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ABSTRACT 

A Monte Carlo Simulation Study Examining Statistical Power in Latent Transition Analysis 

 

by 

 

Erika E. Baldwin 

 

Latent transition analysis (LTA) is a mixture modeling approach that is gaining 

popularity in social science, behavioral, and health research. LTA is a longitudinal method 

that can be used to investigate how individuals transition from one latent, or unobserved 

class, to another over time. Although LTA is gaining use in many disciplines, to date only 

two studies have examined the statistical power of this statistical approach. The present study 

aims to examine how sample size and model characteristics such as latent transition 

probabilities, model definition, item-response probabilities, and class size influence the 

statistical power of to detect effects in latent transition probabilities. Meta-analysis findings 

were used to guide conditions ultimately used in this Monte Carlo simulation study. All data 

were generated using Mplus (Muthén & Muthén, 1998-2014).   

Results from this study revealed how larger sample sizes, larger transition 

probabilities and class sizes were more likely to have greater power. Results also highlighted 

the importance of a well-defined measurement model with high class separation and 

homogeneous classes and its influence on statistical power. Findings from this dissertation 

provide evidence on which conditions tend to have higher or lower power. Additionally, 

findings show how poor conditions can have model convergence issues and provide 
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misleading results due to “artificially high” power values. This study also includes practical 

recommendations and suggestions for future directions. 
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Chapter 1 Introduction 

1.1 Overview of Mixture Modeling and Latent Transition Analysis (LTA) 

 Latent transition analysis (LTA) is a mixture modeling approach that can be used to 

examine the transition between existing heterogeneous subgroups within a homogeneous 

population (Nylund, Asparouhov, & Muthén, 2007). LTA is one approach among a set of 

methods termed mixture modeling. In mixture modeling, the overall distribution of one or 

more variables is composed of a mixture of a finite number of sub-distributions (Masyn, 

2013). The key assumption in mixture modeling is that there is an underlying latent variable 

that divides the population into two or more mutually exclusive groups called latent classes 

(Collins & Lanza, 2010). Latent variables are unobservable constructs that are measured by 

observable variables, which are also called indicators. In psychology, constructs such as 

extraversion and self-image are latent variables. In education, researchers examine 

unobservable traits such as academic engagement and persistence. In economic research, 

quality of life is a latent variable, as it cannot be directly measured. Latent variables such as 

these are inferred from a number of other observable variables. For example, educational 

engagement can be measured through responses to survey questions such as “I am easily 

distracted when I study” or “I am enthusiastic about my studying.” 

 Mixture modeling has become increasingly popular in social, behavioral, and health 

sciences, as it allows researchers to examine typologies among individuals. This modeling 

technique has been used in a wide range of different applications, from making more 

accurate myocardial infarction diagnoses (Rindskopf & Rindskopf, 1986) to finding different 

classes of heavy drinking patterns among young adults (Lanza & Collins, 2006). There are a 

variety of models that fall under the umbrella of mixture modeling techniques, including 
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latent class analysis (LCA), latent profile analysis (LPA), growth mixture modeling (GMM), 

and latent transition analysis (LTA). The present study will focus on LTA. 

LTA is a longitudinal extension of LCA. LCA is a quantitative approach that 

examines whether there exists unobservable groups, or classes, within a population, whereas 

LTA examines qualitative changes in latent class membership over time. LTA is a 

particularly important method of analysis, as results can be substantively used to directly 

treat individuals based on the class membership and understand experiences of individuals in 

each latent class, among other uses. LTA has been used in many important studies, including 

the following recently published studies: 

• Discovering eating disorder phenotypes (Castellini et al., 2013) 

• Determining the relationship between parenting type and adolescent drinking 

behavior (Abar, 2012) 

• Examining changes in reading classification after an intervention (Catts, Tomblin, 

Compton, & Bridges, 2012) 

• Understanding comorbidity among anxiety and depressive disorders (Spinhoven, de 

Rooij, Heiser, Willem, & Penninx, 2012) 

• Modeling transitions to and from alcohol abuse and sexual activity among freshman 

college students (Palen, Smith, Caldwell, Mathews, & Vergnani, 2009) 

LTA models class membership changes between one time point and another time 

point. It is specifically used to study the probability of an individual transitioning from one 

time point to another or from one state to another. This is dissimilar to the more conventional 

longitudinal method, latent growth curve modeling, which examines the rate at which some 

process changes over continuous time. LTA, on the other hand, approximates latent class 
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membership at time t + 1, conditional on an individual’s latent class membership at time t. 

This type of model is a called a first order Markov chain model because the distribution of a 

variable at time t is dependent only on the distribution of the previous state at time t - 1 and 

not dependent on any other times before that (e.g., t - 2, t - 3, etc.). For this reason, Markov 

models are often regarded as “memoryless” because it ignores what happened prior to t - 1. 

Markov chain models have been used in many studies, including research on consumer brand 

loyalty, meteorology, and voting behavior (Langeheine & van de Pol, 2002). A main 

assumption of Markov chain models is that change is operated over discrete time 

(Langeheine & van de Pol) whereas change in GCM is assessed over continuous time. 

There are many advantages of using LTA over other longitudinal modeling 

approaches. LTA allows for estimation of measurement error and the use of multiple 

indicators (Velicer, Martin, & Collins, 1996). LTA also has the ability to model change in a 

discrete manner and provides an easier way to examine large contingency tables (Lanza & 

Collins, 2008). According to Velicer et al., LTA can be used to answer a number of research 

questions, including: 

• How does LTA compare to other theoretical models that look at change over 

time? 

• Does there exist treatment effects for different groups? 

• How do different measures contribute to each latent status? 

• What is the distribution of participants by latent status at each time point?  

Despite the advantages and the extent to which LTA can help answer research 

questions, little research has been conducted to examine how this statistical method operates. 

Researchers often rely on thresholds and rules-of-thumb when applying statistical methods 
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such as structural equation modeling or covariance structure models. These types of studies 

do not yet exist for LTA. Additionally, many studies have examined the performance of 

model fit indices in these models. For example, Sharma, Mukherjee, Kumar, and Dillon 

(2005) conducted a study to examine covariance structure modeling, where they assessed the 

effect of sample size, factor loadings, factor correlations, and number of indicators on 

whether both true and misspecified models were accepted or rejected based on goodness-of-

fit cut-off values. Hu and Bentler (1998) also assessed fit indices in covariance structure 

modeling to see whether the indices were sensitive in models that were misspecified. 

Similarly, Beauducel and Wittmann (2005) assessed fit indices in misspecified models, yet 

this time in confirmatory factor analysis models. Despite the large number of studies in SEM 

and other latent variable models, few studies have looked at LTA models. 

1.2 Monte Carlo Simulation Studies  

In many cases, Monte Carlo studies are conducted to examine “best practices” and 

create “rules of thumb” for statistical models. Monte Carlo studies are simulation studies that 

are typically used to investigate the performance of statistical estimators under varying 

conditions. Sharma et al. (2005) and Beauducel and Wittmann (2005) both used simulations 

in the aforementioned studies. In Monte Carlo studies, data are generated under hypothesized 

modeling conditions, samples are drawn, models are estimated for each sample, and then 

standard errors and parameter values are averaged over these samples (Muthén & Muthén, 

2002).  

The advantage of using a simulation study is that the researcher has control over the 

conditions under which the simulation is conducted. In simulation studies, researchers can 

alter conditions such as sample size and number of factor indicators to compare results across 
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models. For example, Nylund et al. (2007) used a Monte Carlo simulation to study the 

performance of information criterion and likelihood-based fit indices used in LCA, GMM 

and factor mixture models. Nylund et al. (2007) examined how indices perform under 

different modeling conditions to help determine the number of classes in correctly specific 

models. Sharma et al. (2005) and Beauducel and Wittmann (2005) used simulation studies to 

see how indices performed on models that purposefully had a specific misspecification. 

Simulation studies can also be used to replicate common measurement conditions and 

specifications to decide on sample size and to estimate power. For example, Myers, Ahn, & 

Jin (2011) used CFA model conditions commonly found in exercise and sport research to 

determine what minimum sample size was needed and what level of power researchers might 

expect under those conditions. Simulation studies such as these are beneficial to the overall 

field of latent variable modeling, as they help provide information such as thresholds, cut-off 

values, and rules of thumb. They also help determine which fit indices are the best, most 

consistent, and/or least sensitive. 

Simulation studies are also useful in helping researchers determine statistical power. 

The ability to vary conditions in a simulation studies allows researchers to investigate the 

extent to which these various conditions affect statistical power. Power studies cans also help 

determine what sample size is necessary to detect adequate statistical power. If sample size 

guidelines are not developed, researchers run the risk of conducting studies that may not 

reveal significant relationships or changes between variables because the features of their 

design do not allow for adequate power to detect these effects. “A sample may be large 

enough for unbiased parameter estimates, unbiased standard errors, and good coverage, but it 

may not be large enough to detect an important effect in the model” (Muthén & Muthén, 
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2002). For example, the results of a Monte Carlo power study involving a multilevel 

structural equation model (Meuleman & Billiet, 2009) revealed that to detect effects greater 

than .50 at the between-group level, at least 60 groups are required. For adequate power to 

detect smaller effects, more than 100 groups are required.  

Despite the strength and importance of Monte Carlo simulation studies in 

methodology research, very few simulation studies have been conducted under the LTA 

framework. In fact, the only zero LTA simulation studies have been conducted in the last 18 

years. Collins and Wugalter (1992) used a simulation study to determine if adding additional 

indicators in a LTA model would provide better measurement or more sparse contingency 

tables. The study concluded that, under the imposed conditions, including more indicators 

improved standard errors even when the contingency tables were sparse. Collins and Tracy 

(1997) later conducted a similar study. Because few studies have looked at the effects of 

different conditions, there still remains a substantial gap of knowledge about LTA. To date, 

there is no known simulation study examining how varying conditions affects the statistical 

power of latent transition probabilities in a LTA framework. 

1.2.1 Statistical power. As stated earlier, Monte Carlo simulation studies can help 

determine the level of statistical power in a parameter or model. In statistical hypothesis 

testing, there are two types of hypotheses: 

1) the null hypothesis, or H0, which states some population parameter that we assume 

to  be true, and 

2) the alternative hypothesis, or H1, which is contradictory to the null hypothesis and 

 which we test against the null hypothesis.   
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Statistical power refers to the probability of making a correct decision to reject a false 

null hypothesis. In other words, power is the probability that a test will detect an effect when 

there is in fact an effect. For example, consider a prescription drug Company A that has 

manufactured a new sleep-aid pill. This company wants to show that their drug is more 

effective than the current leading drug manufactured by Company B. To do so, the company 

collects data on those who take their pill as well as those who use their competitor’s pill. This 

company wants to show that their consumers sleep more hours per night than their 

competitor’s consumers. In this case, the null hypothesis would claim that there is no 

difference between the two companies. The alternative hypothesis would claim that 

Company A’s pill provides more hours of sleep (µA) than Company B (µB). In statistical 

terms: 

H0: µA = µB 

H0: µA > µB 

As seen in Table 1, there are four possible outcomes in a hypothesis based statistical 

test: two possible correct decisions and two possible types of error. A correct decision could 

occur if a true null hypothesis was not rejected or if a false null hypothesis was rejected. A 

Type I (α) error occurs when a true null hypothesis H0 is rejected whereas a Type II error (β) 

occurs when a false H0 is not rejected. Type I errors are often called false positives while 

Type II errors are called false negatives. Using the example from above, a Type I error would 

mean that there was in fact no difference between the two pills; however, sample data led 

researchers to reject the null hypothesis that the two pills provided equal amounts of sleep. A 

Type II error would occur if there was in fact a difference between the two pills; however, 

sample data led researchers to fail to reject the null hypothesis.  
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When the probability of detecting a Type II error is low in hypothesis based testing, 

statistical power is high. This means that there is high power to detect an effect when there 

really is an effect. A power value of .80 or higher is deemed adequate among researchers 

(Cohen, 1988; Muthén & Muthén, 2002). In other words, statistical power is considered high 

when there is a probability of 80% or higher to detect an effect when there is, in fact, an 

effect. 

Table 1: Four Possible Outcomes of Research 
  True State 
Decision H0 True H0 False 
Do not reject H0 Correct decision (1 - α) Type II error (β) 
Reject H0 Type I error (α) Correct decision (1 - β = Power) 
Note. Adapted from “The Relation Among Fit Indexes, Power, and Sample Size in Structural Equation 
Modeling,” by K. H. Kim, 2005, Structural Equation Modeling, 12(3), p. 368-390. 

 

Muthén and Muthén (2002) show how Monte Carlo simulation studies can be used to 

determine necessary sample size and how to detect statistical power. To demonstrate Monte 

Carlo studies, this paper used two latent variable models, specifically a confirmatory factor 

analysis (CFA) and a growth model. For the CFA, they studied how non-normality and 

missing data affected the sample size necessary for adequate power of factor correlations. 

Non-normal data had a greater influence on detecting the statistical power of factor 

correlations than data that were missing completely at random.  Findings suggested that 

regardless of normality, missing data increased the required sample size by 18 percent. When 

data were both non-normal and missing, the required sample size was increased 100 percent. 

In other words, the study found that when these two complications are present, a CFA study 

needs twice as many participants to provide adequate statistical power. 

The second part of Muthén and Muthén’s (2002) study examined power in a growth 

model. The simulation conditions for this study included missing data, regression coefficient 
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size, and a covariate. Results indicated that reducing the regression coefficient from .2 to .1  

(d = .63, d = .32, respectively) had the biggest influence on the necessary sample size. 

Regardless of whether the data were missing, when the regression coefficient was decreased 

from .2 to .1, the sample size needed for adequate power increased four times. The paper 

concluded that statistical power was highly conditional on the varying factors of each model 

and that these conditions vary between statistical methods.  

Fan (2003) also used a simulation study to compare sample size requirements for 

power, although this time in latent growth curve modeling under the structural equation 

modeling (SEM) framework and in repeated-measures analysis of variance (ANOVA). 

Results from the simulations revealed that the SEM latent growth models had higher 

statistical power for detecting group differences than the repeated-measures ANOVA. The 

study also showed that to detect a small group difference, a sample size of N > 500 was 

typically necessary for a power value between .70 and .80. For a medium group difference, 

100 ≤ N ≤ 200 was needed. Another major finding from this study was that to yield adequate 

power, the sample size using the SEM approach could be two-thirds to one-half the amount 

of that using the repeated-measures approach.  

Necessary sample size for adequate power is a key area of interest to researchers 

using latent variable models such as factor analysis, SEM, and LTA. Muthén and Muthén 

(2002) state that some claim a rule of thumb of five to ten observations per parameter, while 

others state no less than 100, and others recommend 50 observations per variable. However, 

as Muthén and Muthén point out, there is no guideline that can be applied to all models or 

modeling conditions. In fact, a Monte Carlo simulation study found that there is a strong 

interplay between sample size, the number of indicators in a model, and class enumeration in 
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LCA models (Morovati, 2014). Thus, simulation studies can be helpful in determining what 

sample size is required to provide adequate statistical power to decrease the probability of a 

Type II error within a particular type of statistical method or model. Simulation studies have 

been conducted using many statistical models such as latent growth curve modeling and 

factor analysis. However, as stated, extensive research has not been conducted to investigate 

sample size requirements and power in LTA. 
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1.3 The Present Study 

 It has been established that latent variable research and mixture modeling are useful 

and widely used statistical approaches in the social sciences. Additionally, analyses of 

longitudinal change are essential in many disciplines such as developmental, behavioral, 

social, and health research. Together, LTA is an increasingly popular and advantageous 

method to discern change over time. Despite LTA’s functionality, to this date only two 

simulation studies have been conducted to examine power for this method. The goal of this 

study is to assess how varying sample size and other conditions affect statistical power in 

LTA. Because so few LTA simulations have been conducted, the scope of this study is to 

investigate models that are commonly found in literature and the levels of statistical power 

that these conditions produce. This study also aims to provide recommendations for LTA 

use. This study aims to find a minimum sample size that provides adequate power under the 

proposed varying conditions. The results of this study can contribute to the mixture modeling 

literature by providing sample size and modeling guidelines for LTA use in applied research. 

1.4 Overview of Dissertation 

This section will outline the chapters included in this dissertation. First, Chapter 2 

will serve as a literature review of how LTA has been used in research. This chapter will also 

include fundamental information about the LTA model and its parameters. Chapter 3, the 

methods section, will summarize meta-analysis findings of recently published LTA studies. 

The results from this analysis guided the conditions that were ultimately used in this Monte 

Carlo simulation study. This chapter also outlines how data were generated and all of the 

various conditions that were imposed in the simulation study, as well as explain how 

potential class switching issues were addressed. Next, Chapter 4 will provide analyses of all 
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simulation studies and summarize results. In this chapter, issues that arose in this study are 

explained, such as artificially high power and model non-convergence. Chapter 5 includes a 

discussion of all results, practical implications, limitations to this study and future directions 

for research. The Appendix includes sample Mplus syntax with annotated comments. 



13 

Chapter 2 Literature Review 

2.1 Overview of LTA 

 Latent transition analysis (LTA) is a longitudinal extension of latent class analysis 

(LCA) and was first introduced in the 1950s by researcher Paul Lazarsfeld (Lazarsfeld & 

Henry, 1968). LTA was further developed by Goodman (1974) and Haberman (1979) when 

they provided more efficient maximum-likelihood estimation algorithms. LTA is a 

longitudinal approach that examines qualitative changes in latent statuses where the main 

objective is to examine how individuals transition between latent classes over time. LTA uses 

repeated measures data of the same people over time. For example, consider a sample of 

female high school seniors enrolled in a mentoring program to encourage interest in the 

sciences. In the beginning of the year, these students take a survey that measures attitudes 

toward science. A LCA of these data reveal four distinct latent classes. After one year of 

attending events and mentoring sessions, students take the same survey. At this point, after a 

year of program participation, an LTA can be conducted to see whether these young girls 

shifted from one class to another or whether they remained in their original latent class. This 

particular hypothetical LTA example could potentially reveal whether young girls were more 

likely to have an increased interest in science or more likely to want to major in a science as 

an undergraduate after participating in the mentorship program. Note that the data collected 

were repeated measures data at two time points, although LTA can be conducted on more 

than two time points. 

2.2 General applied example 

To help demonstrate how LTA has been used in applied research, this section will 

walk the reader through a published journal article that used LTA. Lee, Chassin, and Villalta 
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(2013) investigated whether individuals “matured out” of alcohol involvement from age 17 to 

age 40. Lee et al.’s study aimed to examine alcohol involvement due to both the short- and 

long-term risks of alcoholism. Their literature review revealed that alcohol involvement 

increases in late adolescence, peaks between ages 20–22, and then tends to decrease 

thereafter. However, literature also revealed that there tends to be four groups of alcohol 

users over time: one group that “matures out” of drinking habits over time, two groups of 

abstainers or low users, and one “chronic” group of alcohol users who tend to never mature 

out of drinking habits. Lee et al.’s rationale for their LTA study was that studies focus on one 

area of alcohol involvement but never all three areas of alcohol involvement: drinking 

frequency, binge drinking, and drinking consequences.  

To examine all three areas in one study, Lee et al. (2013) used longitudinal data from 

individuals aged 17 for four waves of data collection until age 40 (N = 844). The study found 

four latent statuses: abstainers, low-risk drinkers, moderate-risk drinkers, and high-risk 

drinkers. Results from their LTA revealed that individuals tend to mature out of heavy or 

problematic drinking and continue to drink alcohol, but at lower levels. The study supported 

existing literature that claims that individuals tend to mature out of drinking between late 

adolescence and young adulthood. However, the use of LTA added to literature by modeling 

how these high-risk drinkers typically matured to the next lowest level, moderate-risk, and 

rarely to a low- or non-risk drinking status. This result was particularly interesting because it 

revealed that individuals who start off as high-risk drinkers at late adolescence rarely 

eliminated all risky drinking behavior.  
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2.3 LTA Model and Parameters 

2.3.1 LTA model. The general LTA model is similar to its non-longitudinal 

counterpart, LCA. Figure 1 presents the path diagram representation of the general LCA 

model. This model represents latent class membership at one given time point. The model 

diagram for the general LTA model can be seen in Figure 2. In the LCA diagram (Figure 1), 

the observed variables, u, are in rectangles, while the unobserved, latent class variable, C, 

with K classes is in a circle. The observable variables utj in the LTA model, on the other 

hand, have two subscripts: one to represent time t and one for each outcome j. Latent class C 

at time t is regressed onto latent class C at time t - 1. In this LTA model, latent class C2 is 

regressed onto C1. 

 

 

Figure 1. General LCA model diagram with three indicator variables.  

 

 

Figure 2. General LTA model diagram with two time points and three indicator variables.  
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2.3.2 Parameters. Three different parameters are estimated in LTA: latent status 

prevalences (�), item-response probabilities (�), and transition probabilities (�). First, latent 

status prevalence (���,) is the probability of being in latent status s at time t. If there are three 

classes at each of two time points, there are six �’s rather than nine because the last class is 

treated as a reference group. An individual can only be a member of one latent class at each 

time point and thus,  

∑ ���
�
����

= 1, 

where s is latent status at time t. Latent status prevalences for time t = 1 are often estimated 

independently. In this case, latent status prevalences for times t ≥ 2 can be computed by: 

∑
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 As seen above, the probability of being in latent status s at time t is a function of the 

probabilities of being in a latent status at time t - 1 and the conditional probability of 

transitioning from a latent status at time t -1 to a latent status at time t. In a model with two 

time points, � can be computed once latent status prevalances at t = 1 and the transition 

probabilities between t = 1 and t = 2 have been estimated. 

Next, item response probabilities can be expressed by ��,��,�|��, or the probability of 

response ��,� to observed variable j, conditioned on membership in latent status s at time t. 

There are Rj  item response probabilities. An individual can only provide only one response 

to variable j at each time t, and thus,  

∑ ��,��,�|��
��

��,���
= 1. 
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The number of item-response probabilities estimated can be computed with the following 

equation: 

∑
=

−=
J

j
jRSTP

1

)1(ρ
. 

 In a model with 3 latent statuses, two time points, and seven binary indicators, the 

number of item-response probabilities estimated would be equal to Pρ = 3 x 2 x (1 + 1 + 1 + 1 

+1 + 1 + 1) = 42. If item-response probabilities are constrained to be equal, this would reduce 

to Pρ = 3 x 1 x (1 + 1 + 1 + 1 +1 + 1 + 1) = 21. Often in LTA, parameter restrictions are 

imposed such that item-response probabilities are set to be equal across times. This is often 

called measurement invariance. Latent statuses are assumed to be constant over time and do 

not change meaning.  

Lastly, transition probabilities (�����|��
) represent the probability of transitioning from 

latent status s at time point t + 1 conditioned on membership in latent status s at time point t. 

Transition probabilities are often the most examined parameter, as they reveal how latent 

status membership changes over time. In the context when measurement invariance is 

assumed, these probabilities are called stability estimates, as they represent how stable—or 

unstable— latent status membership over time. Latent statuses are also considered recurrent 

or transient. Processes that remain at its state are considered recurrent, whereas processes that 

do not return to its state are considered transient (Marcoulides, Gottfried, Gottfried, & Oliver, 

2008). Transition probabilities are often represented in a matrix. There are T - 1 matrices, 

where T is the total number of time points included in the study. A transition probability 

matrix of �’s is as follows, 
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The rows represent the first time point whereas the columns represent later time point, 

t - 1. When measurement variance is assumed over time, the diagonals represent the 

probability of remaining in the same status. The off-diagonals represent the probability of 

being in a latent status conditional on being in a different latent status at the previous time 

point. If no parameter restrictions are imposed, the number of transition probabilities 

estimated can be computed with the following equation, 

Pτ = (T - 1)S(S - 1). 

One is subtracted from S in the third part of the product because the last class is 

treated as a reference class. In a model with two time points and three latent statuses, the 

number of transition probabilities would be equal to Pτ = 1 x 3 x 2 = 6. Individuals may only 

belong to one latent status at each time and thus, 

τ st+1|st
=1

st+1=1

S

∑
, 

meaning each row of the transition probability matrix sums to 1, with some rounding error. 

Taken together, the fundamental expression of LTA is expressed as,  

P(Y = y) = L δs1
τ s2|s1L

sT =1

S
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∑ τ ST |ST −1
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I (y j,t =rj ,t )

rj,t =1

R j

∏
j=1

J

∏
t=1

2

∏
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This equation shows that the probability of a particular vector of responses is a 

function of the three aforementioned probabilities: the probability of membership in each 
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latent status at t = 1 (latent status prevalances, δ), the probability of being in a latent status at 

a later time conditional on the previous time (latent transition probabilities, τ), and the 

probability of each response at each time point conditional on latent status membership 

(item-response probabilities, ρ). 

When there are only two time points, the equation reduces to: 

P(Y = y) = L δs1
τ s2|s1

s2=1

S

∑
s1=1

S

∑ ρ j,rj ,t |st

I (y j,t =rj,t )

rj ,t =1

R j

∏
j=1

J

∏
t=1

2

∏

. 

2.3.3 Measurement invariance. The major assumption of measurement invariance is 

that measurement parameters, the item response probabilities defined earlier, are held equal 

across the entire measurement model. Full measurement invariance denotes that the 

conditional item probabilities are the same across all time points. In other words, at all time 

points, there are equal numbers of classes and each class is the same over time. Classes do 

not change meaning or interpretation. Measurement invariance must be tested. Measurement 

invariance should be tested because the assumption of invariance introduces bias, although 

many LTA studies assume measurement invariance because less measurement parameters 

must be estimated and interpretation is less complicated. 

2.3.4 Applied example with parameters. To help exemplify the LTA parameters 

described above, this section will walk through an applied LTA article. Marcoulides et al. 

(2008) used LTA to examine academic intrinsic motivation from childhood to adolescence. 

This study utilized data from the Fullerton Longitudinal Study (FLS), which collected a wide 

range of developmental data from age one to 17 years old. In particular, this study examined 

academic intrinsic motivation using Likert scale measures from the Children’s Academic 
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Intrinsic Motivation Inventory (CAIMI). The study used five time points: ages 9, 10, 13, 16 

and 17. 

First, the researchers evaluated one-, two-, three-, and four-class models at all five 

time points. To handle missing data, the models were based on full information maximum 

likelihood estimation. It also used random start values to ensure that models converged on 

global solutions. The Bayesian Information Criterion index was used to evaluate the most 

appropriate class model. At all five time points, the three-class model had the best BIC fit 

values relative to the other models. Researchers labeled these three classes Intermediate, At-

Risk, and Gifted. Item-response probabilities (ρ) were used to develop these classes and their 

researcher-defined titles, although Marcoulides et al. (2008) did not include item-response 

probabilities for each item and class.  

The second of the three LTA parameters is exemplified here in each individual’s 

latent status prevalence (δ). At age 9 (t = 1), the majority of students were in the Gifted class 

while 36% of students were in the Intermediate Group and only 7% in the At-Risk group. As 

students got older, less students were in the Gifted group and more students were in the At-

Risk group. The Intermediate group was the most consistent over time, with class 

membership percentages between 20-25% over the next four time points between ages 10 

and 17. From age 9 to 17, the Gifted group dropped from 57% to 19% while the At-Risk 

group increased from 7% to 59%. These latent status prevalences showed that over time, 

students were less likely to be in the Gifted group and more likely to be in the At-Risk group. 

Latent transition probability (τ) matrices between each time point helped show how 

students transition to or stayed in a class over time. This study not only looked transition 

probability matrices between each consecutive time point, it also examined what are called 
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higher order lag models. Higher order lag models allow researchers to see the latent 

transition probability at one time point from any other time point in the model, not just the 

time point immediately prior. Marcouides et al. (2008) were also interested in the transition 

from childhood to late adolescence, and thus examined latent transition probabilities: ages 9 

to 13, 9 to 16, 9 to 17, 10 to 16, 10 to 17, and from ages 13 to 17.  

In general, this study found that transition between the three instrinsic motivation 

classes mostly occurred during childhood. As students get older, they are more likely to stay 

within the same latent  class. This study revealed important findings that at-risk students 

were highly likely to stay at-risk over time and that by mid-adolescence, it was unlikely a 

child would transition into the gifted class. From a practical standpoint, researchers argued 

the need for early motivational intervention. In summary, we see here the interplay of the 

three LTA parameters and how they are interpreted in an applied study. 

2.3.5 Sparseness. Contingency tables in LTA are large because data are measured at 

two or more time points. This sparseness of cells may lead to identification problems. For 

example, an LTA with eight binary items at two time points would have a contingency table 

with W = 2(8)(2) = 65,536 cells. That means that there are 65,536 possible response patterns. 

Because of the large number of cells, LTA models tend to have a large amount of degrees of 

freedom. Degrees of freedom in LTA can be computed by: 

�� = �	 − 
	 − 

 − 
� − 1. 

 Despite this advantage, individual cells can be sparse, leading to estimation issues. 

Models may fail to converge. Another issue involving sparseness the distribution of the G2 

statistic (a likelihood ratio test to test for goodness of fit) is no longer well represented by the 
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chi-square distribution and thus, p-values are inaccurate. Nonetheless, Collins and Flaherty 

(2002) state that parameter estimation using EM is robust even when cells are sparse.  

The sparseness of cells in LTA is an important issue that may lead to low power in 

LTA studies. The following is a numerical demonstration of how sparseness can occur in 

LTA based on varying latent transition probabilities and the distribution of the sample across 

latent classes.  

First, consider an LTA study with a fairly large sample size of N = 3,000. In this 

hypothetical study, assume that data were collected at two time points and that equal 

class/statuses sizes emerge at time t = 1 and measurement invariance was assumed. Further, 

assume that there was a fairly stable amount of transition from time t =1 to t = 2, specifically, 

about three-quarters of participants did not transition to a different class. The remainder of 

individuals did transition, which resulted in a transition probability matrix as follows (see 

Table 2 below). Table 2 shows how the sample size would be using the above transition 

probabilities and an initial class size of n = 1,000 for all k classes at t = 1. To most, this 

contingency table may not seem to suffer from sparseness, as the largest cell has 800 

individuals and the smallest still has 100.  

Table 2: Transition Probabilities for Hypothetical LTA with N = 3,000, Moderate Stability, 
and Even Class Sizes 

t = 2 

Class 1 Class 2 Class 3 

t = 1 
Class 1 (n = 1,000) 0.70 (n11 = 700) 0.20  (n12 = 200) 0.10  (n13 = 100) 

Class 2 (n = 1,000) 0.10 (n21 = 100) 0.80  (n22 = 800) 0.10  (n23 = 100) 

Class 3 (n = 1,000) 0.10 (n31 = 100) 0.15  (n32 = 150) 0.75  (n33 = 750) 
 

Now consider the same scenario, yet in a study where participants are highly likely to 

stay in their initial latent class. Again, this hypothetical study has N = 3,000, equal class sizes 
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at time point 1, and assumes measurement invariance. This study results in the transition 

probability matrix seen in Table 3: 

Table 3: Transition Probabilities and Sample Size Distribution for Hypothetical LTA with N 
= 3,000, High Stability and Even Class Sizes 

t = 2 

Class 1 Class 2 Class 3 

t = 1 
Class 1 (n = 1,000) 0.97 (n11 = 970) 0.20  (n12 = 20) 0.03  (n13 = 300) 

Class 2 (n = 1,000) 0.04 (n21 = 40) 0.95  (n22 = 950) 0.01  (n23 = 10) 

Class 3 (n = 1,000) 0.05 (n31 = 50) 0.05  (n32 = 900) 0.90  (n33 = 900) 
 

Unlike the first scenario, the transition probabilities along the diagonal are higher, 

resulting in smaller probabilities in the cells outside of the diagonal. The smallest cell size in 

this case is 10. Even with a study with 3,000 participants, some researchers may deem a cell 

size of 10 to be too small, as this number is close to but not violating Cochran’s (1954) 

suggestion that no more than 20% of cells in a chi-square test contingency table have cell 

sizes less than 5. 

A sample size of N = 3,000 may not be feasible to most social science researchers. It is likely 

that a dataset only contain about 300 participants. Consider the same two previously used 

scenarios with a decreased sample size of 300. Using the same moderately stable transition 

probabilities in Table 2 results in the following sample distribution for a study with N = 300. 

Again, assume that there is measurement invariance across time points and that class sizes 

are even at time t = 1. 

Table 4: Sample Size Distribution for Hypothetical LTA with N = 300, Moderate Stability, 
and Even Class Sizes 

  t = 2 

Class 1 Class 2 Class 3 

t = 1 
Class 1 (n = 100) 0.70 (n11 = 70) 0.20  (n12 = 20) 0.10  (n13 = 10) 

Class 2 (n = 100) 0.10 (n21 = 10) 0.80  (n22 = 80) 0.10  (n23 = 10) 

Class 3 (n = 100) 0.10 (n31 = 10) 0.15  (n32 = 15) 0.75  (n33 = 75) 
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 The smallest sample size in this scenario is 10, which may not seem problematic. 

However, now examine how a study with high stability/values along the diagonal, using 

transition probabilities in the second example seen in Table 5: 

Table 5: Sample Size Distribution for Hypothetical LTA with N = 300, High Stability, and 
Even Class Sizes 

  t = 2 

Class 1 Class 2 Class 3 

t = 1 
Class 1 (n = 100) 0.97 (n11 = 97) 0.20  (n12 = 2) 0.03  (n13 = 30) 

Class 2 (n = 100) 0.04 (n21 = 4) 0.95  (n22 = 95) 0.01  (n23 = 1) 

Class 3 (n = 100) 0.05 (n31 = 5) 0.05  (n32 = 90) 0.90  (n33 = 90) 
 

The cell sizes decrease dramatically. Although the cell counts in the diagonal are 

high, only one participant transitioned from class 2 to class 3. Counts are less than 10 in six 

of the nine cells. These cells would be even smaller if class sizes were not even at time t = 1. 

In this situation, all conditions are kept the same; however, as seen in the right-hand 

marginal, class sizes at t = 1 vary. The smallest cell count now is less than 1.  

Table 6: Sample Size Distribution for Hypothetical LTA with N = 300, High Stability, and 
Uneven Class Sizes 

t = 2 

1 2 3 

t = 1 
1 (n = 150)      0.97 (n11 = 145.5)        0.20  (n12 = 3) 0.03  (n13 = 4.5) 

2 (n = 80) 0.04 (n21 = 3.2) 0.95  (n22 = 76) 0.01  (n23 = .8) 

3 (n = 70)  0.05 (n31 = 3.5)  0.05  (n32 = 3.5) 0.90  (n33 = 63) 
 

 In applied research, it may be likely that off-diagonal transition probabilities are low, 

suggesting that a small percentage of individuals transition from one class to another over 

time. There are no current rules of thumb for cell count size in LTA contingency tables. This 

study aims not to examine a minimum cut-off for cell count. Rather, this study aims to 

investigate how the interplay of model characteristics such as high and moderate stability 

with sample size affects the overall statistical power of a study. A meta-analysis was 
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conducted to explore commonly found transition probabilities. Results from this meta-

analysis can be found in the Method section of this dissertation. 

2.4 Areas for Continued Work 

As stated earlier, LTA is gaining greater use yet only two simulation studies have 

been conducted examining best practices and sample size requirements for this statistical 

model. Simulation studies looking at power have shown how sample size, along with other 

varied conditions, has effects on the overall statistical power of a model. However, to date, a 

power simulation study has not yet been conducted for the LTA model. This gap in research 

calls for further investigation on how conditions such as sample size, the size of latent 

transition probabilities, and sparseness of cells affect power. This dissertation aims to find 

whether there is a point at which an LTA no longer has the power to detect an effect if 

sample size is decreased. In other words, if two LTA models have the same number of time 

points, the same number of classes at each time point, identical transitional probabilities, 

equal sample distributions of across classes, yet different sample sizes, will both models 

produce adequate power? 

Because so few simulation studies have been conducted in this area, there are many 

areas of study for the LTA model. Many other simulation studies look at how fit indices 

perform in a given model and whether these indices are better or worse when sample size 

changes or whether the number of indicators increase or decrease. These types of studies in 

LTA would also provide insight into how LTA models perform in practice. The scope of this 

current study is to investigate power when varying sample size, measurement models, logit 

thresholds, transition probabilities, and class size. The hope is that the results of this 
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simulation will be the first step in establishing modeling guidelines for the specification and 

use of LTA models and a better understanding of the power of latent transition probabilities.  
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Chapter 3 Method 

3.1 Empirical Conditions 

For this study, a meta-analysis was conducted to examine the characteristics of recent 

LTA studies. In Monte Carlo simulation studies, population values are often chosen based 

from theory or previous research. Muthén and Muthén (2002) recommend using values from 

previously conducted studies. To do so, four online social science databases were used: 

Education Resources Information Center (ERIC), EBSCOhost, PsycINFO and 

PsycARTICLES. Only recent, full-text articles in peer-reviewed journals from 2008–2014 

were included in this meta-analysis.  

Using the above criteria, a keyword search of the phrase “latent transition analysis” 

resulted in a total of 92 unique articles across the four databases. Of these 92 articles, 38 

were removed from the analysis because 1) the search phrase was mentioned in article but 

not used as a method of analysis, or 2) the search phrase appeared in the reference section 

(i.e., the search phrase was part of a journal article title cited in the study). Two articles were 

eliminated from the meta-analysis because they were commentaries and one article was 

omitted because it was a comparison of different longitudinal approaches. In the final 

analysis, 54 articles were examined. 

A quick overview of these articles revealed a wide range of fields that utilize LTA. 

Because LTA is an approach examining longitudinal change, many articles examined a 

treatment effect over time. For example, a number of articles examined clinical eating 

disorder classifications after counseling and treatment, reading ability after an intervention, 

or substance abuse after rehabilitation. Other studies did not include a treatment or clinical 

trial and rather focused on how individuals transitions over time, or more specifically, over 



28 

ages. For example, Quaiser-Pohl, Rohe, and Amberger (2010) examined mental-rotation 

ability beginning from age 10 to age 17. This study found a three-class solution: 

intermediate, at-risk, and gifted. Results revealed that between ages 10 and 13, individuals 

were more likely to transition between classes. However, from ages 13 to 17, transition 

probabilities were highly stable. Other LTA topics included attitudes among foster care 

youth, depressive subtypes, and civic involvement. 

To gather characteristics of common LTA studies to use as attributes for the 

simulation study, sample size, model characteristics, and transition probability matrices were 

compiled and are explained in the subsections below. 

3.1.1 Sample size. First, sample sizes of these 54 articles were examined. The sample 

size of these studies ranged from N = 94 to N = 11,750 (M = 1493.07, SD = 2083.60). As 

seen in Figure 3, more than half of the journal articles involved studies with samples less 

than 1,000. A third of the total number of articles had sample sizes between 200 and 500. 

Only two studies had sample sizes larger than 5,000, both of which used nationally 

administered datasets. Figure 4 presents a closer look at the distribution of articles with N < 

1,000. This quick overview of study sample sizes shows that 16 of the 54 published LTA 

articles used sample sizes less than 500. 
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Figure 3. Histogram of sample sizes included in meta-analysis articles. 
 

 

Figure 4. Histogram showing studies with sample sizes less than N = 1,000 included in meta-
analysis articles. 
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3.1.2 Model Characteristics. Next, model characteristics were examined. As seen in 

Figure 5, studies ranged from two to nine time points (M = 2.65, SD = 1.20). The majority of 

articles included two time points. In 93% of the articles, there was the same number of 

classes at each time point. Additionally, class sizes were typically uneven at time t = 1 and 

measurement invariance was assumed.  

 

Figure 5. Histogram of number of time points included in meta-analysis articles. 
 

3.1.3 Transition probabilities. Next, latent transition probabilities were examined. A 

wide range of probabilities emerged from these studies. Latent transition matrices ranged 

from being highly stable (values close to 1.00 on the diagonal) to moderately stable (values 

close to .70 on the diagonal and values near .30 on the off-diagonal). More than half of the 

studies reported at least one stability estimate near .90. The lowest value on the diagonals 

was near .50 for some articles, although some articles reported diagonal values close to .20. 

In one study, latent transition stability was very low, with values between .00 and .50. In the 

off-diagonals, the lowest transition probabilities for most studies were near .00 and the 
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highest off-diagonal values were between .20 and .40. In some cases, off-diagonals exceeded 

.50 and were even as high as .94, exhibiting high transition between classes over time. 

3.2 LTA by Topic 

To gain a better understanding of the size of latent transition probabilities we see in 

the literature, articles were further examined by discipline. Most of the identified articles fell 

under three areas: substance abuse (19 articles, 35%), Education (9 articles, 17%), and eating 

disorders (6 articles, 11%). The remainder of articles included in the meta-analysis ranged 

from topics such as family structure and intervention, foster care, and social and civic 

engagement. A further look at these articles by the most common topics revealed patterns in 

latent transition probabilities and model characteristics summarized below and displayed in 

Table 7.  

3.2.1 LTA models in Education research. Nine of the papers identified in the meta-

analysis were related in the field of education. More specifically, four articles were about 

mathematics ability, four articles were on reading ability, and one article examined intrinsic 

motivation. The mathematics and reading articles examined kindergarten through early 

adolescence, low-performing students or late-emerging readers. In most studies, there were 

three or four classes at each time point, with the first class (class 1) representing low 

performance and the last class (class 3 or 4) representing gifted students or high performing 

students. When organized this way, transition probability values above or to the right of the 

diagonal represent transitioning into a higher performing class. For example, Ding, 

Richardson, and Schnell (2013) examined word literary from kindergarten to second grade. 

This study identified a three-class solution: low achievers (class 1), slow achievers (class 2), 

and typical achievers (class 3). Because of the classes were listed in the matrices in this 
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hierarchy, the diagonal values represented stability and values to the right of the diagonal 

represented movement into a higher-achieving class over time. 

A further look at the latent transition probabilities of all education related LTA 

studies showed that almost all transition probability matrices had fairly high stability rates of 

.70 or higher, meaning 70% or more of individuals stayed in their latent class over time. If 

students did transition, it was usually to the next highest class, as one would expect. In other 

words, off-diagonal values were highest when immediately to the right of the diagonal value. 

Some students transition down to a lower achieving class. However, this was usually with a 

transition probability of .10 or less. For all papers in this group, the latent class sizes were 

uneven. In most cases, the lowest performing class had the highest n. Additionally, all nine 

Education articles assumed measurement invariance across all time points. The results from 

the Education articles helped form the uneven transition probability matrix used in this 

study’s Monte Carlo simulation (see Table 10 in the next subsection). 

3.2.2 LTA models in eating disorder research. Six of the meta-analysis articles 

examined latent transitions of individuals with eating disorders. Similar to the education 

studies, most of the latent classes found in the eating disorder studies were arranged order of 

severity (e.g., class 1 is asymptomatic while class 4 is the most severe case of eating 

disorders). For example, Cain, Epler, Steinley, and Sher’s (2012) study examined latent 

transitions between three classes: no obvious pathological eating-related concerns, limiting 

attempts with overeating, and pervasive bulimic-like concerns. In many studies, the first and 

second class had high stability while classes three and four had moderate stability. Because 

most of these articles examined transition after some treatment, this pattern of latent 

transition implies that individuals with less severe eating disorders are not likely to “get 
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better” or “worse” after treatment. However, it does imply that those with more severe cases 

of an eating disorder are likely to transition into a less severe class after treatment. Similar to 

educational studies, class sizes in eating disorder LTA studies were uneven and the least 

severe class usually had the greatest n. All of the eating disorder LTA studies assumed 

measurement invariance. 

3.2.3 LTA models in substance abuse research. There were 19 substance abuse 

studies found to use LTA in the meta-analysis. These articles varied across substance type, 

including alcohol, drug, and cigarette use. Substance abuse articles could be further divided 

into two sections: studies involving some sort of treatment or studies that examined use over 

time without a specific treatment. Again, similar to the education and eating disorder articles 

discussed earlier, the majority of substance abuse transition probability matrices were 

ordered by severity of substance use. Studies that did not involve a treatment, but rather 

looked at use across age, consistent found the following transition patterns over time: 

• Nonusers tended to stay nonusers 

• Heavy users tended to stay heavy users 

• Moderate users shifted up or down 

• Most transitions were one level up or down 

• As one got older, stability increased 

Two of the 19 substance abuse LTA studies did not assume measurement invariance. 

Both studies aimed to study the relationship between two different measures over two time 

points. For example, Abar (2012) examined the relationship between parenting types at time 

1 and student alcohol-related behavior at time 2. This study found that students with pro-

alcohol parents were more likely to high risk or extreme drinkers during their first year of 
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college. Stapleton, Turrisi, Cleveland, Ray, & Lu (2014) looked at the relationship between 

alcohol decision-making patterns prior to college (time 1) and their patterns of alcohol use 

after entering college (time 2). This study revealed interesting patterns between the two 

measures. For example, given membership in the anti-drinker decision-making profile prior 

to the college, there was a probability of 100% of having a low drinking pattern. 

Furthermore, given membership in the risky decision-making profile, there was a probability 

of 55% of having a high drinking pattern.  

Although these classes and transition probabilities emerged in published Education, 

eating disorder, and substance abuse studies, to date it is unknown how the measurement 

model influences the power of the latent transition probabilities. For example, it is unknown 

whether there is greater power for transition probabilities in or out of classes that are more 

distinct from others. This study will be the first to examine this and examine the extent to 

which measurement characteristics such as class separation and homogeneity affect power. 
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Table 7: Summary of Meta-Analysis Results by Topic 
Topic 

Education Eating disorders Substance abuse 
• Classes organized by 

achievement level 
• Reading or mathematics 

achievement 
• Childhood or early 

adolescence 
• Highly stable diagonals 

(.70 or above) 
• If individuals did 

transition, it was usually 
to the next highest/better 
class 

• Some transition down a 
class, but low transition 
probability (.10 or less) 

• Class sizes uneven 
• Lowest level class 

usually had highest n 

• Classes organized by 
severity 

• Less severe classes had 
high stability 

• More severe classes had 
moderate stability 

• More likely to move down 
a class after treatment 

• Class sizes uneven 
• Lowest level class usually 

had highest n 

• Classes organized by 
severity of substance use 

• Nonusers stayed nonusers 
• Heavy users stayed heavy 

users 
• Moderate users shifted up 

or down a class 
• Most transitions were one 

level up or down 
• As one got older, stability 

increased 
• Class sizes uneven 

 

3.3 Summary of Meta-Analyses 

A summary of LTA studies examined in this meta-analysis can be seen in Table 8. In 

general, most studies had sample sizes less than 1,000, two time points, uneven class sizes at 

t = 1, and assumed measurement invariance. Latent transition probabilities ranged across all 

articles. However, there were some patterns when examined by topic. These findings and 

patterns were used to create the simulation conditions used in this dissertation.  

 
Table 8: Summary of Meta-Analysis Results  

Sample size Model Characteristics 
Latent transition 

probabilities 
• Most N < 1,000, 

but were as small 
as N = 94 and as 
large as N ≈ 
11,000 

• Two time points 
• Uneven class sizes 

at t = 1 
• Measurement 

invariance 

• Wide range of 
transition 
probability 
patterns 

• See results by 
topic 
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3.4 Data Generation 

 For the current simulation study, data will be generated based on common 

characteristics of LTA studies found in the aforementioned meta-analysis to examine the 

statistical power of latent transition probabilities under various conditions and measurement 

models. The statistical software package Mplus (Muthén & Muthén, 1998-2014) will be used 

to conduct the simulation studies. For Monte Carlo simulation studies, Mplus has the 

capability to include both normal and non-normal data, missing data, clustering and mixture 

modeling. In this study, all generated data will include a total number of 1,000 replications 

and five binary indicators of latent class at of the two time points. Sample Mplus syntax file 

with annotated comments are in the Appendix. 

The studies included in the meta-analysis ranged in the number of time points and the 

number of classes that emerged. However, because there are only two other existing power 

studies on LTA, the scope of this simulation study is to provide a foundational examination 

of how power is related to model conditions. Thus, this study will include four-class models 

measured at two time points and will assume measurement invariance for the latent classes 

across time. Latent classes will be defined by five items. Although studies in the meta-

analysis covered a large range in the number of items used, we chose a parsimonious model 

as a starting point. A study with too few items may not be enough to reveal meaningful latent 

classes, yet a study with too many items may greatly negatively affect the level of power. 

The 4-class to 4-class model, and the number of time points, and the use of five items are the 

only three non-varying conditions. The conditions that will be varied include sample sizes, 

the value of logit thresholds, measurement models, latent transition probabilities, and class 

sizes. 
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3.4.1 Sample sizes. Eleven sample sizes will be used for each model in this 

simulation study (N =100, 250, 500, 1,000, 1,250, 1,500, 5,000, 6,000, 7,000, 8,000, 10,000). 

Initially, only six values of N were considered. However, as explained in the results section, 

issues regarding stability of power estimates required additional sample sizes to examine how 

models performed in intermediary values of Ns.  

3.4.2 Measurement models and item-response logit thresholds. Item homogeneity 

and class separation are two desirable attributes when selecting an LCA model (Collins & 

Lanza, 2010). Item homogeneity refers to item-response probabilities that are near 0 and 1. It 

is referred to as homogeneity because all members of that class have similar probabilities of 

endorsing an item. For example, an item-response probability close to 1indicates that there is 

nearly a 100% chance of endorsing that item, given membership in that class. Similarly, an 

item-response probability near 0 indicates that it is highly unlikely that members of that class 

would endorse that item.  

High class separation occurs when each class has a distinct combination of item-

response probabilities. In other words, classes should not look too similar to each other. For 

this simulation study, variance in homogeneity is reflected in item-response thresholds, while 

class separation is reflected in the definition of the measurement models.  Because item-

responses are on a probability scale, they range from 0 to 1. For Mplus simulation syntax, 

probabilities were converted to logits. Logits can be calculated from probabilities using the 

following formula,  

logit(p) = 1

1+ exp(p)
. 

Negative logit thresholds represent probabilities greater than .50 while positive logits reflect 

probabilities less than .50. In other words, low logits translate to high probabilities while high 
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logits translate to low probabilities. This study will examine how low, moderate, and high 

threshold values affect the power of latent transition probabilities.  

 Two measurement models specifications were used in this simulation to investigate 

differences in power between LCA models that are well-defined versus those that are poorly 

defined. For the purposes of this study, a well-defined model is one in which there is high 

class separation. As seen in Figures 7 –10, there are high probabilities of endorsing all items 

given membership in class 3, while there are low probabilities of endorsing all items given 

membership in class 1. Given membership in class 4, there are higher probabilities of 

endorsing the first two items and lower probabilities for the last two items. Class 2 is the 

opposite of class 4, in that if an individual is classified in class 2, there are lower probabilities 

of endorsing the first two items and higher probabilities for the last two items. Logit 

threshold values for the well-defined model range from ±1, ±2, ±3, and ±5 which correspond 

to conditional probabilities of .27/.73, .12/.88, .05/.95, and .01/.99, respectively.  This range 

was considered so we could examine the impact of homogeneity in item probabilities on 

statistical power. The exact threshold values used in each model type can be seen in Table 9. 
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 Table 9: Logit Thresholds for Each Model Type Used in This Study 
    Well-Defined Model   Poorly Defined Model 

    
Thresholds 

±1 
Thresholds 

±2 
Thresholds 

±3 
Thresholds 

±5   Moderate 
Moderate  
(Revised) High 

Class 1 

Item 1 1 2 3 5   -0.4 -3 -2.5 

Item 2 1 2 3 5 -1 0 -5 
Item 3 1 2 3 5 0 0 -1 

Item 4 1 2 3 5 0.4 0.4 2.5 

Item 5 1 2 3 5   1 0.85 2.5 

Class 2 

Item 1 1 2 3 5   1 0.85 1.5 

Item 2 1 2 3 5 1 3 1.5 
Item 3 -1 -2 -3 -5 0.4 0.4 0 

Item 4 -1 -2 -3 -5 0 0 -1 
Item 5 -1 -2 -3 -5   -1 -1 -5 

Class 3 

Item 1 -1 -2 -3 -5 1.5 1.3 5 

Item 2 -1 -2 -3 -5 1 0.4 1.5 
Item 3 -1 -2 -3 -5 1 0.4 1 

Item 4 -1 -2 -3 -5 0 3 -1 
Item 5 -1 -2 -3 -5   0 0 0 

Class 4 

Item 1 -1 -2 -3 -5 0 0 -1.5 

Item 2 -1 -2 -3 -5 1.5 0.4 5 
Item 3 1 2 3 5 -1 3 -5 

Item 4 1 2 3 5 1.5 1.3 5 
Item 5 1 2 3 5   1.5 1.3 5 
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The poorly defined model (see Figures 11–13) was included in this study to see how poor 

measurement models impact the statistical power to detect latent transition probabilities. The 

poorly defined models have low class separation and non-homogeneous classes. This model 

has more “noise,” meaning the latent classes have many items that have conditional item 

probabilities near .50. This implies that there is a 50% chance of someone in in that class 

having endorsing that item, which means that the predictability of a person’s response to that 

item in that class is equivalent to the odds of flipping a coin. Threshold values for the poorly 

defined model range from moderate to high. As explained in Chapter 4, an additional 

moderate (revised) thresholds model was added due to replication convergence issues. The 

exact threshold values used in each model type can also be seen in the sample Mplus output 

in the Appendix. 

It is important to examine the difference between these two measurement models 

since it is more realistic to see published studies with the poorly defined model than the well-

defined model. The poorly defined model includes classes that have many overlaps in the 

item probabilities among the four classes. This is seen in published LTA articles and often is 

supported by theory. For example, Peterson et al.’s (2011) study on eating disorders revealed 

a three-class LCA model: binge eating/purging, binge eating, and low-BMI. The binge 

eating/purging and binge eating classes look very similar on all of the five items except for 

the item measuring compensatory behaviors (i.e., actions that “un-do” binge eating, such as 

self-induced vomiting or over-exercising after binge eating). Theoretically, this is the key 

item that distinguishes members of the two classes and is a major distinction when it comes 

to classification and treatment. Although this model may seem to be “poorly defined” with 
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respect to measurement characteristics because of the overlap of classes, it makes sense 

theoretically. 

 There are a number of potential issues that can emerge from this realistic 

measurement model. In the Peterson et al. (2011) study, there was one key variable that 

differentiated two of the three classes. Without this variable, the two classes would look 

almost exactly the same. However, adding more distinguishing items is sometimes difficult 

for researchers with small sample sizes. A measurement model with overlapping classes may 

have lower entropy but again, might make strong theoretical and practical sense. There might 

be lower power to detect the latent transition probabilities and a larger sample size might be 

necessary to reveal an adequate level of power in modeling conditions where the classes have 

a lot of overlap. Although the scope of this study does not examine the intersection of 

entropy with the measurement model, sample size, and power, it is important to acknowledge 

that they are not independent ideas. Thus, in a related sense this dissertation aims to take the 

first look at how the measurement model affects power.
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3.4.3 Latent transition probability matrices. Two transition probability matrices 

are used in this study. First, models with a completely equal transition probability matrix 

were examined, presented in Table 10. Henceforth this matrix will be referred to as “Even 

Transition Probabilities.” The inclusion of this even transition probability matrix allowed us 

to see how varying other conditions impact the statistical power of latent transition 

probabilities, while holding transition probabilities constant.  

Table 10: Even Transition Probabilities Matrix 
    Time 2 
    Class 1 Class 2 Class 3 Class 4 

Time 1 

Class 1 .25 .25 .25 .25 
Class 2 .25 .25 .25 .25 
Class 3 .25 .25 .25 .25 
Class 4 .25 .25 .25 .25 

 
 

A second of matrix of transition probabilities was considered which reflect the meta-

analysis findings. None of the published LTA studies had completely equal transition 

probabilities and thus, a more realistic and representative matrix was necessary. This 

“Uneven Transition Probabilities” model, presented in Table 11, is based off of meta-analysis 

findings. Similar to the eating disorder, education, and substance abuse articles identified in 

the meta-analysis, the diagonals of the transition matrix are fairly stable with values greater 

than .70. Class 4 has the highest stability (.95). Moreover, the values were specified so that if 

an individual was to transition, they would transition to a latent class immediately above or 

below its original class, which can be seen in values immediately to the left or right of a 

diagonal transition probability, a pattern found in the meta-analysis as well. 

 



45 
 

Table 11: Uneven Transition Probabilities Matrix 
    Time 2 
    Class 1 Class 2 Class 3 Class 4 

Time 1 

Class 1 .80 .15 .04 .01 
Class 2 .01 .85 .12 .02 
Class 3 .01 .07 .70 .22 
Class 4 .01 .02 .02 .95 

 
 

3.4.4 Class sizes. Two different sets of class sizes at t = 1 were included in this study. 

First, completely equal class sizes were specified, so that we could examine constant while 

while varying other conditions. Each class had 25% of the overall sample size. The second 

set of class sizes were uneven. These values were based on the meta-analysis findings that 

showed that, for most eating disorder and education-related LTA studies, the first listed class 

had the highest percentage of the sample and the last class had the smallest percentage of the 

sample. Class percentages for both the even and uneven class sizes models can be seen in 

Table 12 below. 

Table 12: Class Percentages for Even and Uneven Class Sizes Models. 

Class at t = 1 
Even Class Sizes 

Model 
Uneven Class Sizes 

Model 
Class 1 25% 50% 
Class 2 25% 30% 
Class 3 25% 15% 
Class 4 25% 5% 

 

3.5 Statistical Power in Mplus 

Power values for each parameter are provided in Mplus output in column seven of the 

Model Results section when using the Monte Carlo facilities of the program. This column is 

labeled “% Sig Coeff” and represents the proportion of replications for which the null 

hypothesis that a parameter is equal to zero is rejected for each parameter at the .05 level. In 
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a two-tailed test, the critical value is 1.96. The statistical test, or z-score, for each replication 

is the ratio of the parameter estimate (π̂ ) to its standard error: 

z = π̂ − 0

s.e.(π̂ )
. 

 The statistical power for the latent transition probabilities can be seen in the 

subsection labeled Categorical Latent Variables. A value of .80 or higher is considered 

adequate power (Cohen, 1988; Muthén & Muthén, 2002). 

3.6 Expectation Maximization (EM) Algorithm 

Monte Carlo simulation studies in Mplus use the Expectation Maximization (EM) 

Algorithm. Finding a mathematic solution in mixture modeling is difficult because the 

sample distribution is comprised of many sub-distributions (Jung & Wickrama, 2008). 

Ideally, in mixture modeling, researchers want global solutions. Global solutions are the set 

of parameters with the largest log likelihood out of all possible values. The likelihood 

function is the probability of an array of data given a set of parameter (Masyn, 2013). Local 

solutions are the solutions on which the estimation algorithm converges that is a local 

maxima, but not the global maximum.  

To help explain the idea of global and local solutions of a likelihood function, Masyn 

(2013) uses the idea of a hiker (which represents the estimation algorithm) climbing a 

mountain (the likelihood function) with an ultimate goal of reaching the highest peak of the 

entire mountain range (the global solution). In order to do so, the hiker chooses a starting 

point (the initial starting point of the parameter estimates) and continues to hike until it is 

known that a peak has been found (convergence criterion has been met). The hiker keeps 

hiking and finds more peaks, but must eventually stop hiking when supplies have run out 

(maximum number of iterations have passed). It is also possible that during the entire trek, 
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the hiker ran out of supplies (the maximum number of iterations has been exceeded) before 

finding a peak (failed to converge).  

To extend this idea, a local maximum in LCA would represent a hiker who a found a 

peak (local maximum) then ran out of supplies, not knowing that if he/she had continued the 

trek, the highest peak (global maximum) was ahead. In the same manner, converging on a 

local maximum in LCA means that a solution has been found among a range of values, 

whereas if the range of values had been different, or larger, a better solution could have been 

found. Going back to the analogy of the hiker, if the hiker had started at a different point at 

the base of the mountain, the hiker could have found the highest peak before running out of 

supplies. 

To help avoid reaching a local maximum, the researcher can indicate different start 

values in Mplus syntax, in essence setting out multiple hikers to find the global solution. The 

syntax, 

  TYPE = MIXTURE;  

calls for random sets of start values to generate in Mplus using the default values. Ten 

iterations of 10 random sets of starting values are carried out. From this, the ending values 

with the highest loglikelihood are used in the last stage of optimization. For a more thorough 

investigation, Muthén (2008) recommends the following syntax when examining two classes: 

 STARTS = 50 5;1. 

                                                 

 

1     If the “starts” syntax is not included in the input file, the Mplus default for mixture 
models is STARTS = 10 2. 
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The first number represents the number of random start values and the second number 

represents the number of final optimizations. Final optimizations optimize the specified 

number of best sets identified by the highest loglikelihood values after the first round of 

optimizations has been conducted. When there are more than two classes, Muthén (2008) 

recommends using the following start values because for more complex models, a more 

thorough investigation of solutions is necessary: 

 STARTS = 500 10; 

 STITERATIONS = 20;2 

In addition to using different start values, researchers can attempt to avoid specifying 

larger models and instead, aim for parsimony, as more parsimonious models are less 

complex. Well-identified models will arrive at a solution at any start value, under-identified 

models will find one global maximum and many local maxima, yet different start values may 

arrive at different solutions, and an unidentified model will find no unique solution (Collins 

& Lanza, 2010). Explained in further detail in Chapter 4, the poorly defined model had 

difficulty converging. Muthén’s (2008) recommendations were considered when 

investigating this issue. Both well-defined and poorly defined models were compared across 

different sample sizes, looking at the Mplus default (STARTS = 10 2) and STARTS = 

500 10. Power values and coverage values differed slightly between the two start values for 

both models. In both models, power values were slightly higher when start values were 

increased, yet differed by a maximum of .08. Additionally, coverage was slightly greater 

when starts were increased, yet differed only by a maximum of .07. Thus, the power values 

                                                 

 

2     The Mplus default is STITERATIONS = 10. 
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in the remainder of this study represent the default Mplus start values and reflect a more 

conservative estimate of power and coverage.  

3.7 Class Switching 

Class switching is a common issue that may occur in LCA/LTA and LCA/LTA 

simulation studies. When an LCA or LTA model is run in Mplus, the latent classes are given 

an arbitrary class label. This is done for each run of an LCA model, meaning in one run the 

order of the classes may be different than in the second run with the exact model fit or 

meaningful difference in the modeling parameters.  Similarly, in an LCA or LTA simulation 

study, class labels are at each permutation of a simulation and not over all permutations. 

Because of this, class labels may differ at each step of parameter estimation. For example, in 

a four-class model, the data generation values may appear at class 1 in the first permutation 

yet may appear at class 2 in the next permutation. This is an issue when aggregating 

parameter estimates over all simulation replications. 

For the present study, parameter estimates were examined after simulations were 

complete. Mplus provides parameter estimates, standard errors, and fit statistics in a .csv file 

with the following command: 

results = filename.csv; 

Parameter estimates were examined for multiple simulation models and there was no 

occurrence of class switching thus no further action was necessary to correct for class 

switching. 

3.8 Analysis Procedures 

When determining what sample size is appropriate for adequate statistical power, 

Muthén and Muthén (2002) suggest three conditions regarding parameter estimate bias, 
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standard error bias and coverage. The follow subsections will walk the reader through how to 

assess whether these conditions are met.  

3.8.1 Parameter estimate bias. Parameter estimate bias should not exceed 10% for 

any parameter in the model (Muthén & Muthén, 2002). Parameter estimate bias can be 

calculated by finding the percent difference between the population value and the average 

parameter estimate over all replications. These two values can be found in the first and 

second column of Mplus output in the section labeled Model Results. The formula for 

calculating parameter estimate bias is expressed as: 

population

populationavg −=  bias estimateparameter . 

 

3.8.2 Standard error bias. Standard error bias should not exceed 10% for any 

parameter in the model (Muthén & Muthén, 2002). Furthermore, standard error bias should 

not exceed 5% for the parameter that is being examined for power. Standard error bias tends 

to be sensitive because standard errors are often overestimated or underestimated, which in 

turn affects confidence intervals and coverage. Standard error bias can be calculated by 

taking the percent difference between the population standard error and the average of the 

estimated standard errors for each parameter estimate over all replications. These values can 

be found in columns 3 and 4 of the Mplus output in the section labeled Model Results.  The 

formula for calculating standard error bias is expressed as: 

..

....
  biaserror  standard

devstd

devstdAverageES −= . 
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When the number of replications is large, the standard deviation of each parameter 

estimate over all replications is considered to be the population standard error and thus, this 

value is used for the population value. 

3.8.3 Coverage. Lastly, coverage should be greater than .91 (Muthén & Muthén, 

2002). Coverage is the proportion of replications for which the 95% confidence interval 

contains the true parameter value. In other words, at least 91% of replications should have 

true parameter values within the 95% confidence interval. Coverage values can be found in 

column 6 of Mplus output in the section labeled Model Results. 

Considering these three conditions are met in this study, power values close greater 

than or equal to 0.80 will be considered adequate. In the next section, power values for all 

models are organized in Tables 16–19 and Tables 21–24. Power curves are also included in 

Figures 14–41 to visually show how power varies by sample size under each set of 

conditions.  
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Chapter 4 Results 

4.1 General Overview 

This chapter provides results from all 308 Monte Carlo simulations conducted as part 

of this study. The purpose of this dissertation was to examine the statistical power to detect 

latent transition probabilities under various conditions. These five various conditions 

included sample sizes, measurement models, latent transition probability matrices, class 

sizes, and threshold values. The following model types organize results into four sections:  

1) Well-Defined Model with Even Transition Probabilities 

2) Well-Defined Model with Uneven Transition Probabilities 

3) Poorly Defined Model with Even Transition Probabilities 

4) Poorly Defined Model with Uneven Transition Probabilities 

Within each of these sections are two subsections summarizing results for even and 

uneven class sizes. These subsections also describe results for various sample sizes and 

threshold values. Recall that a .80 value of higher is considered adequate statistical power. 

Table 13 includes a summary of the percentage of latent transition probabilities that met or 

exceeded the .80 cutoff for each model type. All of the power values for each model can be 

seen in Tables 16–19 and Tables 21–24 and graphically in Figures 14–41. Before going into 

these sections, two unusual patterns in power curves are highlighted and are explained, 

including why a model may have artificially high power and when a model may not converge 

due to model characteristics such as small sample or low threshold values. 
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Table 13: Percentage of Transition Probabilities that met .80 Cutoff 
            N 

Model  
Definition 

Transition 
Probabilities Class Sizes Thresholds 

N at 
which 
power 

stabilizes   100 250 500 1000 1250 1500 5000 6000 7000 8000 10000 

Well-
Defined 

Even 
Transition 

Probabilities 

Even Class Sizes 

Thresholds ±1 1500  None None None None None None None None None None None 

Thresholds ±2 100  None .92 All All All All All All All All All 

Thresholds ±3 100  .17 All All All All All All All All All All 

Thresholds ±5 100   All All All All All All All All  All All All 

Uneven Class Sizes 

Thresholds ±1 5000  None None None None None None .42 .58 .67 .75 .75 

Thresholds ±2 250  None .50 .75 .75 .83 All All All All All All 

Thresholds ±3 100  .42 .75 .75 All All All All All All All All 

Thresholds ±5 100   .50 .75 All All All All All All All All All 

Uneven 
Transition 

Probabilities 

Even Class Sizes 

Thresholds ±1 1250  None .08 .25 .25 .25 .25 .33 .42 .42 .42 .42 

Thresholds ±2 1000  None .25 .33 .42 .50 .58 .75 .75 .75 .75 .83 

Thresholds ±3 500  .17 .33 .50 .58 .58 .58 All All All All All 

Thresholds ±5 500   .25 .42 .50 .58 .75 .75 All All All All All 

Uneven Class Sizes 

Thresholds ±1 5000  None .08 .17 .25 .33 .33 .42 .42 .42 .50 .50 

Thresholds ±2 1500  .08 .33 .42 .50 .50 .50 .58 .58 .58 .58 .67 

Thresholds ±3 1500  .25 .42 .50 .58 .58 .58 .67 .75 .75 .75 .83 

Thresholds ±5 1500   .67 .42 .50 .58 .58 .58 .75 .92 .92 .92 .92 

Poorly 
Defined 

Even 
Transition 

Probabilities 

Even Class Sizes 

Moderate 5000  None None None None None None None None None None None 

Moderate (Revised) 1500  None None None None None None .67 .67 .67 .67 .92 

High 100   None .08 25.00 .33 .42 .59 All All All All All 

Uneven Class Sizes 

Moderate -  None None None None None None .08 .08 .08 .17 .17 

Moderate (Revised) 6000  None None None .08 .25 .25 .50 .67 .67 .67 .75 

High 250   None .08 .17 .50 .67 .67 All All All All All 

Uneven 
Transition 

Probabilities 

Even Class Sizes 

Moderate -   None None .08 .08 .08 .17 .25 .17 .17 .17 .17 

Moderate (Revised) 5000  None .08 .25 .25 .25 .33 .42 .42 .42 .42 .42 

High 1250   None .17 .33 .33 .33 .33 .67 .75 .75 .83 .92 

Uneven Class Sizes 

Moderate -  None None .08 .08 .08 .08 .17 .25 .17 .08 .25 
Moderate (Revised) -  None .17 .17 .25 .33 .33 .42 .42 .42 .42 .42 

High 5000  .08 .25 .25 .33 .42 .50 .50 .58 .58 .58 .58 

Note. A hyphen (-) indicates that power did not stabilize for any N in that model. 
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Table 14: Number of Completed Replications per Model  
        N 

Model Definition 
Transition 

Probabilities Class Sizes Thresholds 100 250 500 1000 1250 1500 5000 6000 7000 8000 10000 

Well- 
Defined 

Even 
Transition 

Probabilities 

Even Class Sizes 

Thresholds ±1 933 774 575 669 640 700 967 984 990 993 999 

Thresholds ±2 999 1000 1000 1000 1000 998 1000 1000 1000 1000 999 

Thresholds ±3 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Thresholds ±5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Uneven Class Sizes 

Thresholds ±1 939 756 646 508 499 517 823 872 894 920 948 

Thresholds ±2 995 997 999 999 999 1000 1000 1000 1000 1000 1000 

Thresholds ±3 998 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Thresholds ±5 998 1000 1000 999 999 998 999 999 998 999 1000 

Uneven 
Transition 

Probabilities 

Even Class Sizes 

Thresholds ±1 933 774 575 669 640 700 967 984 990 993 999 

Thresholds ±2 999 1000 1000 1000 1000 998 1000 1000 1000 1000 999 

Thresholds ±3 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Thresholds ±5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Uneven Class Sizes 

Thresholds ±1 939 756 646 508 499 517 823 872 894 920 948 

Thresholds ±2 995 997 999 999 999 1000 1000 1000 1000 1000 1000 

Thresholds ±3 873 995 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Thresholds ±5 991 995 997 1000 999 998 1000 999 998 999 1000 

Poorly 
 Defined 

Even 
Transition 

Probabilities 

Even Class Sizes 

Moderate 927 568 222 148 185 204 421 445 487 508 555 

Moderate (Revised) 918 648 472 531 602 684 965 986 988 996 995 

High 974 960 956 984 991 998 1000 1000 1000 1000 1000 

Uneven Class Sizes 

Moderate 919 587 271 133 93 98 209 249 282 296 349 

Moderate (Revised) 906 754 505 424 454 456 626 687 708 736 808 

High 978 988 979 991 996 995 1000 1000 1000 1000 1000 

Uneven 
Transition 

Probabilities 

Even Class Sizes 

Moderate 921 696 414 188 132 115 16 16 13 14 7 

Moderate (Revised) 932 835 784 765 774 762 667 626 611 608 592 

High 892 970 966 985 983 988 1000 998 1000 998 1000 

Uneven Class Sizes 

Moderate 915 703 439 222 167 120 25 22 20 16 11 
Moderate (Revised) 925 826 685 553 540 505 524 514 470 470 424 
High 761 928 928 982 986 987 997 1000 999 1000 999 
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Table 13 includes the sample size at which power stabilizes for all models. This table 

also includes the amount of latent transition probabilities that met or exceeded the 

recommended .80 cutoff. These results should be interpreted in conjunction with the power 

stability results. For example, a model with small N may have some latent transition 

probabilities with adequate power values; however, this model may not stabilize until a 

higher N is reached. Thus, it is advised that results are interpreted with caution and 

consideration.  

4.2 Unusual Patterns in Power Curves 

 While compiling results, two unusual patterns emerged. Prior to going into deeper 

analysis of the power curves for each model type, these issues are addressed first to help aid 

the interpretation of subsequent results. First, one might expect that power would increase as 

N increases for all models. Contrary to this expectation, some models in this study returned 

unusual power curve patterns. Second, some power curves exhibited “spikes” where power 

would alternate in higher or lower power with each successive N. Reasons for these unusual 

patterns are explained below. 

4.2.1 Artificially high power and stability of power. Some models exhibited an 

unusual pattern where power started higher at N = 100, decreased, then rose again when N 

increased (e.g., see Figure 25). This pattern is counterintuitive as it would imply that for 

some models, one can anticipate higher power for small Ns (e.g., N = 100) and then again for 

large Ns (e.g., N = 10,000), yet low power for moderate values of N (e.g., N = 5,000). To 

investigate this unexpected pattern, parameter estimates for each replication were examined 

to uncover possible issues that may be a result of model specification. This analysis focused 

on the Well-Defined Model with Uneven Transition Probability and Uneven Class Sizes (see 
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Table 19 and Figures 26–29). Each replication that endured a fixed standard error for a latent 

transition probability parameter had the following error message in Mplus output: 

ONE OR MORE PROBABILITY PARAMETERS WERE FIXED TO AVOID 

SINGULARITY OF THE INFORMATION MATRIX. THE SINGULARITY IS 

MOST LIKELY BECAUSE THE MODEL IS NOT IDENTIFIED, OR 

BECAUSE OF EMPTY CELLS IN THE JOINT DISTRIBUTION OF THE 

CATEGORICAL LATENT VARIABLES AND ANY INDEPENDENT 

VARIABLES. 

Investigation of each replications parameters revealed that for smaller Ns a large 

proportion of standard errors were being fixed to a very small number near zero. Statistical 

power is the proportion of replications where the ratio of the parameter estimate to its 

standard error is significant. Thus, when standard errors are fixed to numbers near zero, these 

z-scores tend to be greater than the 1.96 cutoff and are significant, causing artificial 

contributions to statistical power for that latent transition probability. They are considered 

artificial because the only reason they are significant is because they were fixed by the 

program to avoid estimation problems—which in fact are a signal that the model is not a 

good one in the first place.  Henceforth, this outcome will be referred to as “artificially high 

power.” “Stability” will refer to models where power values are not artificial (e.g., standard 

errors are not fixed by Mplus). Table 13 includes the sample size at which the model 

stabilizes. This is also visualized in Figures 14–41 by the dashed line. Power curves to the 

left of the dashed lines should not be interpreted. 

Table 15 below includes the percentage of standard errors out of the first 100 

replications that were fixed to zero for N = 100, 250, 500, 1,000, and 5,000 for the Well-

Defined Model with Uneven Transition Probability and Uneven Class Sizes. When N = 100, 
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60% of standard errors are fixed to near zero. As N increases, less standard errors were fixed 

and by the time N reaches 5,000, 0% of standard errors were fixed to zero. Thus, when 

artificially high power estimates occur, power stabilizes as N increases because fewer 

standard errors are fixed. The Mplus error message indicates that Mplus fixes standard errors 

for two reasons: if a model is not well-identified or if cells are sparse. It appears that in this 

model standard errors are fixed due to sparseness because standard errors are only fixed 

when N is small. 

Table 15: Percentage of Standard Errors Fixed to Zero in Well-Defined Model with Uneven 
Transition Probability and Uneven Class Sizes 

N % SEs set to 0 
100 60% 
250 50% 
500 30% 
1000 5% 
5000 0% 

 

 4.2.2 Model non-convergence and the revised moderate model. Some power 

curves exhibited “spikes” where power would alternate in higher or lower power with each 

successive N. This pattern can be seen in the Poorly Defined Model with Uneven Transition 

Probabilities, Even Class Sizes, and Moderate Thresholds in Figure 36. Notice how the 

power curve for latent transition probability 1:1 starts at .32 for N = 100, decreases, then 

appears to stabilize at N = 1,500. Unlike the artificially high power values presented in the 

previous section, this power curve does not stabilize and does not gradually increase as N 

increases. Instead, it increases at N = 5,000, decreases at N = 6,000, increases for the next 

two values of N, then decreases again for N = 10,000. These “spikes” can also be seen in the 

Poorly Defined Model with Uneven Transition Probabilities, Uneven Class Sizes, and 

Moderate and Moderate (Revised) Thresholds in Figures 39 and 40.  
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 A closer look at the output for these models revealed difficulty in model convergence. 

Table 14 includes the number of replications that completed for each of the model types. 

Well-defined models with thresholds greater than ±2 had little to no difficulty converging 

regardless of transition probability matrix or class size. When thresholds for well-defined 

models were set to ±1, lower and higher Ns had a greater probability of converging. 

Moderate Ns had lower proportions of completed replications. This can be attributed to the 

same reason why low values of N had greater power than higher or moderate values of N. For 

low N (e.g., N = 100), Mplus is more likely to fix standard errors to zero, which in turn 

“helps” the model to converge, resulting in high convergence rates. For moderate values of 

N, Mplus is less likely to “help” the model, resulting in moderate convergence rates. By the 

time N is large (e.g., N = 5,000), the model can sustain itself and successfully converge 

without the help of fixed standard errors. 

 Mplus provides the following error3 for each replication that does not complete: 

THE MODEL ESTIMATION DID NOT TERMINATE NORMALLY DUE TO A 

CHANGE IN THE LOGLIKELIHOOD DURING THE LAST E STEP. AN 

INSUFFICENT NUMBER OF E STEP ITERATIONS MAY HAVE BEEN 

USED.  INCREASE THE NUMBER OF MITERATIONS OR INCREASE THE 

MCONVERGENCE VALUE. ESTIMATES CANNOT BE TRUSTED. SLOW 

CONVERGENCE DUE TO PARAMETER... 

Following the suggestion in the error message, the number of iterations was increased from 

Mplus’ default 10 to 100. To investigate difference in convergence rates, iterations were 
                                                 

 

3 Mplus simulation output for models in this dissertation included other error messages. 
These error messages were investigated for potential issues. No major issues were found. 
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increased for the Poorly Defined model with Uneven Transition Probabilities and Uneven 

Class Sizes (see Figures 39–41) for this measurement model. For the moderate thresholds 

model, there was no change in the number of converged replications when the number of 

iterations was increased from 10 to 100. This shows the importance of having a well-defined 

measurement model. When measurement models have non-distinct classes, there is too much 

“noise” to distinguish between classes and as a result, the model will not converge. With 

non-simulated data, it is unlikely that Mplus would even resolve to this sort of measurement 

model because it is so poorly defined.  

 In summary, a model with poor measurement is unlikely to converge especially with 

the moderate thresholds specified in this simulation study. It may also indicate that a four-

class LCA solution would not even emerge under these conditions. Thus, to investigate a 

similar yet revised model, thresholds were adjusted and henceforth will be referred to as the 

Moderate (Revised) Thresholds model (refer back to Figure 13). To increase class separation, 

each class had one distinguishable item. For example, for item 1, class 1 had a 95% 

probability of endorsing that item while the other three classes had moderate probabilities for 

that item. Similarly, class 2 had a very low probability (5%) of endorsing item 2 while the 

other three classes had moderate probabilities. The same pattern continues for class 3 with 

item 3 and class 4 with item 4. Lastly, item 5 would be considered a “bad” item with all 

classes maintaining a moderate probability. This revised moderate thresholds model was 

created with the hopes that a model with greater class and item distinction would have less 

difficulty converging over 1,000 replications. As seen in Table 14, this moderate (revised) 

model did in fact converge better than the moderate thresholds model at N = 10,000. With 

even transition probabilities and even class sizes, almost 100% of replications converged. 
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With even transition probabilities and uneven class sizes, the moderate (revised) thresholds 

model had 808 out of 1,000 replications completed. However, with uneven transition 

probabilities, only about half of replications completed for both even and uneven class sizes. 

This shows that there is still some difficulty for the moderate (revised) thresholds model to 

converge when there are uneven transition probabilities. This outcome is explained in further 

detail in the following subsections. This poorly defined model with moderate (revised) 

thresholds also serves as a comparison model to examine to what extent the measurement 

model has an effect on the power of latent transition probabilities. These results are provided 

in the model results subsections below.  

4.3 Well-Defined Model with Even Transition Probabilities 

4.3.1 Even class sizes. This model serves as a basis for understanding the power of 

latent transition probabilities. Power values can be seen in Table 16 and Figures 14–17. 

Creating a model that has equal transition probabilities and equal class sizes helped show that 

latent transition probabilities have nearly equal power regardless of if they are on the 

diagonal or off-diagonals in the latent transition probability matrix. For example, with 

thresholds of ±3 and N = 1,500, power values range from .92 to .95. This model also helps to 

show the effect of model measurement and logit thresholds while holding transition 

probabilities and class sizes constant and equal.  

As seen in Figures 14–17, this well-defined model with even transition probabilities 

and even class sizes has stable power, meaning Mplus did not fix standard errors to zero and 

power values represent true and trustworthy results. Power is unstable only for N < 1,500 for 

thresholds of ±1. There are no other instances of “artificially high power.” This indicates that 

Mplus is unlikely to fix standard errors to zero in a well-defined model with even transition 
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probabilities and even class sizes. This model also converged well, again with an exception at 

low thresholds of ±1 for N < 1,500. 

A closer look at power across all four sets of thresholds helps show the impact of 

these values on power. When thresholds are set to ±1, adequate power is not met for any of 

the latent transition probabilities for any value of N. Even with a sample size of N = 10,000, 

power only reaches as high as .69. However, statistical power improves when thresholds are 

increased. For thresholds of ± 2 or ±3, there is adequate power for all transition probabilities 

when N ≥ 250. For high thresholds of ±5, there is adequate power at all values of N included 

in this study.  

Recall that for this simulation study, a well-defined model has four very distinct 

classes (refer to Figures 7–10 in Chapter 3).  Thresholds of ±1 only reflect item-response 

probabilities of 27% and 73%, respectively, while thresholds of ±5 reflect 1% and 99%, 

respectively. We see here in these results that even with a well-defined model, if classes are 

not homogeneous (i.e., item-response probabilities near 0 or 1), it is unlikely that transition 

probabilities will have adequate power. The relationship between the measurement model 

and logit thresholds is important, as we see here that well-defined models are likely to have 

adequate power but only when thresholds are also high.  

Thus far, this well-defined model with even transition probabilities and even class 

sizes shows that: 

• Statistical power does not take into consideration whether a transition 

probability is on the diagonal or off-diagonal. All power values for transition 

probabilities are approximately equal within a sample size. In other words, 
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holding all things constant, the power to detect probabilities is equal for 

movers and stayers.  

• This model is fairly stable except when N is low with thresholds of ±1.  

• Increasing threshold values helps the model to stabilize and results in greater 

power. 

4.3.2 Uneven class sizes. This model only differs from the above model by its class 

sizes. Transition probabilities are still even across all cells and the measurement model is 

congruent with the previous model. However, the power curves of these two model types are 

very different (see Table 17, Figures 18–21). In the previous even class size model, all 

conditions are set equal to each other and thus, all transition probabilities have nearly equal 

power within a sample size. For this uneven class sizes model, we see differences between 

each latent transition probability. For a single N, some power values are high while others are 

low. In general, there is lower power for latent transition probabilities with small class sizes. 

For example, power is lower when transitioning out of, or staying in class 4 (which had only 

5% of the sample), versus transitioning out of or staying in class 1 (which had 50% of the 

sample). When comparing this model to the previous even class sizes model, the effect of 

sparseness of cells is evident in the low power of the transition probabilities. Cells with fewer 

individuals had less power. For adequate power for all transition probabilities in the 

transition matrix, results indicate that we need N ≥ 5,000 with thresholds of ±2, N ≥ 1,000 

with thresholds of ±3, or N ≥ 500 with thresholds ±5.  

With low thresholds, this model has some difficulty stabilizing, meaning standard 

errors were fixed for many Ns and thus, power values are “artificially high.” For thresholds 

of ±1, power stabilizes after N = 5,000. When thresholds are increased to ±2, power stabilizes 
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at N = 250. When thresholds are ±3 or ±5, power is stable for all N. Caution should be taken 

when interpreting power results for this model. 

In summary, this well-defined model with even transition probabilities and uneven 

class sizes contributes the following findings in addition to what we have seen in results thus 

far: 

• Sparseness negatively affects statistical power. Larger class sizes have greater 

power compared to smaller latent class sizes. 

• Transition probabilities from smaller class sizes had more difficulty 

stabilizing, as expected. 
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Table 16: Power Values for Well-Defined Model with Even Transition Probabilities and Even Class Sizes  

 

N C1 to C1 C2 to C1 C3 to C1 C4 to C1 C1 to C2 C2 to C2 C3 to C2 C4 to C2 C1 to C3 C2 to C3 C3 to C3 C4 to C3

100 0.42 0.36 0.37 0.40 0.36 0.44 0.39 0.43 0.35 0.38 0.44 0.44

250 0.39 0.30 0.33 0.34 0.32 0.42 0.32 0.38 0.29 0.33 0.39 0.38

500 0.47 0.34 0.37 0.35 0.38 0.44 0.36 0.40 0.33 0.37 0.45 0.45

1000 0.52 0.45 0.49 0.46 0.46 0.50 0.44 0.48 0.44 0.47 0.56 0.51

1250 0.57 0.52 0.51 0.55 0.53 0.57 0.52 0.54 0.52 0.51 0.62 0.54

1500 0.56 0.49 0.53 0.54 0.48 0.53 0.52 0.54 0.51 0.51 0.58 0.53

5000 0.59 0.59 0.60 0.65 0.62 0.62 0.64 0.63 0.63 0.66 0.65 0.67

6000 0.62 0.62 0.63 0.67 0.63 0.62 0.66 0.64 0.62 0.66 0.63 0.64

7000 0.63 0.62 0.64 0.66 0.64 0.62 0.67 0.66 0.66 0.68 0.66 0.68

8000 0.62 0.65 0.65 0.67 0.66 0.66 0.69 0.67 0.66 0.67 0.65 0.67

10000 0.63 0.64 0.64 0.66 0.66 0.65 0.67 0.67 0.67 0.69 0.67 0.69

100 0.55 0.51 0.54 0.54 0.50 0.56 0.50 0.53 0.53 0.50 0.57 0.51

250 0.82 0.80 0.81 0.86 0.81 0.80 0.85 0.81 0.81 0.83 0.82 0.81

500 0.87 0.85 0.87 0.90 0.87 0.87 0.92 0.88 0.86 0.89 0.89 0.91

1000 0.86 0.87 0.88 0.90 0.87 0.88 0.89 0.90 0.87 0.89 0.91 0.91

1250 0.88 0.87 0.90 0.92 0.85 0.87 0.89 0.90 0.87 0.89 0.89 0.90

1500 0.88 0.88 0.90 0.92 0.87 0.89 0.91 0.91 0.88 0.90 0.90 0.94

5000 0.89 0.89 0.90 0.92 0.88 0.91 0.90 0.91 0.89 0.91 0.92 0.93

6000 0.88 0.88 0.89 0.91 0.90 0.90 0.90 0.90 0.89 0.89 0.90 0.90

7000 0.89 0.88 0.89 0.90 0.88 0.88 0.89 0.89 0.88 0.89 0.89 0.91

8000 0.90 0.91 0.91 0.92 0.90 0.91 0.91 0.91 0.90 0.90 0.91 0.91

10000 0.87 0.88 0.88 0.89 0.90 0.90 0.89 0.90 0.89 0.89 0.90 0.91

100 0.80 0.75 0.75 0.79 0.77 0.82 0.79 0.79 0.78 0.79 0.78 0.76

250 0.96 0.93 0.96 0.95 0.94 0.95 0.95 0.94 0.94 0.96 0.94 0.94

500 0.95 0.94 0.95 0.96 0.94 0.96 0.96 0.96 0.95 0.97 0.97 0.96

1000 0.93 0.92 0.93 0.96 0.92 0.94 0.95 0.94 0.92 0.94 0.95 0.96

1250 0.94 0.93 0.94 0.96 0.90 0.93 0.93 0.94 0.91 0.92 0.94 0.95

1500 0.93 0.92 0.93 0.95 0.92 0.94 0.94 0.95 0.92 0.95 0.95 0.94

5000 0.92 0.93 0.94 0.96 0.92 0.93 0.94 0.95 0.92 0.94 0.94 0.95

6000 0.94 0.94 0.95 0.96 0.93 0.94 0.94 0.95 0.93 0.95 0.95 0.95

7000 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.96 0.94 0.95 0.96 0.96

8000 0.95 0.95 0.95 0.96 0.94 0.95 0.95 0.96 0.95 0.95 0.96 0.96

10000 0.94 0.94 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.96 0.96 0.96

100 0.87 0.84 0.87 0.87 0.87 0.88 0.88 0.87 0.88 0.86 0.88 0.85

250 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00

500 1.00 0.99 1.00 1.00 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00

1000 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 1.00

1250 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99

1500 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99

5000 0.99 0.98 0.98 0.99 0.97 0.98 0.98 0.98 0.97 0.98 0.98 1.00

6000 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.99

7000 0.98 0.97 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99

8000 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99

10000 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99

Thresholds ±2

Thresholds ±1

Thresholds ±3

Thresholds ±5
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Table 17: Power Values for Well-Defined Model with Even Transition Probabilities and Uneven Class Sizes 

 

1 1 2 1 3 1 4 1 1 2 2 2 3 2 4 2 1 3 2 3 3 3 4 3

100 0.43 0.36 0.41 0.50 0.38 0.41 0.44 0.51 0.41 0.40 0.43 0.55

250 0.41 0.31 0.31 0.35 0.36 0.41 0.32 0.37 0.40 0.37 0.36 0.38

500 0.49 0.34 0.30 0.29 0.48 0.44 0.27 0.28 0.44 0.38 0.40 0.31

1000 0.69 0.54 0.34 0.21 0.57 0.50 0.30 0.25 0.53 0.43 0.39 0.22

1250 0.68 0.57 0.34 0.12 0.57 0.53 0.30 0.18 0.54 0.48 0.42 0.15

1500 0.77 0.63 0.40 0.12 0.59 0.52 0.34 0.16 0.55 0.47 0.42 0.13

5000 0.99 0.99 0.83 0.26 0.83 0.76 0.71 0.30 0.80 0.78 0.62 0.20

6000 1.00 1.00 0.90 0.34 0.88 0.83 0.79 0.34 0.85 0.84 0.66 0.22

7000 1.00 1.00 0.94 0.40 0.92 0.88 0.87 0.39 0.89 0.88 0.76 0.31

8000 1.00 1.00 0.97 0.48 0.96 0.91 0.91 0.43 0.93 0.92 0.81 0.36

10000 1.00 1.00 0.99 0.59 0.98 0.96 0.97 0.52 0.98 0.97 0.89 0.47

100 0.68 0.52 0.35 0.39 0.73 0.62 0.39 0.42 0.74 0.59 0.45 0.42

250 0.93 0.83 0.61 0.20 0.88 0.81 0.62 0.25 0.89 0.85 0.65 0.26

500 0.99 0.98 0.93 0.39 0.94 0.91 0.86 0.38 0.94 0.94 0.85 0.38

1000 1.00 0.99 0.99 0.73 0.96 0.95 0.96 0.65 0.96 0.96 0.93 0.64

1250 1.00 1.00 0.99 0.84 0.98 0.98 0.97 0.76 0.98 0.98 0.96 0.78

1500 1.00 0.99 1.00 0.91 0.98 0.98 0.98 0.83 0.98 0.98 0.97 0.82

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 0.93 0.80 0.48 0.28 0.95 0.85 0.54 0.30 0.95 0.86 0.53 0.30

250 0.99 0.98 0.88 0.37 0.98 0.96 0.90 0.34 0.97 0.97 0.89 0.37

500 1.00 1.00 0.99 0.77 0.98 0.98 0.97 0.73 0.98 0.99 0.97 0.73

1000 1.00 1.00 1.00 0.98 0.99 0.99 0.98 0.95 0.99 0.99 0.98 0.95

1250 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98

1500 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.98

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 0.99 0.94 0.57 0.25 1.00 0.93 0.60 0.25 1.00 0.94 0.59 0.24

250 1.00 1.00 0.97 0.47 1.00 1.00 0.98 0.48 1.00 1.00 0.98 0.49

500 0.96 0.94 0.93 0.92 0.95 0.95 0.92 0.92 0.95 0.94 0.93 0.92

1000 0.96 0.96 0.95 0.93 0.95 0.94 0.95 0.94 0.95 0.95 0.96 0.93

1250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Thresholds ±1

Thresholds ±2

Thresholds ±3

Thresholds ±5
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4.4 Well-Defined Model with Uneven Transition Probabilities 

4.4.1 Even class sizes. This model differs from the initial model in section 4.3.1 only 

by its transition probabilities. When compared to that model, one can clearly see the impact 

that uneven transition probabilities have on statistical power and stability (see Table 18 and 

Figures 22–25). For all four sets of threshold values, there are stability issues. Standard errors 

were fixed for many of these models, resulting in “artificially high” power. Power stabilizes 

at N ≥ 1,250 for threshold ±1, N ≥ 1500 for thresholds ±2, and N ≥ 500 for high thresholds of 

±3 or ±5. It should be noted that only some of the transition probabilities have difficulty 

stabilizing. The transition probabilities that start with high power and stay high are diagonal 

transition probabilities, which did not have difficulty stabilizing. These transition 

probabilities are much larger than the off-diagonal transition probabilities (e.g., a probability 

of .85 versus .04). The power curves on the lower half of the curve are power values for off-

diagonal transition probabilities. Larger off-diagonal transition probabilities (e.g., a 

probability of .15) are more likely to stabilize sooner than smaller off-diagonal transition 

probabilities (e.g., a probability of .01).  In sum, larger transition probabilities have higher 

power and are easier to stabilize, as we would expect.  

In the similar model with even transition probabilities in section 4.3.1, all power 

values were nearly equal for each value of N. In this model we could expect that if every 

condition was held equal, power would be roughly equal. However, in this model with 

uneven transition probabilities, some power values are low while others are high. We see 

here that power is related to the value of the transition probability. As seen before, larger 

transition probabilities leads to greater power.  
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This condition also displays the influence that the size of the threshold values has on 

power, specifically that larger thresholds lead to better power. When thresholds are ±1 or ±2, 

there is adequate power for some, but not all, of the transition probabilities. Low transition 

probabilities (i.e., .01) never reach power of .80 when thresholds are ±1. When thresholds are 

higher (i.e., ±3, ±5), there is adequate power for all transition probabilities at N ≥ 5,000. For 

N < 5,000, some transition probabilities have adequate power whereas others do not (see 

Figures 24 and 25). Low transition probabilities (i.e., .01) tend to have power values less than 

the .80 cut-off for small Ns. 

In summary, this well-defined model with uneven transition probabilities and even 

class sizes contributes the following findings in addition to what we have seen in results thus 

far: 

• Larger transition probabilities have less difficulty stabilizing than smaller 

transition probability. Diagonal values in this model had no difficulty 

stabilizing. 

• Larger transition probabilities have greater power than smaller transition 

probabilities. 

4.4.2 Uneven class sizes. Power values for this model were less stable than in the 

similar model above with even class sizes (see Table 19 and Figures 26–29). The 

combination of small transition probabilities and small class sizes resulted in artificially high 

power, or unstable power values. In general, power stabilizes at sample sizes between N = 

1,500 and N = 5,000 for all thresholds. Similar to the previous subsection, not all transition 

probabilities in a single model have difficulty stabilizing. Larger transition probabilities 

stabilize sooner than smaller transition probabilities. Larger transition probabilities (typically 
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diagonal probabilities) are stable at N = 100. Additionally, off-diagonal transition 

probabilities are more likely to stabilize sooner if coming from a larger class size such as 

class 1 or 2.  

This is the first instance that we see a combination of uneven transition probabilities 

and uneven class sizes. This model shows the interplay of these two conditions on statistical 

power. Power is lower for smaller transition probabilities or smaller class sizes (e.g., classes 

3 and 4). In fact, the combination of these two attributes creates a small cell size which in 

turn results in even smaller power. Some transition probabilities reach adequate power, but 

even with thresholds of ±5 and high Ns, not all transition probabilities reached power values 

of .80. Transition probabilities that do have high power are for classes that are large at t = 1 

and/or had diagonal transition probabilities.  

In summary, this well-defined model with uneven transition probabilities and uneven 

class sizes contributes the following findings in addition to what we have seen in results thus 

far: 

 •  The combination of small transition probability and small class size results in 

even lower power.
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Table 18: Power Values for Well-Defined Model with Uneven Transition Probabilities and Even Class Sizes 

 

N 1 1 2 1 3 1 4 1 1 2 2 2 3 2 4 2 1 3 2 3 3 3 4 3

100 0.54 0.37 0.45 0.45 0.28 0.59 0.40 0.48 0.38 0.35 0.58 0.46

250 0.80 0.27 0.30 0.28 0.19 0.82 0.23 0.33 0.25 0.21 0.76 0.29

500 0.95 0.16 0.21 0.13 0.22 0.95 0.15 0.19 0.13 0.13 0.90 0.16

1000 0.98 0.08 0.08 0.06 0.37 0.98 0.10 0.09 0.07 0.18 0.97 0.06

1250 0.99 0.08 0.06 0.06 0.48 0.99 0.09 0.06 0.06 0.23 0.99 0.05

1500 0.98 0.07 0.06 0.05 0.52 0.98 0.12 0.06 0.10 0.25 0.98 0.08

5000 0.99 0.06 0.04 0.06 0.95 1.00 0.33 0.07 0.18 0.73 1.00 0.06

6000 0.99 0.08 0.04 0.05 0.97 0.99 0.35 0.10 0.22 0.80 1.00 0.08

7000 0.99 0.06 0.04 0.05 0.97 0.99 0.41 0.09 0.29 0.84 0.99 0.07

8000 1.00 0.07 0.04 0.06 0.98 1.00 0.47 0.12 0.31 0.90 1.00 0.08

10000 1.00 0.07 0.05 0.07 0.98 1.00 0.58 0.13 0.39 0.95 1.00 0.11

100 0.64 0.34 0.41 0.32 0.17 0.69 0.22 0.38 0.23 0.14 0.77 0.34

250 0.99 0.18 0.22 0.12 0.64 0.98 0.15 0.17 0.14 0.35 0.99 0.16

500 0.97 0.09 0.08 0.06 0.95 0.99 0.40 0.07 0.28 0.77 0.99 0.07

1000 1.00 0.06 0.06 0.05 1.00 1.00 0.80 0.19 0.66 0.98 1.00 0.15

1250 1.00 0.06 0.07 0.06 1.00 1.00 0.89 0.26 0.78 1.00 1.00 0.20

1500 1.00 0.08 0.09 0.08 1.00 1.00 0.95 0.36 0.86 1.00 1.00 0.27

5000 1.00 0.37 0.50 0.19 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.85

6000 1.00 0.49 0.61 0.23 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.92

7000 1.00 0.54 0.70 0.29 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.95

8000 1.00 0.64 0.75 0.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97

10000 1.00 0.73 0.87 0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 0.78 0.50 0.57 0.51 0.29 0.80 0.23 0.50 0.27 0.19 0.83 0.45

250 0.94 0.23 0.27 0.22 0.81 0.94 0.36 0.18 0.18 0.71 0.97 0.16

500 1.00 0.12 0.11 0.08 1.00 0.99 0.83 0.17 0.58 0.98 0.99 0.13

1000 1.00 0.11 0.13 0.10 1.00 1.00 0.99 0.49 0.95 1.00 1.00 0.44

1250 1.00 0.18 0.19 0.16 1.00 1.00 1.00 0.68 0.98 1.00 1.00 0.59

1500 1.00 0.25 0.28 0.22 1.00 1.00 1.00 0.78 0.99 1.00 1.00 0.73

5000 1.00 0.94 0.96 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6000 1.00 0.97 0.98 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7000 1.00 0.98 0.99 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8000 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 0.65 0.64 0.68 0.53 1.00 0.28 0.56 0.35 0.37 1.00 0.55

250 1.00 0.22 0.20 0.26 0.98 1.00 0.61 0.19 0.29 0.93 1.00 0.19

500 1.00 0.11 0.10 0.10 1.00 1.00 0.97 0.24 0.73 1.00 1.00 0.25

1000 1.00 0.23 0.25 0.26 1.00 1.00 1.00 0.71 0.99 1.00 1.00 0.71

1250 1.00 0.35 0.37 0.40 1.00 1.00 1.00 0.85 1.00 1.00 1.00 0.86

1500 1.00 0.47 0.51 0.51 1.00 1.00 1.00 0.93 1.00 1.00 1.00 0.93

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Thresholds ±1

Thresholds ±2

Thresholds ±3

Thresholds ±5
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Table 19: Power Values for Well-Defined Model with Uneven Transition Probabilities and Uneven Classes 

 

N 1 1 2 1 3 1 4 1 1 2 2 2 3 2 4 2 1 3 2 3 3 3 4 3

100 0.73 0.37 0.46 0.48 0.26 0.57 0.40 0.49 0.31 0.36 0.46 0.51

250 0.85 0.34 0.44 0.43 0.27 0.79 0.35 0.43 0.23 0.27 0.61 0.43

500 0.93 0.24 0.35 0.36 0.45 0.89 0.30 0.38 0.19 0.22 0.75 0.34

1000 0.99 0.21 0.22 0.22 0.74 0.98 0.18 0.28 0.15 0.23 0.89 0.24

1250 0.99 0.15 0.21 0.20 0.81 0.99 0.16 0.24 0.14 0.27 0.92 0.20

1500 0.99 0.15 0.19 0.17 0.89 0.99 0.15 0.19 0.16 0.32 0.93 0.19

5000 1.00 0.06 0.10 0.08 0.99 1.00 0.15 0.10 0.57 0.87 0.99 0.10

6000 1.00 0.07 0.09 0.09 0.99 1.00 0.16 0.10 0.66 0.92 0.99 0.11

7000 1.00 0.07 0.08 0.07 0.99 0.99 0.18 0.08 0.74 0.94 0.99 0.09

8000 1.00 0.07 0.08 0.05 1.00 1.00 0.23 0.08 0.83 0.97 1.00 0.09

10000 1.00 0.07 0.05 0.06 1.00 1.00 0.26 0.07 0.89 0.98 1.00 0.08

100 0.86 0.39 0.56 0.47 0.39 0.76 0.31 0.55 0.23 0.23 0.63 0.54

250 0.98 0.30 0.39 0.30 0.92 0.96 0.17 0.38 0.24 0.46 0.94 0.42

500 1.00 0.17 0.21 0.16 0.99 1.00 0.20 0.23 0.63 0.86 0.99 0.24

1000 1.00 0.09 0.08 0.06 1.00 1.00 0.46 0.12 0.97 0.99 1.00 0.14

1250 1.00 0.11 0.06 0.04 1.00 1.00 0.57 0.08 0.99 1.00 1.00 0.12

1500 1.00 0.12 0.05 0.04 1.00 1.00 0.65 0.08 1.00 1.00 1.00 0.10

5000 1.00 0.48 0.22 0.04 1.00 1.00 1.00 0.10 1.00 1.00 1.00 0.09

6000 1.00 0.55 0.28 0.05 1.00 1.00 1.00 0.14 1.00 1.00 1.00 0.10

7000 1.00 0.65 0.36 0.05 1.00 1.00 1.00 0.16 1.00 1.00 1.00 0.15

8000 1.00 0.71 0.44 0.05 1.00 1.00 1.00 0.18 1.00 1.00 1.00 0.18

10000 1.00 0.81 0.55 0.05 1.00 1.00 1.00 0.25 1.00 1.00 1.00 0.23

100 0.91 0.53 0.75 0.76 0.72 0.92 0.38 0.77 0.20 0.32 0.92 0.77

250 0.98 0.33 0.49 0.49 0.96 0.96 0.25 0.54 0.50 0.83 0.94 0.53

500 0.99 0.20 0.28 0.29 0.99 1.00 0.48 0.35 0.92 0.99 0.99 0.36

1000 1.00 0.18 0.12 0.09 1.00 1.00 0.90 0.15 1.00 1.00 1.00 0.13

1250 1.00 0.26 0.11 0.06 1.00 1.00 0.98 0.11 1.00 1.00 1.00 0.11

1500 1.00 0.36 0.11 0.04 1.00 1.00 0.99 0.11 1.00 1.00 1.00 0.11

5000 1.00 0.97 0.72 0.07 1.00 1.00 1.00 0.42 1.00 1.00 1.00 0.35

6000 1.00 0.99 0.83 0.10 1.00 1.00 1.00 0.53 1.00 1.00 1.00 0.46

7000 1.00 1.00 0.92 0.10 1.00 1.00 1.00 0.62 1.00 1.00 1.00 0.58

8000 1.00 1.00 0.94 0.11 1.00 1.00 1.00 0.72 1.00 1.00 1.00 0.62

10000 1.00 1.00 1.00 0.15 1.00 1.00 1.00 0.83 1.00 1.00 1.00 0.80

100 1.00 0.68 0.83 0.92 0.93 1.00 0.39 0.89 0.25 0.50 1.00 0.88

250 1.00 0.37 0.57 0.75 1.00 1.00 0.33 0.69 0.73 0.98 1.00 0.70

500 1.00 0.21 0.32 0.55 1.00 1.00 0.77 0.48 0.98 1.00 1.00 0.49

1000 1.00 0.35 0.18 0.26 1.00 1.00 0.98 0.22 1.00 1.00 1.00 0.21

1250 1.00 0.50 0.16 0.17 1.00 1.00 0.99 0.15 1.00 1.00 0.99 0.16

1500 1.00 0.64 0.21 0.11 1.00 1.00 1.00 0.13 1.00 1.00 1.00 0.13

5000 1.00 1.00 0.91 0.21 1.00 1.00 1.00 0.72 1.00 1.00 1.00 0.70

6000 1.00 1.00 1.00 0.25 1.00 1.00 1.00 0.82 1.00 1.00 1.00 0.83

7000 1.00 1.00 0.98 0.31 1.00 1.00 1.00 0.90 1.00 1.00 1.00 0.89

8000 1.00 1.00 0.99 0.38 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.95

10000 1.00 1.00 1.00 0.57 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98

Thresholds ±1

Thresholds ±2

Thresholds ±3

Thresholds ±5
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4.5 Poorly Defined Model with Even Transition Probabilities 

4.5.1 Even class sizes. This poorly defined model with even transition probabilities 

and even class sizes model serves as a basis to compare all other variations of this model. See 

Table 21 and Figures 30–32 for power values. In the well-defined model with even transition 

probabilities and even class sizes, power values were nearly equal for each transition 

probability at each N because all conditions were equal. The well-defined model had high 

class separation. Because each class was clearly defined, there were marginal differences 

between the power values of transition probabilities among the classes. 

Unlike the well-defined model, the poorly defined model has some variance in power 

values depending on which classes the transition probability were attributed. For example, in 

the high thresholds model, there were four transition probabilities that had higher power than 

the rest at N = 1,000. These four transition probabilities were all classes transitioning into 

class 1: class 1 into class 1, class 2 into class 1, class 3 into class 1, and class 4 into class 1.  

Because all other conditions are held constant (i.e., transition probabilities and class size), the 

measurement model itself must be attributing to the differences in power values for each 

transition probability. This result shows that there is higher power when transitioning into a 

class that is distinct from the rest. In this case, that distinct class is class 1. 

For this poorly defined model with even transition probabilities and even class sizes, 

when thresholds were moderate, power stabilized near N = 5,000. None of the transition 

probabilities ever reached .80. The revised moderate thresholds model performed better, 

stabilizing after N = 1,500. Most of the transition probabilities met the .80 recommendation 

at Ns ≥ 5,000. Interestingly, the four transition probabilities that did not meet the cutoff were 

all transitions into class 3, a class that is the least distinct from the rest. In other words, many 
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of the item-response probabilities in class 3 look like the other classes.  This result is similar 

to the one above, that sample size and transition probabilities are not the only influence on 

statistical power; the separation of the latent class influences it as well.  

 For models with high thresholds, power was stable for all N and Ns ≥ 5,000 had 

adequate power for all transition probabilities. Transition probabilities for classes with more 

distinct thresholds were more likely to have higher power. Similar to the moderate and 

revised moderate thresholds model, there was greater power when transitioning into class 1 

and lower power when transitioning into class 3. 

In summary, this poorly defined model with even transition probabilities and even 

class sizes contributes the following findings in addition to what we have seen in results thus 

far: 

• The poorly defined model has more difficulty stabilizing than the well-defined 

model. 

• Measurement models with better class separation have higher power.  

• Transitions into distinct classes have higher power than transitions into non-

distinct classes. Non-distinct classes in models with larger thresholds had greater 

power than lower thresholds, as larger thresholds increase homogeneity. 

4.5.2 Uneven class sizes. This model experienced instability and difficulty 

converging for the moderate thresholds and moderate revised thresholds models (see Table 

22 and Figures 33–35). For moderate thresholds, power does not stabilize under the sample 

sizes included in this study. This model also had trouble converging, with only about a third 

of replications completing even when N = 10,000. Difficulties converging are exhibited in 

“spikes” in its power curve. With these thresholds, only two of the transition probabilities 
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ever meet the .80 recommendation. As seen in the previous model, these higher power 

transition probabilities were going into class 1a latent class with logit thresholds more 

distinct from the other three classes. The next two highest power values were also for 

transition probabilities going into class 1.  

The revised moderate thresholds model had less difficulty converging, with 99.5% of 

replications completing when N = 10,000. However, less than half of the replications 

converged when N < 1,500. This model eventually stabilizes after N = 6,000 and did not 

exhibit “spikes” in its power curve. Furthermore, not all transition probabilities met the .80 

recommendation. Even when N = 10,000, three transition probabilities do not meet the .80 

cutoff. These three transition probabilities are all from a very small class (class 4), which 

only has 5% of the overall sample at t = 1. Again, this shows that the effect of sparseness due 

to small class size. Recall that in the previous subsection, there was strong power for a 

transition probability of .01 going from class 4 to class 1 when class sizes were equal. Now, 

in this case with a very small class size, the power is much lower and is even one of the 

lowest power values in the entire model. 

 In the previous subsection, we saw that transition probabilities were lower when 

going into class 3 which was the least distinct of all the classes. Here, we can see how this 

finding fares by comparing class size and power for the revised moderate thresholds with 

even versus uneven class sizes (see Table 20 below). These models are identical in 

measurement with the same transition probabilities. The only difference is in class sizes at t = 

1. For the transition probability from class 1 to class 3, power increased from .70 to .84 when 

class size doubled from 25% to 50%. For the transition probability from class 4 to class 3, 

power decreased from .69 to .15 when class size decreased from 25% to 5%. In summary, 
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although the power for latent transition probabilities going into class 3 are generally lower 

than other classes, power values increase when there is less sparseness in that particular cell. 

 

Table 20: Comparison of Power for Even versus Uneven Class Size Model in Poorly Defined 
Model with Even Transition Probabilities and Revised Moderate Thresholds for N = 6,000 

  
Even Class Sizes 

 
Uneven Class Sizes 

Class Size Power 
 

Class Size Power 
C1 to C3 25% 0.70 

 
50% 0.84 

C2 to C3 25% 0.71 
 

30% 0.81 
C3 to C3 25% 0.66 

 
15% 0.63 

C4 to C3 25% 0.69   5% 0.15 
 

The high thresholds model had less difficulty stabilizing and converging. This model 

stabilized around N = 250. At sample size N = 5,000, there was adequate power for all 

transition probabilities. Again, we see the consistent finding that transition probabilities for 

larger classes have higher power. We also see that the combination of transitioning from a 

large class and transitioning into class 1 results in higher power. 

In summary, this poorly defined model with even transition probabilities and uneven 

class sizes contributes the following findings in addition to what we have seen in results thus 

far: 

• Although the poorly defined model has difficulty converging, poorly defined 

models with higher thresholds are more likely to converge and stabilize on 

lower values of N.  
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 Table 21: Power Values for Poorly Defined Model with Even Transition Probabilities and Even Class Sizes 
N 1 1 2 1 3 1 4 1 1 2 2 2 3 2 4 2 1 3 2 3 3 3 4 3

100 0.40 0.40 0.40 0.43 0.39 0.44 0.40 0.46 0.41 0.41 0.47 0.46

250 0.39 0.33 0.37 0.37 0.33 0.39 0.33 0.42 0.37 0.37 0.45 0.44

500 0.33 0.28 0.32 0.37 0.23 0.38 0.28 0.37 0.29 0.32 0.40 0.38

1000 0.41 0.43 0.34 0.39 0.41 0.44 0.42 0.46 0.35 0.28 0.39 0.41

1250 0.42 0.36 0.38 0.38 0.34 0.40 0.35 0.43 0.34 0.36 0.42 0.39

1500 0.46 0.37 0.40 0.37 0.39 0.44 0.39 0.41 0.38 0.39 0.42 0.45

5000 0.51 0.45 0.44 0.52 0.43 0.42 0.39 0.43 0.41 0.39 0.45 0.47

6000 0.55 0.49 0.52 0.56 0.47 0.44 0.43 0.47 0.51 0.47 0.51 0.53

7000 0.60 0.51 0.53 0.62 0.43 0.44 0.40 0.45 0.50 0.46 0.48 0.51

8000 0.63 0.55 0.54 0.62 0.46 0.43 0.40 0.47 0.47 0.43 0.46 0.51

10000 0.66 0.57 0.58 0.68 0.46 0.44 0.42 0.48 0.51 0.44 0.46 0.51

100 0.40 0.37 0.40 0.41 0.38 0.42 0.42 0.44 0.40 0.38 0.46 0.46

250 0.42 0.34 0.36 0.39 0.33 0.39 0.39 0.41 0.36 0.36 0.45 0.42

500 0.38 0.34 0.30 0.40 0.31 0.40 0.36 0.42 0.35 0.30 0.39 0.38

1000 0.49 0.48 0.49 0.48 0.49 0.53 0.49 0.52 0.43 0.41 0.45 0.45

1250 0.52 0.50 0.47 0.47 0.52 0.56 0.48 0.52 0.42 0.42 0.44 0.42

1500 0.56 0.59 0.52 0.56 0.64 0.66 0.55 0.61 0.43 0.41 0.46 0.40

5000 0.85 0.86 0.83 0.85 0.87 0.88 0.85 0.88 0.63 0.66 0.62 0.65

6000 0.86 0.87 0.83 0.86 0.88 0.88 0.86 0.87 0.70 0.71 0.66 0.69

7000 0.90 0.90 0.87 0.90 0.90 0.90 0.88 0.89 0.72 0.72 0.71 0.72

8000 0.90 0.91 0.88 0.91 0.91 0.91 0.90 0.90 0.78 0.77 0.73 0.77

10000 0.93 0.93 0.91 0.93 0.93 0.94 0.92 0.93 0.84 0.83 0.79 0.84

100 0.60 0.49 0.43 0.59 0.46 0.50 0.42 0.51 0.39 0.37 0.41 0.46

250 0.75 0.57 0.64 0.85 0.51 0.53 0.50 0.56 0.53 0.48 0.52 0.65

500 0.84 0.73 0.82 0.91 0.59 0.57 0.58 0.64 0.64 0.55 0.60 0.71

1000 0.94 0.89 0.93 0.97 0.72 0.66 0.69 0.77 0.73 0.69 0.69 0.73

1250 0.97 0.95 0.96 0.99 0.79 0.72 0.77 0.84 0.74 0.71 0.71 0.77

1500 0.98 0.97 0.98 0.99 0.86 0.78 0.83 0.88 0.79 0.77 0.77 0.79

5000 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.98

6000 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

7000 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.99

8000 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.99

10000 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

High Thresholds

Moderate (Revised) Thresholds

Moderate Thresholds
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Table 22: Power Values for Poorly Defined Model with Even Tprob and Uneven Class Sizes 

 

 

N 1 1 2 1 3 1 4 1 1 2 2 2 3 2 4 2 1 3 2 3 3 3 4 3

100 0.39 0.36 0.44 0.48 0.39 0.44 0.46 0.52 0.39 0.42 0.51 0.51

250 0.44 0.32 0.36 0.47 0.34 0.41 0.39 0.47 0.38 0.36 0.48 0.51

500 0.40 0.28 0.37 0.41 0.34 0.34 0.35 0.36 0.29 0.34 0.41 0.40

1000 0.50 0.31 0.22 0.15 0.28 0.23 0.20 0.23 0.23 0.26 0.32 0.20

1250 0.51 0.33 0.18 0.16 0.18 0.19 0.24 0.19 0.28 0.26 0.31 0.25

1500 0.62 0.42 0.33 0.09 0.35 0.36 0.29 0.22 0.43 0.33 0.41 0.25

5000 0.90 0.70 0.46 0.26 0.38 0.36 0.28 0.22 0.35 0.28 0.32 0.22

6000 0.93 0.78 0.57 0.38 0.40 0.39 0.28 0.25 0.41 0.36 0.38 0.20

7000 0.94 0.78 0.54 0.37 0.37 0.35 0.25 0.18 0.37 0.30 0.32 0.16

8000 0.95 0.82 0.59 0.41 0.36 0.35 0.21 0.20 0.39 0.31 0.35 0.19

10000 0.95 0.86 0.58 0.51 0.38 0.33 0.23 0.19 0.37 0.31 0.28 0.19

100 0.42 0.35 0.39 0.49 0.38 0.42 0.42 0.50 0.43 0.40 0.49 0.50

250 0.44 0.33 0.36 0.42 0.38 0.42 0.35 0.41 0.39 0.33 0.41 0.44

500 0.57 0.45 0.35 0.39 0.54 0.46 0.31 0.40 0.43 0.35 0.39 0.42

1000 0.82 0.72 0.34 0.36 0.77 0.66 0.30 0.33 0.50 0.39 0.36 0.34

1250 0.87 0.81 0.42 0.33 0.82 0.72 0.37 0.28 0.55 0.43 0.32 0.28

1500 0.87 0.84 0.49 0.25 0.82 0.75 0.37 0.25 0.55 0.48 0.34 0.22

5000 0.98 0.98 0.90 0.32 0.96 0.95 0.87 0.31 0.76 0.76 0.56 0.16

6000 0.99 0.99 0.96 0.41 0.98 0.97 0.94 0.36 0.84 0.81 0.63 0.15

7000 0.99 1.00 0.98 0.44 0.99 0.99 0.98 0.38 0.89 0.89 0.72 0.19

8000 1.00 1.00 0.99 0.46 0.99 1.00 0.99 0.43 0.93 0.91 0.76 0.21

10000 1.00 1.00 0.99 0.52 1.00 1.00 1.00 0.47 0.96 0.96 0.85 0.28

100 0.72 0.50 0.39 0.33 0.55 0.52 0.39 0.35 0.59 0.38 0.41 0.39

250 0.89 0.70 0.50 0.35 0.61 0.54 0.48 0.42 0.72 0.53 0.39 0.29

500 0.98 0.89 0.75 0.64 0.71 0.60 0.50 0.48 0.77 0.67 0.47 0.35

1000 1.00 0.99 0.96 0.93 0.86 0.74 0.62 0.55 0.81 0.76 0.61 0.47

1250 1.00 1.00 0.99 0.97 0.92 0.83 0.73 0.63 0.88 0.84 0.72 0.57

1500 1.00 1.00 0.99 0.99 0.95 0.89 0.79 0.70 0.90 0.88 0.76 0.64

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Moderate Thresholds

Moderate (Revised) Thresholds

High Thresholds
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4.6 Poorly Defined Model with Uneven Transition Probabilities 

4.6.1 Even class sizes. Similar to other poorly defined models, this model 

experienced difficulty converging, as seen in the “spikes” in the moderate thresholds model 

(see Table 23 and Figures 36–38). This poorly defined model also exhibited instability at all 

threshold levels. In fact, the moderate thresholds model never stabilized. Only 7 out of 1,000 

replications completed when N = 10,000. Because so few replications converged, this model 

is not interpretable. It can be concluded that Mplus would never arrive at this sort of solution 

with such a poor measurement model and these thresholds.  

 The revised moderate thresholds model performed better, yet still with only 592 out 

of 1000 replications completed at N = 10,000. Because this model had difficulty converging 

and did not stabilize, results should be interpreted with great caution. For the same revised 

moderate thresholds model with even transition probabilities, 808 replications completed 

(rather than the 592 we saw before). Thus, there was increased difficulty for the model to 

converge on a plausible solution when transition probabilities were small. Similar to previous 

findings, some transition probabilities performed better than others. In this model, larger 

transition probabilities had the greatest power. The next best power values were for transition 

probabilities equal to .15 (class 1 to class 2), .12 (class 2 to class 3) and .07 (class 3 to class 

2). The lowest power values were attributed to very small transition probabilities (i.e., .01 

and .02). Again, this result shows the effect that the value of a transition probability has on its 

statistical power.   

With high thresholds, power stabilizes at N ≥ 1,250. When N = 10,000, power values 

for all transition probabilities are near or exceed .80. We see the same patterns seen earlier in 

similar models. For instance, some transition probabilities are high for all N while others are 



84 
 

much lower. The high power transition probabilities are for those going into class 1, which 

was deemed distinct from the other classes. The low power transition probabilities are for 

those going into class 3, which was deemed indistinct from the other classes.  

In summary, this poorly defined model with uneven transition probabilities and even 

class sizes contributes the following findings in addition to what we have seen in results thus 

far: 

• A combination of “poor” conditions makes it difficult for statistical programs 

to converge on a solution. It can be concluded that in a non-simulated study, 

Mplus would not reach a solution on this model if there were moderate 

thresholds. 

4.6.2 Uneven class sizes. From the findings thus far, one would expect this model to 

have the poorest power of the ones considered. Up to this point, we have seen that small 

transition probabilities, small class sizes and poorly defined models have lower power. Prior 

to looking at results, one would expect: 

• the moderate thresholds model to have extreme difficulty converging, 

• the revised moderate model to have improved yet still some difficulty 

converging, 

• the high thresholds model to have little to no difficulty converging, 

• small class sizes to have lower power, 

• large class sizes to have higher power, 

• small transition probabilities to have lower power,  

• diagonal transition probabilities to have higher power, 



85 
 

• transitioning into a distinct class (i.e., class 1) will have higher power than 

transitioning into an indinstict class (i.e., class 3), and 

• larger transition probabilities and higher thresholds can help recover loss in 

power. 

 These hypotheses are consistent with findings related to this poorly defined model 

with uneven transition probabilities and uneven class sizes (see Table 24 and Figures 39–41). 

The moderate thresholds model never stabilized. Only 11 out of 1,000 replications converged 

when N = 10,000. Again, this moderate thresholds model is deemed uninterpretable. The 

revised moderate thresholds model also had difficulty converging and never reached stability, 

although 424 out of 1000 replications completed at N = 10,000. Lastly, the high thresholds 

model had little difficulty converging, with 999 completed replications at N = 10,000. 

Additionally, this model’s power curve reached stability at N = 5,000. 

 Findings regarding the interplay of class sizes and transition probability values also 

returned true with this model. For the high thresholds model, 6 out of 12 transition 

probabilities reached adequate power at N = 5,000. As expected, these higher power 

transition probabilities had one or more of the following attributes: larger transition 

probability, larger class size, and/or transitioning into a distinct class (i.e., class 1). For N = 

10,000, the transition probabilities that met the .80 recommendation had a large class size 

(class 1 or class 2 at t = 1) and/or large transition probability (diagonal value or transition 

probability greater than or equal to .12).  

 In summary, this model corroborates all other findings and expectations. Trends 

regarding stability, convergence, sample size, transition probabilities, class sizes, 

homogeneity and class separation persist throughout all models. The following chapter 
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provides a discussion of all results, practical recommendations, limitations, and future 

directions.    



87 
 

Table 23: Power Values for Poorly Defined Model with Uneven Transition Probabilities and Even Classes 
N 1 1 2 1 3 1 4 1 1 2 2 2 3 2 4 2 1 3 2 3 3 3 4 3

100 0.45 0.45 0.47 0.47 0.32 0.48 0.43 0.50 0.38 0.39 0.50 0.51

250 0.65 0.33 0.40 0.40 0.24 0.54 0.33 0.40 0.31 0.31 0.50 0.43

500 0.80 0.31 0.36 0.34 0.18 0.60 0.32 0.33 0.20 0.27 0.57 0.31

1000 0.91 0.15 0.20 0.18 0.15 0.68 0.20 0.19 0.13 0.14 0.60 0.19

1250 0.96 0.10 0.17 0.15 0.14 0.69 0.13 0.14 0.03 0.09 0.61 0.13

1500 0.97 0.06 0.08 0.10 0.15 0.81 0.09 0.11 0.09 0.10 0.73 0.08

5000 1.00 0.06 0.06 0.00 0.31 0.94 0.06 0.00 0.06 0.13 0.94 0.06

6000 1.00 0.00 0.00 0.06 0.19 0.69 0.00 0.06 0.00 0.06 0.88 0.00

7000 1.00 0.08 0.08 0.08 0.31 0.92 0.00 0.00 0.00 0.00 0.69 0.00

8000 1.00 0.00 0.00 0.07 0.57 0.86 0.14 0.00 0.00 0.00 0.64 0.07

10000 1.00 0.14 0.14 0.00 0.29 0.43 0.14 0.00 0.00 0.14 1.00 0.00

100 0.56 0.45 0.49 0.45 0.29 0.54 0.41 0.43 0.39 0.33 0.48 0.44

250 0.83 0.40 0.44 0.41 0.20 0.80 0.35 0.37 0.31 0.29 0.64 0.40

500 0.95 0.33 0.40 0.33 0.28 0.93 0.26 0.31 0.26 0.17 0.84 0.32

1000 0.97 0.26 0.26 0.26 0.59 0.97 0.18 0.25 0.16 0.21 0.93 0.24

1250 0.99 0.23 0.23 0.22 0.74 0.99 0.18 0.23 0.14 0.26 0.97 0.25

1500 0.98 0.17 0.19 0.17 0.81 0.99 0.15 0.14 0.13 0.29 0.97 0.17

5000 1.00 0.06 0.04 0.05 0.99 1.00 0.39 0.10 0.17 0.83 0.99 0.07

6000 1.00 0.06 0.03 0.04 0.99 1.00 0.48 0.10 0.18 0.89 0.99 0.07

7000 1.00 0.06 0.04 0.03 0.98 1.00 0.51 0.12 0.22 0.92 0.99 0.05

8000 1.00 0.06 0.03 0.02 0.99 1.00 0.57 0.12 0.25 0.96 1.00 0.06

10000 1.00 0.06 0.04 0.05 1.00 1.00 0.70 0.13 0.31 0.98 1.00 0.07

100 0.70 0.44 0.50 0.42 0.18 0.55 0.35 0.41 0.24 0.25 0.48 0.45

250 0.95 0.31 0.44 0.33 0.55 0.85 0.25 0.27 0.19 0.21 0.78 0.32

500 0.99 0.20 0.25 0.25 0.88 0.96 0.17 0.18 0.16 0.29 0.93 0.20

1000 1.00 0.13 0.09 0.16 0.99 0.99 0.17 0.22 0.35 0.49 0.99 0.19

1250 1.00 0.10 0.07 0.18 0.99 0.99 0.21 0.27 0.50 0.57 0.99 0.23

1500 1.00 0.14 0.09 0.17 1.00 1.00 0.26 0.35 0.63 0.66 1.00 0.28

5000 1.00 0.60 0.53 0.45 1.00 1.00 0.76 0.89 1.00 0.99 1.00 0.91

6000 1.00 0.67 0.62 0.54 1.00 1.00 0.84 0.94 1.00 1.00 1.00 0.95

7000 1.00 0.76 0.69 0.59 1.00 1.00 0.89 0.98 1.00 1.00 1.00 0.98

8000 1.00 0.81 0.77 0.66 1.00 1.00 0.93 0.99 1.00 1.00 1.00 0.99

10000 1.00 0.89 0.87 0.78 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00

Moderate (Revised) Thresholds

High Thresholds

Moderate Thresholds
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Table 24: Power Values for Poorly Defined Model with Uneven Transition Probabilities and Uneven Classes 
1 1 2 1 3 1 4 1 1 2 2 2 3 2 4 2 1 3 2 3 3 3 4 3

100 0.64 0.43 0.48 0.49 0.26 0.52 0.46 0.52 0.32 0.38 0.49 0.52

250 0.74 0.40 0.46 0.49 0.23 0.61 0.43 0.49 0.25 0.31 0.47 0.51

500 0.82 0.36 0.43 0.46 0.24 0.60 0.34 0.47 0.23 0.26 0.47 0.53

1000 0.90 0.26 0.36 0.47 0.30 0.72 0.37 0.46 0.19 0.25 0.52 0.48

1250 0.90 0.21 0.40 0.43 0.26 0.71 0.38 0.47 0.16 0.24 0.49 0.51

1500 0.92 0.17 0.23 0.34 0.43 0.74 0.25 0.33 0.13 0.17 0.51 0.33

5000 1.00 0.08 0.08 0.08 0.48 0.88 0.00 0.08 0.00 0.04 0.60 0.12

6000 0.96 0.00 0.05 0.09 0.64 0.96 0.09 0.05 0.00 0.05 0.82 0.05

7000 1.00 0.00 0.10 0.00 0.75 0.90 0.10 0.05 0.00 0.00 0.70 0.05

8000 1.00 0.00 0.00 0.00 0.50 0.75 0.00 0.00 0.00 0.00 0.69 0.00

10000 1.00 0.00 0.00 0.18 0.64 0.91 0.00 0.00 0.00 0.09 0.82 0.00

100 0.78 0.45 0.51 0.52 0.27 0.62 0.44 0.51 0.37 0.35 0.43 0.51

250 0.87 0.40 0.48 0.50 0.38 0.84 0.41 0.47 0.28 0.29 0.55 0.48

500 0.92 0.39 0.46 0.42 0.58 0.91 0.33 0.46 0.23 0.25 0.66 0.46

1000 0.96 0.36 0.42 0.41 0.85 0.95 0.33 0.44 0.22 0.21 0.76 0.43

1250 0.97 0.32 0.37 0.37 0.89 0.96 0.27 0.39 0.22 0.31 0.83 0.41

1500 0.98 0.30 0.40 0.42 0.95 0.98 0.26 0.39 0.22 0.36 0.88 0.38

5000 1.00 0.21 0.25 0.32 1.00 1.00 0.23 0.26 0.49 0.88 0.99 0.27

6000 0.99 0.19 0.25 0.29 0.99 1.00 0.25 0.24 0.55 0.92 0.98 0.26

7000 1.00 0.21 0.20 0.27 0.99 1.00 0.28 0.22 0.65 0.94 0.99 0.24

8000 1.00 0.16 0.20 0.24 0.99 1.00 0.31 0.21 0.68 0.97 0.99 0.22

10000 1.00 0.14 0.16 0.22 0.99 1.00 0.24 0.16 0.79 0.98 0.99 0.18

100 0.88 0.53 0.69 0.65 0.52 0.71 0.48 0.70 0.31 0.37 0.54 0.71

250 0.97 0.33 0.53 0.46 0.81 0.90 0.36 0.50 0.16 0.26 0.64 0.54

500 0.97 0.33 0.53 0.46 0.81 0.90 0.36 0.50 0.16 0.26 0.64 0.54

1000 1.00 0.16 0.21 0.22 0.98 0.99 0.20 0.15 0.67 0.67 0.96 0.24

1250 1.00 0.20 0.19 0.22 0.99 0.99 0.19 0.11 0.81 0.75 0.98 0.22

1500 1.00 0.20 0.12 0.15 0.99 1.00 0.19 0.10 0.88 0.82 0.98 0.14

5000 1.00 0.77 0.21 0.10 1.00 1.00 0.47 0.21 1.00 1.00 1.00 0.13

6000 1.00 0.84 0.26 0.12 1.00 1.00 0.54 0.24 1.00 1.00 1.00 0.18

7000 1.00 0.89 0.32 0.10 1.00 1.00 0.62 0.29 1.00 1.00 1.00 0.22

8000 1.00 0.93 0.38 0.11 1.00 1.00 0.66 0.32 1.00 1.00 1.00 0.26

10000 1.00 0.97 0.48 0.10 1.00 1.00 0.77 0.42 1.00 1.00 1.00 0.36

Moderate (Revised) Thresholds

High Thresholds

Moderate Thresholds
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Chapter 5 Discussion 

5.1 General Overview 

 LTA is a statistical model that can be used to study how individuals transition from or 

stay in latent classes over time. LTA is commonly used and gaining increasing popularity in 

many fields including educational, health, and behavioral research. Because only two 

simulation studies have been conducted to examine the how the model specification and 

sample size requirements for this model , the purpose of this study was to investigate the 

sample size needed to establish statistical power to detect latent transition probabilities under 

various model conditions. These conditions included sample size, well-defined versus poorly 

defined measurement models, equal versus unequal transition probability matrices, equal 

versus unequal class sizes, and variations of item-response logit thresholds which relate to 

the measurement quality of the latent class models. A meta-analysis was conducted to 

explore common characteristics of recently published LTA studies. Using these attributes, 

Monte Carlo simulations were conducted to help examine what level of power one can 

expect under those conditions. This discussion section will review the general trends found 

across results. This section will also provide general recommendations for applied 

researchers using LTA. Lastly, this section will discuss limitations to this study and future 

directions for future LTA power studies. 

5.2 Summary of Dissertation 

 In total, 308 models were generated across the five conditions included in this Monte 

Carlo simulation study:  

• Two time points 

• 11 sample sizes 
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• Two measurement models: well-defined, poorly defined 

• Two sets of transition probability matrices: equal, unequal 

• Two sets of class sizes: equal, unequal 

• Three to four variations in logit thresholds:  

o ±1, ±2, ±3, and ±5 for the well-defined model 

o moderate, moderate (revised), and high for the poorly defined model 

 Power values for 12 transition probabilities were provided and studied in Mplus 

output, summing to a total of 3,696 power values across all 308 models. Taken together, 

results from this study revealed the effect of each condition on the power to detect latent 

transition probabilities, as well as the impact of the combination of two or more conditions 

on power.  

5.3 Key Trends and Findings 

 The following section will walk through key trends and findings across all models 

included in this dissertation. Multiple regressions were conducted using Stata 12.1 

(Statacorp, 2011) to statistically examine the relationship between power and all of the model 

conditions. First, two measurement models were included in this dissertation to examine how 

power performs in a well-defined model in comparison to a poorly defined model. Results 

show that the measurement model is a key component on whether or not a transition 

probability will have adequate power. Collins and Lanza (2010) state that class separation 

and homogeneity are two desirable attributes when considering an LCA model. First, this 

study helped show how high class separation is related to higher power in the LTA model. 

When comparing well-defined and poorly defined models that were equivalent on all other 

characteristics, the well-defined model always had higher power than the poorly defined 
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model. In the multiple regress analysis, holding all conditions constant, well-defined models 

had significantly higher power than poorly defined models (β = .35, p < .001).  

 We also saw the effect of class separation in the poorly defined models. Even when 

all other conditions were equal, the power for latent transition probabilities going into class 1 

was greater than going into class 3. A closer look at the measurement model revealed that 

class 1 was the most distinct (i.e., had the best measurement qualities) from the other three 

classes, while the item-response probabilities for class 3 were similar to another class. Thus, 

this study helped show that high class separation in a well-defined model led to greater 

power than a poorly defined model and also showed how on a smaller  scale, within a poorly 

defined model a class that is more separate than the others will likely have higher power.    

 By varying logit thresholds, we could also see how homogeneity impacts the power 

of a latent transition probability. Higher thresholds imply increased homogeneity, which is 

synonymous with item-response probabilities near 0 or 1, considered a good measurement 

quality since we know with certainty how individuals in a given class responded. When 

thresholds were increased, we saw two important results. First, power was always higher in 

models that had more homogeneous classes. Second, when thresholds were increased, 

unstable models were now more stable because Mplus was less likely to fix standard errors. 

Regression results support this finding. Thresholds were, in fact, significant predictors of 

power in both poorly defined (β = .46, p < .001) and well-defined (β = .30, p < .001) models. 

 Other model attributes led to greater power. As one might expect, larger sample sizes 

had better power and also more stability. In fact, sample size was the greatest predictor of 

both for both poorly defined models (β = .50, p < .001) and well-defined models (β = .95, p < 

.001). Additionally, larger transition probabilities from larger class sizes had higher power 



94 
 

than small transition probabilities from a small class. For example, in a single model, a 

transition probability of .80 from a class size of 50% at t = 1 always had higher power than a 

transition probability of .15 from a class size of 5%. This result helped prove hypotheses that 

sparseness would affect statistical power. Larger class sizes have greater power than smaller 

class. In other words, cells with more individuals would have greater power. Small class 

sizes also had more difficulty stabilizing. Although regression results did not reveal 

significant interactions between transition probabilities and class size, there were significant 

three-way interaction effects between transition probabilities, class size, and thresholds. In 

other words, larger thresholds have a greater effect of transition probabilities and class size 

on the power to detect latent transition probabilities.   

  In summary, the following are the key findings of this study: 

- The measurement model matters. Models with highly separated and homogeneous 

classes are likely to have higher power.  

- Large sample sizes—larger than we usually see in applied work—is needed to 

establish power for all parameters of the model, especially small latent transition 

probabilities.  

- Although the measurement and sample size are key predictors of power, applied 

researchers must consider all model conditions (e.g., transition probabilities, class 

size) when determining what sample size is necessary for adequate power.  

- Non-convergence and fixed standard errors are indications of poor model 

measurement. This is also referred to as solution propriety (Wolf, Harrington, 

Clark, & Miller, 2013). In applied work, poor power and under-identification can 
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be indicated by a large number of errors and the need to re-specify models 

numerous times. 

5.4 Practical Recommendations 

 Researchers often ask what sample size is necessary for their statistical model. 

Regarding LTA, this extensive Monte Carlo simulation study suggests the following 

response: it depends. The sample size necessary to attain adequate statistical power for latent 

transition probabilities depends on a number of characteristics including the measurement 

model, item-response probabilities, latent transition probabilities, class sizes and sparseness 

of cells. Looking at results from this study, it can be argued that the measurement model and 

sample size are the leading factors in whether a transition probability has adequate statistical 

power. However, even with a well-defined model, the sample size needed for adequate power 

depends on other characteristics.  

 In a simulation study, the researcher has the ability to control and manipulate the 

model and all conditions. In this study, five different conditions were varied and specified in 

Mplus. However, realistically and practically, most conditions are not controllable when 

working with real-life data. A researcher might have the ability to increase the sample size of 

a study. However, other characteristics such as thresholds, class separation, transition 

probabilities and class sizes emerge from parameter estimation. Although these conditions 

are not controllable, one can expect a latent transition probability to have better power if it 

has the following characteristics: 

• Within a model with homogeneous classes 

• Within a model with high class separation 

• In a class that is distinct from other classes 
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• Larger transition probability value  

• Larger class size at t = 1 

• Larger N 

Researchers can use Tables 16–19 and Tables 21–24 as a guide for what one might 

expect under those conditions. Table 13 shows how many latent transition probabilities met 

the .80 in each model, while Table 14 shows how many replications converged in each 

model. This study can help researchers understand how poor or strong model attributes 

impacts the statistical power to detect a latent transition probability. For instance, a 

researcher could say, “If I have a sample size of 500, my LCA model has homogeneous 

classes but poor class separation, the power to detect a very small latent transition probability 

from a small class will likely be low.”  

 Results from this dissertation indicate that we need sample sizes larger than we are 

used to seeing in applied social science studies. These larger sample sizes are needed to say, 

with confidence, that all parameters in the model have sufficient power. Additionally, it is 

important to have good measurement models. This is a difficult requirement to have a priori 

because it is unknown what classes will emerge due to the exploratory nature of LCA. 

Researchers can look at similar previously conducted LCA studies to speculate what the t = 2 

classes may look like. Applied researchers should conduct simulation studies in Mplus using 

LCA results from previously conducted studies to speculate possible results and to ensure 

that their parameters will have sufficient power. 

Applied researchers often run power simulations studies to justify their sample size 

and results. However, the “artificially high” patterns that emerged in this dissertation reveal 

some issues with this approach. For example, a researcher may run a single simulation and 
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find that there is adequate power with a sample size of N = 100 when in fact this power value 

is artificially high due to the fixing of parameters that Mplus does. If this researcher is not 

aware that many standard errors are being fixed to zero by reading the error messages 

provided in the output, the researcher will have incorrect justification to support the small 

sample size. Applied researchers should carefully look into parameter estimates and standard 

errors to ensure that power values are correctly estimated and not artificially adequate. 

 Importantly, statistical power is the probability to detect an effect when there is in 

fact an effect. When power is low, there is greater chance for Type II error. These Monte 

Carlo simulations showed how varying one or more conditions could increase or decreases 

power. Inversely, these simulations showed how varying one or more conditions could 

decrease or increase the probability of making a Type II error. Researchers must consider the 

effects of model characteristics on the power to detect latent transition probabilities and the 

chance of committing a Type II error. 

5.5 Limitations and Future Directions 

 Because only two other LTA power studies have been conducted to date, the scope of 

this dissertation was to examine how a set of conditions influence the statistical power of 

latent transition probabilities. The conditions included in the simulations were based on 

commonalities found in recently published LTA studies. This study did not exhaust all 

possible variations of an LTA model. First, only two time points were simulated with 4-class 

solutions at both time points. Additionally, measurement invariance was assumed, though it 

is not a necessary condition of the LTA model. Extensions of this study should include more 

time points, more or less classes, and even examine power when measurement invariance is 

not assumed. This study also only examined 5 categorical indicators. Additional categorical 
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and the inclusion of continuous variables can add to the results found in this study. One of 

the two other LTA simulation studies to date (Collins & Wugalter, 1992) aimed to determine 

if adding additional indicators in a LTA model would provide better measurement or more 

sparse contingency tables. The study found that including more indicators improved standard 

errors even when the contingency tables were sparse. Adding more indicators to this study 

could help eliminate issues such as artificially high power and inability to converge as a 

result of sparseness and poor model measurement. 

 The variations of a latent transition probabilities matrix are seemingly endless. This 

study looked at two matrices to see how power fared among larger or smaller probabilities. 

Other transition probabilities such as .50 could be included in a future simulation study. 

Future studies can also look at the importance of power for small transition probabilities such 

as .01. Further research can help answer questions that were not covered in this dissertation, 

such as whether each transition probability needs adequate power or if adequate power for 

the majority of transition probabilities would suffice. Additionally, different combinations of 

class size can be examined. This study included 11 sample sizes, though further simulations 

should include sample sizes between N = 1,500 and N = 5,000. This could reveal earlier 

instances of stability in the power curves. Lastly, extensions of this study can include latent 

transition analysis models that include covariates and distal outcomes and examine the power 

to detect latent transition probabilities, given these explanatory variables. 

 Future extensions of this study could examine the 3-step approach in mixture 

modeling (Asparouhov & Muthén, 2014). This approach is gaining popularity for its 

advantage in correcting for classification error. A future simulation study could incorporate 

the 3-step method to examine power in LTA. For example, in a measurement model with 
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high entropy yet a small sample size, the researcher can fix individuals to classes and conduct 

a cross-tabulation of class proportions at t = 1 and t = 2. This study can help reveal the 

intersection between entropy, the measurement model, and sample size on power. 

 LTA is a valuable method that has been used to conduct research a number of 

different fields. This dissertation helped answer questions about how various model 

conditions can influence the statistical power to detect an effect in latent transition 

probabilities. It also has the potential to help researchers understand level of power they can 

expect under certain circumstances. This simulation study is the very beginning of a body of 

work that has yet to be conducted on LTA methodology. Future studies can help uncover 

other mysteries that still remain regarding LTA.  
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Appendix Sample Mplus Output with Annotated Comments 

Well-Defined Model with Even Transition Probabilities, Even Class Sizes and Thresholds ±1 
with N = 250 

 
montecarlo: 
!names of indicator variables 
      names are u11-u15 u21-u25;  
 
!the (1) indicates binary variables 
      generate = u11-u15 u21-u25 (1); 
 
!indicate that these are categorical and not continuous variables  
      categorical = u11-u15 u21-u25; 
 
!create 4 classes at each time point 
      genclasses = c1(4) c2(4); 
      classes = c1(4) c2(4); 
 
!sample size 
      nobservation = 250;  
 
!number of replications 
      nreps = 1000; 
 
!saves parameter estimates for each replication 
     results = 4c_even_well_even_1_250.csv; 
 
!indicate this is a mixture model 
  analysis: 
      type=mixture; 
      parameterization=probability; 
 
!parameter values for overall population 
  model population: 
 
!class sizes 
      %overall% 
      [c1#1*.25]; 
      [c1#2*.25]; 
      [c1#3*.25]; 
      [c2#1*.25]; 
      [c2#2*.25]; 
      [c2#3*.25]; 
 
!latent transition probabilities 
        c2#1 on c1#1*.25; 
        c2#1 on c1#2*.25; 
        c2#1 on c1#3*.25; 
        c2#1 on c1#4*.25; 
 
        c2#2 on c1#1*.25; 
        c2#2 on c1#2*.25; 
        c2#2 on c1#3*.25; 
        c2#2 on c1#4*.25; 
 



106 
 

        c2#3 on c1#1*.25; 
        c2#3 on c1#2*.25; 
        c2#3 on c1#3*.25; 
        c2#3 on c1#4*.25; 
 
 
!item-response logit thresholds for time 1 
  model population-c1: 
  
!item-response logit thresholds for time 1 class 1 
      %c1#1%  
      [u11$1*1] (1); 
      [u12$1*1] (2); 
      [u13$1*1] (3); 
      [u14$1*1] (4); 
      [u15$1*1] (5); 
 
!item-response logit thresholds for time 1 class 4 
 
      %c1#2%  
      [u11$1*1] (6); 
      [u12$1*1] (7); 
      [u13$1*-1] (8); 
      [u14$1*-1] (9); 
      [u15$1*-1] (10); 
 
!item-response logit thresholds for time 1 class 3 
      %c1#3% 
      [u11$1*-1] (11); 
      [u12$1*-1] (12); 
      [u13$1*-1] (13); 
      [u14$1*-1] (14); 
      [u15$1*-1] (15); 
 
!item-response logit thresholds for time 1 class 4 
      %c1#4% 
      [u11$1*-1] (16); 
      [u12$1*-1] (17); 
      [u13$1*1] (18); 
      [u14$1*1] (19); 
      [u15$1*1] (20); 
 
 
!item-response logit thresholds for time 2 these should be identical to 
values above because we are assuming measurement invariance 
 
  model population-c2: 
      %c2#1% 
      [u21$1*1] (1); 
      [u22$1*1] (2); 
      [u23$1*1] (3); 
      [u24$1*1] (4); 
      [u25$1*1] (5); 
 
      %c2#2% 
      [u21$1*1] (6); 
      [u22$1*1] (7); 
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      [u23$1*-1] (8); 
      [u24$1*-1] (9); 
      [u25$1*-1] (10); 
 
      %c2#3% 
      [u21$1*-1] (11); 
      [u22$1*-1] (12); 
      [u23$1*-1] (13); 
      [u24$1*-1] (14); 
      [u25$1*-1] (15); 
 
      %c2#4% 
      [u21$1*-1] (16); 
      [u22$1*-1] (17); 
      [u23$1*1] (18); 
      [u24$1*1] (19); 
      [u25$1*1] (20); 
 
!parameter values for overall model 
  Model: 
        %overall% 
 
        c2#1 on c1#1*.25; 
        c2#1 on c1#2*.25; 
        c2#1 on c1#3*.25; 
        c2#1 on c1#4*.25; 
 
        c2#2 on c1#1*.25; 
        c2#2 on c1#2*.25; 
        c2#2 on c1#3*.25; 
        c2#2 on c1#4*.25; 
 
        c2#3 on c1#1*.25; 
        c2#3 on c1#2*.25; 
        c2#3 on c1#3*.25; 
        c2#3 on c1#4*.25; 
 
  model c1: 
 
      %c1#1%  
      [u11$1*1] (1); 
      [u12$1*1] (2); 
      [u13$1*1] (3); 
      [u14$1*1] (4); 
      [u15$1*1] (5); 
 
      %c1#2%  
      [u11$1*1] (6); 
      [u12$1*1] (7); 
      [u13$1*-1] (8); 
      [u14$1*-1] (9); 
      [u15$1*-1] (10); 
 
      %c1#3% 
      [u11$1*-1] (11); 
      [u12$1*-1] (12); 
      [u13$1*-1] (13); 
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      [u14$1*-1] (14); 
      [u15$1*-1] (15); 
       
      %c1#4% 
      [u11$1*-1] (16); 
      [u12$1*-1] (17); 
      [u13$1*1] (18); 
      [u14$1*1] (19); 
      [u15$1*1] (20); 
 
  model c2: 
      %c2#1% 
      [u21$1*1] (1); 
      [u22$1*1] (2); 
      [u23$1*1] (3); 
      [u24$1*1] (4); 
      [u25$1*1] (5); 
 
      %c2#2% 
      [u21$1*1] (6); 
      [u22$1*1] (7); 
      [u23$1*-1] (8); 
      [u24$1*-1] (9); 
      [u25$1*-1] (10); 
 
      %c2#3% 
      [u21$1*-1] (11); 
      [u22$1*-1] (12); 
      [u23$1*-1] (13); 
      [u24$1*-1] (14); 
      [u25$1*-1] (15); 
       
      %c2#4% 
      [u21$1*-1] (16); 
      [u22$1*-1] (17); 
      [u23$1*1] (18); 
      [u24$1*1] (19); 
      [u25$1*1] (20); 
 
!tech 1 provides parameter values 
!tech 9 provides information on each replication such as errors 
  Output: tech1 tech9; 

 


