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Abstract

Semiclassical methods for high frequency wave propagation in periodic media.
by

Ricardo A. Delgadillo

We will study high-frequency wave propagation in periodic media. A typical example
is given by the Schrodinger equation in the semiclassical regime with a highly oscillatory
periodic potential and external smooth potential. This problem presents a numerical
challenge when in the semiclassical regime. For example, conventional methods such as
finite differences and spectral methods leads to high numerical cost, especially in higher
dimensions. For this reason, asymptotic methods like the frozen Gaussian approxima-
tion (FGA) was developed to provide an efficient computational tool. Prior to the de-
velopment of the FGA, the geometric optics and Gaussian beam methods provided an
alternative asymptotic approach to solving the Schrodinger equation efficiently. Unlike
the geometric optics and Gaussian beam methods, the FGA does not lose accuracy due
to caustics or beam spreading.

In this thesis, we will briefly review the geometric optics, Gaussian beam, and FGA
methods. The mathematical techniques used by these methods will aid us in formu-
lating the Bloch-decomposition based FGA. The Bloch-decomposition FGA generalizes
the FGA to wave propagation in periodic media. We will establish the convergence of
the Bloch-decomposition based FGA to the true solution for Schrédinger equation and
develop a gauge-invariant algorithm for the Bloch-decomposition based FGA. This algo-
rithm will avoid the numerical difficulty of computing the gauge-dependent Berry phase.
We will show the numerical performance of our algorithm by several one-dimensional

examples.

vi



Lastly, we will propose a time-splitting FGA-based artificial boundary conditions
for solving the one-dimensional nonlinear Schrédinger equation (NLS) on an unbounded
domain. The NLS will be split into two parts, the linear and nonlinear parts. For the
linear part we will use the following absorbing boundary strategy: eliminate Gaussian

functions whose centers are too distant to a fixed domain.
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Chapter 1

Introduction

In this chapter we will introduce the semiclassical Schrodinger equation and some of its
early asymptotic solutions. We also include a direct numerical method for solving the
semiclassical Schrodinger equation, the Strang-splitting spectral method. The Strang-
splitting spectral method will be used throughout our thesis to obtain the exact numerical

solution to the semiclassical Schrodinger equation.

1.1 The semiclassical Schrodinger equation and its
approximate solutions

We begin by introducing the Schrodinger equation in physical units,

0 h?

where m is the atomic mass and £ is the reduced Plank constant. Uy(x) represents

an external potential, for example, a quadratic function such as

m_“8|m|27

U()(CB) = B

wo € R,z e R (1.2)
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Such potential is used to confine electrons about the origin.

We will nondimensionalize this equation by performing the substitutions,

F= @) =2 1), (1.3)

t = w,t,
Ts

Inserting this into equation ((1.1]), multiplying by 1/ (mw%xi/ %), and dropping tildes

we obtain,
iea—lp = —iAw + Ulx)y (1.4)
o 2 ' '
The parameter ¢ is defined by,
h
= 1.5
c woma? (1.5)
and the potential U(x) is given by,
2
Uz) := % (1.6)

In many physical applications, such as modeling the dynamics of electrons in crystals,

equation (|1.4) contains a periodic lattice potential. For example, the potential
(1.7)

3
h22

Viz) =), 2—2 sin?(&x)

=1

with & = (&, &, &) and & € R is commonly used when studying Bose-Einstein condensate

[T]. To incorporate this potential, we modify equation (1.1)) by,

O P N+ V) + U)o (1.8)

lhE  2m

Using the same substitutions as in equation (1.3), multiplying by 1/(mw?2z?), and

omitting the tildes we obtain,

(1.9)

2

L R o

le— =
2

ot
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where the potential Vi() is given by,

V(zsex)

2,2
mwgir2

Vr(z) = (1.10)

The parameter ¢ is called the semiclassical parameter. Our goal is to study values of
€ that lie within 0 < ¢ « 1. The spatial dimension will be denoted by d, it is a positive
integer, and we will take as initial condition for equations or (L.9), ¥§(z) in L2(R?).
= (t, x) will denote a complex-valued solution to equations or (1.9). In our study,
the potentials will not be restricted to the forms given by equations and , but
will also include a class of general smooth potentials. In particular, we will let Vi-(x) be
a function in C(R?), periodic with respect to the lattice I := [0,1)%. U(z) will also be
assumed to be a smooth function in C(R?).

Direct numerical approximation to equation such as finite differences or spectral
methods are computationally more expensive compared to asymptotic methods. For
example, the Crank-Nicolson scheme or the Dufort-Frankel requires a mesh size of o(¢)
[2, B] while the time-splitting spectral method requires a mesh size of O(e) [4]. In the
presence of a highly oscillatory potential, as in equation , we must further restrict the
mesh size of the time-splitting spectral method to o(¢) in order to capture its dynamics.
Because of this, there has been many attempts to find solutions to equation and
(1.9) asymptotically. One of the earliest attempt to solve equation asymptotically is
the WKB method. Although this method is highly efficient, it suffers from the formation
of caustics [0 6, [7] for which the solution becomes undefined.

The Gaussian beam method (GBM) [8] was then introduced by Popov to overcome
the problem at caustics and decrease the computational cost of conventional methods.
One draw back of the GBM is that it looses accuracy from the spreading of the beams.
It was only until recently, that the frozen Gaussian approximation (FGA) [9, 0] was

developed to deal with the loss of accuracy of the GBM by using Gaussian functions of

3
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fixed width in phase space.
In this thesis we generalize the frozen Gaussian approximation for computation of the

Schrodinger equation ((1.9)) with periodic potentials.

1.2 Strang-splitting spectral method

This section is devoted to solving the Schrédinger equation exactly by using the time-
splitting spectral approximation. This non-asymptotic method for solving equation (|1.4))
(or (1.9)) will be used later to numerically compute the exact solution to equation (|1.4)

and (1.9). For more details, we refer the reader to [4].

First-order time-splitting spectral method

Suppose we are interested in the solution to equation (1.4) at time ¢i,q. Suppose
also that we have a discretization of time, 0 = ¢y <t; <ty < -+ < tn = tfina, so that

0t = tfina/N. We split equation ((1.4) in two parts,
2
ie@aﬁa = —EA@ZJS, (111)

and

ied® = Ula)y*. (1.12)

Equation ([1.11)) will be solved exactly for one time step, starting at ty, using the

Fourier transform. The solution to equation ((1.12)) is given by,

V@) = exp (-0 (@) ) 0"t @), (113

where ¥*(t,.1, ) is the solution to equation ([1.11)) at time ¢,,; with initial condition

WV (tn, x).
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Strang-splitting spectral method

We can improve the order of accuracy in time by using the Strang-splitting spectral

method. This method splits the equation (|1.4]) into 3 parts,

ied,)° = U(x)y®, (1.14)
52

id = — AV, (1.15)

iedp)® = U(x)y*®, (1.16)

where equation ((1.14)) and (1.16)) are solved on half a time step and equation (1.15)) on

one time step. More explicitly, the solution at time ¢,, is given by,
i *
@) = exp (=500t ) 0" (001, 2). (1.17)

where ¢*(t,,,1, ) solves equation with initial condition exp (—Q%U (w)5t> WV (tn, x).
Equation (|1.9) can also be solved exactly using the Strang-splitting spectral method

by replacing the potential U(x) with Vr(x/e) + U(x). Typically, the Strang-splitting

spectral method requires a spatial meshing of size O(e) and a time step of size o(¢); this

is proved in [4].

1.3 WKB approximation

We now discuss several asymptotic solutions of equation (1.4]). The first asymptotic
solution we will introduce is known as the WKB method.
This ansatz is one of the earliest attempts for obtaining an asymptotic solution to

the Schrodinger equation and is also known as the geometric optics ansatz.

5
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The ansatz is given by,
V(x,t) = (ap(t, ) + cai(t,z) + 2aq(t, x) + - -- )eés(t’x). (1.18)

The motivation for using this ansatz is to understand the highly oscillatory structure
of the solution to equation (L.4]). S(t,x) is real valued and is called the phase. a° :=
ao(t, ) +eay(t, ) + c2as(t, x) + - - - is possibly complexed valued and is called the ampli-
tude. Substituting this equation into and grouping terms of O(1) and O(e) gives
us,
0,S + %|VS|2 +U(x) =0, (1.19)
and
da0 + VS - Vag + %AS —0, (1.20)

with initial conditions S(0,z) = Si,(x) and ao(0,2) = a;,(z). Equation (1.19)) can be
solved analytically using the method of characteristics. The characteristic X; : s —

x(t, s) satisfies the following Hamiltonian flow:

C(li—:: = p(t, s), xz(0,s) = s,
] (1.21)
= =V U(alt,s)), p(0,8) = VsSin(s).
The solution S(t,x) is given by,
t
S(t,x) = S(0,x) + J %|VS(T, s(t,x))|* — U(s(r,x))dr. (1.22)
0

This is only defined up to some (possibly) finite time 7' > 0 due to the crossing of

characteristic curves. Furthermore, aq satisfies

ain ()
Ji(s(t, @)’

where J; denotes the Jacobian determinant of the Hamiltonian flow. The equation

ao(t,x) = (1.23)

of ag(t,x) is also defined up to some (possibly) finite time 7" > 0. When characteristic
6
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curves cross, the Jacobian determinant .J; is no longer defined. This is problematic as we
are seeking solutions in L?(R%). We also note that the equations for ag(t, ) and S(t, x)
are independent of . This independence of € makes the WKB method computationally

efficient compared to conventional numerical methods.

1.4 Gaussian Beam method

The Gaussian beam method will improve upon the WKB method by removing the
problem of caustics. We will present material found in [I1] throughout this section. The

Gaussian beam ansatz has the form
o(t, @, o) = A(t,y)eTEYI/E, (1.24)
where

T(t.w,) = S(2) + p(t.y) - (@~ y) + y(@ -y M y)@—y),  (125)
where S € R, p € RY and M € C™? and y = y(t,y,) is the center of the beam.
The Gaussian profile is maintained by keeping the imaginary part of M = V2 positive
definite (see theorem [1.4.1)). This differs from the WKB ansatz in that the GBM uses a
complex phase, and we now use a Taylor expansion of the phase function to second order
about y. If one substitutes this ansatz into equation (|1.4)) we obtain the set of ordinary

differential equations,

le_? _p (1.26)
Z—f - _v,U, (1.27)
% — %|p|2 —U, (1.28)
% = —M? - V32U, (1.29)
% _ %(tr(M)) A, (1.30)

7
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where p, U, S, M, and A are functions of (¢,y(¢,y,)). Equations (1.26) and ((1.27))
describe the associated Hamiltonian flow (y(¢,y),p(t,y)) to (1.4). Part 3 of the next

theorem justifies the claim that ¢(¢, x, y,) retains a Gaussian profile for all time.

Theorem 1.4.1. Let P(t,y(t,y,)) and R(t,y(t,y,)) be the (global) solutions of the equa-

tions
dP dR 9
— = — = — U)P 1.31
=R S =—(VAU)P, (131)
with initial conditions
P(OvyO) = [7R(O7y0) = M(07y0)7 (132>

where the matriz I is the identity matriz and Jm(M(0,y,)) is positive definite. Assume
M(0,y,) is symmetric. Then, for each initial position yy, we have the following.

1. P(t,y(t,y,)) is invertible for all t > 0.

2. The solution to equation s given by

M(ta y(tu yO)) = R(t? y(ta yO))P_l(t7 y(t7 yO)) (133)
3. M(t,y(t,y,)) is symmetric and Im(M(t,y(t,y,))) is positive definite for all t > 0.
1
4. Not only is the Hamiltonian U + §|p|2 conserved along the y-trajectory, another

quantity A®det P is also conserved, which means A(t,y(t,y,)) can also be computed by

A(t,y(t, yo)) = [(det P(t,y(t,yo))) 2A%(0,y,)] "%, (1.34)

where the square root is taken as the principal value.

For details on the proof of Theorem see [11] and [12].

Beam summation.

By construction, ¢(t, x,y,) is a solution to equation (1.4)) for each y, € R and thus so

is the sum of finitely many such expressions. The next theorem, found in [11], summarizes
8
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this observation at time ¢ = 0. A formulation for higher order Gaussian beams can also

be found in [13].

Theorem 1.4.2. Let Ay € C*(RY) n I2(R?) and Sy € C3(RY), define

() = Ag(m)e®/E, (1.35)
05(, yo) = Ao(yo)e @7, (1.36)
where
1
To(x, yo) = Tao(yo) + Tho - (T — yo) + 5(37 — o) Tyo(z — ), (1.37)
Tuo(Yo) = So(Yo), Tpo(Yo) = VaSo(yo): Tyo(Yo) = VaSo(yo) +il. (1.38)
Then
[ (Qm) (@ o) .y, — Vi) < Ot (1.39)
12
where rg € C(R?), 1o = 0 is a truncation function with rg := 1 in a ball of radius 6 > 0

about the origin and C is a constant related to 6.

At a later time t > 0, the Gaussian beam summation approximates the solution to

the Schrédinger equation ((1.4) by,

[ V18

wta) = [ (5r2) i =)o oo (1.40)

2me

In discretized form ¢f,(t, ) is approximated by,

0 d/2 . '
Ot, ) Z (Qm) ro(@ — y(t, yp)) oL (L, @, yo) Ay,. (1.41)

Remark. The approxunatlon of ¢ (t, x) given by (1.41]) made use of the Taylor expansion
about yé, hence it looses accuracy when the width of the Gaussian function ¢j, becomes

too large. We call this phenomena beam spreading.
9
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Remark. In view of theorem part 4, we see that we no longer have the problem of

caustics.

1.5 Frozen Gaussian approximation

Because of the problem of beam spreading suffered by ¢f, (¢, ), the frozen Gaussian
approximation (FGA) was developed [I4]. The FGA method removes the inaccuracy
introduced in the Taylor expansion of ¢ (¢,x) by using a superposition of Gaussian
functions of fixed widths in phase space. One may also draw motivation for decomposing
the solution in terms of Gaussian functions of fixed by the work of M. Herman and E.
Kluk, [34]. In quantum chemistry, the FGA method is also known as the Herman-Kluk
propagator. We begin the construction of the FGA by decomposing the initial data into

several Gaussian functions in phase space.

Theorem 1.5.1. For any y§(x) € L*(RY),

€ 2d/2 e ~E e
@) = Gy |, Ganl@ ([ Gaptitody ) dad. (142)
where
c (z) — LT B S
Gq,p(w)—exp( SR [ G q))- (1.43)

Proof: Fix a f € L*(R), by definition, we have

9d/2 _
G |, Casl®) || G w)yiad (1.44)
2d/2 _
= reyi JR3d Gop(®)Gy ,(y) f(y)dydgdp. (1.45)

10
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Integrating in q first,

G ()G () da — P E—9)/e f Je-al?/(20) - ly-al?/(22) g 146
y ap(®)Gqp(y)dg = € L q (1.46)
_ oip(a—y)/z o=yl /(42) J e Ha=tT 4q (1.47)

R4
= (WE)d/2eip~(wfy)/€€*Iw*y\z/(lls) (1.48)

Denoting fs(m, y) = e @Y/ £(4) | the right hand side of becomes

1 ip-(x— E _—|xx— 2 £ 1 in-(z— ENE
3 ﬂem W/ v/ f () dyydp B f J @V T (g y)dydp  (1.49)
R2d Rad
1 o
~ [ e e )
R2d

— f*(z,z) (by Fouricr inversion formula)

(1.51)

= e lz2lP/U) £ () = f(m) (1.52)

Now that we legitimized the decomposition of any L?(R%) data in terms of Gaussian
functions in phase space, we propagate the center of the Gaussian functions using the
Hamiltonian flow of equation ([1.26)) and (1.27)). This leads to the FGA ansatz for solving

(1.4) asymptotically,

€ 2d/2 € i € ~E e
Viaalt, x) = ey L@d a(t, q,p)Gg p(x)e* PV (JRCI Gq,pwo(y)dy) dqdp,
(1.53)
where Q(t, q,p) and P(t,q,p) satisfy the evolution equation
d
d—? _P (1.54)
dP

As in the WKB and Gaussian beam methods, we include ae**/¢ to capture amplitude and

highly oscillatory nature of the solutions to equation (|1.4). Because we are working in
11



phase space, both a and S now depend on (¢, g, p). It remains to be specified the phase
S(t,q,p) and the amplitude a(t, q, p). The evolution for these terms can be determined
by substituting the ansatz into the Schrodinger equation (|1.4]). Upon grouping orders of

¢ and simplifying we obtain,
ds | P2

7 5 U(Q), (1.56)

da 1 1 . 2
i §atr (Z (0. P — lazQaQU)) ; (1.57)

where Z := 0,(Q +1P) and 0, := 0, — i0,.

The frozen Gaussian approximation can be applied to solve the problem with peri-
odic potentials, equation (L.9)), by replacing U(x) with Vi-(x) + U(x). However, many
others have taken advantage of the fact that equation with U(x) = 0 can be solved
exactly by diagonalizing the Hamiltonian operator using the corresponding eigenfunc-
tions, known as Bloch waves. We will discuss Bloch waves in the next chapter. For the
Bloch decomposition-based time-splitting method see [15]. For Bloch-based WKB and
Gaussian beam methods see [16)], [17].

a collaboration with Alice and Bob, and has previously appeared in

12



Chapter 2

Preliminaries

2.1 Notations

Let us start with fixing some notations. We will switch between physical domain and
phase space in the FGA formulation. For clarity, we will use , y € R? as spatial variables,
(g,p) € R?*! as phase space variables. The capital letters X and Y are shorthand
notations for X = x/e and Y = y/e. At times we will use subscripts and superscripts
to denote dependence of a quantity on a variable such as, E,, := F(n). S will denote the

space of Schwartz functions.

2.2 Bloch-decomposition

Denote a unit cell in R? by T' = [0,1)¢ and its reciprocal lattice by I'* = [—m, 7).

The periodic part of the Schrodinger operator (in atomic units) is given by

1
Hpo = =50+ V(a) (2.1)

13



By the theory of compact operators, the spectrum is given by

spec(Hpe) = ) ) En(§) (2.2)

n=1gel'*

where E,(€), for € € I'*| are the eigenvalues (in ascending order) of the operator
1
He = 5(—iVm +&)°+V(x) (2.3)

with periodic boundary conditions on I'. The set {E,(§) : £ € I'*} < R is called the nth
energy band. F, is also called the nth adiabatic surface.
The Bloch waves, also known as adiabatic states, u, (&) (for each n € 1,2,--- and

& € I'*) are the associated eigenfunctions:

Heun (8, ) = En(§)un(§, x) (2.4)

with periodic boundary conditions on I'. We also normalize u,, with respect to « so that

f (€, @) Pl = 1. (2.5)
r

The eigenfunctions for (2.3) and normalization are defined up to a unit complex
number, in particular, for any function ¢ periodic in T'*, %, (€, x) = €*©u, (&, x) also
provides a set of Bloch waves. It is known that the gauge ¢ can be chosen so that u,,(§, x)

is continuous with respect to &. We also define the berry phase:

A () = i L (€, @) Veun(€, x)do (2.6)

foreach £ e ' and n € 1,2, ---. This makes sense as long as we choose a gauge for which
U, 1S smooth.
Bloch waves allows us to decompose the Hilbert space L?(R?) into a direct sum of

Band spaces. For any f € L?(R?), we have the Bloch decomposition

@)= g 3 | tearee= s e e (27)

14



In the above equation, the Bloch transform B : L*(R?) — L*(T*)N is given by

BIE) = s |, Tl w2 W) by 2:5)

As an analog of the Parseval’s identity, we have

| @ de= 3 | 0.0 e 2.9)

As suggested by (2.7) and (2.8, we introduce the notation €2 to denote the phase space

corresponding to one band
Q:=RxT* = {(z,&) |z e R’ £ T} (2.10)

Correspondingly, we will use the notation (gq,p) for a point in Q. For more analysis

concerning Bloch waves see [1§]

2.3 Windowed Bloch transform

We shall now introduce the windowed Bloch transform. This is an analog of the
windowed Fourier transform (also known as the short time Fourier transform) widely

used in time-frequency signal analysis.

Definition 2.3.1. The windowed Bloch transform W : L2(R¢) — L?(Q)" is defined as

2d/4 2d/4 B _
WS)nla,p) = 2y (Un(p,)Gap: [) = 2y JRd Un(p, @) Gqp(x) f () dz, (2.11)

where Gy, is a Gaussian centered at (g, p) € 2, given by
1 9 .
Gep(x) = exp(—§ lx —q|” +ip - (= — q)) (2.12)
The adjoint operator W* : L2(Q)N — L?(R?) is then
2d/4

OV9)(@) =ty 3 [ oG un @900 ) da . (213)

15



Proposition 2.3.2. The windowed Bloch transform and its adjoint satisfies
W*W - IdLZ(Rd). (214)

Remark. Similar to the windowed Fourier transform, the representation given by the
windowed Bloch transform is redundant, so that WW?* =% Id 2. The normalization

constant in the definition of W is also due to this redundancy.

Proof: Fix a f € L*(R%), by definition, we have

2d/2

e Z ﬂu P, @) Ciyp(@)Captin(p, ), fdadp

24/2 _
Gy ﬂ [ 05 )Gap @G0 .27 w) dy i

WWf)(x) =

Let us integrate in q first.

Gap(@)Gqp(y) dg = €7V J ola-al/2-lv-aP/2 g

Rd Rd
- eip~(wy)ewy|2/4f exp<_)q _Tty 2) dq
R4 2
— g2 i () o —le—yl?/4
Hence, denoting fx(y) = e71®=¥/4f(y), we have
WWF)(z dZJ fdun p,x) P E Ve lev g (p y) f(y) dy dp
+ Jr

B (271T)d ZJ fRd“” p.@)e”Vu,(py) fay) dy dp

D @) = e (@) = fla),

The previous proposition motivates us to consider the contribution of each band to the
reconstruction formulae ([2.14]). We define the projection operator I}V : L?(R?) — L*(R?)

for each n € N onto the nth band space as:

16



Definition 2.3.3. The projection of f € L?(R?) onto the nth band space is given by,

d/4
WD) = oy f | o) Gun@W @ P g (219

It follows from ({2.14) that > HZV = ld 2 (gay.

2.4 The Fourier integral operator

Given a classical Hamiltonian h(q,p) defined for (g, p) € 2, the associated Hamilto-

nian flow governs the dynamics of (Q(t, g, p), P(t,q,p)) by:

D _Ven@Pp)
- (2.16)
5 = Veh(Q.P),

on ) with the initial conditions Q(0, q,p) = q and P(0,q,p) = p. We associate to this

flow a real-valued action function S(t,q,p). S(t, q,p) satisfies

The action S(t,q,p) can be obtained by solving the evolution equation

as

o =P Veh(Q.P) - h(Q.P) (218)

with initial condition S(0, g, p) = 0.
Our asymptotic solution to equation (1.4]) will be formulated by the following Fourier

integral operator:
Definition 2.4.1. (Fourier Integral Operator) For u € S(R?? x ,C) and ¢ € S(R¢, C)
we define the Fourier Integral Operator with symbol u by the oscillatory integral
€ 1 1ot
[Z°(w)el(a) = ey ” de ez =VIP (2, y, q,p)p(y) dy dg dp (2.19)
where the complex valued phase function ®(t, x,y, g, p) is given by

i i
o(t,xz,y,q,p) = S(t,q,p) —p-(y—q@) +P-(x - Q) + §Iy—q|2 + §va —QP. (2.20)
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2.5 Semiclassical scaling

It will be convenient to rescale our formulas in the last 4 sections.

Definition 2.5.1. The semiclassical Gaussian function is defined by,

Gy p(T) == exp (— [= ;€q|2 i (@ = q)) : (2.21)

€

where the subscripts (g, p) indicate the center of the Gaussian in phase space.

For convenience, we also provide the semiclassical Fourier transform of G¢ :

~ 1 . —pl? (€ —
Gapl(§) = (o) fRd G5 p(@)e €™ da = exp (— L 2€p| +if (i p)) . (2.22)

We also scale the windowed Bloch transform W : L*(RY) — L?(Q)N.

Definition 2.5.2. the semiclassical windowed Bloch transform W¢ : L?(R%) — L%(Q)N
is given by,
2d/4 2d/4 B B
W fin(a,p) = W (un(p, /)Gy, a.p’ = W JRd Uy (P, m/g)Gq,p(fU)f(fB) de.
(2.23)

Similarly we can scale the projection operator II"Y : L*(R?) — L2?(R¢) for each n € N.

Definition 2.5.3. The projection of f € L?(R?%) onto the nth band space is given by

Ve L2(RY) — L*(RY) for each n € N where

d/a
(V< f)(y) = ﬂ Un(€, 9/) G5, (W) OV (@, €) dac dE. (2.24)

27-[-5 3d/4

It follows from (2.14) and a change of variable that ] IV = Id z2(ga).
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Chapter 3

Bloch-based frozen Gaussian

approximation

3.1 Bloch-based FGA ansatz

We are now ready to state our ansatz for solving equation (1.9) asymptotically.

First, we define the classical Hamiltonian,

hn(q,p) := Ey(p) + Ul(q) (3.1)
for each n = 1,2,---. The corresponding Hamiltonian flow (Q, (¢, q,p), P,(q,p)) and
action function S, (t, q, p) satisfy

d
& Vo (@, P,
D (3.2)
S = — hn Pn )
o VQ,n(Qy: Pr)
and
ds,
dt = Pn : VPnhn(QmPn) - hn(Qna Pn)> (33)

on  with the initial conditions Q,,(0,q,p) = q, P,(0,q,p) = p and S,(0,q,p) = 0, for

eachn=1,2,---.
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To simplify our equations, we will often omit the parameters (¢,q,p) in Q,(t, q,p),

P,(t,q,p), and S,(t, q.p).
The Bloch-based FGA approximates the solution of the Schrodinger equation (1.9)

on the n-th band space to the leading order by

¢;78A(t> x) = I (ano(t, g, P)un(Pr, X)un(p, Y) 5] (), (3.4)
where ¢f is the initial condition. More explicitly, at time ¢, ¥pG, is given by

1

Vpga(t, ) = W “ ano(t, qap)eis"(t’q’p)/eGEQmpn (x)un (P, x/c)
Q

(G ptn(p;+/2),%5())dgdp.  (3.5)

The only term in (3.5)) that remains to be specified is the amplitude a,o(t, g, p). It

solves the evolution equation

Oran o = —ia, 0 An(Py) - VU(Q,,) + %an,o tr (5an V?E(P,) (Zn)fl)

St (2:Q,VU@Q)(Z) 7). (36)

with initial conditions a,(0,q,p) = 292 for each (q,p) and we recall that A, (§) =
(un(&,-),iVeu, (&, -)) is the Berry phase. Here the matrix Z,, associated with the Hamil-

tonian flow (Q,,, P,,) is defined by

Zn(t,q,p) =0, (Q,, +1P,), (3.7)

where 0, := 0y — i0p.
Given any initial condition 1§ € L?(R?), the FGA solution to equation (1.9) is given
by
e 0]
Yiaa = ), Yraa- (3.8)
n=1
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The main focus of this thesis is equation (3.8). We will derive and prove that equation
(3.8) is a valid asymptotic solution. We will also derive a gauge-invariant algorithm in
chapter 8 and apply equation (3.8) to the nonlinear Schrodinger equation with periodic

potentials.

3.2 Convergence theorems for the Bloch-based FGA

One of our required assumptions will be that the external potential is subquadratic:

Definition 3.2.1. A potential U is called subquadratic, if ||03U ()|, is finite for all

multi-index |a| = 2.
We now state the main result of this thesis.

Theorem 3.2.1. Assume that the n-th Bloch band E,(§) does not intersect any other
Bloch bands for all € € T* and the Hamiltonian h,(x,€) is subquadratic. Let % be
the propagator of the time-dependent Schréodinger equation (1.9) with initial condition

s € L2(R?). Then for any given T, 0 <t < T and sufficiently small €, we have

sup H U (I 248) — T (ap gtin (P, /2 )iin (, /) )0

0<t<T

< CT,n‘SHw(E]HLQ' (39)

L2
Remark. Note that 155, approximates the time evolution of IT1YV¥¢g, which is the n-
th band contribution to the initial condition in the reconstruction formula (2.14). In
particular, if the initial condition is concentrated on the n-th band in the sense that
Y5 = IIV595, the theorem states that the solution to (1.9)) is approximated by ¥pga

with O(e) error.

Remark. We can also construct higher order approximations by replacing the term
n.oUn (P, x/c) with an e-expansion of the form b, o + €by 1 + €%bpo + ... + X 7b, gy

where b, 0 = @y oun(Py,x/c). This will give an approximate solution 1/1;’(%, x to O(eX)
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accuracy. In this thesis we shall focus on the first order approximation and omit the

formulation and proof for higher orders.

The proof of Theorem is given in chapter 7. By linearity of (1.9), we have the

following more general statement, as an easy corollary from Theorem |3.2.1

Theorem 3.2.2. Assume that the first N Bloch bands E,(€), n = 1,--- ,N do not
intersect and are separated from the other bands for all & € T'*; and assume that the
Hamiltonian h,(x, &) is subquadratic. Let % be the propagator of the time-dependent
Schrodinger equation with initial condition ¥ € L*(R%). Then for any given T,

0 <t <T and sufficiently small €, we have

N
U5 — > T (an0tn (P, /)it (p, y/€) ) 15

sup
0<t<T n—1 12
N
< OrwellWgll .+ ||vs — 2 IMY<ug| - (3.10)
n=1 L2
Proof: Taking the short-hand notation 5, = IVEehg and
Vi, =I° (amoun(Pn, x/e)u,(p, y/e)), we have
N ] N
‘“24%8— 2 e = || Zwon -2 zws
n=1 2 n=1 n=1
- N 0 N
=% | 25 +%f( Z ) PIRARE
n=1 n=N+1 n=1 2
N N ]
< @/t‘E Z w[)n o Z %Enw + gZ/tE< Z wg,n)
n=1 n=1 1.2 n=N+1 L2
B9 &
2 S Cne ol + || D v
n=1 n=N+1 L2
N
< Orwe 19§l + |5 — D TV =u5
n=1 L2
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3.3 Derivation of the leading order amplitude and
higher order corrections

We will now show how to obtain equation for a, 0. In addition, we will derive an
equation for a, ;. The calculation techniques used in this section can be used to obtain
higher order amplitude corrections.

We will substitute our ansatz and perform matched asymptotic expansion. Let us fix

a band n € N and consider the ansatz
n 1 i
e = ey || V(0 X 0.0)G, 0,6 Gy o/2) 1) dgdp. (1)
Q

where the coefficient b° assumes the asymptotic expansion

w .
ba(ta Xa qap) = Z gjbj(tv Xv qap)
=0
= an,O(tv q, p)un(Pn7 X)

+ e(an,l(t, q,p)u,(P,, X) + bil(t, X, q,p))

o
+ % (ana(t, @, P)un(Pr, X) + bio(t, X, q,p)) + ), €'bi(t, X, q,p)
o (3.12)
We assume that we are given the classical Hamiltonian h,(q,p) = E,(q,p) + U(q)
and the corresponding flow (Q,,, P,) and action function S,,.

To make the calculations easier to follow, we will make use of the following Lemma.

Definition 3.3.1. For f = f(t,xz,y,q,p) and g = ¢g(t,z,y, q, p) such that for any ¢ and
w?

f(t,CC, KR ')7g(t7$7 5 ) € Lw(Rd;S(Rd X F*)),

we say that f and g are equivalent for the n-th Bloch band, denoted as f ~,, ¢ if for any

23



t >0 and ¥, e L?(R?)
f J (f = )t 2.y, 4, D)Gy_p, 5 CIPIGE ()0 (y) dydgdp = 0. (3.13)
]Rd

Lemma 3.3.2. For any d-vector function v(y,q,p) such that each component is in

L*®(R% S(RY x T'*))
v(y,q,p) - (£ —Q,) ~n —€0; - (vZ;), (3.14)

and for any dxd matriz function M (y, q, p) such that each component is in L*(R%; S(R?x
)
tr (M(y,q,p)(x — Q,)°) ~ne tr (0:Q,MZ,") —ctr (0. M(x — Q,)Z,"
+M (@~ Q,)0:7;")
(3.15)
—etr (0.Q,MZ; ") + *tr (0. (0:M(Z,7)?)
+0, (Ma.z;') Z71) .
Higher order terms can be obtained recursively. In general we have for any multi-index
a that |o| = 3
(z—-Q,)" ~n O (eWTHJ) : (3.16)
Proof: The proof of lemma is similar to [21] Lemma 3.

Computing the partial derivatives of ®,, (see (2.20)),

0q®y, = 0gSy + (04Pr, —10,Q,,) - (x —iQ,) +p-1—i(y—q) -1 - P, -0,Q, (3.17)

= (0gPn —i104Q,) - (z—Q,) —i(y—q) -1 (by (2.17)), (3.18)
Op®Pp = 0pSn —1-(y —q) + (pPn — 94Q,) - (x — Q,,) — Py - 0,Q, (3.19)
=-1-(y—q) +(5Pn—0,Q,) (- Q,) (by (2.17)). (3.20)
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This implies,
10,9, = Z,(x — Q,)- (3.21)

Z, is invertible, this will be shown later in chapter 7 (see proposition [4.2.3)). Thus,
iz,10,0, =(x—Q,) (3.22)

From our previous calculations and integration by parts,

JJJ v (x— Qn)eéq’"dydpdq =¢ JJJ v]-Z;}’k <é§zk¢n> eé%dydpdq (3.23)
5 VR 5 VR
=—c fjf 5zk(ij;;k)eéq)"dydpdq. (3.24)
R4
Q

This proves (3.14). Equation (3.15)) can be proved by using (3.14). Higher order terms

can be obtained by recursion.

We digress to compute some derivatives of He. Recall the operator He,

He = %(—ivw + &)+ V(x). (3.25)

This operator defines FE,,(§) and u, (&, ) through

Heun(§,+) = En(§un(§, ), (3.26)

foreachn=1,2,---.

Differentiating with respect to & produces
HeVeun(§,2) + (—iVa + §un(§, ) = En(§)Veun(§, @) + VeEn(§un(§, ). (3.27)
Taking inner product with w, (€, ) yields
VeEn(§) = —iun(&, ), Vaun(§,-)) + & (3.28)
Differentiate ([3.27]) with respect to & again gives
HeViu, (€, @) + 2(—iVa + &) Veu, (€, ) + un (€, @)1
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Taking inner product with wu, (€, -), one gets

(un(&;+), =iV Veun(§, @) + &E(un(€, ), Veun(§,-)) + 1/2
= Ve B, (§)un(&, ), Veun (€, x)) + %En(€)<UN(€7 )5 Vzun(ﬁa - (3.30)

These identities (3.28) and ({3.30]) will be useful later.
We now substitute (3.11]) into the Schrodinger equation. For this we first compute

the time and space derivatives on Ypiia o

A em 1 e
1EORGA m :W Jf {iedb® — (015, — Pn - 0:Q,,
Q

+(0 P, —i0:Q,) - (x — Q,))b°} x Gzzn,PneiSn/E (3.31)

X <Gq pun(p7 /5)7 ¢0> dq dp

1 2A¢FGAoo = o342 (2me) 3d/2 Jf [ (—iVx + P,)% — (Vxb* +ib°P,,) - (x — Q,,) +

1
+5 1f|ﬂ3 - Q.- —dfd] x Gy p, €M (G yun(p, - /€), ) dg dp.

(3.32)
Hence, after rearranging terms, we arrive at
1
(igat + §€2A —V(X) - U(w))wé&,w =
o S S H{l (—iVx + Po)? — V(X) — Ulz) — 6tSn]b€+
(3.33)

+5(i&tb€—§b5d)—[(vxb€ FibEP,) + (0P, —10,Q, )] - ( — Q, )+

1
+ 5o — Q% + P athzf}ng 5 (GEun(p, /<), 1) dg dp.
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Define
1
1
+ e(iﬁtba — Ebgd) - [(Vxb® +ib°P,,) + (6, P, —10,Q,)b°] - (x — Q,,)+
1
+ §|:I; -Q, |’ + P, - 8,5an£}un(p, Y),
(3.34)
then we can write
(ico, + 52A V(X U(x))V5cam =

ZM T UJ fult, T, y,p, )Gy p, "G (y)vo(y) dy dgdp. (3.35)

Applying Lemma [3.3.2] and adding and subtracting U(Q,,), we get
fo ~a(3(=1x + Po)? = V(X) = (U(@) = U(Q,)) = 0,0 ) Fin(p, )
+e(i0b° — —bEd) 2(p,Y)
+ 20, ([(Vxb + i Py) + (8P — 16.Q,)¥] (P, Y) 2, )
1. 11 1 . _ _
+ €§b tr [ﬁanZn 1] un(p,Y) + 525 tr [ﬁz (ﬁz (b un(p,Y)Z, 1) Z, 1)]
(3.36)

We use the Taylor expansion of U(x) about Q,, up to order 4 as this will allow us to
derive equations for ag and a;. To obtain higher order corrections to the amplitude, one
should include more terms in the Taylor series.

(U() ~U(Q,) = VUQ,)(@— Q) + o 1t [T°U(@,)( — Q)] +

L [TUQ) @ - Q)]+ 4w [VU(@Q)w Q) + ( > Rafa)o - Qm)}
|a|=5
(3.37)
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with
||

R.(z) = -

1
5 (1— T)'a‘*lﬁgnU(Qn +7(x — Q,))dr. (3.38)

From now on, let us denote the remainder term in (3.37) by R(x, q, p).

Applying Lemma again to (3.36) together with (3.37)), we obtain

£~ (—%(—iVX +P)?—V(X)— atsn) Wi (p,Y)
+e(ia - %bed) (. Y) + 20, (VU(Q,)Fitn(p. Y)Z)

+ 0. ([(VxV* +ib°P,) + (0P, — 10,Q, ) | un(p, Y)Z, ")

r [0.Q,.(I — V?U(Q,))Vu,(p,Y)Z,"] (3.39)
4 [0~ VU @) (p, ¥) 2,12,
L2 _tr [0:(0.Q, VU (Q,)°in (p, Y)(Z;,))]
b _tr[ 0:Q,0-(V3U(Q,)*un(p. Y) 2, ") Z, ]
. —tr[ DVIU(Q) (P, Y )(Z, )] + R(x, q, p)bunp(Y).

Let us define three operators Lf}, L}, and L} acting on ¢ = ¢(t,x,y,q,p) by

L3(¢) = (-%(—ivx +P,)?— V(X) — 0,5,)0 (3.40)
+ P 0Q,0—U(Q,)0
=(=Hp, + En(Py)) ¢,
L7(6) = (106 - %qbd) +0. (VU(Q,)0Z;") (3.41)
+0: ([(Vx¢ +16Py) + (0, P, —10:Q,)0] Z; ")
b 2.0, - VU(@,)07,]
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and

L5(6) 1= tr [0~ V°U(@))67, )2, )] (3.2
+—tr[az 0.Q.VU(@)0(27))]
+ o tr[zQ(? (VU(Q,)02,1)2,]
(@ U(Q,)9(Z,")].

We thus arrive at

(ied, + 3e°A — V(X) U(x))Vrca o

27r8 (2neyi H f {Lo (O un(p, ¥) + €Ly (Btn(p, Y)
+e’ L (b1 (p, Y)) + R(, q, p)btn(p, Y)} G p, € /° G5, (y)vo(y) dy dgdp. (3.43)

Note that by the choice b, o = ay o, (Pr, X), the O(1) term in the integrand on the

right hand side of (3.43)) vanishes as

Li(an0(t, @, P)un(P, X)) = ano(t,q,p)(—Hp, + Eu(Po))un(Po, X) =0 (3.44)

for any ayp.

3.3.1 Leading order term b,

To determine a,, o, we set the order O(e) term on the right hand side of (3.43) to zero
and get
Lg(bn,lﬂn(p7 Y)) = _L?(bn,ﬂan(p7 Y)) (345)

We multiply the equation by @,(P,, X ) and integrate over I'; this gives

1
Orln 0 =50n0 tr (0. P, (Vp, En)Zy ") —iangA(P,) - Vo U 56

1
— §an,0 tr(&an(Van)Zgl)
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Indeed, by integration, we get
Lun(Pn, X) (—%(—iVX L P - V(X) - 8t5n)blﬁn(p, Y)dX
+ L{ﬂn(Pn, X) (i0,b0 — %bod)ﬂn(p, Y) + Py, X)0. (VU(Q,)botin(p, Y)Z; )
+ (P, X)0, ([(beo +iboPy) + (8, P, — 16:Q,,)bo] i (p, Y)Z;l)
+ Uy (P, X)% tr [0.Q,.(I — V2U(Q,,))bou,(p, Y)Z;l]} dX =0.
(3.47)

The perpendicular terms in the b;’s will now drop out and we can simplify this equation

to
— <un(Pn, X), 0, ([iun(Pn, X)Vann — VXun(Pn, X) — iun(Pm X)Pn]x

agtin(p, Y)Z, "))

d (3.48)
+ (i&ta(] — aoA(Pn) : VQTLU - 5@0) a’n(pa Y)
1 L1 —
+ 50 tr(0:Q, (I — Vo, U)Z, un(p,Y) = 0.
Using ([3.28)), we observe that
Ctn(Pry, X)), [ittn (P X )V, By — Vxtin (P, X) — ttin (P, X ) Py] 10
3.49

0. (agtin (P, Y)Z, 1)) = 0.

Hence, we arrive at

ao tr ((un(Pr, X), 0, - [iun (P, X)Vp, By — Vxu, (P, X) — iu, (P, X)P,]) Z, ")

d 1
+ (i&tao —apA(P,) Vo U — §a0) + 5 tr(0:Q,(I — Vg U)Z, ") = 0. (3.50)
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To further simplify the equation, observe that

<un(Pn, X), 0, [ittn (P, X)Vp. By — Vxctin (P, X) — ittn (P, X)Pn]>
= i un (P, X), 0tin(Pr, X)) (Vp, B — P)
—lun(Pr, X), 0.V xtin (P, X)) + i(0.V p, By — 0,P.) .
= i0.P,, (tn (P, X), Op, ttn (P, X)) (Vp, B — P,) 0
= 0., (up (P, X), YVt (P, X )by + 10, P, (Ve B, — 1)
%@Pn(v%,nEn — ).

Putting this into (3.50), we have

1 d

1
+ 5 tr(0.Q,(I = Vg U)Z, )] = 0. (3.52)
We arrive at (3.46) finally by noting that

%a tr[0.Q, 2, "] + %a tr[0,P,Z, "] = %a tr[Z2,2,"] = ga. (3.53)

3.3.2 Next order term b,

To characterize b, 1, we set the order O(g?) term in (3.43)) to zero, we have

jF (P X) (L (bosiin (9, ¥)) + L3 (b1t (p, ) + L (buoiin(p, Y))) dX = 0,
(3.54)
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Let us first derive the equation for a;. We start with (3.54]) written in expanded form

[ mPn30{ g o - U@ 0. 22

% tr[0:(0:Q, V*U(Q,)botin (P, Y ) (2, 1))

% 0 [0:Q,.0: (V*U(Q,)botin (P, Y ) 2, ) Z, ]
3

- 5 [(0:Q.)°VHU(Q)bt (p. Y)(Z)]

(3.55)
+ (10,1 — %bld)ﬂn(p, Y)+ 0. (VU(Q,)biu.(p,Y)Z, ")
+ 0. ([(Vxby + b1 Py,) + (0, Py, —10,Q,,)b1] un(p, Y)Z, ")

b tr[0:Qu (1~ VUQ,)hin(p, ¥)7, ]
+ (—Hp, + E(P,)) byii,(p,Y)} dX = 0.

Making use of the Hamiltonian flow (3.2]) and the identity (3.49)), we arrive at
- tr(<uPn, 0. - [uGQVE,(P,)) — Vxu — iuP,](a)) Z;l)

d 1
+ (ié’tal —wmA(P,) Vo U— 5al) +ag= tr (az(az[(f . VénU)Z‘I]Z‘l))

2 n n
_ 2 _
+ a12 ( 0.Q,(1— V% U)Z 1) 5500 tr( z(ﬁanV:”QnU(an)Q))
1 o 3 _
+ 5a0tr(0.Q,0.(Vh, U227 ) = Saotr((0:Q,)°Vh, U(Z71)?) =0,
(3.56)
Then using (3.51)) and (3.53), upon simplification we obtain the equation for a,, ;
1
Oty = —iapn1 A(Py) - Vg U + Sn1 tr (8an(V§;nEn)Z;1)
1 2 -1 1 2 -1 -1
— st (0:Qu(VE D)) + Sanotr (0(0:0(1 — VB, 1) Z:117,))
2 2 (3.57)
+ 3‘an0tr( z(aanV‘zan(Z;lf)) 5%@1«( anéz(V%nUZ;I)Z;I)

3i _
— Snotr ((82Qn)2v‘énU(Zn 1)2) .

Define the operator @ = Id —II,, where II,, is the projection operator onto the nth

Bloch wave. by, satisfies IT,by | = (un(Py, ), by ) = 0, and is hence determined by
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applying Q to Ly (b, 1un(p,Y)) = =L} (bnotn(p,Y)). We obtain
bt (P,Y) = = (L)™' Q (L} (buotin(p,Y))) - (3.58)

Note that the inverse of the operator Ly can be defined on its range.

Thus, we have obtained the equations for a, ¢ (3.46), a,1 (3.57)), and bil (3.58). This

can be continued to higher orders.
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Chapter 4

Proof of the first order convergence

in the L? sense

We will now proof that ¢§q, is indeed an asymptotic solution to equation (1.9). More
specifically, we will prove that ¢%,, converges to the exact solution in the L? sense as ¢

goes to 0. We will show that the rate of convergence is O(e).

4.1 Strategy of the proof

To prove theorem [3.2.1} one needs to insert ¥z, o, into equation .9 and obtain an
equation for the remainder. Our goal is to bound this remainder in the L? sense. To do
this we will need to make the following assumptions:

e the nth Bloch band should not intersect any other Bloch band. This will be needed to
bound b5

e The Hamiltonian h,(q,p) is sub-quadratic. This is needed to bound the gradients
viu(Q,,) for i = 2.

o V() is smooth. This assumption will allow us to bound other terms that appear in
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the remainder.

4.2 Estimates for the Hamiltonian flows

To bound the error for ¢ > 0, we estimate quantities associated with the Hamiltonian
flow h,(q,p) for each n.

The following notation is useful in the proof. For u e C*(Q2, C), we define for k € N,

Milul = max  sup |057057u(q,p 4.1
k[ ] |O‘q|+|ap‘<k(q,p)eﬂ‘ P ( )‘ ( )

where o, and «,, are multiindex corresponding to g and p, respectively.

Definition 4.2.1. (Canonical Transformation) Let &, : R** — R?? be a differentiable

map r,(q,p) = (Q,(q,p), P,(q,p)) and denote the Jacobian matrix as

Oq D (a, Op D (aq,
(F)) = (04Q,)" (a,p) (3Q,)" (q,p) | (12)

(0gPn)"(a,p) (0pPn)"(q,D)

We say Kk, is a canonical transformation if F, is symplectic for any (q,p) € R%, i.e.

0 Id 0 Id
(F)" B = 1. (4.3)
“1dy; 0 “1d; 0

It is easy to check by the definition that the map x,(t) : R*? — R2?? defined by

(g,p) = (Q,(t,q,p), P,(t,q,p)) solving (3.2) is a canonical transformation.

Proposition 4.2.2. We have for all k = 0

sup My[Fu®)] <o sup M, [iFn(t)] <o (4.4)

te[0,T] te[0,T]
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Proof: Differentiating F,(t, q, p) with respect to t gives

d 8P8th apaphn
—800ohn —3a0pha

By our assumption that U is subquadratic on R? and since E,, € C®(I'*), there exists a

constant C' independent of (g, p) such that

opdoh,  Opdphy,
—0g0ghn —0g@phn

d

with |F,(0)| = |Ida4|. By an application of Gronwall’s inequality, we obtain
|F(t)] < M. (4.7)

Differentiating (4.5)) with respect to (g, p) yields

d Q o 6P8th 6p8phn
a@gqﬁgpFn(t, q.p) = Z (ﬁq) <ﬁp> onadbe X
Bg<agq,fp<ap a p _aQthn _aQaPhn

x 0qa Pagor Pr [, (¢, q, p). (4.8)

Our estimate now follows by induction.

Recall that the matrix Z,(t, g, p) is defined by

Zn(t,q,p) = 0. (Q,(t,q,p) +iPy(t,q,p)) = (0q —10p) (Q,(t,q,p) +iP,(t,q,p)) .
(4.9)

Proposition 4.2.3. Z,(t,q,p) is invertible for (q,p) € Q. Moreover, for each k € N,
My (Zu(0) | < 0. (4.10)

(see proposition 3.5, [10])
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Proof:  Z,(t,q,p) inherits the property that M.(Z,(t,q,p)) < o from the same

estimate for F,,(¢,q,p). Moreover, we have

. . Id; —ildy —ildy
Zn(Zy)*(t,q,p) = <ildd Idd> (Fn)" (t,q,p) F.(t,q,p)
ild; Idg Id,
—ildy
= <1 Id, Idd> (F)"(F) (t,a.p)
Id,
. 0 —ildy —ildy
+ <iIdd Idd> (F,)" (t,q,p) F.(t,q,p)
ild; 0 Idy
—ildy
= <1 Idd Idd> ((Fn)TFn) (t, q,p) +2 Idd .
Id,

(4.11)

This calculation shows that, since (F,(t))TF,(t) is semi-positive definite, for any

v e C*,

v*Z,()(Z,(t)) v = 2Jv]* (4.12)

Therefore Z,(t, g, p) is invertible and det(Z,(¢)) is uniformly bounded away from 0 for
all ¢ and p, so by representing (Z,)~'(¢,q, p) by minors, Mk((Zn)_l(t,q7p)) < o0, as

My(Zn(t,q,p)) is.

4.3 Estimates for the Bloch waves and amplitudes
Proposition 4.3.1. For each k e N,

sup My [un (P, )] < 0. (4.13)
te[0,T]

Proof:  u,(P,,x) is smooth on the compact set I'* x I' since the n-th band is

separated from the rest of the spectrum (see e.g., [22]). Thus u,(P,,z) is uniformly
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bounded on T'* xI" and hence I'* xR? due to periodicity. We also see from Proposition[4.2.2]
that the derivatives of w,(P,,x) are also bounded. Thus, Mj[u,(P,,x)] < oo for any
finite time ¢.

Let us summarize estimates for the amplitude equations derived in chapter 6.

Proposition 4.3.2. For each k € N, the amplitudes a,o and a1, given by (3.46) and
(3-57) satisfy

sup My|ano] < o0, and sup My|an 1] < 0. (4.14)
te[0,7] te[0,1]

Proof: By (4.2.2), (4.2.3) and (4.3.1), we see that the right hand side of ({3.46)

and (3.57) are bounded by some constants independent of ¢ and p times a, o and a1,

respectively. An application of Gronwall’s inequality yields the result.
Proposition 4.3.3. For each k € N we have that

sup My [by 11, (P, Y)] < (4.15)
te[0,7]

Proof: 'The equation for btl is given by equation (3.58|). We thus obtain a bound

by using the spectrum of Lj. We can write

1 . <um( m ')’ ( Y.q, )>L2(F um(Pﬂ"wX)
(Lg) ' (®) = ;ﬂ P —E (P . (4.16)
Let g = mm {|E (&) — En 1(8)|, |En(&) — Eny1(€)]}. Then for each k € N, we obtain

ge[-m

Z <Um m;' no(tv'aqvp)fan(pv )>L2 un(Pn,X)]

m;én
U (p, Y
= Mk [% Z an,O(t7q7p) <um(Pm7 ')7un(Pn7 ')>L2(F) un(PmX)] .
m#n
(4.17)
Hence, by Propositions 4.3.1] and 4.3.2 it suffices to control
Mk[z <um(Pm,X),un(Pn,X)>L2(F)]. (4.18)

m#n

Since {, [u, (€, x)?dx = 1, Bessel’s inequality implies that the above is finite.
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4.4 Proof of theorem [3.2.1

We will need the following estimate,

Lemma 4.4.1. Suppose H(e) is a family of self-adjoint operators for e > 0. Suppose
¥(t,e) belongs to the domain of H(g), is continuously differentiable int and approzimately

solves the Schrodinger equation in the sense that

oY

ieg(t, e)=H(e)y(t,e) + ((t, e), (4.19)
where ((t,€) satisfies
IC(t, o)l < plt, ). (4.20)
Then,
e HEEY(0,6) — (t,e) < alf w(s,e)ds. (4.21)
0

This lemma can be proved using the fundamental theorem of calculus, for brevity we
refer the reader to [23]Lemma 2.8 for details.

Moreover, for the Fourier integral operator, we have
Lemma 4.4.2. If, for fived ©,y € R?, u(z,y,q,p) € L°(Q;C), for each n € N and any
t, Z¢(u) can be extended to a linear bounded operator on L?*(R% C), and we have
||I(U')||$(L2(Rd;(C)) < 2*d/2||u||m (R2¢;C)- (422)

Proof: The proof of lemma is essentially the same as Proposition 3.7 in [10]
and thus is omitted here.

We are now ready to prove Theorem [3.2.1]

o 1
Proof: [Proof of Theorem [3.2.1] Computing ié‘g + §€2V2 — V(X) — U(x) applied

to Z° (b5 (t, X, q, p)un(p,Y)), we obtain

d 1 S
(jga + égZVQ - V(X) - U(a:)) 1° (bi’lﬂn(p, Y)) =7° (Z 6Jvn,j> + e%1° (vfm) )
=0
(4.23)
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The expressions for vy, o, vy, 1, and vy, » follows from (3.43)) by expanding b° and the linearity
of Ly, LY, and L. By equations (3.44) and (3.45)), v, and v, ; vanish. The remaining
term

Vn2 = L3(070n(p, YY) + R(x, q, )by, tn (P, Y). (4.24)

satisfies My[v5, 5] < oo by Propositions |4.2.3} [4.3.2 and 4.3.3] Finally, applying Lemma

and Lemma we obtain the inequality in Theorem [3.2.1]
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Chapter 5

FGA algorithm and numerical

results

5.1 Deriving a guage-invariant algorithm

Recall from chapter 5, that the eigenfunction w, (&, ) of is defined up to a unit
complex number () This is known as gauge freedom and it is problematic numerically
as different choices of the gauge ¢(&) may lead to different numerical results for the Berry
phase term A,,(§) = (u,(§, )[iVeu, (€, x)), and hence ¢f, will not be well defined. We
modify our ansatz ¢p;, so that direct numerical computation of the Berry phase is
avoided.

To separate the dependence of a, on A, in the evolution equation (3.6) we use a
standard differential equations technique know as the method of integrating factors. We

define S the phase contribution due to the Berry phase term

st = A(P)) - VU(Q,) ds. (5.1)
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and let

ba(t, @, P) = an(t,q,p) exp(iS(t, q,p)). (5.2)

We note that the exponential term of equation (5.2)) is the integrating factor. Multiplying

equation (3.6) by the integrating factor and simplifying, we deduce that b, solves,

dbn, 1 2 1 i 2 1
= by tr(&anV En(P)Z: ) — 5bn tr(&anV U(Q,)Z: ) (5.3)

with initial condition b, (0, g, p) = 2%2. The evolution equation (5.3)) for b, is manifestly

gauge-invariant, as all terms are independent of the gauge choice. Using the amplitude

function b, the frozen Gaussian approximation (equation (3.8))) can be rewritten as

1 = . oA
3 t — bTL t n PTL S 1Sn(t,q,p)/€—15n (tzqvp)
1/)FGA( ) .’L') (27T6)3d/2 n§=1 L* J;Rd ( 4, p)u ( ’ :12/5) Q,,Pn (33)6
X <Gq pUn (pv /6) |¢0> dq dp (54)

The gauge-dependent term in (5.4) thus reads

Up (Pr,x/c)e —iS(tap)y (D, y/e). (5.5)

Our goal is hence to design a gauge-invariant time integrator for (|5.1)) such that the term
(5.5) becomes independent of the gauge. Observe that, by the Hamiltonian flow (3.2)),

S:H(t,q,p) JA P.(s). (5.6)

Let 0 =ty <ty <--- <tg =1 be a time discretization, we have

K

exp(—iSA) — exp(i L AP, dPn(s)> _ ’gexp(i L t A(P,) - dPn(s)>. (5.7)

Let us assume that we have chosen a gauge where w,, (€, -) is smooth in € € T'*. Note that

since our final formula is gauge-independent, the choice of the gauge here is only for the
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derivation. Using the Taylor approximation, we obtain

iL ) A(P,) - dP,(s) = —13m {{up(Pr(te-1), ) |Vun(Pr(ti-1),-)) - AP}

+ O(AP;,)? (5.8)

= 1 Im {1 — (up(Po(tro1), )tn(Pu(tr), )} + O(APy )
= i Im{In{u, (P (te), ) |un(Pr(tiz1), ) )} + O(APy )2,

where APy, ,, = P,(t;) — P, (tx—1). The first approximation was obtained by using a left
Riemann sum. The next approximation is the forward difference approximation for the
derivative. The last approximation is the Taylor series for In z around z = 1. Therefore,

exponentiating, we get

(" _ lun(Po(ty), ) un (Pt 1) )>
exp(l L A(P,) - dPn(s)) P e Pl T O(AP;,)2.  (5.9)

Substituting the last equation in the right hand side of ([5.7)) gives an approximation

to exp(—iS7') with and error O(AP,,) with AP, = rnkaX|APk7n|. This then gives the

approximation to (5.5]) as

U (P, x/c)e ST GaP), (p y/e) ~ F,(t,q,p, x,y) =

_ |un(Pn(tK),a:/g)>£[l <Z(1;EZ:;;}ZZP Z: 1 i‘@n A(t0), y/e)|[+O(AP,).

(5.10)

The right hand side of ((5.10)) is manifestly gauge-invariant, as the phase term in
|tn (Pn(ty),-)> will cancel with that of (u,(Py(tx),-)|, for k =0,..., K.

Therefore, in summary, we arrive at a gauge-invariant reformulation of ¥55, as

Yiaa(t, x) @) 3d/2 Z L fRd t.q.p)Fu(t,q,p.x, y)Gg, p,(T)

x @S baP)/E(GE gy dgdp,  (5.11)

43



where F), is given by (5.10), and the evolution of (Q,,, P,) follows the Hamiltonian

dynamics
d
Q. = VE,(P,),
dfllﬁ (5.12)
" =-VU
~ @),

with initial condition @Q,,(0,q,p) = q and P,(0,q,p) = p.

The action S,, solves

as,

with initial condition S, (0, g, p) = 0, and the amplitude b,, follows the evolution

% = %bntr (0-P . V2E(Pn) 2" — %bntr (0.Q,VU.(Q,)Z, 1), (5.14)

with initial condition b,(0, g, p) = 2%2.

5.2 Computing Bloch energy bands and Bloch waves
in one-dimension

As a prerequisite for implementing equation numerically, we will need to com-
pute the eigenvalues and eigenfunctions of . We restrict our computations to 1-
dimension as computation of true solutions to with high accuracy is extremely
time-consuming in high dimensions, and thus it is difficult for us to confirm numerically
the asymptotic convergence order with the pollution of non-negligible numerical errors.
Also, band-crossing is quite common in high dimensional cases (e.g., in honeycomb lat-
tice), which requires more techniques than the scope of this thesis, and we will leave the
numerical study of high dimensional examples as future work. We also note that the
calculations in this section can be easily generalized to higher dimensions by vectorizing

all the appropriate variables.
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Define the Fourier transform of w, (£, x) as

1

(E) = 5 |l e 7 d (5.15)

Taking the Fourier transform of (2.4)) one obtains

(77 ;5)2%(57 n) + Ve(n) = @& m) = Ea(§)an(€,m), (5.16)

[Tk

where “+” stands for the operation of convolution.

Truncating the Fourier grid to {—A,--- A — 1} € Z gives

(6, —A) ) (€, —A)
ey | g | Y 517
U (&, A —1) Un (&, A —1)

where H¢(A) is the 2A x 2A matrix given by

CALE L %) Pr(-1) -2
~ (A +1+6% - S o
() Ve(1) (0 Vr(2—20)
Ve(2A — 1) V(2A —2) NGt X9 + V1(0)

(5.18)
After diagonalizing the matrix, the eigenfunction in the physical domain is then obtained
via inverse Fourier transform

A-1

un () > D (& m)e™. (5.19)

y=—A
Example 5.2.1. In this example, we compute Bloch eigenvalues and eigenfunctions with
potential Vr(x) = exp (—2522). The extension of Vr(x) periodically with respect to T is

not analytic on the boundary of I'. However, this lack of smoothness presents a negligible
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Bloch Eigenvalues for the first eight bands
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Figure 5.1: Energy eigenvalues for the one-dimensional lattice potential V (z) = exp (—25w2)

problem numerically as Vi(z) decays rapidly. Figure shows the energy eigenvalues
E, (&) for £€[0,1). The plot shows the first 8 bands where the bottom curve corresponds
ton =1 (lowest band) and the top curve represents n = 8 (highest band). Figure
shows the modules of the corresponding Bloch eigenfunctions for the first 4 bands. Notice
that while these surfaces are continuous and periodic, the next two figures and
of the real and imaginary parts of the Bloch eigenfunctions are not. This is due to the

arbitrary gauge freedom in the diagonalization.

Remark. 1. In the numerical computation of F(€), the corresponding eigenfunctions and
their derivatives near the points £ = 0 and £ = 0.5 (and £ = 1 by periodicity) is tricky,
since the Bloch bands are close to each other near these points (see Figure [5.1)). For this

reason, our grid for the £ variable will not contain these points. In other words, we shift
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Figure 5.2: Module of eigenfunctions for the one-dimensional lattice potential
Vi(z) = exp (—253@2). We display absolute value of the first 4 lowest energy eigenfunc-
tions.
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Figure 5.3: Real part of the eigenfunctions for the one-dimensional lattice potential
V(x) = exp (—253:2). We display the real parts for the first 4 lowest energy eigen-
functions. We use 100 data points for the £ variable.
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Figure 5.4: Imaginary part of the eigenfunctions for the one-dimensional lattice po-
tential V(z) = exp (—25x2). We display the imaginary parts for the first 4 lowest
energy eigenfunctions. We use 100 data points for the £ variable.
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the grids in the first Brillouin zone to avoid these high symmetry points.

2. One can apply the same technique to derive an algorithm for computing Bloch
eigenvalues and eigenfunctions in higher dimensions. The main issue with this algorithm
is that the numerical cost increases drastically for d > 1. In the case where the periodic
potential has the form Vp(x) = Z?:l Vi(z;) with V;(z; + 2m) = V(z;), computation
of Bloch bands can be treated for each coordinate x; separately. For some common
potentials, data for the energy eigenvalues has already been produced (see remark 2.1 in

[24]).

5.2.1 Description of the gauge-invariant algorithm

We assume that the initial data ¢y(z) has compact support or that it decays suffi-
ciently fast as |z| — o0, and hence, we only need to use a finite number of mesh points
in physical space.

For a mesh size dx and starting point 2° € R, the grid is specified as
2™ = 2%+ (m — 1), (5.20)

form=1,---,N,, where N, is the number of the spatial grid in one dimension.
We present the algorithm in five steps below.
Step 1. Compute the Bloch eigenvalues E,(¢) and eigenfunctions u,(§,x) of (2.4,

according to the algorithm described in Section [5.2]

Remark. For our one dimensional examples in Section [5.3| we choose a mesh for (¢, z)

such that 66 = (1 — 2p)/199 with £ = —1/2 + p and N¢ = 200; and dx = 27/804 with
2 = —7 and N, = 805 for some 0 < p « 1. p was included to avoid putting mesh points
at high symmetry points in the first Brillouin zone. This number of grid points is enough

to ensure that the eigenvalues and eigenfunctions are computed with sufficient accuracy

for our numerical tests.
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Step 2. Compute (Qn(t,q,p), Pa(t, q.p), Sn(t,q,p),bn(t, ¢, p)) in (5.12)), (5.13), and (5.14)).

To integrate the ODEs for (Q,, P,, S, b,), we use a symplectic fourth order Runge-
Kutta method. Coefficients for the Butcher tableau can be found in [25]. We will choose

a mesh for (¢,p) € Q and (Q,, P,) takes initial value at the grid points. That is,

Qn(0,q,p) = ¢' =¢° + 15q (5.21)

P,(0,q,p) = p’ =p° + Jép (5.22)

where I € 1,--- Ny and J € 1,--- , N;. Notice that to represent the initial condition
¥aa (0, 2) one only needs the mesh points ¢’ near z. To be more precise, as the standard
deviation of the semiclassical Gaussian functions in is 4/ so one only needs the
mesh points ¢/ contributing significantly to 1¥§q4 (0, ) satisfy |z — ¢'| < O(y/€). This
implies that one can put a finite number of mesh points for g-coordinate and not on all
of R. The mesh size for ¢/ and p’ is chosen to be O(,/€), which resolves the oscillation

of the initial condition.

Step 3. Compute the windowed Bloch transformation of the initial condition

{un(p, -/€)G; b0y For the sake of convenience, denote this term by wy,(¢,p). Let
y* =1’ + (K —1)by (5.23)

be a discrete mesh of y where K =1,--- , N,. Then,

Ny
wi(g',p”) ~ D G () ulp” y™ o) oy (Iv" = q'[) oy, (5.24)
K=1

with ry a cut-off function such that ry = 1 in the ball of radius # > 0 centered at the
origin and 7y = 0 outside the ball.

The mesh y® should approximately cover the support of the initial condition 1y (y).
As can be seen by the form of w;, the size of N, will depend on €. The mesh should be

fine enough to accurately capture @, (p, y/s)égﬁp(y)@bo(y) for all bands n.
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Remark. One can reduce the computation time of we (¢!, p’) by incorporating the pe-
riodicity of u,(§, z) with respect to z. As can be seen by Figure 5.2 u,({,z) tends to
become more oscillatory as n increases. Thus, the mesh of y® should be adapted so that

it depends on n.

Step 4. Denote the product term in (5.10]) by

w(t,q,p) H K“ ’ )’U(P"(tk_l)’:» (5.25)
and note that

F.(t,q,p,x,y) = }un (Pu(tk),z/e) >F (t,q,p <un . (to), y/s)’

At this point we now have the required data to compute ]f*:n Discretize ﬁn using the
same mesh from the previous steps to obtain Fi (¢, ¢%, p”). Here, tg = 0 < t; <ty < --- <

tx =t is the temporal mesh used in Step 2.

Step 5. Reconstruct the solution using (5.11])

N
I J e
Yrga(t, 2" Z ZZ( (t,q" p")un (Pult,q" p”), 2" [2) GG, p, (x")eSn 027
x Fu(t,q",p")05(a", p7)ro (Jo" — Qf;"l))5q5p7
(5.26)
where Q,, and P, are evaluated at (¢, q’,p’), and ry is a cutoff function as described in

Step 3 and N is the maximum number of Bloch bands used.

Remark. The error arising from the gauge-invariant algorithm described above is

4 N We

ot
Ofe + — + max APy) +[[¢f — ST Tl (5.27)

n=1 n
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5.3 Verification of the convergence rate of FGA us-
ing numerical examples

In this section, we show the numerical performance of gauge invariant frozen Gaussian
approximation (GIFGA) by several one dimensional examples, which also confirm the first
order asymptotic convergence analyzed in Chapter 4.

Initial decomposition.

In the first two examples, we test the initial decomposition of GIFGA described in Sec-
tion 2.2l We compute ¢)f;, at ¢ = 0 via equation (3.8). As we cannot numerically sum
to infinity, we choose to use at most 8 bands in all of our examples. Expressed differently,
the solution will be concentrated on the first 8 bands. Because of the need for O(y/¢)
mesh size for both coordinates (¢f, p’) of phase space, we choose approximately 2/+/e

number of grid points for each unit interval.

Ezxample 5.3.1. In this example, we check the initial decomposition by choosing 1y =
A(z) exp(iS(z)/e) with A(x) = exp (=50x%) cos((z — 0.5)/e) and S(z) = 0.3(z — 0.5) +
0.1sin(z — 0.5), and the lattice potential Vi = cos(z). We record the data in Table[5.1]

Ezxample 5.3.2. In this example, we check the initial decomposition by choosing 1y =
A(z) exp(iS(z)/e) with A(z) = exp (—502?) and S(x) = 0.3 + 0.1sin(z — 0.5), and the
lattice potential to be Vi = exp(—2522). We record the data in Table[5.3

Tables [5.1], and [5.2] show that FGA indeed matches the initial condition more closely
as N increases. Furthermore, we have essentially the same L? error for each . This

provides numerical verification of the independence of ¢ of the initial decomposition.

Remark. Let us note that from equations (2.4]) and (2.3]), the convergence rate should de-
pend on the form of the lattice potential Vi (z). Also, by equation (2.14)), the convergence
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Table 5.1: L? error of 1o(z) — 5 a (0, z) for Example m We display various values
of ¢ and sum over N Bloch bands in 95, -
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Table 5.2: L? error of 1o(z) — 5 a (0, z) for Example We display various values
of ¢ and sum over N Bloch bands in 95, -
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Figure 5.5: Initial decomposition for example The real part of ¥y(x) and

i (0, ) are shown for e = 1/256. The summation in ¢f 4 (0, x) is over the first 4

lowest energy bands.
rate also depends on the form of the initial condition. We see from Examples[5.3.1] and
that the cosine lattice potential seem to produce faster convergence with respect
to the number of bands used. Different initial conditions may also converge faster as N
increases. Example uses an initial condition projected onto the first band. Choosing
such initial condition has the advantage of needing only to compute ¢f5, over one band,
L.e. YRaa-

By examining the L? errors or the convergence rates, one could determine the min-
imum number of bands to sum over to achieve required accuracy. In Example [5.3.1] it
shows that upon summing over N = 4 bands, the initial decomposition starts to resemble
the initial condition.

Verification of the convergence rate of FGA.

First, we choose to test the convergence rate of with external potential U(z) = 0

in Examples [5.3.3] and [5.3.4. With this choice of potential, there is no need for a gauge-
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Figure 5.6: The plot of ||¢o(x) — 1fga (0, 2)]|;2 for figure is displayed here.

invariant algorithm. One can optimize the algorithm described in Section by setting

F(t,q,p) = 1 in (5.25) in Step 4. Thus, for Examples [5.3.3| and [5.3.4) numerical errors

coming from F(t,q,p) will be absent. Examples |5.3.5| and |5.3.6| have nonzero external

potential so there will be some numerical errors introduced by F (t,q,p). We continue
using 2/4/¢ mesh points per unit interval in ¢ and p and sum up to eight bands (except
for Example [5.3.4). We choose a time step of size At = T/150. The exact solution to
equation will be computed using the Strang-splitting spectral method [4]. For all
of our examples, the Strang-splitting spectral method did not need a mesh finer than

Az = 1/2'% and At = 1/2'%,

Ezample 5.3.3. In this example we choose the initial condition to be

Yo = A(z) exp(iS(x)/e) with A(z) = exp(—502?) and S(z) = 0.3 + 0.1sin(z — 0.5).
The exact solution is computed using the Strang-Splitting spectral method. This is done
at time T = 0.35. The lattice potential used is Vr(z) = cos(x). We record the data in

Table [5.5 The convergence order of the data in table is 1.0366. We display plots of
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Error ||t spec—Yggalliz | Rate of Convergence
e=1/8 0.09112
e=1/16 0.048907 0.8977
e=1/32 0.022603 1.1135
e=1/64 0.010555 1.0986

Table 5.3: L% error of thgpec(0.35,2) — 15y (0.35,2) for various values of e. The

summation in ¢gq, is over the first 8 lowest energy bands.

Error ||¥spec—%%calliz | Rate of convergence
e=1/64 0.0269
e=1/128 0.0144 0.9015
e =1/256 0.0069 1.0614

Table 5.4: L? error of ¢gpec(0.35,2) — 1% 4(0.35,z) for initial condition projected
onto the first Bloch band.

the solution for e =1/8,1/16,1/32 and 1/64 in Figures[5.7, and |5.10.

In the next example, we will choose initial condition projected onto one Bloch band.

With this choice of initial condition, there will be no initial error.

Ezxample 5.3.4. In this example we will choose an initial condition Hmigbo(x) given by
2-15) with ¢o(z) = A(z)exp(iS(z)/e) where A(z) = exp(—502?) and S(z) = 0.3z +
0.1sin(x — 0.5) with lattice potential exp(—20z?) and external potential U(x) = 0. We
compute the solution at time T = 0.35 using the Strang-Splitting spectral method and
GIFGA. The L? errors are recorded in Table[5.4l The convergence order is 0.9814. We

display plots of the solution for e = 1/64,1/128 and 1/256 in Figures and
D 13,
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Figure 5.7: Example plot of real parts of 954 (0.35, ) and 9 gpec(0.35, ) along
side with the L? error for e = 1/8.
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Figure 5.8: Example m plot of real parts of 9554 (0.35, ) and 9 gpec(0.35, ) along
side with the L? error for € = 1/16.
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Figure 5.9: Example plot of real parts of 954 (0.35, ) and 9 gpec(0.35, ) along
side with the L? error for € = 1/32.
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Figure 5.10: Example plot of real parts of 54 (0.35, ) and 1 gpec(0.35, ) along
side with the L? error for € = 1/64.
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Figure 5.11: Example plot of the real part of 1gpe.(0.35,2) and ¥%,4(0.35,x)
alongside with the L? error of ¢gpec(0.35,2) — 9% 4(0.35,2) for example [5.3.4, We
use € = 1/64.
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Figure 5.12: Example plot of the real part of 1gpe.(0.35, ) and % ,4(0.35,x)
alongside with the L? error of ¢gpec(0.35,2) — 95 4(0.35, ) for example [5.3.4, We
use € = 1/128 .
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Figure 5.13: Example m plot of the real part of ¥gpe.(0.35, z) and 1% 4(0.35, x)
alongside with the L? error of ¥gpec(0.35,2) — 9% 4(0.35,2) for example We
use € = 1/256 .

Ezample 5.3.5. In this example we choose the initial condition to be 1y = A(z) exp(iS(z)/e)
with A(x) = exp (—502?) cos((x — 0.5)/e) and S(z) = 0.3(z —0.5) + 0.1sin(z — 0.5). The
exact solution is computed using the Strang-splitting spectral method. This is done at time
T = 0.2. The potential used is Vr(x) = exp(—25z2) with external potential U(z) = %aﬂ.
Our results are shown in Table [5.5. The convergence order of the data in table 18
0.9488. We display plots of the solution for e = 1/128,1/256 and 1/512 in Figures [5.1])
[5.15, and[5.16]

Example 5.3.6. In this example we choose the same initial condition as in Example|5.3.5
All of the same parameters as in Example|5.3.5 will also be used. The exact solution is
again computed using the Strang Splitting spectral method at time T = 0.2. The only dif-
ference is that we change the external potential to U(x) = cos(x). The convergence order

of the data in Table is 0.8439. We display plots of the solution for e = 1/128,1/256

and 1/512 in Figures|5.17, (5.18, and|5.19.
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Error ||Yspec—%raal|i2

Rate of Convergence

e=1/64 0.059576

e=1/128 0.038811 61826
e = 1/256 0.015225 1.3500
e =1/512 0.0082833 0.8782

Table 5.5: L? error of ¥gpec(0.2,2) — ¢%;4(0.2,2) for various values of . The sum-

mation in %, 4 is over the first 8 lowest energy bands.

06

04+

—Re[‘l}S’pec(O-gam‘)}
- = -Re[g’FgA(O.Q, 3;‘)}

Figure 5.14: Example plot of the real parts of 155 4(0.2,2) and gpec(0.2, x)

-25

HNof

25 5

along side with the L? error for ¢ = 1/128.

0.25f

b

=1 Zspec (0.2, %) — Urga(0.2, 3] |

Error | |¢Spec_¢%GA | |l2

Rate of Convergence

e =1/128 0.039714
e =1/256 0.019057 1.0593
e =1/512 0.012327 0.6285

Table 5.6: L? error of tgpec(0.2, ) — 155 4(0.2,x) for various values of e. The sum-

mation in %4 is over the first 8 lowest energy bands.
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Figure 5.15: Example plot of the real parts of 155 4(0.2,z) and ¥gpec(0.2, x)
along side with the L? error for ¢ = 1/256.
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Figure 5.16: Example plot of the real parts of 155 4(0.2,2) and gpec(0.2, x)
along side with the L? error for ¢ = 1/512.
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Figure 5.17: Plot of real parts of 9% 4(0.2,2) and tgpec(0.2, ) along side with the
L? error for e = 1/128.
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Figure 5.18: Plot of real parts of 9%, 4(0.2,2) and tgpec(0.2, ) along side with the
L? error for & = 1/256.
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Figure 5.19: Plot of real parts of 9%, 4(0.2,2) and tgpec(0.2, ) along side with the
L? error for e = 1/512.

66



Chapter 6

Artificial boundary conditions for

the nonlinear Schrodinger equation

6.1 The nonlinear Schrodinger equation and artifi-
cial boundary conditions

We start this chapter with a brief introduction to the nonlinear Schrodinger equation
(NLS),

o = ~5 AU+ V@) + F() (6.1)
where i = 4/—1 is the imaginary unit, ¥(x,t) is a complex-valued solution to equation
(6.1), and f is a real-valued smooth function. V(x) represents a smooth external poten-
tial. The constant € (0 < & « 1) is described in terms of physical constants by equation
(L.5). The initial condition ¢§(x) will be in L?*(R?). As before, we will also consider the

case of periodic potentials so that equation (6.1]) becomes,
2
: € € € € 15 1> 15
ie0)" = =AY + Vi(@)g® + U(@)y + f([0°)y, (6.2)
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where Vp(z) is periodic with respect to I' = [0,1)¢. From now on, we will work in

one-spatial dimension. Higher dimensional generalizations is straight forward.

Artificial boundary conditions.

The purpose of constructing artificial boundary conditions is to approximate the
solution to a whole-space problem, to that restricted to a bounded domain. The main
idea is to construct boundaries to absorb waves arriving at artificial boundaries. One
way to achieve this is to follow Kuska’s method for absorbing boundary conditions (see

[26]). We will now describe this method. Rewrite the NLS (6.1]) in the operator form
ie0,)° = LY° + NY°®, (6.3)

where £ = —2Ay°, and N = (V(x) + f(|¢°]?))¢°. Let us approximate £ by L™ where
n will be related to the convergence of the Padé expansion to be described later. Thus,
equation becomes,

ied)® = LM + NY~. (6.4)

To derive L™, we will assume that the boundary is transparent to plane waves

(x,t) = exp (—i(wt — &x)) (6.5)

where w is the frequency and £ is the wave number. Inserting this plane wave into the

Schrodinger equation with zero potential yields £2£2 = 2ezw, or
e = £V 2ew. (6.6)

The + sign corresponds to right-moving waves and the — sign to waves left-moving waves.

Now we use the padé expansion about wy for /- to third order,

Vew ~ g ot bew wo + Gew (6.7)

3wp + 2ew’
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Denote ky = 1/wy and substitute (6.7) into to get

et = iko%. (6.8)
Next, we use the dual relation
£ < —id, w < i0; (6.9)
to rewrite equation as
—2624)yy + Gickgyy + 3ick2t, + ki) = 0, (6.10)
which further simplifies to
ie01) = —(2ied, + 6ko) ™" (3ickid, £ ki) := L. (6.11)

Now we substitute equation (6.11)) into equation (/6.4)),
—2620, 4 £ 6ickoOyy) + 3ickio b + ki = [V (x) + f(|[v]*)](2iey, £ 6kotp).  (6.12)

We now summarize the boundary strategy discussed above,

2
iedp) = —%ﬁiw + V(@) + f(J)))Y, m<z<az, 0<t<T

equation ([6.12)), withz; < —andz, < + (6.13)
w(l‘70) = ¢O(x)7 << T,

See [99],[97] for related work.

6.2 Time-splitting FGA method for the NLS

First-order time-splitting FGA method.

Because the Fourier integral operator, equation (2.19)), is limited to solving linear

problems, to solve nonlinear problems, we inevitably must split the NLS into its linear
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and nonlinear parts. Following the Strang-splitting spectral method in chapter 4, we

discretize time 0 =ty < t; <1y < -+ < iy = tying and split (6.2) in two parts,
2
iedp)® = —5Aw€ + Vi (x)® + U(x)y*, (6.14)

and
e = f (JV°*) v°. (6.15)

The linear Schrédinger equation, (6.14]), can be solved numerically using a direct method
like the Strang-splitting spectral method. However, due to the high computational cost

of direct methods, we will apply the FGA to solve equation (6.14)).

We may approximate (6.15)) at time ¢,,1 by
i
) ~ 00 (~LF(Whcaltoer 00 ) Viealtn,a). (610

Iterating the above algorithm using N, number of time steps starting at time ¢ = 0 and
T
ending at some time t = T with 0t = N will give us an approximate solution ¢¢(T, x)

t
to the NLS equation (6.2]).

Remark. The exact solution to equation ([6.15)) is

i

exp (—g L - f(|Yrca(s, $)|2)) VYraa(tnit, T), (6.17)

but for small time step, we may approximate the evaluation of the integral as in equation
(6.16]).

Accuracy. Assume the numerical integrator used for solving is of order p
with the time step dt, as noted in equation , the error of computing is
@ (5 + @ + max, APn> + ||22f:1 HZVE ¥§||r2. The error of computing and
total splitting error is both O(dt). Therefore, the total accuracy is of

O (=+0t+ 2 1 max, AP, ) + || S, I 05l
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If equation does not contain a periodic potential, one can improve the accuracy
by using the FGA method described in chapter 4. In this case, the accuracy will be
o (5 + 0t + @)

Complezity of first-order NLS algorithm. Typically, the time-splitting method re-
quires 0t to be O (¢), or Ny = O(1/e) so that equation is computed accurately.
We also need dz = O (¢), or N, = O(1/¢). Thus the total complexity is V; times the

complexity of computing the solution to equation (|6.14]).

FGA-Based Strang-splitting.

We can increase the accuracy to second order in time by splitting equation (6.2)) in
three parts. Given a time discretization, 0 = ) < ;1 <ty < -+ <ty = tfina We can

describe the approximate solution by the following algorithm:

g0 = [0y, (6.18)
iedp)® = —%Avf + (Vi(x) + U(x)) 9°, (6.19)
ied)® = fl0° 1)y, (6.20)

and solving equation (6.18]) and (6.20) on half a time step and equation ((6.19) on one

time step. More explicitly, the solution at time ¢, is given by
i
Fter@) = exp (= F0PI0) 01001, (6.21)
where ©*(t,41, @) is the FGA solution to equation (6.19) with initial condition

exp (—Q%fuw?)at) V(). (6.22)
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Alternative. Note that the option of splitting the operators on the right-hand-side of

(6.2) is not unique, and another possibility is to split (6.2) as
2
i = — 5 A, (6.23)

and
ie0n = (Ve(@) + Ul@) v + f ([0]?) o~ (6.24)

One can get the FGA solution at time ¢,,1 to (6.23)) by using (|1.53)) with initial condition
W (tn, ). The solution to (6.24) can be approximated by

D(tni1, ) ~ exp (i& (Ve(@) + U() + f([rcaltn, x)|2))) Yrca(tnss, ). (6.25)

Iterating the above two equations using /N; number of time steps starting at time t, =
T

0 and ending at some time ty = T with §t = N will still give us an approximate

solution (T, z) to (6.1). The disadvantage in using this method is that we don’t take full

advantage of ©Ypga to save computational cost for highly oscillatory periodic potentials.

Boundary strategy for the FGA in one-dimension.

In this subsection, we briefly describe FGA-based artificial boundary conditions for
the linear Schrédinger equation (1.4]) (or (1.9))), and we will introduce how to generalize
it to the nonlinear Schrodinger equation.

The key idea in deriving equation (6.13)) is to make the boundaries transparent to
plane waves. Motivated by this observation, we propose to delete Gaussian functions,
whose trajectory is determined by the Hamiltonian flow, that fall outside the boundary.

Let us assume that 1)y is compactly supported in 2y and suppose that we are only
interested in the solution to on a domain £y = (z,z,). In order to accurately

compute the weight function
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of equation (3.5)), we will need to define our phase space grid in g-space to cover g +
O(y/€). The second term is included because the width of the semiclassical Gaussian
is /e and Gaussian functions whose centers are within a few /¢ distance of Qq will
contribute a non-negligible portion of equation (|6.26]).

We will therefore place N, = O(1/4/¢) Gaussian functions on the support €2 of .
If one desires the solution for all z € €2;, we will need to retain the Gaussian functions
centered at Q(T', ¢, p) whose distance to € is less than O(4/€). In summary, for sufficient
accuracy, our boundary strategy needs to satisfy:

1. Retain the Gaussians centered at ¢ located a distance less than O(4/€) of Q.
2. Retain the Gaussians centered at Q(T), ¢, p) located a distance less than O(y/¢)

of Ql.

Example 6.2.1. We show the accuracy our boundary strategy in this example. We use
Qo = (—1,1) and Qy = (—1,0) with the initial condition

to(z) = exp (=50(x — 1/2)?) + exp (=50(z + 1/2)?) and potential V(z) = exp(—0.2z?).
We remove the Gaussians that are further than 2+/e away from the domains. We solve
this at time t = 0.25, and plot Reyiq, (0.25, 2) against Rep(0.25, ) in figure[6.1 Notice

that Repyy closely matches the exact solution in €1y, as it should.

one-dimensional FGA-based Strang-splitting Algorithm.

Suppose we are interested in the solution 1°(x,T) on the domain [a,b]. Let Az =
(b —a)/M be the spatial mesh size and At = T'/N be the temporal mesh size, where M
and N are positive integers of order e~!. Set up the mesh

v =a+ jAz, t, = nk, j=01,2--- M, n=01,2---,N. (6.27)
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Figure 6.1: Plot of real parts of 9% 4(0.25, ) and ¥gpe.(0.25, ).

Also define the domain D = [a, b] for which we will apply the boundary strategy. Let 2/1;7’8

be the approximation °(z;,t,). Obtaining an approximate solution from time ¢ = ¢, to

time t = t,,.1 can be done as follows:

Compute the temporary variable U ;"5,

Ure = e 2 f (U P me, j=0,1,2,---, M. (6.28)

Apply the frozen Gaussian approximation from time ¢, to time ¢,,,; with initial condition
U**.

U;c*,s - 7T¢ (U*,E) 7 ] — O7 17 27 Ce 7M_ (629)

Here, the notation Z¢ (¢) denotes the FGA solution with initial data ¢. It is at this step

where we remove Gaussian functions whose distance to D is greater than O(y/). The

numerical solution at the next time step is approximated by,

Uf“’e _ e’ifoUJ*’ePAt)U;*’e, j=0,1,2,---, M. (6.30)

Finally, we iterate the above three equations until we reach the desired time.
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Table 6.1: Iy and Il error of ||tgpec(0.4, ) — TZ%GA(O'4’$)|| of example on
different computational domains for ¢ = 1/128.

D=[z,z,] |[L1] [-1.5,1.5] [-2,2] [-2.5,2.5]
I, Error 4.6858-107% | 4.6868-1073 | 4.6862-1073 | 4.6861 - 1073
lo Error 7.2755-1073 | 7.2767-10 | 7.2760-107% | 7.2756 - 10~®

6.3 Numerical examples

Ezxample 6.3.1. (1d Schrédinger) We choose the initial condition, potential function, and

nonlinearity to be
Yo(x) = exp(—2522), V(z) = exp(—0.22%), f(z) =z, (6.31)

respectively. We will test the performance of the FGA-based second-order time-
splitting algorithm for € « 1 and on different computational domains.

Table compares ly and I, errors between the exact solution (computed using
the time-splitting spectral method) and that of the FGA-based algorithm. We omit
Gaussians not within 24/¢ of the domain D for different choices of domains for ¢ =
1/128. Table|6.2] compares the performance of the FGA-based Strang-splitting as € varies.
To satisfy the required complexity of the FGA, we use approximately 262 number of
Gaussians per unit interval in phase space. The mesh size §t used for the time-splitting
is 0t = Te with dx = %15. The [y and [, error did not significantly change as the support

of the solution is mostly contained in [—1,1] (see figure [6.2).

Ezxample 6.3.2. (1d Schrédinger) We choose the initial condition, potential function, and

nonlinearity as
Yo(z) = exp(—252% +i(2® + 3z)/e), V() =exp(—0.227), f(z)=2z (6.32)
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Figure 6.2: Real and Imaginary parts of ¥ggact(0.4, @) 955 4(0.4, ) and Iy error of

example using € = 1/128.

e=1/128
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Table 6.2: [y and Iy error of ||tgpec(0.4, ) — TZ%GA(O"L’@H of example using
different values of €.

5 e=1/64 e=1/128 e =1/256
ly Error 4.3820- 1073 4.6868 - 1073 6.5000 - 1073
lw Error 6.3271-1073 7.2767 - 1073 9.4334 - 1073

Table 6.3: I3 and le, error of |¢gpec(0.4, x) — J%GA(OA, x)|.

Gaussians ~ per | 1/4/¢ 2/\/€ 4/\/e

unit interval

e =1/16, Iy Null 6.4143 - 1073 6.4348 - 1073
e =1/16, Iy Null 6.9843 - 1073 7.0998 - 1073
e =1/64, [, Null 2.6039 - 102 2.6055 - 1072
e=1/64, Iy Null 3.6233 - 1072 3.6155 - 1072

In table [6.3, we compute the solution to example using the Strang-splitting
FGA algorithm and compare it with the exact solution. We use the same mesh size as in
example [6.3.1, Figure displays the error between the real and imaginary parts. We
choose D = [—-2,2]. We also compute the /s and Iy, error as the number of Gaussians
increases for ¢ = 1/16 and ¢ = 1/64. Table summarizes our results. We see that
using £~2 number of Gaussians is too few, and that there is no significant improvement

. . _1 ..
in accuracy by using more than 2672 per unit interval.

Our last example contains a highly oscillatory periodic potential, thus we will use the

Bloch-based FGA to approximate equation (6.19)).

Ezample 6.3.3. (1d Schriodinger with periodic potential) We choose the initial condition

and nonlinearity as

Yo(r) = exp(—252%), f(z) =z. (6.33)
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Figure 6.3: Plot of Re[then] — Re[tvrga] and Im[the,] — Im[vvpga] for

e =1/32,1/64,1/128, and1/256 for example
We take the potential to be V(x/e) where V(z) = exp(—z?) is extended periodically with
respect to the lattice [—m,m). Note that this extension is not analytic on —m and 7 but
due to the rapid decay of the exponential function, this poses no problem numerically.

Figure displays the FGA-based solution vs the exact solution for e = 1/16.
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Figure 6.4: Plot of MRe[te,] and Re[vvpga] and Re[they — Ypga] for e = 1/16 for
example [6.3.3]
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6.4 Concluding Remarks

In this thesis, we developed the Bloch-decomposition based FGA for the linear Schrédinger
equation with periodic potentials in the semiclassical regime. We prove that the conver-

gence of our method satisfies the inequality,

||1/}Exact(t7 CU) - wFGA(ta w)”LQ < 0(5) (634)

The method we have presented is invariant with respect to the gauge choice and thus
avoids the difficulty of numerically computing the Berry phase. By splitting the NLS
operator into its linear and nonlinear parts, we are able to apply the FGA to the NLS.
To compute the solution of the NLS on an unbounded domain, we propose the boundary
strategy of removing Gaussians whose distance is greater than O(4/€) of the domain. We

produce several numerical examples confirming our methods.
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