
University of California
Santa Barbara

Optimizing JavaScript Engines for Modern-day Workloads

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Madhukar Nagaraja Kedlaya

Committee in charge:

Professor Ben Hardekopf, Chair
Professor Chandra Krintz
Professor Tim Sherwood

December 2015

The Dissertation of Madhukar Nagaraja Kedlaya is approved.

Professor Chandra Krintz

Professor Tim Sherwood

Professor Ben Hardekopf, Committee Chair

November 2015

Optimizing JavaScript Engines for Modern-day Workloads

Copyright c© 2015

by

Madhukar Nagaraja Kedlaya

iii

To my parents, my sister, and my wife.

iv

Acknowledgements

I am deeply grateful to my advisor, Prof. Ben Hardekopf for all the support and

freedom he has provided throughout my stay as a grad student. His never-ending com-

mitment to encourage his students has helped me through tough times.

I would also like to thank Behnam Robatmili for his constant source of encouragement

and thoughtful insights that helped me in my work. I am indebted to Mehrdad Reshadi,

Calin Cascaval, and rest of the MuscalietJS team at Qualcomm Research for having faith

in me and funding my work for the most part of my PhD.

I am deeply grateful to Prof. Chandra Krintz and Prof. Tim Sherwood for being my

constant source of encouragement. I’ll always cherish all the conversations that I had

with them and the new ideas that sparked during those conversations inspired most of

my work described in this dissertation.

I am eternally indebted to my parents, my sister, and my wife for their continuous

support and love. I have been lucky to have had a number of extremely brilliant re-

searchers as my labmates. Special thanks to Vineeth Kashyap and Kyle Dewey, with

whom I have shared numerous accounts of frustration and a fair amount of moments of

joy over the past couple of years.

v

Curriculum Vitæ
Madhukar Nagaraja Kedlaya

Education

2015 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2015 M.S. in Computer Science, University of California, Santa Barbara.

2008 B.E. in Computer Science and Engineering, Manipal Institute of
Technology, Manipal.

Publications

Madhukar N. Kedlaya, Behnam Robatmili, Ben Hardekopf. Server-Side Type Profiling
for Optimizing Client-Side JavaScript Engines. Dynamic Languages Symposium (DLS),
2015

Madhukar N. Kedlaya, Behnam Robatmili, Calin Cascaval, Ben Hardekopf. Deopti-
mization for Dynamic Language JITs on Typed, Stack-based Virtual Machines. Virtual
Execution Environments (VEE), 2014 (Best Paper Award)

Behnam Robatmili, Calin Cascaval, Mehrdad Reshadi, Madhukar N. Kedlaya, Seth
Fowler, Michael Weber, Ben Hardekopf. MuscalietJS: Rethinking Layered Dynamic Web
Runtimes. Virtual Execution Environments (VEE), 2014

Madhukar N. Kedlaya, Jared Roesch, Behnam Robatmili, Mehrdad Reshadi, Ben Hard-
ekopf. Improved Type Specialization for Dynamic Scripting Languages. Dynamic Lan-
guages Symposium (DLS), 2013

Nagy Mostafa, Madhukar N. Kedlaya, Youngjoon Choi, Ben Hardekopf, Chandra Krintz.
The Remote Compilation Framework: A Sweetspot Between Interpretation and Dynamic
Compilation. UCSB Technical Report #2012-03, May 2012

vi

Abstract

Optimizing JavaScript Engines for Modern-day Workloads

by

Madhukar Nagaraja Kedlaya

In modern times, we have seen tremendous increase in popularity and usage of web-

based applications. Applications such as presentation software and word processors,

which were traditionally considered desktop applications are being ported to the web

by compiling them to JavaScript. Since JavaScript is the de facto language of the web,

JavaScript engine performance significantly affects the overall web application experience.

JavaScript, initially intended solely as a client-side scripting language for web browsers,

is now being used to implement server-side web applications (node.js) that traditionally

have been written in languages like Java. Web application developers expect “C”-like

performance out of their applications. Thus, there is a need to reevaluate the optimization

strategies.

Thesis statement: I propose that by using run-time and ahead-of-time profiling and

type specialization techniques it is possible to improve the performance of JavaScript

engines to cater to the needs of modern-day workloads.

In this dissertation, we present an improved synergistic type specialization strategy

for optimized JavaScript code execution, implemented on top of a research JavaScript

engine called MuscalietJS. Our technique combines type feedback and type inference to

reinforce and augment each other in a unique way. We then present a novel deoptimiza-

tion strategy that enables type specialized code generation on top of typed, stack-based

virtual machines like CLR. We also describe a server-side offline profiling technique to

collect profile information for web application which helps client JavaScript engines (run-

vii

ning in the browser) avoid deoptimizations and improve performance of the applications.

Finally, we describe a technique to improve the performance of server-side JavaScript

code by making use of intelligent profile caching and two new type stability heuristics.

viii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Background . 3
1.2 Challenges . 7
1.3 Thesis Statement and Dissertation Roadmap 8
1.4 Permissions and Attributions . 13

2 Synergistic Type Specialization 14
2.1 Introduction . 15
2.2 Related Work . 17
2.3 High-Level Overview . 19
2.4 JavaScript Instantiation . 24
2.5 Evaluation . 37
2.6 Conclusion . 48

3 Deoptimization on Top of Typed, Stack-based Virtual Machines 50
3.1 Introduction . 51
3.2 Type Specialization . 53
3.3 Deoptimization on Layered Architectures 58
3.4 Deoptimization for MCJS . 61
3.5 Evaluation . 70
3.6 Related Work . 78
3.7 Conclusion . 81

4 Server-Side Type Profiling 83
4.1 Introduction . 84
4.2 Related Work . 86
4.3 Background . 90
4.4 Ahead-of-Time Type Profiling . 96

ix

4.5 Evaluation . 104
4.6 Conclusion . 118

5 Accelerating Server-Side JavaScript 119
5.1 Introduction . 120
5.2 Background . 125
5.3 Related Work . 130
5.4 Our Technique’s Overall Architecture . 132
5.5 Cachable Profiling Information . 134
5.6 Type Stability . 138
5.7 Evaluation . 143
5.8 Conclusion . 153

6 Conclusion 154
6.1 Contributions and Future Directions . 155

Bibliography 162

x

Chapter 1

Introduction

Web has become a convenient medium for distribution of software. Last decade has

seen a tremendous rise in popularity of web-applications. With the advent of cloud

computing, people have access to massive applications such as search engines and social

networks. JavaScript, being the de facto programming language of the web, enables the

user to interact with such applications. The “write once, run anywhere” slogan once

used to describe Java applications is now truly applicable to web-applications written

in JavaScript. JavaScript code is portable – it executes on every architecture that is

supported by JavaScript engines.

Given the popularity of the language, developers are using JavaScript even outside

the context of a browser. In fact, legacy applications are being ported to the web us-

ing C/C++/Java/C#-to-JavaScript compilers. JavaScript is being used for server-side

programming (node.js) [1], desktop application development(Windows and Linux plat-

forms) [2, 3], game engine scripting [4], and embedded software development [5, 6].

JavaScript is popular among developers and, arguably, has a lower barrier for entry

for beginner programmers and allows for rapid prototyping of new ideas. Web-application

developers enjoy the dynamism and non-verbose syntax that JavaScript provides. Since

1

Introduction Chapter 1

JavaScript is dynamically typed, the programmers do not have to deal with explicitly

annotating the source code with types.

The inherent dynamism present in the language, which is endearing to the web com-

munity, is also the reason for its slowness. A JavaScript engine has to dynamically check

the correctness of the current state of execution while executing the program. This is

unlike statically typed languages like Java where the type checker, which is part of the

compiler, performs these checks ahead of time before execution. In spite of all these

inherent problems, the developers and web application users expect C-like performance

from the web applications. A slow engine can give the user an illusion that the whole web

site is broken. A responsive web application enabled by a fast engine, is always preferred

by users of the application.

A decade ago, JavaScript execution was restricted to interpretation. Since then,

JavaScript as a language has matured and has gained in popularity. In order to make

JavaScript execution faster, researchers have developed various techniques to improve the

performance of JavaScript engine. Newer engines have employed various optimization

such as type specialization and have adopted multi-tier adaptive compilation strategies

to execute JavaScript faster. Engines have now evolved from simple interpreters to what

we call as runtime systems with advanced compilers and optimizations. Most engines

now implement a compiler that translates the JavaScript code to machine code that

executes on the hardware. An adaptive compiler is invoked by the engine whenever a

part of the JavaScript source code is deemed hot, i.e. there is a high probability that

that part of code is going to execute multiple times in the future. Therefore, speeding

up the execution of the hot code improves the responsiveness of the application.

Improved performance enables the developers to create new feature rich applications

that were not possible before. JavaScript games with advanced graphics, fully-featured

office suite, and image processing tools are examples of few applications that have been

2

Introduction Chapter 1

made possible due to improvement in JavaScript engine performance. Also, the users

benefit from improved response time from the web applications. Server-side JavaScript

also benefits from the improved performance. A faster engine can enable better startup

time and throughput for the server application.

With the popularity of JavaScript growing by the day, more and more JavaScript

code is being added to the web pages pushing the JavaScript engine performance to its

limits. Therefore, there is an immediate need for new and innovative dynamic language

optimizations and JIT compilation techniques to make JavaScript engines faster.

1.1 Background

JavaScript operates on dynamic values; i.e. types of variables used in the language

are statically unknown. JavaScript also allows for object structures to be created dy-

namically and object properties to be added and removed at runtime. This inherent

dynamism present in JavaScript, while useful, presents a significant challenge for effi-

cient language implementation. Because the types of values are statically unknown, the

language runtime requires an extra level of indirection: instead of operating directly on

values, it operates on special “dynamic values” that wrap actual values inside a data

structure (boxing) that records the enclosed value’s type. To operate on these values

the runtime must conditionally branch based on the enclosed value’s type, unwrap the

enclosed value (unbox) to perform the required operation (which sometimes involves com-

plex type conversion operations), then re-box the result back into a dynamic value. This

extra level of indirection not only imposes a large runtime overhead, but also inhibits

other optimizations that could take place if the runtime knew the value types ahead of

time.

One solution to this problem is type specialization. Once pioneered by the Self[7]

3

Introduction Chapter 1

language developers, type specialization has become an important optimization that is

implemented in most of the JavaScript implementations. Type specialization refers to

replacing generic operations that operate on dynamic values in a program with type

specific operations. Such types can be classified into two broad categories.

• Primitive types: integer, boolean, double, undefined, and null

• Non-primitive types: objects

It is important to note here that a type in the JavaScript realm does not always

match the type of the internal value representation of a JavaScript engine. For example,

JavaScript exclusively operates on number types which are doubles, whereas the under-

lying engine can choose to store the value as an integer or double internally. Depending

on the underlying architecture of the engine, the JavaScript types can be further broken

down into subcategories such as unsigned and signed variants of integers and doubles. The

reason for such classification is to allow the optimizing compiler present in the JavaScript

engine to generate type specific machine code equivalent to the JavaScript source which

runs much faster on the hardware compared to generic operations on dynamic values.

There are two approaches to type specialization– a) type inference and b) type feed-

back.

Type inference. Type inference enables type specialization without any instrumentation

of the code at runtime. The types of some subset of the local variables in a function can

be inferred statically before it is compiled and executed. For example, an assignment

statement var a = 0; means that, according to the language semantics, variable a

must be of type integer immediately after that program point. Any further expressions

using a can be type specialized based on this deduction as long as a is not redefined with

a different type. Type inference is usually performed as a whole-program analysis in

4

Introduction Chapter 1

statically-typed languages (where type inference was first developed). However, whole-

program type inference for a dynamic scripting language is not practical because the

type inference is usually done online during program execution, and this requires that

the type inference process must be extremely fast. Therefore, JavaScript engines usually

perform type inference on a per-function basis only for hot functions, detected adaptively

during execution. One major drawback of type inference is that the types that are

inferred are over-approximations of the actual types observed during run-time. Since

the engines perform type inference on a per-function basis, it is not possible for them

to effectively infer the types of passed-in arguments, function return types, and global

variables. Therefore, the type of such expressions are usually over-approximated to be

of any (dynamic) type. This precision loss can significantly effect the quality of the code

generated by an optimizing compiler, thereby effecting the performance of the engine.

Type feedback. Type feedback enables type specialization by instrumenting the code

at run-time and observing the types actually seen during execution. This process in-

volves instrumenting the runtime to collect and store the types that are observed during

execution. We, henceforward, call this process type profiling or quite simply profiling.

For example, an expression a + b may imply string concatenation, integer addition, or

dictionary update based on the types of a and b. By profiling the types of a and b

during several executions of this expression, the runtime can type specialize the opera-

tion during the subsequent executions for those types that are most often seen. If, for

instance, the observed types for a and b are usually integers then the runtime can insert

type specialized code that first checks whether the types of a and b are int and then

performs integer addition directly. This type specialization using type feedback comes

at a cost. First, collecting type information during the initial execution phases creates

overhead with respect to both time and memory. Secondly, types need to be checked

5

Introduction Chapter 1

during the course of execution of the program using guard instructions. Thirdly, when

new types are encountered during execution, the specialized code is no longer valid. The

runtime needs to have a recovery mechanism like deoptimization in place in order to

handle unexpected types which is usually slow.

Deoptimization is a recovery mechanism where the state and control of execution of

a function is transfered from optimized code to unoptimized code. JavaScript engine

designers have adopted various deoptimization techniques which were designed to work

for engines that were implemented using a low-level programming languages like C or

C++ and compile JavaScript to machine code. But these pre-existing deoptimization

techniques only work for low-level machine code that is generated by adaptive compilers

present in these engines. Language runtimes implemented on top of existing virtual

machines, which we call layered architectures cannot make use of these deoptimization

techniques. These layered architectures are usually implemented on top of a typed stack-

based virtual machine– for example, dynamic language runtimes like Rhino, IronJS,

IronRuby, JRuby, IronPython, and Jython, which implement JavaScript, Ruby, and

Python runtimes respectively, either on top of the Java Virtual Machine (JVM) or the

Common Language Runtime (CLR). The inherent typed nature of the underlying runtime

imposes specific rules and restrictions on what kind of code can be executed on top of

it. These rules make the existing deoptimization techniques impossible to implement on

top of such virtual machines, thereby restricting a class of type feedback mechanism that

employ deoptimization as their recovery mechanism.

Though having a deoptimization mechanism in place enables type feedback based

type specialization, it is a heavy-weight, expensive process that can severely impede the

engine’s performance. The online profiler does not always capture all the type information

required for the compiled code to not deoptimize. So, it is always desirable to avoid

deoptimizations by making use of any additional type information collected ahead-of-

6

Introduction Chapter 1

time.

In addition to this, it is also important to strike a balance between collecting suf-

ficient profile information and optimizing functions early enough. If too much time is

spent collecting profile information, the engine ends up spending precious cycles execut-

ing unoptimized code. On the other hand if the function is optimized earlier, it is possible

for the online profiler to miss the chance to collect enough profile information, thereby

causing the JIT compiler to generate sub-optimal code and, possibly, cause deoptimiza-

tion. So, it is desirable to have a type stability heuristic to determine if the runtime has

collected enough profile information to optimize a function and have a guarantee that it

will not deoptimize in the future.

1.2 Challenges

We identify the key challenges to implementing type specialization in JavaScript

engines and answer the following questions in this dissertation:

1. Can we use type feedback to improve the precision of types inferred?

2. Can we use type inference to reduce the performance overhead associated with type

feedback?

3. Can we perform deoptimization-based type specialization in a JavaScript engine

implemented on top of a typed, stack-based virtual machine?

4. Can we avoid deoptimization by using profile information that is collected ahead-

of-time?

5. Can we use the profile information that is collected ahead-of-time to come up with

type stability heuristics?

7

Introduction Chapter 1

1.3 Thesis Statement and Dissertation Roadmap

I propose that by using run-time and ahead-of-time profiling and type specialization

techniques it is possible to improve the performance of JavaScript engines to cater to the

needs of modern-day workloads.

In the rest of the chapters we describe how the run-time and ahead-of-time profil-

ing and type specialization techniques can help improve the performance of JavaScript

engines.

1.3.1 Synergistic Type Specialization

First, we address the first two challenges listed in Section1.2. Our solution to the two

challenges is a run-time type specialization strategy called synergistic type specialization.

In the previous work on improving type specialization by Hackett et al [8], they

explore the idea of combining type inference and type feedback for an efficient JavaScript

language implementation. However, their approach is limited to combining the type

feedback information to help increase the effectiveness of type inference.

We present a synergistic type specialization strategy that combines type feedback

and type inference in two unique ways to augment and extend each other. First, we

use functions’ type signatures, i.e. the types of the function arguments at the time

of function invocation, as additional inputs to type inference analysis to improve the

precision of types inferred. Secondly, we show that type inference can actually be used

to support type feedback by using the inferred type information to more intelligently

place type profiling hooks, thus significantly reducing profiling overhead and type checks

performed during optimized code execution.

We evaluate the synergistic type specialization strategy on a large set of traditional

standard benchmarks (including Sunspider, Kraken and V8) and realistic web applica-

8

Introduction Chapter 1

tions(including Amazon, BBC, and JS1k demos) which we call web-replay benchmarks.

The results show that synergistic type specialization performs better than current state-

of-the-art type specialization techniques across all benchmark suites. Moreover, the syn-

ergistic type specialization strategy improves the precision of the type inference analysis

and greatly reduces the overhead of both type profile sites during profiling and type checks

during execution (by about 23.5%). We describe our technique in detail in Chapter 2.

1.3.2 Deoptimization on Top of Typed Stack-based Virtual Machines

Secondly, address challenge 3 from Section 1.2. With this contribution we enable type

specialization on top of typed stack-based virtual machines(VMs).

In recent times we have seen several attempts at building an efficient dynamic lan-

guage implementation [9, 10, 11, 12] on top of typed, stack-based virtual machines like

Java Virtual Machine(JVM) and Common Language Runtime(CLR). The obvious advan-

tage of this approach is that the dynamic language implementation can make use of pre-

existing features in the underlying virtual machine such as garbage collection, machine

code generation, and hardware-specific optimizations for free. The dynamic language

designers can, thus, focus on language-specific optimizations such as type specialization

without worrying about other aspects like portability and memory management of the

runtime system.

In such runtimes, the dynamic language source code is compiled down to the inter-

mediate representation(IR) of the underlying VM. But the typed nature of the under-

lying VM presents a significant challenge on the kind of type specialization that can be

performed on top of it. In particular, pre-existing deoptimization techniques that are de-

signed for language runtimes that compile down to machine code cannot be implemented

on top of such VMs.

9

Introduction Chapter 1

To solve this problem, we leverage the underlying VM’s existing exception mechanism

to perform the deoptimization. But using the exception handling mechanism naively does

not solve the problem because in stack-based VMs, exceptions throw away the current

runtime stack whereas deoptimization should preserve the current state of execution

which includes the stack information of the specialized code. This is required in order to

re-start execution at the equivalent program point in the unspecialized code. Therefore,

we leverage the JavaScript-to-IR generator’s bytecode verifier to track and transfer ap-

propriate values on the runtime stack between the specialized code and the unspecialized

code when a deoptimization exception is thrown.

We implement our deoptimization technique for Muscaliet JavaScript (MCJS), a re-

search JavaScript engine implemented on top of CLR. We compare our technique to

an alternate type specialization approach of fast path + slow path recovery mechanism

implemented in MCJS and IronJS, an alternate JavaScript implementation on top of

CLR. We use standard JavaScript benchmarks such as Sunspider and V8, and several

long-running JavaScript applications, and show that our type specialization technique

significantly outperforms existing type specialization techniques on layered architecture.

As a testament to the effectiveness of our technique, Nashorn [13], the default JavaScript

implementation shipped along with Java 8, uses our deoptimization technique for type

specialization. We describe our contribution in detail in Chapter 3.

1.3.3 Server-Side Type Profiling

We tackle the fourth challenge presented in Section 1.2 by performing server-side

ahead-of-time type profiling of web-applications.

The main idea of server-side profiling is to collect ahead-of-time(AOT) profile infor-

mation and use it to optimize the execution of JavaScript code in the client JavaScript

10

Introduction Chapter 1

engine by reducing deoptimizations and enabling the client JavaScript engine to optimize

the potential hot functions aggressively without having to fear increased deoptimizations.

The AOT profile is collected by executing the JavaScript application using test inputs

in the server. The AOT profile consists of a) types observed by the online profiler dur-

ing the execution of the program, b) program points where deoptimization occurred, c)

function hotness information i.e. the invocation counts for individual functions, and d)

deoptimization frequency for hot functions. The AOT profile is then analyzed to weed

out unnecessary information that need not be sent to the client. This is important be-

cause we need to make sure that the size of the profile information sent to the client is as

small as possible. The AOT profile is then annotated into the JavaScript code and sent

to the client when requested.

The client JavaScript engine uses the AOT profile information in following ways.

First, it aggressively optimizes functions marked as hot in the AOT profile. Secondly, it

uses the type annotations added to the source code in addition to the types profiled by the

online profiler to optimize the functions. Thirdly, using the deoptimization information

present in the AOT profile, the client engine disables certain optimizations that could

potentially cause them. Finally, the client engine does not optimize the functions that

deoptimize very frequently.

We implement both server-side and client-side modifications in Mozilla’s SpiderMon-

key JavaScript engine[14]. We evaluate our technique using Octane benchmark suite,

JavaScript physics engine libraries, and Membench, a collection of JavaScript-heavy web-

sites and compare against vanilla SpiderMonkey JavaScript engine. We demonstrate con-

siderable improvement in performance of the JavaScript code across all the benchmarks

while keeping the AOT profile annotation size to the minimum and showing significant

reduction in the number of deoptimizations on the client side.

11

Introduction Chapter 1

1.3.4 Accelerating Server-Side JavaScript

Finally, we address the final challenge listed in Section 1.2 in Chapter 4. We solve

this challenge in the context of server-side JavaScript execution.

One interesting observation for server-side JavaScript engines is that various instances

of server application execute the same code and operate on similar inputs. We make use

of this idiom to share the profile information collected by once instance of the server with

another to accelerate server-side JavaScript execution. We achieve this by caching the

profile information in an external database and sharing it across different instances of

the server.

There are two types of information that are used to accelerate the code. The first

form of information is called cachable information and consists of primitive types, deopti-

mization information, function hotness information, and information regarding function

inlining decisions taken by the optimizing compiler. This is very similar to the AOT

profile information described in the previous subsection. In addition to this, we identify

other key information that depend on the addresses in the heap such as object shape

information which is used to optimize the object property access and object type in-

formation which is used during type inference analysis. This information cannot be

captured offline in a database and is called heap-dependent information. Therefore, we

use a notion of type stability which describes the point during the execution of a function

when it has enough heap-dependent information to be optimized without undue risk of

deoptimization. We experiment with two heuristics for determining type stability and

explain their relative merits and demerits. Our experiments show that for 7 out of 10

node.js benchmarks, the server instances that use the cached profile information show

significant improvement in initial throughput compared to the server instances that do

not use cached information.

12

Introduction Chapter 1

1.4 Permissions and Attributions

1. The content of Chapter 2 is the result of a collaboration with Jared Roesch, Behnam

Robatmili, Mehrdad Reshadi, and Ben Hardekopf, and has previously appeared

in the proceedings of the 9th symposium on Dynamic languages [15]. It is re-

produced here with the permission [16] of Association of Computing Machinery

(ACM): http://dl.acm.org/citation.cfm?id=2508177.

2. The content of Chapter 3 is the result of a collaboration with Behnam Robatmili,

Calin Cascaval, and Ben Hardekopf, and has previously appeared in the proceedings

of the 10th ACM SIGPLAN/SIGOPS international conference on Virtual execution

environments [17]. It is reproduced here with the permission [16] of Association

of Computing Machinery (ACM): http://dl.acm.org/citation.cfm?id=

2576209.

3. The content of Chapter 4 is the result of a collaboration with Behnam Robatmili

and Ben Hardekopf, and has previously appeared in the proceedings of the 11th

Symposium on Dynamic Languages [18]. It is reproduced here with the permis-

sion [16] of Association of Computing Machinery (ACM): http://dl.acm.org/

citation.cfm?id=2816719.

13

Chapter 2

Synergistic Type Specialization

Type feedback and type inference are two common methods used to optimize dynamic

languages such as JavaScript. Each of these methods has its own strengths and weak-

nesses, and we propose that each can benefit from the other if combined in the right way.

We explore the interdependency between these two methods and propose two novel ways

to combine them in order to significantly increase their aggregate benefit and decrease

their aggregate overhead. In our proposed strategy, an initial type inference pass is ap-

plied that can reduce type feedback overhead by enabling more intelligent placement of

profiling hooks. This initial type inference pass is novel in the literature. After profiling,

a final type inference pass uses the type information from profiling to generate efficient

code. While this second pass is not novel, we significantly improve its effectiveness in a

novel way by feeding the type inference pass information about the function signature,

i.e., the types of the function’s arguments for a specific function invocation. Our results

show significant speedups when using these low-overhead strategies, ranging from 1.2×

to 4× over an implementation that does not perform type feedback or type inference

based optimizations. Our experiments are carried out across a wide range of traditional

benchmarks and realistic web applications. The results also show an average reduction

14

Synergistic Type Specialization Chapter 2

of 23.5% in the size of the profiled data for these benchmarks.

2.1 Introduction

Researchers and dynamic language implementors have spent considerable effort on

creating efficient dynamic language runtimes. The main strategy employed is type spe-

cialization: replacing the generic code that manipulates dynamic values with code spe-

cialized to handle only specific types of values. Of course, this strategy is only effective

if the runtime can be guaranteed that the specialized code will only be run on values

of the appropriate types. The two differing methods that have historically been used in

various language implementations to provide this guarantee are type feedback [19] and

type inference [20].

These two methods have differing strengths and weaknesses. Type feedback uses

online type profiling to find code that is (almost) always executed on specific types and

specializes the code based on this information. Type profiling provides very precise

information which enables many optimizations, but cannot guarantee that the code will

never be executed with different types in the future; thus the specialized code must

contain type checks that detect and recover when unexpected types are encountered.

Type inference, in contrast, deduces value types that must necessarily be correct and

specializes the code based on these deductions. While the resulting specialized code

does not require any online checks or recovery, the dynamic nature of these languages

means that type inference may miss many opportunities for specialization that would be

discovered by type feedback.

15

Synergistic Type Specialization Chapter 2

2.1.1 Key Insights

A natural question to ask is which one of type feedback or type inference is the more

effective method. Agesen et al [21] compare these two methods head-to-head in their

Self language implementation and found that there was no clear winner. They suggest

that future work should explore how to combine these two methods rather than choosing

between them. Hackett et al [8] take up this idea to explore combining these two methods

for an efficient JavaScript language implementation. However, their combination went

in only one direction: they used the type feedback information to help increase the

effectiveness of type inference.

Our work shows that there is even more to be gained from combining type feed-

back and type inference in novel ways. In particular, we present two new strategies for

combining the two:

• We show that type feedback can do an even better job of supporting type inference

by separating function invocations according to the functions’ type signatures, i.e.,

the types of the function arguments at the time of function invocation.

• We show that, besides using type feedback to aid type inference as has already been

explored, type inference can actually be used to support type feedback by using

the inferred type information to more intelligently place type profiling hooks, thus

significantly reducing profiling overhead.

2.1.2 Contributions

Our specific contributions are:

• We propose a novel language-agnostic way of combining type inference and type

feedback for dynamic language runtimes (Section 2.3).

16

Synergistic Type Specialization Chapter 2

• We improve upon previous schemes for using type feedback to aid type inference

by using a function’s type signature to distinguish different function invocations

(Section 2.4).

• We introduce a new scheme that uses type inference to lower the overhead of type

feedback by enabling more intelligent placement of profiling hooks (Section 2.4).

• We implement our proposed schemes in a research JavaScript engine, MCJS. We

evaluate this implementation on both the standard performance benchmarks (in-

cluding Sunspider [22], V8 [23], and Kraken [24]) and on real-world websites (includ-

ing popular websites like Amazon and BBC) and the JS1k demos [25] (Section 2.5).

We find that this mechanism results in speedups ranging from 1.2× to 4× over an

implementation that does not perform type inference and type feedback based optimiza-

tions, across standard benchmarks. For web-replay benchmarks, which represent the

JavaScript code executed when loading a website, function signature based type infer-

ence gives an average speedup of 5%. In the case of the JS1k demo benchmarks, which

run for a longer duration, we observe an average speedup of 1.6×. Finally, using the types

inferred by type inference, the type feedback in this mechanism inserts 23.5% fewer type

feedback sites in the code.

2.2 Related Work

Type inference and type feedback for dynamic scripting languages have been a topic

of research for a number of years. In this section, we give a brief overview of the current

state of the art approaches in this area.

Compiler developers for the language Self [31] pioneered the concept of using type

feedback for optimization of object-oriented dynamic languages. The Self compiler used

17

Synergistic Type Specialization Chapter 2

an instrumented version of the program being executed to observe the types of the ob-

jects or receiver classes for every message pass or function call. The program was then

specialized for the most frequently observed receiver class. Hölzle et al [32] discuss the

implementation of polymorphic inline caches and various strategies used to select the can-

didate code for specialization. These strategies helped shape the design of the dynamic

scripting language runtimes that followed.

PyPy is a mature Python implementation written in a subset of Python called

RPython [33, 34, 35]. PyPy contains a tracing JIT compiler that uses runtime profile in-

formation to guide its tracing and eventual compilation of code paths. In contrast to this

approach our algorithm explores the interdependency of type inference and type feedback

to perform type specialization online on a per-function basis. The two approaches are

orthogonal to each other and can be combined to improve type specialization.

Rubinius [36] is a Smalltalk-80-style VM and JIT compiler for Ruby. Though not as

mature as PyPy, it uses a more traditional method-based JIT compiler. The compiler

uses a simple form of type feedback in which they just emit guards to validate type

assumptions. They rely on LLVM to perform the bulk of their optimization. Rubinius has

a fast compiler that emits bytecode, they then compile the bytecode directly to LLVM IR.

By going directly to LLVM IR Rubinius is not able to use Ruby-level semantic reasoning

in optimization, thus losing the opportunity to perform high-level optimizations such as

type inference.

The Crankshaft compiler [30] in Google’s V8 JavaScript engine heavily relies on type

feedback to generate specialized code. During the generation of a high-level intermediate

representation (Hydrogen), each operation in an expression is specialized based on the

observed types. Once this is done a set of other optimizations are performed including a

static type inference pass to eliminate unnecessary guards. In contrast to this approach

our runtime performs static type inference in two stages, one of which happens before

18

Synergistic Type Specialization Chapter 2

profiling to reduce the profiling overhead. This not only reduces the amount of unneces-

sary profile information that is collected but also makes sure that the number of guards

is reduced in the generated code. Another distinction is that we supply the function

argument types to the type inference pass, which greatly increases its effectiveness.

The Jaegermonkey compiler in Mozilla’s Spidermonkey engine performs fast hybrid

type inference [8] based on the observed types in the previous runs. The expressions that

are not type inferred are encapsulated in a type barrier and monitored during runtime.

These expressions include global variables, function arguments, object property accesses,

array element accesses, and function calls. If the observed type differs from the type

used to specialize the code, the whole code is invalidated. Our approach differs from this

approach because our algorithm uses the function type signatures as one of the inputs

to our type inference algorithm to gain greater precision. Thus, the generated code

does not have type barriers or guards around function arguments. In contrast to their

approach, our algorithm performs type inference in two stages to significantly reduce the

profiling overhead. Another difference between our approaches is that Jaegermonkey’s

type inference algorithm attempts to infer the type of objects and their fields as well.

Our algorithm relies on type feedback for specializing operations on objects and their

fields.

2.3 High-Level Overview

In this section, we provide a high-level, language-agnostic description of our proposed

ideas. In the next section, we will make the discussion concrete for a specific language

(JavaScript) and language implementation (MCJS). We first discuss augmenting type

feedback with function signatures to aid the effectiveness of type inference. We then

discuss using type inference to aid the performance of type feedback.

19

Synergistic Type Specialization Chapter 2

Parse

Parse
and add
guards

Interpret

Interpret
the IR

First TI

Infer local
types and
eliminate
unnec-
essary
guards

Profile

Profile
for types
of guards

Second TI

Infer local
types using

profiled
types

Compile

Generate
type

specialized
code

Execute

Execute
compiled

code

FS FS

Figure 2.1: A flow graph describing the execution phases of a function. FS stands for
function signatures; TI stands for type inference.

Figure 2.1 describes the general workflow of the language runtime system when exe-

cuting a function, indicating the places where our proposed methods fit in. Our first type

inference pass (First TI) takes as input the function’s signature, i.e., the types of the

function arguments for this specific invocation. Different signatures for the same func-

tion are handled independently from each other. The phase First TI uses the function

signature in combination with the standard techniques for type inference. The results

are used to place type profiling hooks in the code, and in the phase Profile those hooks

are used to collect type information that is specific to a given function signature (i.e., the

type profiling information is collected and stored separately for each signature of a given

function). The phase Second TI takes the original function signature along with the

collected type profile information and performs a second, more aggressive type inference

based on the new information. Finally, the result is used to specialize and optimize the

code for further execution.

2.3.1 Function Signatures

Typically, type inference algorithms use the syntactic structure of a function, com-

bined with certain semantic rules of the language, to deduce type information—for ex-

ample, the result of a left-shift operation is guaranteed to be an integer. However, in

a dynamic language there are many operations that do not give any clues about types.

20

Synergistic Type Specialization Chapter 2

func foo(a, b)
{

var c = a + b;
var d = global + c + bar()

}
..............
foo(1, 3);
foo("bob", "alice");
foo(2, 5);

Figure 2.2: Motivating example

For example, the ’+’ operator is polymorphic and provides no information to the type

inference algorithm. We can improve the available information by providing types for the

function’s arguments. This idea is inspired by existing schemes for specialized function

dispatch based on type signatures, such as multimethods[37, 38]. Our innovation is to

make the function signatures an additional input to the type inference algorithm.

Figure 2.2 provides a motivating example. Signature-based dispatch operates as fol-

lows: After foo becomes hot, during the first call to foo a type-specialized version

of foo’s body is created and then specialized to handle arguments of signature (int,

int). During the second call to foo, another version of foo’s body is created that is

specialized to handle arguments of type (string, string). Finally, before the third

execution of foo the runtime determines that there is a match between the current call’s

signature and a previously-seen signature. It then re-uses the specialized body for (int,

int) as the target of the call.

We extend this idea to use the function type signature as an input to the type inference

algorithm. Since the function dispatch mechanism ensures that the type signatures are

always enforced (i.e., specialized code will never be called with the wrong types), we can

rely on these signatures as always being correct and specialize the code for those types

21

Synergistic Type Specialization Chapter 2

without requiring the type checks or recovery code that is necessary for normal type

feedback mechanisms.

2.3.2 Phase First TI: Type Inference → Type Feedback

The goal of type feedback is to provide hints to the runtime and the JIT compiler

about the types of variables. To do so, the runtime instruments the function’s code with

profile hooks that record type information observed during execution. These hooks are

placed syntactically during the phase Parse, and show up as guard nodes in the abstract

syntax tree (or IR) anywhere that type information may end up being useful (for example,

on either side of a binary operator like ’+’). See Figure 2.3 for an example of guard node

placement for the function in Figure 2.2.

Type profiling can end up being quite expensive, and so reducing the number of guard

nodes to be profiled can significantly improve performance of the profiling phase. Our

key observation is that if type inference can already statically determine the type of an

expression, then it is unnecessary to profile that expression. The phase First TI therefore

uses the function signature and standard type inference rules to try and statically infer

types for as many of the guard nodes as possible. Any guard node that is successfully

typed is marked so that no profiling will be performed on that node during the phase

Profile.

Of course, there will be many nodes that cannot have their types inferred (or inferring

their types is only possible through very complex analysis), such as most object property

accesses, untyped array indexing, and function call results. These guard nodes are left

unmarked and will be profiled during the profiling phase; the resulting information will

feed back into the second type inference pass as described in the next subsection.

For Figure 2.3, suppose that this function is called with a signature (int, int).

22

Synergistic Type Specialization Chapter 2

;

=

c +

Guard

a

Guard

b

=

d +

+

Guard

global

Guard

c

Guard

bar()

Figure 2.3: Intermediate representation of foo before type inference.

;

=

c +

Guard

a

Guard

b

=

d +

+

Guard

global

Guard

c

Guard

bar()

Figure 2.4: Intermediate representation of foo after type inference. Statically type
inferred guards are in green.

The first type inference pass is then able to infer types for the variables a, b, and c.

Therefore, the guards around those variables are no longer useful and do not need to

be profiled. Figure 2.4 shows the same function with eliminated guard nodes shown in

green.

23

Synergistic Type Specialization Chapter 2

2.3.3 Phase Second TI: Type Feedback → Type Inference

In the last phase before code generation the runtime uses the type information gen-

erated by type feedback to perform a second, more aggressive type inference pass. This

pass is identical to the first TI pass except that guard nodes have been annotated with

type information supplied by type profiling, and the type inference algorithm uses those

annotations instead of attempting to infer the types of the expressions under the guard

nodes. This phase is similar to the existing work by Hackett et al [8] except that once

again the type information is augmented by the function signature.

In Figure 2.2, suppose that type feedback shows that global is always of type int

and bar() always returns a value of type double. The second type inference algorithm

takes these types into consideration during type inference and thus can infer that variable

d is type double. Since this assumption can be invalidated at any point in the future, the

code generator places a type check to enforce the validity of the type feedback information.

Consequently, almost all variables and expressions are type inferred at the end and only

two guards are placed in this specialization of the function.

2.4 JavaScript Instantiation

In this section we describe a specific instantiation of our proposed ideas for the

JavaScript language, using the research JavaScript engine MCJS.

2.4.1 MCJS JavaScript Engine

To evaluate our proposed ideas we use MCJS, a research JavaScript engine written

in C]. This subsection provides a summary of MCJS and its features. MCJS is a

layered architecture, as shown in Figure 2.5. This means that the architecture splits

24

Synergistic Type Specialization Chapter 2

responsibilities across a JavaScript-specific component and a language-agnostic lower-

level VM. MCJS specifically uses the .NET Common Language Runtime (CLR) as the

lower-level VM, as implemented by Mono [39]. The CLR provides traditional compiler

optimizations such as instruction scheduling, register allocation, constant propagation,

common subexpression elimination, code generation and machine specific optimizations.

In addition, it provides managed language services such as garbage collection.

JavaScript

MCJS

Common	 Language	 Run5me	 	
(CLR:	 Mono/.NET)

ARM	 /	 x86

Code	 Gen,	 Garbage	 Collec5on

Dynamic	 Run5me
Basic	 support	 needed	 for	 dynamic	 languages
(Dynamic	 Objects,	 Types,	 Hidden	 classes)

Web	 Run5me
(Browser	 DOM	 Bindings,	 HTML5	 APIs,	 JS	 Events,	

Timers,	 etc.)

JavaScript	 Virtual	 Machine	

	
	
	
	
	
	 	

Web	
JavaScript

IR	

CIL	 JIT

Parser

Interpreter

CIL
 JavaScript	

Op5miza5ons

Co
m
m
an
d	
lin
e	

Ja
va
Sc
rip

t

Figure 2.5: MCJS JavaScript Engine Architecture. CIL = Common Intermediate
Language, CLR = Common Language Runtime, and IR = MCJS Intermediate Rep-
resentation

The JavaScript specific layer is a JavaScript VM implemented in C]. The engine

provides the standard dynamic language features such as dynamic values, objects, types,

and hidden classes. Additionally, the engine includes the following major JavaScript-

25

Synergistic Type Specialization Chapter 2

specific components and functionalities:

• A JavaScript parser takes in JavaScript code and generates a custom Intermediate

Representation (IR) for each function in the code.

• An interpreter executes the IR directly for the cold functions during execution.

• A JavaScript analysis engine applies JavaScript-specific transformations and opti-

mizations for hot functions. These JavaScript-specific optimizations include type

analysis and type inference, array analysis, and signature-based specialization.

These transformations augment the IR with extra information for more optimized

code generation.

• A Common Intermediate Language (CIL) bytecode generator generates optimized

CIL bytecodes for hot functions using the IR augmented by the previously men-

tioned transformations.

For this work, we extend the JavaScript-specific MCJS components to implement

the ideas described in the previous section. MCJS already implements signature-based

dispatch; the main changes we made were to add the type inference and type profiling

phases (i.e., phases First TI through Second TI as described in the previous section).

2.4.2 Parse Phase: Inserting Guard Nodes

Guard nodes are inserted into a function to indicate where the type profiler should

gather type information. Rather than requiring the runtime to transform the code mid-

stream to insert these guard nodes, we have the function parser in the phase Parse

conservatively inserts guard nodes into the function’s IR at every point that may have

a dynamic type and may benefit from type feedback. During interpretation these guard

nodes are no-ops; their only purpose is to provide a hook for type profiling.

26

Synergistic Type Specialization Chapter 2

function binb2b64(binarray)
{

var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw
xyz0123456789+/";

var str = "";
for(var i = 0; i < binarray.length * 4; i += 3)
{

var triplet = (((binarray[i >> 2] >> 8 * (3 - i %4)) & 0xFF)
<< 16)

| (((binarray[i+1 >> 2] >> 8 * (3 - (i+1)%4)) & 0xFF)
<< 8)

| ((binarray[i+2 >> 2] >> 8 * (3 - (i+2)%4)) & 0xFF);
for(var j = 0; j < 4; j++)
{

if(i * 8 + j * 6 > binarray.length * 32)
{

str += b64pad;
} else
{

str += tab.charAt((triplet >> 6*(3-j)) & 0x3F);
}

}
}
return str;

}

Figure 2.6: binb2b64 function from the crypto-sha1.js benchmark which is used to
convert an array of big-endian words to a base-64 string.The red highlighting indicates
the presence of Guard nodes around the expressions.

Good candidates for type profiling include binary and unary operations, object prop-

erty accesses, array element accesses, function calls, and the left-hand sides of assign-

ments. Guard nodes are placed in all of these locations during parse time. However,

recall that these are conservative placements—the initial type inference pass, described

below, may statically infer types for some of these guarded expressions, in which case

the associated guard nodes are marked so that the type profiler will ignore them. As

an example, Figure 2.6 shows the function binb2b64 from crypto-sha1.js. The red

highlighting indicates the presence of guard nodes around the expressions.

27

Synergistic Type Specialization Chapter 2

dValue

object double

string bool undefnon-null null

function array

int uint

char

⊥

Figure 2.7: Type lattice used by our type inference algorithm.

2.4.3 First TI Phase: Initial Type Inference

Once a function with a particular type signature is deemed hot by the runtime, it is

marked as a candidate for further optimization. The first step is an initial type inference

pass. This pass will infer as many types as possible using the function signature and the

type inference algorithm described by Figures 2.7 and 2.8 and Algorithm 1.

Figure 2.7 shows the type lattice used by the type inference algorithm. The most

precise type is ⊥, indicating an uninitialized value. For objects, we distinguish between

function, array, null, and non-null values. For numbers, we distinguish between character,

integer, unsigned integer, and double values. The least precise type is dValue, which

stands for dynamic value—this is the default kind of value to use when the runtime has

no static information about the value’s type.

Algorithm 1 shows the initialization function for the type inference pass. The local

variables are initialized to ⊥, the parameter symbols are initialized to the types given by

the function’s type signature, and the global variables are initialized to dValue because

there is no known information about the possible values of the global variables at this

28

Synergistic Type Specialization Chapter 2

point in time. The algorithm then places the use sites of these symbols in the worklist.

Algorithm 1 TypeInference(S, FS), where S gives the symbols in scope and FS
gives the function’s type signature.

worklist = []
for s in S do

switch s.SymbolType do
case local

Γ(s) = ⊥
worklist.add(s.users)

case parameter
Γ(s) = τ from lookup(FS, s)
worklist.add(s.users)

case global
Γ(s) = dValue

end for
while worklist.length 6= 0 do

e = worklist.pop()
typeEval(e) . Uses the rules from Figure 2.8 to infer types

end while

The types of the expressions in the worklist are inferred using a set of typing rules,

a selected subset of which are given in Figure 2.8. This subset shows some of the more

important inference rules used in the algorithm. The int and bool rules show how

constants in the code can be used to type an expression. Rules lshift and gt show

how type-specific operations can be used to guide type inference. The add rule uses a

helper function typeResolve to determine the type of the add operation. The typeResolve

function takes into consideration the implicit conversion rules of JavaScript and returns

the appropriate resultant type of the operation. The varassign rule generates type

constraints. Once all the constraints are collected, they are solved to assign types to the

local variables. Finally, the guard rules correspond to the guard nodes inserted by the

parser. The rules check the type of the expression it encloses; if the expression evaluates

to dValue then the guard is marked to be profiled by the Profile phase, otherwise that

29

Synergistic Type Specialization Chapter 2

n ∈ Num b ∈ Bool x ∈ Variable e ∈ Exp

τ ∈ Type = {dValue,object,double,non-null,function,array,

null,int,uint,char,string,bool,undef,⊥}
Γ ∈ Env = Variable → Type

Γ ` n : int (int)

Γ ` b : bool (bool)

Γ ` e1 << e2 : int (lshift)

Γ ` e1 > e2 : bool (gt)

Γ ` e : τ τ v Γ(x)

Γ ` x := e : τ
(varassign)

Γ ` e1 : τ1 Γ ` e2 : τ2 τ = typeResolve(τ1, τ2)

Γ ` e1 + e2 : τ
(add)

Γ ` e : τ τ @ dValue

Γ ` guard e : τ
(guard 1)

Γ ` e : τ τ = dValue

Γ ` guard e : profile
(guard 2)

Figure 2.8: Selected inference rules used in our type inference algorithm to generate
type constraints. Algorithms 1 and 2 conflate the type constraint generation and
constraint solving—in the algorithms, the varassign rule not only generates the
type constraint, but also updates Γ with the resultant type and pushes the users
of the variable x into the worklist. typeResolve is a helper function that takes into
consideration the implicit conversion rules of JavaScript and returns the appropriate
resultant type of the operation.

30

Synergistic Type Specialization Chapter 2

guard node will be ignored by the Profile phase. This rule eliminates many unnecessary

guard nodes, significantly increasing the profiler’s performance.

As an example, Figure 2.9 shows the function from Figure 2.6 after the initial type

inference with the inferred types and the eliminated guard nodes.

2.4.4 Profile Phase

The type profiling phase collects type information at the guard nodes inserted by the

parser and marked by the type inference phase 3 as worth profiling. The type information

collected by this phase is specific to a particular function and function signature. There is

only a limited opportunity for profiling the code before it is JITed, therefore we chose to

use exhaustive profiling rather than a sampling approach (though this configuration can

be modified to use sampling if desired). We employ several heuristics to help minimize

the profiling overhead:

• Disable profiling of IR nodes that are highly dynamic in nature: The profiler stops

tracking the IR nodes that show highly dynamic nature, such as rapidly changing

type information. We observe this behavior in some code snippets which iterate

over the fields of an object. For such guard nodes, the profiler records the profiled

type as dValue and stops profiling them.

• Efficient data structures: While designing the profiler we observed that the per-

formance of the profiler depends heavily on the data structure that is used. In

particular, we use an array-based implementation of the profiler which significantly

outperforms a dictionary-based implementation.

• Selectively enabling the profiler: We observe that many functions execute only once

during the initialization phase of the JavaScript application. Therefore, we enable

31

Synergistic Type Specialization Chapter 2

function binb2b64(binarray〈array〉)
{

var tab〈string〉 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqr

stuvwxyz0123456789+/";
var str〈dValue〉 = "";
for(var i〈int〉 = 0; i < binarray.length * 4; i += 3)
{

var triplet〈int〉 = (((binarray[i >>
2] >> 8 * (3 - i %4)) & 0xFF) << 16)

| (((binarray[i+1 >> 2]
>> 8 * (3 - (i+1)%4)) & 0xFF) << 8)
| ((binarray[i+2 >> 2]
>> 8 * (3 - (i+2)%4)) & 0xFF);

for(var j〈int〉 = 0; j < 4; j++)
{

if(i * 8 + j * 6 > binarray.length * 32)
{

str += b64pad;
} else
{

str += tab.charAt((triplet >> 6*(3-j)) & 0x3F);
}

}
}
return str;

}

Figure 2.9: binb2b64 function after the first type inference pass. The red high-
lighting indicates the presence of guard nodes around the expressions that need to be
profiled. The green nodes indicate that the guard nodes around these expressions are
unnecessary and should not be profiled. The 〈type〉 indicates the type inferred by the
type inference algorithm.

32

Synergistic Type Specialization Chapter 2

the profiler only during the sixth invocation of the function code. By doing this we

ensure that we only collect profiles for functions that are potentially hot.

2.4.5 Second TI Phase: Final Type Inference

Once sufficient profile information is collected, the second pass type inference algo-

rithm is performed in Second TI phase. In this pass the runtime tries to type the local

variables that were not type inferred during the first pass, by using the collected profile

information.

Algorithm 2 describes the initialization function of the second pass. This differs from

the first pass because we reuse the types inferred by the first pass while initializing the

types of the variables in this pass. We check whether the type of a variable is precise

enough, i.e., if the type inferred in the first pass is in the set PreciseTypes = {function,

array, null, bool, char, int, undef, string}. If it is, the algorithm initializes

the variable to that type, otherwise the algorithm initializes the type of the variable to ⊥

and adds its users to the worklist. This helps the algorithm converge to a fixpoint faster

and avoid inferring types of variables that have already been typed.

The type inference algorithm uses the same inference rules as in Figure 2.8 except for

the guard rule. The new guard rule is:

τ = P(`)

Γ ` guard`e : τ

(guard)

where P is a function that maps unique labels ` associated with guard nodes to the

profiled type information. This new rule shows how the profiled type information is used

to infer the type of the marked guard nodes. The guards that were not marked (i.e.,

were not used to gather type information during profiling) are treated as no-ops during

this Second TI phase.

33

Synergistic Type Specialization Chapter 2

Algorithm 2 TypeInference(S, FS, Γ1), where S gives the symbols in scope, FS gives
the function’s type signature and Γ1 is the type environment from initial type inference.

worklist = []
for s in S do

switch s.SymbolType do
case local

if Γ1(s) ∈ PreciseTypes then
Γ(s) = Γ1(s)

else
Γ(s) = ⊥
worklist.add(s.users)

end if
case parameter

if Γ1(s) ∈ PreciseTypes then
Γ(s) = Γ1(s)

else
Γ(s) = τ from lookup(FS, s)
worklist.add(s.users)

end if
case global

Γ(s) = dValue

end for
while worklist.length 6= 0 do

e = worklist.pop()
typeEval(e) . Uses the rules from Figure 2.8 to infer types

end while

34

Synergistic Type Specialization Chapter 2

As an example, in Figure 2.10 we see that str is now type inferred to be a string based

on the observed types of guards around the b64pad and tab.charAt() expressions.

2.4.6 Compile Phase: Specialized Code Generation

In this section we discuss the techniques used in generating type specialized Common

Intermediate Language (CIL) code in MCJS. After the second type inference pass, the

runtime passes the intermediate representation (IR) of the code and the type environment

Γ to the specialized code generator. The code generator maps primitive types such as

int, bool, double, char, and uint to native CIL primitives. This ensures that the

operations on them can be applied natively and are therefore faster.

After generating code for the expression enclosed in a tagged guard node, a check is

added in the code to compare the observed type at execution time with the profiled type.

The types inferred in the second pass are valid as long as the checks hold. If the observed

type during the execution doesn’t match the type for which the code was specialized,

the runtime bails out and calls a deoptimization routine. The deoptimization routine

captures the current state of the value stack and current values of the variables and

reconstructs a new callframe. Once this is done, the execution shifts to the interpreter,

which executes the function using the new callframe. This operation is expensive and

must be avoided as much as possible. Therefore, capturing accurate profiles is very

important.

In the case of the example in Figure 2.10, since str is now type inferred as a string,

the code generator does not add checks around it. With str being a local variable, we

know its type is only influenced by the observed types of b64pad and tab.charAt().

Since we already have runtime checks around them, it is unnecessary to check for the

type of str as well. This small optimization enables the runtime to reduce the number

35

Synergistic Type Specialization Chapter 2

function binb2b64(binarray〈array〉)
{

var tab〈string〉 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw

xyz0123456789+/";
var str〈string〉 = "";
for(var i〈int〉 = 0; i < binarray.length〈int〉 * 4; i += 3)
{

var triplet〈int〉 = (((binarray[i >> 2]〈int〉 >> 8 * (3 - i %4)) &
0xFF) << 16)

| (((binarray[i+1 >> 2]〈int〉 >> 8 * (3 - (i+1)%4))
& 0xFF) << 8)

| ((binarray[i+2 >> 2]〈int〉 >> 8 * (3 - (i+2)%4))
& 0xFF);

for(var j〈int〉 = 0; j < 4; j++)
{

if(i * 8 + j * 6 > binarray.length〈int〉 * 32)
{

str〈string〉 += b64pad〈string〉;
} else
{

str〈string〉 += tab.charAt((triplet >> 6*(3-j))&0x3F)〈string〉;
}

}
}
return str;

}

Figure 2.10: binb2b64 function after the first type inference pass. The red highlight-
ing indicates the presence of Guard nodes which were profiled and 〈type〉 indicates
the type profiled by the profiler. The 〈type〉 indicates the type inferred by the type
inference algorithm after the first pass. The 〈type〉 indicates the type inferred by the
type inference algorithm after second pass.

36

Synergistic Type Specialization Chapter 2

of unnecessary checks in the code. The total number of checks in the final CIL code for

binb2b64 is reduced from nine to seven.

2.5 Evaluation

In this section we describe our evaluation strategy and compare various combinations

of our optimizations against a baseline MCJS implementation. Throughout this section,

we abbreviate type inference as TI, type feedback as TF, function signatures as FS and

guard elimination as GE. We indicate whether the optimizations are enabled or disabled

by suffixing + or - respectively. Table 2.1 shows the MCJS configurations on which these

experiments are carried out.

We choose the TI- TF+ FS- GE- MCJS configuration because it is in the same vein

as V8’s strategy for performing type specialization. In this configuration, MCJS per-

forms pure type feedback without any type inference. Though V8’s Crankshaft compiler

performs various other optimizations and performs a variation of type inference based on

the profiled types, we believe this configuration is a fair representation of Crankshaft’s

type specialization strategy based on the ordering of different phases.

We choose the TI+ TF+ FS- GE- MCJS configuration because, it is in the same vein

as the SpiderMonkey’s strategy of performing type specialization. In this configuration,

MCJS performs type feedback based type inference without considering the types in func-

tion signatures. The types of function arguments are initialized to dValue during the

type inference phase. Though SpiderMonkey’s Jaegermonkey compiler performs various

other optimizations such as single pass SSA transformation, we believe that MCJS in

this configuration is a fair representation of Jaegermonkey’s type specialization strategy

based on the ordering of different phases.

We emphasize that we are not comparing MCJS with Crankshaft or Jaegermonkey

37

Synergistic Type Specialization Chapter 2

directly. Rather, we compare different type specialization strategies that happen to be

used by these engines, among many other optimizations that they implement. No direct

conclusions can be drawn from our evaluation about the relative merits of these engines.

2.5.1 Experimental Methodology

We evaluate our optimizations on an AMD FX-6200 Hexa-Core 3.8GHz machine

with 10GB RAM. We use Mono 3.0 as our underlying CLR implementation for MCJS.

We choose popular JavaScript benchmark suites including Sunspider [22], V81 [23] and

Kraken [24] as well as JavaScript code from 17 real world websites and web applications to

evaluate our implementation. Each of the benchmarks is run 11 times and the data from

the last 10 runs is averaged to compute mean performance. We describe the benchmarks

in detail in the following subsections.

2.5.2 Standard Benchmarks

Figure 2.11 shows the relative speedup of different MCJS configurations with respect

to the base configuration for the Sunspider, V8, and Kraken benchmarks. Since Sunspider

benchmarks run for a relatively short period of time, each benchmark is repeated 20 times

in a loop. Unlike Sunspider, the V8 and Kraken benchmarks run for a relatively longer

period of time. Therefore, they are run without modification.

Sunspider

Figure 2.11 shows that MCJS with the TI+ TF+ FS+ GE+ configuration performs

extremely well compared to other configurations for the Sunspider benchmarks, with an

average speedup of 4.2×. The average execution time for the base configuration is 48.4

1MCJS does not support typed arrays. Therefore, we do not evaluate our implementation on Octane
benchmarks.

38

Synergistic Type Specialization Chapter 2

MCJS configurations Description

TI- TF- FS+ GE- MCJS does not perform type inference or type feedback. We
use this as our baseline for measuring speedup.

TI- TF+ FS- GE- Enabling type feedback and disabling type inference in
MCJS.

TI+ TF+ FS- GE- Enabling type inference and type feedback and disabling
function signature based TI in MCJS. In this configura-
tion MCJS performs both the type inference passes with
the types from function arguments set to dValue. These
arguments are profiled during the profile phase.

TI+ TF- FS+ GE- Enabling type inference and disabling type feedback in
MCJS. In this configuration MCJS performs only the
first pass type inference.

TI+ TF+ FS+ GE- Enabling type inference and type feedback in MCJS. In this
configuration the guard elimination is not enabled.

TI+ TF+ FS+ GE+ Enabling all of the type-inference-based optimizations in
MCJS including guard elimination.

Table 2.1: Table describing various MCJS configurations which we perform our exper-
iments on. TI = Type Inference, TF= Type Feedback, FS = Function Signature, GE
= Guard Elimination, and +/- indicate whether the respective features are enabled
or not.

seconds, and the execution times range from 2 seconds for bitops-bitwise-and to

545.3 seconds for string-tagcloud.

Type inference provides a significant performance boost for these benchmarks, be-

cause they heavily rely on integer arithmetic. The compiler maps those JavaScript num-

bers that are inferred to be integers to CLR integer primitives. This optimization en-

ables type specialized x86 integer operations in the generated code. This further enables

x86 specific optimizations such as common subexpression elimination and faster integer

arithmetic using bitwise shift operators. Therefore, benchmarks like bitops-3bit-

bits-in-byte, bitops-bits-in-byte and math-spectral-norm perform an

order of magnitude better using the TI+TF+ FS+ GE+ configuration.

When compared to the TI- TF+ FS- GE- strategy, all of the type inference based

approaches perform better. This can be attributed to the constant boxing and unboxing

39

Synergistic Type Specialization Chapter 2

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

Sunspider	 V8	 Kraken	

Sp
ee
du

p	
w
ith

	 re
sp
ec
t	 t
o	
TI
-‐	 T

F-‐
	 F
S+
	 G
E-‐
	

(H
ig
he

r	 i
s	 b

e:
r)
	

Standard	 benchmarks	

TI-‐	 TF+	 FS-‐	 GE-‐	 TI+	 TF+	 FS-‐	 GE-‐	 TI+	 TF-‐	 FS+	 GE-‐	 TI+	 TF+	 FS+	 GE-‐	 TI+	 TF+	 FS+	 GE+	 	

Figure 2.11: Speedup with respect to TI- TF- FS+ GE- configuration for standard
benchmark suites: Sunspider, V8 and Kraken. TI = Type Inference, TF= Type
Feedback, FS = Function Signature, GE = Guard Elimination, and +/- indicate
whether the respective features are enabled or not.

of values required by the pure type feedback based approach. When compared to the

TI+ TF+ FS- GE- strategy, the configurations with function signatures enabled per-

form better. This shows that use of function signatures during type inference improves

application performance.

Kraken

We see an average speedup of 1.3× for the TI+ TF+ FS+ GE+ configuration. The

run times vary from 0.5 seconds to 559 seconds for the base configuration with an average

execution time of 66.1 seconds.

In contrast to Sunspider, the Kraken benchmark suite heavily relies on global arrays

and array element manipulation. The TI+ TF+ FS+ GE+ configuration performs well

on the crypto subset of the benchmarks, giving an average speedup of 1.6× over the

40

Synergistic Type Specialization Chapter 2

base configuration. The optimizations are less effective for the rest of the benchmarks

that rely heavily on array element manipulation. Since the type inference algorithm does

not infer the types of global symbols, the global array access operations are not very

optimized. We are currently investigating ways to extend our type inference algorithm

to infer the types of arrays to optimize these benchmarks.

V8

We see an average speedup of around 1.2× with the TI+ TF+ FS+ GE+ configu-

ration for the V8 benchmarks. The run times vary from 6.1 seconds to 124.1 seconds

with an average execution time of 36.1 seconds. The V8 benchmarks pose a different

challenge from the Kraken benchmarks since most of them deal with global objects and

property accesses. These expressions are also not type inferred by our algorithm. Though

MCJS using TI+ TF+ FS+ GE+ performs well for the splay, navier stokes, and

raytrace benchmarks, with an average speedup of 1.5× over the base configuration, it

performs rather poorly on regexp and deltablue. This poor performance is mostly

due to MCJS’s inefficient regular expression and string library implementation. Our

algorithm does not type the properties of an object and precisely tracking such informa-

tion is difficult. We are currently working on extending our type inference algorithm to

approximately infer types of object properties.

For both the V8 and Kraken benchmarks, MCJS with guard elimination and function

signatures enabled does not perform significantly better than the other strategies. This

is because MCJS engine spends most of the time executing inefficient string and regexp

libraries. Therefore, the optimizations due to type specialization do not show any effect

on the final execution time.

41

Synergistic Type Specialization Chapter 2

0	

10	

20	

30	

40	

50	

60	

70	

80	

Sunspider	 V8	 Kraken	

Pe
rc
en

ta
ge
	 o
f	 t
yp
ed

	 lo
ca
l	 v
ar
ia
bl
es
	

(H
ig
he

r	 i
s	 b

e7
er
)	

Standard	 Benchmarks	

TI+	 TF+	 FS+	 GE+	 TI+	 TF+	 FS-‐	 GE-‐	

Figure 2.12: Percentage types inferred. TI = Type Inference, TF= Type Feedback,
FS = Function Signature, GE = Guard Elimination, and +/- indicate whether the
respective features are enabled or not.

Effect of Function Signatures

The percentage of type inferred variables is another important metric which shows the

effectiveness of including function type signatures in our algorithm. Figure 2.12 shows

the percentage of types inferred in the TI+ TF+ FS+ GE+ and the TI+ TF+ FS- GE+

configurations for various benchmark suites. The use of function signatures during type

inference improves the percentage of types inferred. For Sunspider, the percentage of local

variables that are type inferred increases from 44% to 74%. There is a significant increase

42

Synergistic Type Specialization Chapter 2

in this number from 26% to 60% for the V8 benchmarks. The Kraken benchmarks also

show an increase of 21% in percentage of local variables that are type inferred.

The percentage of types inferred does not directly correspond to the speedup obtained

for V8 and Kraken benchmarks, because these benchmarks spend a majority of the time

in unoptimized parts of the MCJS engine. For example, the JavaScript standard libraries

for strings and regular expressions are extensively used by these benchmarks.

2.5.3 Real-world Benchmarks

Apart from the standard benchmark suite, we test our implementation on 17 real-

world websites and web applications. We use the record-and-replay feature of Zoomm

[40], a research web browser, to collect the traces of JavaScript that are executed in

real-world websites like Amazon, BBC, CNN, Google, Guardian and ESPNCricinfo at

load time. These traces are then converted to pure JavaScript files by simulating the

DOM objects and their properties in terms of JavaScript objects. Since most of the

JavaScript execution happens at page load, the overhead of performing profiler based TI

optimizations is not amortized for most of these benchmarks.

Therefore, we also use 11 benchmarks from demos submitted to the JS1k [25] com-

petition. These benchmarks are relatively long running JavaScript applications when

compared to the web-replay benchmarks. Though these benchmarks are relatively small

in size, we believe that they are representative of core functionalities present in JavaScript

heavy web-apps like games and animations. For these benchmarks, the DOM interac-

tions are stubbed out and simulated using pure JavaScript objects. For the benchmarks

that require user interaction, the events are simulated by providing them a fixed set of

JavaScript event objects in a loop. The setTimeout and setInterval functions are

replaced by loops that call the supplied function for a fixed number of iterations. We

43

Synergistic Type Specialization Chapter 2

Benchmarks Description

Kaboom JavaScript version of the classic arcade game Boom

Mandelbrot Animation of classic mandelbrot with user clickable interface for
zooming.

Spring pond Algorithm that simulates the evolution of species of fishes in a
pond and survival of the fittest.

Tetris JavaScript version of the classic Tetris game.

Wave graph Graph plotting application that plots continuous multicolored si-
nusoidal waves.

Breakout JavaScript version of the paddle and ball game.

Conways Animation simulating the Conway’s game of life algorithm.

Flying windows Animation showing flying windows.

Loading spinner Spinner animation shown during page load.

Sierpinski gasket 3D representation of Sierpinski gasket fractal.

Analog clock Analog clock written in pure JavaScript and HTML.

Table 2.2: Table describing the nature of the JS1k demos used as benchmarks.

describe the nature of these benchmarks in Table 2.2.

Web-replay benchmarks

Figure 2.13 shows that our profiler based optimizations do not speedup the web-replay

benchmarks, which are the first six benchmarks in the graph (indeed we see slowdown

in some cases). This property is seen across all configurations which use type feedback,

i.e., TF+. This is mainly because the specialized code is not executed long enough to

amortize the overhead caused by profiling. Though web-replay benchmarks execute for

an average of 4.1 seconds, most of the functions are executed only a few number of times.

Therefore, the web-replay benchmarks are not optimized by type feedback.

But MCJS with function signature based type inference, i.e., TI+ TF- FS+ GE-

(green bar) configuration shows speedup in most of the benchmarks with an average

speedup of 5%. This shows that a quick function signature based type inference performs

well even during page load.

44

Synergistic Type Specialization Chapter 2

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

am
azo
n.c
om
	

bb
c.c
om
	

cn
n.c
om
	

go
og
le.
co
m	

gu
ard
ian
.uk
	

esp
nc
ric
inf
o.c
om
	

Ka
bo
om
	

Ma
nd
elb
rot
	

Sp
rin
g	 p
on
d	

Te
tri
s	

Wa
ve
	 gr
ap
h	

Bre
ak
ou
t	

Co
nw
ay
s	

Fly
ing
	 w
ind
ow
s	

Lo
ad
ing
	 sp
inn
er	

Sie
rpi
ns
ki	
Ga
ske
t	

An
alo
g	 c
loc
k	

Sp
ee
du

p	
w
ith

	 re
sp
ec
t	 t
o	
TI
-‐	 T

F-‐
	 F
S+
	 G
E-‐
	

(H
ig
he

r	 i
s	 b

e:
er
)	

Real	 world	 benchmarks	

TI-‐	 TF+	 FS-‐	 GE-‐	 TI+	 TF+	 FS-‐	 GE-‐	 TI+	 TF-‐	 FS+	 GE-‐	 TI+	 TF+	 FS+	 GE-‐	 TI+	 TF+	 FS+	 GE+	

Figure 2.13: Speedup of various configurations of MCJS with respect to TI- TF-
FS+ GE- for real world benchmarks. TI = Type Inference, TF= Type Feedback,
FS = Function Signature, GE = Guard Elimination, and +/- indicate whether the
respective features are enabled or not.

JS1k Demos

The final 11 benchmarks shown in Figure 2.13 are the JS1k demos. These benchmarks

run for a relatively longer period of time with an average run-time of 11.3 seconds. Most

of these benchmarks perform well with type feedback enabled, except for a few exceptions

like Conways and Sierpinski gasket where type inference without type feedback

performs better.

Like most of the JavaScript in popular websites, these benchmarks are minified us-

ing JavaScript minifiers like Google Closure Compiler [41] or JSCrush [42]. In addition

to minifying, some of the benchmarks use global symbols in order to save space. The

rest of them maintain local symbols in the functions. Therefore, we see varied behavior

across configurations. Kaboom, Spring pond, Tetris, Wave graph, Breakout,

and Flying windows use global variables heavily in their code. Therefore, type infer-

45

Synergistic Type Specialization Chapter 2

ence with type feedback performs better than type inference without type feedback.

In comparison to other strategies, our best strategy with all features enabled (TI+TF+

FS+GE+) consistently performs better, especially on Kaboom, Spring Pond, Break-

out, and Flying Windows. For Breakout and Spring Pond, type inference bene-

fits both the TI+TF+FS-GE- strategy and our best strategy as compared to TI-TF+FS-

GE-. However, for all these specific benchmarks, the main advantage of our strategy com-

pared to other strategies stems from the combination of signature based type inference

and guard elimination as can be seen on Figure 2.13.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

am
azo
n.c
om
	

bb
c.c
om
	

cn
n.c
om
	

go
og
le.
co
m	

gu
ard
ian
.uk
	

esp
nc
ric
inf
o.c
om
	

Ka
bo
om
	

Ma
nd
elb
rot
	

Sp
rin
g	 p
on
d	

Te
tri
s	

Wa
ve
	 gr
ap
h	

Bre
ak
ou
t	

Co
nw
ay
s	

Fly
ing
	 w
ind
ow
s	

Lo
ad
ing
	 sp
inn
er	

Sie
rpi
ns
ki	
Ga
ske
t	

An
alo
g	 c
loc
k	

Pe
rc
en

ta
ge
	 o
f	 t
yp
ed

	 lo
ca
l	 v
ar
ia
bl
es
	

(H
ig
he

r	 i
s	 b

e7
er
)	

Real	 world	 benchmarks	

TI+	 TF+	 FS+	 GE+	

TI+	 TF+	 FS-‐	 GE-‐	

Figure 2.14: This graph shows percentage of typed local variables for configurations
TI+ TF+ FS+ GE+ and TI+ TF+ FS- GE+ for real-world benchmarks. TI = Type
Inference, TF= Type Feedback, FS = Function Signature, GE = Guard Elimination,
and +/- indicate whether the respective features are enabled or not.

Effect of Function Signatures

Figure 2.14 shows that the effect of using function signatures in type inference is sim-

ilar to that observed for the standard benchmark suite. For the benchmarks that heavily

rely on global variables, the use of function signatures during the type inference does not

46

Synergistic Type Specialization Chapter 2

always give major benefit. For example, for benchmarks Kaboom, Mandelbrot, Wave

graph, and Conways, even though the percentage of types inferred with function sig-

natures is higher than without, we do not see much difference in execution time. This

can be attributed to typing of variables that are non-critical for performance. In these

benchmarks we observe that the the performance sensitive parts of the code like loops

use a combination of global variables and local variables that are not typed in the first

type inference phase.

2.5.4 Effect of Guard Elimination

The number of guards eliminated is an indicator of the effectiveness of the profiler.

We measure this by collecting the number of unique guard nodes that are profiled during

the execution of the program. We then compare the number of guard nodes eliminated

due to the guard elimination technique.

Table 2.3 shows the percentage of guards eliminated due to guard elimination for each

of the benchmark suites. On an average guard elimination results in 23.5% reduction

in guards profiled during the profiling phase. As Figure 2.11 and Figure 2.13 show,

elimination of guards improves performance. It also helps reduce the amount of the

information collected during runtime, thereby reducing the total memory used by the

application. The elimination of guards (hence conditional control paths) from the CIL

also creates more optimization opportunities for the underlying VM’s code generator.

2.5.5 Effect of First TI Phase

There are two advantages of the first TI phase. First, it helps in reducing the number

of guards that are profiled. This reduces the time spent during collection of type profiles

as well as the time required to do the dynamic type checks. Secondly, it speeds up the

47

Synergistic Type Specialization Chapter 2

Benchmarks GE- GE+ % reduction
in guards

Sunspider 1203 872 27.5

V8 2053 2004 2.4

Kraken 294 177 39.8

Web replay 62 50 19.4

JS1k Demo 177 127 28.2

Average 23.5

Table 2.3: Percentage of guards reduced due to guard elimination for each kind of
benchmarks. GE+ indicates the configuration TI+ TF+ FS+ GE+ and GE- indicates
the configuration TI+ TF+ FS+ GE- shown in Table 2.1. Numbers on columns two
and three are absolute numbers of guards (type checks) across the corresponding
benchmark suite and the configuration.

operations involving the variables that are type inferred, during the profiling phase. Our

best strategy (TI+ TF+ FS+ GE+) is 2.1× and 1.1× faster than the strategy without

the first TI phase for Sunspider benchmarks and real-world benchmarks respectively.

2.6 Conclusion

We explore the phase interdependency between the two most important methods

used for type specialization of dynamic languages, type feedback and type inference.

Our analysis shows that type feedback can improve the accuracy of type inference (as

shown in previous work), but also that type inference can also significantly reduce the

overhead of type feedback (during profiling) and type checks (during execution), resulting

in overall more accurate and faster type analysis.

This chapter proposes a novel strategy for combining type inference and type feedback

in a way that reduces the overhead and improves the performance of both methods. In

this strategy, two passes of type inference are applied, both before and after type feedback

(profiling). The first type inference pass significantly reduces the profiling overhead

during the type feedback phase. On the other hand, the reduced type feedback collected

48

Synergistic Type Specialization Chapter 2

is then used by the second type inference pass to highly specialize the generated code.

The key enabler for this multi-phase efficiency is syntactic guard instructions inserted

at parse time into the IR, representing the possible profiling sites. These guards nodes

are pruned and marked during the first type inference and type profiling phases. This

combined strategy also employs function type signatures to further improve the accuracy

and reduce the overhead of both type inference and type feedback methods.

We evaluate the proposed combined function signature based type inference and type

feedback strategy on a large set of traditional benchmarks (including Sunspider, Kraken

and V8) and realistic web application benchmarks (including Amazon, BBC and JS1k

demos). The results show that our proposed method speeds up the standard benchmarks

by between 1.2× and 4.2× over the base implementation that does not perform type feed-

back or type inference based optimizations. For web-replay benchmarks, which represent

the JavaScript code executed during website load, simple function signature based type

inference gives an average speedup of 5%. In the case of JS1k demo benchmarks, which

run for a longer duration, we observe an average speedup of 1.6×. Further more, this

combined strategy is able to infer the types of symbols in the hot functions very accu-

rately (between 60% and 80% of all variables) for both standard benchmarks and web

applications. Moreover the combined strategy greatly reduces the overhead of both type

profile sites during profiling and type checks during execution (by about 23.5%).

49

Chapter 3

Deoptimization on Top of Typed,

Stack-based Virtual Machines

We are interested in implementing dynamic language runtimes on top of language-level

virtual machines. Type specialization is a critical optimization for dynamic language

runtimes: generic code that handles any type of data is replaced with specialized code

for particular types observed during execution. However, types can change, and the

runtime must recover whenever unexpected types are encountered. The state-of-the-art

recovery mechanism is called deoptimization. Deoptimization is a well-known technique

for dynamic language runtimes implemented in low-level languages like C. However, no

dynamic language runtime implemented on top of a virtual machine such as the Com-

mon Language Runtime (CLR) or the Java Virtual Machine (JVM) uses deoptimization,

because the implementation thereof used in low-level languages is not possible.

In this chapter we propose a novel technique that enables deoptimization for dynamic

language runtimes implemented on top of typed, stack-based virtual machines. Our

technique does not require any changes to the underlying virtual machine. We implement

our proposed technique in a JavaScript language implementation, MCJS, running on top

50

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

of the Mono runtime (CLR). We evaluate our implementation against the current state-

of-the-art recovery mechanism for virtual machine-based runtimes, as implemented both

in MCJS and in IronJS. We show that deoptimization provides significant performance

benefits, even for runtimes running on top of a virtual machine.

3.1 Introduction

Language-level virtual machines (VMs) provide a number of advantages for applica-

tion development. These advantages extend to implementing language runtimes on top of

existing VMs, which we call layered architectures—for example, dynamic language run-

times like Rhino, IronJS, IronRuby, JRuby, IronPython, and Jython, which implement

JavaScript, Ruby, and Python runtimes respectively, either on top of the Java Virtual

Machine (JVM) or the Common Language Runtime (CLR).

However, VMs can also impose performance penalties that make language implemen-

tation unattractive. These penalties include not only VM overheads, but also opportunity

costs arising from optimizations common to native runtime implementations1 but difficult

or impossible within a VM. Our goal in this work is to alleviate an important oppor-

tunity cost for implementing dynamic language runtimes on top of VMs. Specifically,

we introduce a novel technique for deoptimization on typed, stack-based VMs that en-

ables efficient type specialization, a critical optimization for dynamic language runtimes

(explained further in Section 3.2).

Why Implement Languages on a VM? There are many advantages to using a layered

architecture. Layered architectures provide nice program abstractions, free optimizations,

and highly-tuned garbage collection, which are all required for a performant engine.

1By which we mean runtimes implemented in a low-level language such as C and compiled to native
binaries.

51

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

Leveraging an existing VM allows the language developers to focus on language-specific

optimizations without bothering with machine-specific optimizations that are handled

by the existing VM. Layered architectures also offer a good platform for experimenting

with new language features and different optimization techniques for language runtimes.

Finally, using a layered architecture enables interoperability between different languages

implemented on the same runtime.

Opportunity Costs. The existing VM often imposes restrictions on the language de-

veloper that can prevent important optimizations. For example, a key optimization for

dynamic languages is type specialization, which uses dynamic profiling to specialize code

based on observed type information. Type specialization is unsound and thus requires

a recovery mechanism to deal with unexpected types by transferring execution from the

type-specialized code to the original unspecialized code. However, the very nature of

typed, stack-based VMs such as the JVM or CLR means that the most effective known

recovery mechanism, deoptimization, cannot be implemented using any known techniques

that are used in native runtimes [43, 44, 45, 46].

Key Insights. We have developed a novel technique for effective deoptimization on

typed, stack-based VMs. Our key insight is that we can leverage the VM’s existing

exception mechanism to perform the deoptimization. Doing so is non-trivial, because

exceptions throw away the current runtime stack whereas deoptimization should preserve

the stack information from the specialized code in order to re-start execution at the

equivalent program point in the unspecialized code. Our technique leverages the code

generator’s bytecode verifier to track and transfer appropriate values on the runtime

stack between the specialized code and the unspecialized code when a deoptimization

exception is thrown.

52

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

Contributions. Our specific contributions are:

• We describe a novel deoptimization technique to enable type specialization for

dynamic language runtimes running on top of a typed, stack-based virtual machine.

(Section 3.3)

• We describe a specific instantiation of this technique for MCJS2 [47], a JavaScript

engine implemented on top of the CLR. (Section 3.4)

• We evaluate our MCJS implementation and compare against (1) a non-type special-

izing version of MCJS, (2) a type specializing version of MCJS using an alternate

fast-path + slow-path recovery technique, and (3) IronJS [10], a JavaScript engine

implemented using the DLR (which performs type specialization using the fast path

+ slow path technique). We use both standard benchmarks (i.e., Sunspider and

V8) and long-running web JavaScript applications, and show that our deoptimiza-

tion technique significantly outperforms existing type specialization techniques for

layered architectures. On an average (geomean) our deoptimization technique is

1.16× and 1.88× faster than MCJS with fast-path + slow-path recovery technique

and IronJS respectively. (Section 3.5)

Before describing our technique, we provide background on type specialization, the

two dominant recovery mechanisms used by type specialization, and the challenges they

face when implemented on top of a VM (Section 3.2).

3.2 Type Specialization

In this section we give background on type specialization, the two dominant recovery

mechanisms (fast path + slow path and deoptimization) used to implement type spe-

2http://www.github.com/mcjs/mcjs.git

53

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

cialization, and the challenges faced by these techniques when implemented on top of

VMs.

3.2.1 Type Specialization

Dynamic languages are dynamically typed, i.e., a variable can refer to values of differ-

ent types at different points during a program’s execution. However, dynamic language

runtimes implemented in a typed language must declare a single type for each variable

in the underlying implementation. Therefore, runtimes must wrap base values (e.g., in-

tegers, booleans, strings, etc) inside a wrapper type called a DValue, which stands for

“dynamic value”. Wrapping a base value inside a DValue is called boxing, and extracting

a base value from a DValue is called unboxing.

The semantics of dynamic language operations depend heavily on the types involved.

For example, the simple expression a + b can mean many different things depending on

the types of a and b at the time the expression is evaluated. The runtime must unbox

a and b to determine the types of the wrapped base values, perform the appropriate

operation, and then box the result back into a DValue. Thus every expression encountered

during execution requires unboxing values, performing a series of branch conditions based

on type, performing the desired operation, and finally boxing a value. These operations

tend to dominate the execution time of any dynamic language program.

In response, dynamic language implementors have developed an optimization called

type specialization. During execution the observed types of each variable’s values are

monitored. The runtime then dynamically generates code that is specialized for the ob-

served types. In the previous example, if a and b are always observed to hold integer

values, then the runtime can generate specialized code that declares them to be int

types instead of DValues and thus avoid all of the unboxing, branching, and boxing.

54

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

if (GetType(a) == Int && GetType(b) == Int) {
c = ToDValue(IntAdd(a.ToInt(), b.ToInt()));

}
else { // Slow path

c = GenericAdd(a, b);
}
// c is of the type DValue here.

Figure 3.1: C-like pseudocode representing the fast path + slow path approach for
the statement c = a + b where a and b are observed to be integers.

if (GetType(a) == Int && GetType(b) == Int) {
c = IntAdd(a.ToInt(), b.ToInt());

}
else {

// Jump to deoptimization routine.
}
// c is of the type int here.

Figure 3.2: C-like pseudocode representing the deoptimization approach for the state-
ment c = a + b where a and b are observed to be integers.

However, this optimization is unsound—for example, while a and b have been integers

so far, they may hold strings at some point later in the execution. Runtimes that use

type specialization must have some sort of recovery mechanism that detects unexpected

types and falls back to the standard, generic evaluation algorithm. There are two dom-

inant approaches for this recovery mechanism; we describe each below along with their

challenges with respect to being implemented on VMs.

3.2.2 Recovery Option 1: Fast Path + Slow Path

For the fast path + slow path recovery mechanism, type-specialized code is guarded

by a conditional that tests the current types of the specialized variables. If the current

types match the expected types then the true branch containing the type-specialized code

55

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

is taken, otherwise the false branch containing the generic, unspecialized code is taken.

In pseudocode, where variable is a DValue:

if (unbox(variable).type == type T) {
T variable’ = unbox(variable)
// fast path: specialized code for type T
// computes the result using variable’
box(result)

}
else {

// slow path: unspecialized code computes
// the result using variable

}
// use result

Notice that variables are still unboxed and boxed for the fast path; this is because

the type of result must be the same regardless of whether the fast path or slow path

is taken. However, there may be multiple operations contained in the fast path and so

the cost of boxing and unboxing is amortized; in addition, there is no branching on types

in the fast path.

Figure 3.1 gives C-like pseudocode showing how the runtime implements the fast

path + slow path operation for a simple binary add operation. Based on the previously

observed types of a and b, say int and int, the runtime generates code to perform

integer addition in the fast path and a generic add operation in the slow path.

Challenges. This technique is the one used in current layered architectures for dynamic

languages that perform type specialization, such as IronJS and MCJS. There is no tech-

nical difficulty in implementing it, however the constant boxing and unboxing severely

limits the benefits of type specialization. Deoptimization is known to out-perform fast

path + slow path in native code implementation of dynamic language runtimes; however

as we describe below deoptimization is difficult for VMs.

56

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

3.2.3 Recovery Option 2: Deoptimization

For the deoptimization recovery mechanism, type-specialized code is again guarded

by a conditional that tests the current types of the specialized variables. The key dif-

ference is that the fast path and slow path are not contained inside the branches of the

condition; instead, the slow path is placed in an entirely separate routine. If the con-

dition fails then control leaves the current, type-specialized routine and jumps to the

generic, unspecialized routine, where it resumes execution at the unspecialized program

point that is equivalent to the specialized program point where the type mismatch was

detected. In pseudocode, where variable is a DValue:

if (unbox(variable).type == expected type T) {
T variable’ = unbox(variable)
// fast path: specialized code for type T
// computes the result using variable’

}
else {

// jump to equivalent program point in
// unspecialized code

}
// use result

The benefit of this approach is that the remaining code in the routine can assume

that the fast path succeeds, and hence we do not need to box the result—we can leave

it as whatever type it was specialized to, because if it wasn’t supposed to be that type

then the code would have jumped completely out of the specialized routine and into the

unspecialized routine.

Figure 3.2 gives C-like pseudocode describing the deoptimization approach for the

statement c = a + b. Similar to the fast path + slow path approach, the guard con-

dition checks whether the observed types of a and b are integers. If so, the runtime

unboxes the integer values of a and b and performs the integer addition operation. This

constitutes the fast path. A difference here with respect to the fast path + slow path

57

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

approach is that resultant value is not boxed back into a DValue before assigning it to

c. Instead, the type of c is initialized to be an integer. This prevents further unboxing

of c when it is used later in the function. The deoptimization code captures the current

state of execution of the code and transfers it to either an interpreter or to non-optimized

compiled code.

Challenges. Deoptimization has been used in native code implementations of dynamic

language runtimes. However, the techniques used there do not translate to typed, stack-

based VMs such as the CLR or JVM. Native code uses either code patching/on-stack

replacement or long jumps. In the former strategy, deoptimization is implemented by

dynamically replacing the specialized code in the runtime stack with the generic unspe-

cialized code. However, in managed VMs runtime modification of generated functions

is not allowed. In the latter strategy, deoptimization is implemented as a long jump to

the unspecialized code. However, in managed VMs long jumps are not allowed, for two

reasons: first, it disables all optimizations that can be performed within a basic block,

and second, these jumps can violate the Gosling principle which dictates that stack-

based VMs should guarantee the typestate at any given program point. Typestate refers

to the types of a function’s local variables and the types of the values in the operand

stack; stack-based VMs enforce the Gosling principle to help ensure correctness and per-

formance. Thus, implementing the deoptimization strategy for type specialization using

known techniques is not possible without modifying the underlying VM.

3.3 Deoptimization on Layered Architectures

In this section we give a high-level overview of our approach to solving the deopti-

mization problem on layered architectures. We discuss two aspects: (1) how to jump

58

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

from the specialized code to the correct place in the unspecialized code; and (2) how to

transfer the current state from the specialized code to the unspecialized code.

Jump to Unspecialized Code. When specialized code detects a type mismatch, it must

jump from the current program point in the specialized code to the equivalent program

point in the unspecialized code. As explained in Section 3.2, we cannot use the standard

techniques of code patching or long jump to implement this behavior. Instead, we leverage

the underlying VM’s exception-handling mechanism. The jump from specialized code is

done by throwing a GuardFailure exception. The body of every optimized method is

wrapped in a try block, and deoptimization for every expression in that body is handled

in a common catch block. Figure 3.5 illustrates the structure of the specialized code that

is generated for a specific example.

The catch block must then transfer control to the unspecialized code, specifically

the point equivalent to where the exception was thrown in the specialized version. To

achieve this, we assume that the dynamic language runtime implements something like

a subroutine-threaded interpreter [48]. A subroutine-threaded interpreter implements

each operation of the program (e.g., reading a value of a variable, or performing binary

addition) as a separate, unspecialized subroutine implemented in the underlying VM

bytecode; each subroutine returns a pointer to the next subroutine that should be exe-

cuted, and so interpretation consists of a series of subroutine calls with each call returning

the address of the next subroutine to call.

Assuming the interpreter is subroutine-threaded, each language expression has an

unspecialized implementation in the form of a subroutine with a known address. At each

deoptimization guard, a pointer to the appropriate expression’s subroutine is hardcoded

into the thrown exception’s value. The catch block then calls the appropriate subroutine

to transfer control to the unspecialized code. We illustrate this process with an example

59

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

in Section 3.4.

State Transfer. It is not sufficient to simply transfer control from the specialized code

to the unspecialized code; we must also transfer the current state of the program, i.e., the

values of the local variables on the runtime stack and the values on the operand stack

used to store intermediate values during expression evaluation. Transferring the local

variables is straightforward: we insert code immediately before the GuardFailure

exception to read the values of each local variable and store them in a separate data

structure shared by both specialized and unspecialized code. We describe such a data

structure in Section 3.4.

The tricky part of state transfer is the operand stack. This stack is cleared whenever

an exception is thrown, and its values are not stored in local or temporary variables. For

example, suppose while evaluating the expression a + b + c that there is a deopti-

mization guard around c that throws an exception. The value of a + b resides (only)

in the operand stack, and must be transferred to the unspecialized code that will evaluate

c before the operand stack is cleared by the thrown exception. What makes this process

tricky is that the number and types of values on the operand stack vary across deopti-

mization points; therefore we must have access to the stack size and type information at

each deoptimization point in order to correctly transfer state. Unfortunately, managed

VMs do not provide the ability to reflect on the operand stack during runtime.

We solve this problem by using compile-time3 validation of the generated intermediate

representation. To achieve this, the code generator is combined with a bytecode verifier

which verifies the generated code line-by-line during code generation (as opposed to the

normal order, which completely generates the code and then validates it). The benefit

3Throughout this chapter, “compile” refers to generation of the typed bytecode of the underlying
VM from the dynamic language being implemented on that VM. This should not be confused with the
native code generation that happens at the VM level.

60

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

of this approach is that, in order to verify type safety, the code verifier maintains a

shadow stack of value types present in the operand stack at any program point. The

code generator can take advantage of this information during code generation, whereas

it could not do this if the validator waited until after generation is complete.

This approach has two benefits beyond enabling correct state transfer. First, it en-

ables runtime validation of the VM intermediate bytecode generated by the dynamic

language runtime, which aids the language implementor in detecting compiler errors

early rather than waiting until the code is actually run and the underlying VM gives

an “Invalid IR” message. Secondly, there are certain unusual circumstances where the

values on the operand stack cannot be transferred correctly to the unspecialized code,

and hence deoptimization is not feasible (this is discussed further in Section 3.4.3). The

code verifier will detect such circumstances and mark the code as un-optimizable.

3.4 Deoptimization for MCJS

This section concretely explains the algorithm for deoptimization that we have im-

plemented in MCJS, a JavaScript engine implemented on top of the Common Language

Runtime (CLR). MCJS performs type feedback based type inference to generate type

specialized code. The type inference algorithm implemented in MCJS is described in

Chapter 2. The explanation in this section uses a running example given in Figure 3.3: a

JavaScript function foo that takes an argument a which the example assumes is always

an integer value.

The function foo is initially interpreted by the MCJS runtime. When foo becomes

warm, it is compiled by the fast compiler into CIL4 bytecode. This fast compilation

also: (1) uses the code verifier to detect the types of values present on the operand stack

4Common Intermediate Language, a typed bytecode IR used by the CLR.

61

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

function foo(a)
{

var b = 10;
return a + b + global;

}

Figure 3.3: Running example in JavaScript.

for each potential deoptimization point, and determines for each point if deoptimization

is feasible;5 and (2) instruments the code to collect type profiling information. Finally,

if foo becomes hot then it is re-compiled by the optimizing compiler into (1) a type-

specialized CIL bytecode version based on the collected profile information; and (2)

an unspecialized subroutine-threaded version used by the deoptimizer to recover from

unexpected types.

The remaining subsections expand on the optimizing compiler pass: we explain first

the subroutine-threaded code generator and then the specialized code generator that

handles deoptimization.

3.4.1 Subroutine-Threaded Interpreter

When a hot function is compiled, the optimizing compiler first generates subroutine-

threaded code for that function before generating type-specialized code. The order is

important, because the specialized code needs to have pointers to the appropriate sub-

routines for each potential deoptimization point. Table 3.1 shows the subroutines that

are generated for the example function in Figure 3.3. The only possible place for deopti-

mization (assuming a is always an integer) is if the type of global changes during some

subsequent execution of foo. Thus, subroutine 5 is the subroutine that the runtime will

jump to if deoptimization occurs. Since the subroutine-threaded interpreter executes a

5This is discussed further in Section 3.4.3.

62

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

Index Subroutine Name Expression Operand Stack

0 WriteIndentifier b = 10 []

1 ReadIdentifier a [a]

2 ReadIdentifier b [a, b]

3 AddExpression a+b [a+b]

4 ReadIdentifier global [a+b, global]

5 AddExpression a+b+global [a+b+global]

6 Return return []

Table 3.1: Subroutines generated for a subroutine-threaded interpreter corresponding
to the example in Figure 3.3. Subroutine 5 is the unspecialized code where control
is transferred by the deoptimizer if global contains an unexpected type during the
specialized code evaluation.

sequence of subroutines for each operation in the function, it is important to maintain

an explicit stack that mimics the operand stack across the subroutines. MCJS imple-

ments this operand stack in the callFrame data structure described in Figure 3.6. The

operand stack generated by subroutine 4 needs to be reconstructed by the deoptimizer

before jumping into subroutine 5. The method to do so is explained below.

3.4.2 Specialized Code Generator

The generated type-specialized code contains deoptimization hooks at each potential

deoptimization point. These hooks are filled in with the addresses of the appropriate

subroutines generated as per the above description. In the example, the deoptimization

code in the guard around global is compiled with a pointer to subroutine 5. Figure 3.4

shows the CIL code that is generated for the expression a+b+global.

It remains to explain how a deoptimization point transfers control to the unspecialized

code subroutine while maintaining the current program state. We first explain how

control is transferred from the specialized code into the unspecialized code, and then we

explain how program state is transferred along with the control.

63

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

...
0055 ldloc a
0056 ldloc b
0057 call Int32 Binary.Add:Run (Int32, Int32)

... ; TYPE CHECK

... ; Load the global variable
0071 dup
0072 call int DValue:get_ValueType()
007b ldc.i4 9 ; 9 = observed type = Int32
0080 beq fast ; jump to fast path

... ; DEOPTIMIZATION CODE

... ; Update the profiler with observed type.

... ; Transfer the operand stack to the

... ; callFrame->stack data-structure.

... ; Explained in Table 2.
00d4 ldc.i4 5 ; 5 is the index of the

; subroutine to jump into.
00db throw GuardFailedException(Int32)

... ; FAST PATH
fast call Int32 DValue:AsInt32() ; Unboxing
00e5 call Int32 Binary.Add:Run(Int32, Int32)
... ; Set the return value in the callFrame
00f4 ret

... ; CATCH BLOCK

... ; Store the current values of the local

... ; variables into the callFrame->symbols array.

... ; BlackList this function.

... ; Load the callFrame object that contains

... ; the updated stack and symbols.

... ; Load the subroutine index obtained from

... ; the exception value.
0147 ldc.i4 subroutineIndex
014c call Void STInterp(Int32, CallFrame)

Figure 3.4: CIL code generated by the type-specializing code generator for the ex-
pression a + b + global.

64

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

void __foo(CallFrame *callFrame)
{

int a, b;

try {
b = 10;
a = callFrame->argument[0].ToInt();

int _temp0 = a + b;
DValue _temp1 = callFrame->getGlobal("global");

/* TYPE CHECK */
if (_temp1.type != Int) { // Int is the profiled type

/* DEOPTIMIZATION CODE */
/* Update the profiler with newly observed type */
UpdateProfiler(global, Int);
/* Capture the current values of _temp* */
callFrame->stack.Enqueue(_temp1); // Enqueue(DValue);
callFrame->stack.Enqueue(_temp0); // Enqueue(int);
/* 5 is the pointer to the subroutine */
throw new GuardFailureException(5);

}
else { // FAST PATH

callFrame->retVal = DValue(_temp0 + _temp1.AsInt32());
return;

}
}
catch (GuardFailureException e) {

/* Update the callFrame->symbols array with the
current values of local variables */

callFrame->symbols[symbolsIndex++] = DValue(a);
callFrame->symbols[symbolsIndex] = DValue(b);
BlackList(this); // BlackList this function code.
STInterp(e.subRoutineIndex, callFrame);

}
}

Figure 3.5: C-like psuedocode that describes the generated CIL for the JavaScript
code in Figure 3.3. The values pushed onto the stack are made explicit using temp
variables.

65

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

Control Transfer. The jump to the deoptimization code is implemented using the ex-

ception handling feature of the CLR. Each specialized method is wrapped in a try-catch

block. Before a GuardFailure exception is thrown at a deoptimization point, the run-

time updates the profiler with the new type that was observed, in order to improve the

profiler’s type information. The operand stack is then captured at the point the excep-

tion is thrown. The function locals, in contrast, are captured inside the catch block; this

is because the operand stack is specific to a particular deoptimization point while the

locals are common across all deoptimization points in the function. Capturing the values

of the local variables in a single place avoids code duplication and reduces code bloat.

Once inside the catch block and with all local variables captured, the runtime must

clean up and then transfer control to the appropriate subroutine. First, the runtime calls

the Blacklist function which deletes the specialized code that had to be deoptimized

and updates the function metadata with this information; this prevents the function

from entering a cycle of specialization followed by deoptimization over and over again.

Secondly, the runtime calls the appropriate subroutine whose pointer was passed inside

the GuardFailure exception, passing it the updated callFrame data structure as

explained below.

State Transfer. In MCJS, the callFrame data structure tracks the state of execution

for the current function. It also holds a link to the scoping structure used to resolve the

scope of the variables used in the function. Figure 3.6 shows the definition of call-

Frame. MCJS uses the callFrame object to transfer program state from the spe-

cialized code to the unspecialized subroutine-threaded code. The two relevant fields are

symbols, which holds the values of the function’s local variables at the deoptimization

point, and stack, which holds the operand stack at the deoptimization point.

The symbols field is computed inside the specialized function’s catch block, as

66

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

struct CallFrame {
// Arguments passed to the function
DValueArray arguments;
// Return value of the function
DValue retVal;

// Fields and functions to track the scope
// and other bookkeeping.
Scope currentScope;
Scope parentScope;

// Fields below are only used by the
// subroutine-threaded interpreter.
// symbols array is used to store the values of
// local variables at the deoptimization point.
DValueArray symbols;

// stack array is used to capture the state of
// operand stack at the deoptimization point.
DValueArray stack;

}

Figure 3.6: The callFrame data structure which tracks the state of execution for
the current function.

explained above. This is straightforward for the MCJS implementation because the

runtime maintains a list of local symbols; the catch block merely iterates over this list

and copies the values into the callFrame.symbols field.

The stack field must be computed separately for each deoptimization point. For

each point, the type and number of values that need to be pushed onto the stack are

different. The code generator used to generate the specialized CIL code uses the bytecode

verifier to track this information. The verifier is reponsible for inferring and checking

type information, which means that it already needs to know the required information.

We simply piggyback on the verifier to determine what code to emit for enqueueing

the operand stack values at each deoptimization point. The verifier maintains a data

67

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

structure called the TypeStack which holds the types of values inside the operand stack

at each program point. At each deoptimization point, we record the current TypeStack

and emit code to enqueue the operand stack values onto callFrame.stack. Each

value is wrapped inside a DValue before being enqueued. Because in CIL value types are

not subtypes of the Object type, the runtime cannot use a generic Enqueue(Object)

method to enqueue the values which is why we need the verifier’s TypeStack information.

Table 3.2 shows how the state transfer code is generated for the example in Figure 3.3.

Maintaining a TypeStack during code generation helps to determine which variation of

Enqueue has to be called to enqueue the value in the top of the operand stack to

callFrame.stack. In the example, while enqueuing global from the operand stack,

the top of the TypeStack is referred for the appropriate type. Since the type of global

is DValue, the CIL code to call Enqueue(DValue) is emitted by the code generator.

Similarly, a call to Enqueue(Int32) is emitted to capture the value of a + b from

the operand stack.

3.4.3 Limitations

Our deoptimization technique assumes that all values present on the operand stack

at a deoptimization point are subtypes of DValue. If so, then all of the values are easily

convertable to value types used in the JavaScript runtime. However, there are rare cases

where this assumption is not true. Some optimizations, such as polymorphic inline caches,

store the map or class of an object in the operand stack of the CLR. If a deoptimization

is triggered at this point, state transfer is not possible because map cannot be converted

to a DValue and stored in callFrame.stack.

Fortunately, it is easy to detect this ahead of time during code generation. During the

fast compilation phase which translates warm functions to CIL bytecode and instruments

68

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

Instruction Operand Stack TypeStack

;before state transfer

...

global

a + b
...

...

DValue
Int32

...

LdLoc callFrame

...

callFrame

global

a + b
...

...

DValue
Int32

...

LdFld stack

...

stack

global

a + b
...

...

DValue
Int32

...

Call stack.Enqueue(DValue)

...

a + b
...

...

Int32
...

LdLoc callFrame

...

callFrame

a + b
...

...

Int32
...

LdFld stack

...

stack

a + b
...

...

Int32
...

Call stack.Enqueue(Int32)

...

...

...

...

Table 3.2: The different steps taken when popping values from the operand stack.

69

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

the code with type profiling hooks, the types of the values in the operand stack are

tracked by the code verifier as previously described. For every deoptimization point,

the type stack is checked to see whether it contains values that cannot be converted to

DValue. If so, then the function is marked as non-optimizable. The profile hooks are

removed and the function is compiled directly to CIL without any type feedback-based

type specialization. Our evaluation shows that this circumstance rarely happens.

3.5 Evaluation

We evaluate our deoptimization technique on MCJS using the standard JavaScript

benchmark suites Sunspider [22] and V8 [23] 6. Because the Sunspider benchmarks run

for a short duration of time (average of 180ms), each benchmark was wrapped in a

20× loop. We also evaluate our technique on real-world long-running web applications

from the JS1k [25] website. Due to the unstable nature of IronJS, we selected only the

benchmarks that IronJS was able to execute without any problem. The JS1k benchmarks

are described in the Table 3.3.

Experimental Setup. We perform our experiments on a machine with two 6-core 1.9

GHz Intel Xeon processors with 32GB of RAM, running the Ubuntu 12.04.3 Linux OS

and Mono v3.2.3. We used the latest version of IronJS, v0.2.1.0 from its Github reposi-

tory [10].

Calculating Speedups. To calculate execution times, each of the benchmarks is run

eleven times and the average execution time of the last ten executions is recorded.

6MCJS and IronJS do not implement typed arrays. Therefore, we not evaluate our implementation
on Octane benchmarks.

70

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

Benchmark Type

breakout.js Game

chopper.js Game, Animation

colorfulPointer.js Utility, Animation

conways.js Animation, Algorithm

flyingWindows.js Animation, Utility

loadingSpinner.js Utility

sierpinskiGasket.js Algorithm

analogClock.js Utility

halloweenAnim.js Animation

growingGrass.js Animation

kaboom.js Game

mandelbrot.js Animation, Algorithm

plasma.js Animation

primesAnim,js Algorithm

springPond.js Algorithm, Animation

tetris.js Game

waveGraph.js Algorithm, Utility

Table 3.3: Table describing JS1k web applications used as benchmarks.

Configurations. Speedup numbers were collected for the following five configurations.

• MCJS without type feedback-based type specialization (the base configuration

against which results for other configurations are normalized).

• MCJS with type specialization using the standard fast path + slow path recovery

mechanism (MCJS FS).

• MCJS with type specialization using the deoptimization recovery mechanism, i.e.,

our technique (MCJS D).

• MCJS with optimal type specialization (MCJS OPT) as described below.

• IronJS in its default configuration.

The optimal type specialization configuration means that code is type-specialized

but there is no deoptimization or any other recovery mechanism; this is unsound, but

provides a maximal speedup due to type specialization against which we can compare

71

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

our technique and the cost of deoptimization. IronJS is implemented on top of DLR [49]

which mimics the fast path + slow path approach to optimizing type specializable code,

hence we use it to show that MCJS is not a strawman JavaScript implementation.

3.5.1 Speedups

Figure 3.7 shows the speedups achieved by the type specializing configurations with

respect to the MCJS base configuration for the Sunspider benchmark suite. The ap-

proaches without a local slow path (i.e., MCJS D and MCJS OPT) perform significantly

better than the fast path + slow path approaches implemented in MCJS and IronJS.

The MCJS OPT configuration does not emit any deoptimization code and the runtime

exits when any deoptimization should occur, which is why the 3d-cube.js benchmark sees

a speedup of 0× for the MCJS OPT configuration.

0	

1	

2	

3	

4	

5	

3d
-‐cu
be
.js	

3d
-‐m
orp
h.j
s	

ac
ce
ss-‐
bin
ary
-‐tr
ee
s.js
	

ac
ce
ss-‐
fan
nk
uc
h.j
s	

ac
ce
ss-‐
nb
od
y.j
s	

ac
ce
ss-‐
ns
iev
e.j
s	

bit
op
s-‐3
bit
-‐bi
ts-‐
in-‐
by
te.
js	

bit
op
s-‐b
its
-‐in
-‐by
te.
js	

bit
op
s-‐b
itw
ise
-‐an
d.j
s	

bit
op
s-‐n
sie
ve
-‐bi
ts.
js	

co
ntr
olfl
ow
-‐re
cu
rsi
ve
.js	

cry
pto
-‐ae
s.js
	

cry
pto
-‐m
d5
.js	

cry
pto
-‐sh
a1
.js	

da
te-‐
for
ma
t-‐x
pa
rb.
js	

ma
th-‐
co
rdi
c.j
s	

ma
th-‐
pa
rB
al-‐
su
ms
.js	

Ge
om
ea
n	

Sp
ee
du

p	
Hi
gh
er
	 is
	 b
e.

er
	

Sunspider	 Benchmarks	

IronJS	

MCJS_FS	

MCJS_D	

MCJS_OPT	

Figure 3.7: This figure shows the speedup numbers for various configurations of MCJS
and IronJS for the Sunspider benchmark suite. FS = fast path + slow path, D =
deoptimization, OPT = optimal.

On an average (geomean) MCJS D, MCJS FS, and IronJS are 1.5×, 1.31×, and 0.77×

faster than the base configuration, respectively. On comparing the execution times of

72

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

MCJS D against MCJS FS and IronJS, we see an average speedup (geomean) of 1.14×

and 1.97× respectively. An important observation is that for a few of the benchmarks

like access-fannkuch.js, access-nbody.js, access-nsieve.js, bitops-bitwise-and.js, etc, the

runtime does not benefit from type feedback-based type specialization. This is because

these benchmarks are relatively small and execute for a very short period of time (average

of 237.2ms). For these benchmarks profiling overhead is not amortized over time.

Figure 3.8 shows the speedups achieved by the type specializing configurations with

respect to the MCJS base configuration for the V8 benchmark suite. We selected the

benchmarks for which IronJS executed without crashing. Following a similar trend as

the Sunspider benchmarks, MCJS D, MCJS FS, and IronJS are 2.13×, 1.74×, and 1.21×

faster than the MCJS base configuration. On comparing the execution times of MCJS D

against MCJS FS and IronJS, we see an average (geomean) speedup of 1.22× and 1.75×

respectively. Excluding regexp.js (for which MCJS spends most of the time executing the

inefficient regexp library code) and splay.js (which is a benchmark designed for stressing

the garbage collection of the engine rather than the runtime performance), MCJS D

consistently performs better than all other configurations.

The JS1k benchmarks represent a diverse set of applications including games, utilities,

algorithms, and animations. We manually modified the JavaScript code to eliminate or

substitute code that interacted with the browser DOM. We substituted setTimeOut and

setInterval functions with JavaScript functions that execute the passed-in function

in a loop for a considerable number of times. For the benchmarks that require user

interactions like mouse clicks, the user events were simulated using a fixed set of event

objects embedded in the code. These applications run for a relatively long duration with

the average execution time for the base configuration being 10.66 seconds.

Figure 3.9 shows the speedups achieved by the type specializing configurations with

respect to the MCJS base configuration for the JS1k web application benchmark suite.

73

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

deltablue.js	 navier-‐stokes.js	 raytrace.js	 regexp.js	 richards.js	 splay.js	 Geomean	

Sp
ee
du

p	
Hi
gh
er
	 is
	 b
e.

er
	

V8	 Benchmarks	

IronJS	

MCJS_FS	

MCJS_D	

MCJS_OPT	

Figure 3.8: This figure shows the speedup numbers for various configurations of MCJS
and IronJS for the V8 benchmark suite. FS = fast path + slow path, D = deopti-
mization, OPT = optimal.

As expected, MCJS D, MCJS FS and IronJS are 1.76×, 1.5×, and 0.94× times faster

than the MCJS base configuration. Similar to the other benchmark suites, on comparing

the execution times of MCJS D with MCJS FS and IronJS, we see an average speedup

of 1.18× and 1.87× respectively.

Speedup vs. V8: MCJS achieves on an average about 75% of the V8 engine perfor-

mance on the Sunspider benchmarks. The speedup is significantly lower for few of the

benchmarks in V8 benchmark suite. This is mainly because the regexp and string library

implementations of MCJS (which are based on CLR’s implementations) are very slow.

Those affects dominate performance for those benchmarks, rather than anything due to

recovery. However, this is not a fair comparison because V8 implements both the recov-

ery mechanisms as part of its compilers along with many other optimizations, making it

very difficult to tease out and isolate the effect of each of the recovery mechanisms.

74

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

0	

1	

2	

3	

4	

5	

6	

bre
ak
ou
t.js
	

ch
op
pe
r.js
	

co
lor
ful
Po
int
er.
js	

co
nw
ay
s.js
	

fly
ing
Wi
nd
ow
s.js
	

loa
din
gS
pin
ne
r.js
	

sie
rpi
ns
kiG
ask
et.
js	

an
alo
gC
loc
k.j
s	

ha
low

ee
nA
nim

.js	

gro
wi
ng
Gr
ass
.js	

ka
bo
om
.js	

ma
nd
elb
rot
.js	

pla
sm
a.j
s	

pri
me
sA
nim

.js	

sp
rin
gP
on
d.j
s	

tet
ris
.js	

wa
ve
Gr
ap
h.j
s	

Ge
om
ea
n	

Sp
ee
du

p	
Hi
gh
er
	 is
	 b
e.

er
	

	

Web	 Applica4on	 Benchmarks	 (JS1k)	

IronJS	

MCJS_FS	

MCJS_D	

MCJS_OPT	

Figure 3.9: This figure shows the speedup numbers for various configurations of MCJS
and IronJS for the web application benchmark suite. FS = fast path + slow path, D
= deoptimization, OPT = optimal.

3.5.2 Effect of Deoptimization

Deoptimization is a rare occurrence and it is observed only during the execution of

the 3d-cube.js, colorfulPointer.js, and conways.js benchmarks. The speedup numbers

for these benchmarks indicate that the overhead of the actual deoptimization process is

negligible.

There are two ways of measuring the effect of the deoptimization code. First, we com-

pare the speedup achieved by the MCJS D and MCJS OPT configurations. Figures 3.7,

3.8, and 3.9 indicate that the runtime overhead of the deoptimization code is negligible.

Secondly, we compare the size of the extra code that is generated to achieve deopti-

mization for each of the benchmarks. Figure 3.10 shows the comparison on code size of

MCJS D and MCJS FS with respect to MCJS OPT. Though the amount of code that is

generated in MCJS D is approx. 30% higher compared to the MCJS OPT configuration,

the impact on performance is negligible. This is because most of the extra code that is

generated is to enable deoptimization. This deoptimization code is rarely ever executed

75

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

0	

5	

10	

15	

20	

25	

30	

35	

Sunspider	 V8	 Web	 Applica8ons	

Pe
rc
en

ta
ge
	 in
cr
ea
se
	 in
	 si
ze
	 o
f	 C

IL
	 c
od

e	
ge
ne

ra
te
d	
vs
	 M

CJ
S_
O
PT

	

Benchmark	 Suites	

MCJS_FS	

MCJS_D	

Figure 3.10: This figure shows the percentage increase in CIL code generated for
MCJS FS and MCJS D in comparison to MCJS OPT. FS = Fast + Slow Path, D =
Fast Path with Deoptimization, and OPT = Fast Path with No Deoptimization.

76

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Sunspider	 V8	 Web	 Applica<ons	

Pe
rc
en

ta
ge
	 in
cr
ea
se
	 in
	 b
ox
in
g	
an

d	
un

bo
xi
ng
	 in
	

M
CJ
S_
FS
	 v
s	 M

CJ
S_
D	

Benchmark	 Suites	

Boxing	

Unboxing	

Figure 3.11: This figure shows the percentage increase in boxing and unboxing in
MCJS FS in comparison to MCJS D. FS = fast path + slow path and D = deopti-
mization.

for most of the benchmarks.

Another important metric used while comparing two implementations is the memory

consumption. The amount of data captured in the stackFrame data-structure is very

minimal; the operand stack and values associated with local variables are usually a few

bytes in size. Therefore, the stackFrame data-structure has little to no impact on memory

when we consider a managed runtime system.

3.5.3 Boxing/Unboxing

The amount of boxing and unboxing of DValues performed during the execution of

the benchmarks is a major cause of overhead for the MCJS FS configuration. Figure 3.11

77

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

shows the percentage increase in boxing and unboxing performed in MCJS FS configu-

ration when compared to the MCJS D configuration for each of the benchmark suites.

As expected, MCJS FS performs more boxing and unboxing of values when compared to

MCJS D across all benchmark suites.

An important observation is that the percentage of boxing for web applications is sig-

nificantly higher compared to other benchmarks. This is because the number of variables

that are typed in the MCJS D configuration is significantly higher compared to the num-

ber of local variables which are typed in the MCJS FS configuration. This means that

for the MCJS FS configuration almost all the values need to be boxed before assigning

them to the variable.

3.5.4 Non-optimizable Code

In some benchmarks, the deoptimization approach is not possible because some val-

ues present in the operand stack cannot be converted to DValues, as explained in Sec-

tion 3.4.3. Among all benchmarks from the various benchmark suites that were executed,

the runtime was not able to generate deoptimization code for only 35 out of 448 functions

that were classified as hot. This shows that the deoptimization approach is viable for

type specialization on top of VMs.

3.6 Related Work

Both the fast path + slow path and the deoptimization approaches for type specializa-

tion have been used in various dynamic language runtimes implemented natively (rather

than on top of a VM). The baseline compilers of popular JavaScript engines V8 [29, 30]

and SpiderMonkey [14] use the fast path + slow path approach for initial compilation

of JavaScript functions to native code. Once a function becomes hot, the optimizing

78

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

compilers for both of these engines generate type-specialized code with deoptimization

hooks. If the types used for specialization change during execution, the runtime performs

deoptimization by initiating long jumps to deoptimization routines in the compiled ma-

chine code. Language runtimes written on top of typed, stack-based runtimes cannot

implement such a deoptimization technique because of the typed nature of the IR and

the runtime type safety guarantees enforced by the VM.

TraceMonkey [50], PyPy [34], and LuaJIT [51] are popular tracing JIT compilers.

Deoptimization is a common approach to use in runtimes with trace-based compilers.

These traces span across function boundaries and are compiled to native code with de-

optimization hooks. Implementing such a trace-based compiler on top of a VM is very

complicated, especially from the perspective of deoptimization.

Brunthaler et al [52, 53] describe a purely interpretative optimization technique called

Quickening implemented in CPython runtime. Quickening involves rewriting generic in-

structions to optimized alternatives based on the runtime information. This is analogous

to the fast-path + slow-path approach of optimization. Quickening with deoptimization

can be an alternative to the existing approach of optimization.

Hackett et al [8] describe an approach of combining type inference with type feedback

to generate type specialized code. This approach uses recompilation approach instead of

classic deoptimization technique to bail out whenever the type related assumptions do

not hold anymore in the compiled code. Their approach tracks the type of values held by

a variable or object field, and recompile all the type specialized code to generic version

when the new types are observed.

Dynamic Language Runtime (DLR) [49] based language implementations like IronJS [10],

IronRuby, and IronPython compile the program written in the dynamic language into

DLR’s ExpressionTrees. DLR performs the optimizations and native code generation

required for the runtime. DLR employs polymorphic inline caches to specialize any

79

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

operation observed during execution, which is analogous to the fast path + slow path

approach of type specialization. As observed in Section 3.5, such an optimization does

not always result in good performance when compared to the deoptimization approach.

Ishizaki et al [54] implement a dynamically-typed language runtime by modifying a

statically-typed language compiler. Their approach to type specialization modifies the

compiler to generate fast path + slow path code for arithmetic, logical, and comparison

operators. Similarly to the MCJS original fast path + slow path approach, their approach

also has to deal with incessant boxing and unboxing of values.

Duboscq et al [55] describe a way of inserting and coalescing deoptimization points

in the IR of the Graal VM. This technique is orthogonal to and complementary to our

own. In our approach, the deoptimization points are determined while generating the

subroutine threaded code for the interpreter. Our implementation can benefit from the

techniques like coalescing and movement of deoptimziation points described in their pa-

per.

On-stack replacement (OSR) is a deoptimization / reoptimization strategy that has

been explored and implemented in language runtimes to enable speculative optimiza-

tions [43, 44, 45, 46] and to enable debugging of optimized code [56]. Hölzle et al [56]

implement deoptimization for the SELF programing language for debugging optimized

code. The main focus of this work is to maintain the mapping from optimized compiled

code to source code. As the authors have complete control over the underlying VM, such

deoptimization is relatively easy to implement when compared to our implementation

which does not modify the underlying VM. Fink et al [43] describe an on-stack replace-

ment strategy for deoptimization implemented in JikesRVM. As described in the paper,

capturing the state of the execution is straightforward given the access to the JVM scope

descriptor object of the executing code. Our implementation is not straightforward due

to the fact that part of the state that needs to be transferred resides in the underlying

80

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

operand stack which is not easily accessible by any code currently executing in the VM.

Soman et al [44] present a new general-purpose OSR technique on JikesRVM which is

decoupled from the optimization performed by the runtime. Similar to this approach our

deoptimization technique is also general-purpose. Applying the current deoptimization

technique to other optimizations would involve minor modifications to the subroutine

threaded interpreter to indicate the expected points of deoptimization specific to that

optimization.

3.7 Conclusion

Deoptimization is a recovery mechanism which allows the runtime to bail out of

type specialized code when type assumptions are violated, capture the state of current

execution and continue execution form an equivalent point in a unspecialized code. This

chapter proposes a novel deoptimization based type-specialized code generation for a

dynamic language runtime implemented on top of a typed, stack-based virtual machine.

Our approach does not require any modification to the underlying virtual machine. Our

implementation uses the exception handling feature offered by the underlying VM to

perform deoptimization. Just using exception handling feature to jump into unspecialized

code is not enough because throwing an exception clears the operand stack of the VM.

The operand stack is an important part of state that needs to be transferred during

deoptimization. We leverage the shadow type stack maintained by the bytecode verifier,

which verifies the validity of the code generated during its generation, to safely transfer

the values in the operand stack to the unspecialized code.

We implement our proposed technique in MCJS, a research JavaScript engine running

on top of the Mono runtime. We evaluate our implementation against the fast path + slow

path approach implemented in MCJS and IronJS. Our results show that deoptimization

81

Deoptimization on Top of Typed, Stack-based Virtual Machines Chapter 3

approach is on an average (geomean) 1.16× and 1.88× faster than fast path + slow

path approach implemented in MCJS and IronJS respectively on Sunspider, V8 and web

application benchmark suites.

Our implementation is generic and can be extended to enable other optimizations

like function inlining. A few minor modifications to the existing approach are required to

implement it in a sound manner. Currently, the location of deoptimization is determined

by the placement of type checking guards. This needs to be extended to incorporate

possible places where function inlining is possible in the code.

82

Chapter 4

Server-Side Type Profiling

Modern JavaScript engines optimize hot functions using a JIT compiler along with type

information gathered by an online profiler. However, the profiler’s information can be

unsound and when unexpected types are encountered the engine must recover using an

expensive mechanism called deoptimization. In this chapter we describe a method to

significantly reduce the number of deoptimizations observed by client-side JavaScript

engines by using ahead-of-time profiling on the server-side. Unlike previous work on

ahead-of-time profiling for statically-typed languages such as Java [57, 58] our technique

must operate on a dynamically-typed language, which significantly changes the required

insights and methods to make the technique effective. We implement our proposed tech-

nique using the SpiderMonkey JavaScript engine, and we evaluate our implementation

using three different kinds of benchmarks: the industry-standard Octane benchmark

suite, a set of JavaScript physics engines, and a set of real-world websites from the Mem-

bench50 benchmark suite. We show that using ahead-of-time profiling provides significant

performance benefits over the baseline vanilla SpiderMonkey engine.

83

Server-Side Type Profiling Chapter 4

4.1 Introduction

Modern JavaScript engines have multi-tier execution architectures with sophisticated

optimizing JIT compilers. Like optimizing JIT compilers for statically-typed languages

(e.g., the JVM [59] and CLR [60]), JavaScript JIT compilers optimize based on profile

information collected during execution. But unlike those other JITs, the collected profile

information for JavaScript is of a different nature involving heuristic type information

that is not guaranteed to be correct. When a function is optimized using profile-based

type assumptions, there is a chance that those assumptions will not hold in the future.

The JavaScript JIT compiler will optimize a hot function based on the types observed

during the previous executions of the function. In the future, if new, unexpected types are

encountered during execution of the optimized code, the JavaScript engine must employ

a recovery mechanism called deoptimization to guarantee correctness. This recovery

mechanism is a heavy-weight, expensive process that can severely impede the engine’s

performance.

In this chapter we propose a technique that uses ahead-of-time type profiling on

the webserver side in order to determine type and hotness information for a JavaScript

program; that information is sent to the web browser client as commented annotations

in the JavaScript code, and the client uses that information to reduce the number of

deoptimizations during execution. Client JavaScript engines that are aware of the ahead-

of-time profiling information can take advantage of it, while client engines that are not

aware of it can safely ignore it. The intent of this technique is not to reduce profiling or

compilation overhead (which turn out to be mostly insignificant), but rather to reduce the

number of deoptimizations during program execution and also to enable more aggressive

and earlier optimization of functions without having to fear increased deoptimizations.

A näıve approach to ahead-of-time type profiling for JavaScript would simply observe

84

Server-Side Type Profiling Chapter 4

the execution of the program on some set of inputs and (1) mark all functions that

become hot sometime during the execution, so that they can be optimized immediately

instead of waiting; and (2) remember all types seen during the execution of those hot

functions, so that the optimized versions will not have to be deoptimized due to type

changes. However, it turns out that this näıve approach would significantly degrade

performance on the client and would also create program annotations potentially orders

of magnitude larger than necessary. We explain the reasons behind this observation and

our key insights that allow ahead-of-time profiling to be both practical and effective.

Previous work for statically-typed language JIT compilers has proposed using ahead-

of-time profiling, as discussed in Section 4.2. However, JavaScript provides a new setting

that requires new techniques and insights. We show that for JavaScript: deoptimiza-

tion is an important performance concern; ahead-of-time profiling can provide significant

performance benefits by avoiding deoptimization; and the annotation comments in the

JavaScript code sent from the server increase code size by only a small fraction. The

specific contributions of this work are:

• We describe a method for ahead-of-time profiling of JavaScript programs to collect

type and hotness information. We identify the key kinds of information and places

to collect that information that provides the most benefit for optimization without

requiring excessive annotations on the program code being sent over the network.

• We describe a method for JavaScript engines to take advantage of the ahead-of-time

profiling information to reduce deoptimizations and to more aggressively optimize

functions without incurring increased deoptimizations.

• We evaluate our ideas using Mozilla’s JavaScript engine SpiderMonkey. Our exper-

iments show that our technique is beneficial for both load-time and long-running

JavaScript applications, as represented by the Membench50 load-time benchmark

85

Server-Side Type Profiling Chapter 4

suite, the industry-standard Octane performance benchmark suite, and a set of

open-source JavaScript physics engines. We measure the performance using three

different criteria: execution time for Octane benchmarks, frames per second (FPS)

for the JavaScript physics engines, and reductions in number of deoptimizations

for the Membench50 benchmarks. Our evaluation shows a maximum speedup of

29% and an average speedup of 13.1% for Octane benchmarks, a maximum im-

provement of 7.5% and an average improvement of 6.75% in the FPS values for

JavaScript physics engines, and an average 33.04% reduction in deoptimizations

for the Membench50 benchmarks.

The rest of the chapter is organized as follows. Section 4.2 describes related work on

optimizing JIT compilers. Section 4.3 provides background information on the JavaScript

language and on modern JavaScript engine architectures. Section 4.4 describes the con-

cepts behind our technique. Section 4.5 describes our evaluation methodology and results,

and Section 4.6 concludes.

4.2 Related Work

Our work builds on decades of research into optimizing JIT compilers, such as Self [45,

56], Java HotSpot VM [46], Jalepeno [61], PyPy [34], Google’s V8 engine [29], Mozilla’s

SpiderMonkey [14], and WebKit’s JavaScriptCore [62]. We review the most relevant of

that related work below.

4.2.1 Ahead-of-Time Profiling

Ahead-of-time profiling for the purpose of optimizing a JIT compiler is not a new

idea, but previous efforts have focused on statically-typed languages such as Java and

86

Server-Side Type Profiling Chapter 4

C#. JavaScript, a dynamically-typed language, provides a new setting that dramati-

cally changes the required insights and techniques. In particular, the most important

optimization performed by a JavaScript JIT compiler is type specialization based on un-

sound heuristics such as online type profiling. Because type specialization is unsound, the

engine must be able to deoptimize the specialized code when it encounters unanticipated

types. Deoptimization is an important cause of performance loss and is the main target

of our technique, unlike any of the previous ahead-of-time profiling techniques described

below. We do in addition follow previous work in using ahead-of-time profiling to detect

hot functions that can then be compiled early. However, our new setting also influences

this existing technique in new ways because merely detecting hotness is insufficient—

we must also ensure that the hot function is type stable for early compilation to have

any benefit, otherwise deoptimization is likely to happen. We now describe the previous

work on ahead-of-time profiling for JIT compilation, which all target statically-typed

languages.

Krintz and Calder [58, 63] describe an approach to identify hot functions and hot

callsites in Java programs using analysis information collected offline. This information

is used by the JIT compiler to guide its optimization heuristic. Our approach is similar

to their approach of using offline data to guide online optimizations. Unlike their ap-

proach, our offline profiler collects type information and deoptimization information in

addition to hot functions and hot callsite information. The type information is important

for a dynamically-typed language such as JavaScript because most of the optimizations

that are performed in the optimizing compiler depend on stable type information. De-

optimization information helps to figure out possible places where deoptimizations occur

in the hot functions and the reasons why deoptimization has happened. This informa-

tion helps the optimizing compiler to make better decisions while compiling those hot

functions.

87

Server-Side Type Profiling Chapter 4

Arnold et al. [57] describe an Java virtual machine architecture that uses a cross-run

profile repository to improve performance. The main idea described in that paper is to

capture the profile data at the end of the execution of the program instead of discard-

ing it after every run. This collective profile information is used to guide the selective

optimization of functions based on metrics like future use. A key idea of that work is

to address the compilation time vs. future execution time trade-off inherent in single-

threaded engines that interleave execution and JIT compilation. Modern JavaScript

engines employ concurrent JIT compilation, and so compilation time is generally not as

important an issue. Also, we take advantage of the client/server infrastructure inherent

in the world-wide web to do the ahead-of-time profiling on the server side and send the

resulting information to the client for it to take advantage of, rather than doing profiling

in the client itself.

4.2.2 Type Annotations for JavaScript

Developers and researchers have created several typed variants of JavaScript. These

variants are either restricted subsets of the full JavaScript language or do not allow the

types to be used by the JIT compiler for optimization.

The JavaScript dialect asm.js [64] is a strict subset of JavaScript that is intended to

be generated by compilation to JavaScript from some statically-typed language such as

C. It indicates the types of variables and operations based on subtle syntactic hints and

a "use asm" prologue directive. Though this enables the JavaScript engine to perform

ahead-of-time compilation and faster execution, the asm.js syntax is very restrictive

and is not suitable for writing modern webpages. It is designed to be an intermediate

representation for porting applications written in statically-typed languages into the web

browser. In contrast, our approach deals with already existing JavaScript programs and

88

Server-Side Type Profiling Chapter 4

handles the entire JavaScript language.

Flow [65] is a static type checker for JavaScript that allows type annotations in

the syntax. These annotations are used by the compiler to type-check the code for

correctness. An optimizing JIT compiler cannot make use of these annotations because

the annotations are erased during the translation of Flow code to JavaScript. This is also

true of Google’s Closure compiler [66], which allows type annotations in the JavaScript

code, and of TypeScript [67], a typed superset of JavaScript.

4.2.3 JavaScript Engine Optimizations

Guckert et al. [68] show that persistent caching of compiled JavaScript code across

visits to the same webpage helps reduce compilation time by up to 94% in some cases.

However, because the optimizing compiler usually runs in a separate parallel thread

compilation time is not much of a concern in modern JavaScript engines. In addition,

this technique does not translate well to a setting where the server is responsible for

collecting information and sending it over the network to clients, due to the large size of

the compiled code and its specificity to a particular architecture.

Oh and Moon [69] describe another client-side optimization technique targeting load-

time JavaScript code (i.e., JavaScript code executed when a webpage is loaded by the

browser). This technique caches snapshots of the heap objects that are generated during

the load time; the snapshots are serialized during caching and then deserialized when the

page is reloaded. This approach uses significant amounts of storage space and does not

translate well to server-side profiling.

89

Server-Side Type Profiling Chapter 4

4.3 Background

In this section we describe background on the JavaScript language and modern

JavaScript engines required in order to understand the key concepts discussed in this

chapter.

4.3.1 The JavaScript Language

JavaScript is an imperative, dynamically-typed scripting language with objects, prototype-

based inheritance, higher-order functions, and exceptions. Objects are the fundamental

data structure in the language. Object properties (the JavaScript name for object fields)

are arbitrary strings and can be dynamically inserted into and deleted from objects during

execution. Because property names are just strings, a JavaScript program can compute a

string value during execution and use it as a property name in order to access an object’s

existing property or to insert a new property. A form of runtime reflection can be used

for object introspection in order to iterate over the properties currently held in an object.

Even functions and arrays are just different kinds of objects, and can be treated in the

same way as other objects, e.g., inserting and deleting arbitrary properties. JavaScript is

designed to be resilient even in the face of nonsensical actions such as accessing a prop-

erty of a non-object (i.e., a primitive value) or adding two functions together; such cases

are handled using implicit type conversions and default behaviors in order to continue

execution as much as possible without raising an exception.

4.3.2 JavaScript Engine Architecture

Modern JavaScript engines rely heavily on profiling and JIT compilation for perfor-

mance. The JIT compiler relies on type information gathered by the profiler in order to

enable effective optimizations in the face of JavaScript’s inherent dynamism. Type in-

90

Server-Side Type Profiling Chapter 4

formation includes not just the primitive kinds of values (number, boolean, string,

object, undefined, and null), but in addition information about object shape, i.e.,

a list of object properties and their offsets in the object. Because properties can be arbi-

trarily added to and deleted from an object, object shapes can change frequently during

execution.

91

Server-Side Type Profiling Chapter 4

Parse

Parse function to

generate bytecode

Interpret

Interpret bytecode

Baseline Compiler

Compile bytecode to chained

inline cache stubs (ICs)

Baseline Execution

Monitor types and update

ICs with observed shapes

Optimizing Compiler

Use types and shapes from

the baseline profiler to

generate optimized code

Optimized Execution

Tier 2

Tier 3

Tier 1

Warm functions & loops

Hot functions & loops

Deoptimization

Figure 4.1: Flow graph showing different phases of execution in a generic JavaScript
engine. The interpretation phase, represented by dashed lines, is an optional phase in
JavaScript engines like Google’s V8.

Figure 4.1 shows a typical multi-tier architecture for a generic JavaScript engine,

based on the designs of existing production JavaScript engines such as Google’s V8 [30],

Mozilla’s Spidermonkey [14], and WebKit’s JavaScriptCore [62]. These tiers operate at

the granularity of individual functions.

92

Server-Side Type Profiling Chapter 4

Tier 1. The first tier of execution is a fast interpreter for parser-generated bytecode.

The interpreter is used to ensure quick response times during execution of the JavaScript

program. For example, SpiderMonkey’s bytecode interpreter and JavaScriptCore’s LLInt

execute functions for the first 10 and 6 times they are called, respectively. Once the given

threshold is reached, the function is considered warm. Not all engines use this first tier;

for example, the V8 engine skips the interpreter and goes straight to tier 2.

Tier 2. The second tier of execution is a baseline compiler that compiles the bytecode to

assembly code as quickly as possible, with minimal optimization. The baseline compiler

also inserts instrumentation into the compiled code to collect profiling information. The

profile information that is collected by the baseline compiler includes the types of variables

and of object properties and the shapes of objects whose properties are accessed/modified

during function execution. The baseline code is executed many times before a function

is considered hot, e.g., SpiderMonkey typically executes the baseline compiled code one

thousand times before moving to the next tier [70]. This large threshold is intended to

help ensure that the type information gathered by the profiler is stable and hopefully will

not change in the future (if it does change then deoptimization will be triggered, discussed

in Section 4.3.3). This threshold may vary based on other factors such as whether a

function contains back-edges which are frequently visited or whether a function has been

deoptimized earlier.

Tier 3. The third tier of execution is an optimizing compiler that compiles hot func-

tions based on profile information collected in the previous runs of the function, i.e.,

the baseline compiled code. The profile information may be invalidated by future calls

to the function being optimized (e.g., the types may change), therefore the optimized

code also contains guards that check the assumptions under which the code was com-

93

Server-Side Type Profiling Chapter 4

piled. If those guards are violated then deoptimization will happen, moving execution

from the optimized code back to the baseline compiled code from tier 2. The optimizing

compiler performs various optimizations such as loop invariant code motion, common

subexpression elimination, guard hoisting, function inlining, and polymorphic cache in-

lining to speed up the execution of the function. The optimizing compiler is relatively

slow compared to the interpreter and baseline compiler, therefore modern JavaScript en-

gines adopt a concurrent compilation strategy. Using this strategy, the time taken for

compilation is not a big concern for performance because it is not in the critical path for

program execution.

4.3.3 Type Specialization and Deoptimization

Many of the most effective optimizations performed by the optimizing compiler are

based on type specialization. For example, consider the expression “a + b”. In the

general case (without type specialization), variables a and b will refer to boxed values

residing in the heap that are tagged to specify the types of those values; these are called

dynamic values. To perform the + operation, the code must unbox a and b, determine

their respective types based on their tags (requiring a series of branch instructions),

perform any type conversions necessary, perform the operation, then box the resulting

value along with its type tag. This process must be used for all operations on dynamic

values, significantly slowing the execution time.

If, however, the compiler has reason to believe that a and b are (almost) always of

certain types based on the profile information collected by the baseline compiled code,

then it can specialize the optimized function to those types. It does not need to use

dynamic values for a and b, it can use unboxed values instead; it does not need to check

type tags to determine what operation to perform for +, it can directly use the operation

94

Server-Side Type Profiling Chapter 4

pre-determined by the known types of a and b, and it can optimize the emitted code based

on this knowledge. This is an example of type specialization, and it is one of the most

effective means available for improving execution time of dynamically-typed languages.

Another example of type specialization takes advantage of object shape information to

efficiently access object properties, e.g., using polymorphic inline caches [71].

The essential problem is that the profile information on types and object shapes is

necessarily unsound—observed types during profiling do not guarantee what the types

will be in future executions. Deoptimization is the recovery mechanism the engine uses

when current types do not match the assumptions used when optimizing the function

in tier 3. The engine does not discard the baseline compiled code from tier 2 when

it generates the optimized code in tier 3. Instead, for each guard point where type

information is checked and may be invalidated, the engine maintains a mapping from

the optimized code to the equivalent point in the baseline compiled code. When a guard

fails, execution stops at that guard in the optimized code and resumes at the equivalent

point in the baseline compiled code, which is not type specialized and hence can handle

any possible type. Deoptimization is an inherently expensive operation, and reducing

the number of deoptimizations is a primary goal when optimizing engine performance.

Deoptimizations can be classified into different categories depending on their exact

cause. A type-based deoptimization is caused by attempting to use a value that has a

different primitive type than expected (number, boolean, string, object, unde-

fined, or null). A shape-based deoptimization is caused by attempting to access an

object that has a different shape than expected (i.e., the property offsets are potentially

different). These are the two kinds of deoptimizations that we target in this chapter.

Other kinds of deoptimizations are caused by speculative, optimistic assumptions

made by the optimizing compiler that may not be valid. For example, because arrays

are just objects in JavaScript, array elements in the middle of the array can be deleted

95

Server-Side Type Profiling Chapter 4

leaving a “hole” in the array. The optimizing compiler assumes that there are no holes in

an array. Numbers in JavaScript are doubles, but the optimizing compiler assumes that

they are integers for added performance. Computed property accesses (i.e., computing

an arbitrary string and using it as a property name) can be anything, but the optimizing

compiler assumes that it will be a property actually in the object being accessed. For all

of these assumptions the compiler must emit a guard to check that assumption in case

it is not true, and trigger a deoptimization if it is not. We do not focus on these kinds

of deoptimizations in this work, but they are an interesting target for future work.

4.4 Ahead-of-Time Type Profiling

In this section we describe our technique for performing ahead-of-time profiling on

the server-side and for taking advantage of that profile information on the client-side.

Figure 4.2 gives a high-level overview of our technique’s flow. The server will profile the

JavaScript program in two phases to collect profile information. This usually happens

during the feature testing or regression testing phase of the application. Instead of a

regular browser, the developers use a lightly modified version of the browser (as described

later in this section) while performing the manual or automated regression testing, in

order to collect the profile information. The application is then annotated with this

profile information. The advantage of this approach is that whenever the application is

updated, a new profile can be captured using the existing test suite and a new version

of the annotated program can be created. The annotated version is then sent over the

network to the client on request; the client can take advantage of that information if it

is aware of the ahead-of-time profiling, or safely ignore that information if it is not.

We now describe in detail the server’s ahead-of-time profiling technique and the in-

sights required to collect the most useful information, and then the modifications required

96

Server-Side Type Profiling Chapter 4

Initial Profiling

Profile Analyzer

Stability Testing

Unfiltered profile information

Filtered aggregate
profile information

Unfiltered profile
information

Final
Aggregate

Profile

1

2

3

4

Server

Read Aggregate
Profile

Execute
JavaScript App

Web payload +
Aggregate profile

5

6

Client

Figure 4.2: Profiling and execution setup. (1) The server performs initial profiling of
the JavaScript application to generate unfiltered profile information. (2) The profile
analyzer filters out relevant information and invokes (3) stability testing. (4) The pro-
file analyzer collects the profile information from (3) and (1) to generate an aggregate
profile. When the client requests the web application, aggregate profile information
is sent along with the webpage. The client (5) reads the aggregate offline profile in-
formation and combines it with online profile information during the (6) execution of
the application.

of the client to take advantage of the profile information. To clarify a potential point

of confusion: we distinguish between the engine’s standard runtime profiler used to col-

lect information for the optimizing compiler (the online profiler) and our ahead-of-time

profiler (the offline profiler) that collects the information gathered by the online profiler

and preserves it past the end of the program’s execution.

4.4.1 Server-Side Profiling

We concentrate our efforts specifically on type-based and shape-based deoptimiza-

tions. We currently ignore the other kinds of deoptimizations discussed in Section 4.3,

though they may be interesting targets for future work. The ahead-of-time profiler op-

97

Server-Side Type Profiling Chapter 4

Tier 1 Baseline Optimized

Type-based
deopt

Shape-based
deopt

Type-based
deopt

Figure 4.3: Timeline showing the execution of a single function within a JavaScript
program in the server.

Slow property access

Type-based
deopt

Tier 1 Baseline Optimized

Figure 4.4: Timeline showing the execution of a single function within a JavaScript
program in the client.

erates in two phases: the initial phase and the stability testing phase. We begin with

the initial phase.

Initial Profiling Phase

Consider Figure 4.3, which shows an example execution timeline for a single function

within the program being profiled, where time is measured in number of function invo-

cations. The function starts off in tier 1 (the green portion). Once the function becomes

warm it goes through the baseline compiler and starts executing the baseline compiled

code (the blue portion). During this time the online profiler is collecting information

about types and object shapes. Once the function becomes hot it goes through the opti-

mizing compiler and starts executing the optimized compiled code (the red portion). If

the function must be deoptimized, for example, by a changing type or object shape, then

the function reverts back to the baseline compiled code (and again is being profiled by

98

Server-Side Type Profiling Chapter 4

the online profiler). If the function subsequently becomes hot again then it is recompiled

by the optimizing compiler. The optimizing compiler may inline function calls as part of

its optimizations, thus the optimized function may incorporate additional code over the

baseline version.

By modifying the online profiler to save its information to an external file (a simple

change to an API that all modern browsers already provide for accessing the online profile

information), the offline profiler has access to each function’s timeline, including whether

the function ever became hot and all of the profile information about types and object

shapes used by the function, as well as the number of deoptimizations that happened,

where they happened, and why they happened.

Näıvely, one could attempt to optimize the program by marking each hot function and

providing all of the collected type and shape information. The client could then imme-

diately compile all hot functions (with parallel compilation to avoid load-time latency),

using the provided type and shape information. Ideally this would allow the client to use

optimized code right away while avoiding all (type- and shape-based) deoptimizations

found during offline profiling (in Figure 4.3, all of the blue portions would be replaced

by red portions). However, this approach does not work for three reasons.

Reason 1. Tracking shape information requires a lot of data, significantly increasing

the amount of annotations that need to be sent over the network. Also, there is a large

cost for the client in terms of memory and time, because the client needs to keep track

of the executing program’s object shape information in order to take advantage of the

information from the ahead-of-time profiler. Our preliminary experiments show that

tracking shape information in the client takes at least several megabytes of memory and

increases client execution time by an average of 27%. We want to be able to reduce shape-

based deoptimizations without incurring this overhead. Therefore, rather than have the

99

Server-Side Type Profiling Chapter 4

offline profiler record actual shape information we instead have it record the program

points at which shape-based deoptimization happened during the ahead-of-time profiled

execution. This information is sent to the client instead of the exact shape information;

we explain how the client uses this program point information in the next subsection.

Reason 2. There is a very common coding idiom used by JavaScript programmers that

uses the primitive JavaScript values null or undefined as a sentinel value to signal

the end of some iteration. For example, think of a list of integers that is terminated by

a null value to signal the end of the list. A variable x holding the value of the current

position in the list would be an integer up until the point that sentinel value is reached,

then variable x changes type to null instead. This type change then triggers a type-

based deoptimization. We could eliminate that deoptimization by compiling the function

at the beginning knowing that x could be an integer or null. However, the problem is

that this newly optimized function would actually run slower than the original optimized

function with the deoptimization, because the original compiled function could perform

many optimizations relying on x being an integer and is thus much faster than the newly

compiled code which must account for x being either an integer or null. The original

deoptimization is slow, but happens once and only at the end of the function’s lifetime.

The end result is that while the newly optimized function avoids the deoptimization, it

is in aggregate slower than the original optimized function plus the deoptimization.

For this reason, our offline profiler ignores the type information from the last type-

based deoptimization in the last optimized execution of the function being profiled (in

Figure 4.3, this would be the last type-based deoptimization in the figure). We assume

that this deoptimization is from the coding idiom described above, and therefore we allow

that last type-based deoptimization to remain.

Other deoptimization patterns can also occur due to very rare unexpected types or

100

Server-Side Type Profiling Chapter 4

shape modifications during the execution of the application. Our technique does not

consider this as a special case and records the unexpected type in the log. When this

type is used in the client side to optimize the hot function, the optimizing compile might

generate sub-optimal code. Therefore, there is a tradeoff between cost of executing sub-

optimal code without deoptimization using offline profile information versus the collective

cost of deoptimization, the cost of profiling after deoptimization, and the cost of executing

sub-optimal code after the function is regarded hot again. In most cases we found that

ignoring the last deoptimization was sufficient for better performance.

Reason 3. Some functions are inherently type unstable and will consistently be deopti-

mized no matter how much profile information is saved (often because of other kinds of

deoptimizations rather than type- and shape-based deoptimizations). Optimizing these

functions will result in a net loss in performance because of the constant deoptimization.

We set a threshold value for number of deoptimizations (of all kinds, not just type- and

shape-based) and mark all functions that exceed this threshold as non-optimizable in the

program’s profile annotations.

Stability Testing Phase

The amount of annotations added to a program as comments by the offline profiler

increases the size of the program, and hence provides a cost in terms of network bandwidth

when sending the program from the server to the client. We would like to minimize

that cost as much as possible. The purpose of the stability testing phase is to figure

out which program annotations may have unnecessary information, which we can then

drop to minimize the annotation size. This phase is solely to optimize the size of the

program annotations, it does not affect the client-side optimizations (either positively or

negatively).

101

Server-Side Type Profiling Chapter 4

Recall that the threshold for making a function hot and sending it through the op-

timizing compiler is significantly higher than it might be in a statically-typed language

(on the order of 1,000 invocations) in order to make it more likely that the baseline pro-

filer has seen all of the relevant type information before optimization, thus reducing the

chances of deoptimization. This threshold is very conservative because the cost of those

deoptimizations is so high. The idea of the stability testing phase is to detect functions

that stabilize much earlier than this threshold; for those type-stable functions we can

omit the type information from the profiler’s annotations (while still marking them as

hot). At the client we drastically reduce the amount of time the baseline profiler is run

before optimizing a function that is marked hot by the offline profiler, but still leave

enough time that these type-stable functions have all of the necessary type information

collected by the client engine’s online profiler. In other words, we are dropping the type

annotations for the type-stable functions to save space, then reconstituting them on the

client side via the normal online profiling. The stability testing phase identifies the type-

stable functions where we can be sure that the online profiler will get all of the necessary

type information even though we are reducing the amount of time it has to profile those

functions.

We define a potential type-stable function as one that, in the initial phase, was marked

as hot but had no deoptimizations (except perhaps a final type-based deoptimization

per the coding idiom described earlier). We detect type-stable functions empirically by

rerunning the same program on the same input as for the initial phase, but taking all of

the potential type-stable functions and initializing their hotness counter to a high value

(rather than the normal zero), but without using any of the type information gathered

by the initial phase. Any potential type-stable function that still does not have any

deoptimizations is considered type-stable and their type annotations are removed from

the program.

102

Server-Side Type Profiling Chapter 4

4.4.2 Client-Side Optimization

When the client receives a program containing annotations from our ahead-of-time

profiler (given as code comments), it strips them from the program when that program

is read into the engine’s memory and stores them in an object we call the Oracle. The

Oracle stores the profile information indexed by function.

When a function is first loaded, the client engine consults the Oracle to determine

if it is a hot function. If so, the function’s hotness counter is initialized to a high value

(rather than zero) so that it will be quickly passed to the optimizing compiler. If, on

the other hand, the profile information indicates that this function is too type unstable,

then the client engine marks it as unoptimizable so that it will never be passed to the

optimizing compiler. These two mechanisms (the hotness counter and the unoptimizable

mark) are already present in all modern JavaScript engines, and thus engines using our

technique need only minor modifications to take advantage of the Oracle’s information.

When a function is being compiled by the optimizing compiler, the Oracle is again

consulted to gather the profiled type information. The optimizing compiler already con-

sults the online profiler to gather type constraints in order to perform type inference;

it is a simple change to have it also gather type constraints from the Oracle as well.

The optimizing compiler also already uses shape information from the online profiler to

inline accesses to objects (i.e., to use offset information to jump directly to a property

rather than using a hash table). It is again a simple modification to have the compiler

consult the Oracle to determine if a particular object access triggered a shape-based de-

optimization during ahead-of-time profiling, and if so to avoid inlining the access. By

avoiding this optimization we eliminate the possibility of shape-based deoptimizations at

this point; while the lack of optimization slows down the code, the benefit of avoiding

deoptimization provides a net gain in performance.

103

Server-Side Type Profiling Chapter 4

Consider Figure 4.4. This figure represents an example timeline on the client side for

the same function as Figure 4.3 (which represented the function’s execution on the server-

side during profiling). We see that there is still a warmup phase, but that the function

is optimized much earlier than before. The first two deoptimizations are removed, but

at the expense of an unoptimized object property access to eliminate the shape-based

deoptimization. Finally, the last type-based deoptimization still remains to account for

the common JavaScript coding idiom described previously.

4.5 Evaluation

To evaluate the benefits of our ahead-of-time profiling technique, we implement it

using Mozilla’s production-quality JavaScript engine SpiderMonkey and test it on three

different benchmark suites:

• Octane, the industry-standard JavaScript performance benchmark suite [72].

• Physics, a set of open-source JavaScript physics engines for web games [73, 74, 75,

76].

• Membench50, a benchmark suite consisting of real-world websites that heavily use

JavaScript [77].

Note that throughout this section, “deoptimizations” refers specifically to type- and

shape-based deoptimizations.

We run our experiments on an 8-core Intel i7-4790 machine with 32GB RAM running

Fedora 20 Heisenbug as the profiling server and another machine with the same config-

uration as the client. Below, we first give details on the modifications we made to the

SpiderMonkey engine for our implementation and then describe the results for each of

the three benchmark suites in turn.

104

Server-Side Type Profiling Chapter 4

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

box2d	 crypto	 earley-‐boyer	 mandreel	 typescript	 deltablue	 gbemu	 pd<s	 Average	

Sp
ee
du

p	
vs
.	 b

as
el
in
e	

Octane	 benchmarks	

AOTTP	

Figure 4.5: Average speedup of Ahead-Of-Time Type Profiling (AOTTP) versus the
baseline. Higher is better.

4.5.1 SpiderMonkey Modifications

We modify SpiderMonkey version 224982 from the mozilla-central repository [78] as

the profiling engine and the client engine. The modified engines are available as an

anonymized download. 1 We use an unmodified SpiderMonkey of the same version as

the baseline to compare against. The specific modifications and heuristics that we use

for the server and the client are as follows.

Server. The profiling engine is modified to log the following three classes of information

along with the location in the source where they are observed. The location is defined

by {file name, line number, column number} in the source code.

• All type-based and shape-based deoptimizations that occur during the execution

of the program.

1https://dl.dropboxusercontent.com/u/206469/dls15.zip

105

Server-Side Type Profiling Chapter 4

Table 4.1: Number of hot functions, the total number of deoptimizations observed
during the baseline and AOTTP approach, and the percent reduction in number of
type and shape-based deoptimizations.

Benchmarks # hot funcs Baseline deopts AOTTP deopts % reduction in deopts

box2d 254 15 5 66.66

crypto 55 12 4 66.66

earley-boyer 69 5 2 60

mandreel 71 0 0 –

typescript 324 73 49 32.87

deltablue 66 1 1 0

gbemu 171 20 17 15

pdfjs 93 25 15 40

Average 137.88 18.85 11.62 40.17

Table 4.2: Program annotation size, the benchmark size without annotations, and the
percent size overhead when adding the annotations to the program

Benchmarks Profile size (kB) Benchmark size (kB) % overhead in size

box2d 33.9 374.01 9.08

crypto 6.57 63.91 9.97

earley-boyer 6.04 211.10 2.81

mandreel 5.61 5016.26 0.11

typescript 51.99 1254.68 4.11

deltablue 5.14 41.58 12.37

gbemu 20.22 531.99 3.80

pdfjs 16.08 1482.06 1.06

Average 18.08 1121.9 5.41

• Any newly observed types that trigger type-based deoptimizations.

• Hot method and loop compilations that are performed by the IonMonkey optimizing

compiler.

We use the SpiderMonkey default of 10 iterations as the warmness threshold and

1,000 iterations as the hotness threshold. Any function that is deoptimized more than

10 times is considered a type-unstable function.

For our prototype implementation we send the profile information as a separate text

file which is read by the client, rather than embedding it in the original JavaScript

106

Server-Side Type Profiling Chapter 4

program. Embedding the annotations and stripping them out is trivial, but keeping

them separate is more convenient for running experiments.

Client. The client is modified to read the program annotations into an oracle object.

The oracle is consulted when the JSScript object is first created in the client engine. The

warmup counter for a hot function is initialized to 950 instead of 0; thus hot functions

will be compiled after 50 executions of the baseline compiled code rather than 1000.

4.5.2 Ahead-of-Time Profiling Cost

There is a small cost on the server-side to do the ahead-of-time profiling, though

this cost is negligible. The profiler must run the program twice (once for each profiling

phase) and write out the online profiler’s information to disk. That information is then

run through the profile analyzer to parse and collate the provided information in order

to create the program annotations. This analysis process takes from a few milliseconds

to a few seconds over all of our benchmarks.

4.5.3 Octane Benchmark Suite

The Octane benchmark suite is the industry standard benchmark suite used to mea-

sure the performance of JavaScript engines. Because our technique applies only to JIT

compiled code, we consider a subset of Octane benchmarks which run for a reasonable

amount of time, have a significant amount of hot functions (a minimum of 50), and have

deoptimizations. For the other benchmarks in the suite, ahead-of-time profiling can be

avoided altogether. Benchmarks like splay and regexp focus on different parts of the

engine like the garbage collector and the regular expression engine; the zlib benchmark is

an asm.js benchmark testing the efficiency of a different compiler in the JavaScript en-

107

Server-Side Type Profiling Chapter 4

gine; and the code-load benchmark does not exercise the optimizing compiler. Therefore,

we do not consider those benchmarks. Choosing a subset of benchmarks is justified for

our approach because unlike other online compiler optimizations that are always ”on”,

the offline profile information based optimization is optional and can be disabled for

applications which do not show additional speedup.

Calculating Speedup. Octane benchmarks provide scores upon completion of individual

benchmarks. The higher the score the better the performance. To calculate the speedup,

we run each benchmark 22 times in different VM instances and compute the average

score of the last 20 times.

Training Inputs. Octane benchmarks typically do not take in any user input. Only a

few of them take specific inputs from the external world, e.g., pdf.js and typescript. For

example, the typescript benchmark is a typescript compiler that compiles itself. We used

the jquery.ts file (with minor modifications) from the TypeScriptSamples Github

repository2 as the training input instead of the typescript benchmark’s regular input.

For the rest of the benchmarks, we modify them with different parameters to generate

the training inputs for our server. For example, the crypto benchmark was modified

to encrypt and decrypt different strings and the box2d benchmark was initialized with

different step parameters. In this way we ensured that the ahead-of-time profiling was

always done on different inputs than the client-side performance evaluation.

Observations. Figure 4.5 shows the speedups obtained by our ahead-of-time type pro-

files (AOTTP) against the baseline implementation. The most significant improvement

in the performance is seen for the gbemu benchmark where the AOTTP approach is 29%

faster compared to the baseline. On average the AOTTP approach shows 13.1% im-

2https://github.com/Microsoft/TypeScriptSamples

108

Server-Side Type Profiling Chapter 4

provement over the baseline configuration. Given the fact that SpiderMonkey is already

highly optimized, this speedup is considered a significant performance improvement by

the SpiderMonkey development team.3

Table 4.1 shows the reduction in deoptimizations when our AOTTP approach is

used versus the baseline configuration. Except for mandreel and deltablue benchmarks,

our AOTTP approach ensures that a significant amount of deoptimizations are avoided.

On average 40.17% of the deoptimizations are eliminated using the AOTTP approach.

The mandreel benchmark is generated using the Mandreel C++ to JavaScript compiler.

Therefore, mandreel does not show any kind of deoptimization during the execution and

is type-stable throughout the execution.

Comparing the percentage of deoptimizations reduced shown in Table 4.1 with the

speedups numbers from Figure 4.5, one distinct observation would be that higher per-

centage of reduction in deoptimizations does not always correspond to improvement in

performance. This is because, not all deoptimizations are in the critical path of execution

of the benchmark. Avoiding deoptimizations that occur in a function that makes up most

of the execution time would help improve performance of the application better.

The space overhead for the program annotations is minimal. Table 4.2 shows the size

of the type profiles compared against the size of the benchmarks. On an average, the

profile size is only around 5.41% of the size of the benchmarks. The typescript benchmark

produces the largest profile information among all of the octane benchmarks. It produces

a 51.59kB annotation which is around 4.11% of the size of the benchmark. A major chunk

of the space overhead is due to the program location information which is {file name, line

number, column number}. It is possible to drastically reduce this overhead by annotating

the profile information directly in the source code instead of having a separate file.

3Personal communication at #jsapi IRC channel

109

Server-Side Type Profiling Chapter 4

Table 4.3: Reduction in deoptimizations for JavaScript physics engine demo applica-
tions and the improvement in FPS values when using ahead-of-time profiling.

Benchmark # hot
funcs

Baseline
deopts

AOTTP
deopts

Reduction
in deopts

FPS im-
provement

three.js:canvas ascii 99 4 3 25% 7.3%

three.js:canvas camera or-
thographic

71 1 1 0% 7.5%

pixi.js:3D balls 31 10 3 70% 5.9%

matter.js:multi-body colli-
sion

50 7 0 100% 6.5%

physics.js:multi-body-
collision

75 33 30 9.09% 6.5%

Average 65.2 11 7.4 40.82% 6.75%

4.5.4 JavaScript Physics Engines

Table 4.4: Profile annotation overhead for the JavaScript physics engine demo applications.
Benchmark Profile size (kB) Benchmark size

(kB)
Size overhead

three.js:canvas ascii 12.00 864.47 1.40%

three.js:canvas camera orthographic 8.33 846.32 1.00%

pixi.js:3D balls 3.86 225.75 1.50%

matter.js:multi-body collision 7.92 602 1.30%

physics.js:multi-body-collision 13.13 556 2.36%

Average 9.05 618.9 1.52%

There is no definitive way of measuring JavaScript performance when embedded in

a browser, so we take two different approaches in this subsection and the next. Here we

want to measure computation-heavy JavaScript code performance in a browser setting.

We use four open-source JavaScript physics engine demos as our benchmarks and use

frames-per-second (FPS) as our metric for evaluating performance. Our hypothesis is that

ahead-of-time profiles will show an improvement in the FPS values earlier in the execution

of the benchmarks, because our ahead-of-time approach allows the client to optimize hot

functions much earlier during execution. We believe that these demo applications best

capture the behavior of computation-heavy applications where the user expects good

110

Server-Side Type Profiling Chapter 4

0	

5	

10	

15	

20	

25	

1	 101	 201	 301	 401	 501	 601	 701	 801	 901	 1001	

Fr
am

es
	 p
er
	 se

co
nd

	 (F
PS
)	

Execu4on	 4me	 in	 terms	 of	 frames	 displayed	

Baseline	

AOTTP	

Figure 4.6: Frames per second (FPS) plots for three.js: canvas ascii JavaScript physics
engine benchmark. The x axis represents execution times in terms of frames displayed.
Higher is better

performance from the application from the time the application is launched.

Evaluation Setup. We evaluate 4 JavaScript physics engines: three.js [74], pixi.js [73],

matter.js [75], and physics.js [76]. We use 2 demo applications from three.js and one each

from pixi.js, matter.js, and physics.js, yielding a total of 5 physics engine benchmarks.

These different engines have different ways of calculating FPS values. The three.js and

pixi.js applications emit FPS values for every frame that is generated. Therefore, the x

axis in Figures 4.6, 4.7, and 4.8 represent execution times in terms of frames displayed.

The matter.js and physics.js applications emit FPS values every second. Therefore, in

Figures 4.9 and 4.10 the x axis represent execution time in terms of seconds.

The benchmarks are inherently random and generate random collisions, patterns, and

movements of objects for every invocation of the program. Therefore, our training input

is guaranteed to be different compared to the evaluation input.

111

Server-Side Type Profiling Chapter 4

0	

2	

4	

6	

8	

10	

12	

14	

16	

1	 101	 201	 301	 401	 501	 601	 701	 801	 901	 1001	

Fr
am

es
	 p
er
	 se

co
nd

	 (F
PS
)	

Execu4on	 4me	 in	 terms	 of	 frames	 displayed	

Baseline	

AOTTP	

Figure 4.7: Frames per second (FPS) plots for three.js: canvas camera orthographic
JavaScript physics engine benchmark. The x axis represents execution times in terms
of frames displayed. Higher is better

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	 101	 201	 301	 401	 501	 601	 701	 801	 901	 1001	

Fr
am

es
	 p
er
	 se

co
nd

	 (F
PS
)	

Execu4on	 4me	 in	 terms	 of	 frames	 displayed	

Bseline	

AOTTP	

Figure 4.8: Frames per second (FPS) plots for pixi.js: 3D balls JavaScript physics en-
gine benchmarks. The x axis represents execution times in terms of frames displayed.
Higher is better

112

Server-Side Type Profiling Chapter 4

0	

5	

10	

15	

20	

25	

30	

35	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	

Fr
am

es
	 p
er
	 se

co
nd

s	 (
FP
S)
	

Execu4on	 4me	 in	 seconds	

Baseline	

AOTTP	

Figure 4.9: Frames per second (FPS) plots for matter.js: multi-body collision
JavaScript physics engine benchmarks. The x axis represents execution time in sec-
onds. Higher is better.

0	

10	

20	

30	

40	

50	

60	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	

Fr
am

es
	 p
er
	 se

co
nd

	 (F
PS
)	

Execu4on	 4me	 in	 seconds	

Baseline	

AOTTP	

Figure 4.10: Frames per second (FPS) plots for physics.js: multi-body collision
JavaScript physics engine benchmarks. The x axis represents execution time in sec-
onds. Higher is better.

113

Server-Side Type Profiling Chapter 4

Observations Table 4.3 shows the improvement in FPS values for the physics engine

demos during the first few seconds of execution. On average, we see 6.75% improvement in

the FPS values across all the applications with three.js: canvas ascii and matter.js: multi-

body collision benchmarks showing significant improvement in the FPS values during the

first 20–30 seconds of execution.

Figures 4.6, 4.7, 4.8, 4.9, and 4.10 show the FPS values seen while executing the

physics engine demo applications for the first 60 seconds. The figure shows the FPS

values computed for a single representative run. For example, Figure 4.6 shows the

evolution of FPS values for the application three.js: canvas ascii. For the first 600 frames

the AOTTP configuration shows better FPS values versus the baseline, then gradually

the baseline FPS converges to be the same as the AOTTP. This early performance lead

by AOTTP shows the effect of optimizing hot functions early. The other benchmarks

have similar behavior. This is most easily seen in Figure 4.9; the other benchmarks also

converge, but only after several minutes. To keep the graphs legible, we only show the

first 60 seconds and so for the other benchmarks the convergence point is not shown.

In some cases the FPS values for the AOTTP optimized version drops below the

baseline. This drop is not due to anything inherent in the AOTTP approach, but rather is

due to the inherent randomness and dynamism in the benchmarks, such as when exactly

garbage collection is triggered. We ran the experiments for each of the benchmarks

multiple times and observed similar average speedup in the FPS values for the AOTTP

configuration.

Table 4.3 shows the percentage reduction in the deoptimizations for the benchmarks.

On average the AOTTP approach avoids 40.82% of the deoptimizations across all the

benchmarks. The benchmark pixi.js:3D balls is type stable for most parts and does not

have any deoptimizations that can be avoided by AOTTP. But just identifying type-

stable hot functions and compiling them eagerly yields a speedup.

114

Server-Side Type Profiling Chapter 4

Reduction in deoptimizations and the improvement in FPS values do not correlate

because of multiple reasons. Some deoptimizations are more critical than others and

cause major slowdowns in execution of the program. Avoiding such deoptimizations

show significant improvement in performance. Also, in case of three.js:canvas camera

orthograhic benchmark, there is no reduction in deoptimizations using our technique.

But we see improvement in performance by simply optimizing the hot functions early

based on the offline profile information.

As shown in the Table 4.4, the space overhead for the profiles is negligible for all of

the benchmarks. The average overhead is only 1.52%.

4.5.5 Membench50

Membench50 is a benchmark suite consisting of 50 real-world popular JavaScript-

heavy web pages, primarily designed to evaluate the memory usage of the JavaScript

engine. Since our optimization applies to programs that exercise the optimizing compiler,

we filter out the websites that have fewer than 30 hot functions.

We use a popular automated website testing tool, Selenium IDE [79] , to simulate user

interactions for these websites. For each of the websites, user interactions such as mouse

clicks, key presses, and scrolling are recorded using the IDE. These interactions are saved

as individual test cases and used as inputs for capturing the offline profile information.

Different test cases are used to simulate the user interaction at the client side.

Performing an ideal performance analysis of our approach is difficult in this setting,

because we would need to isolate the effects of our optimizations in the presence of

network and IO latency in a web browser. Therefore, we present the percentage of

deoptimizations that are avoided by our approach as a metric to indicate the effectiveness

of our optimization.

115

Server-Side Type Profiling Chapter 4

Table 4.5 shows the percentage reduction in deoptimizations using the AOTTP ap-

proach. In general, most of the benchmarks show reduction in the deoptimization counts

while using the AOTTP technique. On average there is a 33.04% reduction in deoptimiza-

tions across all benchmarks, with an average profile size of less than 13.08kB. The size

of the JavaScript code in these websites are in the order of MB. Therefore, the overhead

of profile size is negligible compared to the size of the website. To give a rough estimate,

all of the websites present in this benchmark suite use the jquery library. The average

profile size is 13% of the size of the jquery library. Therefore, it is safe to assume that

the space overhead of the ahead-to-time profile for all of these benchmarks is negligible.

Table 4.5: Experimental results for a subset of Membench50 benchmark suite: number
of hot functions, number of deoptimizations in the baseline, number of deoptimizations
using AOTTP, percentage reduction in the deoptimizations, and size of the aggregate
profile collected using AOTTP approach.

Benchmarks # of hot
funcs

Base-
line deopts

AOTTP
deopts

Reduction
in deopts

Profile
size (kB)

businessinsider.com 393 44 20 54.54% 84.05

lufthansa.com 30 12 10 16.66% 3.81

amazon.com 104 23 13 43.47% 21.18

tbpl.mozilla.org 30 17 11 35.29% 2.12

taobao.com 49 18 16 11.11% 4.62

nytimes.com 87 27 24 11.11% 2.27

cnn.com 208 22 18 18.18% 19.76

bild.de 42 2 1 50% 8.49

spiegel.de 32 13 10 23.07% 2.40

lenovo.com 34 0 0 – 3.17

weibo.com 44 4 1 75% 2.37

ask.com 40 4 3 25% 2.82

Average 91.08 15.5 10.58 33.04% 13.08

4.5.6 Kinds of Deoptimizations

Our technique focuses on type- and shape-based deoptimizations, though other kinds

of deoptimizations can happen. We rely on the JavaScript engine to classify each deopti-

116

Server-Side Type Profiling Chapter 4

mization for us, in order to determine which ones to handle with our profiling technique.

One difficulty we encountered specific to SpiderMonkey is that, for technical reasons

having to do with the engine’s implementation, there are some deoptimizations that the

engine leaves unclassified. In other words, for these deoptimizations we do not know

whether they were type- or shape-based or some other kind of deoptimization. Our im-

plementation conservatively assumes that they are not type- or shape-based and ignores

them. Table 4.6 shows for each Octane benchmark during ahead-of-time profiling the

total number of deoptimizations, the percentage that were classified as type- or shape-

based, and the percentage that were left unclassified.

We see that a significant portion of the deoptimizations are classified as type- or shape-

based, but that an even larger portion are left unclassified. Based on our experience we

conjecture that many of these unclassified deoptimizations are actually type- or shape-

based and would be amenable to our technique if we could recognize them. However,

doing so would require much more extensive changes to the profiling engine (but not

the client engine). Considering that we get a significant performance benefit just from

handling the identified type- and shape-based deoptimizations, it is likely that extending

our technique in this way would yield even more significant performance gains.

Table 4.6: Percentage of type- and shape-based deoptimizations (TSDeopt) and per-
centage of unclassified deoptimizations (UDeopt) verses total number of deoptimiza-
tions for Octane benchmark suite.

Benchmarks All Deopts TSDeopt UDeopt

box2d 40 40% 27.5%

crypto 24 33.33% 20.8%

earley-boyer 42 9.5% 9.5%

mandreel 3 0% 100%

typescript 595 9.7% 25.8%

deltablue 4 25% 75%

gbemu 112 17% 11.6%

pdfjs 73 17.8% 17.8%

Average 111.62 19.04% 36%

117

Server-Side Type Profiling Chapter 4

4.6 Conclusion

We have described a technique to optimize JavaScript programs sent from a server

to a client by performing ahead-of-time profiling on the server side in order to reduce

deoptimizations on the client side. We have shown that these deoptimizations are an

important concern for performance, and that reducing the deoptimizations provides a

significant performance benefit. Besides reducing deoptimizations, our technique also

allows hot functions to be compiled much earlier than they normally would and without

having to fear increased deoptimizations due to the reduced profiling time entailed by

early compilation.

Our technique relies on several key insights to be practical and effective, such as

identifying the correct information to profile to tradeoff the costs and benefits of type

profiling and identifying common coding idioms that directly impact the effectiveness of

profiling.

We evaluate our technique over three sets of benchmarks: the industry-standard Oc-

tane benchmark suite, a set of JavaScript physics engines, and a subset of real-world

websites from the Membench50 benchmark suite. Our evaluation shows a maximum

speedup of 29% and an average speedup of 13.1% for Octane benchmarks, a maxi-

mum improvement of 7.5% and an average improvement of 6.75% in the FPS values

for JavaScript physics engines, and an average 33.04% reduction in deoptimizations for

the Membench50 benchmarks. The collected profile information is on an average 4% of

the size of the JavaScript code.

118

Chapter 5

Accelerating Server-Side JavaScript

JavaScript is increasingly being used to implement server-side web applications with

tailored environments such as node.js. However, these applications still run on Java-

Script engines that are tuned and optimized for running client-side web scripts, which

have very different runtime characteristics than server-side code. In this chapter we inves-

tigate techniques with the specific goal of optimizing server-side application performance

without requiring heavy modifications to the JavaScript engines they run on.

The node.js runtime responds to heavy load by spawning new instances of the

JavaScript engine to respond to the incoming requests. Our contribution is a set of

techniques for transferring profile information from the original JavaScript engine to the

newly spawned engines in order to significantly improve their initial throughput. These

techniques provide good performance gains but require only minimal changes to the

JavaScript engines.

119

Accelerating Server-Side JavaScript Chapter 5

5.1 Introduction

JavaScript, initially intended solely as a client-side scripting language for web browsers,

is now being used to implement server-side web applications that traditionally have

been written in languages like Java. Node.js [1] is a popular runtime environment

for JavaScript server-side applications, originally implemented using Google’s V8 Java-

Script engine [29]. Other implementations of node.js have also arisen, including Jx-

core [80], which can use either V8 or Mozilla’s SpiderMonkey JavaScript engine [14],

and avatar.js [81], which uses the Nashorn JavaScript engine [13].

A common characteristic of these node.js implementations is that they repurpose

pre-existing JavaScript engines that were designed for execution in the client-side web

browser. These engines are tuned for client-side code characteristics and execution pat-

terns. However, server-side applications do not have the same characteristics and pat-

terns as client-side applications, as demonstrated by Zhu et al [82]. Intuitively, client-side

JavaScript engines are tuned to perform well for applications that involve extensive user

interaction and DOM manipulation, which do not occur in server-side code. In this pa-

per, we examine techniques for improving the performance of JavaScript engines when

being executed on the server, without requiring extensive modifications to the engines

themselves.

5.1.1 The Problem

To achieve this goal of optimizing server-side application performance, we focus on

the response of node.js applications when they come under load due to increased

traffic. A given node.js application is executed in a single thread by the JavaScript

engine, though I/O operations are handled asynchronously in different threads. If the

number of requests sent to the server exceeds some threshold, the load balancer spawns

120

Accelerating Server-Side JavaScript Chapter 5

new instances of the JavaScript engine, each running an independent instance of the

node.js application and handling a subset of the requests. These new engines may run

on different cores of the same machine or on different machines altogether.

During execution each JavaScript engine employs an online profiler to record types,

object shapes, and other information useful for optimizing during JIT compilation. Each

newly-spawned engine, then, must take the time to dynamically profile the application

in order to optimize it, and this profiling happens every time new engines are spawned

due to heavy load. However, the point when a new engine is spawned is exactly when

performance is most desirable to maximize the throughput of the new engine to help

compensate for the heavy load.

The cost of performing online profiling and waiting for the results to optimize the

code hurts the initial throughput. This is a problem faced in real-world applications,

as witnessed by numerous blog posts and queries posted on public forums indicating

performance problems related to loading new instances of node.js applications [83, 84,

85, 86].

5.1.2 The Opportunity

We observe that all of the engines are running the same application and that the inputs

to the application, i.e., the requests, are generally similar to each other. Thus, the profile

information collected by the original engine applies equally to all of the other engines—

and yet, those engines must still collect this information themselves redundantly, slowing

down the application’s throughput. The central problem we face in this chapter is how

to effectively optimize the newly-spawned engines based on information gathered by the

original engine, in order to make sure that the applications have higher initial throughput

after being spawned. As an example, consider Figure 5.1. The blue line shows the

121

Accelerating Server-Side JavaScript Chapter 5

Th
ro

ug
hp

ut

GoalOriginal Spawned

Time

new instance launched

Figure 5.1: Performance of a representative node.js application. The blue line repre-
sents the original instance, green line represents our optimized new instance, and the
red line represents the unoptimized newly spawned instance.

throughput of the original application instance. There is an initial period where the

JavaScript engine is profiling and optimizing the application, then eventually throughput

reaches a steady state. The red line shows where a new, independent instance of the

application is spawned; it has a similar shape to the original instance. Finally, the green

line shows our goal: a newly-spawned instance that immediately attains the optimized

throughput of the original instance.

A näıve solution to this problem would be to migrate the already JIT-compiled code

from the original engine to the spawned engines (which, again, can be on the same ma-

chine or on different machines). However, the compiled code contains concrete references

to memory locations in the heap, therefore we would also need to either migrate the

heap itself or modify the JIT compiler’s code generator. Either way, transferring the

compiled code to other engines would require extensive modifications to the JavaScript

engine and much engineering effort to make it practical (for example, existing work on

122

Accelerating Server-Side JavaScript Chapter 5

taking snapshots of the heap shows that performance is generally poor compared to not

using snapshots [87]).

5.1.3 Our Solution

Our key insight is that we can achieve our goal by sending two specific forms of useful

information from the original engine to the spawned engines, which together allow the

spawned engines to attain optimized throughput much faster than they could without

that information. This information can be transferred simply and cheaply, it results in

significant throughput gains during the newly-spawned engines’ initial execution times,

and it requires only minor modifications to the JavaScript engine implementations.

The first form of information consists of cachable profile information, e.g., primitive

types, deoptimization information, function hotness, and information about decisions

such as method inlining and dense array optimizations. In other words, the obvious

information to send that does not require special effort to migrate to a new engine.

Cachable profile information is stored in a database and transferred to the new engines

as-is; the new engines can read in that information and take advantage of it with only

minor tweaks to their implementations.

The second form of information is in lieu of profile information gathered by the

original engine that cannot be easily transferred. A prime example is object shape

information, which is used for optimizing object accesses in the JIT-compiled code in

order to achieve significant performance gains, but that cannot efficiently be transferred

to other engines because it is inherently tied to addresses in the heap. Instead, we

use a notion of function type stability : the point during execution at which a function

has enough profile information to be optimized without undue risk of deoptimization.

Normally functions may be conservatively executed a large number of times before being

123

Accelerating Server-Side JavaScript Chapter 5

declared hot (e.g., one thousand times by the SpiderMonkey engine); this is to help

ensure that functions are type-stable before being optimized. We use information from

the original engine’s execution to allow the spawned engines to safely optimize functions

much earlier than that when possible. In other words, we let the spawned engines know

the earliest point in execution at which they have gathered sufficient profile information

(of the heap-dependent kind, since we’ve already sent them the cachable kind) to safely

optimize each function. This means that the spawned engine is executing optimized code

much sooner than it would otherwise.

5.1.4 Contributions

The specific contributions of this chapter are:

• We describe an overall server-side architecture for JavaScript server applications

that allows for increased application performance without extensive engine modifi-

cation. (Section 5.4)

• We describe a technique for caching profile information and using it across multiple

JavaScript engine instances. The profile information includes primitive types, deop-

timization information, and boolean (yes-or-no) decisions such as method inlining

decisions taken by the optimizing compiler. (Section 5.5)

• We describe two different type stability heuristics for accelerating the compilation

of type-stable functions and describe algorithms to determine each of them. (Sec-

tion 5.6)

• We evaluate our techniques using Jxcore, a SpiderMonkey based node.js im-

plementation, and a set of 10 benchmarks that represent a variety of node.js

124

Accelerating Server-Side JavaScript Chapter 5

applications. Our evaluation shows significant performance increases for initial

throughput for 7 out of 10 benchmarks.(Section 5.7)

Beforehand, we describe some background on JavaScript engine architecture and server-

side JavaScript execution (Section 5.2) and some related work (Section 5.3).

5.2 Background

5.2.1 JavaScript Engine Architecture

JavaScript engines rely heavily on online profiling and JIT compilation for perfor-

mance. Profiling looks at primitive type information for values (number, boolean,

string, object, undefined, and null); object shape information (what object

properties are present and their offsets); and more. JavaScript engines usually employ

multi-tier architecture for execution, as described in Figure 5.2.

Tier 1. The first tier of execution is a fast interpreter for a parser-generated intermediate

representation. The goal of an interpreter is to execute functions quickly so that the user

does not have to wait until the function is compiled. This strategy is useful for client-side

JavaScript code, but not for server-side JavaScript code where the main emphasis is on

the peak performance of. In fact, the V8 JavaScript engine, which is used in the official

node.js implementation, does not employ this tier of execution.

Tier 2. A baseline compiler and baseline code execution forms the second tier of exe-

cution. In this tier, the functions are compiled to generate chains of stub code by the

baseline compiler. During the baseline execution the stubs are replaced by machine code

that represent type specialized operations on the fly as they are executed. The baseline

code also acts as a profiler that collects type information and stores it in a form that is

125

Accelerating Server-Side JavaScript Chapter 5

Parse

Interpret

Baseline Compiler

Baseline Execution

Optimizing Compiler

Optimized Execution

Tier 2

Tier 3

Tier 1

Warm functions & loops

Hot functions & loops

Deoptimization

Figure 5.2: Flow graph showing different phases of execution in a generic JavaScript
engine. The interpretation phase, represented by dashed lines, is an optional phase in
JavaScript engines like Google’s V8.

easily accessible to the optimizing compiler. This type information includes the types of

individual variables that are used in the function and the shapes of objects present at

different program points in the function. In addition to collecting profile information, the

baseline code also acts as an entry point for execution to resume after deoptimization.

Tier 3. This tier consists of an optimizing compiler that uses the profile information

collected in tier 2 to generate type-specialized highly optimized code. This code executes

orders of magnitude faster then the naive interpreted code. The type profile information

126

Accelerating Server-Side JavaScript Chapter 5

collected at tier 2 is used to perform optimizations such as type specific arithmetic oper-

ations, reducing boxing and unboxing of dynamic values, object property access inlining,

and more. Because these optimizations rely on profiled information, it is possible during

the execution the runtime encounters types that were not observed before. This causes

the compiled code to be invalid and the runtime bails out of the specialized code, jumping

to the corresponding point in the baseline code and contuining execution. This operation

is called deoptimization.

5.2.2 Server-side JavaScript Execution

The original node.js is a server-side programming platform built on top of the V8

JavaScript engine. Node.js adds essential features such as APIs for disk access, net-

working, and inter-process communication; these allow the programmer to use JavaScript

to build server applications as well as client code. These APIs are non-blocking, there-

fore the programmer must specify callback functions to handle the return values of these

APIs when invoked. This unique asynchronous model of execution is also known as the

node.js programming paradigm. There are various implementations of this paradigm

that use different JavaScript engines. The original node.js uses Google’s V8 JavaScript

engine, Jxcore can use either Mozilla’s SpiderMonkey or the V8 JavaScript engine, and

OperJDK’s Nashorn JavaScript engine has it’s own implementation of node.js using

avatar.js. For the rest of this chapter, node.js refers to the programming paradigm

and not the specific implementation of it.

Figure 5.3 shows a typical execution pattern for a node.js application. Given

the asynchronous nature of the application, node.js gives an illusion of multithreaded

execution to the programmer. In reality, for each instance of node.js, only one thread

performs JavaScript execution. The node.js runtime launches auxiliary threads to

127

Accelerating Server-Side JavaScript Chapter 5

Requests from
the clients

Event loop

Node.js instance

Asynchronous communication
Synchronous communication

Single threaded
JS execution

Thread pool for
IO operations

Figure 5.3: node.js execution model in which JavaScript esecution happens in a
single thread and IO operations are carried out in separate threads from a thread
pool.

handle non-blocking IO operations. Each function in the server-side application code

executes in the JavaScript engine and goes through the various phases of execution as

described in Section 5.2.1.

Figure 5.4 shows the node.js execution pattern for large applications that require

load balancing. Typically, when too many requests come in and exceed some threshold,

the load-balancer [88, 89, 90, 91] automatically launches new instances of the applica-

tion running in newly-spawned JavaScript engine instances, possibly on entirely different

machines. When new instances are launched, the JavaScript functions in the server code

go through the various phases of execution in the underlying JavaScript engine all over

again. Therefore, the JavaScript engine has to collect fresh profile information for each

of the instances that are launched in order to generate optimized code.

128

Accelerating Server-Side JavaScript Chapter 5

Event loop
JS

IO

Event loop
JS

IO

Event loop
JS

IO

Requests from
the clients

Load balancer
(Nginx/HAProxy/
Varnish/Cluster)

Figure 5.4: Load balancer launches new instances of node.js depending on the
number of requests that are sent to the server. Each instance runs on a single processor
and has a JavaScript engine executing in a single thread. Note that depending on the
configuration, the new instances may be launched on different machines.

129

Accelerating Server-Side JavaScript Chapter 5

5.3 Related Work

In this section we describe work on optimizing JavaScript and Java that is related

to either our ultimate goal of optimizing server-side applications or that explore similar

strategies as those we employ in our own work.

5.3.1 JavaScript

In the previous chapter, we experimented with server-side profiling of client-side

JavaScript for client-side web applications. Unlike this project, server-side profiling did

not examine the problem of server-side applications. In the previous chapter, we use

a notion of type stability, but our technique for determining type stability requires an

ahead-of-time profiling phase. There is also an additional stability testing and analysis

phase to figure out the minimal profile information that is required to be annotated in

the source code. The technique described in this chapter is online, therefore it is required

to be non-intrusive and fast, and it specifically targets server-side applications and the

server setting.

Snapshot-based code migration is an alternative approach to code migration. Oh et

al [69] describe a snapshot-based code caching mechanism which significantly accelerates

the loading time of client-side JavaScript applications for various JavaScript frameworks.

It is not clear whether the snapshot-based approach is feasible in the presence of a multi-

layered JIT architecture as usually present in server-side JavaScript engines. One other

drawback of this approach is that the process of taking snapshots is an expensive and

tedious process. Oh et al report a 29–44% overhead in execution time for framework

code.

Developers have experimented with a snapshot-based approach for migrating node.js

applications using the nwjc tool [87]. However, the developers report a slowdown of

130

Accelerating Server-Side JavaScript Chapter 5

aound 30% for various benchmarks. Also, the developers report incompatibility of snap-

shots across different versions of node.js and platforms.

5.3.2 Java

Arnold et al [57] describe a cross-run repository of profile information for the Java

Virtual Machine. The main idea of the paper is to record and retain raw profile data

such as time spent in various methods of the program, call targets at virtual call sites

etc. During the VM shutdown phase, the recorded information is analyzed and a new

aggregate pre-computed online strategies repository is created. This repository is used

by the instances of the applications that are launched later to make clever decisions

while analyzing and compiling hot functions. Unlike this approach, our strategy does

not have a separate analysis phase. The profile information is recorded as and when the

program is executed. The repository is occasionally pruned to remove unnecessary profile

data using standard database filtering techniques. Therefore, the profile information is

always usable and the new instances do not have to wait fo the monitoring server to

shutdown in order to obtain the analyzed data. Furthermore, unlike their technique, our

approach is specifically designed to handle long running server-side applications written

in a dynamically-typed language.

Stephenson et al [92] describe a machine learning based approach to determining

compilation heuristics for the Java virtual machine. In this approach, machine learning

is used to determine if and when compiler optimizations are applicable to certain class of

applications using data from various applications as a training set. Machine learning is a

complicated approach and requires a lot of resources and time. Therefore, our approach

is faster, simpler, and more conducive for server-side JavaScript applications that need

to be launched instantaneously.

131

Accelerating Server-Side JavaScript Chapter 5

Sandya et al [93] describe a method of combining offline and online profile information

to guide the compilation heuristics of a Java virtual machine. The paper specifically

deals with minimizing the impact of compilation time for potential hot functions on the

overall execution of the application. Modern day JavaScript engines employ concurrent

compilation and, unlike type stability, the compilation time is not a major concern. The

paper also talks about modifying the heuristics to use temporal event profiles to handle

phase changes in the application. Though we do not deal with phase changes in this

paper, this can be viewed as a possible extension to our work.

5.4 Our Technique’s Overall Architecture

Figure 5.5 shows a diagram describing the overall architecture of our approach. An

initial JavaScript engine instance runs the server-side application; this instance is mod-

ified to record its online profile information into a profile database (the specifics of this

information are discussed in Sections 5.5 and 5.6). If the load balancer launches a new

JavaScript engine instance on the same machine as the monitoring instance, the new

instance reads the profile information from the profile database as needed. If the load

balancer launches a new instance on a different machine, then the profile database is

copied over to that new machine as well and the new instance reads the profile informa-

tion from that copy as needed.

5.4.1 Running Example

We will use a running example throughout the next two sections that will be used to

explain the details of our approach. Figure 5.6 shows a dummy JavaScript program that

132

Accelerating Server-Side JavaScript Chapter 5

Event loop
JS

IO

Event loop
JS

IO

Event loop
JS

IO

Requests from
the clients

Load balancer
(Nginx/HAProxy/
Varnish/Cluster)

Monitoring
instance

Local
2nd instance

Remote
Nth instance

Profile
database

Copy

Figure 5.5: During the first monitoring run the profiling database is populated. When
new instances are launched by the load balancer, if the instance is launched in a new
machine, the database is copied over and the new instance is configured to access the
database. Otherwise, the new instance is configured to access the original profiling
database.

133

Accelerating Server-Side JavaScript Chapter 5

serves as a stand-in for some server-side application.1 This dummy code is executed by

the original JavaScript engine instance as well as any engine instances spawned by the

load balancer.

Line 1 shows a JavaScript function hotFun that is called 2,000 times in a loop in lines

12, 14, and 16. During the first 1,000 times, hotFun is profiled to collect information

about primitive types, object shapes, etc. After the 1,000th time, hotFun is deemed hot

and is compiled by the optimizing compiler using the collected profile information. This

threshold of 1,000 is taken from the Mozilla SpiderMonkey JavaScript engine, which is

representative of mainline JavaScript engine implementations.

The loop at line 10 is also hot and would also be compiled by the optimizing compiler.

However, for the sake of simplicity we assume that the loop represents the node.js event

loop and we do not consider its compilation or optimization.

5.5 Cachable Profiling Information

Cachable profiling information consists of data that is gathered by the JavaScript

engine’s online profiler that is not dependent on the current state of the heap or any

data structure that resides in memory. Thus, this information can easily be stored in

an external database and used by other JavaScript engines. In this section we describe

which information gathered by the online profiler can be considered cachable and how it

is used.

Primitive types. Primitive types as recorded by the profiler are used to type-specialize

code generated by the optimizing compiler. A simple example is the addition operator.

If the profiler records at a certain program point that the types of the two operands for

1The program is not actual server-side code, which is event-driven and would unnecessarily complicate
the presentation of our techniques.

134

Accelerating Server-Side JavaScript Chapter 5

(1) function hotFun(a, obj) {
(2) var inc = a + 1;
(3) inc = obj.x + bar();
(4) return inc;

}

(5) function bar() {
(6) return SOME_INT_VALUE;

}

(7) var point = {x:0, y:0};
(8) var zpoint = {x:0, y:0, z:0};
(9) var ind = 0;

(10) for (;ind < 2000; ++ind){
(11) if (ind < 100)
(12) hotFunc(ind, point)
(13) else if (ind < 500)
(14) hotFunc(ind, zpoint);
(15) else
(16) hotFunc(2.5, zpoint)

}

Figure 5.6: Functions hotFun and bar are invoked 2,000 times. hotFun becomes
hot after 1,000 iterations. The online profiler captures profile information at lines 2
and 3 for the function hotFun which is used by the optimizing compiler to optimize
it.

135

Accelerating Server-Side JavaScript Chapter 5

that operator have always been integers, the optimizing compiler can use this informa-

tion to generate type-specialized integer arithmetic code. Because primitive types like

int, bool, double, null, and undefined can be represented using simple enum-

like constructs, it is easy to capture them in the profiling database. The information

that is captured in the database is of the format <filename, lineNo, columnNo,

pcOffset, type>, where the first three fields designate a unique function, the fourth

field designates a point within that function, and the last field designates the enum value

representing a primitive type.

In the running example from Section 5.4.1, for the first 500 iterations the profiler

records a to be int at line number 2, obj.x and the return value of bar to be int

at line 3, and the resultant type of the addition at lines 2 and 3 to be ints. For the

remaining iterations, the profiler records that a is a double.

Deoptimization information. The profiler records function deoptimization information

in order to keep track of how effective the engine’s optimization decisions were. De-

optimization happens when an assumption made by the optimizing compiler (based on

information provided by the profiler) turns out to be incorrect, rendering the optimized

code invalid and requiring the engine to revert back to the unoptimized code. This can

happen for a number of reasons. The ones we focus on in this chapter are:

1. A new primitive type could be observed in future invocations of the function that

wasn’t seen in previous invocations.

2. An overflow could occur after an arithmetic operation which was assumed to result

in an integer but now requires a floating point value.

3. Array bounds could have been violated after having the bounds checks optimized

out.

136

Accelerating Server-Side JavaScript Chapter 5

4. Fast object property access could fail to account for new object shapes that are

seen in future invocations.

Information about the above problems can potentially enable the optimizing compiler

to make better decisions while generating the optimized code:

1. If a new primitive type is observed after type specialization, the profile database

records the new type along with the program point where it occurred. The optimizer

for the newly spawned engine can then account for that type when the function is

compiled. The program point is represented as a tuple <filename, lineNo,

columnNo, pcOffset>, where the first three fields designate a unique function

and the last field designates a point within that function. The profile database,

then, contains a mapping from program points to sets of observed primitive types

that caused deoptimization.

2. If an arithmetic operation causes integer overflow and thus deoptimization then

the profile database records the program point where that happened along with a

flag indicating the integer overflow problem. The optimizer for the newly spawned

engines can then take care to use floating point operations instead of integer oper-

ations, thus avoiding the deoptimization.

3. If an array access at a particular program point causes deoptimization then the

profile database records that fact and the newly spawned engine uses it similarly

to integer overflow as described above.

4. If an unanticipated object shape causes deoptimization (because the object does

not have the proper layout assumed by the optimizer) then again the program point

is recorded in the profile database and the newly spawned engine’s optimizer uses

137

Accelerating Server-Side JavaScript Chapter 5

this information to avoid using the fast object property access code that assumes

a specific layout, thus avoiding the deoptimization.

In the running example, if we assume that bar returns a large int value that caused

an integer overflow during the execution of function hotFun during the monitoring run,

the profile database can be updated with this information so that in the subsequent runs

the optimizing compiler can generate code to avoid deoptimizations due to overflow.

Inlining information. The JavaScript engine’s optimizing compiler uses heuristics to

decide whether to inline callee functions at certain program points. These heuristics

are based on size and hotness of the callee function. At the time the caller function is

optimized, if the callee function is not marked as hot and it is considered too large then

it will not be inlined into the caller function.

However, it may happen that the callee function becomes hot after the caller function

is optimized. This is a missed opportunity for optimization. The profile database records

instances where a callee function at a certain program point was not inlined and yet later

became hot; the newly spawned engine’s optimizer can use this information to make a

better inlining decision for itself.

5.6 Type Stability

There is important information collected by the engine’s online profiler that is inher-

ently dependent on the heap, and thus cannot be simply transferred from one engine to

another. Object shapes (also known as hidden classes) and object type representations

are examples of such information. Because we cannot transfer this information from

the original engine instance to the newly spawned engines, we must allow each newly

spawned engine to rediscover this information for themselves.

138

Accelerating Server-Side JavaScript Chapter 5

However, we are able to optimize the way in which the newly spawned engines collect

and make use of this information based on knowledge gained from the original engine.

Specifically, we can influence the time that it takes for the spawned engines to optimize

hot functions. Näıvely, we could simply mark hot functions in the original engine and

have the spawned engines compile those hot functions with the optimizing compiler im-

mediately upon being spawned. The problem is that without all of the profile information

available to the original engine (including information that cannot be transferred via the

profile database) a spawned engine’s optimizing compiler cannot make good decisions.

Recall that during normal operation, a function (or loop) must execute for one thou-

sand times before being considered hot and compiled with the optimizing compiler. This

duration is set to help ensure that all of the necessary profile information has been col-

lected before the function is optimized. In other words, the engine is waiting until the

function is type stable. In many cases, however, this duration is too conservative—the

appropriate information has been collected well before that threshold is reached.

This gap presents an opportunity: we can use knowledge from the original engine’s

execution to have the spawned engines safely optimize hot functions without having to

wait for the full one thousand invocations. To accomplish this, we can send information

to the spawned engines indicating a specific criteria for marking a particular function as

type stable and hence ready to be optimized, where that criteria is based on the original

engine’s experience with that function.

We have experimented with two different forms of type stability criteria which we

detail below. These two proposed criteria attempt to find a sweet spot between being

easy to communicate and track and being precise enough to be useful. Our evaluation

in Section 5.7 experiments with both forms of criteria.

139

Accelerating Server-Side JavaScript Chapter 5

5.6.1 Invocation Count Type Stability (ICTS)

The first criterion we can use to determine type stability is invocation count. For each

hot function, the original engine determines the first function invocation at which the

function became type stable before being optimized and communicates that value to the

spawned engines. When that function reaches the given invocation count in the spawned

engine, it is optimized without waiting for the one thousand invocation threshold. This

criterion is easy to track (being a simple counter per function, which is already imple-

mented by the JavaScript engine in order to determine hotness) and to communicate to

spawned engines (in the form of a mapping from function to integer).

In order to determine the correct invocation count, the original engine constantly

updates the type stability value for a function with the last invocation count that caused

heap-dependent profile information to be recorded by the online profiler. Algorithm 3

shows how the original engine computes the invocation count for a function. The function

UpdateTypeStabInvocCount is called whenever new heap-dependent profile infor-

mation is recorded by the online profiler. Algorithm 4 shows how spawned engines use

the count to determine when to compile a function. The function IsTypeStable is

called before every invocation of the function in the baseline code.

Algorithm 3 ICTS algorithm—Original Engine (F is the function, PD is the profile
database)

procedure UpdateTypeStabInvocCount(F, PD)
invocationCount← PD(F).invocationCount
if F.invocationCount ≥ invocationCount then

PD(F).invocationCount← invocationCount
end if

end procedure

In the running example from Figure 2.2, the function bar becomes type stable after

the first iteration, whereas the function hotFun becomes type stable after 101 iterations.

The type of the parameter a changes to a double after 500 iterations. But this type

140

Accelerating Server-Side JavaScript Chapter 5

Algorithm 4 ICTS algorithm—Spawned Engine (F is the function and PD is the profile
database)

procedure IsTypeStable(F, PD)
invocationCount← PD(F).invocationCount
if F.invocationCount ≥ invocationCount then

return true
else return false
end if

end procedure

change is not considered while calculating the type stability metric because the double

type is cachable information and is captured in the profile database.

5.6.2 Type Profile Count Type Stability (TPCTS)

The alternate criterion we can use to determine type stability is type profile count.

This is a finer-grained metric than invocation count; it is more complex and requires

more work to track and communicate, but it is more precise than the first criterion.

For each function, for each program point, the original engine counts how many

different instances of heap-dependent profile information are tracked at that program

point before the function becomes type stable and is optimized. These counts are stored

in the profile database as a mapping from program point to integer and sent to the

spawned engines. The spawned engines keep a counter per program point that is incre-

mented whenever the online profiler records new heap-dependent information. When the

counters for every program point of a function equal or exceed the value in the profile

database, the function is marked hot and optimized. Algorithm 5 shows how the original

engine computes the type profile count for a program point of a function. The func-

tion UpdateTypeProfileCount is called by the online profiler whenever new heap-

dependent profile information is recorded at a program point. Algorithm 6 shows how

spawned engines use the count to determine when to compile a function. The function

141

Accelerating Server-Side JavaScript Chapter 5

IsTypeStable is called before every invocation of the function in the baseline code.

If the function is already classified as hot by the engine’s online profiler, the algorithm

skips the type stability check.

Algorithm 5 TPCTS algorithm—Original Engine (F is the function, PD is the profile
database, and PC is the program counter)

procedure UpdateTypeProfileCount(F,PD,PC)
PD(F, PC).profCount← PD(F, PC).profCount + 1

end procedure

Algorithm 6 TPCTS algorithm—Spawned Engine (F is the function and PD is the profile
database)

procedure IsTypeStable(F, PD)
if IsFunctionHot(F) then

return true
end if

for all pc ∈F.nonCachableProfilePCs do
if F(pc).profCount < PD(F, pc).profCount then

return false
end if

end for
return true

end procedure

Because the spawned engines are not executing exactly the same requests in the same

order as the original engine, the provided type profile counts are not guaranteed to be

completely accurate. However, this criterion is more precise than the invocation count

criterion and will result in fewer deoptimizations due to premature optimization.

In the running example, during the original engine’s execution two shapes are recorded

for obj (one corresponding to point and another corresponding to zpoint object) and

one closure is recorded for bar in line 3. During the spawned engines’ executions, at the

moment when two shapes have been recorded for obj and one closure has been recorded

for bar by the online profiler then the function is marked as type stable and compiled

142

Accelerating Server-Side JavaScript Chapter 5

by the optimizing compiler. In our example, both ICTS and TPCTS mark hotFun to

be type stable after 101 iterations.

5.7 Evaluation

We evaluate our implementation on Jxcore [80], an implementation of node.js

which uses Mozilla’s SpiderMonkey [14] JavaScript engine. We use the standard node.js

performance benchmarks from the Jxcore official repository.2 From those we select the

10 benchmarks that allow the execution duration to be configured, in order to properly

simulate the relation between the original JavaScript engine execution and the newly

spawned engines (i.e., the original engine will have executed longer than the newly-

spawned engines).

Experimental Setup. We run our experiments on an 8-core Intel i7-4790 machine with

32GB RAM running Ubuntu 14.04 Linux operating system. For the original run, the

benchmark is executed with training configuration and inputs for 20 seconds. The profile

database that is captured is used for subsequent newly-spawned instances as it closely

resembles the actual execution pattern of a long running node.js application.

Calculating Throughput. To simulate the newly-spawned engines, each of the bench-

marks is executed using a different configuration and inputs from the execution of the

original engine, with access to the profile database computed by the original engine

as described above. Each benchmark is executed 10 times, and we record the average

throughput at regular intervals during the execution.

Configurations. We run our experiments with the following five configurations:

2https://github.com/jxcore/jxcore/tree/master/benchmark

143

Accelerating Server-Side JavaScript Chapter 5

• Original: the unmodified application running on a vanilla Jxcore implementation.

• Original with ICTS profiling: representing the modified original engine with ICTS

profiling enabled.

• Newly-spawned with ICTS: representing the newly-spawned engine using the ICTS

profile information.

• Original with TPCTS profiling: representing the modified original engine with

TPCTS profiling enabled.

• Newly-spawned with TPCTS: representing the newly-spawned engine using the

TPCTS profile information.

5.7.1 Throughput Improvements

Figures 5.7.1 and 5.7.1 show the throughput for various configurations of the bench-

marks during the first three seconds of their execution. For most of the benchmarks the

newly-spawned ICTS and TPCTS engines perform very well compared to the baseline.

The throughput usually varies during the execution of the application and is influenced by

various internal and external factors like disk latency and garbage collection. Therefore,

the throughput values can vary over time for different configurations.

A common trend among most of the benchmarks is the initial spike in the throughput

value after 250ms of execution. We believe this spike is because during the initial stages of

execution of the benchmark, the garbage collector (GC) is dormant and doesn’t interfere

with the execution of the application.

Outliers: One definite outlier among the benchmarks is the client-request-body.js

benchmark in Figure 5.13. For this benchmark, all the configurations show similar be-

144

Accelerating Server-Side JavaScript Chapter 5

havior during all the phases of execution. This is mostly because this application only

has one hot function. Therefore, there is not much overhead while collecting the profile

information and there isn’t much speedup obtained by using the profile information to

optimize just one hot function in the newly-spawned configurations.

The newly-spawned ICTS and TPCTS instances show average to poor performance

for the net-s2c.js and net-pipe.js benchmarks. Figures 5.10 and 5.11 show a

sudden dip in throughput after the initial spike at 250ms. On further investigation we

realized that the GC was at fault for the poor performance. For these benchmarks, the

GC always triggers as soon as hot functions are compiled by the optimizing compiler (even

for the vanilla Jxcore runtime, without any of our modifications). In SpiderMonkey

compiled code is garbage collected at every major collection, and thus for these two

benchmarks, for all configurations, the highly optimized code is garbage collected as

soon as it is produced.

This is a problem for any JavaScript engine running these benchmarks even without

our modifications, but our modifications exacerbate the problem precisely because we

cause functions to be compiled more quickly, thus causing GC to happen more frequently

and causing the optimized code to be thrown away again in a vicious cycle.

Observations: Intuitively, we expect that TPCTS should perform better than ICTS be-

cause the profile information provided to the TPCTS instance is more precise. However,

for the benchmarks tls-throughput.js, dgram.js, and net-c2s.js the newly-

spawned TPCTS instances have lower performance compared to the newly-spawned ICTS

engines. The following is the reason why this happens. During TPCTS profiling in the

original instance, all the heap-dependent information collected at a program point is

counted without any consideration for when the information is recorded during the exe-

cution of the program. This may lead to a problem if a function was monomorphic during

145

Accelerating Server-Side JavaScript Chapter 5

the initial phases of execution of the application and becomes polymorphic during the

later phases. In the newly-spawned instance, the function is not regarded as type stable if

all the heap-dependent information is not recorded at every program point. Therefore, in

the initial phases the function is not regarded as type stable leading to poor performance.

For all the benchmarks, the performance of the original instance with ICTS profiling

is comparable to the original instance. This is because we use fast in-memory database

to capture the profile information and backup the database occasionally in a separate

thread to minimize the impact of disk latency during the execution of the program. But

the original instance with TPCTS profiling enabled performs slightly worse. This is

expected because more information is recorded at every program point for TPCTS when

compared to ICTS.

Newly-spawned TPCTS engines perform extremely well for the cipher-stream.js

benchmark. Upon inspection we found that the benchmark is mostly static and monomor-

phic in nature and this nature of the benchmark does not change with respect to the

inputs provided, which is a best-case scenario for our technique.

5.7.2 Function Compilation & Type Stability

To measure how soon functions are compiled, we modified the original engine and

the newly-spawned engines using the ICTS and TPCTS heuristics to record the invoca-

tion count when the function is compiled by the optimizing compiler. A few functions

that require no profile information to execute are statically analyzed by the engine and

compiled after just one invocation.

Figure 5.17 shows the how soon the functions are compiled for the original and newly-

spawned ICTS and TPCTS engines for all of the benchmarks combined. In the original

engine, most of the functions are compiled after one thousand invocations. For the newly-

146

Accelerating Server-Side JavaScript Chapter 5

0

50

100

150

200

250

300

350

400

0 0 .25 0 .5 0 .75 1 1 .25 1 .5 1 .75 2 2 .25 2 .5 2 .75 3

RE
Q
U
ES
TS
	P
RO

CE
SS
ED

	P
ER
	S
EC
O
N
D

TIME	 IN	SECONDS

TLS-THROUGHPUT

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.7: Operations per second plots for tls-throughput.js. The y axis represents
the requests processed per second values for a TLS server.The x axis represents exe-
cution time in seconds. Higher is better.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0 .25 0 .5 0 .75 1 1 .25 1 .5 1 .75 2 2 .25 2 .5 2 .75 3

RE
Q
U
ES
TS
	P
RO

CE
SS
ED

	P
ER
	S
EC
O
N
D

TIME	 IN	SECONDS

DGRAM

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.8: Operations per second plots for dgram.js benchmark. The y axis for 5.8
represents the requests processed per second values for a UPD server. The x axis
represents execution time in seconds. Higher is better.

147

Accelerating Server-Side JavaScript Chapter 5

0

0.2

0.4

0.6

0.8

1

1.2

0 0 .25 0 .5 0 .75 1 1 .25 1 .5 1 .75 2 2 .25 2 .5 2 .75 3

O
PE
RA

TI
O
N
S	
PE
R	
SE
CO

N
D

TIME	 IN	SECONDS

NET-C2S

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.9: Operations per second plots for net-c2s.js benchmark. The y axis repre-
sents the number of API operations performed by the benchmark per second. The x
axis represents execution time in seconds. Higher is better.

0

2

4

6

8

10

12

0 0 .25 0 .5 0 .75 1 1 .25 1 .5 1 .75 2 2 .25 2 .5 2 .75 3

O
PE
RA

TI
O
N
S	
PE
R	
SE
CO

N
D

TIME	 IN	SECONDS

NET-S2C

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.10: Operations per second plots for net-s2c.js benchmark. The y axis repre-
sents the number of API operations performed by the benchmark per second. The x
axis represents execution time in seconds. Higher is better.

148

Accelerating Server-Side JavaScript Chapter 5

0

1

2

3

4

5

6

7

8

9

10

0 0 .25 0 .5 0 .75 1 1 .25 1 .5 1 .75 2 2 .25 2 .5 2 .75 3

O
PE
RA

TI
O
N
S	
PE
R	
SE
CO

N
D

TIME	 IN	SECONDS

NET-PIPE

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.11: Operations per second plots for net-pipe benchmark. The y axis repre-
sents the number of API operations performed by the benchmark per second. The x
axis represents execution time in seconds. Higher is better.

0

5

10

15

20

25

30

35

40

45

0 0 .25 0 .5 0 .75 1 1 .25 1 .5 1 .75 2 2 .25 2 .5 2 .75 3

O
PE
RA

TI
O
N
S	
PE
R	
SE
CO

N
D

TIME	 IN	SECONDS

STARTUP

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.12: Operations per second plots for startup.js benchmark. The y axis rep-
resents the requests the number of API operations performed by the benchmark per
second. The x axis represents execution time in seconds. Higher is better.

149

Accelerating Server-Side JavaScript Chapter 5

0

10

20

30

40

50

60

0 0 .25 0 .5 0 .75 1 1 .25 1 .5 1 .75 2 2 .25 2 .5 2 .75 3

O
PE
RA

TI
O
N
S	
PE
R	
SE
CO

N
D

TIME	 IN	SECONDS

CLIENT-REQUEST-BODY

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.13: Operations per second plots for client-request-body.js benchmark. The
y axis represents the requests the number of API operations performed by the bench-
mark per second. The x axis represents execution time in seconds. Higher is better.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800 900 1000

O
PE
RA

TI
O
N
S	
PE
R	
SE
CO

N
D

WRITES	TO	STREAM

CIPHER-STREAM

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.14: Operations per second plots for cipher-stream.js. The x axis represents
the number of write operations performed by the server into the stream when re-
quested by the client. The y axis represents the rate at which the write operations
are performed per second. Higher is better.

150

Accelerating Server-Side JavaScript Chapter 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500 600 700 800 900 1000

O
PE
RA

TI
O
N
S	
PE
R	
SE
CO

N
D

WRITES	TO	STREAM

HASH-STREAM-CREATION

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.15: Operations per second plots for hash-stream-creation.js. The x axis
represents the number of write operations performed by the server into the stream
when requested by the client. The y axis represents the rate at which the write
operations are performed per second. Higher is better.

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

O
PE
RA

TI
O
N
S	
PE
R	
SE
CO

N
D

WRITES	TO	STREAM

HASH-STREAM-THROUGHPUT

Newly	spawned	w/	 ICTS Original Original	w/	 ICTS	profiling Newly	spawned	w/	TPCTS Original	w/	TPCTS	profiling

Figure 5.16: Operations per second plots for hash-stream-throughput.js. The x axis
represents the number of write operations performed by the server into the stream
when requested by the client. The y axis represents the rate at which the write
operations are performed per second. Higher is better.

151

Accelerating Server-Side JavaScript Chapter 5

0

50

100

150

200

250

300
20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

70
0

72
0

74
0

76
0

78
0

80
0

82
0

84
0

86
0

88
0

90
0

92
0

94
0

96
0

98
0

10
00

N
U
M
BE
R	
O
F	
FU

N
CT
IO
N
S	
CO

M
PI
LE
D

INVOCATIONS

Newly-spawned	 ICTS Newly-spawned	TPCTS Original

Figure 5.17: Number of functions compiled by the original engine, newly-spawned
engine with ICTS and newly-spawned engine with TPCTS at every interval of 20
invocations.

spawned engine with ICTS profiling, most of the functions are compiled between 0 - 20

invocations. This is because most of the functions are type stable within the first twenty

iterations. Some exceptions to this include a few library functions that are designed to

deal with objects of different shapes and object types. These functions are compiled only

after one thousand iterations.

In the newly-spawned engine with TPCTS profiling, most of the functions are com-

piled between 0–20 invocations. However, the number of functions compiled in this

duration is fewer compared to the newly-spawned engine with ICTS. This is primarily

because of the phase change problem described above. Therefore, a major chunk of

functions are compiled only after one thousand iterations.

152

Accelerating Server-Side JavaScript Chapter 5

5.8 Conclusion

In this chapter we have addressed the problem of optimizing server-side JavaScript ap-

plications. Specifically, we modify the node.js runtime to transfer information collected

from the original JavaScript engine to any newly spawned engines that the node.js run-

time has created due to increased load. This information is used by the newly spawned

engines to hasten the time at which functions can be compiled by the optimizing compiler;

the result is an increased initial throughput.

We have identified the profile information collected by the original engine that can

be easily transferred to the spawned engines. Faced with important profile information

that cannot be easily transferred, we have identified a notion of function type stability

that allows the original engine to transfer useful information to the spawned engines even

without being able to transfer the exact profile information from the original engine. Our

results show that for 7 out of 10 benchmarks, our technique shows better performance

than the original engine. The overhead of collection of additional profile information in

the original engine is negligible. Also, using the type stability metrics, the runtime engine

can detect and optimize type stable functions earlier than the original engine.

153

Chapter 6

Conclusion

We conclude the dissertation by summarizing our key contributions to the field of type

specialization and describing the limitations and future directions of research in this field.

Type specialization is an important optimization used to improve the performance of

JavaScript engines. In this dissertation we present various techniques to augment and

improve upon the current state-of-the-art type specialization techniques. Our work is a

significant contribution to the JavaScript engine design community and opens up new

avenues to push the limits of performance for JavaScript engines.

JavaScript engine design and optimization as a field is rapidly advancing with major

corporations like Google, Apple, Microsoft, Oracle, and Mozilla having major stakes it.

These corporations have their versions of JavaScript engines either embedded in web

browsers or used as a language runtime in a server. In any case, these products affect

the lives of millions of people everyday. We believe that the strategies described in this

dissertation will further help improve the state-of-the-art in this field. As an example,

this dissertation presents the first deoptimization technique that is implemented on top

of a typed stack-based virtual machine. This technique is now implemented in Oracle’s

Nashorn JavaScript engine, which is the default JavaScript implementation bundled with

154

Conclusion Chapter 6

Java 8 distribution.

6.1 Contributions and Future Directions

We list the contributions of the work described in this dissertation and discuss the

possible future directions for each of them.

6.1.1 Synergistic Type Specialization

We first solve the problem of combining type feedback and type inference to assist

and augment each other. We improve upon the previous work of using type feedback

to improve the precision of type inference by extending using function type signature.

We use type inference analysis to reduce the overhead of type feedback by using inferred

type information to intelligently place type profiling hooks This also helps in reducing

the number of type checks that are performed during the optimized code execution. Via

experimental evaluation we show that synergistic type specialization outperforms the

state-of-the-art type specialization techniques across a wide array of benchmark suites.

Future Directions: In synergistic type specialization, we perform intra-procedural type

inference. An obvious way to improve the precision of the analysis is to incorporate object

types and function return types as additional inputs to the analysis. Since the analysis

is performed online, there is an urgency to complete the analysis as early as possible.

Therefore, the challenge is to balance the precision of the analysis with the time taken

to perform the analysis.

The algorithm at the moment does not perform redundant guard elimination anal-

ysis. For example, the type checks or guards that are added around every access of a

global variable are unnecessary if the variable is not modified between checks. In theory,

155

Conclusion Chapter 6

the analysis seems straightforward; but in practice, it is not non-trivial. The implicit

conversion rules and the possibility of execution of arbitrary code while accessing global

variables and object properties using getters and setters makes the analysis a lot

more complicated. Therefore, if the JavaScript engine is designed to keep track of the ac-

cess pattern of global variables and object properties, it is possible to perform redundant

guard elimination.

JavaScript has evolved rapidly over the past couple of years. New features like typed

arrays [94], proxies [95], classes [96], constants [97], and block scoping mechanism [98]

have been introduced in ECMAScript 6 standard [99]. Making the synergistic type

specialization technique aware of such features will be a challenge and will potentially

improve the precision of the types that are inferred by it.

6.1.2 Deoptimization on Top of Typed, Stack-based Virtual Machines

Previous work on type specialization on top of typed, stack-based VMs implemented

in runtimes like IronJS [10] do not use deoptimization as a recovery mechanism. This

is due to inherent limitation of typed, stack-based runtimes that disallow pre-existing

deoptimization techniques to work on top of them. We solve this problem by designing

a new deoptimization strategy tuned to operate on top of typed, stack-based VMs. The

strategy uses the exception handling feature of the VM and a new bytecode verifier,

implemented on top of the VM. Our experimental evaluation shows that our technique

performs better than pre-existing type specialization techniques implemented on top of

typed, stack-based VMs.

Future Directions: One weakness of the deoptimization technique is that the algorithm

assumes that, at deoptimization point, the values present in the operand stack can be

converted into DValues that are processed by the subroutine threaded interpreter. In

156

Conclusion Chapter 6

some scenarios, the values present in the operand stack of the VM cannot be converted

to DValues. For example, some optimizations such as polymorphic inline caching stores

the map or hidden class of the object in the operand stack. Deoptimization is not

possible at this point because the runtime is not able to convert the map structure into

DValue.

Though we avoid type specializing functions containing such program points, this is

still a limitation of the algorithm and can potentially limit new types of optimizations

that can be applied on the code in the future. One solution to this problem is to maintain

an auxiliary type stack during the code generation phase that tracks only those values

that need to be transferred to the subroutine-threaded code. For any non-transferable

values such as object maps, it is important to maintain a placeholder to skip it.

Our technique makes heavy use of exception handling to perform state transfer from

optimized code to non-optimized code. Microsoft’s MSDN library documentation sug-

gests that throwing an exception explicitly in a try block can inhibit the compiler from

performing certain optimizations [100]. One approach to solving this problem is by elimi-

nating the need for exception handling while transferring the control from optimized code

to non-optimized code. One possible alternative is to add support for deoptimization in

the underlying VM itself by adding a special bytecode that indicates that deoptimization

is possible at certain program points. The language implementor can provide a mapping

from a deoptimization point in the optimized code to a corresponding program point in

the non-optimized code where the execution should resume. The runtime can take care

of the transferring the operand stack from optimized code to the non-optimized code.

157

Conclusion Chapter 6

6.1.3 Server-Side Type Profiling

Deoptimizations are an important concern for performance, and reducing the deopti-

mizations provides a significant performance benefit. We present a technique to optimize

JavaScript programs sent from a server to a client by performing ahead-of-time profiling

on the server side to reduce deoptimizations. In addition to reducing deoptimizations, our

technique also allows aggressive compilation of hot functions, while reducing the change

of deoptimizations caused due to reduced profiling time.

Future Directions: Researchers have made various attempts at adding static typing

to JavaScript to improve programmer productivity and in some cases, to avoid type

errors during run-time. Microsoft’s TypeScript [67] language and Facebook’s Flow type

checker [65] are two popular technologies at the moment.

In case of TypeScript, the type annotations are discarded by the compiler when it

translates TypeScript code to JavaScript. Therefore, the annotations only serve the

purpose of ensuring the correctness of the code when it is compiled. Flow type checker

performs type inference on JavaScript and uses type annotations, when present, to check

for the correctness of the code. But when the code is compiled down to JavaScript all

the type annotations are either lost or made explicit as type checks in the code itself

using the instanceOf operator. Type checks performs as part of the code are slower

and serve only the purpose of checking the code for correctness.

A possible extension to our work is to combine the type annotations added by the

developer with the types that are collected during the ahead-of-time profiling phase to

generate much precise type profile information. The developer can then be provided with

an interface that shows where deoptimization occurred during the course of execution and

what unexpected type caused it. With the help of the developers’ input, the code can

be modified to either eliminate the deoptimization or add additional annotations to the

158

Conclusion Chapter 6

code to improve the performance.

One of the drawbacks of server-side profiling is that not all classes of deoptimizations

can be captured by ahead-of-time profiling. For example, a few deoptimizations occur

due to unhandled corner cases in optimizations performed by the optimizing compiler.

These optimizations and corresponding deoptimizations can be different for different

client JavaScript engines. Sometimes the root cause of deoptimization is not made explicit

by the client JavaScript engine. One way to solve this problem is to modify the client

browsers to make the cause of deoptimization explicit. This will allow us to modify the

ahead-of-time profiler to be much smarter in capturing the required information during

deoptimizations.

Object shape tracking is still a major hurdle while performing ahead-of-time profiling.

Our attempt at object shape tracking involved using the calling context of the program

point where the shape was created to uniquely identify the shape. This turned out to be

extremely expensive process both while profiling at the server-side and using the profile

information at the client-side. This is mainly because the calling contexts used to identify

object shapes were imprecise and tracking precise calling contexts while executing the

code is expensive. A possible solution to this problem is to modify the JavaScript engine

to explicitly track precise calling contexts in an efficient manner.

6.1.4 Accelerating Server-Side JavaScript

We identify the profile information that can be transfered from one server-side JavaScript

engine to another to improve performance. We classify such profile information into two

categories – cachable and heap-dependent information. Though transferring cachable

information is trivial, heap-dependent information is not easily transferable. Therefore,

we propose a notion of function type stability that indicates the newly spawned engines

159

Conclusion Chapter 6

when a function has collected enough heap-dependent type information to be optimized.

We evaluate our technique on Jxcore, a node.js implementation and compare the per-

formance against ten node.js benchmarks. Our results show that seven out of ten bench-

marks benefit from additional profile information and type stability heuristics. Addition-

ally, the overhead of collection of additional profile information in the original engine is

negligible.

Future Directions: The type stability heuristics are not always perfect. More precise

the type stability heuristic is, better the chance of avoiding deoptimization in the newly

spawned engine. An alternate and more accurate heuristic of type stability is based

on tracking object shapes. Object shapes are the most predominant heap-dependent

profile information. Therefore, as a type stability metric we can approximately consider

a function to be type stable if for all program points in the function, all the previously

recorded object shapes were observed in the newly spawned instances of the application.

As described in the previous section, accurately tracking object properties is non-trivial

and expensive. If the JavaScript engines can be modified to implement accurate and

inexpensive calling context recording, the problem on object shape tracking can be solved.

This will enable the a more accurate type stability metric based on object shape tracking.

Sometimes, inaccurate type stability heuristics can exasperate already existing prob-

lems in the applications. For example, in two of the benchmarks that we experimented

with, type stability heuristics caused the garbage collector to discard the optimized code

more frequently causing slowdowns. Therefore, it is important to track such adverse

effects of using type stability heuristics and take remedial measures like resetting them

to default runtime behavior.

Applications are known to evolve over time and phase changes while executing an

application is well documented in literature [101, 50]. With phase change, profile infor-

160

mation often tends to become obsolete. One way to solve this problem for cached profile

information is to to implement the concept of profile decay to phase out irrelevant infor-

mation form the profile database. Another approach to handle phase changes is to add a

temporal dimension to the profile information that is collected. For example, if a function

is observed to operate on different set of types after a phase change, the new types can

be recorded in the profile database along with the phase change indicator. Examples of

phase change indicators for JavaScript applications are deoptimizations and creation of

new object shapes during the course of execution of the application. Using this temporal

dimension in the profile database, on phase change, the newly spawned JavaScript engine

can trigger the optimizing compiler to generate fresh versions of optimized code.

161

Bibliography

[1] “Node.js JavaScript Runtime.” https://nodejs.org/en/, 2015.

[2] “Windows 10 universal app platform.”
https://blogs.windows.com/buildingapps/2015/03/02/
a-first-look-at-the-windows-10-universal-app-platform/,
2015.

[3] “Gnome javascript applications.” https:
//developer.gnome.org/gnome-devel-demos/stable/js.html.en,
2015.

[4] “Javascript game engine.” http://www.cocos2d-x.org/, 2015.

[5] “Espruino - javascript for microcontrollers.” http://www.espruino.com/,
2015.

[6] “Tessel 2 - javascript-based development platform for microcontrollers.”
https://tessel.io/, 2015.

[7] C. Chambers, J. Hennessy, and M. Linton, The design and implementation of the
self compiler, an optimizing compiler for object-oriented programming languages,
tech. rep., Stanford University, Department of Computer Science, 1992.

[8] B. Hackett and S.-y. Guo, Fast and precise hybrid type inference for javascript, in
Proceedings of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation, pp. 239–250, ACM, 2012.

[9] M. Bebenita et. al., SPUR: a trace-based JIT compiler for CIL, in Proceedings of
the ACM international conference on Object oriented programming systems
languages and applications, (Reno/Tahoe, Nevada, USA), pp. 708–725, 2010.

[10] “IronJS.” https://github.com/fholm/IronJS.

[11] “Rhino JavaScript engine.”
https://developer.mozilla.org/en-US/docs/Rhino.

162

[12] J. Castanos, D. Edelsohn, K. Ishizaki, P. Nagpurkar, T. Nakatani, T. Ogasawara,
and P. Wu, On the benefits and pitfalls of extending a statically typed language jit
compiler for dynamic scripting languages, in Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, (New York, NY, USA), pp. 195–212, ACM, 2012.

[13] “Nashorn JavaScript engine.”
http://openjdk.java.net/projects/nashorn.

[14] “SpiderMonkey JavaScript Engine.”
http://www.mozilla.org/js/spidermonkey/, 2015.

[15] M. N. Kedlaya, J. Roesch, B. Robatmili, M. Reshadi, and B. Hardekopf, Improved
type specialization for dynamic scripting languages, in Proceedings of the 9th
Symposium on Dynamic Languages, 2013.

[16] “Acm author rights.” http://authors.acm.org/main.html, 2015.

[17] M. N. Kedlaya, B. Robatmili, C. Caşcaval, and B. Hardekopf, Deoptimization for
dynamic language jits on typed, stack-based virtual machines, in Proceedings of the
10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, 2014.

[18] M. N. Kedlaya, B. Robatmili, and B. Hardekopf, Server-side type profiling for
optimizing client-side javascript engines, in Proceedings of the 11th Symposium on
Dynamic Languages, DLS 2015, (New York, NY, USA), pp. 140–153, ACM, 2015.

[19] U. Hölzle and D. Ungar, Optimizing dynamically-dispatched calls with run-time
type feedback, ACM SIGPLAN Notices 29 (1994), no. 6 326–336.

[20] O. Agesen, Concrete type inference: delivering object-oriented applications. PhD
thesis, Stanford University, Stanford, CA, USA, 1996. UMI Order No.
GAX96-20452.

[21] O. Agesen and U. Hölzle, Type feedback vs. concrete type inference: A comparison
of optimization techniques for object-oriented languages, in ACM SIGPLAN
Notices, vol. 30, pp. 91–107, ACM, 1995.

[22] “Sunspider benchmark suite.”
http://www.webkit.org/perf/sunspider/sunspider.html.

[23] “V8 benchmark suite.”
http://v8.googlecode.com/svn/data/benchmarks/v7/README.txt.

[24] “Kraken benchmark suite.” http://krakenbenchmark.mozilla.org.

[25] “Js1k.” http://js1k.com.

163

[26] U. Hölzle and D. Ungar, Reconciling responsiveness with performance in pure
object-oriented languages, ACM Trans. Program. Lang. Syst. 18 (July, 1996)
355–400.

[27] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney, A survey of
adaptive optimization in virtual machines, in Proceedings of the IEEE, 93(2),
2005. special issue on program generatation, optimization, and adaptations, 2004.

[28] M. Arnold and B. G. Ryder, A framework for reducing the cost of instrumented
code, in Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, PLDI ’01, (New York, NY, USA),
pp. 168–179, ACM, 2001.

[29] “Google Inc. V8 JavaScript virtual machine.”
https://code.google.com/p/v8, 2015.

[30] “V8 engine.” http://www.jayconrod.com/posts/54/
a-tour-of-v8-crankshaft-the-optimizing-compiler, 2013.

[31] C. Chambers, The design and implementation of the self compiler, an optimizing
compiler for object-oriented programming languages. PhD thesis, Stanford
University, 1992.

[32] U. Hölzle, Adaptive optimization for SELF: reconciling high performance with
exploratory programming. PhD thesis, Stanford University, 1995.

[33] C. F. Bolz, A. Cuni, M. Fija lkowski, M. Leuschel, S. Pedroni, and A. Rigo,
Runtime feedback in a meta-tracing jit for efficient dynamic languages, in
Proceedings of the 6th Workshop on Implementation, Compilation, Optimization
of Object-Oriented Languages, Programs and Systems, p. 9, ACM, 2011.

[34] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo, Tracing the meta-level: Pypy’s
tracing jit compiler, in Proceedings of the 4th workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages and Programming
Systems, pp. 18–25, ACM, 2009.

[35] “PyPy Status Blog.” http://morepypy.blogspot.com, 2013.

[36] “Rubinius Blog.” http://rubini.us/blog, 2013.

[37] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and
D. A. Moon, Common lisp object system specification, ACM Sigplan Notices 23
(1988), no. SI 1–142.

[38] C. Chambers and G. T. Leavens, Typechecking and modules for multimethods,
ACM Transactions on Programming Languages and Systems (TOPLAS) 17
(1995), no. 6 805–843.

164

[39] “Xamarian Inc. Mono.” http://www.mono-project.com/Main_Page,
2013.

[40] C. Cascaval, S. Fowler, P. Montesinos-Ortego, W. Piekarski, M. Reshadi,
B. Robatmili, M. Weber, and V. Bhavsar, Zoomm: a parallel web browser engine
for multicore mobile devices, in Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP ’13, (New
York, NY, USA), pp. 271–280, ACM, 2013.

[41] “Google closure compiler.”
https://developers.google.com/closure/compiler.

[42] “Jscrush minifier.” http://www.iteral.com/jscrush.

[43] S. J. Fink and F. Qian, Design, implementation and evaluation of adaptive
recompilation with on-stack replacement, in Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization, 2003.

[44] S. Soman and C. Krintz, Efficient and general on-stack replacement for aggressive
program specialization, in Proceedings of the 2006 International Conference on
Programming Languages and Compilers, 2006.

[45] U. Hölzle and D. Ungar, A third-generation self implementation: reconciling
responsiveness with performance, in Proceedings of the ninth annual conference on
Object-oriented programming systems, language, and applications, 1994.

[46] M. Paleczny, C. Vick, and C. Click, The java hotspot server compiler, in
Proceedings of the 2001 Symposium on JavaTM Virtual Machine Research and
Technology Symposium - Volume 1, 2001.

[47] B. Robatmili, C. Cascaval, M. Reshadi, M. N. Kedlaya, S. Fowler, M. Weber, and
B. Hardekopf, Muscalietjs: Rethinking layered dynamic web runtimes, in
Proceedings of the 10th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments, 2014.

[48] M. Berndl, B. Vitale, M. Zaleski, and A. D. Brown, Context threading: A flexible
and efficient dispatch technique for virtual machine interpreters, in Proceedings of
the international symposium on Code generation and optimization, 2005.

[49] “Dynamic Language Runtime.”
http://msdn.microsoft.com/en-us/library/dd233052.aspx.

[50] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz, Trace-based just-in-time

165

type specialization for dynamic languages, in Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implementation, 2009.

[51] “Lua Just-In-Time compiler.” http://luajit.org/, 2013.

[52] S. Brunthaler, Efficient interpretation using quickening, in Proceedings of the 6th
Symposium on Dynamic Languages, 2010.

[53] S. Brunthaler, Inline caching meets quickening, in Proceedings of the 24th
European Conference on Object-oriented Programming, 2010.

[54] K. Ishizaki, T. Ogasawara, J. Castanos, P. Nagpurkar, D. Edelsohn, and
T. Nakatani, Adding dynamically-typed language support to a statically-typed
language compiler: performance evaluation, analysis, and tradeoffs, in Proceedings
of the 8th ACM SIGPLAN/SIGOPS conference on Virtual Execution
Environments, 2012.

[55] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and
H. Mössenböck, An intermediate representation for speculative optimizations in a
dynamic compiler, in Proceedings of the sixth ACM workshop on Virtual machines
and intermediate languages, 2013.

[56] U. Hölzle, C. Chambers, and D. Ungar, Debugging optimized code with dynamic
deoptimization, in Proceedings of the ACM SIGPLAN 1992 conference on
Programming language design and implementation, 1992.

[57] M. Arnold, A. Welc, and V. T. Rajan, Improving virtual machine performance
using a cross-run profile repository, in Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, 2005.

[58] C. Krintz, Coupling on-line and off-line profile information to improve program
performance, in Proceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimization, 2003.

[59] “Java virtual machine.”
http://docs.oracle.com/javase/specs/jvms/se7/html/, 2013.

[60] “MSDN. (2011, March) Common Language Runtime Overview.”
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx.

[61] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney, Adaptive optimization
in the jalapeno jvm, in Proceedings of the 15th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, 2000.

[62] “Webkit JavaScriptCore virtual machine.”
http://trac.webkit.org/wiki/JavaScriptCore, 2015.

166

[63] C. Krintz and B. Calder, Using annotations to reduce dynamic optimization time,
in Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, 2001.

[64] “asm.js specification.” http://asmjs.org/spec/latest/, 2015.

[65] “Flow static type checker.” http://flowtype.org, 2015.

[66] “Google Inc. closure compiler.”
https://developers.google.com/closure/compiler/, 2015.

[67] “Typescript.” http://www.typescriptlang.org, 2015.

[68] L. Guckert, M. OConnor, S. Kumar Ravindranath, Z. Zhao, and
V. Janapa Reddi, A case for persistent caching of compiled javascript code in
mobile web browsers, in In Workshop on Architectural and Microarchitectural
Support for Binary Translation, 2013.

[69] J. Oh and S.-M. Moon, Snapshot-based loading-time acceleration for web
applications, in Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, 2015.

[70] “Spidermonkey baseline compiler.”
https://wiki.mozilla.org/Javascript:SpiderMonkey:
BaselineCompiler, 2013.

[71] U. Hölzle, C. Chambers, and D. Ungar, Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches, in ECOOP’91 European
Conference on Object-Oriented Programming, pp. 21–38, Springer, 1991.

[72] “Octane benchmark suite.” https://developers.google.com/octane/,
2015.

[73] “pixi.js 3d rendering engine.” http://www.pixijs.com, 2015.

[74] “three.js physics engine.” http://threejs.org, 2015.

[75] “Matter.js - a 2d rigid body javascript physics engine.”
http://brm.io/matter-js/, 2015.

[76] “Physics.js physics engine.” http://wellcaffeinated.net/PhysicsJS/,
2015.

[77] “Membench50.” http://gregor-wagner.com/tmp/mem50, 2015.

[78] “Mozilla central repository.”
https://hg.mozilla.org/mozilla-central, 2015.

167

[79] “Selenium ide.”
http://docs.seleniumhq.org/docs/02_selenium_ide.jsp, 2015.

[80] “Jxcore Node.js Distribution.” http://jxcore.com/home/, 2015.

[81] “Avatar.js Node.js Distribution.” https://avatar-js.java.net/, 2015.

[82] Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi, Microarchitectural implications
of event-driven server-side web applications, in Proceedings of International
Symposium on Microarchitecture, 2015.

[83] “Nodejs require is dog slow.”
https://kev.inburke.com/kevin/node-require-is-dog-slow/,
2015.

[84] “From Node.js To Go.” http://thenewstack.io/
from-node-js-to-go-why-one-startup-made-the-switch/, 2015.

[85] “A little problem with child process.” https://goo.gl/dD8WRF, 2015.

[86] “When require is slow.” https://goo.gl/LM1uEf, 2015.

[87] “nwjc Snapshot Tool.” https://github.com/nwjs/nw.js/wiki/
Protect-JavaScript-source-code-with-v8-snapshot, 2015.

[88] “Nginx reverse proxy server.” https://www.nginx.com/, 2015.

[89] “HAProxy load balancer.” http://www.haproxy.org/, 2015.

[90] “Varnish load balancer.” https://www.varnish-cache.org/, 2015.

[91] “Cluster Node.js module.”
https://nodejs.org/docs/v0.6.0/api/cluster.html, 2015.

[92] M. W. Stephenson, Automating the construction of a complier heuristics using
machine learning, Thesis (Ph. D.)–Massachusetts Institute of Technology, Dept.
of Electrical Engineering and Computer Science (2006).

[93] S. M. Sandya, Jazzing up jvms with off-line profile data: Does it pay?, SIGPLAN
Not. 39 (Aug., 2004) 72–80.

[94] “ECMAScript typed arrays.”
http://www.khronos.org/registry/typedarray/specs/latest/.

[95] “Javascript proxies.” https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Proxy, 2015.

168

[96] “Javascript classes.” https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Classes, 2015.

[97] “Javascript constants.” https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Statements/const, 2015.

[98] “Javascript block scoping.” https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Statements/let, 2015.

[99] “Ecmascript 6 features.” http://es6-features.org/, 2015.

[100] “Visual c++ optimization best practices.”
https://msdn.microsoft.com/en-us/library/ms235601.aspx,
2015.

[101] P. Nagpurkar and C. Krintz, Visualization and analysis of phased behavior in java
programs, in Proceedings of the 3rd International Symposium on Principles and
Practice of Programming in Java, PPPJ ’04, pp. 27–33, Trinity College Dublin,
2004.

169

