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Abstract

Semiclassical methods for high frequency wave propagation in periodic media.

by

Ricardo A. Delgadillo

We will study high-frequency wave propagation in periodic media. A typical example

is given by the Schrödinger equation in the semiclassical regime with a highly oscillatory

periodic potential and external smooth potential. This problem presents a numerical

challenge when in the semiclassical regime. For example, conventional methods such as

finite differences and spectral methods leads to high numerical cost, especially in higher

dimensions. For this reason, asymptotic methods like the frozen Gaussian approxima-

tion (FGA) was developed to provide an efficient computational tool. Prior to the de-

velopment of the FGA, the geometric optics and Gaussian beam methods provided an

alternative asymptotic approach to solving the Schrödinger equation efficiently. Unlike

the geometric optics and Gaussian beam methods, the FGA does not lose accuracy due

to caustics or beam spreading.

In this thesis, we will briefly review the geometric optics, Gaussian beam, and FGA

methods. The mathematical techniques used by these methods will aid us in formu-

lating the Bloch-decomposition based FGA. The Bloch-decomposition FGA generalizes

the FGA to wave propagation in periodic media. We will establish the convergence of

the Bloch-decomposition based FGA to the true solution for Schrödinger equation and

develop a gauge-invariant algorithm for the Bloch-decomposition based FGA. This algo-

rithm will avoid the numerical difficulty of computing the gauge-dependent Berry phase.

We will show the numerical performance of our algorithm by several one-dimensional

examples.
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Lastly, we will propose a time-splitting FGA-based artificial boundary conditions

for solving the one-dimensional nonlinear Schrödinger equation (NLS) on an unbounded

domain. The NLS will be split into two parts, the linear and nonlinear parts. For the

linear part we will use the following absorbing boundary strategy: eliminate Gaussian

functions whose centers are too distant to a fixed domain.
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Chapter 1

Introduction

In this chapter we will introduce the semiclassical Schrödinger equation and some of its

early asymptotic solutions. We also include a direct numerical method for solving the

semiclassical Schrödinger equation, the Strang-splitting spectral method. The Strang-

splitting spectral method will be used throughout our thesis to obtain the exact numerical

solution to the semiclassical Schrödinger equation.

1.1 The semiclassical Schrödinger equation and its

approximate solutions

We begin by introducing the Schrödinger equation in physical units,

i~
Bψ
Bt � � ~2

2m
∆ψ � U0pxqψ, (1.1)

where m is the atomic mass and ~ is the reduced Plank constant. U0pxq represents

an external potential, for example, a quadratic function such as

U0pxq � mω2
0

2
|x|2, ω0 P R,x P R3. (1.2)

1



Introduction Chapter 1

Such potential is used to confine electrons about the origin.

We will nondimensionalize this equation by performing the substitutions,

rt � ωxt, rx � x

xs
, rψprx,rtq � x3{2

s ψpx, tq. (1.3)

Inserting this into equation (1.1), multiplying by 1{pmω2
0x

1{2
s q, and dropping tildes

we obtain,

iε
Bψ
Bt � �ε

2

2
∆ψ � Upxqψ. (1.4)

The parameter ε is defined by,

ε :� ~
ω0mx2

s

(1.5)

and the potential Upxq is given by,

Upxq :� |x|2
2
. (1.6)

In many physical applications, such as modeling the dynamics of electrons in crystals,

equation (1.4) contains a periodic lattice potential. For example, the potential

V pxq �
3̧

i�1

~2ξ2
l

2m
sin2pξlxlq (1.7)

with ξ � pξ1, ξ2, ξ3q and ξl P R is commonly used when studying Bose-Einstein condensate

[1]. To incorporate this potential, we modify equation (1.1) by,

i~
Bψ
Bt � � ~2

2m
∆ψ � V pxqψ � U0pxqψ. (1.8)

Using the same substitutions as in equation (1.3), multiplying by 1{pmω2
0x

2
sq, and

omitting the tildes we obtain,

iε
Bψ
Bt � �ε

2

2
∆ψ � VΓpx

ε
qψ � Upxqψ, (1.9)

2



Introduction Chapter 1

where the potential VΓpxq is given by,

VΓpxq :� V pxsεxq
mω2

0x
2
s

. (1.10)

The parameter ε is called the semiclassical parameter. Our goal is to study values of

ε that lie within 0   ε ! 1. The spatial dimension will be denoted by d, it is a positive

integer, and we will take as initial condition for equations (1.4) or (1.9), ψε0pxq in L2pRdq.
ψεpt,xq will denote a complex-valued solution to equations (1.4) or (1.9). In our study,

the potentials will not be restricted to the forms given by equations (1.10) and (1.6), but

will also include a class of general smooth potentials. In particular, we will let VΓpxq be

a function in CpRdq, periodic with respect to the lattice Γ :� r0, 1qd. Upxq will also be

assumed to be a smooth function in CpRdq.
Direct numerical approximation to equation (1.4) such as finite differences or spectral

methods are computationally more expensive compared to asymptotic methods. For

example, the Crank-Nicolson scheme or the Dufort-Frankel requires a mesh size of opεq
[2, 3] while the time-splitting spectral method requires a mesh size of Opεq [4]. In the

presence of a highly oscillatory potential, as in equation (1.9), we must further restrict the

mesh size of the time-splitting spectral method to opεq in order to capture its dynamics.

Because of this, there has been many attempts to find solutions to equation (1.4) and

(1.9) asymptotically. One of the earliest attempt to solve equation (1.4) asymptotically is

the WKB method. Although this method is highly efficient, it suffers from the formation

of caustics [5, 6, 7] for which the solution becomes undefined.

The Gaussian beam method (GBM) [8] was then introduced by Popov to overcome

the problem at caustics and decrease the computational cost of conventional methods.

One draw back of the GBM is that it looses accuracy from the spreading of the beams.

It was only until recently, that the frozen Gaussian approximation (FGA) [9, 10] was

developed to deal with the loss of accuracy of the GBM by using Gaussian functions of

3



Introduction Chapter 1

fixed width in phase space.

In this thesis we generalize the frozen Gaussian approximation for computation of the

Schrödinger equation (1.9) with periodic potentials.

1.2 Strang-splitting spectral method

This section is devoted to solving the Schrödinger equation exactly by using the time-

splitting spectral approximation. This non-asymptotic method for solving equation (1.4)

(or (1.9)) will be used later to numerically compute the exact solution to equation (1.4)

and (1.9). For more details, we refer the reader to [4].

First-order time-splitting spectral method

Suppose we are interested in the solution to equation (1.4) at time tfinal. Suppose

also that we have a discretization of time, 0 � t0   t1   t2   � � �   tN � tfinal, so that

δt � tfinal{N . We split equation (1.4) in two parts,

iεBtψε � �ε
2

2
∆ψε, (1.11)

and

iεBtψε � Upxqψε. (1.12)

Equation (1.11) will be solved exactly for one time step, starting at t0, using the

Fourier transform. The solution to equation (1.12) is given by,

ψεptn�1,xq � exp

�
� i

ε
Upxqδt



ψ�ptn�1,xq, (1.13)

where ψ�ptn�1,xq is the solution to equation (1.11) at time tn�1 with initial condition

ψεptn,xq.

4
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Strang-splitting spectral method

We can improve the order of accuracy in time by using the Strang-splitting spectral

method. This method splits the equation (1.4) into 3 parts,

iεBtψε � Upxqψε, (1.14)

iεBtψε � �ε
2

2
∆ψε, (1.15)

iεBtψε � Upxqψε, (1.16)

where equation (1.14) and (1.16) are solved on half a time step and equation (1.15) on

one time step. More explicitly, the solution at time tn is given by,

ψεptn�1,xq � exp

�
� i

2ε
Upxqδt



ψ�ptn�1,xq, (1.17)

where ψ�ptn�1,xq solves equation (1.15) with initial condition exp

�
� i

2ε
Upxqδt



ψεptn,xq.

Equation (1.9) can also be solved exactly using the Strang-splitting spectral method

by replacing the potential Upxq with VΓpx{εq � Upxq. Typically, the Strang-splitting

spectral method requires a spatial meshing of size Opεq and a time step of size opεq; this

is proved in [4].

1.3 WKB approximation

We now discuss several asymptotic solutions of equation (1.4). The first asymptotic

solution we will introduce is known as the WKB method.

This ansatz is one of the earliest attempts for obtaining an asymptotic solution to

the Schrödinger equation and is also known as the geometric optics ansatz.

5
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The ansatz is given by,

ψpx, tq � pa0pt, xq � εa1pt, xq � ε2a2pt, xq � � � � qe i
ε
Spt,xq. (1.18)

The motivation for using this ansatz is to understand the highly oscillatory structure

of the solution to equation (1.4). Spt,xq is real valued and is called the phase. aε :�
a0pt, xq� εa1pt, xq� ε2a2pt, xq� � � � is possibly complexed valued and is called the ampli-

tude. Substituting this equation into (1.4) and grouping terms of Op1q and Opεq gives

us,

BtS � 1

2
|∇S|2 � Upxq � 0, (1.19)

and

Bta0 �∇S �∇a0 � a0

2
∆S � 0, (1.20)

with initial conditions Sp0, xq � Sinpxq and a0p0, xq � ainpxq. Equation (1.19) can be

solved analytically using the method of characteristics. The characteristic Xt : s Ñ
xpt, sq satisfies the following Hamiltonian flow:

$''&''%
dx

dt
� ppt, sq, xp0, sq � s,

dp

dt
� �∇xUpxpt, sqq, pp0, sq � ∇sSinpsq.

(1.21)

The solution Spt, xq is given by,

Spt,xq � Sp0,xq �
» t

0

1

2
|∇Spτ, spt,xqq|2 � Upspτ,xqqdτ. (1.22)

This is only defined up to some (possibly) finite time T ¡ 0 due to the crossing of

characteristic curves. Furthermore, a0 satisfies

a0pt,xq � ainpxqa
Jtpspt,xqq

, (1.23)

where Jt denotes the Jacobian determinant of the Hamiltonian flow. The equation

of a0pt,xq is also defined up to some (possibly) finite time T ¡ 0. When characteristic

6
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curves cross, the Jacobian determinant Jt is no longer defined. This is problematic as we

are seeking solutions in L2pRdq. We also note that the equations for a0pt,xq and Spt,xq
are independent of ε. This independence of ε makes the WKB method computationally

efficient compared to conventional numerical methods.

1.4 Gaussian Beam method

The Gaussian beam method will improve upon the WKB method by removing the

problem of caustics. We will present material found in [11] throughout this section. The

Gaussian beam ansatz has the form

φpt,x,y0q � Apt,yqeiT pt,x,yq{ε, (1.24)

where

T pt,x,yq � Spt,xq � ppt,yq � px� yq � 1

2
px� yqTMpt,yqpx� yq, (1.25)

where S P R, p P Rd, and M P Cd�d, and y � ypt,y0q is the center of the beam.

The Gaussian profile is maintained by keeping the imaginary part of M � ∇2S positive

definite (see theorem 1.4.1). This differs from the WKB ansatz in that the GBM uses a

complex phase, and we now use a Taylor expansion of the phase function to second order

about y. If one substitutes this ansatz into equation (1.4) we obtain the set of ordinary

differential equations,

dy

dt
� p, (1.26)

dp

dt
� �∇yU, (1.27)

dS

dt
� 1

2
|p|2 � U, (1.28)

dM

dt
� �M2 �∇2

yU, (1.29)

dA

dt
� 1

2
ptrpMqqA, , (1.30)

7
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where p, U , S, M , and A are functions of pt,ypt,y0qq. Equations (1.26) and (1.27)

describe the associated Hamiltonian flow pypt,yq,ppt,yqq to (1.4). Part 3 of the next

theorem justifies the claim that φpt,x,y0q retains a Gaussian profile for all time.

Theorem 1.4.1. Let P pt,ypt,y0qq and Rpt,ypt,y0qq be the (global) solutions of the equa-

tions

dP

dt
� R,

dR

dt
� �p∇2

yUqP, (1.31)

with initial conditions

P p0,y0q � I, Rp0,y0q �Mp0,y0q, (1.32)

where the matrix I is the identity matrix and ImpMp0,y0qq is positive definite. Assume

Mp0,y0q is symmetric. Then, for each initial position y0, we have the following.

1. P pt,ypt,y0qq is invertible for all t ¡ 0.

2. The solution to equation (1.28) is given by

Mpt,ypt,y0qq � Rpt,ypt,y0qqP�1pt,ypt,y0qq. (1.33)

3. Mpt,ypt,y0qq is symmetric and ImpMpt,ypt,y0qqq is positive definite for all t ¡ 0.

4. Not only is the Hamiltonian U � 1

2
|p|2 conserved along the y-trajectory, another

quantity A2 detP is also conserved, which means Apt,ypt,y0qq can also be computed by

Apt,ypt,y0qq � rpdetP pt,ypt,y0qqq�2A2p0,y0qs1{2, (1.34)

where the square root is taken as the principal value.

For details on the proof of Theorem 1.4.1 see [11] and [12].

Beam summation.

By construction, φpt,x,y0q is a solution to equation (1.4) for each y0 P R and thus so

is the sum of finitely many such expressions. The next theorem, found in [11], summarizes

8
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this observation at time t � 0. A formulation for higher order Gaussian beams can also

be found in [13].

Theorem 1.4.2. Let A0 P C1pRdq X l2pRdq and S0 P C3pRdq, define

ψε0pxq � A0pxqeiS0pxq{ε, (1.35)

φε0px,y0q � A0py0qeiT0px,y0q{ε, (1.36)

where

T0px,y0q � Tα0py0q � Tβ0 � px� y0q �
1

2
px� y0qTTγ0px� y0q, (1.37)

Tα0py0q � S0py0q, Tβ0py0q � ∇xS0py0q, Tγ0py0q � ∇2
xS0py0q � iI. (1.38)

Then �����
�����
»
Rn

�
1

2πε


 d
2

rθpx� y0qφε0px,y0qdy0 � ψε0pxq
�����
�����
l2

¤ Cε
1
2 . (1.39)

where rθ P C80 pRdq, rθ ¥ 0 is a truncation function with rθ :� 1 in a ball of radius θ ¡ 0

about the origin and C is a constant related to θ.

At a later time t ¡ 0, the Gaussian beam summation approximates the solution to

the Schrödinger equation (1.4) by,

φεlapt,xq �
»
Rd

�
1

2πε


 d
2

rθpx� ypt,y0qqφεpt,x,y0qdy0. (1.40)

In discretized form φεlapt,xq is approximated by,

φεlapt,xq �
8̧

j�1

�
1

2πε


d{2

rθpx� ypt,yj0qqφεlapt,x,yj0q∆y0. (1.41)

Remark. The approximation of φεlapt,xq given by (1.41) made use of the Taylor expansion

about yj0, hence it looses accuracy when the width of the Gaussian function φεla becomes

too large. We call this phenomena beam spreading.

9
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Remark. In view of theorem 1.4.1 part 4, we see that we no longer have the problem of

caustics.

1.5 Frozen Gaussian approximation

Because of the problem of beam spreading suffered by φεlapt,xq, the frozen Gaussian

approximation (FGA) was developed [14]. The FGA method removes the inaccuracy

introduced in the Taylor expansion of φεlapt,xq by using a superposition of Gaussian

functions of fixed widths in phase space. One may also draw motivation for decomposing

the solution in terms of Gaussian functions of fixed by the work of M. Herman and E.

Kluk, [34]. In quantum chemistry, the FGA method is also known as the Herman-Kluk

propagator. We begin the construction of the FGA by decomposing the initial data into

several Gaussian functions in phase space.

Theorem 1.5.1. For any ψε0pxq P L2pRdq,

ψε0pxq �
2d{2

p2πεq3d{2
»
R2d

Gε
q,ppxq

�»
Rd

sGε
q,pψ

ε
0pyqdy



dqdp, (1.42)

where

Gε
q,ppxq � exp

�
� 1

2ε
|x� q|2 � i

ε
p � px� qq



. (1.43)

Proof: Fix a f P L2pRq, by definition, we have

2d{2

p2πεq3d{2
»
R2d

Gε
q,ppxq

»
Rd

sGε
q,ppyqfpyqdydqdp (1.44)

� 2d{2

p2πεq3d{2
»
R3d

Gε
q,ppxq sGε

q,ppyqfpyqdydqdp. (1.45)

10
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Integrating in q first,»
Rd
Gq,ppxq sGq,ppyqdq � eip�px�yq{ε

»
Rd
e�|x�q|

2{p2εq�|y�q|2{p2εqdq (1.46)

� eip�px�yq{εe�|x�y|
2{p4εq

»
Rd
e�

1
ε |q�x�y

2 |2dq (1.47)

� pπεqd{2eip�px�yq{εe�|x�y|
2{p4εq (1.48)

Denoting rf εpx,yq � e�|x�y|
2{p4εqfpyq, the right hand side of 1.42 becomes

1

p2πεq
¼
R2d

eip�px�yq{εe�|x�y|
2{p4εqfpyqdydp � 1

p2πεqd
¼
R2d

eip�px�yq{ε rf εpx,yqdydp (1.49)

� 1

p2πqd
¼
R2d

eip�px�yq rf εpx,yqdydp (1.50)

� rf εpx,xq pby Fourier inversion formulaq
(1.51)

� e�|x�x|
2{p4εqfpxq � fpxq (1.52)

Now that we legitimized the decomposition of any L2pRdq data in terms of Gaussian

functions in phase space, we propagate the center of the Gaussian functions using the

Hamiltonian flow of equation (1.26) and (1.27). This leads to the FGA ansatz for solving

(1.4) asymptotically,

ψεFGApt,xq �
2d{2

p2πεq3d{2
»
R2d

apt, q,pqGε
Q,P pxqeiSpt,q,pq{ε

�»
Rd

sGε
q,pψ

ε
0pyqdy



dqdp,

(1.53)

where Qpt, q,pq and P pt, q,pq satisfy the evolution equation

dQ

dt
� P (1.54)

dP

dt
� �∇QUpQq. (1.55)

As in the WKB and Gaussian beam methods, we include aeiS{ε to capture amplitude and

highly oscillatory nature of the solutions to equation (1.4). Because we are working in

11



phase space, both a and S now depend on pt, q,pq. It remains to be specified the phase

Spt, q,pq and the amplitude apt, q,pq. The evolution for these terms can be determined

by substituting the ansatz into the Schrödinger equation (1.4). Upon grouping orders of

ε and simplifying we obtain,

dS

dt
� |P |2

2
� UpQq, (1.56)

da

dt
� 1

2
atr

�
Z�1pBzP � iBzQB2

QUq
�
, (1.57)

where Z :� BzpQ� iP q and Bz :� Bq � iBp.
The frozen Gaussian approximation can be applied to solve the problem with peri-

odic potentials, equation (1.9), by replacing Upxq with VΓpxq � Upxq. However, many

others have taken advantage of the fact that equation (1.9) with Upxq � 0 can be solved

exactly by diagonalizing the Hamiltonian operator using the corresponding eigenfunc-

tions, known as Bloch waves. We will discuss Bloch waves in the next chapter. For the

Bloch decomposition-based time-splitting method see [15]. For Bloch-based WKB and

Gaussian beam methods see [16, 17].

a collaboration with Alice and Bob, and has previously appeared in

12



Chapter 2

Preliminaries

2.1 Notations

Let us start with fixing some notations. We will switch between physical domain and

phase space in the FGA formulation. For clarity, we will use x,y P Rd as spatial variables,

pq,pq P R2d as phase space variables. The capital letters X and Y are shorthand

notations for X � x{ε and Y � y{ε. At times we will use subscripts and superscripts

to denote dependence of a quantity on a variable such as, En :� Epnq. S will denote the

space of Schwartz functions.

2.2 Bloch-decomposition

Denote a unit cell in Rd by Γ � r0, 1qd and its reciprocal lattice by Γ� � r�π, πqd.
The periodic part of the Schrödinger operator (in atomic units) is given by

HPer :� �1

2
∆ � V pxq (2.1)

13



By the theory of compact operators, the spectrum is given by

specpHPerq �
8¤
n�1

¤
ξPΓ�

Enpξq (2.2)

where Enpξq, for ξ P Γ�, are the eigenvalues (in ascending order) of the operator

Hξ � 1

2
p�i∇x � ξq2 � V pxq (2.3)

with periodic boundary conditions on Γ. The set tEnpξq : ξ P Γ�u � R is called the nth

energy band. En is also called the nth adiabatic surface.

The Bloch waves, also known as adiabatic states, unpξq (for each n P 1, 2, � � � and

ξ P Γ�) are the associated eigenfunctions:

Hξunpξ,xq � Enpξqunpξ,xq (2.4)

with periodic boundary conditions on Γ. We also normalize un with respect to x so that

»
Γ

|unpξ,xq|2dx � 1. (2.5)

The eigenfunctions for (2.3) and normalization are defined up to a unit complex

number, in particular, for any function φ periodic in Γ�, runpξ,xq � eiφpξqunpξ,xq also

provides a set of Bloch waves. It is known that the gauge φ can be chosen so that runpξ,xq
is continuous with respect to ξ. We also define the berry phase:

Anpξq :� i

»
Γ

unpξ,xq∇ξunpξ,xqdx (2.6)

for each ξ P Γ� and n P 1, 2, � � � . This makes sense as long as we choose a gauge for which

un is smooth.

Bloch waves allows us to decompose the Hilbert space L2pRdq into a direct sum of

Band spaces. For any f P L2pRdq, we have the Bloch decomposition

fpxq � 1

p2πqd{2
8̧

n�1

»
Γ�
unpξ,xqeiξ�xpBfqnpξq dξ. (2.7)

14



In the above equation, the Bloch transform B : L2pRdq Ñ L2pΓ�qN is given by

pBfqnpξq � 1

p2πqd{2
»
Rd

sunpξ,yqe�iξ�yfpyq dy. (2.8)

As an analog of the Parseval’s identity, we have»
Rd
|fpxq|2 dx �

8̧

n�1

»
Γ�
|pBfqnpξq|2 dξ. (2.9)

As suggested by (2.7) and (2.8), we introduce the notation Ω to denote the phase space

corresponding to one band

Ω :� Rd � Γ� �  px, ξq | x P Rd, ξ P Γ�u. (2.10)

Correspondingly, we will use the notation pq,pq for a point in Ω. For more analysis

concerning Bloch waves see [18]

2.3 Windowed Bloch transform

We shall now introduce the windowed Bloch transform. This is an analog of the

windowed Fourier transform (also known as the short time Fourier transform) widely

used in time-frequency signal analysis.

Definition 2.3.1. The windowed Bloch transform W : L2pRdq Ñ L2pΩqN is defined as

pWfqnpq,pq � 2d{4

p2πq3d{4 xunpp, �qGq,p, fy �
2d{4

p2πq3d{4
»
Rd

sunpp,xq sGq,ppxqfpxq dx, (2.11)

where Gq,p is a Gaussian centered at pq,pq P Ω, given by

Gq,ppxq � exp
�
�1

2
|x� q|2 � ip � px� qq

	
. (2.12)

The adjoint operator W� : L2pΩqN Ñ L2pRdq is then

pW�gqpxq � 2d{4

p2πq3d{4
8̧

n�1

¼
Ω

unpp,xqGq,ppxqgnpq,pq dq dp. (2.13)
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Proposition 2.3.2. The windowed Bloch transform and its adjoint satisfies

W�W � IdL2pRdq. (2.14)

Remark. Similar to the windowed Fourier transform, the representation given by the

windowed Bloch transform is redundant, so that WW� �� IdL2pΩqN . The normalization

constant in the definition of W is also due to this redundancy.

Proof: Fix a f P L2pRdq, by definition, we have

pW�Wfqpxq � 2d{2

p2πq3d{2
8̧

n�1

¼
Ω

un
�
p,x

�
Gq,ppxqxGq,punpp, �q, fy dq dp

� 2d{2

p2πq3d{2
8̧

n�1

¼
Ω

»
Rd
un
�
p,x

�
Gq,ppxq sGq,ppyqsunpp,yqfpyq dy dq dp.

Let us integrate in q first.»
Rd
Gq,ppxq sGq,ppyq dq � eip�px�yq

»
Rd
e�|x�q|2{2�|y�q|2{2 dq

� eip�px�yqe�|x�y|2{4
»
Rd

exp

�
�
∣∣∣q � x� y

2

∣∣∣2
 dq

� πd{2eip�px�yqe�|x�y|2{4.

Hence, denoting rfxpyq � e�|x�y|2{4fpyq, we have

pW�Wfqpxq � 1

p2πqd
8̧

n�1

»
Γ�

»
Rd
un
�
p,x

�
eip�px�yqe�|x�y|2{4sunpp,yqfpyq dy dp

� 1

p2πqd
8̧

n�1

»
Γ�

»
Rd
un
�
p,x

�
eip�px�yqsunpp,yq rfxpyq dy dp

(2.7)� rfxpxq � e�|x�x|2{4fpxq � fpxq.

The previous proposition motivates us to consider the contribution of each band to the

reconstruction formulae (2.14). We define the projection operator ΠW
n : L2pRdq Ñ L2pRdq

for each n P N onto the nth band space as:
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Definition 2.3.3. The projection of f P L2pRdq onto the nth band space is given by,

pΠW
n fqpxq �

2d{4

p2πq3d{4
¼
Ω

unpp,xqGq,ppxqpWfqnpq,pq dq dp. (2.15)

It follows from (2.14) that
°
n ΠW

n � IdL2pRdq.

2.4 The Fourier integral operator

Given a classical Hamiltonian hpq,pq defined for pq,pq P Ω, the associated Hamilto-

nian flow governs the dynamics of pQpt, q,pq,P pt, q,pqq by:$''&''%
dQ

dt
� ∇PhpQ,P q,

dP

dt
� �∇QhpQ,P q,

(2.16)

on Ω with the initial conditions Qp0, q,pq � q and P p0, q,pq � p. We associate to this

flow a real-valued action function Spt, q,pq. Spt, q,pq satisfies

∇qSpt, q,pq � �p � 1�∇qQ � P , ∇pSpt, q,pq � ∇pQ � P . (2.17)

The action Spt, q,pq can be obtained by solving the evolution equation

dS

dt
� P �∇PhpQ,P q � hpQ,P q, (2.18)

with initial condition Sp0, q,pq � 0.

Our asymptotic solution to equation (1.4) will be formulated by the following Fourier

integral operator:

Definition 2.4.1. (Fourier Integral Operator) For u P SpR2d � Ω,Cq and ϕ P SpRd,Cq
we define the Fourier Integral Operator with symbol u by the oscillatory integral

rIεpuqϕspxq � 1

p2πεq3d{2
¼
Ω

»
Rd
e

i
ε
Φpt,x,y,q,pqupx,y, q,pqϕpyq dy dq dp (2.19)

where the complex valued phase function Φpt,x,y, q,pq is given by

Φpt,x,y, q,pq � Spt, q,pq � p � py � qq �P � px�Qq � i

2
|y � q|2 � i

2
|x�Q|2. (2.20)
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2.5 Semiclassical scaling

It will be convenient to rescale our formulas in the last 4 sections.

Definition 2.5.1. The semiclassical Gaussian function is defined by,

Gε
q,ppxq :� exp

�
�|x� q|

2

2ε
� i
p � px� qq

ε



, (2.21)

where the subscripts pq,pq indicate the center of the Gaussian in phase space.

For convenience, we also provide the semiclassical Fourier transform of Gε
q,p:

pGε
q,ppξq �

1

p2πεqd{2
»
Rd
Gε
q,ppxqe�iξ�x{ε dx � exp

�
�|ξ � p|

2

2ε
� i
q � pξ � pq

ε



. (2.22)

We also scale the windowed Bloch transform W : L2pRdq Ñ L2pΩqN.

Definition 2.5.2. the semiclassical windowed Bloch transform Wε : L2pRdq Ñ L2pΩqN

is given by,

pWεfqnpq,pq � 2d{4

p2πεq3d{4 xunpp, �{εqG
ε
q,p, fy �

2d{4

p2πεq3d{4
»
Rd

sunpp,x{εq sGε
q,ppxqfpxq dx.

(2.23)

Similarly we can scale the projection operator ΠW
n : L2pRdq Ñ L2pRdq for each n P N.

Definition 2.5.3. The projection of f P L2pRdq onto the nth band space is given by

ΠW,ε
n : L2pRdq Ñ L2pRdq for each n P N where

pΠW,ε
n fqpyq � 2d{4

p2πεq3d{4
¼
Ω

unpξ,y{εqGε
x,ξpyqpWεfqnpx, ξq dx dξ. (2.24)

It follows from (2.14) and a change of variable that
°
n ΠW,ε

n � IdL2pRdq.
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Chapter 3

Bloch-based frozen Gaussian

approximation

3.1 Bloch-based FGA ansatz

We are now ready to state our ansatz for solving equation (1.9) asymptotically.

First, we define the classical Hamiltonian,

hnpq,pq :� Enppq � Upqq (3.1)

for each n � 1, 2, � � � . The corresponding Hamiltonian flow pQnpt, q,pq,P npq,pqq and

action function Snpt, q,pq satisfy$''&''%
dQn

dt
� ∇PnhnpQn,P nq,

dP n

dt
� �∇QnhnpQn,P nq,

(3.2)

and

dSn
dt

� P n �∇PnhnpQn,P nq � hnpQn,P nq, (3.3)

on Ω with the initial conditions Qnp0, q,pq � q, P np0, q,pq � p and Snp0, q,pq � 0, for

each n � 1, 2, � � � .
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To simplify our equations, we will often omit the parameters pt, q,pq in Qnpt, q,pq,
P npt, q,pq, and Snpt, q,pq.

The Bloch-based FGA approximates the solution of the Schrödinger equation (1.9)

on the n-th band space to the leading order by

ψε,nFGApt,xq � rIε pan,0pt, q,pqunpP n,Xqsunpp,Y qψε0s pxq, (3.4)

where ψε0 is the initial condition. More explicitly, at time t, ψε,nFGA is given by

ψεFGApt,xq �
1

p2πεq3d{2
¼
Ω

an,0pt, q,pqeiSnpt,q,pq{εGε
Qn,Pn

pxqunpP n,x{εq

� xGε
q,punpp, �{εq, ψε0p�qy dq dp. (3.5)

The only term in (3.5) that remains to be specified is the amplitude an,0pt, q,pq. It

solves the evolution equation

Btan,0 � �ian,0AnpP nq �∇UpQnq �
1

2
an,0 tr

�
BzP n∇2EpP nq

�
Zn

��1
	

� i

2
an,0 tr

�
BzQn∇2UpQnq

�
Zn

��1
	
, (3.6)

with initial conditions an,0p0, q,pq � 2d{2 for each pq,pq and we recall that Anpξq �
xunpξ, �q, i∇ξunpξ, �qy is the Berry phase. Here the matrix Zn associated with the Hamil-

tonian flow pQn,P nq is defined by

Znpt, q, pq :� Bz pQn � iP nq , (3.7)

where Bz :� Bq � iBp.
Given any initial condition ψε0 P L2pR2q, the FGA solution to equation (1.9) is given

by

ψεFGA �
8̧

n�1

ψε,nFGA. (3.8)
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The main focus of this thesis is equation (3.8). We will derive and prove that equation

(3.8) is a valid asymptotic solution. We will also derive a gauge-invariant algorithm in

chapter 8 and apply equation (3.8) to the nonlinear Schrödinger equation with periodic

potentials.

3.2 Convergence theorems for the Bloch-based FGA

One of our required assumptions will be that the external potential is subquadratic:

Definition 3.2.1. A potential U is called subquadratic, if ‖BαxUpxq‖L8 is finite for all

multi-index |α| ¥ 2.

We now state the main result of this thesis.

Theorem 3.2.1. Assume that the n-th Bloch band Enpξq does not intersect any other

Bloch bands for all ξ P Γ� and the Hamiltonian hnpx, ξq is subquadratic. Let U ε
t be

the propagator of the time-dependent Schrödinger equation (1.9) with initial condition

ψε0 P L2pRdq. Then for any given T , 0 ¤ t ¤ T and sufficiently small ε, we have

sup
0¤t¤T

∥∥∥U ε
t

�
ΠW,ε
n ψε0

�� Iε�an,0unpP n,x{εqsunpp,y{εq�ψε0 ∥∥∥
L2
¤ CT,n ε

∥∥ψε0∥∥L2 . (3.9)

Remark. Note that ψε,nFGA approximates the time evolution of ΠW,ε
n ψε0, which is the n-

th band contribution to the initial condition in the reconstruction formula (2.14). In

particular, if the initial condition is concentrated on the n-th band in the sense that

ψε0 � ΠW,ε
n ψε0, the theorem states that the solution to (1.9) is approximated by ψε,nFGA

with Opεq error.

Remark. We can also construct higher order approximations by replacing the term

an,0unpP n,x{εq with an ε-expansion of the form bn,0 � εbn,1 � ε2bn,2 � . . . � εK�1bn,K�1

where bn,0 � an,0unpP n,x{εq. This will give an approximate solution ψε,nFGA,K to OpεKq
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accuracy. In this thesis we shall focus on the first order approximation and omit the

formulation and proof for higher orders.

The proof of Theorem 3.2.1 is given in chapter 7. By linearity of (1.9), we have the

following more general statement, as an easy corollary from Theorem 3.2.1.

Theorem 3.2.2. Assume that the first N Bloch bands Enpξq, n � 1, � � � , N do not

intersect and are separated from the other bands for all ξ P Γ�; and assume that the

Hamiltonian hnpx, ξq is subquadratic. Let U ε
t be the propagator of the time-dependent

Schrödinger equation (1.9) with initial condition ψε0 P L2pRdq. Then for any given T ,

0 ¤ t ¤ T and sufficiently small ε, we have

sup
0¤t¤T

∥∥∥∥U ε
t ψ

ε
0 �

Ņ

n�1

Iε
�
an,0unpP n,x{εqsunpp,y{εq�ψε0 ∥∥∥∥

L2

¤ CT,N ε
∥∥ψε0∥∥L2 �

∥∥∥∥∥ψε0 � Ņ

n�1

ΠW,ε
n ψε0

∥∥∥∥∥
L2

. (3.10)

Proof: Taking the short-hand notation ψε0,n � ΠW,ε
n ψε0 and

V ε
t,n � Iε

�
an,0unpP n,x{εqsunpp,y{εq�, we have∥∥∥∥∥U ε

t ψ
ε
0 �

Ņ

n�1

V ε
t,nψ

ε
0

∥∥∥∥∥
L2

�
∥∥∥∥∥U ε

t

�
8̧

n�1

ψε0,n

�
�

Ņ

n�1

V ε
t,nψ

ε
0

∥∥∥∥∥
L2

�
∥∥∥∥∥U ε

t

�
Ņ

n�1

ψε0,n

�
�U ε

t

�
8̧

n�N�1

ψε0,n

�
�

Ņ

n�1

V ε
t,nψ

ε
0

∥∥∥∥∥
L2

¤
∥∥∥∥∥U ε

t

�
Ņ

n�1

ψε0,n

�
�

Ņ

n�1

V ε
t,nψ

ε
0

∥∥∥∥∥
L2

�
∥∥∥∥∥U ε

t

�
8̧

n�N�1

ψε0,n

�∥∥∥∥∥
L2

(3.9)¤
Ņ

n�1

CT,nε
∥∥ψεn,0∥∥L2 �

∥∥∥∥∥ 8̧

n�N�1

ψε0

∥∥∥∥∥
L2

¤ CT,Nε ‖ψε0‖L2 �
∥∥∥∥∥ψε0 � Ņ

n�1

ΠW,ε
n ψε0

∥∥∥∥∥
L2

.
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3.3 Derivation of the leading order amplitude and

higher order corrections

We will now show how to obtain equation (3.6) for an,0. In addition, we will derive an

equation for an,1. The calculation techniques used in this section can be used to obtain

higher order amplitude corrections.

We will substitute our ansatz and perform matched asymptotic expansion. Let us fix

a band n P N and consider the ansatz

ψε,nFGA,8 � 1

p2πεq3d{2
¼
Ω

bεpt,X, q,pqGε
Qn,Pn

eiSn{ε xGε
q,punpp, �{εq, ψ0y dq dp, (3.11)

where the coefficient bε assumes the asymptotic expansion

bεpt,X, q,pq :�
8̧

j�0

εjbjpt,X, q,pq

� an,0pt, q,pqunpP n,Xq

� ε
�
an,1pt, q,pqunpP n,Xq � bKn,1pt,X, q,pq�

� ε2
�
an,2pt, q,pqunpP n,Xq � bKn,2pt,X, q,pq�� 8̧

j�3

εjbjpt,X, q,pq
(3.12)

We assume that we are given the classical Hamiltonian hnpq,pq � Enpq,pq � Upqq
and the corresponding flow pQn,P nq and action function Sn.

To make the calculations easier to follow, we will make use of the following Lemma.

Definition 3.3.1. For f � fpt,x,y, q,pq and g � gpt,x,y, q,pq such that for any t and

x,

fpt,x, �, �, �q, gpt,x, �, �, �q P L8pRd;SpRd � Γ�qq,

we say that f and g are equivalent for the n-th Bloch band, denoted as f �n g if for any
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t ¥ 0 and Ψ0 P L2pRdq¼
Ω

»
Rd
pf � gqpt,x,y, q,pqGε

Qn,Pn
eiSnpt,q,pq{ε sGε

q,ppyqΨ0pyq dy dq dp � 0. (3.13)

Lemma 3.3.2. For any d-vector function vpy, q,pq such that each component is in

L8pRd;SpRd � Γ�qq

vpy, q,pq � px�Qnq �n �εBz � pvZ�1
n q, (3.14)

and for any d�d matrix function Mpy, q,pq such that each component is in L8pRd;SpRd�
Γ�qq

tr
�
Mpy, q,pqpx�Qnq2

� �nε tr
�BzQnMZ�1

n

�� ε tr
�BzMpx�QnqZ�1

n

�Mpx�QnqBzZ�1
n

�
�ε tr

�BzQnMZ�1
n

�� ε2 tr
�Bz �BzMpZ�1

n q2�
�Bz

�
MBzZ�1

n

�
Z�1
n

�
.

(3.15)

Higher order terms can be obtained recursively. In general we have for any multi-index

α that |α| ¥ 3,

px�Qnqα �n O
�
εt

|α|�1
2 u

	
. (3.16)

Proof: The proof of lemma 3.3.2 is similar to [21] Lemma 3.

Computing the partial derivatives of Φn (see (2.20)),

BqΦn � BqSn � pBqP n � iBqQnq � px� iQnq � p � 1� ipy � qq � 1� P n � BqQn (3.17)

� pBqP n � iBqQnq � px�Qnq � ipy � qq � 1 pby (2.17)q, (3.18)

BpΦn � BpSn � 1 � py � qq � pBpP n � BqQnq � px�Qnq � P n � BqQn (3.19)

� �1 � py � qq � pBpP n � BqQnq � px�Qnq pby (2.17)q. (3.20)
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This implies,

iBzΦn � Znpx�Qnq. (3.21)

Zn is invertible, this will be shown later in chapter 7 (see proposition 4.2.3). Thus,

iZ�1
n BzΦn � px�Qnq (3.22)

From our previous calculations and integration by parts,¼
Ω

»
Rd
v � px�Qnqe

i
ε
Φndydpdq �ε

¼
Ω

»
Rd
vjZ

�1
n,j,k

�
i

ε
BzkΦn



e

i
ε
Φndydpdq (3.23)

�� ε

¼
Ω

»
Rd
BzkpvjZ�1

n,j,kqe
i
ε
Φndydpdq. (3.24)

This proves (3.14). Equation (3.15) can be proved by using (3.14). Higher order terms

can be obtained by recursion.

We digress to compute some derivatives of Hξ. Recall the operator Hξ,

Hξ � 1

2
p�i∇x � ξq2 � V pxq. (3.25)

This operator defines Enpξq and unpξ,xq through

Hξunpξ, �q � Enpξqunpξ, �q, (3.26)

for each n � 1, 2, � � � .
Differentiating (3.26) with respect to ξ produces

Hξ∇ξunpξ,xq � p�i∇x � ξqunpξ,xq � Enpξq∇ξunpξ,xq �∇ξEnpξqunpξ,xq. (3.27)

Taking inner product with unpξ, �q yields

∇ξEnpξq � �ixunpξ, �q,∇xunpξ, �qy � ξ. (3.28)

Differentiate (3.27) with respect to ξ again gives

Hξ∇2
ξunpξ,xq � 2p�i∇x � ξq∇ξunpξ,xq � unpξ,xqI

� Enpξq∇2
ξunpξ,xq � 2∇ξEnpξq∇ξunpξ,xq � Enpξq∇2

ξunpξ,xq. (3.29)
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Taking inner product with unpξ, �q, one gets

xunpξ, �q,�i∇x∇ξunpξ,xqy � ξxunpξ, �q,∇ξunpξ, �qy � I{2

� ∇ξEnpξqxunpξ, �q,∇ξunpξ,xqy � 1
2
Enpξqxunpξ, �q,∇2

ξunpξ, �qy. (3.30)

These identities (3.28) and (3.30) will be useful later.

We now substitute (3.11) into the Schrödinger equation. For this we first compute

the time and space derivatives on ψε,nFGA,8:

iεBtψε,nFGA,8 � 1

p2πεq3d{2
¼
Ω

tiεBtbε � pBtSn � P n � BtQn

�pBtP n � iBtQnq � px�Qnqqbεu �Gε
Qn,Pn

eiSn{ε

� xGε
q,punpp, �{εq, ψ0y dq dp.

(3.31)

1
2
ε2∆ψε,nFGA,8 � 1

p2πεq3d{2
¼
Ω

�
�1

2
p�i∇X � P nq2bε � p∇Xbε � ibεP nq � px�Qnq �

�1

2
bε|x�Qn|2 �

1

2
εbεd

�
�Gε

Qn,Pn
eiSn{ε xGε

q,punpp, �{εq, ψ0y dq dp.

(3.32)

Hence, after rearranging terms, we arrive at�
iεBt � 1

2
ε2∆ � V pXq � Upxq�ψε,nFGA,8 �

� 1

p2πεq3d{2
¼
Ω

"�
�1

2
p�i∇X � P nq2 � V pXq � Upxq � BtSn

�
bε�

� ε
�
iBtbε � 1

2
bεd

�� rp∇Xbε � ibεP nq � pBtP n � iBtQnqbεs � px�Qnq�

� 1

2
|x�Qn|2bε � P n � BtQnb

ε

*
Gε
Qn,Pn

eiSn{ε xGε
q,punpp, �{εq, ψ0y dq dp.

(3.33)
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Define

fnpt,x,y,q,pq �
"�

�1

2
p�i∇X � P nq2 � V pXq � Upxq � BtSn

�
bε�

� ε
�
iBtbε � 1

2
bεd

�� rp∇Xbε � ibεP nq � pBtP n � iBtQnqbεs � px�Qnq�

� 1

2
|x�Qn|2bε � P n � BtQnb

ε

*sunpp,Y q,
(3.34)

then we can write

�
iεBt � 1

2
ε2∆ � V pXq � Upxq�ψε,nFGA,8 �

� 1

p2πεq3d{2
¼
Ω

»
Rd
fnpt,x,y,p, qqGε

Qn,Pn
eiSn{ε sGε

q,ppyqψ0pyq dy dq dp. (3.35)

Applying Lemma 3.3.2 and adding and subtracting UpQnq, we get

fn �n

�
�1

2
p�i∇X � P nq2 � V pXq � pUpxq � UpQnqq � BtSn

	
bεsunpp,Y q

� ε
�
iBtbε � 1

2
bεd

�sunpp,Y q
� εBz

�
rp∇Xbε � ibεP nq � pBtP n � iBtQnqbεs sunpp,Y qZ�1

n

	
� ε

1

2
bε tr

�BzQnZ
�1
n

� sunpp,Y q � ε2 1

2
tr
�Bz �Bz �bεsunpp,Y qZ�1

n

�
Z�1
n

��
� P n � BtQnb

εsunpp,Y q � UpQnqbεsunpp,Y q
(3.36)

We use the Taylor expansion of Upxq about Qn up to order 4 as this will allow us to

derive equations for a0 and a1. To obtain higher order corrections to the amplitude, one

should include more terms in the Taylor series.

pUpxq � UpQnqq � ∇UpQnqpx�Qnq �
1

2!
tr
�
∇2UpQnqpx�Qnq2

��
1

3!
tr
�
∇3UpQnqpx�Qnq3

�� 1

4!
tr
�
∇4UpQnqpx�Qnq4

��
�� ¸

|α|�5

Rαpxqpx�Qnqα
�
,.-
(3.37)
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with

Rαpxq � |α|
5!

» 1

0

p1 � τq|α|�1BαQnUpQn � τpx�Qnqqdτ. (3.38)

From now on, let us denote the remainder term in (3.37) by Rpx, q,pq.
Applying Lemma 3.3.2 again to (3.36) together with (3.37), we obtain

fn �n

�
�1

2
p�i∇X � P nq2 � V pXq � BtSn

	
bεsunpp,Y q

� P n � BtQnb
εsunpp,Y q � UpQnqbεsunpp,Y q

� ε
�

iBtbε � 1

2
bεd

	sunpp,Y q � εBz
�
∇UpQnqbεsunpp,Y qZ�1

n

�
� εBz

�rp∇Xbε � ibεP nq � pBtP n � iBtQnqbεs sunpp,Y qZ�1
n

�
� ε

1

2!
tr
�BzQnpI �∇2UpQnqqbεsunpp,Y qZ�1

n

�
� ε2 1

2!
tr
�BzpBzppI �∇2UpQnqqbεsunpp,Y qZ�1

n qZ�1
n q�

� ε2 2

3!
tr
�BzpBzQn∇3UpQnqbεsunpp,Y qpZ�1

n q2q�
� ε2 1

3!
tr
�BzQnBzp∇3UpQnqbεsunpp,Y qZ�1

n qZ�1
n

�
� ε2 3

4!
tr
�pBzQnq2∇4UpQnqbεsunpp,Y qpZ�1

n q2��Rpx, q,pqbεsun,ppY q.

(3.39)

Let us define three operators Ln0 , Ln1 , and Ln2 acting on φ � φpt,x,y, q,pq by

Ln0 pφq :�
�
�1

2
p�i∇X � P nq2 � V pXq � BtSn

	
φ (3.40)

� P n � BtQnφ� UpQnqφ

�p�HPn � EnpP nqqφ,

Ln1 pφq :�
�

iBtφ� 1

2
φd

	
� Bz

�
∇UpQnqφZ�1

n

�
(3.41)

� Bz
�rp∇Xφ� iφP nq � pBtP n � iBtQnqφsZ�1

n

�
� 1

2!
tr
�BzQnpI �∇2UpQnqqφZ�1

n

�
,
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and

Ln2 pφq :� 1

2!
tr
�BzpBzppI �∇2UpQnqqφZ�1

n qZ�1
n q� (3.42)

� 2

3!
tr
�BzpBzQn∇3UpQnqφpZ�1

n q2q�
� 1

3!
tr
�BzQnBzp∇3UpQnqφZ�1

n qZ�1
n

�
� 3

4!
tr
�pBzQnq2∇4UpQnqφpZ�1

n q2� .
We thus arrive at

�
iεBt � 1

2
ε2∆ � V pXq � Upxq�ψε,nFGA,8

� 1

p2πεq3d{2
¼
Ω

»
Rd
tLn0 pbεsunpp,Y qq � εLn1 pbεsunpp,Y qq

�ε2Ln2 pbεsunpp,Y qq �Rpx, q,pqbεsunpp,Y q(Gε
Qn,Pn

eiSn{ε sGε
q,ppyqψ0pyq dy dq dp. (3.43)

Note that by the choice bn,0 � an,0unpP n,Xq, the Op1q term in the integrand on the

right hand side of (3.43) vanishes as

Ln0 pan,0pt, q,pqunpp,Xqq � an,0pt, q,pq
��HPn � EnpP nq

�
unpP n,Xq � 0 (3.44)

for any an,0.

3.3.1 Leading order term bn,0

To determine an,0, we set the order Opεq term on the right hand side of (3.43) to zero

and get

Ln0 pbn,1sunpp,Y qq � �Ln1 pbn,0sunpp,Y qq. (3.45)

We multiply the equation by sunpP n,Xq and integrate over Γ; this gives

Btan,0 �1

2
an,0 tr

�BzP np∇2
PnEnqZ�1

n

�� ian,0ApP nq �∇QnU

� i

2
an,0 trpBzQnp∇2

Qn
UqZ�1

n q.
(3.46)
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Indeed, by integration, we get»
Γ

sunpP n,Xq
�
�1

2
p�i∇X � P nq2 � V pXq � BtSn

	
b1sunpp,Y q dX

�
»

Γ

!sunpP n,Xq�iBtb0 � 1

2
b0d

�sunpp,Y q � sunpP n,XqBz
�
∇UpQnqb0sunpp,Y qZ�1

n

�
� sunpP n,XqBz

�
rp∇Xb0 � ib0P nq � pBtP n � iBtQnqb0s sunpp,Y qZ�1

n

	
� sunpP n,Xq 1

2!
tr
�BzQnpI �∇2UpQnqqb0sunpp,Y qZ�1

n

�)
dX � 0.

(3.47)

The perpendicular terms in the bj’s will now drop out and we can simplify this equation

to

� xunpP n,Xq, Bz priunpP n,Xq∇PnEn �∇XunpP n,Xq � iunpP n,XqP ns�

a0sunpp,Y qZ�1
n

�y
�
�

iBta0 � a0ApP nq �∇QnU � d

2
a0

	sunpp,Y q
� 1

2
a0 trpBzQnpI �∇2

Qn
UqZ�1

n qsunpp,Y q � 0.

(3.48)

Using (3.28), we observe that

xunpP n,Xq, riunpP n,Xq∇PnEn �∇XunpP n,Xq � iunpP n,XqP ns�

Bzpa0sunpP n,Y qZ�1
n qy � 0.

(3.49)

Hence, we arrive at

a0 tr
�xunpP n,Xq, Bz � riunpP n,Xq∇PnEn �∇XunpP n,Xq � iunpP n,XqP nsyZ�1

n

�
�
�

iBta0 � a0ApP nq �∇QnU � d

2
a0



� 1

2
a0 tr

�BzQnpI �∇2
Qn
UqZ�1

n

� � 0. (3.50)
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To further simplify the equation, observe thatA
unpP n,Xq, Bz�riunpP n,Xq∇PnEn �∇XunpP n,Xq � iunpP n,XqP ns

E
� i xunpP n,Xq, BzunpP n,Xqy p∇PnEn � P nq

� xunpP n,Xq, Bz∇XunpP n,Xqy � ipBz∇PnEn � BzP nq

� iBzP n xunpP n,Xq, BPnunpP n,Xqy p∇PnEn � P nq

� BzP n xunpP n,Xq,∇p∇XunpP n,XqyΓ � iBzP np∇2
PnEn � Iq

(3.30)� 1

2
iBzP np∇2

PnEn � Iq.

(3.51)

Putting this into (3.50), we have

1

2
ia0 tr

�BzP npI �∇2
PnEnqZ�1

�� �
iBta0 � a0ApP nq �∇QnU � d

2
a0



� 1

2
a0 trpBzQnpI �∇2

Qn
UqZ�1

n qs � 0. (3.52)

We arrive at (3.46) finally by noting that

1

2
a tr

�BzQnZ
�1
n

�� i

2
a tr

�BzP nZ
�1
n

� � 1

2
a tr

�
ZnZ

�1
n

� � d

2
a. (3.53)

3.3.2 Next order term bn,1

To characterize bn,1, we set the order Opε2q term in (3.43) to zero, we have»
Γ

sunpP n,Xq pLn0 pbn,2sunpp,Y qq � Ln1 pbn,1sunpp,Y qq � Ln2 pbn,0sunpp,Y qqq dX � 0.

(3.54)
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Let us first derive the equation for a1. We start with (3.54) written in expanded form»
Γ

sunpP n,Xq
"

1

2!
tr
�BzpBzppI �∇2UpQnqqb0sunpp,Y qZ�1

n qZ�1
n q�

� 2

3!
tr
�BzpBzQn∇3UpQnqb0sunpp,Y qpZ�1

n q2q�
� 1

3!
tr
�BzQnBzp∇3UpQnqb0sunpp,Y qZ�1

n qZ�1
n

�
� 3

4!
tr
�pBzQnq2∇4UpQnqb0sunpp,Y qpZ�1

n q2�
� �

iBtb1 � 1

2
b1d

�sunpp,Y q � Bz
�
∇UpQnqb1sunpp,Y qZ�1

n

�
� Bz

�rp∇Xb1 � ib1P nq � pBtP n � iBtQnqb1s sunpp,Y qZ�1
n

�
� 1

2!
tr
�BzQnpI �∇2UpQnqqb1sunpp,Y qZ�1

n

�
� p�HPn � EpP nqq b2sunpp,Y qu dX � 0.

(3.55)

Making use of the Hamiltonian flow (3.2) and the identity (3.49), we arrive at

� tr
�
xuPn , Bz � rupi∇EnpP nqq �∇Xu� iuP nspa1qyZ�1

n

	
�
�

iBta1 � a1ApP nq �∇QnU � d

2
a1

	
� a0

1

2
tr
�
BzpBzrpI �∇2

Qn
UqZ�1

n sZ�1
n q

	
� a1

1

2
tr
�
BzQnpI �∇2

Qn
UqZ�1

n

	
� 2

3!
a0 tr

�
BzpBzQn∇3

Qn
UpZ�1

n q2q
	

� 1

3!
a0 tr

�
BzQnBzp∇3

Qn
UZ�1

n qZ�1
n

	
� 3

4!
a0 tr

�
pBzQnq2∇4

Qn
UpZ�1

n q2
	
� 0.

(3.56)

Then using (3.51) and (3.53), upon simplification we obtain the equation for an,1

Btan,1 � �ian,1ApP nq �∇QnU � 1

2
an,1 tr

�BzP np∇2
PnEnqZ�1

n

�
� i

2
an,1 tr

�
BzQnp∇2

Qn
UqZ�1

n

	
� i

2
an,0 tr

�
BzpBzrpI �∇2

Qn
UqZ�1

n sZ�1
n q

	
� 2i

3!
an,0 tr

�
BzpBzQn∇3

Qn
UpZ�1

n q2q
	
� i

3!
an,0 tr

�
BzQnBzp∇3

Qn
UZ�1

n qZ�1
n

	
� 3i

4!
an,0 tr

�
pBzQnq2∇4

Qn
UpZ�1

n q2
	
.

(3.57)

Define the operator Q � Id�Πn where Πn is the projection operator onto the nth

Bloch wave. bKn,1 satisfies Πnb
K
n,1 � xunpP n,xq, bKn,1y � 0, and is hence determined by
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applying Q to Ln0 pbn,1sunpp,Y qq � �Ln1 pbn,0sunpp,Y qq. We obtain

bKn,1sunpp,Y q � � pLn0 q�1Q pLn1 pbn,0sunpp,Y qqq . (3.58)

Note that the inverse of the operator Ln0 can be defined on its range.

Thus, we have obtained the equations for an,0 (3.46), an,1 (3.57), and bKn,1 (3.58). This

can be continued to higher orders.
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Chapter 4

Proof of the first order convergence

in the L2 sense

We will now proof that ψεFGA is indeed an asymptotic solution to equation (1.9). More

specifically, we will prove that ψεFGA converges to the exact solution in the L2 sense as ε

goes to 0. We will show that the rate of convergence is Opεq.

4.1 Strategy of the proof

To prove theorem 3.2.1, one needs to insert ψε,nFGA,8 into equation 1.9 and obtain an

equation for the remainder. Our goal is to bound this remainder in the L2 sense. To do

this we will need to make the following assumptions:


 the nth Bloch band should not intersect any other Bloch band. This will be needed to

bound bε,1n .


 The Hamiltonian hnpq,pq is sub-quadratic. This is needed to bound the gradients

∇iUpQnq for i ¥ 2.


 VΓpxq is smooth. This assumption will allow us to bound other terms that appear in
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the remainder.

4.2 Estimates for the Hamiltonian flows

To bound the error for t ¡ 0, we estimate quantities associated with the Hamiltonian

flow hnpq,pq for each n.

The following notation is useful in the proof. For u P C8pΩ,Cq, we define for k P N,

Mkrus � max
|αq |�|αp|¤k

sup
pq,pqPΩ

��Bαqq Bαpp upq,pq�� (4.1)

where αq and αp are multiindex corresponding to q and p, respectively.

Definition 4.2.1. (Canonical Transformation) Let κn : R2d Ñ R2d be a differentiable

map κnpq,pq � pQnpq,pq,P npq,pqq and denote the Jacobian matrix as

pFnq �

���pBqQnqT pq,pq pBpQnqT pq,pq
pBqP nqT pq,pq pBpP nqT pq,pq

��
. (4.2)

We say κn is a canonical transformation if Fn is symplectic for any pq,pq P R2d, i.e.

pFnqT
��� 0 Idd

� Idd 0

��
Fn �
��� 0 Idd

� Idd 0

��
. (4.3)

It is easy to check by the definition that the map κnptq : R2d Ñ R2d defined by

pq,pq Ñ pQnpt, q,pq,P npt, q,pqq solving (3.2) is a canonical transformation.

Proposition 4.2.2. We have for all k ¥ 0

sup
tPr0,T s

Mk rFnptqs   8 sup
tPr0,T s

Mk

�
d

dt
Fnptq

�
  8. (4.4)
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Proof: Differentiating Fnpt, q,pq with respect to t gives

d

dt
Fnpt, q,pq �

��� BP BQhn BP BPhn
�BQBQhn �BQBPhn

��
Fnpt, q,pq. (4.5)

By our assumption that U is subquadratic on Rd and since En P C8pΓ�q, there exists a

constant C independent of pq,pq such that

d

dt
|Fnpt, q,pq| �

∣∣∣∣∣∣∣
��� BP BQhn BP BPhn
�BQBQhn �BQBPhn

��

∣∣∣∣∣∣∣
∣∣Fnpt, q,pq∣∣ ¤ C

∣∣Fnpt, q,pq∣∣ (4.6)

with |Fnp0q| � |Id2d|. By an application of Gronwall’s inequality, we obtain

|Fnptq| ¤ eC|t|. (4.7)

Differentiating (4.5) with respect to pq,pq yields

d

dt
Bαq
q Bαp

p Fnpt, q,pq �
¸

βq¤αq ,βp¤αp

�
αq
βq


�
αp
βp



Bβqq Bβpp

��� BP BQhn BP BPhn
�BQBQhn �BQBPhn

��
�
� Bαq�βq

q Bαp�βp
p Fnpt, q,pq. (4.8)

Our estimate now follows by induction.

Recall that the matrix Znpt, q,pq is defined by

Znpt, q,pq :� Bz pQnpt, q,pq � iP npt, q,pqq � pBq � iBpq pQnpt, q,pq � iP npt, q,pqq .
(4.9)

Proposition 4.2.3. Znpt, q,pq is invertible for pq,pq P Ω. Moreover, for each k P N,

Mk

��
Znptq

��1
�
  8. (4.10)

(see proposition 3.5, [10])
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Proof: Znpt, q,pq inherits the property that MkpZnpt, q,pqq   8 from the same

estimate for Fnpt, q,pq. Moreover, we have

ZnpZnq�pt, q,pq �
�

i Idd Idd



pFnqT pt, q,pq

��� Idd �i Idd

i Idd Idd

��
Fnpt, q,pq
����i Idd

Idd

��

�
�

i Idd Idd


�pFnqT pFnq� pt, q,pq
����i Idd

Idd

��

�
�

i Idd Idd



pFnqT pt, q,pq

��� 0 �i Idd

i Idd 0

��
Fnpt, q,pq
����i Idd

Idd

��

�
�

i Idd Idd


�pFnqTFn� pt, q,pq
����i Idd

Idd

��
� 2 Idd .

(4.11)

This calculation shows that, since pFnptqqTFnptq is semi-positive definite, for any

v P C2d,

v�ZnptqpZnptqq�v ¥ 2|v|2. (4.12)

Therefore Znpt, q,pq is invertible and det
�
Znptq

�
is uniformly bounded away from 0 for

all q and p, so by representing pZnq�1pt, q,pq by minors, Mk

�pZnq�1pt, q,pq�   8, as

MkpZnpt, q,pqq is.

4.3 Estimates for the Bloch waves and amplitudes

Proposition 4.3.1. For each k P N,

sup
tPr0,T s

Mk runpP n,xqs   8. (4.13)

Proof: unpP n,xq is smooth on the compact set Γ� � Γ since the n-th band is

separated from the rest of the spectrum (see e.g., [22]). Thus unpP n,xq is uniformly
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bounded on Γ��Γ and hence Γ��Rd due to periodicity. We also see from Proposition 4.2.2

that the derivatives of unpP n,xq are also bounded. Thus, MkrunpP n,xqs   8 for any

finite time t.

Let us summarize estimates for the amplitude equations derived in chapter 6.

Proposition 4.3.2. For each k P N, the amplitudes an,0 and an,1, given by (3.46) and

(3.57) satisfy

sup
tPr0,T s

Mkran,0s   8, and sup
tPr0,T s

Mkran,1s   8. (4.14)

Proof: By (4.2.2), (4.2.3) and (4.3.1), we see that the right hand side of (3.46)

and (3.57) are bounded by some constants independent of q and p times an,0 and an,1,

respectively. An application of Gronwall’s inequality yields the result.

Proposition 4.3.3. For each k P N we have that

sup
tPr0,T s

MkrbKn,1sunpP n,Y qs   8. (4.15)

Proof: The equation for bKn,1 is given by equation (3.58). We thus obtain a bound

by using the spectrum of Ln0 . We can write

pLn0 q�1pΦq �
¸
m�n

xumpPm, �q,Φp�,Y , q,pqyL2pΓq umpPm,Xq
EnpP nq � EmpPmq . (4.16)

Let g � min
ξPr�π,πsd

t|Enpξq �En�1pξq|, |Enpξq �En�1pξq|u. Then for each k P N, we obtain

MkrbKn,1sunpP n,Y qs ¤Mk

�
1

g

¸
m�n

xumpPm, �q, bn,0pt, �, q,pqsunpp,Y qyL2pΓq unpP n,Xq
�

�Mk

�sunpp,Y q
g

¸
m�n

an,0pt, q,pq xumpPm, �q, unpP n, �qyL2pΓq unpP n,Xq
�
.

(4.17)

Hence, by Propositions 4.3.1 and 4.3.2, it suffices to control

Mk

�¸
m�n

xumpPm,Xq, unpP n,XqyL2pΓq

�
. (4.18)

Since
³
Γ
|unpξ,xq|2dx � 1, Bessel’s inequality implies that the above is finite.
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4.4 Proof of theorem 3.2.1

We will need the following estimate,

Lemma 4.4.1. Suppose Hpεq is a family of self-adjoint operators for ε ¡ 0. Suppose

ψpt, εq belongs to the domain of Hpεq, is continuously differentiable in t and approximately

solves the Schrodinger equation in the sense that

iε
Bψ
Bt pt, εq � Hpεqψpt, εq � ζpt, εq, (4.19)

where ζpt, εq satisfies

||ζpt, εq|| ¤ µpt, εq. (4.20)

Then,

e�itHpεq{εψp0, εq � ψpt, εq ¤ ε�1

» t

0

µps, εqds. (4.21)

This lemma can be proved using the fundamental theorem of calculus, for brevity we

refer the reader to [23]Lemma 2.8 for details.

Moreover, for the Fourier integral operator, we have

Lemma 4.4.2. If, for fixed x,y P Rd, upx,y, q,pq P L8pΩ;Cq, for each n P N and any

t, Iεpuq can be extended to a linear bounded operator on L2pRd,Cq, and we have

||Ipuq||L pL2pRd;Cqq ¤ 2�d{2||u||L8pR2d;Cq. (4.22)

Proof: The proof of lemma 4.4.2 is essentially the same as Proposition 3.7 in [10]

and thus is omitted here.

We are now ready to prove Theorem 3.2.1.

Proof: [Proof of Theorem 3.2.1] Computing iε
B
Bt �

1

2
ε2∇2 � V pXq � Upxq applied

to Iε pbε,1n pt,X, q,pqsunpp,Y qq, we obtain�
iε

d

dt
� 1

2
ε2∇2 � V pXq � Upxq



Iε

�
bε,1n sunpp,Y q� � Iε� 1̧

j�0

εjvn,j

�
� ε2Iε

�
vεn,2

�
.

(4.23)

39



The expressions for vn,0, vn,1, and vn,2 follows from (3.43) by expanding bε and the linearity

of Ln0 , Ln1 , and Ln2 . By equations (3.44) and (3.45), vn,0 and vn,1 vanish. The remaining

term

vεn,2 � Ln2 pbε,1n sunpp,Y qq �Rpx, q,pqbε,1n sunpp,Y q. (4.24)

satisfies Mkrvεn,2s   8 by Propositions 4.2.3, 4.3.2, and 4.3.3. Finally, applying Lemma

4.4.2 and Lemma 4.4.1 we obtain the inequality in Theorem 3.2.1.
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Chapter 5

FGA algorithm and numerical

results

5.1 Deriving a guage-invariant algorithm

Recall from chapter 5, that the eigenfunction unpξ,xq of (2.3) is defined up to a unit

complex number eiφpξq. This is known as gauge freedom and it is problematic numerically

as different choices of the gauge φpξq may lead to different numerical results for the Berry

phase term Anpξq � xunpξ,xq|i∇ξunpξ,xqy, and hence ψεFGA will not be well defined. We

modify our ansatz ψεFGA so that direct numerical computation of the Berry phase is

avoided.

To separate the dependence of an on An in the evolution equation (3.6) we use a

standard differential equations technique know as the method of integrating factors. We

define SA
n the phase contribution due to the Berry phase term

SA
n pt, q,pq �

» t

0

AnpP nq �∇UpQnq ds. (5.1)
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and let

bnpt, q,pq � anpt, q,pq exppiSA
n pt, q,pqq. (5.2)

We note that the exponential term of equation (5.2) is the integrating factor. Multiplying

equation (3.6) by the integrating factor and simplifying, we deduce that bn solves,

dbn
dt

� 1

2
bn tr

�
BzP n∇2EnpP nqZ�1

n

	
� i

2
bn tr

�
BzQn∇2UpQnqZ�1

n

	
, (5.3)

with initial condition bnp0, q,pq � 2d{2. The evolution equation (5.3) for bn is manifestly

gauge-invariant, as all terms are independent of the gauge choice. Using the amplitude

function bn, the frozen Gaussian approximation (equation (3.8)) can be rewritten as

ψεFGApt,xq �
1

p2πεq3d{2
8̧

n�1

»
Γ�

»
Rd
bnpt, q,pqun pP n,x{εqGε

Qn,Pn
pxqeiSnpt,q,pq{ε�iSA

n pt,q,pq

� xGε
q,punpp, �{εq|ψ0y dq dp. (5.4)

The gauge-dependent term in (5.4) thus reads

unpP n,x{εqe�iSA
n pt,q,pqunpp,y{εq. (5.5)

Our goal is hence to design a gauge-invariant time integrator for (5.1) such that the term

(5.5) becomes independent of the gauge. Observe that, by the Hamiltonian flow (3.2),

SA
n pt, q,pq � �

» t

0

ApP nq � dP npsq. (5.6)

Let 0 � t0   t1   � � �   tK � t be a time discretization, we have

expp�iSA
n q � exp

�
i

» t

0

ApP nq � dP npsq


�

K¹
k�1

exp

�
i

» tk

tk�1

ApP nq � dP npsq


. (5.7)

Let us assume that we have chosen a gauge where unpξ, �q is smooth in ξ P Γ�. Note that

since our final formula is gauge-independent, the choice of the gauge here is only for the
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derivation. Using the Taylor approximation, we obtain

i

» tk

tk�1

ApP nq � dP npsq � �i Im txunpP nptk�1q, �q|∇unpP nptk�1q, �qy � ∆P k,nu

�Op∆P k,nq2

� i Im t1 � xunpP nptk�1q, �q|unpP nptkq, �qyu �Op∆P k,nq2

� i Imtln@unpP nptkq, �q|unpP nptk�1q, �q
Du �Op∆P k,nq2,

(5.8)

where ∆P k,n � P nptkq�P nptk�1q. The first approximation was obtained by using a left

Riemann sum. The next approximation is the forward difference approximation for the

derivative. The last approximation is the Taylor series for lnz around z � 1. Therefore,

exponentiating, we get

exp
�

i

» tk

tk�1

ApP nq � dP npsq
	
�

@
unpP nptkq, �q|unpP nptk�1q, �q

D∣∣@unpP nptkq, �q|unpP nptk�1q, �q
D∣∣ �Op∆P k,nq2. (5.9)

Substituting the last equation in the right hand side of (5.7) gives an approximation

to expp�iSA
n q with and error Op∆P nq with ∆P n � max

k
|∆P k,n|. This then gives the

approximation to (5.5) as

unpP n,x{εqe�iSA
n pt,q,pqunpp,y{εq � Fnpt, q,p,x,yq :�

:� ∣∣unpP nptKq,x{εq
D K¹
k�1

@
unpP nptkq, �q

��unpP nptk�1q, �q
D∣∣@unpP nptkq, �q

��unpP nptk�1q, �q
D∣∣@unpP npt0q,y{εq

∣∣�Op∆P nq.

(5.10)

The right hand side of (5.10) is manifestly gauge-invariant, as the phase term in

|unpP nptkq, �qy will cancel with that of xunpP nptkq, �q|, for k � 0, . . . , K.

Therefore, in summary, we arrive at a gauge-invariant reformulation of ψεFGA as

ψεFGApt,xq �
1

p2πεq3d{2
8̧

n�1

»
Γ�

»
Rd
bnpt, q,pqFnpt, q,p,x,yqGε

Qn,Pn
pxq

� eiSnpt,q,pq{ε xGε
q,p

��ψ0y dq dp, (5.11)
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where Fn is given by (5.10), and the evolution of pQn,P nq follows the Hamiltonian

dynamics $'&'%
dQn

dt
� ∇EnpP nq,

dP n

dt
� �∇UpQnq,

(5.12)

with initial condition Qnp0, q,pq � q and P np0, q,pq � p.

The action Sn solves

dSn
dt

� P n �∇PhnpQn,P nq � hnpQn,P nq, (5.13)

with initial condition Snp0, q,pq � 0, and the amplitude bn follows the evolution

dbn
dt

� 1

2
bntr

�BzP n∇2EnpP nqZ�1
n

�� i

2
bntr

�BzQn∇2UnpQnqZ�1
n

�
, (5.14)

with initial condition bnp0, q,pq � 2d{2.

5.2 Computing Bloch energy bands and Bloch waves

in one-dimension

As a prerequisite for implementing equation (5.11) numerically, we will need to com-

pute the eigenvalues and eigenfunctions of (2.4). We restrict our computations to 1-

dimension as computation of true solutions to (1.9) with high accuracy is extremely

time-consuming in high dimensions, and thus it is difficult for us to confirm numerically

the asymptotic convergence order with the pollution of non-negligible numerical errors.

Also, band-crossing is quite common in high dimensional cases (e.g., in honeycomb lat-

tice), which requires more techniques than the scope of this thesis, and we will leave the

numerical study of high dimensional examples as future work. We also note that the

calculations in this section can be easily generalized to higher dimensions by vectorizing

all the appropriate variables.
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Define the Fourier transform of unpξ, xq as

punpξ, ηq � 1

2π

»
Γ

unpξ, xqe�ixη dx. (5.15)

Taking the Fourier transform of (2.4) one obtains

pη � ξq2
2

punpξ, ηq �xVΓpηq �xunpξ, ηq � Enpξqpunpξ, ηq, (5.16)

where “�” stands for the operation of convolution.

Truncating the Fourier grid to t�Λ, � � � ,Λ � 1u � Z gives

HξpΛq

���������

punpξ,�Λq
punpξ, 1 � Λq

...

punpξ,Λ � 1q

��������

� Enpξq

���������

punpξ,�Λq
punpξ, 1 � Λq

...

punpξ,Λ � 1q

��������

(5.17)

where HξpΛq is the 2Λ � 2Λ matrix given by

HξpΛq �

����������

p�Λ � ξq2
2

� pVΓp0q pVΓp�1q � � � pVΓp1 � 2Λq
pVΓp1q p�Λ � 1 � ξq2

2
� pVΓp0q � � � pVΓp2 � 2Λq

. . . . . .
. . . . . .pVΓp2Λ � 1q pV p2Λ � 2q � � � pΛ � 1 � ξq2

2
� pVΓp0q

���������

.

(5.18)

After diagonalizing the matrix, the eigenfunction in the physical domain is then obtained

via inverse Fourier transform

unpξ, xq �
Λ�1̧

y��Λ

punpξ, ηqeiηx. (5.19)

Example 5.2.1. In this example, we compute Bloch eigenvalues and eigenfunctions with

potential VΓpxq � exp p�25x2q. The extension of VΓpxq periodically with respect to Γ is

not analytic on the boundary of Γ. However, this lack of smoothness presents a negligible
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Figure 5.1: Energy eigenvalues for the one-dimensional lattice potential V pxq � exp
�
�25x2

�

problem numerically as VΓpxq decays rapidly. Figure 5.1 shows the energy eigenvalues

Enpξq for ξ P r0, 1q. The plot shows the first 8 bands where the bottom curve corresponds

to n � 1 (lowest band) and the top curve represents n � 8 (highest band). Figure 5.2

shows the modules of the corresponding Bloch eigenfunctions for the first 4 bands. Notice

that while these surfaces are continuous and periodic, the next two figures (5.3 and 5.4)

of the real and imaginary parts of the Bloch eigenfunctions are not. This is due to the

arbitrary gauge freedom in the diagonalization.

Remark. 1. In the numerical computation of Epξq, the corresponding eigenfunctions and

their derivatives near the points ξ � 0 and ξ � 0.5 (and ξ � 1 by periodicity) is tricky,

since the Bloch bands are close to each other near these points (see Figure 5.1). For this

reason, our grid for the ξ variable will not contain these points. In other words, we shift
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Figure 5.2: Module of eigenfunctions for the one-dimensional lattice potential
V pxq � exp

�
�25x2

�
. We display absolute value of the first 4 lowest energy eigenfunc-

tions.
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Figure 5.3: Real part of the eigenfunctions for the one-dimensional lattice potential
V pxq � exp

�
�25x2

�
. We display the real parts for the first 4 lowest energy eigen-

functions. We use 100 data points for the ξ variable.
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Figure 5.4: Imaginary part of the eigenfunctions for the one-dimensional lattice po-
tential V pxq � exp

�
�25x2

�
. We display the imaginary parts for the first 4 lowest

energy eigenfunctions. We use 100 data points for the ξ variable.
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the grids in the first Brillouin zone to avoid these high symmetry points.

2. One can apply the same technique to derive an algorithm for computing Bloch

eigenvalues and eigenfunctions in higher dimensions. The main issue with this algorithm

is that the numerical cost increases drastically for d ¡ 1. In the case where the periodic

potential has the form VΓpxq �
°d
j�1 Vjpxjq with Vjpxj � 2πq � V pxjq, computation

of Bloch bands can be treated for each coordinate xj separately. For some common

potentials, data for the energy eigenvalues has already been produced (see remark 2.1 in

[24]).

5.2.1 Description of the gauge-invariant algorithm

We assume that the initial data ψ0pxq has compact support or that it decays suffi-

ciently fast as |x| Ñ 8, and hence, we only need to use a finite number of mesh points

in physical space.

For a mesh size δx and starting point x0 P R, the grid is specified as

xm � x0 � pm� 1qδx, (5.20)

for m � 1, � � � , Nx, where Nx is the number of the spatial grid in one dimension.

We present the algorithm in five steps below.

Step 1. Compute the Bloch eigenvalues Enpξq and eigenfunctions unpξ, xq of (2.4),

according to the algorithm described in Section 5.2.

Remark. For our one dimensional examples in Section 5.3, we choose a mesh for pξ, xq
such that δξ � p1 � 2ρq{199 with ξ0 � �1{2 � ρ and Nξ � 200; and δx � 2π{804 with

x0 � �π and Nx � 805 for some 0   ρ ! 1. ρ was included to avoid putting mesh points

at high symmetry points in the first Brillouin zone. This number of grid points is enough

to ensure that the eigenvalues and eigenfunctions are computed with sufficient accuracy

for our numerical tests.
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Step 2. Compute pQnpt, q, pq, Pnpt, q, pq, Snpt, q, pq, bnpt, q, pqq in (5.12), (5.13), and (5.14).

To integrate the ODEs for pQn, Pn, Sn, bnq, we use a symplectic fourth order Runge-

Kutta method. Coefficients for the Butcher tableau can be found in [25]. We will choose

a mesh for pq, pq P Ω and pQn, Pnq takes initial value at the grid points. That is,

Qnp0, q, pq � qI �q0 � Iδq (5.21)

Pnp0, q, pq � pJ �p0 � Jδp (5.22)

where I P 1, � � � , NI and J P 1, � � � , NJ . Notice that to represent the initial condition

ψεFGAp0, xq one only needs the mesh points qI near x. To be more precise, as the standard

deviation of the semiclassical Gaussian functions in (2.21) is
?
ε so one only needs the

mesh points qI contributing significantly to ψεFGAp0, xq satisfy |x � qI | ¤ Op?εq. This

implies that one can put a finite number of mesh points for q-coordinate and not on all

of R. The mesh size for qI and pJ is chosen to be Op?εq, which resolves the oscillation

of the initial condition.

Step 3. Compute the windowed Bloch transformation of the initial condition

xunpp, �{εqGε
q,p|ψ0y. For the sake of convenience, denote this term by wεnpq, pq. Let

yK � y0 � pK � 1qδy (5.23)

be a discrete mesh of y where K � 1, � � � , Ny. Then,

wεnpqI , pJq �
Ny¸
K�1

sGε
qI ,pJ pyKqsuppJ , yK{εqψ0pyKqrθ

�|yK � qI |� δy, (5.24)

with rθ a cut-off function such that rθ � 1 in the ball of radius θ ¡ 0 centered at the

origin and rθ � 0 outside the ball.

The mesh yK should approximately cover the support of the initial condition ψ0pyq.
As can be seen by the form of wεn, the size of Ny will depend on ε. The mesh should be

fine enough to accurately capture sunpp, y{εq sGε
q,ppyqψ0pyq for all bands n.
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Remark. One can reduce the computation time of wεnpqI , pJq by incorporating the pe-

riodicity of unpξ, xq with respect to x. As can be seen by Figure 5.2, unpξ, xq tends to

become more oscillatory as n increases. Thus, the mesh of yK should be adapted so that

it depends on n.

Step 4. Denote the product term in (5.10) by

rFnpt, q, pq :�
K¹
k�1

@
upPnptkq, �q, upPnptk�1q, �q

D∣∣@upPnptkq, �q, upPnptk�1q, �q
D∣∣ , (5.25)

and note that

Fnpt, q, p, x, yq �
∣∣unpPnptKq, x{εqD rFnpt, q, pq@unpPnpt0q, y{εq∣∣.

At this point we now have the required data to compute rFn. Discretize rFn using the

same mesh from the previous steps to obtain rFnpt, qI , pJq. Here, t0 � 0   t1   t2   � � �  
tK � t is the temporal mesh used in Step 2.

Step 5. Reconstruct the solution using (5.11)

ψεFGApt, xLq �
Ņ

n�1

¸
I

¸
J

�
bnpt, qI , pJqsun�Pnpt, qI , pJq, xL{ε�Gε

Qn,PnpxLqeSnpt,q
I ,pJ q{ε

� rFnpt, qI , pJq rψεnpqI , pJqrθ �|xL �QI,J
n |�	δqδp,

(5.26)

where Qn and Pn are evaluated at pt, qI , pJq, and rθ is a cutoff function as described in

Step 3 and N is the maximum number of Bloch bands used.

Remark. The error arising from the gauge-invariant algorithm described above is

Opε� δt4

ε
� max

n
∆P nq � ||ψε0 �

Ņ

n�1

W,ε¹
n

ψε0||L2 . (5.27)
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5.3 Verification of the convergence rate of FGA us-

ing numerical examples

In this section, we show the numerical performance of gauge invariant frozen Gaussian

approximation (GIFGA) by several one dimensional examples, which also confirm the first

order asymptotic convergence analyzed in Chapter 4.

Initial decomposition.

In the first two examples, we test the initial decomposition of GIFGA described in Sec-

tion 2.2. We compute ψεFGA at t � 0 via equation (3.8). As we cannot numerically sum

to infinity, we choose to use at most 8 bands in all of our examples. Expressed differently,

the solution will be concentrated on the first 8 bands. Because of the need for Op?εq
mesh size for both coordinates pqI , pJq of phase space, we choose approximately 2{?ε
number of grid points for each unit interval.

Example 5.3.1. In this example, we check the initial decomposition by choosing ψ0 �
Apxq exp

�
iSpxq{ε� with Apxq � exp p�50x2q cosppx � 0.5q{εq and Spxq � 0.3px � 0.5q �

0.1 sinpx� 0.5q, and the lattice potential VΓ � cospxq. We record the data in Table 5.1.

Example 5.3.2. In this example, we check the initial decomposition by choosing ψ0 �
Apxq exp

�
iSpxq{ε� with Apxq � exp p�50x2q and Spxq � 0.3 � 0.1 sinpx � 0.5q, and the

lattice potential to be VΓ � expp�25x2q. We record the data in Table 5.2.

Tables 5.1, and 5.2 show that FGA indeed matches the initial condition more closely

as N increases. Furthermore, we have essentially the same L2 error for each ε. This

provides numerical verification of the independence of ε of the initial decomposition.

Remark. Let us note that from equations (2.4) and (2.3), the convergence rate should de-

pend on the form of the lattice potential VΓpxq. Also, by equation (2.14), the convergence
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ε � 1{64 Error ||ψ0 � ψεFGA||L2

N � 1 0.13260

N � 2 0.11328

N � 4 0.033126

N � 8 7.2587e-05

ε � 1{128 Error ||ψ0 � ψεFGA||L2

N � 1 0.15361

N � 2 0.096905

N � 4 0.031652

N � 8 7.0574e-05

ε � 1{256 Error ||ψ0 � ψεFGA||L2

N � 1 0.14165

N � 2 0.1063

N � 4 0.032405

N � 8 6.9192e-05

ε � 1{512 Error ||ψ0 � ψεFGA||L2

N � 1 0.15885

N � 2 0.09276

N � 4 0.031263

N � 8 6.8701e-05

Table 5.1: L2 error of ψ0pxq�ψ
ε
FGAp0, xq for Example 5.3.1. We display various values

of ε and sum over N Bloch bands in ψεFGA.
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ε � 1{64 Error ||ψ0 � ψεFGA||L2

N � 1 0.035736

N � 2 0.02463

N � 4 0.0075756

N � 8 0.0018796

ε � 1{128 Error ||ψ0 � ψεFGA||L2

N � 1 0.031445

N � 2 0.024814

N � 4 0.007579

N � 8 0.0018579

ε � 1{256 Error ||ψ0 � ψεFGA||L2

N � 1 0.030633

N � 2 0.024967

N � 4 0.0076045

N � 8 0.0018698

ε � 1{512 Error ||ψ0 � ψεFGA||L2

N � 1 0.030375

N � 2 0.025078

N � 4 0.0076103

N � 8 0.0018769

Table 5.2: L2 error of ψ0pxq�ψ
ε
FGAp0, xq for Example 5.3.2. We display various values

of ε and sum over N Bloch bands in ψεFGA.
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Figure 5.5: Initial decomposition for example 5.3.1. The real part of ψ0pxq and
ψεFGAp0, xq are shown for ε � 1{256. The summation in ψεFGAp0, xq is over the first 4
lowest energy bands.

rate also depends on the form of the initial condition. We see from Examples 5.3.1, and

5.3.2 that the cosine lattice potential seem to produce faster convergence with respect

to the number of bands used. Different initial conditions may also converge faster as N

increases. Example 5.3.4 uses an initial condition projected onto the first band. Choosing

such initial condition has the advantage of needing only to compute ψεFGA over one band,

i.e. ψε,nFGA.

By examining the L2 errors or the convergence rates, one could determine the min-

imum number of bands to sum over to achieve required accuracy. In Example 5.3.1, it

shows that upon summing over N � 4 bands, the initial decomposition starts to resemble

the initial condition.

Verification of the convergence rate of FGA.

First, we choose to test the convergence rate of (3.8) with external potential Upxq � 0

in Examples 5.3.3 and 5.3.4. With this choice of potential, there is no need for a gauge-
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Figure 5.6: The plot of ||ψ0pxq � ψεFGAp0, xq||l2 for figure 5.5 is displayed here.

invariant algorithm. One can optimize the algorithm described in Section 5.2.1 by setting

F̃ pt, q, pq � 1 in (5.25) in Step 4. Thus, for Examples 5.3.3 and 5.3.4, numerical errors

coming from F̃ pt, q, pq will be absent. Examples 5.3.5 and 5.3.6 have nonzero external

potential so there will be some numerical errors introduced by F̃ pt, q, pq. We continue

using 2{?ε mesh points per unit interval in q and p and sum up to eight bands (except

for Example 5.3.4). We choose a time step of size ∆t � T {150. The exact solution to

equation (1.9) will be computed using the Strang-splitting spectral method [4]. For all

of our examples, the Strang-splitting spectral method did not need a mesh finer than

∆x � 1{216 and ∆t � 1{212.

Example 5.3.3. In this example we choose the initial condition to be

ψ0 � Apxq exp
�
iSpxq{ε� with Apxq � exp p�50x2q and Spxq � 0.3 � 0.1 sinpx � 0.5q.

The exact solution is computed using the Strang-Splitting spectral method. This is done

at time T � 0.35. The lattice potential used is VΓpxq � cospxq. We record the data in

Table 5.3. The convergence order of the data in table 5.3 is 1.0366. We display plots of
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Error ||ψSpec�ψεFGA||l2 Rate of Convergence

ε � 1{8 0.09112

ε � 1{16 0.048907 0.8977

ε � 1{32 0.022603 1.1135

ε � 1{64 0.010555 1.0986

Table 5.3: L2 error of ψSpecp0.35, xq � ψεFGAp0.35, xq for various values of ε. The
summation in ψεFGA is over the first 8 lowest energy bands.

Error ||ψSpec�ψεFGA||l2 Rate of convergence

ε � 1{64 0.0269

ε � 1{128 0.0144 0.9015

ε � 1{256 0.0069 1.0614

Table 5.4: L2 error of ψSpecp0.35, xq � ψεFGAp0.35, xq for initial condition projected
onto the first Bloch band.

the solution for ε � 1{8, 1{16, 1{32 and 1{64 in Figures 5.7, 5.8, 5.9, and 5.10.

In the next example, we will choose initial condition projected onto one Bloch band.

With this choice of initial condition, there will be no initial error.

Example 5.3.4. In this example we will choose an initial condition ΠW,ε
n�1ψ0pxq given by

(2.15) with ψ0pxq � Apxq exp
�
iSpxq{ε� where Apxq � expp�50x2q and Spxq � 0.3x �

0.1 sinpx � 0.5q with lattice potential expp�20x2q and external potential Upxq � 0. We

compute the solution at time T � 0.35 using the Strang-Splitting spectral method and

GIFGA. The L2 errors are recorded in Table 5.4. The convergence order is 0.9814. We

display plots of the solution for ε � 1{64, 1{128 and 1{256 in Figures 5.11, 5.12, and

5.13.
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Figure 5.7: Example 5.3.3 plot of real parts of ψεFGAp0.35, xq and ψSpecp0.35, xq along
side with the L2 error for ε � 1{8.

Figure 5.8: Example 5.3.3 plot of real parts of ψεFGAp0.35, xq and ψSpecp0.35, xq along
side with the L2 error for ε � 1{16.
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Figure 5.9: Example 5.3.3 plot of real parts of ψεFGAp0.35, xq and ψSpecp0.35, xq along
side with the L2 error for ε � 1{32.

Figure 5.10: Example 5.3.3 plot of real parts of ψεFGAp0.35, xq and ψSpecp0.35, xq along
side with the L2 error for ε � 1{64.
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Figure 5.11: Example 5.3.4 plot of the real part of ψSpecp0.35, xq and ψεFGAp0.35, xq
alongside with the L2 error of ψSpecp0.35, xq � ψεFGAp0.35, xq for example 5.3.4. We
use ε � 1{64.

Figure 5.12: Example 5.3.4 plot of the real part of ψSpecp0.35, xq and ψεFGAp0.35, xq
alongside with the L2 error of ψSpecp0.35, xq � ψεFGAp0.35, xq for example 5.3.4. We
use ε � 1{128 .
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Figure 5.13: Example 5.3.4 plot of the real part of ψSpecp0.35, xq and ψεFGAp0.35, xq
alongside with the L2 error of ψSpecp0.35, xq � ψεFGAp0.35, xq for example 5.3.4. We
use ε � 1{256 .

Example 5.3.5. In this example we choose the initial condition to be ψ0 � Apxq exp
�
iSpxq{ε�

with Apxq � exp p�50x2q cosppx� 0.5q{εq and Spxq � 0.3px� 0.5q � 0.1 sinpx� 0.5q. The

exact solution is computed using the Strang-splitting spectral method. This is done at time

T � 0.2. The potential used is VΓpxq � expp�25x2q with external potential Upxq � 1

2
x2.

Our results are shown in Table 5.5. The convergence order of the data in table 5.5 is

0.9488. We display plots of the solution for ε � 1{128, 1{256 and 1{512 in Figures 5.14,

5.15, and 5.16.

Example 5.3.6. In this example we choose the same initial condition as in Example 5.3.5.

All of the same parameters as in Example 5.3.5 will also be used. The exact solution is

again computed using the Strang Splitting spectral method at time T � 0.2. The only dif-

ference is that we change the external potential to Upxq � cospxq. The convergence order

of the data in Table 5.6 is 0.8439. We display plots of the solution for ε � 1{128, 1{256

and 1{512 in Figures 5.17, 5.18, and 5.19.
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Error ||ψSpec�ψFGA||l2 Rate of Convergence

ε � 1{64 0.059576

ε � 1{128 0.038811 .61826

ε � 1{256 0.015225 1.3500

ε � 1{512 0.0082833 0.8782

Table 5.5: L2 error of ψSpecp0.2, xq � ψεFGAp0.2, xq for various values of ε. The sum-
mation in ψεFGA is over the first 8 lowest energy bands.

Figure 5.14: Example 5.3.5 plot of the real parts of ψεFGAp0.2, xq and ψSpecp0.2, xq
along side with the L2 error for ε � 1{128.

Error ||ψSpec�ψεFGA||l2 Rate of Convergence

ε � 1{128 0.039714

ε � 1{256 0.019057 1.0593

ε � 1{512 0.012327 0.6285

Table 5.6: L2 error of ψSpecp0.2, xq � ψεFGAp0.2, xq for various values of ε. The sum-
mation in ψεFGA is over the first 8 lowest energy bands.
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Figure 5.15: Example 5.3.5 plot of the real parts of ψεFGAp0.2, xq and ψSpecp0.2, xq
along side with the L2 error for ε � 1{256.

Figure 5.16: Example 5.3.5 plot of the real parts of ψεFGAp0.2, xq and ψSpecp0.2, xq
along side with the L2 error for ε � 1{512.
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Figure 5.17: Plot of real parts of ψεFGAp0.2, xq and ψSpecp0.2, xq along side with the
L2 error for ε � 1{128.

Figure 5.18: Plot of real parts of ψεFGAp0.2, xq and ψSpecp0.2, xq along side with the
L2 error for ε � 1{256.
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Figure 5.19: Plot of real parts of ψεFGAp0.2, xq and ψSpecp0.2, xq along side with the
L2 error for ε � 1{512.
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Chapter 6

Artificial boundary conditions for

the nonlinear Schrödinger equation

6.1 The nonlinear Schrödinger equation and artifi-

cial boundary conditions

We start this chapter with a brief introduction to the nonlinear Schrödinger equation

(NLS),

iεBtψε � �ε
2

2
∆ψε � V pxqψε � fp|ψε|2qψε, (6.1)

where i � ?�1 is the imaginary unit, ψpx, tq is a complex-valued solution to equation

(6.1), and f is a real-valued smooth function. V pxq represents a smooth external poten-

tial. The constant ε p0   ε ! 1q is described in terms of physical constants by equation

(1.5). The initial condition ψε0pxq will be in L2pRdq. As before, we will also consider the

case of periodic potentials so that equation (6.1) becomes,

iεBtψε � �ε
2

2
∆ψε � VΓpxqψε � Upxqψε � fp|ψε|2qψε, (6.2)
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where VΓpxq is periodic with respect to Γ � r0, 1qd. From now on, we will work in

one-spatial dimension. Higher dimensional generalizations is straight forward.

Artificial boundary conditions.

The purpose of constructing artificial boundary conditions is to approximate the

solution to a whole-space problem, to that restricted to a bounded domain. The main

idea is to construct boundaries to absorb waves arriving at artificial boundaries. One

way to achieve this is to follow Kuska’s method for absorbing boundary conditions (see

[26]). We will now describe this method. Rewrite the NLS (6.1) in the operator form

iεBtψε � Lψε �Nψε, (6.3)

where L � �ε2∆ψε, and N � pV pxq � fp|ψε|2qqψε. Let us approximate L by Ln where

n will be related to the convergence of the Padé expansion to be described later. Thus,

equation (6.3) becomes,

iεBtψε � Lnψε �Nψε. (6.4)

To derive Ln, we will assume that the boundary is transparent to plane waves

ψpx, tq � exp p�ipωt� ξxqq , (6.5)

where ω is the frequency and ξ is the wave number. Inserting this plane wave into the

Schrödinger equation with zero potential yields ε2ξ2 � 2εω, or

εξ � �
?

2εω. (6.6)

The � sign corresponds to right-moving waves and the � sign to waves left-moving waves.

Now we use the padé expansion about ω0 for
?� to third order,

?
2εω � ?

ω0
ω0 � 6εω

3ω0 � 2εω
. (6.7)
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Denote k0 � ?
ω0 and substitute (6.7) into (6.6) to get

εξ � �k0
k2

0 � 6εω

3k2
0 � 2εω

. (6.8)

Next, we use the dual relation

ξ ô �iBx ω ô iBt (6.9)

to rewrite equation (6.8) as

�2ε2ψxt � 6iεk0ψt � 3iεk2
0ψx � k3

0ψ � 0, (6.10)

which further simplifies to

iεBtψ � �p2iεBx � 6k0q�1p3iεk2
0Bx � k3

0qψ :� L3ψ. (6.11)

Now we substitute equation (6.11) into equation (6.4),

�2ε2Bx,tψ � 6iεk0Bxψ � 3iεk2
0Bxψ � k3

0ψ � rV pxq � fp|ψ|2qsp2iεψx � 6k0ψq. (6.12)

We now summarize the boundary strategy discussed above,$''''&''''%
iεBtψ � �ε

2

2
B2
xψ � V pxqψ � fp|ψ|2qψ, xl   x   xr, 0   t ¤ T

equation (6.12), withxl ô � andxr ô �
ψpx, 0q � ψ0pxq, xl ¤ x ¤ xr

(6.13)

See [99],[97] for related work.

6.2 Time-splitting FGA method for the NLS

First-order time-splitting FGA method.

Because the Fourier integral operator, equation (2.19), is limited to solving linear

problems, to solve nonlinear problems, we inevitably must split the NLS into its linear
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and nonlinear parts. Following the Strang-splitting spectral method in chapter 4, we

discretize time 0 � t0   t1   t2   � � �   tN � tfinal and split (6.2) in two parts,

iεBtψε � �ε
2

2
∆ψε � VΓpxqψε � Upxqψε, (6.14)

and

iεBtψε � f
�|Ψε|2�ψε. (6.15)

The linear Schrödinger equation, (6.14), can be solved numerically using a direct method

like the Strang-splitting spectral method. However, due to the high computational cost

of direct methods, we will apply the FGA to solve equation (6.14).

We may approximate (6.15) at time tn�1 by

ψεptn�1, xq � exp

�
� i

ε
fp|ψεFGAptn�1, xq|2δtq



ψεFGAptn�1, xq. (6.16)

Iterating the above algorithm using Nt number of time steps starting at time t � 0 and

ending at some time t � T with δt � T

Nt

will give us an approximate solution ψεpT, xq
to the NLS equation (6.2).

Remark. The exact solution to equation (6.15) is

exp

�
� i

ε

» tn�1

tn

fp|ψFGAps, xq|2q


ψFGAptn�1,xq, (6.17)

but for small time step, we may approximate the evaluation of the integral as in equation

(6.16).

Accuracy. Assume the numerical integrator used for solving (5.12) is of order p

with the time step δt, as noted in equation (5.27), the error of computing (6.14) is

O
�
ε� pδtqp

ε
� maxn ∆P n

	
� ||°N

n�1

±W,ε
n ψε0||L2 . The error of computing (6.16) and

total splitting error is both Opδtq. Therefore, the total accuracy is of

O
�
ε� δt� pδtqp

ε
� maxn ∆P n

	
� ||°N

n�1

±W,ε
n ψε0||L2 .
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If equation (6.1) does not contain a periodic potential, one can improve the accuracy

by using the FGA method described in chapter 4. In this case, the accuracy will be

O
�
ε� δt� pδtqp

ε

	
.

Complexity of first-order NLS algorithm. Typically, the time-splitting method re-

quires δt to be O pεq, or Nt � Op1{εq so that equation (6.15) is computed accurately.

We also need δx � O pεq, or Nx � Op1{εq. Thus the total complexity is Nt times the

complexity of computing the solution to equation (6.14).

FGA-Based Strang-splitting.

We can increase the accuracy to second order in time by splitting equation (6.2) in

three parts. Given a time discretization, 0 � t0   t1   t2   � � �   tN � tfinal we can

describe the approximate solution by the following algorithm:

iεBtψε � fp|ψε|2qψε, (6.18)

iεBtψε � �ε
2

2
∆ψε � pVΓpxq � Upxqqψε, (6.19)

iεBtψε � fp|ψε|2qψε, (6.20)

and solving equation (6.18) and (6.20) on half a time step and equation (6.19) on one

time step. More explicitly, the solution at time tn�1 is given by

ψεptn�1,xq � exp

�
� i

2ε
fp|ψε|2qδt



ψ�ptn�1,xq (6.21)

where ψ�ptn�1,xq is the FGA solution to equation (6.19) with initial condition

exp

�
� i

2ε
fp|ψε|2qδt



ψεptn,xq. (6.22)
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Alternative. Note that the option of splitting the operators on the right-hand-side of

(6.2) is not unique, and another possibility is to split (6.2) as

iεBtψε � �ε
2

2
∆ψε, (6.23)

and

iεBtψε � pVΓpxq � Upxqqψε � f
�|ψ|2�ψε. (6.24)

One can get the FGA solution at time tn�1 to (6.23) by using (1.53) with initial condition

ψptn, xq. The solution to (6.24) can be approximated by

ψptn�1,xq � exp

�
� i

ε
δt
�
VΓpxq � Upxq � fp|ψFGAptn�1, xq|2q

�

ψFGAptn�1,xq. (6.25)

Iterating the above two equations using Nt number of time steps starting at time t0 �
0 and ending at some time tN � T with δt � T

N
will still give us an approximate

solution ψpT, xq to (6.1). The disadvantage in using this method is that we don’t take full

advantage of ψFGA to save computational cost for highly oscillatory periodic potentials.

Boundary strategy for the FGA in one-dimension.

In this subsection, we briefly describe FGA-based artificial boundary conditions for

the linear Schrödinger equation (1.4) (or (1.9)), and we will introduce how to generalize

it to the nonlinear Schrödinger equation.

The key idea in deriving equation (6.13) is to make the boundaries transparent to

plane waves. Motivated by this observation, we propose to delete Gaussian functions,

whose trajectory is determined by the Hamiltonian flow, that fall outside the boundary.

Let us assume that ψ0 is compactly supported in Ω0 and suppose that we are only

interested in the solution to (6.14) on a domain Ω1 � pxl, xrq. In order to accurately

compute the weight function

xGε
q,pp�qunpp, �q, ψε0y (6.26)
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of equation (3.5), we will need to define our phase space grid in q-space to cover Ω0 �
Op?εq. The second term is included because the width of the semiclassical Gaussian

is
?
ε and Gaussian functions whose centers are within a few

?
ε distance of Ω0 will

contribute a non-negligible portion of equation (6.26).

We will therefore place Nq � Op1{
?
εq Gaussian functions on the support Ω0 of ψ0.

If one desires the solution for all x P Ω1, we will need to retain the Gaussian functions

centered at QpT, q, pq whose distance to Ω1 is less than Op?εq. In summary, for sufficient

accuracy, our boundary strategy needs to satisfy:

1. Retain the Gaussians centered at q located a distance less than Op?εq of Ω0.

2. Retain the Gaussians centered at QpT, q, pq located a distance less than Op?εq

of Ω1.

Example 6.2.1. We show the accuracy our boundary strategy in this example. We use

Ω0 � p�1, 1q and Ω1 � p�1, 0q with the initial condition

ψ0pxq � exp p�50px� 1{2q2q � exp p�50px� 1{2q2q and potential V pxq � expp�0.2x2q.
We remove the Gaussians that are further than 2

?
ε away from the domains. We solve

this at time t � 0.25, and plot ReψεFGAp0.25, xq against Reψp0.25, xq in figure 6.1. Notice

that ReψεFGA closely matches the exact solution in Ω1, as it should.

one-dimensional FGA-based Strang-splitting Algorithm.

Suppose we are interested in the solution ψεpx, T q on the domain ra, bs. Let ∆x �
pb� aq{M be the spatial mesh size and ∆t � T {N be the temporal mesh size, where M

and N are positive integers of order ε�1. Set up the mesh

xj � a� j∆x, tn � nk, j � 0, 1, 2, � � � ,M, n � 0, 1, 2, � � � , N. (6.27)
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Figure 6.1: Plot of real parts of ψεFGAp0.25, xq and ψSpecp0.25, xq.

Also define the domain D � ra, bs for which we will apply the boundary strategy. Let ψn,εj

be the approximation ψεpxj, tnq. Obtaining an approximate solution from time t � tn to

time t � tn�1 can be done as follows:

Compute the temporary variable U�,ε
j ,

U�,ε
j � e�

i
2ε
fp|Un,εj |2∆tqUn,ε

j , j � 0, 1, 2, � � � ,M. (6.28)

Apply the frozen Gaussian approximation from time tn to time tn�1 with initial condition

U�,ε.

U��,ε
j � Iε pU�,εq , j � 0, 1, 2, � � � ,M. (6.29)

Here, the notation Iε pφq denotes the FGA solution with initial data φ. It is at this step

where we remove Gaussian functions whose distance to D is greater than Op?εq. The

numerical solution at the next time step is approximated by,

Un�1,ε
j � e�

i
2ε
fp|U�,εj |2∆tqU��,ε

j , j � 0, 1, 2, � � � ,M. (6.30)

Finally, we iterate the above three equations until we reach the desired time.
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Table 6.1: l2 and l8 error of ||ψSpecp0.4,xq � rψεFGAp0.4,xq|| of example 6.3.1 on
different computational domains for ε � 1{128.

D � rxl, xrs [-1,1] [-1.5,1.5] [-2,2] [-2.5,2.5]

l2 Error 4.6858 � 10�3 4.6868 � 10�3 4.6862 � 10�3 4.6861 � 10�3

l8 Error 7.2755 � 10�3 7.2767 � 10�3 7.2760 � 10�3 7.2756 � 10�3

6.3 Numerical examples

Example 6.3.1. (1d Schrödinger) We choose the initial condition, potential function, and

nonlinearity to be

ψ0pxq � expp�25x2q, V pxq � expp�0.2x2q, fpxq � x, (6.31)

respectively. We will test the performance of the FGA-based second-order time-

splitting algorithm for ε ! 1 and on different computational domains.

Table 6.1 compares l2 and l8 errors between the exact solution (computed using

the time-splitting spectral method) and that of the FGA-based algorithm. We omit

Gaussians not within 2
?
ε of the domain D for different choices of domains for ε �

1{128. Table 6.2 compares the performance of the FGA-based Strang-splitting as ε varies.

To satisfy the required complexity of the FGA, we use approximately 2ε�
1
2 number of

Gaussians per unit interval in phase space. The mesh size δt used for the time-splitting

is δt � Tε with δx � 1
4
ε. The l2 and l8 error did not significantly change as the support

of the solution is mostly contained in r�1, 1s (see figure 6.2).

Example 6.3.2. (1d Schrödinger) We choose the initial condition, potential function, and

nonlinearity as

ψ0pxq � expp�25x2 � ipx2 � 3xq{εq, V pxq � expp�0.2x2q, fpxq � x (6.32)
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Figure 6.2: Real and Imaginary parts of ψExactp0.4,xq ψ
ε
FGAp0.4,xq and l8 error of

example 6.3.1 using ε � 1{128.
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Table 6.2: l2 and l8 error of ||ψSpecp0.4,xq � rψεFGAp0.4,xq|| of example 6.3.1 using
different values of ε.

ε ε � 1{64 ε � 1{128 ε � 1{256

l2 Error 4.3820 � 10�3 4.6868 � 10�3 6.5000 � 10�3

l8 Error 6.3271 � 10�3 7.2767 � 10�3 9.4334 � 10�3

Table 6.3: l2 and l8 error of |ψSpecp0.4,xq � rψεFGAp0.4,xq|.
Gaussians per

unit interval

1{?ε 2{?ε 4{?ε

ε � 1{16, l2 Null 6.4143 � 10�3 6.4348 � 10�3

ε � 1{16, l8 Null 6.9843 � 10�3 7.0998 � 10�3

ε � 1{64, l2 Null 2.6039 � 10�2 2.6055 � 10�2

ε � 1{64, l8 Null 3.6233 � 10�2 3.6155 � 10�2

In table 6.3, we compute the solution to example 6.3.2 using the Strang-splitting

FGA algorithm and compare it with the exact solution. We use the same mesh size as in

example 6.3.1. Figure 6.3 displays the error between the real and imaginary parts. We

choose D � r�2, 2s. We also compute the l2 and l8 error as the number of Gaussians

increases for ε � 1{16 and ε � 1{64. Table 6.3 summarizes our results. We see that

using ε�
1
2 number of Gaussians is too few, and that there is no significant improvement

in accuracy by using more than 2ε�
1
2 per unit interval.

Our last example contains a highly oscillatory periodic potential, thus we will use the

Bloch-based FGA to approximate equation (6.19).

Example 6.3.3. (1d Schrödinger with periodic potential) We choose the initial condition

and nonlinearity as

ψ0pxq � expp�25x2q, fpxq � x. (6.33)
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Figure 6.3: Plot of Rerψexs � RerψFGAs and Imrψexs � ImrψFGAs for
ε � 1{32, 1{64, 1{128, and1{256 for example 6.3.2

We take the potential to be V px{εq where V pxq � expp�x2q is extended periodically with

respect to the lattice r�π, πq. Note that this extension is not analytic on �π and π but

due to the rapid decay of the exponential function, this poses no problem numerically.

Figure 6.4 displays the FGA-based solution vs the exact solution for ε � 1{16.

Figure 6.4: Plot of Rerψexs and RerψFGAs and Rerψex � ψFGAs for ε � 1{16 for
example 6.3.3
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6.4 Concluding Remarks

In this thesis, we developed the Bloch-decomposition based FGA for the linear Schrödinger

equation with periodic potentials in the semiclassical regime. We prove that the conver-

gence of our method satisfies the inequality,

||ψExactpt,xq � ψFGApt,xq||L2 ¤ Opεq. (6.34)

The method we have presented is invariant with respect to the gauge choice and thus

avoids the difficulty of numerically computing the Berry phase. By splitting the NLS

operator into its linear and nonlinear parts, we are able to apply the FGA to the NLS.

To compute the solution of the NLS on an unbounded domain, we propose the boundary

strategy of removing Gaussians whose distance is greater than Op?εq of the domain. We

produce several numerical examples confirming our methods.
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