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Abstract

Rationality of Parameterizing Varieties for Modules Over Finite-Dimensional

Algebras

by

Nathan Saritzky

One can use classical varieties to attack the problem of classifying finitely-

generated modules over finite-dimensional algebras. Given such an algebra, one

can write down a number of varieties which parameterize modules with certain

isomorphism invariants. Furthermore, these varieties come with morphic actions by

algebraic groups whose orbits are in one-to-one correspondence with isomorphism

classes of such modules. Using path algebras modulo relations, we can exploit the

quiver structure to learn about the structure of these varieties. We use this to give

a proof of rationality of one such variety parameterizing graded modules.
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Introduction

It is the algebraist’s favorite activity to classify things. In any field in algebra, the

driving problem is the classification of all objects in question, be they groups, rings, fields,

modules, varieties, maps among all these objects, etc. The game is to be able to write

down a comprehensible list of invariants which 1.) allow one to answer any question one

may have about said structure, and 2.) are sufficient to describe every algebraic structure

in the Universe. When this turns out to be an unreasonable goal, one cuts down, and

down, and down, until one reaches a class of objects understandable within a human

lifetime.

This is the general program of this thesis.

Our objects in question are finitely generated modules over a finite-dimensional algebra.

Such modules come with strong finiteness properties yielding fundamentally useful tools,

such as a composition series and a unique direct sum decomposition. These help prevent

us from being totally lost, as one might be in a more general class of modules. However,

the task of classifying all such modules is still not feasible in general, at least if one tries

to do so in a unified framework. One needs to subdivide the task to open up accessible

portions.

Our central focus will be path algebras modulo relations. First defined by Gabriel

[7], they are a class of algebras which can tell us any story told by module categories

over finite-dimensional algebras. More precisely, if A is any finite dimensional algebra

over an algebraically closed field, then there exists a unique (up to isomorphism) path

algebra modulo relations Λ, together with an additive equivalence of categories from

A-Mod to Λ-Mod. Moreover, path algebras modulo relations admit combinatorial and

visual approaches making them more accessible.

To classify the modules over our algebra Λ, we employ various parameterizing varieties.

The first is Modd(Λ), an affine variety parameterizing all isomorphism classes of left Λ

modules with dimension d. The variety Modd(Λ) carries a Gld(k)-action, the orbits of
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which are in bijective correspondence with these isomorphism classes. If Modd(Λ) had

a geometric quotient modulo this group action, it would yield classifying isomorphism

invariants of the corresponding modules. (Roughly, a geometric quotient, if it exists, is the

topological quotient under the Zariski topology, endowed with a structure of an algebraic

variety linking it to the Gld-space Modd(Λ) by way of a strong universal property. But

existence fails badly unless the algebra Λ is semisimple.)

To gain insight, we define projective and quasiprojective parameterizing varieties with

strong geometric ties to Modd(Λ). We start with a semisimple left Λ-module T and P

its distinguished projective cover (see Corollary 3.10). If J is the Jacobson radical of Λ

and Gr(m,V ) the classical grassmannian of m-dimensional vector subspaces of a vector

space V , we define a projective variety

GrassTd = {C ∈ Gr(dimk JP − d, JP ) | C is a Λ-submodule of JP}.

This parameterizes left Λ-modules M of dimension d with top T , i.e. those for which

M/JM ∼= T , by way of the assignment C 7→ P/C. It is then cut further in the following

way: The radical layering of M is the sequence (M/JM, JM/J2M, . . . , JLM/JL+1M)

of semisimple modules, where L is the largest natural number for which JL 6= 0. Let

S = (S0, . . . ,SL) be a sequence of semisimple left Λ-modules. We then define

Grass(S) = {C ∈ GrassTd | C has radical layering S}.

This quasiprojective variety has a couple of substantial benefits. The first is that it tends

to have considerably smaller dimension that its affine cousin within Modd(Λ). Second is

a useful open affine cover.

This thesis is particularly concerned with the setting of graded modules. If Λ is a
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graded k-algebra, and J and P are as above, we define

Gr-Grass(S) = {C ∈ Grass(S) | C is a homogeneous submodule of JP}.

The quotient modules P/C are then graded, whence Gr-Grass(S) parameterizes the

graded left Λ modules with radical layering S.

We will define the skeleton of a module M , which is a particular class of vector-space

basis. The advantages of skeleta are 1.) they give us the just-mentioned open affine cover

of Grass(S) and Gr-Grass(S), and 2.) one can actually compute them. A skeleton may

be visualized as a forest of rooted trees. Skeleta will be used to prove the central theorem

of this thesis, which was stated in general and proved for the ungraded setting by Babson,

Huisgen-Zimmermann, and Thomas in [3], Theorem 5.3.

Theorem. Let Λ = kQ/I be a path algebra modulo relations, where I is the ideal

generated by all paths in Q of length L+ 1 for some natural number L. If Gr-Grass(S)

is nonempty, then it is rational, irreducible, and smooth.

1 Algebraic Preliminaries

1.1 Setting the Stage

In the section, we briefly go over concepts from the theory of finite-dimensional algebras

we will need. Much of what is discussed here will have a more intuitive or combinatorial

interpretation once we have specialized to path algebras modulo relations. For the most

part, we will not prove results unless said proofs are particularly relevant to the rest of

the thesis.

First, we establish some basic terminology and notation. All our rings are unital. An

algebra over a field k is a ring A together with an injective ring homomorphism of k

into the center of A. It follows from this definition that A is a k-vector space, and its
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vector space structure “plays nicely” with the ring structure. Throughout, A will be a

finite-dimensional algebra over an algebraically closed field k.

First, we observe that A is then both noetherian and artinian. This follows from the

fact that any properly ascending or descending chain of ideals will be, in particular, a

chain of k-subspaces of A.

If M is a left A-module, M is left noetherian (artinian) if it satisfies the ascending

(descending) chain condition for submodules. If M is both left noetherian and left artinian,

we say that M has finite length.

We write A-Mod for the category of left A-modules, and A-mod (note the lower-case

“m”) for the full subcategory of finitely generated left A-modules. Equivalently, A-mod is

the category of left A-modules which are finite-dimensional k-vector spaces.

Definition 1.1. A composition series for M ∈ A-Mod is an ascending chain of submodules

0 = M0 (M1 ( · · · (Mc = M

such that Mj/Mj−1 is simple for 1 ≤ j ≤ c. The Mj/Mj−1 are called the composition

factors of the series.

For modules of finite length, one has existence and uniqueness (in a sense to be

described in the following theorem) of composition series:

Theorem 1.2 (Jordan-Hölder). Let M ∈ A-Mod be a module of finite length (such as

when M is finitely generated). The M has a composition series. Moreover, it is unique in

the following sense: If we have two composition series

0 = M0 ( · · · (Mc = M, 0 = N0 ( · · · ( Nd = M,
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then c = d, and there is a permutation σ of the index set {1, . . . , c} such that

Mj/Mj−1
∼= Nσ(j)/Nσ(j)−1.

That is, the composition factors are unique “up to shuffling”.

Proof. See [1], Theorem 11.3.

Definition 1.3. In light of the Jordan Hölder theorem, we call c the composition length

of M .

The existence and uniqueness of this composition series is a very strong and useful

property. One can use it to prove the essential fact that there exist a unique decomposition

of M into indecomposable summands.

Theorem 1.4 (Krull-Remak-Schmidt). Let M ∈ A-mod be a module of finite length.

Then there exist indecomposible submodules M1, . . . ,Mr such that M =
⊕

1≤i≤rMi.

Moreover, if we have another such decomposition M =
⊕

1≤i≤sNi, then r = s, and there

is a permutation σ of the index set {1, . . . , r} such that Mi
∼= Nσ(i) for each i.

Proof. See [1], Theorem 12.9.

Note that this is the strongest such result one could possibly hope for. In particular,

isomorphism of the indecomposable summands, rather than equality, is the best one could

reasonably expect. For example, one has the following two decompositions of the vector

space k2 into indecomposable summands whenever char k 6= 2:

k2 = k(1, 0)⊕ k(0, 1) = k(1, 1)⊕ k(−1, 1).

Krull-Remak-Schmidt tells us that if we understand the indecomposable modules in

A-mod, then we understand all modules, for they will, essentially uniquely, be finite direct

sums of those indecomposables. The task of understanding the finitely-generated left A
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modules may therefore be reduced to understanding the finitely generated indecomposable

modules. In pursuit of this goal, it is then natural to consider the question of “how many”

indecomposable left A-modules we have.

The following is a somewhat sketchy definition, intended to motivate rather than be

used seriously:

Definition 1.5. • An algebra A is called tame if all the isomorphism classes of

indecomposible left A-modules of fixed dimension beling to one of a finite number of

“1-parameter families” together with finitely many “sporadic” isomorphism classes.

• A is called wild if there is an equivalence of categories from k〈x, y〉-mod to a full

subcategory of A-mod.

Tame algebras, as their name suggests, have comparatively easy representation theory.

One can, in principle, write down a complete list of the indecomposables in an under-

standable format. Wild algebras, on the other hand, have representation theory “as bad”

as that of k〈x, y〉, which could fairly be described as “awful”, “brain-meltingly difficult”,

or “quite possibly forever beyond human understanding”. In this instance, describing the

indecomposable modules all in one go is essentially a hopeless endeavor. The remarkable

fact here is that there is no middle ground in our setting. The representation theory of A

has only two settings: “quite nice” and “terrible”.

Theorem 1.6 (Drozd Dichotomy, see [5]). Let A be a finite-dimensional algebra. Then

A is either tame or wild.

More often than not, one lands on the wild side of this divide. This leads us to,

rather than abandoning every hope, the goal of “cutting down” our category into more

manageable pieces. It is here where our work will be done.
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1.2 Graded Algebras

Definitions 1.7. 1. We say that an algebra A is graded if there exists a vector space

decomposition A =
⊕

m∈N∪{0}Am such that if a ∈ Am and b ∈ Al, then ab ∈ Am+l.

In this case, a left A-module M is graded if M has a vector space decomposition

M =
⊕

m∈N∪{0} such that if a ∈ Am and b ∈Ml, then ab ∈Mm+l.

2. If a ∈ Al, we say that a is homogeneous of degree l. We say the same of an element

b ∈Ml.

3. We call a submodule C ⊆ M homogeneous if it is generated by homogeneous

elements (of any degrees).

For a submodule C of a graded module M , the quotient module M/C inherits the

grading from M if and only if C is homogeneous.

1.3 Semisimple Modules and the Radical

Were dreams always to come true in representation theory, we would be able to break

down every left A-module into not just indecomposable, but simple left A-modules1 This

is just the case in semisimple algebras, which have the “nicest” (read: “most boring”)

representation theory.

Definition 1.8. A left A-module M is semisimple if the following equivalent conditions

hold:

1. M is the sum of its simple submodules.

2. M is a direct sum of simple submodules.

3. Every submodule of M is a direct summand.

A itself is called semisimple if the left regular module AA is semisimple.

1Of course, this would leave those who study representations of algebras with rather a lot less to do.
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If A is a semisimple ring, then one has that every M ∈ A-mod is a semisimple module.

In this case, the representation theory of A is relatively straightforward: so long as

one understands the simple left A-modules, one understands all finitely-generated left

A-modules. Fortunately, the simple modules are typically easier to understand than the

indecomposables. In fact, in our setting, we will understand the simple modules very well.

However, it is far too much to hope that our algebras are always semisimple. But the

culprit is easily identified, and may be modded out to restore some order:

Definition 1.9. Let A be a finite-dimensional algebra. The Jacobson radical J of A is

the intersection of all maximal left-ideals.

One can equivalently define the Jacobson radical of A to be the intersection of all

maximal right-ideals of A. In particular, it is a two-sided ideal.

Notation. Throughout this thesis, J will be reserved for referring to the Jacobson radical

of the ring in question.

Your favorite text on ring theory (e.g. [1]) will list myriad characterizations and

properties of the Jacobson radical. For our purposes, we will need the following (which

hold for artinian rings, but not in general):

Proposition 1.10. Let A be a finite-dimensional algebra (or, more generally, an Artinian

ring).

1. A/J is a semisimple ring.

2. J is unique largest nilpotent ideal of A.

3. J annihilates every simple left A-module. In particular, every simple left A-module

is also a left A/J-module.

4. Let M ∈ A-mod. Then JM is the intersection of all the maximal submodules of

M , and M/JM is semisimple.
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Observation and Definition 1.11. Let M ∈ A-mod. For any natural number l, one

sees from Proposition 1.10(4) that J lM/J l+1M is semisimple. Moreover, the nilpotence

of J gives us a unique smallest natural number L such that JLM = 0. The collection of

semisimple modules M/JM, JM/J2M, . . . , JL−1M/JLM is called the radical layering of

M . In particular, M/JM is referred to as the top of M .

The notion of the radical layering allows us to leverage the comparatively easy-to-

understand simple left A-modules to peer into the general representation theory of A.

Path algebras, we will see, provide us with a way to visualize how the radical layers of A

“link up”.

1.4 The Jacobson Radical and Projective Covers

Projective covers of modules are going to be an essential tool for us. They have a few

different characterizations, but, in our setting (that is, finitely-generated modules over

artinian rings), they have a relatively concrete description utilizing the Jacobson radical.

Here we will present this description rather than something more general.

Definition 1.12. A left A-module P is projective if, for any left A-modules M and N ,

with a homomorphism f : P → M and surjective homomorphism g : N � M , there

exists a homomorphism h : P → N satisfying the following commmutative diagram:

N

g
����

P
f //

h
>>

M

.

In full generality, projective modules have a very concrete characterization: they are

direct summands of free modules.

Proposition 1.13. P ∈ A-Mod is projective if and only if there exists P ′ ∈ A-Mod such

that P ⊕ P ′ is a free left A-module.
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With this in mind, it is easy to see that every module M ∈ A-mod is the surjective

image of a projective module. Indeed, every left A-module is the quotient of some free

left A-module. However, it is clear that one could choose some enormous free module and

then factor out most of it to get M . Our hope is that we can find a “minimal” projective

module P with a homomorphism onto M having “small” kernel. Indeed, we have just

that, if we define “small” to mean “contained in JP”.

Proposition and Definition 1.14. Let M ∈ A-mod.

1. There exists a projective module P together with a surjective homomorphism

f : P �M such that ker f ⊆ JP . We call P a projective cover of M .

2. If P and P ′ with surjections f, f ′, respectively, are projective covers of M , then

there exists an isomorphism g : P → P ′ making the following diagram commute:

P

∼g

��

f
!! !!
M

P ′.

f ′ == ==

We omit the proof, but we will explicitly construct a particularly useful projective

cover in Corollary 2.10.

1.5 Idempotents and Basic Algebras

Recall that an idempotent in A is an element e with e2 = e. A pair of idempotents

e, f is called orthogonal if ef = fe = 0. We will call a set of idempotents orthogonal

if its elements are pairwise orthogonal. The significance of orthogonal idempotents is

demonstrated by the following basic fact in ring theory:
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Proposition 1.15. Let R be a ring. Then the following are equivalent for any collection

of left ideals I1, . . . , In of R:

1. RR =
⊕

1≤j≤n

Ij as left R-modules.

2. There exist orthogonal idempotents e1, . . . , en such that Ij = Rej and 1 = e1 + · · ·+

en.

This tells us that breaking down RR into summands is equivalent to finding orthogonal

idempotents. In fact, the problem of breaking a ring down into indecomposable summands

can be stated in terms of idempotents.

Definition 1.16. 1. An nonzero idempotent e is called primitive if whenever e = e′+e′′

for orthogonal idempotents e′, e′′, then either e = e′ or e = e′′.

2. A set of primitive orthogonal idempotents {e1, . . . , en} is called a full sequence of

orthogonal primitive idempotents if e1 + · · ·+ en = 1 (typically, we will suppress

the word “orthogonal”).

The following test for primitivity of an idempotent will come in handy:

Lemma 1.17. e ∈ A \ {0} is a primitive idempotent if and only if it is the only nonzero

idempotent in the ring eAe.

Proof. Suppose that e is primitive and let f ∈ eAe be an idempotent. Then e− f is an

idempotent orthogonal to f , and e = f + (e− f). Primitivity of e then gives that either

f = 0 or f = e. Conversely, suppose that e is the only nonzero idempotent of eAe and

that e = f + f ′ for orthogonal idempotents f, f ′. Then Then ef = f 2 + f ′f = f 2 = f .

Similarly, fe = f . Therefore f ∈ eAe, and our hypothesis then yields that f = 0 or f = e,

as desired.

Evidently, if e is an idempotent, then Re is indecomposable if and only if e is primitive.

Therefore, expressing a ring as a direct sum of left ideals is equivalent to finding a full
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sequence of primitive idempotents. Ideally, we would like for our sequence to irredundantly

represent the indecomposable summands of A. This brings us to the notion of a basic

algebra.

Definition 1.18. A finite-dimensional algebra A is called basic if there exists a full

sequence of primitive idempotents {e1, . . . , en} such that if i 6= j, then Aei 6∼= Aej . In this

case, we call {e1, . . . , en} a basic set of idempotents.

In the following, Ei,j is the matrix (of appropriate size) with a 1 in the i, j-entry and

zeroes everywhere else.

Example 1.19. The ring Tn of upper triangular n-by-n matrices over k is a basic algebra.

The matrix idempotents E1,1, . . . , En,n form a full sequence of orthogonal primitive

idempotents. TnEi,i is the ideal of matrices with nonzero entries only in the ith column.

One then sees that dimk(TnEi,i) = i, whence TnEi,i 6∼= TnEj,j whenever i 6= j.

Non-example 1.20. The ring Mn of all n-by-n matrices over k is not a basic algebra

for n ≥ 2. The matrix idempotents E1,1, . . . , En,n still form a full sequence of primitive

idempotents, but the summands MnEi,i fail to be pairwise non-isomorphic. In fact, for

any 1 ≤ i, j ≤ n, the map fi,j : TnEi,i → TnEj,j given by M 7→MEi,j is an isomorphism.

While not all algebras are basic, the basic algebras do, on their own, capture “all” of

the representation theory of finite-dimensional algebras, at least in the sense of categories.

Definition 1.21. Let R and S be rings. We say that R and S are Morita equivalent if

there exists an additive equivalence of categories between R-Mod and S-Mod.

The remarkable fact is that Morita equivalence is more or less fully understood. In

our setting, we have

Theorem 1.22 (See [2], Theorem 6.8). Every finite-dimensional algebra A over an

algebraically closed field k is Morita equivalent to a basic algebra B, and B is unique up

to isomorphism.
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This thesis is concerned with path algebras modulo relations, which, we will see,

are basic algebras. By restricting our attention to these, we examine a canonical set

of representatives of the Morita equivalence classes of finite-dimensional algebras over

algebraically closed fields. But, lest we get too excited, be warned that Morita equivalence

is a highly imperfect partition. For example, one has that the matrix ring Mn(k) is Morita

equivalent to k for all n! These, however, are clearly very different rings.

2 Path Algebras and Path Algebras modulo Rela-

tions

2.1 A Primer on Quivers

Definition 2.1. A quiver is a finite directed graph in the most general sense. That is, a

collection of vertices V0 = {e1, . . . , en} and arrows V1, both finite, where each α ∈ V1 is an

arrow from ei to ej. We allow for loops (i.e. arrows from ei to itself) and multiple edges.

Given an arrow α, we write start(α) and end(α) for the starting and ending vertices of α,

respectively. A path is then a finite sequence of arrows p = α`α`−1 · · ·α1 such that, for

each 1 ≤ i ≤ ` − 1, we have end(αi) = start(αi+1). We then write start(p) = start(α1)

and end(p) = end(α`). The integer ` is the length of p, written `(p). Additionally, we

allow for a path of length 0 at each vertex, and identify this path with the vertex itself.

A path z is an oriented cycle if z has positive length and start(z) = end(z).

Given a quiver Q, let kQ be the vector space whose basis consists of all paths in

Q. We endow kQ with a multiplication induced by concatenation of paths. That is, if

p = α` · · ·α1 and q = βm · · · β1 are paths in Q, then pq (which we take as meaning “p

after q”) is

pq =


βm · · · β1α` · · ·α1 if start(p) = end(q)

0 otherwise.
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We then extend this multiplication of paths linearly to all of kQ to make it a k-algebra.

Examples 2.2. 1. Let Q be the following quiver:

1.

α
��

The algebra kQ has identity e1. Since α begins and ends at the same point, α2 6= 0.

Indeed, αk is nonzero for any natural number k. The algebra we have then consists

of linear combinations of e1 and positive powers of α. The result is isomorphic to

the polynomial ring k[x]. An explicit isomorphism is the map induced by e1 7→ 1

and α 7→ x.

2. Let Q be the following quiver:

1
α1 // 2

α2 // · · ·
αn−1 // n.

kQ has orthogonal idempotents {e1, . . . , en}. Each of the rings ei(kQ)ei is the span

of the paths starting and ending at the vertex ei. Of course, there are no such

paths aside from ei itself. It follows that ei is the only idempotent in ei(kQ)ei, and

so is primitive by Lemma 1.17. Moreover, if we have a path αsαs−1 · · ·αt, where

1 ≤ t ≤ s ≤ n− 1 in Q, we see that (e1 + · · ·+ en)αsαs−1 · · ·αt = esαsαs−1 · · ·αt =

αsαs−1 · · ·αt. Therefore e1 + · · · + en = 1, and so {e1, . . . , en} comprises a full

sequence of primitive orthogonal idempotents.

For each vertex ei, the indecomposible left kQ-module kQei consists of linear

combinations of paths starting in ei, of which there are n−i. Therefore dimk(kQei) =

n− i. Since the kQei’s have nonequal dimensions, we have that kQ is a basic algebra.

In fact, the ring homomorphism from kQ to the ring Tn of lower-triangular n-by-n

matrices induced by αs · · ·αt 7→ Es+1,t is an isomorphism (cf. Example 1.19).
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Much of the phenomena exhibited in these examples happens in general.

Observations 2.3. Let Q be a quiver with veretx set {e1, . . . , en}.

1. The paths of length zero e1, . . . , en are orthogonal idempotents.

2. If p is a path, then

eip =


p if end(p) = ei

0 otherwise

, pej =


p if start(p) = ej

0 otherwise.

3. In light of the above observation, we see that
∑n

i=1 ei is a multiplicative identity,

and therefore kQ is a unital ring.

4. Each ei(kQ)ei is a ring with identity ei, consisting of linear combinations of ei and

cycles at ei.

5. The vector space ej(kQ)ei has dimension equal to the number of paths from ei to

ej.

6. kQ can be given a grading. Let kQ` be the subspace generated by paths of length `.

Then kQ has a vector space decomposition

kQ =
⊕

`∈N∪{0}

kQ`,

which yields a grading on kQ, called the path length grading.

7. dimk kQ < ∞ if and only if Q has no oriented cycles. Indeed, if z ∈ kQ is an

oriented cycle, then {zn}k∈N is an infinite linearly-independent set in kQ. Conversely,

if Q has no oriented cycles, then it has only finitely many paths (due to finiteness

of the vertex and arrow sets).
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Proposition 2.4. Let Q be a quiver. Then the vertex set {e1, . . . , en} comprises a basic

set of primitive idempotents for kQ.

Proof. It’s clear from the nature of the multiplication in kQ that the eis are orthogonal

idempotents. In view of Observation 2.3(3),
∑n

i=1 ei = 1, and {e1, . . . , en} is a full

sequence of orthogonal idempotents. Finally, suppose that (kQ)ei ∼= (kQ)ej. Then their

left annihilator ideals l-Ann((kQ)ei) and l-Ann((kQ)ej) are equal. If we suppose further

that i 6= j, then ejei = 0 and so ei ∈ l-Ann((kQ)ej) = l-Ann((kQ)ei). Hence 0 = e2
i = ei,

a contradiction. Therefore i = j.

It remains to be shown that ei is a primitive idempotent. By Lemma 1.17, it suffices

to show that it is the only nonzero idempotent in ei(kQ)ei. Suppose that e is such an

idempotent. Then e has the form

e = aei + z,

where a ∈ k and z is a linear combination of cycles at ei. Then

0 = e2 − e = (a2 − a)ei + (2a− 1)z + z2.

Hence z = 0, and a2 − a = 0. Therefore a is either 0 or 1, yielding e = 0 and e = ei,

respectively.

Proposition 2.4 gives that
⊕n

i=1(kQ)ei is a decomposition of kQ into indecomposable

summands. The indecomposible projective modues (kQ)ei and their simple quotients,

(kQ)ei/J0ei, where J0 is the ideal generated by the arrows, play a crucial role in the

representation theory of path algebras.

Notation. Typically, we will write J0 for the ideal in kQ generated by the arrows.
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2.2 Path Algebras Modulo Relations

Definition 2.5. Let I ≤ kQ be an ideal. We call I an admissible ideal if there exists a

natural number L ≥ 2 such that JL0 ⊆ I ⊆ J2
0 . Equivalently, I is admissible if it satisfies:

• I is generated by linear combinations of paths of length at least two.

• All paths of length L are in I.

Note that if Q is a quiver without oriented cycles, then I = 0 is admissible. In this

case, the paths in Q have uniformly bounded length, and so the powers of J0 will “die

out” on their own. Conversely, if Q does have oriented cycles, then it is necessary for I to

be nonzero for it to be admissible.

Proposition 2.6. Let I ≤ kQ bean admissible ideal and Λ = kQ/I be a path algebra

modulo relations. Then Λ is a basic, finite-dimensional algebra.

Much of this proof mirrors that of Proposition 2.4.

Proof. Finite dimensionality of Λ comes from the fact that Jm0 ⊆ I for some natural

number m, and kQ/Jm0 is finite-dimensional. It remains to show that Λ has a basic set

of orthogonal idempotents. The obvious candidate turns out to be the correct one: the

elements e1 + I, . . . , en + I. The fact that I ⊆ J2
0 implies that each ei /∈ I, and so ei + I

is nonzero in Λ. They then inherit orthogonality and idempotent-ness from kQ.

Suppose that Λ(ei + I) ∼= Λ(ej + I). Then the left annihilator ideals l-Ann(Λ(ei + I))

and l-Ann(Λ(ej + I)) are equal. If we suppose further that i 6= j, then the orthogonality

of ei and ej gives that ei ∈ l-Ann(Λ(ei + I)), whence e2
i = ei ∈ I. But, once again, I ⊆ J2

0 ,

so this cannot happen. Therefore i = j.

It remains to show that Λ(ei+I) is an indecomposable left Λ-module for each i. Suppose

that that we have a direct sum decomposition Λei = Λe⊕Λf for some nonzero orthogonal

idempotents e, f ∈ Λ(ei + I) such that e + f + I = ei + I. e =
∑

1≤j≤n(ajej + q + I),

where each aj ∈ k and q is a linear combination of paths of nonzero length in kQ. A
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straightforward computation shows that eei = eie = e, whence aj = 0 for j 6= i, and q is

in fact a linear combination of cycles at ei. Then

e2 − e+ I = 0

⇒ (a2
i − ai)ei + (2ai − 1)q + q2 ∈ I.

Since I ⊆ J2
0 , we must have a2

i −ai = 0, so ai = 0 or 1. If ai = 1, then ei−e = −q+I is an

idempotent. But the admissibility of I gives that qm ∈ Jm0 ⊆ I for some natural number

m. Therefore −q + I is both an idempotent and a nilpotent in Λ, and so −q + I = 0,

whence e = ei + I. But then f = 0, which is a contradiction. Similarly, if ai = 0, then

e = q + I is both an idempotent and a nilpotent, and so e = 0, also a contradiction.

We will typically abbreviate our idempotents ei + I ∈ Λ as simply ei.

Corollary 2.7. Λ =
⊕

1≤i≤n Λei is “the” (in light of the uniqueness afforded by the

Krull-Remak-Schmidt theorem) decomposition of Λ into indecomposable summands..

We now show that we know the indecomposable projective and simple objects in

Λ-mod “personally”. The former are the left ideals Λei, and the latter their quotients

Si = Λei/Jei.

Lemma 2.8. Let Λ = kQ/I be a path algebra modulo relations and J0 the ideal generated

by the arrows in kQ. Then the image of J0 in Λ by the quotient map is the Jacobson

radical of Λ.

Proof. Λ is a finite-dimensional algebra, and so, by [AF 15.19], its Jacobson radical is the

unique largest nilpotent ideal. Now, on the one hand, J0 is nilpotent, for the admissibility

of I gives a natural number L such that JL0 ⊆ I. On the other hand, suppose that J0 ( J .

Then there exists a nonzero linear combination of idempotents E =
∑n

i=1 aiei and an
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element y ∈ J0 such that E + y ∈ J0. For any natural number m, we have

Em =
n∑
i=1

ami ei.

E is a nonzero linear combination, so there is some ai 6= 0. It follows that em 6= 0, since

the eis are linearly independent. Therefore (E + y)m 6= 0. But J is a nilpotent ideal, and

so we have a contradiction.

From Lemma 2.8, we can see that Λ/J ∼= Λe1/Je1 ⊕ · · · ⊕ Λen/Jen. From this we get

the following proposition:

Proposition 2.9. All simple left Λ-modules have the form Λei/Jei for some vertex ei.

Proof. Let S ∈ Λ-mod be simple. Since J annihilates all simple left Λ-modules, S is also

a left Λ/J-module. Pick a nonzero x ∈ S, and let µx : Λ/J → S be the map λ+ J 7→ λx.

Precomposing with the canonical injection ηi : Λei/Jei ↪→ Λ/J gives us maps

µx ◦ ηi : Λei/Jei → S.

The map µx is nonzero, and so there must be some nonzero µx ◦ ηi. Schur’s lemma then

implies that S ∼= Λei/Jei for some vertex ei as left Λ/J-modules.

Notation. Forevermore, we shall use Si to refer to the simple module Λei/Jei.

Proposition 2.9 yields the following essential corollary, which tells us that we understand

“the” projective covers of modules in Λ-mod.

Corollary 2.10. Let M be a left Λ-module. Then M has a projective cover of the form

P =
∑n

i=1(Λei)
ti for some nonnegative integers t1 . . . tn.

Proof. Proposition 2.9 implies that there exist nonnegative integers t1, . . . , tn such that

M/JM ∼= St11 ⊕ · · ·Stnn . Let P = (Λe1)
t1 ⊕ · · · ⊕ (Λen)tn . Since each Λei is a direct
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summand of the left regular Λ-module Λ, P is projective. Therefore, there is a map

h : P →M satisfying the following commutative diagram:

M

quo
����

P

h
;;

quo
//M/JM.

Since kerh ⊆ JP , we have that P is a projective cover of M .

Definition and Notation 2.11. We call the above P the distinguished projective cover

of M . It will often be convenient to write it as

P =
⊕

1≤r≤t

Λzr,

where w =
∑n

i=1 ti, and the set {z1, . . . , zw} induces a basis of P/JP . Then each zr has a

unique vertex e(r) such that e(r)zr = zr. We call z1, . . . , zt a distinguished sequence of

top elements of P .

2.3 Representations of Quivers

Representations of quivers provide an alternative viewpoint for modules over path algebras

modulo relations. They more readily expose explicit ties between path algebras and

linear algebra, and are a popular object of study in their own right. In the interest of

completeness, we present the relevant definitions and constructions without proofs.

Definitions 2.12. Let Q be a quiver with vertex set {e1, . . . , en}, and d = (d1, . . . , dn) ∈

Nn
0 .

1. A representation of Q over k with dimension vector d consists of the following:

• A n-tuple of vector spaces (V1, . . . , Vn), where Vi = kdi

• For each arrow α from ei to ej, a linear map fα : Vi → Vj.
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2. Given two representations {(Vi)1≤i≤n, {fα}}, and {(Wi)1≤i≤n, {gα}}, a morphism of

representation is a n-tuple of linear maps ϕi : Vi → Wi such that for all arrows α

from ei to ej, the following diagram commutes:

Vi
ϕi //

fα
��

Wi

gα
��

Vj
ϕj //Wj.

Representations of Q with these morphisms form an abelian category. The monomor-

phisms, epimorphisms, and isomorphisms end up being what one would expect. For

example, a morphism of representations is an isomorphism if and only if all of its con-

stituent linear maps are.

Example 2.13. Q here is the Kronecker quiver :

1
β
66

α
((
2

For d, d′ ∈ N, a representation of Q with dimension vector (d, d′) can then be thought of

as a pair of linear maps fα, fβ : kd → kd
′

relative to the following equivalence relation:

(fα, fβ) ≈ (f ′α, f
′
β)⇔ ∃g ∈ Autk(K

d), h ∈ Autk(k
d′) such that fαg = hf ′α and fβg = hf ′β.

Classifying the representations of this quiver up to isomorphism is equivalent to classifying

the simultaneous normal forms of the linear maps fα and fβ. This was a problem solved

by Kronecker (whence the name, despite the fact that Kronecker’s time was long before

quivers were developed).

If I is an admissible ideal, we can also define a representation of Q modulo I to be a

representation {(Vi)1≤i≤n, {fα}} of Q such that the fαs “agree with the relations in I”.

More precisely, suppose that
∑

1≤j≤s ajpj ∈ I, with s ∈ N, each aj ∈ k, and each pj =
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αj,lj · · ·αj,1 a path with the αj,ms arrows. Then we require that
∑

1≤j≤s ajfαj,lj · · · fαj,1 = 0.

Given a representation ({Vi}1≤i≤n, {fα}) of Q modulo I, we can construct a left kQ/I-

module M in the following way: let M have underlying vector space
⊕n

i=1 Vi. Then, for

a vertex ei, let ei(v1, . . . , vn) = (0, . . . , vi, . . . , 0), and for an arrow α from ei to ej, define

α(v1, . . . , vn) = (0, . . . , fα(vi), . . . , 0) (note that here, the fα(vi) will appear in the jth

coordinate). Since the fαs agree with the relations in I, this induces a well-defined left

kQ/I-structure on M .

Conversely, if M ∈ kQ/I-mod, we can let Vi = eiM , and, for each arrow α with

start(α) and end(α) = ej, define a linear map fα : Vi → Vj by

fα : m 7→ αm.

Then the vector spaces V1, . . . , Vn together with the fαs comprise a representation of Q

modulo I.

Proposition 2.14. There is an equivalence of abelian categories between representations

of Q modulo I and kQ/I-mod. The above constructions describe the restriction of this

equivalence to the objects of the categories.

Given the tangential nature of representations to this document, we omit the details of

this construction. We will be looking at things from the viewpoint of left kQ/I-modules.

3 A Primer on Parameterizing Varieties of Finite-

Dimensional Left Λ-Modules

Throughout this section, let Q be a quiver with vertices e1, . . . , en, and Λ = kQ/I a path

algebra modulo relations with Jacobson radical J = {α + I | α is an arrow}.
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3.1 The Affine Parameterizing Varieties

In the following, let A be a basic, finite-dimensional algebra. We realize A as the quotient

of a free algebra k〈x1, . . . , xr〉/R, where R is some ideal of relations. We begin by defining

an affine parameterizing variety for left A-modules with fixed dimension.

Definition 3.1. Take A as above. We define

Modd(A) =

{
(ai)1≤i≤r ∈

∏
1≤i≤r

Matd(k) | f(a1, . . . , ar) = 0 for all f ∈ R

}
.

Whenever it will not introduce confusion, we will write the points of Modd(A) in the

form (xi).

That the matrices satisfy the relations in A boils down to polynomial conditions on

the entries of those matrices. Hence Modd(A) is closed subvariety of
∏

1≤i≤r Matd(k)

and so is affine. This variety comes with a Gld(k)-action by conjugation: for g ∈ Gld(k),

define g.(ai) = (gaig
−1). We will write Gld .((xi)) for the orbits under this action.

There is a natural map from Modd(A) to the set of isomorphism classes of left A-

modules with dimension d which interacts nicely with the orbits of the Gld(k)-action.

Given x = (xi) ∈ Modd(A), we construct a left A-module in the following way: let

M = kd as a vector space. For a generator xi, and m ∈M , we set xi.m = aim. Since the

xis agree with the relations in A, this induces a well-defined left A-module structure on

M .

Notation. With x ∈ Modd(A) as above, we write M(x) for the corresponding left

A-module.

Conversely, if M is a left A-module, we have that each map m 7→ ai.m is a vector space

endomorphism on M . Fixing a basis, this yields a tuple of matrices (xi) ∈ Modd(A).

This dependence on a choice of basis of M suggests a connection with conjugation by

matrices in Gld(k). Indeed, we have the following:
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Lemma 3.2. The above constructions induces a bijection

{Orbits in Modd(A) of the Gld(k)-action} ←→ {Isomorphism classes of A-modules}

Gld .(x) 7−→ [M(x)].

�

3.2 Subdivisions of Modd(A)

Now that we have constructed Modd(A), we wish to understand it as well as we can. In

particular, we are interested in the irreducible components of this variety. We will try to

get at them via a series of refinements.

Definition 3.3. Let M ∈ A-mod. The dimension vector of M is

dim(M) = (dimk(e1M), dimk(e2M), . . . , dimk(enM)) ∈ Nn
0 .

Note that if dim(M) = (d1, . . . , dn), then dimkM =
∑

1≤i≤n di. Generally, for an

dimension vector d = (d1, . . . , dn) ∈ Nn
0 , we define |d| =

∑
1≤i≤n di.

One can think of the dimension vector as describing the number of times each vertex

“appears” in the module M . More precisely, the coordinate di in d is the number of times

the simple module Si appears in a composition series for M .

Theorem 3.4 ([8], Corllary 1.4). The connected components of Modd(A) are precisely

the subvarieties of the form

{x ∈Modd(A) | dim(M(x)) = d},

where d traces the dimension vectors with |d| = d.
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The irreducible components of of the Modd(A)s are contained in the connected

components. Since we will be dealing only with path algebras modulo relations in the

following, we will pass to affine varieties which encode the Λ-modules with fixed dimension

vector d more efficiently in this case.

Definition 3.5. Λ = kQ/I is a path algebra modulo relations and ArrQ the set of arrows

in Q.

Modd(Λ) = {(xα)α∈ArrQ | xα ∈ Homk(k
dstart(α) , kdend(α)) such that the xα satisfy

the relations in I}.

That a point (xα) ∈ Modd(Λ) satisfies the relations in I means the following: write

xp = xαm · · ·xα1 whenever p = αm · · ·α1 ∈ kQ is a path. If we have a finite linear

combination of paths
∑
kipi ∈ I, then

∑
kixpi = 0.

Example 3.6. Let Q be the Kronecker quiver

1
α1
((

α2

66 2

and Λ = kQ. We know from Theorem 3.4 that ModdΛ has connected components

resulting from the dimension vectors (2, 0), (0, 2), and (1, 1). To describe them, we pass

to the more convenient variety of Definition 3.5.

It is easy to see that Mod(2,0)(Λ) and Mod(0,2)(Λ) are both singletons, parameterizing

S2
1 and S2

2 , respectively. The third component is slightly more interesting, giving

Mod(1,1) =

{((
0 0

a1 0

)
,

(
0 0

a2 0

))
∈ (Mat2(k))2 | a1, a2 ∈ k

}
.

Then Mod(1,1)(Λ) ∼= A2.

This variety Modd(Λ) parameterizes the isomorphism classes of left Λ-modules of
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dimension vector d. We have a map

Modd(Λ) 3 x −→M(x) ∈ Λ -mod,

where M(x) =
⊕

1≤i≤n Vi, where Vi = kdi , as a vector space, and has the left Λ-action

induced by the following: if ei ∈ Λ is a vertex, then ei acts as the projection map onto

Vi on M(x). If α is an arrow from i to j, then αvi = xαvi ∈ Vj whenever vi ∈ Vi, and

αvl = 0 for vl ∈ Vl 6= Vi. (note the similarity between this construction and that of a

representation fo a quiver in Subsection 2.3.)

The variety Modd(Λ) also comes with a a morphic action by a linear algebraic group.

Definition 3.7. Let d ∈ Nn
0 be a dimension vector. Then

Gld(k) =
∏

1≤i≤n

Gldi(k).

This group has an action on Modd(Λ) given by

(gi).(xα) = (gend(α)xαg
−1
start(α)).

We omit the proof of the following proposition, whose proof closely follows that of

Lemma 3.2.

Proposition 3.8. The orbit Gld(k).x consists precisely of the points y ∈Modd(Λ) for

which M(x) ∼= M(y).

Example 3.9. Q is the quiver

1 α // 2
β
((
3

γ1

hh

γ2

VV
δ // 4

Let Λ = kQ/〈all paths of length 3〉. Take d = (1, 1, 1, 1). In this case, each Matk(k
di , kdj )
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consists of 1 × 1 matrices. A point in Modd(Λ) can therefore be written in the form

x = (xα, xβ, xγ1 , xγ2 , xδ) ∈ A5. Moreover, we have Gld(k) = (Gl1(k))4 = (A1 \ {(0, 0)})4.

In the following, we explore the irreducible components of Modd(Λ).

First, let M = Λe1⊕Λe4. M is represented by the point y such that yγ1 = yγ2 = yδ = 0,

and yα = yβ = 1. For g = (g1, g2, g3, g4) ∈ Gld(k), we therefore have

g.y = (g2g
−1
1 , g3g

−1
2 , 0, 0, 0).

Therefore Gld .y = {(a, b, 0, 0, 0) ∈ A5 | a, b 6= 0}. We define

C1 = Gld .y ∼= A2,

which is irreducible.

Next, we let M = Λe1/Je1 ⊕ Λe2/〈γ1, γ2〉. This is represented by the point y whose

coordinates are given by yα = yγ1 = yγ2 = 0, and yβ = yδ = 1. Employing a similar

computation to the one above, we define

C2 = Gld .y ∼= A2.

Now, let k = [k1 : k2] ∈ P1, and let

Mk = Λe1 ⊕ Λe3/C,

where C = Λβα + Λ(α − (k1γ1 + k2γ2)). Then Mk is represented by the point yk =

(1, 0, k1,−k2, 1). Then Gld .yk ∼= A3. We then set

C3 =
⋃
k∈P1

Gld .yk ∼= A4.

One can verify that any module with dimension vector d is represented by a point in one
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of the irreducible subvarieties C1, C2, C3 ⊆Modd(Λ). These three varieties are therefore

the irreducible componenets of Modd(Λ).

3.2.1 A Further Subdivision

An further subdivision of Modd(Λ) is in terms of tops. Given a left A-module M , recall

that its top is T = M/JM . To ease our notation, we will henceforth identify isomorphic

semisimple left Λ-modules.

Definition 3.10. Fix a semisimple module T ∈ A-mod and d ∈ Nn
0 . Define

ModTd = {x ∈Modd(Λ) |M(x)/JM(x) ∼= T}.

Observations 3.11. One readily sees that the sets ModTd are pairwise disjoint, and

their union is all of Modd(Λ). Since the top is an isomorphism invariant, Proposition 3.8

gives that ModTd is stable under the Gld(k)-action.

3.3 The Projective Parameterizing Varieties and their Subdivi-

sions

We now turn our attention to a family of projective parameterizing varieties of left A-

modules with fixed top T defined in terms of the classical Grassmannian. These varieties

admit new useful tools for analysis. Throughout this section, we will develop a hierarchy

of varieties, each stable under a natural morphic action by AutΛ(P ), where P is the

distinguished projective cover of T :

GrassTd ⊇ GrassTd ⊇ Grass(S) ⊇ Grass(σ).

Throughout this section, Λ = kQ/I will be a path algebra modulo relations with

vertex idempotents e1, . . . , en.
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Definition 3.12. Let T =
⊕

1≤i≤n(Si)
ni , where ni ∈ N0, be a semisimple module and

P =
⊕

1≤r≤t Λzr its projective cover. Let d ∈ N, and d̃ = dimk P − d. We write Gr(d̃, JP )

for the classical Grassmannian of d̃-dimensional vector subspaces of JP (see [14, §1.8] for

a transparent introduction to that object). We define

GrassTd = {C ∈ Gr(d̃, JP ) | C is a Λ-submodule of JP}.

Observation 3.13. GrassTd is nonempty if and only if t ≤ d ≤ dimk P .

To begin, we show the following:

Proposition 3.14. GrassTd is a closed subvariety of Gr(d̃, JP ), whence GrassTd is a

projective variety.

Proof. Let a1, . . . , as be a generating set for Λ. Then

GrassTd = {C ∈ Gr(d̃, JP ) | ai.C ⊆ C for all 1 ≤ i ≤ s}

=
⋂

1≤i≤s

{C ∈ Gr(d̃, JP ) | ai.C ⊆ C}.

It therefore suffices to show that if f is a vector space endomorphism of JP , then

{C ∈ Gr(d̃, JP ) | f(C) ⊆ C} is closed.

Let a ∈ k not an eigenvalue of f , and set g = a · idV −f . Then g is an automorphism

of V . Note that f(C) ⊆ C if and only if g(C) = C. Let G = {C ∈ Gr(d̃, JP ) | g(C) = C}.

Consider the map

ĝ : Gr(d̃, JP )→ Gr(d̃, JP )×Gr(d̃, JP )

C 7→ (C, g(C)).

ĝ is a morphism of varieties (this follows from the fact that the Gl(JP )-action on Gr(d̃, JP )
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is morphic). Then G = ĝ−1(∆), where

∆ = {(D,D) | D ∈ Gr(d̃, JP},

the diagonal in Gr(d̃, JP )× Gr(d̃, JP ). ∆ is a closed subset, and hence G is closed, as

desired.

The variety GrassTd comes with a surjection

ψ : GrassTd → {isomorphism classes of d-dimensional left Λ-modules with top T}

C 7→ [P/C].

Indeed, every module M with top T admits P as its distinguished projective cover, and

hence is isomorphic to P/C for some submodule C of JP . We also have a morphic action

by AutΛ(P ) given by

ϕ.C = ϕ(C).

Observation 3.15. The orbits in GrassTd of the AutΛ(P )-action coincide with the fibres

of the surjection ψ.

Proof. Suppose that AutΛ(P ).C = AutΛ(P ).D. Then ϕ(C) = D for some ϕ ∈ AutΛ(P ).

Then ϕ induces an isomorphism P/C → P/D. Conversely, suppose we have an iso-

morphism f : P/C → P/D. Let qC and qD be the quotient maps of P onto P/C and

P/D, respectively. Then the projectivity of P allows us to lift f ◦ qC along qD to a map

ϕ : P → P , making the following diagram commute:

P

qC
��

ϕ // P

qD
��

P/C
f // P/D.

One can check that ϕ is an isomorphism with ϕ(C) = D, as desired.
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Example 3.16 (cf. Example 3.6). Let Q be the Kronecker quiver and Λ = kQ. By

the second part of Observations 3.11, the possible tops of modules of dimension 2 are

S2
1 , S

2
2 , S1 ⊕ S2, and S1. Only in the case of S1 do we have more than one isomorphism

class of left Λ-modules, so we let P = Λe1. Λe1 has basis {e1, α1, α2}, whence it has

dimension 3. Then, in our case, d̃ = 1, and so

GrassS1
2 = {C ∈ Gr(1,Λe1) | C is a left Λ submodule}.

Since C ⊆ Λe1 is a subspace of dimension 1, it is the span of some nonzero vector v,

which we may write ae1 + bα1 + cα2 for some a, b, c ∈ k. Since kv is a submodule, then,

in particular, α1v = βv for some scalar β. Since α1e1 = 0, this implies that a = 0, whence

v = bα1 + cα2. It is straightforward to check that the span of any vector of this form is a

submodule. We therefore have an isomorphism

P1 → GrassS1
2

[y1 : y2]→ k(y1α1 + y2α2).

Note that this is a smaller variety than its affine cousin in Example 3.6. The difference is

even more pronounced in larger examples.

On the whole, the projective varieties GrassTd look rather different from their quasi-

affine relatives, ModTd . However, we have a result which allows us to compare the

geometry of the orbits of these two varieties under their respective group actions.

Proposition 3.17 (See [3], Proposition 2.2). The map

{AutΛ(P ) orbits in GrassTd } → {Gld(k) orbits in ModTd }

AutΛ(P ).C 7→ Gld .x,
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where C and x represent the same module, induces an inclusion-preserving bijection

{AutΛ(P )-stable subsets of GrassTd } → {Gld(k)-stable subsets of ModTd }

preserving openness, closures, connectedness, irreducibility, and types of singularities.

This allows one to move results back and forth between not only ModTd and GrassTd ,

but between each of their Gld(k)- and AutA(P )-stable subdivisions to follow.

3.3.1 A Further Partition of the varieties ModTd and GrassTd

Up to this point, we have seen the varieties ModTd and GrassTd , both parameterizing

d-dimensional left Λ-modules with fixed top. Now we cut down further, to modules sharing

not only a top, but their entire radical layering. Each of these subvarieties will then

admit a particularly convenient open affine cover given by skeletons (see the introduction,

definition to come).

Definition 3.18. 1. A semisimple sequence of dimension d with top T is a tuple

S = (S0, . . . ,SL) of semisimple left Λ-modules with S0 = T and
∑

1≤i≤L dimk Si = d.

2. For M ∈ Λ-mod, we write S(M) for the semisimple sequence

(M/JM, JM/J2M/, . . . , JLM/JL+1M),

where L is the largest natural number with JL 6= 0.

In the interest of simplifying notation, we identify isomorphic semisimple modules

(reducing the first condition above to S0 = T ). In a basic algebra, we are well acquainted

with the finitely-many simple modules, namely the Aei/Jeis, and so a semisimple sequence

is fully described by the discrete invariants giving the multiplicity of each of the simple

summands.
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Definition 3.19. Let S be a semismiple sequence of dimension d with top T . Then

Grass(S) = {C ∈ GrassTd | S(P/C) = S}.

The varieties Grass(S) form a pairwise-disjoint subdivision of GrassTd into locally

closed subvarieties ([11], Observation 2.11). It is these Grass(S)s we will be trying to get

at, by way of a useful open cover.

3.3.2 Restricting to the Graded Setting

As stated in Observations 2.3 (5), a path algebra kQ carries a grading by path length. If

I is a homogeneous admissible ideal, this grading is inherited by the path algebra modulo

relations Λ = kQ/I. Then any distinguished projective cover P =
⊕

1≤r≤t Λzr is graded.

This leads to M = P/C being graded if and only if C is a homogeneous submodule

of P . At this point, we restrict our attention to graded modules M , cutting down our

parameterizing varieties in the following way:

Definition 3.20.

Gr-GrassTd = {C ∈ GrassTd | C is a homogeneous submodule of P}.

We further define

Gr-Grass(S) = Grass(S) ∩Gr-GrassTd .

These varieties then parameterize graded left Λ-modules, again by the map C 7→ P/C.

Observation 3.21. In the graded setting, we are afforded the convenience of the radical

layering coinciding with the grading. Recall that, in our setting, the Jacobson radical J

of Λ is the ideal generated by the residue classes of the arrows in kQ. If Λ = kQ/I with I

homogeneous, it follows that J l is the ideal generated by the residue classes of the paths
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of length l in kQ. If M ∈ Λ-mod is graded, we have an isomorphism of vector spaces

between the lth homogeneous part of M and J lM/J l+1M .

4 A Useful Open Cover of Gr-Grass(S)

4.1 Cutting Down to the Monomial Case

As before, Q is a quiver with vertices e1, . . . , en, and Λ = kQ/I is a path algebra modulo

relations with Jacobson radical J . We let M ∈ Λ-mod with distinguished projective cover

P =
⊕

1≤r≤t Λzr.

Definitions 4.1. If I is generated by paths, we say that Λ is a monomial path algebra.

If I = JL for some natural number L, we say that it is truncated.

Note that if Λ is truncated, then, in particular, it is a monomial algebra.

In the following, we will define the skeleton of M . One may define skeleta for general

path algebras modulo relations. However, we can save ourselves an enormous load of

technical baggage by restricting our definition to the monomial case. The central theorem

of this thesis concerns only truncated path algebras, so this narrowing of our focus costs

us nothing for our own purposes. Note that it is possible, (indeed, very useful) to define

skeleta in the general case. Such a construction can be found in [11]

We now broaden our notion of a path a little bit.

Definition 4.2. Given a distinguished top element zr, there is an injection Λe(r) ↪→ Λzr

given by pe(r) 7→ pzr. A path starting in zr is the image of a path starting in e(r) by

this injection. If p = p2p1, we call p1 an initial subpath. With this injection, the grading

in Λe(r) gives a sensible definition for the length of p, which is just its length as a path

when included in Λe(r). For a vertex ei, we say that p ends in ei if eip = p.

Note that this notion of a path is well-defined only in the monomial case. In the

general case, one risks the chosen paths suffering from identity crises. For example, if
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two paths pei, qei ∈ kQ are identified in kQ/I, then the notion of intial subpaths of pei

and qei makes sense only in kQ, but not in kQ/I. To deal with this, in the general case,

skeleta are defined to be bases for a left kQ-module which is a cousin of P , rather than P

itself.

We offer a warning: the projective module P might have “multiple copies” of some Λei

if there are some r and s with e(r) = e(s). While a path starting in zr might correspond

to the same “physical” path in kQ as some path starting in zs, they still represent distinct

paths in P , and it is vital for our purposes that we treat them so.

Definition 4.3. Let q : P � M be the surjection partnered with the distinguished

projective cover P . Let σ ⊆ P consist of paths in P . Write σl for the set of paths of

length l in σ. We call σ a skeleton for M if it satisfies

• For each natural number l, q(σl) induces a basis for J lM/J l+1M .

• σ is closed under initial subpaths. That is, if p2p1 ∈ σ, then p1 ∈ σ.

What we’ve defined is a special vector space basis for M (this follows from the first

bullet point). In particular, σ is finite (indeed, |σ| = dimkM).

Observation 4.4. From Observation 3.21, the first bullet point is equivalent to requiring

that q(σl) be a basis for Ml, the lth graded piece of M .

One can visualize a skeleton as a forest of rooted trees, where each tree “hangs” from

a distinguished top element zr.

Example 4.5. Let Λ = kQ where Q is the quiver

4
γ

��
1
α1
((

α2

66 2
β1
((

β2

66 3
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Let T = S2
1 ⊕ S3 ⊕ S4. T has distinguished projective cover P =

⊕
1≤r≤4 Λzr, with

e(1) = e(2) = e1, e(3) = e3, and e(4) = e4. Consider the left module M = P/C, where C

is generated by α1z1 − α2z1 and α1z1 − α1z2. Then the following are skeletons for M :

{z1, α1z1, β1α1z1, β2α1z1} t {z2, α2z2, β1α2z2, β2α2z2} t {z3} t {z4, γz4, β1γz4, β2γz4}

{z1, α2z1, β1α2z1, β1α2z1} t {z2, α2z2, β1α2z2, β2α2z2} t {z3} t {z4, γz4, β1γz4, β2γz4}

{z1} t {z2, α1z2, α2z2, β1α1z2, β2α1z2, β1α2z2, β2α2z2} t {z3} t {z4, γz4, γβ1z4, β2γz4}.

We may visualize these skeletons as forests of rooted trees. We label each vertex by the

index of the corresponding idempotent in kQ:

1
α1

1
α2

3
•

4
γ

1
α2

1
α2

3
•

4
γ

2
β1 β2

2
β1 β2

2
β1 β2

2
β1 β2

2
β1 β2

2
β1 β2

3 3 3 3 3 3 3 3 3 3 3 3

1
•

1
α1 α2

3
•

4
γ

2
β1 β2

2
β1 β2

2
β1 β2

3 3 3 3 3 3

Since the paths of length l form a basis for J lM/J l+1M , one can “read” the radical

layering off of the rows of each of these diagrams. In this example, we have

M/JM = S2
1 ⊕ S3 ⊕ S4

JM/J2M = S3
2

J2M/J3M = S6
3 ,

and J3 = 0.

Proposition 4.6. Every module M ∈ Λ-mod with distinguished projective cover P has
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a skeleton.

Proof. We construct σl by induction on l. Set σ0 = {z1, . . . , zt}. Then suppose we have

σ′, a skeleton for M/J lM . If J l+1M = 0, then set σ = σ′, and we are done. So suppose

that J l+1M 6= 0. Then, by appending arrows to paths in σ′l, one constructs a set of paths

σl+1 inducing a basis for J l+1M/J l+2M such that every element has an initial subpath in

σ′l. Then take σ = σ′ ∪ σl+1.

4.2 Abstract Skeletons and the Radical Layering

A key part of the definition of a skeleton is its relationship with the radical layering.

Given our varieties Grass(S) parameterizing modules with a particular radical layering,

we’d like to carve them up further by skeletons. To do this, we divorce the notion of

skeleton from any particular Λ-module.

Definitions 4.7. 1. Let P =
⊕

i≤r≤s Λzr, with distinguished top elements z1, . . . , zs,

and T = P/JP . An abstract skeleton with top T is a nonempty finite set of paths

in P which is closed under right subpaths.

2. Given a semisimple sequence S = (S0,S1, . . . ,SL), We say that an abstract skeleton

σ is compatible with S if, for each natural number l ≤ L and each simple left

Λ-module Si, the multiplicity of Si in Sl is equal to the number of paths of length l

ending in the vertex i in σ.

If an abstract skeleton σ happens to satisfy Definition 4.3 for a particular module M ,

then we can go right on saying that σ is a skeleton for M . However, the definition of an

abstract skeleton doesn’t give any guarantee that there will exist such a module.

We now describe a system of affine coordinates that can be imposed on Gr-Grass(σ).

The strategy is to employ paths that are “almost” in σ. That is, paths in σ with one

arrow added to the end. These paths can then be broken down into a linear combination
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of elements of the skeleton. This process then yields an algorithm which we can apply to

paths in general.

As before, σ is a skeleton with top T , and T has distinguished projective cover

P =
⊕

i≤r≤s Λzr.

Definition 4.8. Let T ∈ Λ-mod be semisimple, d a natural number, and σ an abstract

skeleton with top T . We define

Gr-Grass(σ) = {C ∈ Gr-GrassTd | σ is a skeleton of P/C}.

Suppose we have some C ∈ Gr-Grass(σ). Let σ+ denote the set of paths in σ of

positive length. Then σ+ ⊆ JP . Since σ is, in particular, a basis for P/C, it follows that

C ∩ Span(σ+) = {0} (here, “Span” simply denotes the linear span in the k-vector space

JP ). Putting this together, we have that JP = C ⊕ Span(σ+). We define

Schu(σ) = {C ∈ Gr(dimP − d, JP ) | JP = C ⊕ Span(σ+)}.

Schu(σ) is an open Schubert cell in the classical Grassmannian ([9, p. 195]. From the

above, C ∈ Schu(σ) if and only if σ is a vector space basis for P/C. If Gr-Grass(σ) 6= φ,

then there exists a unique semisimple sequence S such that σ is compatible with S.

It is then straightforward to check that σ is a skeleton for P/C if and only if C ∈

Schu(σ) ∩Gr-Grass(S). We therefore have

Observation 4.9. Let σ be a skeleton with top T and S a semisimple sequence also with

top T . Then Gr-Grass(σ) is open in Gr-Grass(S).

In general, Gr-Grass(σ) fails to be open in Gr-GrassTd . Unlike with Gr-Grass(S),

we do not have that Gr-Grass(σ) is equal to Gr-GrassTd ∩ Schu(σ). This is because

Gr-GrassTd ∩ Schu(σ) may contain points representing modules M which have σ as a

plain vector space basis, but for which σ fails to be a skeleton for M (that is, the sets σl

fail to induce bases for each radical layer).
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Having established that Gr-Grass(σ) is open in Gr-Grass(S), we now describe a

system of affine coordinates for Gr-Grass(σ).

Definition 4.10. A nonzero path q ∈ P is called σ-critical if q /∈ σ, but every proper

initial subpath of q is in σ. That is, qzr = αpzr, where α is an arrow and pzr ∈ σ.

Suppose that σ is a skeleton for a module M = P/C and that αpzr is a σ-critical

path of length l. Since the set σl of paths of length l in σ induces a basis for Ml (see

Observation 3.21), we have

αpzr + C =

( ∑
qzr∈σl

aqqzr

)
+ C

for unique scalars aq ∈ k. In fact, we may go further. We have end(α)αpzr = αpzr, but

end(α)q = 0 if end(α) 6= end(q). Therefore, all paths with different end points from α

“disappear” from the linear combination. All paths with different starting points from e(r)

similarly vanish. In light of this, we define the following notation:

Notation. We write σ(αpzr) for the set of all paths in σ with the same length, starting

vertex, and ending vertex as αpzr. The above then becomes

αpzr + C =

 ∑
q∈σ(αpzr)

aqqzr

+ C.

We will show that the unique scalars aq appearing above yield affine coordinates for

Gr-Grass(σ). To that end, we lump the sets σ(αpzr) together into the disjoint union

S =
⊔

αpzr σ-critical

{αpzr} × σ(αpzr).

The set S gives us the coordinates for an affine space parameterizing Gr-Grass(σ).

Lemma 4.11. Let P =
⊕

1≤r≤t Λzr, and σ ⊆ P be an abstract skeleton. Take S to be
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the set described above. Then there exists an isomorphism of varieties

ψ : A|S| −→ Gr-Grass(σ).

Proof. Without loss of generality, we may assume that P = Λei for some vertex ei. We

index the coordinates of A|S| by the set S above. The discussion following Definition

4.10 gives us a map Gr-Grass(σ)→ A|S|. We therefore turn our attention to the reverse

direction. Let Y ∈ A|S|. We now define C ⊆ P to be the submodule generated by linear

combinations of the form

αpei −
∑

q∈σ(αpei)

aqqei, (1)

where αpei is σ critical and aq ∈ k is the affine coordinate of Y indexed by (αpei, q) ∈

{αpei}×σ(αpei) ⊆ S. Note that C is homogeneous, for we have just written down a set of

homogeneous generators. For a proof that this assignment and its inverse are morphisms,

see [4] for an analagous setting.

We wish to show that σ is a skeleton for P/C. To do this, we first prove by induction

on l that if pei is a path of length l, then there exist scalars bq such that

pei + C =

(∑
qei∈σl

bqqei

)
+ C.

Suppose that this holds for all paths of length l − 1. Write pei = αp′ei, where α is an

arrow and p′ a path of length l − 1. Then there exist scalars bq′ such that

αp′ei + C = α

 ∑
q′ei∈σl−1

bq′q
′ei

+ C.

It now suffices to show that each αq′ei is a linear combination of paths in σl. If αq′ei = 0,

we have nothing to do. If αq′ei ∈ σ, we still have nothing to do. The remaining possibility
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is that αq′ei is σ-critical, in which case the relations (1) of C give

αq′ei + C =

 ∑
q∈σ(αq′ei)

aqqei

+ C,

a linear combination of paths in σl. For linear independence of σ in P/C, see [11] Lemma

3.13.

It is straightforward to check that the correspondences given are inverse bijections.

Indeed, the relations picked in (1) are precisely what one gets out in the discussion

following Definition 4.10.

Put together, Observation 4.9 and Lemma 4.11, and Proposition 4.6, yield

Theorem 4.12. {Gr-Grass(σ)}σ is an open affine cover of Gr-Grass(S), where σ runs

through the abstract skeleta compatible with S.

5 Proof of the Main Theorem

We are now ready to prove the main theorem of the thesis, which was first stated in

general and proved for the ungraded case in [3], Theorem 5.3. As before, Λ = kQ/I is a

path algebra modulo relations with Jacobson radical J , P =
⊕

1≤r≤t Λzr is a projective

module with a full sequence of distinguished top elements z1, . . . , zt.

Notation. For a skeleton σ ⊆ P , we write σli for the set of paths of length l in σ ending

in ei.

Definition 5.1. The length of the algebra Λ is the largest natural number L such that

JL 6= 0. (This is simply one less than the Loewy length of Λ.)

First, we will need a geometric lemma.

Lemma 5.2. Let V be a (classical, noetherian) variety and (Ui)i∈I an open cover such

that

41



• Ui is irreducible, rational, and smooth for each i ∈ I.

• Ui ∩ Uj 6= φ for all i, j ∈ I.

Then V is irreducible, rational, and smooth.

Proof. We first show that V is irreducible. Let U ⊆ V be a nonempty open subset. If

U ∩ Ui 6= φ for each i ∈ I, then the irreducibility of the Uis will give that U ∩ Ui is

dense open in each Ui and therefore in their union, V . Suppose for a contradiction that

U ∩ Ui = φ for some i ∈ I. Evidently, there exists j ∈ J for which U ∩ Uj is nonempty

and therefore dense. By hypothesis, Ui ∩ Uj 6= φ, and therefore Ui ∩ Uj is dense open in

Uj. But then we have two disjoint dense open subsets of Uj, which cannot happen. We

therefore have a contradiction, and U ∩Ui 6= φ for all i ∈ I. Each Ui is then a dense open

rational subset, whence V is rational. Smoothness is immediate from the existence of an

open cover by smooth subvarieties.

Theorem 5.3. [cf. [3], Theorem 5.3] Let Q be a quiver and Λ a truncated path algebra.

If S is a semisimple sequence such that Gr-Grass(S) is nonempty, then Gr-Grass(S) is an

irreducible, rational, smooth variety. More specifically, if σ is a skeleton compatible with

S, then Gr-Grass(σ) is a dense open subset of Gr-Grass(S), and Gr-Grass(σ) ∼= AN for

some natural number N dependent only on S.

Proof. The last assertion is simply Lemma 4.11, where N = |S| for the set S described

there. Our strategy is to show that the open cover

{Gr-Grass(σ)}σ compatible with S

of Gr-Grass(S) satisfy the conditions of Lemma 5.2. To do this, we will, for any two

skeletons σ and σ̃ compatible with S, construct a homogeneous submodule C of P such

that both σ and σ̃ are distinguished skeletons of P/C. This will yield C ∈ Gr-Grass(σ)∩

Gr-Grass(σ̃). The rest of the hypothesis come from the fact that Gr-Grass(σ) ∼= AN .
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We will construct C by induction on the length L of Λ, together with a bijection f : σ̃ → σ

satisfying

• For each l ≤ L− 1 and i ≤ n, f(σ̃li) = σli.

• p̃− f(p̃) is a homogeneous element of C lying in Clength(p̃).

• f acts as the identity on σ ∩ σ̃.

• If pzr /∈ σ ∪ σ̃, then pzr ∈ C.

The first conditions tells us that f preserves path length and ending vertex. The

second yields that, furthermore, the sets of residue classes (p̃+ C) and (f(p̃) + C) yield

the same vector space basis for P/C. The third will prove useful in our induction.

Let us begin our induction. Suppose L = 0. Then Λ = Λ/J , whence it is semisimple.

Then Gr-GrassTd 6= φ if and only if d = t (see Observation 3.13). In case d = t, Gr-GrassTd

consists of a single point representing the module T , and the result is trivial.

Now suppose L > 1, and that the result holds for all algebras of length at most L− 1.

Then it kicks in for the algebra Λ/JL−1, our path algebra truncated one step shorter.

This gives us a homogeneous submodule C ′ of the “clipped” projective cover P/JL−1P

compatible with σ′ and σ̃′, where σ′ and σ̃′ are the clipped skeletons we get by deleting

all paths of length L from σ and σ̃, and a bijection f ′ : σ̃′ → σ′ satisfying the above

conditions.

σ and σ̃ are both compatible with S, so, in particular, |σ̃Li| = |σLi| for each i. Note

that σL is the disjoint union of all the σLis. We may therefore extend f ′ to a bijection

f : σ̃ → σ such that f fixes σ ∩ σ̃, and f(σ̃Li) = σLi for each i. Having built f , we will

use it to construct a module C = ΛC ′ +M , with M chosen judiciously (note: by ΛC ′, we

mean the submodule generated by C ′, a priori a subset of P ′, considered as a subset of

P ). We will need

1. If pzr /∈ σ ∪ σ̃, then pzr ∈ C.
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2. If p̃ ∈ σ̃, then f(p̃)− p̃ ∈ Clength(p̃).

3. C is a homogeneous submodule of P , and both σ and σ̃ are skeletons for P/C.

The first condition comes almost for free (in that it doesn’t merit any additions to the

module M). We will then go “piece-by-piece” through the skeletons to construct M so that

the second condition is satisfied. The third condition will follow from this construction.

The inductive hypothesis yields conditions 1 and 2 for all paths of length at most

L− 1, so we will turn our attention to paths of length L. Henceforth, p ∈ Λ will be a path

of length L− 1 and α ∈ Λ an arrow. First, if pzr /∈ σ ∪ σ̃, then our inductive hypothesis

ensures that pzr ∈ C ′. Then αpzr ∈ ΛC ′ ⊆ C, yielding condition 1.

The meat of the construction deals with condition 2. For this, suppose that pzr ∈ σ∪ σ̃.

For all cases, we will construct a homogeneous submodule C(αpzr) ⊆ PL, and then set

M =
∑

C(αpzr).

Case 1: Suppose that αpzr /∈ σ ∪ σ̃. Then set C(αpzr) = k(αpzr).

Case 2: Suppose pzr ∈ σ ∩ σ̃.

• If αpzr ∈ σ ∩ σ̃, as well, then f(αpzr) = αpzr, and we needn’t add anything to

satisfy condition 2; set C(αpzr) = 0.

• If αpzr ∈ σ \ σ̃, then set C(αpzr) = k(αpzr − f−1(αpzr)). Similarly, if αpzr ∈ σ̃ \ σ,

then set C(αpzr) = k(αpzr − f(αpzr)).

Case 3: Suppose that pzr ∈ σ\σ̃. Then, since skeletons are closed under right subpaths,

αpzr /∈ σ̃, and αpzr ∈ σ (for αpzr ∈ σ ∪ σ̃). Then set C(αpzr) = k(αpzr − f−1(αpzr)).

The final case, pzr ∈ σ̃ \ σ, is symmetric to case 2. Setting M equal to the sum of

these terms as above ensures that C = ΛC ′ +M satisfies properties 1 and 2.

It remains to check that the third property holds. First, it is not hard to see that

C is homogeneous: C ′, and therefore ΛC ′, is homogeneous by the inductive hypothesis.
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Moreover, each nonzero C(αpzr) is generated by a linear combination of paths of length

L and is therefore homogeneous. It follows that C is homogeneous.

Finally, we need for σ and σ̃ to be skeletons for P/C. Our induction hypothesis has

already given us that σl and σ̃l induce bases for (P/C)l for 1 ≤ l ≤ L− 1. We need to

show that σL induces a basis for (P/C)L = PL/CL. Indeed, by condition 2 above, we

only need to show this for σ. It suffices to show that PL = CL ⊕ Span(σL) as k-vector

spaces. It is clear from the construction that CL ∩ Span(σL) = {0}. Once again, let p

be a path of length L− 1 and α an arrow. σL−1 induces a basis for (P/C)L−1, so there

exist u, v ∈ k, c ∈ C, and h ∈ Span(σL−1) such that p = uc+ vh. Then αp = uαc+ vαh.

Since C is a submodule, uαc ∈ C. αh may be written as a linear combination

αh =
∑

q∈σL−1

aqαq.

We define (note the differing indices of summation)

c′ =
∑

q∈σL−1

αq/∈σL

aqαq, h′ =
∑

q∈σL−1
αq∈σL

aqαq.

Then c′ ∈ C (see Case 1 above), h′ ∈ Span(σ), and

αp = (uαc+ vc′) + vh′,

with uαc+ vc′ ∈ CL and vh′ ∈ Span(σL), whence PL = CL ⊕ Span(σL), as desired.

Beyond this theorem, we offer the following conjecture:

Conjecture. Let Λ = kQ/I a path algebra modulo relations, where I is generated

by paths. If S is a semisimple sequence such that Gr-Grass(S) is nonempty, then the

irreducible componenets of Gr-Grass(S) are irreducible, rational and smooth.
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