 

signal of the percentile flows presumably produced clusters arranged by the overall 

magnitude of the FDC, and these clusters were not geographically organized (Figure 21b). 
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This is noteworthy since many studies use spatial proximity to predict the FDC (see Booker 

and Snelder, 2012; Pugliese et al., 2013; Smakhtin et al., 1997), but spatial proximity was not 

strongly related to the FDC at the large scale of this study. 

 Clusters based on the percentile flows and independent variables largely disagreed 

(Figure 21). This is a concern because regions identified using independent variables are 

often used to develop models for predicting percentile flows. The discordancy between the 

two cluster solutions highlights the need to select independent variables that capture the 

variation in percentile flows. This could be performed using quantitative variable selection 

methods or knowledge of the factors that control percentile flows (see the first paper of this 

dissertation for examples). 

 The poor fit between the clusters in Figure 21 may be because the autocorrelated 

percentile flows simply represented the overall magnitude of flows for the basins, and 

independent variables selected to represent overall flow, such as Aridity and BFI, may have 

produced clusters more similar to the percentile flows. Alternatively, clusters based on the 

independent variables may have agreed more with streamflow variables representing 

different aspects of the hydrograph rather than only magnitude. This is the approach taken by 

hydrologic classification studies that use variables such as statistics on the rising and falling 

limb of the hydrograph or event runoff coefficients (see Sawicz et al., 2011 for an example). 

Clusters based on these types of variables have agreed more with independent variables in 

the past (Ley et al., 2011). 

 Relations between independent variables and percentile flows are critical for 

prediction. The SOM was used to display how the variables covaried in an ordered spatial 

layout of the data. This provided more detailed information than traditional statistical 
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measures of covariance, like correlation coefficients or statistics derived from a regression 

analysis. The SOM revealed several variables (Aridity, Percent_Snow, and BFI) that 

covaried with the percentile flows. These variables represent important factors that should be 

incorporated in future modeling efforts for the contiguous US. The SOM identified unique 

regions that may require specialized predictive models, such as snow-dominated and arid 

climates. Finally, discordancy between the percentile flows and independent variables in the 

SOM highlights the need for new variables more closely linked to the processes that shape 

the FDC. 

E. Conclusions 

 The SOM was used to predict 13 percentile flows of the FDC and investigate their 

relation to independent variables consisting of measurable basin characteristics. The 

percentile flows were predicted for 184 validation basins in the US treated as ungauged. A 

typical procedure for predicting streamflow variables in a large study area splits the basins 

into regions with similar independent variables related to flow, but identifying a priori 

regions can be an uncertain and time-consuming process. The SOM was applied in this study 

since its training routine clusters the input data and may eliminate the need to identify a priori 

regions. SOM predictions were produced with and without a priori regions to test the 

hypothesis that a priori regions do not improve SOM predictions. Global predictions were 

generated using all the basins and four different approaches for training the SOM. The 

preferred training approach was then used to generate SOM predictions for a priori regions, 

and the performance of the global and regional predictions was compared. The results from a 

regional regression were also included as a reference for assessing the predictive 

performance of the SOM. Visualizations based on the SOM were produced for an 
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exploratory analysis of how the independent variables related to the percentile flows to 

potentially improve future modeling efforts. 

 The predictive performance of the SOM with and without a priori regions was 

similar. This confirmed the hypothesis that the SOM did not need a priori regions to predict 

percentile flows. Despite its success without a priori regions, the SOM did not perform as 

well as the regional regression. However, the regional regression likely benefited from using 

a variable selection method to discard irrelevant variables unrelated to the percentile flows. 

Performance of the SOM may be improved by applying a similar variable selection method 

to train the SOM without irrelevant variables. Uncertainty of the SOM predictions may also 

be related to the parameters used to train the SOM, such as the number of neurons. The SOM 

may also require more data to avoid over-fitting the predictions to a limited sample. Future 

studies should experiment with the training parameters to assess their effect on SOM 

predictions and expand the sample of training data to diminish the potential for over-fitting. 

 In light of the results from this study, machine learning methods that cluster data to 

generate predictions may be an alternative to regional percentile flow predictions if they are 

trained using a relevant set of independent variables. The SOM is an unsupervised learning 

method that does not use an objective function to minimize the error of its output. Percentile 

flow predictions may be improved using a supervised learning method, such as random 

forests, that applies an objective function to cluster the input data and minimize the error of 

the predictive model. 

 Information for future modeling efforts was extracted from SOM data visualizations 

of the relation between the percentile flows and independent variables. Individual percentile 

flows were related to several key variables. High flows were associated with the overall 
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wetness of the basin (Aridity) and the amount of snowfall (Percent_Snow) as it relates to the 

large flows of the spring snowmelt season or rain-on-snow events. Average and low flows 

were primarily related to groundwater contributions (BFI), which is interrelated with the 

wetness of the region (Aridity). The key variables (Aridity, Percent_Snow, and BFI) are 

essential factors for modeling percentile flows at the scale of the contiguous US. Some 

variables were not associated with the percentile flows, and the most noteworthy were 

topographic variables widely used for streamflow prediction. The independent variables were 

least connected to low flows fed by groundwater and subject to zero flows. Low flows may 

be better predicted using variables that represent subsurface drainage through a geologic 

classification and the likelihood of zero flows via the duration of dry periods. 

 Overall agreement between the percentile flows and independent variables was weak 

according to clusters derived from the two datasets. This is an important point since 

independent variables similar to those used in this study are widely used to identify regions 

for streamflow predictions. This approach operates on the assumption that regions derived 

from independent variables reflect variations in streamflow. The clusters in this study did not 

confirm this assumption, and independent variables should be more strategically selected to 

identify regions associated with percentile flows. This could include applying quantitative or 

knowledge-based variable selection methods prior to performing the cluster analysis for 

identifying regions. New variables may also need to be developed to strengthen the 

agreement between independent variables and percentile flows, and this could be investigated 

using the SOM.
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Chapter 5: Conclusions 

 The goal of this dissertation was to investigate various sources of uncertainty for 

predicting percentile flows concerning (1) independent variable selection, (2) the amount of 

information for the initial set of independent variables, and (3) the identification of a priori 

regions to develop predictions. This goal was accomplished by evaluating various methods 

and sets of variables to predict 13 percentile flows for 918 basins in the US. The large sample 

of basins was used to improve the generality of the results for future studies and produce 

models that could be used to predict percentile flows for ungauged basins throughout the 

contiguous US. These models could be published to provide local watershed managers with a 

tool to predict percentile flows for ungauged basins with an estimate of the error. 

 The first study presented in Chapter 2 investigated how the independent variables 

should be selected for percentile flow regression models. An automated regression procedure 

for selecting the variables was evaluated against alternative methods from the field of 

variable (feature) selection. Common methods for selecting the independent variables of 

regression models in hydrology, including the automated regression procedure and principal 

component analysis, performed worse than the other variable selection methods. The other 

methods all performed similarly, but random forests produced the best overall results. 

Another notable result was that the variables selected based on hydrologic knowledge of the 

FDC performed nearly as well as the advanced machine learning methods, such as random 

forests. The other variables added little predictive information to the regression models, and 

widely used topographic variables were not useful for predicting the percentile flows. The 

most important variables for predicting the percentile flows at the scale of the US were 

groundwater flows expressed as the baseflow index (BFI) and percent forest cover in the 
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basin. These variables were likely important as they integrate the effects of climate, 

vegetation, and geology on the FDC. Overall, the regression models mostly explained less 

than half of the variance in the percentile flows (R
2
 < 0.5). This was likely due to the large 

variability of percentile flows in the US, and a regional regression approach was adopted for 

the next study of the dissertation. 

 The amount of information for the independent variables of a regional regression was 

evaluated in Chapter 3. A regional regression was performed to predict percentile flows using 

different sets of variables ranging in complexity from three hydrologically-based variables to 

37distributed variables describing average conditions and the statistical distribution of basin 

data. Only three hydrologically-based variables were necessary to perform the regional 

regression as they performed similarly to a typical set of 22 lumped variables describing 

average conditions and outperformed the more detailed set of 37 distributed variables. The 

result speaks to the importance of using variables with a strong hydrologic justification and 

downplays the use of data-driven approaches that include many variables with potentially 

weak connections to the percentile flows. The strong predictive performance of the three 

hydrologically-based variables once again highlights the limited predictive information 

provided by the additional variables. All sets of variables for the regional regression 

performed better than the global regression models from Chapter 2. The regions identified for 

the regression were related to the percentile flows, and regional differences in storage (BFI 

and snowfall) and climate (aridity) were associated with the FDC. 

 The final study of the dissertation in Chapter 4 used the SOM for prediction and an 

exploratory analysis of the percentile flows. The SOM was used to cluster the data and 

predict percentile flows in one step, which avoided the decisions of identifying a priori 
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regions, such as the number of regions. The approach was applied using all the basins to 

generate global predictions, and the SOM was also applied in the regions from Chapter 3. 

Performance of the global and regional predictions were compared to determine if the SOM 

could be used without the identification of a priori regions. The global and regional 

predictions generated using the SOM performed similarly, indicating that the SOM did not 

need regions to predict the percentile flows. The SOM achieved similar performance to the 

best global regression models from Chapter 2, but did not perform as well as the regional 

regression from Chapter 3. This is likely because the regional regression only used a subset 

of relevant independent variables, whereas the SOM used all the independent variables, 

potentially including irrelevant information that diminished the predictive performance of the 

SOM. The performance of the SOM may be improved by applying a variable selection 

method to exclude irrelevant variables. Output from the SOM was converted into data 

visualizations for an exploratory analysis of the variables related to the percentile flows. 

Overall agreement between the percentile flows and independent variables was weak, which 

confirmed that the SOM included irrelevant variables that may have reduced its predictive 

performance. Notable variables unrelated to the percentile flows were widely used 

topographic variables. The percentile flows were, however, related to several key variables 

including aridity, snowfall, and BFI. The importance of these three variables was previously 

highlighted by the regions from Chapter 3. 

 Overlying themes from the three studies of this dissertation are summarized as 

follows: 

 Independent variable selection is a critical, but often overlooked, step in predicting 

percentile flows. 
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 A parsimonious set of hydrologically-based variables can be used to predict 

percentile flows as many widely used independent variables, such as topographic 

variables, offer little additional predictive information. 

 Regions based on physical and climatic characteristics were related to the percentile 

flows and improved their prediction. 

 The SOM may be an alternative to identifying a priori regions provided it is applied 

using a relevant set of independent variables. 

 Several key independent variables for predicting percentile flows emerged from the 

studies, namely aridity, snowfall, and BFI. Snowfall was important at the scale of the 

US, but obviously may not be relevant for study areas without snow. 

 BFI was an indispensable variable for predicting the percentile flows. However, it 

should be noted that BFI is derived from streamflow data. BFI was considered an 

independent variable in this study because a gridded product exists for the US 

(Wolock, 2003). This type of product should be developed for other study areas to 

predict percentile flows. 

 Predictive performance decreased for the high and low percentile flows, and future 

research should address the uncertainty of predicting extreme flows with more 

variability between basins. 

A. Future research 

 The independent variables used in this dissertation were representative of the 

variables typically used to predict percentile flows, and many of these variables offered little 

predictive information. Future research should develop new variables to predict percentile 

flows. These variables should focus on representing the processes that control the FDC. For 
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the high percentile flows, this would include variables that represent storm flows. Average to 

low percentile flows may be better explained using variables associated with subsurface 

drainage (e.g. water table depth and hydrologically-based geologic units) and evaporative 

losses (e.g. dry period duration and vegetation transpiration). 

 Baseflow was the most important independent variable for predicting percentile 

flows, but it must be derived using streamflow data. In countries with sufficient streamflow 

gauging networks, a gridded baseflow product like the one in the US should be produced to 

predict percentile flows along with other streamflow variables. For sparsely gauged regions, 

surrogate variables should be proposed to represent baseflow, such as a soil or geologic 

classification. 

 The exploratory components of this dissertation revealed that snow-dominated and 

arid regions have unique hydrologic properties. Separate predictive models may need to be 

developed for these unique regions. Such models would account for the effect of snow on the 

FDC, and attempt to predict zero flows in arid regions. None of the models in this 

dissertation predicted zero flows, and future research should develop models for intermittent 

streams given their widespread distribution throughout the US in both arid and non-arid 

regions. 

 The SOM showed that it could be used to predict percentile flows without regions. 

However, it was outperformed by a regional regression that discarded irrelevant independent 

variables. Future research should pair the SOM with a variable selection method to predict 

percentile flows. This would exclude irrelevant information, and may enhance the predictive 

performance of the SOM. 
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 This dissertation investigated one alternative, the SOM, for identifying regions to 

predict percentile flows. Other alternatives exist to identify regions or avoid such a priori 

designations. A particularly intriguing approach for identifying regions is fuzzy clustering 

that represents the continuous gradient of similarity between the basins. Unlike discrete 

clustering, fuzzy clustering does not place potentially arbitrary divisions in the data, and the 

basins would be given partial membership to each region. This could improve predictions for 

basins with characteristics representative of multiple regions. A fuzzy clustering approach 

would be akin to ensemble modeling, with models averaged over regions. Finally, the SOM 

is not the only machine learning method that clusters data as it generates predictions. Other 

methods, such as random forests, should be evaluated for their potential to predict percentile 

flows and avoid identifying a prior regions.
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