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ABSTRACT

A Monte Carlo Simulation Study Examining StatistiPawer in Latent Transition Analysis

by

Erika E. Baldwin

Latent transition analysis (LTA) is a mixture madglapproach that is gaining
popularity in social science, behavioral, and hegdsearch. LTA is a longitudinal method
that can be used to investigate how individualssiteon from one latent, or unobserved
class, to another over time. Although LTA is gagirse in many disciplines, to date only
two studies have examined the statistical powehisfstatistical approach. The present study
aims to examine how sample size and model charstatersuch as latent transition
probabilities, model definition, item-response @bitities, and class size influence the
statistical power of to detect effects in lateatsition probabilities. Meta-analysis findings
were used to guide conditions ultimately used is konte Carlo simulation study. All data
were generated using Mplus (Muthén & Muthén, 19084.

Results from this study revealed how larger samjzles, larger transition
probabilities and class sizes were more likelydeehgreater power. Results also highlighted
the importance of a well-defined measurement maatél high class separation and
homogeneous classes and its influence on statipteeger. Findings from this dissertation
provide evidence on which conditions tend to hagéadr or lower power. Additionally,

findings show how poor conditions can have modalveogence issues and provide



misleading results due to “artificially high” powealues. This study also includes practical

recommendations and suggestions for future dinestio
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Chapter 1 Introduction
1.1 Overview of Mixture Modeling and Latent Transition Analysis(LTA)

Latent transition analysis (LTA) is a mixture mbdg approach that can be used to
examine the transition between existing heterogemnsabgroups within a homogeneous
population (Nylund, Asparouhov, & Muthén, 2007).A.Ts one approach among a set of
methods termed mixture modeling. In mixture modglihe overall distribution of one or
more variables is composed of a mixture of a finilenber of sub-distributions (Masyn,
2013). The key assumption in mixture modeling & there is an underlying latent variable
that divides the population into two or more mulpiakclusive groups called latent classes
(Collins & Lanza, 2010). Latent variables are uresfdable constructs that are measured by
observable variables, which are also called indisatin psychology, constructs such as
extraversion and self-image are latent variablegducation, researchers examine
unobservable traits such as academic engagemepieasidtence. In economic research,
guality of life is a latent variable, as it canhet directly measured. Latent variables such as
these are inferred from a number of other obseevahitiables. For example, educational
engagement can be measured through responsey¢y suiestions such as “I am easily
distracted when | study” or “I am enthusiastic aboy studying.”

Mixture modeling has become increasingly popuiasacial, behavioral, and health
sciences, as it allows researchers to examinedgps among individuals. This modeling
technique has been used in a wide range of diffeqgplications, from making more
accurate myocardial infarction diagnoses (Rindskpiindskopf, 1986) to finding different
classes of heavy drinking patterns among younga@uinza & Collins, 2006). There are a

variety of models that fall under the umbrella aktare modeling techniques, including



latent class analysis (LCA), latent profile anadydiPA), growth mixture modeling (GMM),
and latent transition analysis (LTA). The prese¢ntyg will focus on LTA.

LTA is a longitudinal extension of LCA. LCA is a gutitative approach that
examines whether there exists unobservable grang$asses, within a population, whereas
LTA examines qualitative changes in latent classbership over time. LTA is a
particularly important method of analysis, as resoén be substantively used to directly
treat individuals based on the class membershipiaddrstand experiences of individuals in
each latent class, among other uses. LTA has beshin many important studies, including
the following recently published studies:

» Discovering eating disorder phenotypes (Castetfiral., 2013)
» Determining the relationship between parenting tpe adolescent drinking

behavior (Abar, 2012)

* Examining changes in reading classification aftemaéervention (Catts, Tomblin,

Compton, & Bridges, 2012)

» Understanding comorbidity among anxiety and deprestisorders (Spinhoven, de

Rooij, Heiser, Willem, & Penninx, 2012)

* Modeling transitions to and from alcohol abuse s@xiual activity among freshman

college students (Palen, Smith, Caldwell, Mathe&/8'ergnani, 2009)

LTA models class membership changes between omegomt and another time
point. It is specifically used to study the probigpiof an individual transitioning from one
time point to another or from one state to anotibis is dissimilar to the more conventional
longitudinal method, latent growth curve modelingpich examines the rate at which some

process changes over continuous time. LTA, on therdand, approximates latent class



membership at time+ 1, conditional on an individual’s latent classmieership at timé.

This type of model is a called a first order Marlahain model because the distribution of a
variable at time is dependent only on the distribution of the presgigtate at time- 1 and

not dependent on any other times before that te-@.,t - 3, etc.). For this reason, Markov
models are often regarded as “memoryless” becaigeores what happened priortto 1.
Markov chain models have been used in many stuitielsiding research on consumer brand
loyalty, meteorology, and voting behavior (Langeleet van de Pol, 2002). A main
assumption of Markov chain models is that changgesated over discrete time
(Langeheine & van de Pol) whereas change in GCAdsgssed over continuous time.

There are many advantages of using LTA over ottrggitudinal modeling
approaches. LTA allows for estimation of measurereemr and the use of multiple
indicators (Velicer, Martin, & Collins, 1996). LTAlso has the ability to model change in a
discrete manner and provides an easier way to @éealaige contingency tables (Lanza &
Collins, 2008). According to Velicer et al., LTArche used to answer a number of research

guestions, including:

How does LTA compare to other theoretical modeds khok at change over
time?

* Does there exist treatment effects for differeugs?

* How do different measures contribute to each lat&atus?

* What is the distribution of participants by latstdtus at each time point?

Despite the advantages and the extent to which ¢ahelp answer research
guestions, little research has been conductedamigre how this statistical method operates.

Researchers often rely on thresholds and rulebtofib when applying statistical methods



such as structural equation modeling or covariataeture models. These types of studies
do not yet exist for LTA. Additionally, many studibave examined the performance of
model fit indices in these models. For example r®haMukherjee, Kumar, and Dillon
(2005) conducted a study to examine covariancetsirel modeling, where they assessed the
effect of sample size, factor loadings, factor elations, and number of indicators on
whether both true and misspecified models weremedeor rejected based on goodness-of-
fit cut-off values. Hu and Bentler (1998) also assel fit indices in covariance structure
modeling to see whether the indices were sengitiveodels that were misspecified.
Similarly, Beauducel and Wittmann (2005) asses#eddices in misspecified models, yet
this time in confirmatory factor analysis modelgdpite the large number of studies in SEM
and other latent variable models, few studies haokeed at LTA models.
1.2 Monte Carlo Simulation Studies

In many cases, Monte Carlo studies are conductegamine “best practices” and
create “rules of thumb” for statistical models. M®Carlo studies are simulation studies that
are typically used to investigate the performaricgtatistical estimators under varying
conditions. Sharma et al. (2005) and BeauduceMdititnann (2005) both used simulations
in the aforementioned studies. In Monte Carlo sisiddlata are generated under hypothesized
modeling conditions, samples are drawn, modelestienated for each sample, and then
standard errors and parameter values are averagethese samples (Muthén & Muthén,
2002).

The advantage of using a simulation study is thatésearcher has control over the
conditions under which the simulation is conductadimulation studies, researchers can

alter conditions such as sample size and numbkctdr indicators to compare results across



models. For example, Nylund et al. (2007) used atel€arlo simulation to study the
performance of information criterion and likelihebdsed fit indices used in LCA, GMM
and factor mixture models. Nylund et al. (2007)reieed how indices perform under
different modeling conditions to help determine tluenber of classes in correctly specific
models. Sharma et al. (2005) and Beauducel andnafim (2005) used simulation studies to
see how indices performed on models that purpdgdfabd a specific misspecification.
Simulation studies can also be used to replicatencon measurement conditions and
specifications to decide on sample size and tonaséi power. For example, Myers, Ahn, &
Jin (2011) used CFA model conditions commonly foimexercise and sport research to
determine what minimum sample size was needed &adl level of power researchers might
expect under those conditions. Simulation studies sis these are beneficial to the overall
field of latent variable modeling, as they helpwpde information such as thresholds, cut-off
values, and rules of thumb. They also help detezmihich fit indices are the best, most
consistent, and/or least sensitive.

Simulation studies are also useful in helping reseas determine statistical power.
The ability to vary conditions in a simulation sieslallows researchers to investigate the
extent to which these various conditions affedistiaal power. Power studies cans also help
determine what sample size is necessary to dedequate statistical power. If sample size
guidelines are not developed, researchers rungkef conducting studies that may not
reveal significant relationships or changes betweerables because the features of their
design do not allow for adequate power to detexgdleffects. “A sample may be large
enough for unbiased parameter estimates, unbiésedasd errors, and good coverage, but it

may not be large enough to detect an importanteiiithe model” (Muthén & Muthén,



2002). For example, the results of a Monte Carlegycstudy involving a multilevel
structural equation model (Meuleman & Billiet, 20®@8vealed that to detect effects greater
than .50 at the between-group level, at least 6Qpg are required. For adequate power to
detect smaller effects, more than 100 groups apeined.

Despite the strength and importance of Monte Cairtaulation studies in
methodology research, very few simulation studegtbeen conducted under the LTA
framework. In fact, the only zero LTA simulatiorudtes have been conducted in the last 18
years. Collins and Wugalter (1992) used a simutagtody to determine if adding additional
indicators in a LTA model would provide better m@&&snent or more sparse contingency
tables. The study concluded that, under the imposaditions, including more indicators
improved standard errors even when the contingaatigs were sparse. Collins and Tracy
(1997) later conducted a similar study. Becausediemties have looked at the effects of
different conditions, there still remains a substmap of knowledge about LTA. To date,
there is no known simulation study examining howyirag conditions affects the statistical
power of latent transition probabilities in a LTrRamework.

1.2.1 Statistical power. As stated earlier, Monte Carlo simulation studias help
determine the level of statistical power in a paggnor model. In statistical hypothesis
testing, there are two types of hypotheses:

1) the null hypothesis, dflo, which states some population parameter that senas

to be true, and

2) the alternative hypothesis, dg, which is contradictory to the null hypothesis and

which we test against the null hypothesis.



Statistical power refers to the probability of makia correct decision to reject a false
null hypothesis. In other words, power is the ptolig that a test will detect an effect when
there is in fact an effect. For example, considprescription drug Company A that has
manufactured a new sleep-aid pill. This companyts/émshow that their drug is more
effective than the current leading drug manufacting Company B. To do so, the company
collects data on those who take their pill as wslthose who use their competitor’s pill. This
company wants to show that their consumers sleep hmurs per night than their
competitor’'s consumers. In this case, the null blypsis would claim that there is no
difference between the two companies. The altaradiypothesis would claim that
Company A'’s pill provides more hours of sleep)(than Company B (). In statistical
terms:

Ho: Ha=Us
Ho: ba> s

As seen in Table 1, there are four possible outsama hypothesis based statistical
test: two possible correct decisions and two péssyipes of error. A correct decision could
occur if a true null hypothesis was not rejected arfalse null hypothesis was rejected. A
Type | @) error occurs when a true null hypotheadiss rejected whereas a Type 1l errfy (
occurs when a falddy is not rejected. Type | errors are often callddefgositives while
Type |l errors are called false negatives. Usirgggkample from above, a Type | error would
mean that there was in fact no difference betwkenwo pills; however, sample data led
researchers to reject the null hypothesis thatwioepills provided equal amounts of sleep. A
Type |l error would occur if there was in fact &elience between the two pills; however,

sample data led researchers to fail to reject tiiehgpothesis.



When the probability of detecting a Type Il erretaw in hypothesis based testing,
statistical power is high. This means that thet@gé power to detect an effect when there
really is an effect. A power value of .80 or higheedeemed adequate among researchers
(Cohen, 1988; Muthén & Muthén, 2002). In other vgmstatistical power is considered high
when there is a probability of 80% or higher toedétan effect when there is, in fact, an
effect.

Table 1:Four Possible Outcomes of Research

True State
Decision Ho True Ho False
Do not rejecHy Correct decision (1a) Type Il error B)
RejectHy Type | error ¢) Correct decision (1 = Power)

Note. Adapted from “The Relation Among Fit Indexes, Povard Sample Size in Structural Equation
Modeling,” by K. H. Kim, 20053ructural Equation Modeling, 12(3), p. 368-390.

Muthén and Muthén (2002) show how Monte Carlo satah studies can be used to
determine necessary sample size and how to deatistisal power. To demonstrate Monte
Carlo studies, this paper used two latent variaieels, specifically a confirmatory factor
analysis (CFA) and a growth model. For the CFAytsteidied how non-normality and
missing data affected the sample size necessandtayuate power of factor correlations.
Non-normal data had a greater influence on detgthia statistical power of factor
correlations than data that were missing completehandom. Findings suggested that
regardless of normality, missing data increaseddhaired sample size by 18 percent. When
data were both non-normal and missing, the requ@aeadple size was increased 100 percent.
In other words, the study found that when thesedwraplications are present, a CFA study
needs twice as many participants to provide adecgiatistical power.

The second part of Muthén and Muthén’s (2002) sexdymined power in a growth

model. The simulation conditions for this studylirded missing data, regression coefficient



size, and a covariate. Results indicated that radube regression coefficient from .2 to .1
(d=.63,d = .32, respectively) had the biggest influencetanrtecessary sample size.
Regardless of whether the data were missing, wiereigression coefficient was decreased
from .2 to .1, the sample size needed for adequ@ater increased four times. The paper
concluded that statistical power was highly cowndidél on the varying factors of each model
and that these conditions vary between statistiethods.

Fan (2003) also used a simulation study to comgamgple size requirements for
power, although this time in latent growth curved®aiing under the structural equation
modeling (SEM) framework and in repeated-measunagysis of variance (ANOVA).
Results from the simulations revealed that the 3&®ht growth models had higher
statistical power for detecting group differendest the repeated-measures ANOVA. The
study also showed that to detect a small grougmdiffce, a sample sizet 500 was
typically necessary for a power value between nt0.80. For a medium group difference,
100< N < 200 was needed. Another major finding from thiglgtwas that to yield adequate
power, the sample size using the SEM approach dmutevo-thirds to one-half the amount
of that using the repeated-measures approach.

Necessary sample size for adequate power is arkayod interest to researchers
using latent variable models such as factor argl@iM, and LTA. Muthén and Muthén
(2002) state that some claim a rule of thumb cé tiv ten observations per parameter, while
others state no less than 100, and others recomb@zaldservations per variable. However,
as Muthén and Muthén point out, there is no guidethat can be applied to all models or
modeling conditions. In fact, a Monte Carlo simigdatstudy found that there is a strong

interplay between sample size, the number of inidisan a model, and class enumeration in



LCA models (Morovati, 2014). Thus, simulation steslcan be helpful in determining what
sample size is required to provide adequate statigiower to decrease the probability of a
Type Il error within a particular type of statistlanethod or model. Simulation studies have
been conducted using many statistical models ssitdtent growth curve modeling and
factor analysis. However, as stated, extensivearelBéhas not been conducted to investigate

sample size requirements and power in LTA.

10



1.3 The Present Study

It has been established that latent variable reseend mixture modeling are useful
and widely used statistical approaches in the ksciances. Additionally, analyses of
longitudinal change are essential in many discgdiauch as developmental, behavioral,
social, and health research. Together, LTA is aremsingly popular and advantageous
method to discern change over time. Despite LTAigfionality, to this date only two
simulation studies have been conducted to exanoneipfor this method. The goal of this
study is to assess how varying sample size and ottimglitions affect statistical power in
LTA. Because so few LTA simulations have been caotetl the scope of this study is to
investigate models that are commonly found inditere and the levels of statistical power
that these conditions produce. This study also &npsovide recommendations for LTA
use. This study aims to find a minimum sample 8iz¢ provides adequate power under the
proposed varying conditions. The results of thislgtcan contribute to the mixture modeling
literature by providing sample size and modelinglglines for LTA use in applied research.
1.4 Overview of Dissertation

This section will outline the chapters includedhrs dissertation. First, Chapter 2
will serve as a literature review of how LTA haghaised in research. This chapter will also
include fundamental information about the LTA modedl its parameters. Chapter 3, the
methods section, will summarize meta-analysis figdiof recently published LTA studies.
The results from this analysis guided the condgitirat were ultimately used in this Monte
Carlo simulation study. This chapter also outlihess data were generated and all of the
various conditions that were imposed in the simaiastudy, as well as explain how

potential class switching issues were addressext, Rbapter 4 will provide analyses of all

11



simulation studies and summarize results. In thagpter, issues that arose in this study are
explained, such as artificially high power and nlaum-convergence. Chapter 5 includes a
discussion of all results, practical implicatiohsiitations to this study and future directions

for research. The Appendix includes sample Mplugasywith annotated comments.
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Chapter 2 Literature Review

2.1 Overview of LTA

Latent transition analysis (LTA) is a longitudiredtension of latent class analysis
(LCA) and was first introduced in the 1950s by eesber Paul Lazarsfeld (Lazarsfeld &
Henry, 1968). LTA was further developed by Goodr(k8v4) and Haberman (1979) when
they provided more efficient maximum-likelihoodigstion algorithms. LTA is a
longitudinal approach that examines qualitativenges in latent statuses where the main
objective is to examine how individuals transitlmetween latent classes over time. LTA uses
repeated measures data of the same people oveRoiexample, consider a sample of
female high school seniors enrolled in a mentoprgggram to encourage interest in the
sciences. In the beginning of the year, these stadake a survey that measures attitudes
toward science. A LCA of these data reveal foutinlt$ latent classes. After one year of
attending events and mentoring sessions, studskgghie same survey. At this point, after a
year of program participation, an LTA can be corndddo see whether these young girls
shifted from one class to another or whether tleayained in their original latent class. This
particular hypothetical LTA example could poteniakveal whether young girls were more
likely to have an increased interest in sciencenore likely to want to major in a science as
an undergraduate after participating in the mehtprprogram. Note that the data collected
were repeated measures data at two time pointsuglh LTA can be conducted on more
than two time points.
2.2 General applied example

To help demonstrate how LTA has been used in apppdisearch, this section will

walk the reader through a published journal artilcke used LTA. Lee, Chassin, and Villalta
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(2013) investigated whether individuals “matured’ @i alcohol involvement from age 17 to
age 40. Lee et al.’s study aimed to examine alcoivollvement due to both the short- and
long-term risks of alcoholism. Their literature i@w revealed that alcohol involvement
increases in late adolescence, peaks between @geg,2and then tends to decrease
thereafter. However, literature also revealed thate tends to be four groups of alcohol
users over time: one group that “matures out” afldng habits over time, two groups of
abstainers or low users, and one “chronic” grouglodhol users who tend to never mature
out of drinking habits. Lee et al.’s rationale their LTA study was that studies focus on one
area of alcohol involvement but never all threearef alcohol involvement: drinking
frequency, binge drinking, and drinking consequsnce

To examine all three areas in one study, Lee €2@l3) used longitudinal data from
individuals aged 17 for four waves of data colleatuntil age 40N = 844). The study found
four latent statuses: abstainers, low-risk drinkersderate-risk drinkers, and high-risk
drinkers. Results from their LTA revealed that induals tend to mature out of heavy or
problematic drinking and continue to drink alcohmlf at lower levels. The study supported
existing literature that claims that individualadeto mature out of drinking between late
adolescence and young adulthood. However, thefusBfAadded to literature by modeling
how these high-risk drinkers typically maturedtie hext lowest level, moderate-risk, and
rarely to a low- or non-risk drinking status. Thesult was particularly interesting because it
revealed that individuals who start off as highksinkers at late adolescence rarely

eliminated all risky drinking behavior.
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2.3LTA Model and Parameters

2.3.1LTA modd. The general LTA model is similar to its non-longiinal
counterpart, LCA. Figure 1 presents the path diagepresentation of the general LCA
model. This model represents latent class memlpesadtone given time point. The model
diagram for the general LTA model can be seenguié 2. In the LCA diagram (Figure 1),
the observed variables, are in rectangles, while the unobserved, latisiscvariableC,
with K classes is in a circle. The observable variafes the LTA model, on the other
hand, have two subscripts: one to representtiamel one for each outcomd.atent clas€
at timet is regressed onto latent cla3sit timet - 1. In this LTA model, latent clas3; is

regressed ontG;.

Figure 1. GeneralLCA model diagram with threeindicator variables.

C, "G

Figure 2. General LTA model diagram with two time points dhcee indicator variables.

15



2.3.2 Parameters. Three different parameters are estimated in L&fernt status
prevalencesdy), item-response probabilitieg)( and transition probabilitieg). First, latent
status prevalencéy,) is the probability of being in latent statuat timet. If there are three
classes at each of two time points, there aré’sixather than nine because the last class is
treated as a reference group. An individual cay bela member of one latent class at each
time point and thus,

§t=1 8s, = 1,
wheres s latent status at tinteLatent status prevalences for titne 1 are often estimated

independently. In this case, latent status preeaieifor times > 2 can be computed by:

S
5& = ZJSHTSISH

§4=1
As seen above, the probability of being in lasatuss at timet is a function of the
probabilities of being in a latent status at timé. and the conditional probability of
transitioning from a latent status at titnd. to a latent status at timeln a model with two
time points,d can be computed once latent status prevaland¢esltand the transition
probabilities betweeh= 1 and = 2 have been estimated.

Next, item response probabilities can be exprebyel;lmjrdst, or the probability of

response; . to observed variablg conditioned on membership in latent statas timet.

There ardR; item response probabilities. An individual canyoptovide only one response

to variablg at each time¢, and thus,

R.
] —
er,t=1 Pjrjclse = L.
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The number of item-response probabilities estimasedbe computed with the following

equation:

P, = SI'ZJ:(RJ- -1)

j=1

In a model with 3 latent statuses, two time pgiatgl seven binary indicators, the
number of item-response probabilities estimatedievbe equal td°, =3 x2x (1 +1+1+1
+1 + 1+ 1) =42. If item-response probabilities eonstrained to be equal, this would reduce
toP,=3x1x(1+1+1+1+1+1+1)=21. OfterlifA, parameter restrictions are
imposed such that item-response probabilities etreosbe equal across times. This is often
called measurement invariance. Latent statusegsstened to be constant over time and do
not change meaning.

Lastly, transition probabilitiest{ , |s,) represent the probability of transitioning from

+1ls
latent status at time point + 1 conditioned on membership in latent statastime point.
Transition probabilities are often the most examiparameter, as they reveal how latent
status membership changes over time. In the comteeh measurement invariance is
assumed, these probabilities are called stabsitymates, as they represent how stable—or
unstable— latent status membership over time. ltatauses are also considered recurrent
or transient. Processes that remain at its statearsidered recurrent, whereas processes that
do not return to its state are considered trangMatcoulides, Gottfried, Gottfried, & Oliver,
2008). Transition probabilities are often represdnh a matrix. There afe- 1 matrices,

whereT is the total number of time points included in ghady. A transition probability

matrix oft’s is as follows,
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The rows represent the first time point whereasctitemns represent later time point,
t - 1. When measurement variance is assumed ovey tima diagonals represent the
probability of remaining in the same status. THedtdgonals represent the probability of
being in a latent status conditional on being difeerent latent status at the previous time
point. If no parameter restrictions are imposed,rtamber of transition probabilities
estimated can be computed with the following equmti

=(T-1)9S-1).

One is subtracted fro®in the third part of the product because the lEstscis
treated as a reference class. In a model with itwe points and three latent statuses, the
number of transition probabilities would be equalPi= 1 x 3 x 2 = 6. Individuals may only

belong to one latent status at each time and thus,

S

Z T51+1|5t =1

Sa=1

meaning each row of the transition probability mxasums to 1, with some rounding error.
Taken together, the fundamental expression of LS éxipressed as,

R;

2 9
PY=y)= Z 25 Tom-Tsisa |_| |_| |_| p;,(rﬁfst_r“)
§=1 5=l

t=1 j=1 1,

This equation shows that the probability of a jgaittir vector of responses is a

function of the three aforementioned probabilitibe probability of membership in each
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latent status dt= 1 (latent status prevalancéy, the probability of being in a latent status at
a later time conditional on the previous time (fteansition probabilities;), and the
probability of each response at each time pointitmmmal on latent status membership
(item-response probabilities).

When there are only two time points, the equatemfuces to:

S S 2 J R _
P(Y =) :Z. : .Za;lrszﬁ I—l |—| I—l J!,(riifs‘_rl't)
571 5=l t=1 =L r,=1

2.3.3 Measurement invariance. The major assumption of measurement invariance is
that measurement parameters, the item responsalplibes defined earlier, are held equal
across the entire measurement model. Full measateémariance denotes that the
conditional item probabilities are the same acedlstme points. In other words, at all time
points, there are equal numbers of classes andotassis the same over time. Classes do
not change meaning or interpretation. Measurenmatriance must be tested. Measurement
invariance should be tested because the assungdftiomariance introduces bias, although
many LTA studies assume measurement invarianceibedass measurement parameters
must be estimated and interpretation is less caaed.

2.3.4 Applied example with parameters. To help exemplify the LTA parameters
described above, this section will walk throughagplied LTA article. Marcoulides et al.
(2008) used LTA to examine academic intrinsic mation from childhood to adolescence.
This study utilized data from the Fullerton Longiinal Study (FLS), which collected a wide
range of developmental data from age one to 1&yadr In particular, this study examined

academic intrinsic motivation using Likert scaleamgres from the Children’s Academic
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Intrinsic Motivation Inventory (CAIMI). The studysed five time points: ages 9, 10, 13, 16
and 17.

First, the researchers evaluated one-, two-, thaesel four-class models at all five
time points. To handle missing data, the modelsweased on full information maximum
likelihood estimation. It also used random staftiga to ensure that models converged on
global solutions. The Bayesian Information Critarindex was used to evaluate the most
appropriate class model. At all five time points three-class model had the best BIC fit
values relative to the other models. Researchbeddd these three classes Intermediate, At-
Risk, and Gifted. Item-response probabilitigswere used to develop these classes and their
researcher-defined titles, although Marcoulidesl .ef2008) did not include item-response
probabilities for each item and class.

The second of the three LTA parameters is exeredlifiere in each individual's
latent status prevalenc®) (At age 9 { = 1), the majority of students were in the Giftdalss
while 36% of students were in the Intermediate @rand only 7% in the At-Risk group. As
students got older, less students were in the @&gteup and more students were in the At-
Risk group. The Intermediate group was the mossistent over time, with class
membership percentages between 20-25% over thdmexime points between ages 10
and 17. From age 9 to 17, the Gifted group drogped 57% to 19% while the At-Risk
group increased from 7% to 59%. These latent sfasalences showed that over time,
students were less likely to be in the Gifted grand more likely to be in the At-Risk group.

Latent transition probabilityr matrices between each time point helped show how
students transition to or stayed in a class owee tiThis study not only looked transition

probability matrices between each consecutive poist, it also examined what are called
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higher order lag models. Higher order lag moddtsiatesearchers to see the latent
transition probability at one time point from aryer time point in the model, not just the
time point immediately prior. Marcouides et al. Q8) were also interested in the transition
from childhood to late adolescence, and thus exadnliatent transition probabilities: ages 9
to 13,9t016,9to 17, 10to 16, 10 to 17, andifages 13 to 17.

In general, this study found that transition betw#e three instrinsic motivation
classes mostly occurred during childhood. As sttglget older, they are more likely to stay
within the same latent class. This study reveatgzbrtant findings that at-risk students
were highly likely to stay at-risk over time andtlby mid-adolescence, it was unlikely a
child would transition into the gifted class. Franpractical standpoint, researchers argued
the need for early motivational intervention. Imsuary, we see here the interplay of the
three LTA parameters and how they are interpratexhiapplied study.

2.3.5 Spar seness. Contingency tables in LTA are large because da&angasured at
two or more time points. This sparseness of cetly lead to identification problems. For
example, an LTA with eight binary items at two tip@nts would have a contingency table
with W= 28@) = 65 536 cells. That means that there are 65,538ilple response patterns.
Because of the large number of cells, LTA modetsl ti® have a large amount of degrees of
freedom. Degrees of freedom in LTA can be compbted

df =Wi—Ps;—PB,— P, — 1.

Despite this advantage, individual cells can msp leading to estimation issues.

Models may fail to converge. Another issue involyaparseness the distribution of e

statistic (a likelihood ratio test to test for goeds of fit) is no longer well represented by the
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chi-square distribution and thysyalues are inaccurate. Nonetheless, Collins aaldfty
(2002) state that parameter estimation using EMbsist even when cells are sparse.

The sparseness of cells in LTA is an importantagbiat may lead to low power in
LTA studies. The following is a numerical demonstna of how sparseness can occur in
LTA based on varying latent transition probabiBtend the distribution of the sample across
latent classes.

First, consider an LTA study with a fairly largengale size olN = 3,000. In this
hypothetical study, assume that data were colleatédo time points and that equal
class/statuses sizes emerge at timd and measurement invariance was assumed. Further
assume that there was a fairly stable amount ositian from timet =1 tot = 2, specifically,
about three-quarters of participants did not ttamsito a different class. The remainder of
individuals did transition, which resulted in artsétion probability matrix as follows (see
Table 2 below). Table 2 shows how the sample sg@dvbe using the above transition
probabilities and an initial class sizerof 1,000 for alk classes at= 1. To most, this
contingency table may not seem to suffer from sgpass, as the largest cell has 800
individuals and the smallest still has 100.

Table 2:Transition Probabilities for Hypothetical LTA with N = 3,000, Moderate Sability,
and Even Class Szes

t=2
Class 1 Class 2 Class 3
Class 111 =1,000) 0.70r{, = 700) 0.20 1,2 = 200) 0.10 rf;3 = 100)
t=1  Class 2/ = 1,000) 0.101f,; = 100) 0.80 1f, = 800) 0.10 15 = 100)
Class 311G = 1,000) 0.10rz; = 100) 0.15 1t = 150) 0.75 1fz3 = 750)

Now consider the same scenario, yet in a study evparticipants are highly likely to

stay in their initial latent class. Again, this logpetical study hall = 3,000, equal class sizes
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at time point 1, and assumes measurement invaridhce study results in the transition
probability matrix seen in Table 3:

Table 3:Transition Probabilities and Sample Sze Distribution for Hypothetical LTA with N
= 3,000, High Sability and Even Class Szes

t=2
Class 1 Class 2 Class 3
Class 114 = 1,000) 0.971{, = 970) 0.20 1fy> = 20) 0.03 i3 = 300)
t=1 Class 211G = 1,000) 0.04r(;, = 40) 0.95 iz = 950) 0.01 13 = 10)
Class 311 = 1,000) 0.05rt3; = 50) 0.05 1fi, = 900) 0.90 1fs3 = 900)

Unlike the first scenario, the transition probaheb along the diagonal are higher,
resulting in smaller probabilities in the cells side of the diagonal. The smallest cell size in
this case is 10. Even with a study with 3,000 paréints, some researchers may deem a cell
size of 10 to be too small, as this number is ctodaut not violating Cochran’s (1954)
suggestion that no more than 20% of cells in asguiare test contingency table have cell
sizes less than 5.

A sample size ol = 3,000 may not be feasible to most social scieesearchers. It is likely
that a dataset only contain about 300 participadsisider the same two previously used
scenarios with a decreased sample size of 300gUWlssnsame moderately stable transition
probabilities in Table 2 results in the followingnsple distribution for a study with = 300.
Again, assume that there is measurement invariat@ess time points and that class sizes
are even at time= 1.

Table 4:Sample Sze Distribution for Hypothetical LTA with N = 300, Moder ate Stability,
and Even Class Szes

t=2
Class 1 Class 2 Class 3
Class 14=100) 0.701fy, = 70) 0.20 iy = 20) 0.10 i3 = 10)
t=1 Class 211=100) 0.101f; = 10) 0.80 iz = 80) 0.10 13 = 10)
Class 31=100) 0.101fs; = 10) 0.15 ffizp = 15) 0.75 ffizs = 75)
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The smallest sample size in this scenario is Xighvmay not seem problematic.
However, now examine how a study with high stapiliélues along the diagonal, using
transition probabilities in the second example saerable 5:

Table 5:Sample Sze Distribution for Hypothetical LTA with N = 300, High Sability, and
Even Class Szes

t=2
Class 1 Class 2 Class 3
Class 111 =100) 0.971411 = 97) 0.20 112 = 2) 0.03 143 =230)
t=1 Class 21 = 100) 0.04 1 = 4) 0.95 (2 =95) 0.01 i3 = 1)
Class 314 = 100) 0.051fs; = 5) 0.05 (i, = 90) 0.90 1ia3 = 90)

The cell sizes decrease dramatically. Althoughctiiecounts in the diagonal are
high, only one participant transitioned from cl@g€® class 3. Counts are less than 10 in six
of the nine cells. These cells would be even smlt#ass sizes were not even at titrre 1.

In this situation, all conditions are kept the sahmvever, as seen in the right-hand
marginal, class sizes at 1 vary. The smallest cell count now is less than

Table 6:Sample Sze Distribution for Hypothetical LTA with N = 300, High Sability, and
Uneven Class Szes

t=2
1 2 3
1 (n = 150) 0.97(, = 145.5) 0.20n(, = 3) 0.03 fys = 4.5)
t=1 2 (n=80) 0.04 /1= 3.2) 0.95 12 = 76) 0.01 if23 = .8)
3 (h=70) 0.05143; = 3.5) 0.05 1f3; = 3.5) 0.90 1fiz3 = 63)

In applied research, it may be likely that offgbaal transition probabilities are low,
suggesting that a small percentage of individualssition from one class to another over
time. There are no current rules of thumb for celint size in LTA contingency tables. This
study aims not to examine a minimum cut-off foll celunt. Rather, this study aims to
investigate how the interplay of model charactmsssuch as high and moderate stability

with sample size affects the overall statisticavpoof a study. A meta-analysis was
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conducted to explore commonly found transition plmlities. Results from this meta-
analysis can be found in the Method section ofdigsertation.
2.4 Areasfor Continued Work

As stated earlier, LTA is gaining greater use ydy &wo simulation studies have
been conducted examining best practices and sasizgl@equirements for this statistical
model. Simulation studies looking at power havenghbow sample size, along with other
varied conditions, has effects on the overall stigal power of a model. However, to date, a
power simulation study has not yet been conduaethe LTA model. This gap in research
calls for further investigation on how conditiongk as sample size, the size of latent
transition probabilities, and sparseness of céiéscapower. This dissertation aims to find
whether there is a point at which an LTA no lonigas the power to detect an effect if
sample size is decreased. In other words, if twA biodels have the same number of time
points, the same number of classes at each tinm, paentical transitional probabilities,
equal sample distributions of across classes,iffeteht sample sizes, will both models
produce adequate power?

Because so few simulation studies have been coedlircthis area, there are many
areas of study for the LTA model. Many other siniola studies look at how fit indices
perform in a given model and whether these indicedetter or worse when sample size
changes or whether the number of indicators inereaslecrease. These types of studies in
LTA would also provide insight into how LTA modglerform in practice. The scope of this
current study is to investigate power when varygagiple size, measurement models, logit

thresholds, transition probabilities, and class.sihe hope is that the results of this

25



simulation will be the first step in establishingdeling guidelines for the specification and

use of LTA models and a better understanding optheer of latent transition probabilities.
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Chapter 3 Method
3.1 Empirical Conditions

For this study, a meta-analysis was conducted aon@e the characteristics of recent
LTA studies. In Monte Carlo simulation studies, plgtion values are often chosen based
from theory or previous research. Muthén and Muif2802) recommend using values from
previously conducted studies. To do so, four ontioeial science databases were used:
Education Resources Information Center (ERIC), EBBGst, PsycINFO and
PsycARTICLES. Only recent, full-text articles ingvaeviewed journals from 2008-2014
were included in this meta-analysis.

Using the above criteria, a keyword search of thrage “latent transition analysis”
resulted in a total of 92 unique articles acrossfthur databases. Of these 92 articles, 38
were removed from the analysis because 1) thelsparase was mentioned in article but
not used as a method of analysis, or 2) the sgdmase appeared in the reference section
(i.e., the search phrase was part of a journallartitle cited in the study). Two articles were
eliminated from the meta-analysis because they w@mementaries and one article was
omitted because it was a comparison of differengiimdinal approaches. In the final
analysis, 54 articles were examined.

A quick overview of these articles revealed a wigiege of fields that utilize LTA.
Because LTA is an approach examining longitudihainge, many articles examined a
treatment effect over time. For example, a numbartacles examined clinical eating
disorder classifications after counseling and tresit, reading ability after an intervention,
or substance abuse after rehabilitation. Othenes$udid not include a treatment or clinical

trial and rather focused on how individuals transg over time, or more specifically, over
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ages. For example, Quaiser-Pohl, Rohe, and Ambégan) examined mental-rotation
ability beginning from age 10 to age 17. This sttwlynd a three-class solution:
intermediate, at-risk, and gifted. Results reve#had between ages 10 and 13, individuals
were more likely to transition between classes. ey, from ages 13 to 17, transition
probabilities were highly stable. Other LTA topiosluded attitudes among foster care
youth, depressive subtypes, and civic involvement.

To gather characteristics of common LTA studiegde as attributes for the
simulation study, sample size, model charactesisénd transition probability matrices were
compiled and are explained in the subsections helow

3.1.1 Samplesize. First, sample sizes of these 54 articles were e The sample
size of these studies ranged frohx 94 toN = 11,750 MM = 1493.07 3D = 2083.60). As
seen in Figure 3, more than half of the journathas involved studies with samples less
than 1,000. A third of the total number of artickesd sample sizes between 200 and 500.
Only two studies had sample sizes larger than 506 of which used nationally
administered datasets. Figure 4 presents a closkralt the distribution of articles with <
1,000. This quick overview of study sample sizesnshthat 16 of the 54 published LTA

articles used sample sizes less than 500.
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Figure 4. Histogram showing studies with sample sizes lessh= 1,000 included in meta-
analysis articles.
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3.1.2 Model Characteristics. Next, model characteristics were examined. As geen
Figure 5, studies ranged from two to nine time fo{ = 2.65,SD = 1.20). The majority of
articles included two time points. In 93% of thédes, there was the same number of
classes at each time point. Additionally, clasesiere typically uneven at timhe 1 and

measurement invariance was assumed.
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Figure 5. Histogram of number of time points included in matelysis articles.

3.1.3 Transition probabilities. Next, latent transition probabilities were exandina
wide range of probabilities emerged from theseistid.atent transition matrices ranged
from being highly stable (values close to 1.00lmdiagonal) to moderately stable (values
close to .70 on the diagonal and values near .30@nbff-diagonal). More than half of the
studies reported at least one stability estimase r88. The lowest value on the diagonals
was near .50 for some articles, although somelestreported diagonal values close to .20.
In one study, latent transition stability was vy, with values between .00 and .50. In the

off-diagonals, the lowest transition probabilittes most studies were near .00 and the
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highest off-diagonal values were between .20 a@didsome cases, off-diagonals exceeded
.50 and were even as high as .94, exhibiting higisition between classes over time.
3.2LTA by Topic

To gain a better understanding of the size of tatamsition probabilities we see in
the literature, articles were further examined Isgigline. Most of the identified articles fell
under three areas: substance abuse (19 articlsg, Eslucation (9 articles, 17%), and eating
disorders (6 articles, 11%). The remainder of Egicncluded in the meta-analysis ranged
from topics such as family structure and interva@mtifoster care, and social and civic
engagement. A further look at these articles byntlest common topics revealed patterns in
latent transition probabilities and model charastess summarized below and displayed in
Table 7.

3.2.1LTA modelsin Education research. Nine of the papers identified in the meta-
analysis were related in the field of educationréigpecifically, four articles were about
mathematics ability, four articles were on readabgity, and one article examined intrinsic
motivation. The mathematics and reading articlesrered kindergarten through early
adolescence, low-performing students or late-emgrggaders. In most studies, there were
three or four classes at each time point, withfitisé class (class 1) representing low
performance and the last class (class 3 or 4) septmg gifted students or high performing
students. When organized this way, transition podityavalues above or to the right of the
diagonal represent transitioning into a higher qning class. For example, Ding,
Richardson, and Schnell (2013) examined word lifefilmm kindergarten to second grade.
This study identified a three-class solution: lashiavers (class 1), slow achievers (class 2),

and typical achievers (class 3). Because of thesekawere listed in the matrices in this
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hierarchy, the diagonal values represented stahititl values to the right of the diagonal
represented movement into a higher-achieving dasstime.

A further look at the latent transition probabégiof all education related LTA
studies showed that almost all transition probghbihatrices had fairly high stability rates of
.70 or higher, meaning 70% or more of individuaés/sd in their latent class over time. If
students did transition, it was usually to the rfeghest class, as one would expect. In other
words, off-diagonal values were highest when imrmatgdy to the right of the diagonal value.
Some students transition down to a lower achieulags. However, this was usually with a
transition probability of .10 or less. For all pegpe this group, the latent class sizes were
uneven. In most cases, the lowest performing ¢lagshe highest. Additionally, all nine
Education articles assumed measurement invariarossaall time points. The results from
the Education articles helped form the uneven itiansprobability matrix used in this
study’s Monte Carlo simulation (see Table 10 innib&t subsection).

3.2.2LTA modelsin eating disorder research. Six of the meta-analysis articles
examined latent transitions of individuals withiegtdisorders. Similar to the education
studies, most of the latent classes found in thiegdisorder studies were arranged order of
severity (e.g., class 1 is asymptomatic while clagsthe most severe case of eating
disorders). For example, Cain, Epler, Steinley, &hdr's (2012) study examined latent
transitions between three classes: no obvious [mgfical eating-related concerns, limiting
attempts with overeating, and pervasive bulimie-ldoncerns. In many studies, the first and
second class had high stability while classes thneefour had moderate stability. Because
most of these articles examined transition aftenestreatment, this pattern of latent

transition implies that individuals with less sexeating disorders are not likely to “get
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better” or “worse” after treatment. However, it damply that those with more severe cases
of an eating disorder are likely to transition iattess severe class after treatment. Similar to
educational studies, class sizes in eating disdrflArstudies were uneven and the least
severe class usually had the greatestl of the eating disorder LTA studies assumed
measurement invariance.
3.2.3LTA modelsin substance abuse resear ch. There were 19 substance abuse

studies found to use LTA in the meta-analysis. €haticles varied across substance type,
including alcohol, drug, and cigarette use. Sultgabuse articles could be further divided
into two sections: studies involving some sortreatment or studies that examined use over
time without a specific treatment. Again, similarthe education and eating disorder articles
discussed earlier, the majority of substance atrassition probability matrices were
ordered by severity of substance use. Studiegltiatot involve a treatment, but rather
looked at use across age, consistent found thenfml transition patterns over time:

* Nonusers tended to stay nonusers

* Heavy users tended to stay heavy users

* Moderate users shifted up or down

* Most transitions were one level up or down

* As one got older, stability increased

Two of the 19 substance abuse LTA studies did sairae measurement invariance.

Both studies aimed to study the relationship betwe® different measures over two time
points. For example, Abar (2012) examined the ieiahip between parenting types at time
1 and student alcohol-related behavior at timehs $tudy found that students with pro-

alcohol parents were more likely to high risk otreme drinkers during their first year of
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college. Stapleton, Turrisi, Cleveland, Ray, & 2014) looked at the relationship between
alcohol decision-making patterns prior to colletg@é¢ 1) and their patterns of alcohol use
after entering college (time 2). This study revdatdgeresting patterns between the two
measures. For example, given membership in thedanker decision-making profile prior
to the college, there was a probability of 100%a¥ing a low drinking pattern.
Furthermore, given membership in the risky decigraking profile, there was a probability
of 55% of having a high drinking pattern.

Although these classes and transition probabilégmmerged in published Education,
eating disorder, and substance abuse studiestdatdsunknown how the measurement
model influences the power of the latent transipombabilities. For example, it is unknown
whether there is greater power for transition pbaliges in or out of classes that are more
distinct from others. This study will be the fitstexamine this and examine the extent to

which measurement characteristics such as classagm and homogeneity affect power.
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Table 7:Summary of Meta-Analysis Results by Topic

Topic

Education

Eating disorders

Substance abuse

* Classes organized by -
achievement level

* Reading or mathematicse
achievement

e Childhood or early .
adolescence

* Highly stable diagonals e
(.70 or above)

e If individuals did .
transition, it was usually «
to the next highest/better
class

e Some transition down a
class, but low transition
probability (.10 or less)

* Class sizes uneven

* Lowest level class
usually had highest

Classes organized by .
severity

Less severe classes had
high stability .
More severe classes had
moderate stability .
More likely to move down
a class after treatment e
Class sizes uneven

Classes organized by
severity of substance use
Nonusers stayed nonusers
Heavy users stayed heavy
users

Moderate users shifted up
or down a class

Most transitions were one
level up or down

Lowest level class usuallys As one got older, stability

had highesh

increased
Class sizes uneven

3.3 Summary of Meta-Analyses

A summary of LTA studies examined in this meta-gsialcan be seen in Table 8. In

general, most studies had sample sizes less tB@A, kyo time points, uneven class sizes at

t =1, and assumed measurement invariance. Latesitican probabilities ranged across all

articles. However, there were some patterns whamaed by topic. These findings and

patterns were used to create the simulation camditused in this dissertation.

Table 8:Summary of Meta-Analysis Results

Latent transition

Sample size Model Characteristics probabilities
e MostN<1,000, + Twotime points ¢ Wide range of
but were as small « Uneven class sizes transition
asN =94 and as att=1 probability
large adN =~ « Measurement patterns
11,000 invariance » See results by

topic
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3.4 Data Generation

For the current simulation study, data will be g@ated based on common
characteristics of LTA studies found in the aforatiemed meta-analysis to examine the
statistical power of latent transition probabiltiender various conditions and measurement
models. The statistical software package Mplus (Mdot& Muthén, 1998-2014) will be used
to conduct the simulation studies. For Monte Canhoulation studies, Mplus has the
capability to include both normal and non-normabgdanissing data, clustering and mixture
modeling. In this study, all generated data widlude a total number of 1,000 replications
and five binary indicators of latent class at & tivo time points. Sample Mplus syntax file
with annotated comments are in the Appendix.

The studies included in the meta-analysis rangedamumber of time points and the
number of classes that emerged. However, becaase dhe only two other existing power
studies on LTA, the scope of this simulation stiglp provide a foundational examination
of how power is related to model conditions. Ths study will include four-class models
measured at two time points and will assume measeneinvariance for the latent classes
across time. Latent classes will be defined by igms. Although studies in the meta-
analysis covered a large range in the number wiStesed, we chose a parsimonious model
as a starting point. A study with too few items nmay be enough to reveal meaningful latent
classes, yet a study with too many items may greathatively affect the level of power.

The 4-class to 4-class model, and the number @& points, and the use of five items are the
only three non-varying conditions. The conditionattwill be varied include sample sizes,
the value of logit thresholds, measurement modegisnt transition probabilities, and class

sizes.
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3.4.1 Sample sizes. Eleven sample sizes will be used for each modglim
simulation studyN =100, 250, 500, 1,000, 1,250, 1,500, 5,000, 6,8@M0, 8,000, 10,000).
Initially, only six values oN were considered. However, as explained in the tesattion,
issues regarding stability of power estimates meguadditional sample sizes to examine how
models performed in intermediary valued\st

3.4.2 Measurement models and item-response logit thresholds. Item homogeneity
and class separation are two desirable attributesselecting an LCA model (Collins &
Lanza, 2010). Iltem homogeneity refers to item-raspgrobabilities that are near 0 and 1. It
is referred to as homogeneity because all membiehabclass have similar probabilities of
endorsing an item. For example, an item-resporseghility close to lindicates that there is
nearly a 100% chance of endorsing that item, gnaembership in that class. Similarly, an
item-response probability near O indicates thit litighly unlikely that members of that class
would endorse that item.

High class separation occurs when each class tiasiract combination of item-
response probabilities. In other words, classesldhmt look too similar to each other. For
this simulation study, variance in homogeneityeected in item-response thresholds, while
class separation is reflected in the definitiothef measurement models. Because item-
responses are on a probability scale, they rammge @rto 1. For Mplus simulation syntax,
probabilities were converted to logits. Logits ¢encalculated from probabilities using the
following formula,

1

logit(p) :rxp(p)'

Negative logit thresholds represent probabilitiesager than .50 while positive logits reflect

probabilities less than .50. In other words, logite translate to high probabilities while high
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logits translate to low probabilities. This studiylwwxamine how low, moderate, and high
threshold values affect the power of latent tramsiprobabilities.

Two measurement models specifications were us#ddarsimulation to investigate
differences in power between LCA models that ar-defined versus those that are poorly
defined. For the purposes of this study, a wellrdef model is one in which there is high
class separation. As seen in Figures 7 —10, thierkigh probabilities of endorsing all items
given membership in class 3, while there are losbpbilities of endorsing all items given
membership in class 1. Given membership in clasisete are higher probabilities of
endorsing the first two items and lower probala@itior the last two items. Class 2 is the
opposite of class 4, in that if an individual iasdified in class 2, there are lower probabilities
of endorsing the first two items and higher probaés for the last two items. Logit
threshold values for the well-defined model rangenf+1, +2, £3, and +5 which correspond
to conditional probabilities of .27/.73, .12/.885/.95, and .01/.99, respectively. This range
was considered so we could examine the impact mblgeneity in item probabilities on

statistical power. The exact threshold values use@ch model type can be seen in Table 9.
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Table 9:Logit Thresholds for Each Model Type Used in This Sudy

Well-Defined Model

Poorly Defined Model

Thresholds  Thresholds  Thresholds Thresholds Moderate
+1 +2 +3 15 Moderate  (Revised) High
Item 1 1 2 3 5 -0.4 -3 -2.5
Item 2 1 2 3 5 -1 0 -5
Class1 Item3 1 2 3 5 0 0 -1
Item 4 1 2 3 5 0.4 0.4 25
ltem 5 1 2 3 5 1 0.85 25
Item 1 1 2 3 5 1 0.85 1.5
Item 2 1 2 3 5 1 3 1.5
Class2 Item3 -1 -2 -3 -5 0.4 0.4 0
Item 4 -1 -2 -3 -5 0 0 -1
ltem 5 -1 -2 -3 -5 -1 -1 -5
Iltem 1 -1 -2 -3 -5 15 1.3 5
Item 2 -1 -2 -3 -5 1 0.4 1.5
Class3 Item3 -1 -2 -3 -5 1 0.4 1
Item 4 -1 -2 -3 -5 0 3 -1
ltem 5 -1 -2 -3 -5 0 0 0
ltem 1 -1 -2 -3 -5 0 0 -1.5
Item 2 -1 -2 -3 -5 15 0.4 5
Class4 Item3 1 2 3 5 -1 3 -5
Item 4 1 2 3 5 15 1.3 5
ltem 5 1 2 3 5 15 1.3 5




The poorly defined model (see Figures 11-13) walsided in this study to see how poor
measurement models impact the statistical powdetect latent transition probabilities. The
poorly defined models have low class separationrmmdhomogeneous classes. This model
has more “noise,” meaning the latent classes hargyntems that have conditional item
probabilities near .50. This implies that thera 80% chance of someone in in that class
having endorsing that item, which means that tlegliptability of a person’s response to that
item in that class is equivalent to the odds @igiling a coin. Threshold values for the poorly
defined model range from moderate to high. As arpthin Chapter 4, an additional
moderate (revised) thresholds model was addedadeplication convergence issues. The
exact threshold values used in each model typalsanbe seen in the sample Mplus output
in the Appendix.

It is important to examine the difference betwdese two measurement models
since it is more realistic to see published studigis the poorly defined model than the well-
defined model. The poorly defined model includesses that have many overlaps in the
item probabilities among the four classes. Thiseisn in published LTA articles and often is
supported by theory. For example, Peterson et(@0%1) study on eating disorders revealed
a three-class LCA model: binge eating/purging, biegting, and low-BMI. The binge
eating/purging and binge eating classes look vienylag on all of the five items except for
the item measuring compensatory behaviors (i.&8gracthat “un-do” binge eating, such as
self-induced vomiting or over-exercising after @ngating). Theoretically, this is the key
item that distinguishes members of the two claaselsis a major distinction when it comes

to classification and treatment. Although this mladay seem to be “poorly defined” with
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respect to measurement characteristics becaube of/erlap of classes, it makes sense
theoretically.

There are a number of potential issues that cargarfrom this realistic
measurement model. In the Peterson et al. (200dly sthere was one key variable that
differentiated two of the three classes. Withoid tfariable, the two classes would look
almost exactly the same. However, adding morerdjatshing items is sometimes difficult
for researchers with small sample sizes. A measemémodel with overlapping classes may
have lower entropy but again, might make strongritecal and practical sense. There might
be lower power to detect the latent transition piolities and a larger sample size might be
necessary to reveal an adequate level of powepiteling conditions where the classes have
a lot of overlap. Although the scope of this stadgs not examine the intersection of
entropy with the measurement model, sample sizépawer, it is important to acknowledge
that they are not independent ideas. Thus, inataglsense this dissertation aims to take the

first look at how the measurement model affectsgrow
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Figure 7. Well-Defined Model with Thresholds +1.

1

Figure 8. Well-Defined Model with Thresholds +2.

09 - 09 - v 5 -
08 - 08
07 - L = . 07 -
06 - 6
z §os
205 05 -
g £
a
04 04
03 03 -
=2 - e
02 - 02 -
01 01 - = ... .
0 - . 0 -
Item 1 Item 2 Item 3 Item 4 Item 5 Item 1 Item 2 Item 3 Item 4 Item 5
Figure 9. Well-Defined Model with Thresholds +3. Figure 10. Well-Defined Model with Thresholds
1 +5.
- 1] n - » = -
09 -
09 |
08 -
08
07 |
07 -
Eo.e !
g 208
go0s5 £
3 fos
& $
04 %04
03 - 03 -
02 - 02 -
0.1 - 01 -
o - i
0 . . . 0- - . . ¥ . ¥
Item 1 Item 2 Item 3 Item 4 Item 5 Item 1 Item 2 Item 3 Item 4 Item 5

—4—Class 1
~@—Class 2
~a—Class 3
—Class 4



ey

Figure 11. Poorly Defined Model with Moderate Figure 12. Poorly Defined Model with High
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3.4.3 Latent transition probability matrices. Two transition probability matrices
are used in this study. First, models with a comebyeequal transition probability matrix
were examined, presented in Table 10. Henceforsmthiatrix will be referred to as “Even
Transition Probabilities.” The inclusion of thisesvtransition probability matrix allowed us
to see how varying other conditions impact thasttesil power of latent transition
probabilities, while holding transition probabiés constant.

Table 10:Even Transition Probabilities Matrix

Time 2
Class 1 Class 2 Class 3 Class 4
Class 1 .25 .25 .25 .25
. Class 2 .25 .25 .25 .25
Time 1
Class 3 .25 .25 .25 .25
Class 4 .25 .25 .25 .25

A second of matrix of transition probabilities wamsidered which reflect the meta-
analysis findings. None of the published LTA stsdirad completely equal transition
probabilities and thus, a more realistic and regmmesgtive matrix was necessary. This
“Uneven Transition Probabilities” model, presenitedable 11, is based off of meta-analysis
findings. Similar to the eating disorder, educatiamd substance abuse articles identified in
the meta-analysis, the diagonals of the transiairix are fairly stable with values greater
than .70. Class 4 has the highest stability (.®®keover, the values were specified so that if
an individual was to transition, they would traimitto a latent class immediately above or
below its original class, which can be seen in @galimmediately to the left or right of a

diagonal transition probability, a pattern foundhie meta-analysis as well.
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Table 11:Uneven Transition Probabilities Matrix

Time 2
Class 1 Class 2 Class 3 Class 4
Class 1 .80 .15 .04 .01
. Class 2 .01 .85 12 .02
Time 1
Class 3 .01 .07 .70 .22
Class 4 .01 .02 .02 .95

3.4.4 Class sizes. Two different sets of class sizes at 1 were included in this study.
First, completely equal class sizes were speciiedhat we could examine constant while
while varying other conditions. Each class had 28%he overall sample size. The second
set of class sizes were uneven. These values \asgegl lon the meta-analysis findings that
showed that, for most eating disorder and educagtated LTA studies, the first listed class
had the highest percentage of the sample andsheléss had the smallest percentage of the
sample. Class percentages for both the even andnméass sizes models can be seen in
Table 12 below.

Table 12:Class Percentages for Even and Uneven Class Szes Models.
Even Class SizesUneven Class Sizes

Classat=1 Model Model
Class 1 25% 50%
Class 2 25% 30%
Class 3 25% 15%
Class 4 25% 5%

3.5 Statistical Power in Mplus

Power values for each parameter are provided irusputput in column seven of the
Model Results section when using the Monte Cartdifis of the program. This column is
labeled “% Sig Coeff” and represents the proportbreplications for which the null

hypothesis that a parameter is equal to zeroesteyl for each parameter at the .05 level. In
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a two-tailed test, the critical value is 1.96. Huatistical test, oz-score, for each replication
is the ratio of the parameter estimate)(to its standard error:

n-0
2=

se(®

The statistical power for the latent transitionlpabilities can be seen in the
subsection labeled Categorical Latent Variablegalde of .80 or higher is considered
adequate power (Cohen, 1988; Muthén & Muthén, 2002)

3.6 Expectation Maximization (EM) Algorithm

Monte Carlo simulation studies in Mplus use the &otption Maximization (EM)
Algorithm. Finding a mathematic solution in mixturedeling is difficult because the
sample distribution is comprised of many sub-disitions (Jung & Wickrama, 2008).
Ideally, in mixture modeling, researchers want gladmlutions. Global solutions are the set
of parameters with the largest log likelihood olialb possible values. The likelihood
function is the probability of an array of dataeyva set of parameter (Masyn, 2013). Local
solutions are the solutions on which the estimagilgiorithm converges that is a local
maxima, but not the global maximum.

To help explain the idea of global and local sadlnsi of a likelihood function, Masyn
(2013) uses the idea of a hiker (which represém®stimation algorithm) climbing a
mountain (the likelihood function) with an ultimageal of reaching the highest peak of the
entire mountain range (the global solution). Inesrtb do so, the hiker chooses a starting
point (the initial starting point of the paramegéstimates) and continues to hike until it is
known that a peak has been found (convergenceionthas been met). The hiker keeps
hiking and finds more peaks, but must eventuatp $tiking when supplies have run out
(maximum number of iterations have passed). ltss possible that during the entire trek,
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the hiker ran out of supplies (the maximum numbeteoations has been exceeded) before
finding a peak (failed to converge).

To extend this idea, a local maximum in LCA woutghresent a hiker who a found a
peak (local maximum) then ran out of supplies,kmziwing that if he/she had continued the
trek, the highest peak (global maximum) was aheathe same manner, converging on a
local maximum in LCA means that a solution has deend among a range of values,
whereas if the range of values had been diffemerigrger, a better solution could have been
found. Going back to the analogy of the hikerh# hiker had started at a different point at
the base of the mountain, the hiker could havedadbte highest peak before running out of
supplies.

To help avoid reaching a local maximum, the redearcan indicate different start
values in Mplus syntax, in essence setting outiplalhikers to find the global solution. The
syntax,

TYPE = M XTURE;
calls for random sets of start values to generadMplus using the default values. Ten
iterations of 10 random sets of starting valuescareed out. From this, the ending values
with the highest loglikelihood are used in the ktsige of optimization. For a more thorough
investigation, Muthén (2008) recommends the follayyntax when examining two classes:

STARTS = 50 5; 1

1 If the “starts” syntax is not included in timput file, the Mplus default for mixture

models iSSTARTS = 10 2.
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The first number represents the number of randam ghlues and the second number
represents the number of final optimizations. Fopimizations optimize the specified
number of best sets identified by the highest kadiinood values after the first round of
optimizations has been conducted. When there are than two classes, Muthén (2008)
recommends using the following start values becéursmore complex models, a more
thorough investigation of solutions is necessary:

STARTS = 500 10;

STI TERATI ONS = 20; 2

In addition to using different start values, resbars can attempt to avoid specifying
larger models and instead, aim for parsimony, asrparsimonious models are less
complex.Well-identified models will arrive at a solution at any start ealunder-identified
models will find one global maximum and many locaxima, yet different start values may
arrive at different solutions, and anidentified model will find no unique solution (Collins
& Lanza, 2010). Explained in further detail in Chaxps, the poorly defined model had
difficulty converging. Muthén’s (2008) recommendais were considered when
investigating this issue. Both well-defined and fypdefined models were compared across
different sample sizes, looking at the Mplus dafé@&TARTS = 10 2) andSTARTS =
500 10. Power values and coverage values differed slidigtween the two start values for
both models. In both models, power values werdaglidhigher when start values were
increased, yet differed by a maximum of .08. Aduhtlly, coverage was slightly greater

when starts were increased, yet differed only byeaimum of .07. Thus, the power values

2 The Mplus default iSTI TERATI ONS = 10.
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in the remainder of this study represent the defdplus start values and reflect a more
conservative estimate of power and coverage.
3.7 Class Switching

Class switching is a common issue that may occuCiA/LTA and LCA/LTA
simulation studies. When an LCA or LTA model is iarMplus, the latent classes are given
an arbitrary class label. This is done for eachafuan LCA model, meaning in one run the
order of the classes may be different than in go®sd run with the exact model fit or
meaningful difference in the modeling parametesnilarly, in an LCA or LTA simulation
study, class labels are at each permutation ohalation and not over all permutations.
Because of this, class labels may differ at eagh st parameter estimation. For example, in
a four-class model, the data generation valuesappgar at class 1 in the first permutation
yet may appear at class 2 in the next permutafibis. is an issue when aggregating
parameter estimates over all simulation replication

For the present study, parameter estimates weraie&d after simulations were
complete. Mplus provides parameter estimates, atdretrors, and fit statistics in a .csv file
with the following command:

results = fil enane. csv;
Parameter estimates were examined for multiple Isition models and there was no
occurrence of class switching thus no further actias necessary to correct for class
switching.
3.8 Analysis Procedures

When determining what sample size is appropriatadequate statistical power,

Muthén and Muthén (2002) suggest three conditieganding parameter estimate bias,
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standard error bias and coverage. The follow suiosecwill walk the reader through how to
assess whether these conditions are met.

3.8.1 Parameter estimate bias. Parameter estimate bias should not exceed 10% for
any parameter in the model (Muthén & Muthén, 2002rameter estimate bias can be
calculated by finding the percent difference betwtiee population value and the average
parameter estimate over all replications. Thesevaoes can be found in the first and
second column of Mplus output in the section lathéwdel Results. The formula for

calculating parameter estimate bias is expressed as

avg — population
population

parameteestimatdias=

3.8.2 Standard error bias. Standard error bias should not exceed 10% for any
parameter in the model (Muthén & Muthén, 2002) tir@ermore, standard error bias should
not exceed 5% for the parameter that is being exadnior power. Standard error bias tends
to be sensitive because standard errors are oferestimated or underestimated, which in
turn affects confidence intervals and coveragenditad error bias can be calculated by
taking the percent difference between the populattandard error and the average of the
estimated standard errors for each parameter dstonar all replications. These values can
be found in columns 3 and 4 of the Mplus outpubhimsection labeled Model Results. The

formula for calculating standard error bias is egsed as:

S.E.Average- std.dev.
std.dev. '

standar@rrorbias=
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When the number of replications is large, the stathdeviation of each parameter
estimate over all replications is considered toh@epopulation standard error and thus, this
value is used for the population value.

3.8.3 Coverage. Lastly, coverage should be greater than .91 (Muaéuthén,
2002). Coverage is the proportion of replicatiomsvihich the 95% confidence interval
contains the true parameter value. In other watlgast 91% of replications should have
true parameter values within the 95% confidencerual. Coverage values can be found in
column 6 of Mplus output in the section labeled MioResults.

Considering these three conditions are met ingtudy, power values close greater
than or equal to 0.80 will be considered adequatthe next section, power values for all
models are organized in Tables 16—-19 and Tableaf2Power curves are also included in
Figures 14-41 to visually show how power variesaémple size under each set of

conditions.
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Chapter 4 Results
4.1 General Overview
This chapter provides results from all 308 Montel@€simulations conducted as part
of this study. The purpose of this dissertation wasxamine the statistical power to detect
latent transition probabilities under various cdiahis. These five various conditions
included sample sizes, measurement models, |laterdition probability matrices, class
sizes, and threshold values. The following modpésyorganize results into four sections:
1) Well-Defined Model with Even Transition Probab#isi
2) Well-Defined Model with Uneven Transition Probatids
3) Poorly Defined Model with Even Transition Probatioeis
4) Poorly Defined Model with Uneven Transition Probiieis
Within each of these sections are two subsectiomsrgrizing results for even and
uneven class sizes. These subsections also desesildes for various sample sizes and
threshold values. Recall that a .80 value of higheonsidered adequate statistical power.
Table 13 includes a summary of the percentageteftaransition probabilities that met or
exceeded the .80 cutoff for each model type. Athef power values for each model can be
seen in Tables 16-19 and Tables 21-24 and graphicdtigures 14—41. Before going into
these sections, two unusual patterns in power suake highlighted and are explained,
including why a model may have artificially highwer and when a model may not converge

due to model characteristics such as small samptawothreshold values.
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Table 13:Percentage of Transition Probabilities that met .80 Cutoff

N
N at
which
Model Transition power
Definition Probabilities Class Sizes Thresholds stabilizes 100 250 500 1000 1250 1500 5000 6000 7000 8000 (@LOOO
Thresholds +1 1500 None None None None None NoneneN None None None None
) Thresholds +2 100 None .92 All All All All All Al Al All All
Even Class Sizes 1y, asholds +3 100 17 AL AL AL AL AL Al AL Al Al Al
Even Thresholds +5 100 All All All All All All All All All All All
Transition
Probabilities Thresholds +1 5000 None None None None None Nonel2 . .58 .67 .75 .75
] Thresholds +2 250 None .50 .75 .75 .83 All All All - All All All
Uneven Class Sizes 1y, ocholds +3 100 4 75 75 Al Al Al Al Al Al Al Al
well- Thresholds +5 100 .50 .75 All All All All All All All All All
Defined Thresholds +1 1250 None .08 .25 .25 .25 .25 33 2 4 42 42 42
) Thresholds 2 1000 None .25 .33 42 .50 .58 75 5 .7 .75 .75 .83
Even Class Sizes 1y, ocholds +3 500 17 33 50 58 58 58 Al Al Al Al Al
TUne\_/ﬁn Thresholds 5 500 .25 42 .50 .58 .75 .75 All All All All All
ransition
Probabilities Thresholds +1 5000 None .08 17 .25 .33 .33 42 2 4 42 .50 .50
) Thresholds +2 1500 .08 .33 42 .50 .50 .50 .58 .58.58 .58 .67
Uneven Class Sizes
Thresholds 3 1500 .25 A2 .50 .58 .58 .58 .67 .75.75 .75 .83
Thresholds 5 1500 .67 42 .50 .58 .58 .58 75 2 .9 .92 .92 .92
Moderate 5000 None None None None None None NoneneN None None None
Even Class Sizes Moderate (Revised) 1500 None None None None None®neN .67 .67 .67 .67 .92
Even High 100 None .08 25.00 .33 42 .59 All All All A All
Transition
Probabilities Moderate - None None None None None None .08 .0808 . .17 17
Uneven Class Sizes Moderate (Revised) 6000 None None None .08 .25 .25.50 .67 .67 .67 .75
Poorly High 250 None .08 17 .50 .67 .67 All All All All - All
Defined Moderate - None None .08 .08 08 .17 25 17 17 17 17
Even Class Sizes Moderate (Revised) 5000 None .08 .25 .25 .25 .33 42 42 42 42 42
Uneven High 1250 None .17 .33 .33 .33 .33 .67 .75 75 .83 .92
Transition Mod
Probabilities oderate - None None g .08 .08 .08 17 25 17 .08 25
Uneven Class Sizes Moderate (Revised) - None .17 A7 .25 .33 33 42 42 42 42 42
High 5000 08 25 25 33 42 50 50 58 58 58 58

Note. A hyphen (-) indicates that power did not stabifi@eanyN in that model.
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Table 14:Number of Completed Replications per Model

N
Transition
Model Definition  Probabilities Class Sizes Thresholds 100 250 500 0010 1250 1500 5000 6000 7000 8000 10000
Thresholds +1 933 774 575 669 640 700 967 984 990 93 9 999
Thresholds +2 999 1000 1000 1000 1000 998 1000 10001000 1000 999
Even Class Sizes
Thresholds 3 1000 1000 1000 1000 1000 1000 1000 0010 1000 1000 1000
Even Thresholds 5 1000 1000 1000 1000 1000 1000 1000 0010 1000 1000 1000
Transition
Probabilities Thresholds +1 939 756 646 508 499 517 823 872 894 20 9 948
~ Thresholds +2 995 997 999 999 999 1000 1000 1000 0010 1000 1000
Uneven Class Sizes 1 o holds +3 998 1000 1000 1000 1000 1000 1000 01001000 1000 1000
Well- Thresholds 5 998 1000 1000 999 999 998 999 999 998 999 1000
Defined Thresholds +1 933 774 575 669 640 700 967 984 990 93 9 999
Thresholds +2 999 1000 1000 1000 1000 998 1000 10001000 1000 999
Even Class Sizes
Thresholds 3 1000 1000 1000 1000 1000 1000 1000 0010 1000 1000 1000
Uneven Thresholds 5 1000 1000 1000 1000 1000 1000 1000 0010 1000 1000 1000
Transition
Probabilities Thresholds +1 939 756 646 508 499 517 823 872 894 20 9 048
~ Thresholds +2 995 997 999 999 999 1000 1000 1000 0010 1000 1000
Uneven Class Sizes 1 o oholds +3 873 995 1000 1000 1000 1000 1000  100Q1000 1000 1000
Thresholds 5 991 995 997 1000 999 998 1000 999 998 999 1000
Moderate 927 568 222 148 185 204 421 445 487 508 5 55
Even Class Sizes Moderate (Revised) 918 648 472 531 602 684 965 986 988 996 995
Even High 974 960 956 984 991 998 1000 1000 1000 1000 0010
Transition
Probabilities Moderate 919 587 271 133 93 98 209 249 282 296 349
Uneven Class Sizes Moderate (Revised) 906 754 505 424 454 456 626 687 708 736 808
Poorly High 978 988 979 991 996 995 1000 1000 1000 1000 0010
Defined Moderate 921 696 414 188 132 115 16 16 13 14 7
Even Class Sizes Moderate (Revised) 932 835 784 765 774 762 667 626 611 608 592
Tlrj;nes\ulﬁgn High 892 970 966 985 983 988 1000 998 1000 998 1000
Probabilities Moderate _ 915 703 439 222 167 120 25 22 20 16 11
Uneven Class Sizes Moderate (Revised) go5 826  gg5 553 540 505 524 514 470 470 424
High 761 928 928 982 986 987 997 1000 999 1000 999




Table 13 includes the sample size at which povadilstes for all models. This table
also includes the amount of latent transition phboliges that met or exceeded the
recommended .80 cutoff. These results should leegréted in conjunction with the power
stability results. For example, a model with snNathay have some latent transition
probabilities with adequate power values; howetres, model may not stabilize until a
higherN is reached. Thus, it is advised that results as¥preted with caution and
consideration.

4.2 Unusual Patternsin Power Curves

While compiling results, two unusual patterns ayadr Prior to going into deeper
analysis of the power curves for each model typesd issues are addressed first to help aid
the interpretation of subsequent results. Firs, might expect that power would increase as
N increases for all models. Contrary to this expgemasome models in this study returned
unusual power curve patterns. Second, some poweesexhibited “spikes” where power
would alternate in higher or lower power with eaciccessivé. Reasons for these unusual
patterns are explained below.

4.2.1 Artificially high power and stability of power. Some models exhibited an
unusual pattern where power started high& atl00, decreased, then rose again wien
increased (e.g., see Figure 25). This patternusteointuitive as it would imply that for
some models, one can anticipate higher power fatl$ds (e.g.N = 100) and then again for
largeNs (e.g.N = 10,000), yet low power for moderate valuedde.g.,N = 5,000). To
investigate this unexpected pattern, parametanasts for each replication were examined
to uncover possible issues that may be a resutioofel specification. This analysis focused

on the Well-Defined Model with Uneven TransitioroBability and Uneven Class Sizes (see
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Table 19 and Figures 26—29). Each replicationehdured a fixed standard error for a latent
transition probability parameter had the followergor message in Mplus output:

ONE OR MORE PROBABI LI TY PARAMETERS WERE FI XED TO AvVA D

SI NGULARI TY OF THE | NFORVATI ON MATRI X. THE SI NGULARI TY IS

MOST LI KELY BECAUSE THE MODEL IS NOT | DENTI FI ED, OR

BECAUSE OF EMPTY CELLS IN THE JO NT DI STRI BUTI ON OF THE

CATEGORI CAL LATENT VARI ABLES AND ANY | NDEPENDENT

VARI ABLES.

Investigation of each replications parameters redethat for smalleNs a large
proportion of standard errors were being fixed tegy small number near zero. Statistical
power is the proportion of replications where thgar of the parameter estimate to its
standard error is significant. Thus, when stan@ardrs are fixed to numbers near zero, these
z-scores tend to be greater than the 1.96 cutofla@dignificant, causing artificial
contributions to statistical power for that laténainsition probability. They are considered
artificial because the only reason they are sigaift is because they were fixed by the
program to avoid estimation problems—which in fae a signal that the model is not a
good one in the first place. Henceforth, this oate will be referred to as “artificially high
power.” “Stability” will refer to models where powegalues are not artificial (e.g., standard
errors are not fixed by Mplus). Table 13 includes sample size at which the model
stabilizes. This is also visualized in Figures 14b# the dashed line. Power curves to the
left of the dashed lines should not be interpreted.

Table 15 below includes the percentage of staneiaioils out of the first 100
replications that were fixed to zero fdr= 100, 250, 500, 1,000, and 5,000 for the Well-

Defined Model with Uneven Transition Probabilitydadneven Class Sizes. Whiin= 100,
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60% of standard errors are fixed to near zerdNAscreases, less standard errors were fixed
and by the timé& reaches 5,000, 0% of standard errors were fixeeto. Thus, when
artificially high power estimates occur, power #iabs asN increases because fewer
standard errors are fixed. The Mplus error messatjeates that Mplus fixes standard errors
for two reasons: if a model is not well-identifiedif cells are sparse. It appears that in this
model standard errors are fixed due to sparsermesaibe standard errors are only fixed
whenN is small.

Table 15:Percentage of Sandard Errors Fixed to Zero in Well-Defined Model with Uneven
Transition Probability and Uneven Class Szes

N % SEs setto 0
100 60%
250 50%
500 30%
1000 5%
5000 0%

4.2.2 Model non-conver gence and the revised moderate model. Some power
curves exhibited “spikes” where power would altéena higher or lower power with each
successiv@. This pattern can be seen in the Poorly Defined Maité Uneven Transition
Probabilities, Even Class Sizes, and Moderate Tiotds in Figure 36. Notice how the
power curve for latent transition probability 1tarss at .32 foN = 100, decreases, then
appears to stabilize Bk= 1,500. Unlike the artificially high power valupgesented in the
previous section, this power curve does not stabdind does not gradually increasé&las
increases. Instead, it increasesdlat 5,000, decreasesdt= 6,000, increases for the next
two values ol, then decreases again fd= 10,000. These “spikes” can also be seen in the
Poorly Defined Model with Uneven Transition Probgieis, Uneven Class Sizes, and

Moderate and Moderate (Revised) Thresholds in EgG6 and 40.
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A closer look at the output for these models reaakdifficulty in model convergence.
Table 14 includes the number of replications tlwamsleted for each of the model types.
Well-defined models with thresholds greater tharhad little to no difficulty converging
regardless of transition probability matrix or dasze. When thresholds for well-defined
models were set to =1, lower and highisrhad a greater probability of converging.
ModerateNs had lower proportions of completed replicatioffss can be attributed to the
same reason why low valuesivhad greater power than higher or moderate valubk Bbr
low N (e.g.,N = 100), Mplus is more likely to fix standard esdo zero, which in turn
“helps” the model to converge, resulting in higmeergence rates. For moderate values of
N, Mplus is less likely to “help” the model, resalyiin moderate convergence rates. By the
time N is large (e.g.N = 5,000), the model can sustain itself and sucslgsonverge
without the help of fixed standard errors.

Mplus provides the following errdfor each replication that does not complete:

THE MODEL ESTI MATI ON DI D NOT' TERM NATE NCRVALLY DUE TO A

CHANGE I N THE LOG.I KELI HOOD DURI NG THE LAST E STEP. AN

| NSUFFI CENT NUMBER OF E STEP | TERATI ONS MAY HAVE BEEN

USED. | NCREASE THE NUMBER OF M TERATI ONS OR | NCREASE THE

MCONVERGENCE VALUE. ESTI MATES CANNOT BE TRUSTED. SLOW

CONVERGENCE DUE TO PARAMETER. . .
Following the suggestion in the error messagenthmeber of iterations was increased from

Mplus’ default 10 to 100. To investigate differenoeonvergence rates, iterations were

3 Mplus simulation output for models in this disséidn included other error messages.
These error messages were investigated for poltesgiges. No major issues were found.
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increased for the Poorly Defined model with UneVeansition Probabilities and Uneven
Class Sizes (see Figures 39-41) for this measutemaatel. For the moderate thresholds
model, there was no change in the number of coedengplications when the number of
iterations was increased from 10 to 100. This shin@smportance of having a well-defined
measurement model. When measurement models haweistorct classes, there is too much
“noise” to distinguish between classes and asuwdtrése model will not converge. With
non-simulated data, it is unlikely that Mplus woelen resolve to this sort of measurement
model because it is so poorly defined.

In summary, a model with poor measurement is ehliko converge especially with
the moderate thresholds specified in this simutesitudy. It may also indicate that a four-
class LCA solution would not even emerge underdalesditions. Thus, to investigate a
similar yet revised model, thresholds were adjustadl henceforth will be referred to as the
Moderate (Revised) Thresholds model (refer badkdare 13). To increase class separation,
each class had one distinguishable item. For ex@nfglitem 1, class 1 had a 95%
probability of endorsing that item while the othieree classes had moderate probabilities for
that item. Similarly, class 2 had a very low prabgh(5%) of endorsing item 2 while the
other three classes had moderate probabilitiess@he pattern continues for class 3 with
item 3 and class 4 with item 4. Lastly, item 5 wbhbé considered a “bad” item with all
classes maintaining a moderate probability. Thissezl moderate thresholds model was
created with the hopes that a model with greatessscand item distinction would have less
difficulty converging over 1,000 replications. Ases in Table 14, this moderate (revised)
model did in fact converge better than the modetatsholds model & = 10,000. With

even transition probabilities and even class sakesost 100% of replications converged.
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With even transition probabilities and uneven ckigss, the moderate (revised) thresholds
model had 808 out of 1,000 replications complekéalvever, with uneven transition
probabilities, only about half of replications cdeted for both even and uneven class sizes.
This shows that there is still some difficulty tbe moderate (revised) thresholds model to
converge when there are uneven transition proligsiliThis outcome is explained in further
detail in the following subsections. This poorlfided model with moderate (revised)
thresholds also serves as a comparison model toie&do what extent the measurement
model has an effect on the power of latent tramsifirobabilities. These results are provided
in the model results subsections below.

4.3 Well-Defined M odel with Even Transition Probabilities

4.3.1 Even class sizes. This model serves as a basis for understandingdiver of
latent transition probabilities. Power values carsben in Table 16 and Figures 14-17.
Creating a model that has equal transition proliedsiland equal class sizes helped show that
latent transition probabilities have nearly equalvpr regardless of if they are on the
diagonal or off-diagonals in the latent transitpprobability matrix. For example, with
thresholds of £3 anl = 1,500, power values range from .92 to .95. Timslel also helps to
show the effect of model measurement and logistiokls while holding transition
probabilities and class sizes constant and equal.

As seen in Figures 14-17, this well-defined modéh wven transition probabilities
and even class sizes has stable power, meaningsMplwnot fix standard errors to zero and
power values represent true and trustworthy redatis/er is unstable only fod < 1,500 for
thresholds of £1. There are no other instancesudifitially high power.” This indicates that

Mplus is unlikely to fix standard errors to zeroainvell-defined model with even transition
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probabilities and even class sizes. This model@swerged well, again with an exception at
low thresholds of +1 foN < 1,500.

A closer look at power across all four sets of shadds helps show the impact of
these values on power. When thresholds are sét, tadequate power is not met for any of
the latent transition probabilities for any valde\b Even with a sample size df= 10,000,
power only reaches as high as .69. However, statigtower improves when thresholds are
increased. For thresholds of + 2 or +3, there exjadte power for all transition probabilities
whenN > 250. For high thresholds of £5, there is adeqpateer at all values dfl included
in this study.

Recall that for this simulation study, a well-defthmodel has four very distinct
classes (refer to Figures 7—10 in Chapter 3). Sholels of £1 only reflect item-response
probabilities of 27% and 73%, respectively, whileesholds of +5 reflect 1% and 99%,
respectively. We see here in these results that et a well-defined model, if classes are
not homogeneous (i.e., item-response probabiligzs O or 1), it is unlikely that transition
probabilities will have adequate power. The relaiup between the measurement model
and logit thresholds is important, as we see heewell-defined models are likely to have
adequate power but only when thresholds are atgu hi

Thus far, this well-defined model with even tramsitprobabilities and even class
sizes shows that:

» Statistical power does not take into consideratvbether a transition
probability is on the diagonal or off-diagonal. plbwer values for transition

probabilities are approximately equal within a séagize. In other words,
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holding all things constant, the power to deteobpbilities is equal for
movers and stayers.

* This model is fairly stable except whisns low with thresholds of 1.

* Increasing threshold values helps the model tdlstaland results in greater
power.

4.3.2 Uneven class sizes. This model only differs from the above model ls/dtass
sizes. Transition probabilities are still even asrall cells and the measurement model is
congruent with the previous model. However, the gogurves of these two model types are
very different (see Table 17, Figures 18-21). kphevious even class size model, all
conditions are set equal to each other and thusaakition probabilities have nearly equal
power within a sample size. For this uneven classsanodel, we see differences between
each latent transition probability. For a sinblesome power values are high while others are
low. In general, there is lower power for latemtrsition probabilities with small class sizes.
For example, power is lower when transitioning afytor staying in class 4 (which had only
5% of the sample), versus transitioning out oftayisg in class 1 (which had 50% of the
sample). When comparing this model to the preveuen class sizes model, the effect of
sparseness of cells is evident in the low poweheftransition probabilities. Cells with fewer
individuals had less power. For adequate powealfdransition probabilities in the
transition matrix, results indicate that we néed 5,000 with thresholds of +2 > 1,000
with thresholds of +3, oN > 500 with thresholds +5.

With low thresholds, this model has some difficidtgbilizing, meaning standard
errors were fixed for manyis and thus, power values are “artificially highdrEhresholds

of £1, power stabilizes afté& = 5,000. When thresholds are increased to +2, pstabilizes
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atN = 250. When thresholds are £3 or =5, power islstldy allN. Caution should be taken
when interpreting power results for this model.

In summary, this well-defined model with even tiios probabilities and uneven
class sizes contributes the following findings ddigion to what we have seen in results thus
far:

» Sparseness negatively affects statistical powegdraclass sizes have greater
power compared to smaller latent class sizes.
» Transition probabilities from smaller class sizad Imore difficulty

stabilizing, as expected.
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Table 16:Power Values for Well-Defined Model with Even Transition Probabilities and Even Class Szes

N CltoCl C2toCl C3toCl C4toCl Clto C2 C2tc CRt€C2 C4toC2 CltoC3 C2to (3 C3toC3 C4to C3
Thresholds 1 100 0.42 0.36 0.37 0.40 0.36 0.44 0.39 0.43 0.35 0.38 0.44 0.44
250 0.39 0.30 0.33 0.34 0.32 0.4z 0.32 0.38 0.29 0.33 0.39 0.38
500 0.47 0.34 0.37 0.35 0.38 0.44 0.36 0.4 0.23 0.37 0.45 0.45
1000 0.52 0.45 0.49 0.46 0.46 0.50 0.44 0.48 0.44 0.47 056 105
1250 0.57 0.52 0.51 0.55 0.53 0.57 0.52 0.54 0.£2 0.51 062 405
1500 0.56 0.49 0.53 0.54 0.48 0.5% 0.52 0.54 0.51 0.51 058 305
5000 0.59 0.59 0.60 0.65 0.62 0.62 0.64 0.63 0.63 0.56 065 706
6000 0.62 0.62 0.63 0.67 0.63 0.62 0.665 0.64 0.€2 0.66 063 406
7000 0.63 0.62 0.64 0.66 0.64 0.62 0.67 0.66 0.66 0.68 066 806
8000 0.62 0.65 0.65 0.67 0.66 0.66 0.69 0.67 0.66 0.67 065 706
10000 0.63 0.64 0.64 0.66 0.66 0.65 0.67 0.67 0.67 0.59 0.67 69 0.
Thresholds 2 100 0.55 0.51 0.54 0.54 0.50 0.5€ 0.50 0.53 0.3 0.50 0.57 051
250 0.82 0.80 0.81 0.86 0.81 0.8C 0.85 0.81 0.€1 0.83 0.32 081
500 0.87 0.85 0.87 0.90 0.87 0.87 0.92 0.83 0.66 0.89 0.39 091
1000 0.86 0.87 0.88 0.90 0.87 0.8¢ 0.89 0.90 0.67 0.39 091 109
1250 0.88 0.87 0.90 0.92 0.85 0.87 0.89 0.90 0.67 0.39 089 009
1500 0.88 0.88 0.90 0.92 0.87 0.89 0.91 0.91 0.68 0.90 090 409
5000 0.89 0.89 0.90 0.92 0.88 0.91 0.90 0.91 0.69 0.91 092 309
6000 0.88 0.88 0.89 0.91 0.90 0.90 0.90 0.90 0.69 0.89 090 009
7000 0.89 0.88 0.89 0.90 0.88 0.8¢ 0.89 0.89 0.68 0.89 089 109
8000 0.90 0.91 0.91 0.92 0.90 0.91 0.91 0.91 0.90 0.90 091 109
10000 0.87 0.88 0.88 0.89 0.90 0.90 0.8 0.90 0.89 0.39 0.90 91 0.
Thresholds 2 100 0.80 0.75 0.75 0.79 0.77 0.82 0.79 0.79 0.78 0.79 0.78 0.76
250 0.96 0.93 0.96 0.95 0.94 0.98 0.95 0.94 0.4 0.96 0.94 0.94
500 0.95 0.94 0.95 0.96 0.94 0.9€ 0.96 0.95 0.65 0.97 0.97 0.96
1000 0.93 0.92 0.93 0.96 0.92 0.94 0.95 0.94 0.92 0.94 095 609
1250 0.94 0.93 0.94 0.96 0.90 0.95 0.93 0.94 0.91 0.92 094 5009
1500 0.93 0.92 0.93 0.95 0.92 0.9¢ 0.94 0.95 0.92 0.95 095 409
5000 0.92 0.93 0.94 0.96 0.92 0.95 0.94 0.95 0.92 0.94 094 5009
6000 0.94 0.94 0.95 0.96 0.93 0.9¢ 0.94 0.95 0.93 0.95 095 509
7000 0.94 0.94 0.95 0.95 0.94 0.9% 0.95 0.96 0.94 0.95 096 609
8000 0.95 0.95 0.95 0.96 0.94 0.9% 0.95 0.96 0.95 0.95 096 609
10000 0.94 0.94 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.6 0.96 96 0.
Thresholds 5 100 0.87 0.84 0.87 0.87 0.87 0.8¢ 0.88 0.87 0.€8 0.86 0.38 0.85
250 0.99 0.99 0.99 1.00 1.00 1.0C 1.00 0.99 1.0 0.99 0.9 1.00
500 1.00 0.99 1.00 1.00 0.99 0.9¢ 1.00 0.99 0.9 1.00 1.00 1.00
1000 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 099 010
1250 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 099 909
1500 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 099 909
5000 0.99 0.98 0.98 0.99 0.97 0.98 0.93 0.98 0.97 0.98 098 010
6000 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.99 099 909
7000 0.98 0.97 0.98 0.99 0.98 0.98 0.983 0.98 0.98 0.99 099 909
8000 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 099 909
10000 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 99 0.
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Figure 14. Well-Defined Model/Even Transition
Probabilities/Even Class Sizes/Thresholds +1.

Figure 15. Well-Defined Model/Even Transition
Probabilities/Even Class Sizes/Thresholds +2.
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Table 17:Power Values for Well-Defined Model with Even Transition Probabilities and Uneven Class Szes

11 21 31 41 12 22 32 42 13 23 33 43
Thresholds +1 100 0.43 0.36 0.41 0.50 0.38 0.41 0.44 0.51 0.41 0.40 0.43 0.55
250 0.41 0.31 0.31 0.35 0.36 0.41 0.32 0.37 0.40 0.37 0.36 0.38
500 0.49 0.34 0.30 0.29 0.48 0.44 0.27 0.28 0.44 0.38 0.40 0.31
1000 0.69 0.54 0.34 0.21 0.57 0.50 0.30 0.25 0.53 0.43 039 202
1250 0.68 0.57 0.34 0.12 0.57 0.5% 0.30 0.18 0.54 0.48 042 501
1500 0.77 0.63 0.40 0.12 0.59 0.5z 0.34 0.16 0.55 0.47 042 301
5000 0.99 0.99 0.83 0.26 0.83 0.76 0.71 0.30 0.80 0.78 062 002
6000 1.00 1.00 0.90 0.34 0.88 0.8% 0.79 0.34 0.85 0.34 0.66 202
7000 1.00 1.00 0.94 0.40 0.92 0.8¢ 0.87 0.39 0.69 0.88 0.76 103
8000 1.00 1.00 0.97 0.48 0.96 0.91 0.91 0.43 0.93 0.92 081 603
10000 1.00 1.00 0.99 0.59 0.98 0.96 0.97 0.52 0.98 0.97 0.89 47 0.
Thresholds 2 100 0.68 0.52 0.35 0.39 0.73 0.62 0.39 0.42 0.74 0.59 0.45 0.42
250 0.93 0.83 0.61 0.20 0.88 0.81 0.62 0.25 0.€9 0.85 0.55 0.26
500 0.99 0.98 0.93 0.39 0.94 0.91 0.86 0.33 0.4 0.94 0.85 0.38
1000 1.00 0.99 0.99 0.73 0.96 0.9% 0.96 0.65 0.96 0.96 093 406
1250 1.00 1.00 0.99 0.84 0.98 0.98 0.97 0.76 0.98 0.98 096 807
1500 1.00 0.99 1.00 0.91 0.98 0.9¢ 0.98 0.83 0.98 0.98 097 208
5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
7000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 00 1.
Thresholds = 100 0.93 0.80 0.48 0.28 0.95 0.8% 0.54 0.30 0.¢5 0.86 0.53 0.30
250 0.99 0.98 0.88 0.37 0.98 0.9€ 0.90 0.34 0.7 0.97 0.39 0.37
500 1.00 1.00 0.99 0.77 0.98 0.9¢ 0.97 0.73 0.¢8 0.99 0.97 0.73
1000 1.00 1.00 1.00 0.98 0.99 0.99 0.98 0.95 0.99 0.99 098 509
1250 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.99 099 809
1500 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 809
5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
7000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 00 1.
Thresholds £ 100 0.99 0.94 0.57 0.25 1.00 0.93 0.60 0.25 1.00 0.94 0.59 0.24
250 1.00 1.00 0.97 0.47 1.00 1.0C 0.98 0.43 1.00 1.00 0.98 0.49
500 0.96 0.94 0.93 0.92 0.95 0.98 0.92 0.92 0.65 0.94 0.93 0.92
1000 0.96 0.96 0.95 0.93 0.95 0.94 0.95 0.94 0.95 0.95 0.96 309
1250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
1500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
7000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 010
10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 00 1.
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Figure 18. Well-Defined Model/Even Transition
Probabilities/Uneven Class Sizes/Thresholds +1.
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Figure 19. Well-Defined Model/Even Transition
Probabilities/Uneven Class Sizes/Thresholds +2.
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Figure 20. Well-Defined Model/Even Transition
Probabilities/Uneven Class Sizes/Thresholds +3.
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Figure 21. Well-Defined Model/Even Transition
Probabilities/Uneven Class Sizes/Thresholds +5.
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4.4 Well-Defined Model with Uneven Transition Probabilities

4.4.1 Even class sizes. This model differs from the initial model in sexti4.3.1 only
by its transition probabilities. When comparedhattmodel, one can clearly see the impact
that uneven transition probabilities have on diaaspower and stability (see Table 18 and
Figures 22-25). For all four sets of threshold ga|uhere are stability issues. Standard errors
were fixed for many of these models, resultingartificially high” power. Power stabilizes
atN> 1,250 for threshold £I\ > 1500 for thresholds +2, amdl> 500 for high thresholds of
+3 or +5. It should be noted that only some ofttla@sition probabilities have difficulty
stabilizing. The transition probabilities that $tarth high power and stay high are diagonal
transition probabilities, which did not have diffity stabilizing. These transition
probabilities are much larger than the off-diagdnahsition probabilities (e.g., a probability
of .85 versus .04). The power curves on the lovedfrdf the curve are power values for off-
diagonal transition probabilities. Larger off-diagb transition probabilities (e.g., a
probability of .15) are more likely to stabilizesseer than smaller off-diagonal transition
probabilities (e.g., a probability of .01). In sularger transition probabilities have higher
power and are easier to stabilize, as we would&xpe

In the similar model with even transition probatiel in section 4.3.1, all power
values were nearly equal for each valu&loln this model we could expect that if every
condition was held equal, power would be roughlyagdgHowever, in this model with
uneven transition probabilities, some power vaklreslow while others are high. We see
here that power is related to the value of thesiteom probability. As seen before, larger

transition probabilities leads to greater power.
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This condition also displays the influence thatglze of the threshold values has on
power, specifically that larger thresholds leathétter power. When thresholds are £1 or £2,
there is adequate power for some, but not alhefttansition probabilities. Low transition
probabilities (i.e., .01) never reach power of wdten thresholds are 1. When thresholds are
higher (i.e., £3, £5), there is adequate poweiafbtransition probabilities atl > 5,000. For
N < 5,000, some transition probabilities have adexjpawer whereas others do not (see
Figures 24 and 25). Low transition probabilities (i.01) tend to have power values less than
the .80 cut-off for smalNs.

In summary, this well-defined model with unevemsiéion probabilities and even
class sizes contributes the following findings duigion to what we have seen in results thus
far:

» Larger transition probabilities have less diffigustabilizing than smaller
transition probability. Diagonal values in this nebtiad no difficulty
stabilizing.

» Larger transition probabilities have greater potiran smaller transition
probabilities.

4.4.2 Uneven class sizes. Power values for this model were less stable ihaine
similar model above with even class sizes (seeeladland Figures 26—29). The
combination of small transition probabilities amdadl class sizes resulted in artificially high
power, or unstable power values. In general, patadiilizes at sample sizes betwé&en
1,500 andN = 5,000 for all thresholds. Similar to the pre\s@ubsection, not all transition
probabilities in a single model have difficulty sil&zing. Larger transition probabilities

stabilize sooner than smaller transition probabesitLarger transition probabilities (typically
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diagonal probabilities) are stableNat 100. Additionally, off-diagonal transition
probabilities are more likely to stabilize soorfexaming from a larger class size such as
class 1 or 2.

This is the first instance that we see a combinatiouneven transition probabilities
and uneven class sizes. This model shows the iajegb these two conditions on statistical
power. Power is lower for smaller transition proiiibs or smaller class sizes (e.g., classes
3 and 4). In fact, the combination of these twadlaites creates a small cell size which in
turn results in even smaller power. Some transpiaabilities reach adequate power, but
even with thresholds of £5 and hifjls, not all transition probabilities reached powaiues
of .80. Transition probabilities that do have hpgiwer are for classes that are large=afl
and/or had diagonal transition probabilities.

In summary, this well-defined model with unevemsiéion probabilities and uneven
class sizes contributes the following findings duigion to what we have seen in results thus

far:

. The combination of small transition probabilitydasmall class size results in

even lower power.
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Table 18:Power Values for Well-Defined Model with Uneven Transition Probabilities and Even Class Szes
N

11 21 31 41 12 22 32 42 13 3 33 43
Thresholds +1 100 0.54 0.37 0.45 0.45 0.28 0.59 0.4) 0.48 0.38 0.35 0.58 0.46
250 0.80 027 0.30 0.28  0.1¢ 0.82 023 023 025 021 076 029

500 095 016 021 013 022 095 015 019 013 013 090 0.16
1000 098 0.08 008 006 037 098 010 009 007 018 097 600
1250 0.99 0.08 0.06 006 0.4¢ 099 009 006 006 023 099 500
1500 0.98 0.07 006 005 052 098 012 006 010 025 098 80.0
5000 0.99 0.06 004 006 0.9 100 033 0.07 018 073 100 60.0
6000 0.99 0.08 004 005 0.97 099 035 010 022 080 100 80.0
7000 099 0.06 004 005 0.97 099 041 009 029 084 099 700
8000 1.00 007 0.04 0.06  0.9¢ 100 047 0312 031 09 100 80.0
10000 100 0.07 005 007 09¢ 100 058 0213 039 095 100 11 0.
Thresholds 2 100 0.64 034 041 0.32 0.17 069 022 0.28 0.23 0.14 077 0.34
250 099 018 022 012 064 098 015 017 014 035 099 0.16
500 097 0.09 0.08 006 095 099 04) 0.C7 028 077 099 0.7
1000 100 006 0.06 005 100 100 080 019 0.66 098 100 50.1
1250 1.00 006 0.07 006 100 100 089 0z6 078 100 100 00.2
1500 1.00 008 0.09 008 100 100 095 026 086 100 100 70.2
5000 100 037 050 019 1.0 100 100 0.£7 1.00 100 100 50.8
6000 100 049 0.61 023 1.00 100 100 0.£9 1.00 1.00 100 20.9
7000 100 054 070 029 1.0C 100 100 0.9 1.00 1.00 100 50.9
8000 100 064 075 033 1.00 100 100 1.0 1.00 1.00 100 7 0.9
10000 100 073 0.87 030 100 100 1.00 1.00 1.00 100 1,00 00 1.
Thresholds 2 100 0.78 0.50  0.57 0.51 0.2¢ 0.80 023 0.E0 0.27 0.19 0.83 0.45
250 094 023 027 022 081 094 035 018 018 071 097 0.6
500 100 012 011 008 10C 099 0.83 017 058 0238 099 0.3

1000 1.00 0.11 0.13 0.10 1.00 1.00 0.99 0.49 0.95 1.00 100 404
1250 1.00 0.18 0.19 0.16 1.00 1.00 1.00 0.€8 0.98 1.00 100 905
1500 1.00 0.25 0.28 0.22 1.00 1.00 1.00 0.78 0.99 1.00 100 30.7
5000 1.00 0.94 0.96 0.82 1.00 1.00 1.00 1.0 1.00 1.00 100 01.0
6000 1.00 0.97 0.98 0.90 1.00 1.00 1.00 1.0 1.00 1.00 100 01.0
7000 1.00 0.98 0.99 0.96 1.00 1.00 1.00 1.00 1.00 1.00 100 01.0
8000 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 100 01.0

10000 1.00 1.00 1.00  0.99 1.00 100 100 1.00 1.00 1.00 1,00 00 1.

Thresholds +5 100 1.00 0.65 0.64 0.68 0.53 1.00 0.23 0.56 0.35 0.37 1.00 0.55
250 1.00 022 020 0.26  0.98 1.00 061 019 029 0.33 100 0.19
500 1.00 011 010 010  1.0C 1.00 097 024 0.73 100 100 0.25

1000 1.00 0.23 0.25 0.26 1.00 1.00 1.00 0.71 0.99 1.00 100 107
1250 1.00 0.35 0.37 0.40 1.00 1.00 1.00 0.€5 1.00 1.00 100 60.8
1500 1.00 0.47 0.51 0.51 1.00 1.00 1.00 0.¢3 1.00 1.00 100 309
5000 1.00 1.00 1.00 1.00 1.0C 1.00 1.00 1.0 1.00 1.00 100 01.0
6000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.00 1.00 100 01.0
7000 1.00 1.00 1.00 1.00 1.0C 1.00 1.00 1.Cco0 1.00 1.00 100 01.0

8000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.00 1.00 100 01.0
10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 00 1.
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Figure 22. Well-Defined Model/Uneven Transition
Probabilities/Even Class Sizes/Thresholds +1.
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Figure 23. Well-Defined Model/Uneven Transition
Probabilities/Even Class Sizes/Thresholds 2.
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Figure 24. Well-Defined Model/Uneven Transition
Probabilities/Even Class Sizes/Thresholds +3.

Figure 25. Well-Defined Model/Uneven Transition
Probabilities/Even Class Sizes/Thresholds +5.

——-CltoCl
—&—C2toCl
=é=C3 to C1
—#=C4toCl
~8—CltoC2
ot C2 to C2
(3 to C2
= C4 to C2
—4—CltoC3
~#—-C2toC3
~#—=C3toC3
- C4toC3



€L

Table 19:Power Values for Well-Defined Model with Uneven Transition Probabilities and Uneven Classes

N 11 21 31 41 12 22 32 42 13 s 33 43
Thresholds1 199 073 037 046 048 026 057 040 049 031 036 046 051
250 085 034 044 043 027 079 035 043 023 027 061 043
500 093 024 035 036 045 089 03) 038 019 022 075 034
1000 099 021 022 022 07/ 093 018 028 0.5 023 089 402
1250 099 015 021 020 081 099 016 024 014 027 092 002
1500 099 015 049 017 08¢ 099 015 019 016 032 093 901
5000 100 006 010 008 09¢ 100 015 010 057 087 099 001
6000  1.00 007 009 009 09¢ 100 016 010 066 092 099 101
7000 100 007 008 007 09¢ 099 018 008 074 094 099 900
8000  1.00 007 008 005 100 100 023 0C8 083 097 100 900
10000 1.00 007 005 006 100 100 026 007 039 098 100 08 C.
Thresholds£2 109 086 039 056 047 03¢ 076 031 055 023 023 063 054
250 098 030 039 030 09z 096 017 038 024 046 094 042
500 100 017 021 016 09¢ 100 0.2) 023 063 036 099 024
1000  1.00 009 008 006 100 100 046 012 097 099 100 401
1250 100 011 006 004 100 100 057 08 099 100 100 2 0.1
1500  1.00 012 005 004 100 100 065 08 100 1.00 100 00.1
5000 1.00 048 022 004 100 100 100 010 100 100 100 900
6000  1.00 055 028 005 100 100 100 014 100 100 100 001
7000 100 065 036 005 100 100 100 016 1.00 100 100 501
8000  1.00 071 044 005 100 100 100 018 100 100 100 80.1
10000 1.00 081 055 005 100 100 100 025 100 100 100 23 C.
Thresholds£3 199 091 053 075 076 0.7z 033 077 020 032 092 077
250 098 033 049 049  0.9€ 025 054 050 033 094 053
500 099 020 028 029  0.9¢ 043 035 092 099 099 036
1000 100 018 042 009 100 100 090 015 100 1.00 100 30.1
1250 100 026 041 006 100 100 098 011 100 100 100 101
1500 100 036 041 004 100 100 099 011 100 1.00 100 101
5000 1.00 097 072 007 100 100 100 042 100 100 100 503
6000 100 099 083 010 100 100 100 0£3 100 100 100 6 0.4
7000 1.00 100 092 010 100 100 100 02 100 100 100 805
8000  1.00 1.00 094 011 100 100 100 0372 1.00 100 100 206
10000 100 100 100 015 100 100 100 08 100 100 100 80 C.
Thresholds#5 199 100 068 08 092 09% 100 039 089 025 050 100 0.88
250 100 037 057 075 10C 100 033 069 073 038 100 070
500 100 021 032 055 1.0C 100 077 048 098 100 100  0.49
1000 100 035 048 026 100 100 098 022 100 100 100 10.2
1250 100 050 046 017 100 100 099 015 100 1.00 099 6 0.1
1500  1.00 064 021 011 100 100 100 013 100 1.00 100 30.1
5000 1.00 1.00 091 021 100 100 100 0372 100 100 100 007
6000  1.00 1.00 1.00 025 100 100 100 0£2 100 100 100 308
7000 100 100 098 031 100 100 100 00 1.00 100 100 908
8000  1.00 1.00 099 038 100 100 1.00 05 100 100 100 509
10000 100 100 100 057 100 100 100 098 100 100 100 98 C.
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Figure 26. Well-Defined Model/Uneven Transition
Probabilities/Uneven Class Sizes/Thresholds +1.

Figure 27. Well-Defined Model/Uneven Transition
Probabilities/Uneven Class Sizes/Thresholds +2.
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Figure 28. Well-Defined Model/Uneven Transition Figure 29. Well-Defined Model/Uneven Transition
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1.00 1.00 -
090 0.90
0.80 0.80
0.70 0.70
060 - 060 -

——-CltoCl
—&—C2toCl1
—e=C3toCl
—#=C4toCl
~&—CltoC2
(2 to C2
—C3toC2
= C4 to C2
—4—CltoC3
~#—-C2toC3
~#h=C3toC3
~=C4toC3



4.5 Poorly Defined Modél with Even Transition Probabilities

4.5.1 Even class sizes. This poorly defined model with even transition Ipabilities
and even class sizes model serves as a basis paouail other variations of this model. See
Table 21 and Figures 30-32 for power values. Inntbik-defined model with even transition
probabilities and even class sizes, power values wearly equal for each transition
probability at eaciN because all conditions were equal. The well-deffim®del had high
class separation. Because each class was cleéirigdlehere were marginal differences
between the power values of transition probabdiienong the classes.

Unlike the well-defined model, the poorly definedadel has some variance in power
values depending on which classes the transitiobgtility were attributed. For example, in
the high thresholds model, there were four tramsigirobabilities that had higher power than
the rest aN = 1,000. These four transition probabilities walteclasses transitioningto
class 1: class 1 into class 1, class 2 into claskgs 3 into class 1, and class 4 into class 1.
Because all other conditions are held constant {ransition probabilities and class size), the
measurement model itself must be attributing todifferences in power values for each
transition probability. This result shows that #hes higher power when transitioning into a
class that is distinct from the rest. In this calsat distinct class is class 1.

For this poorly defined model with even transitmmobabilities and even class sizes,
when thresholds were moderate, power stabilizedMea5,000. None of the transition
probabilities ever reached .80. The revised moddhaesholds model performed better,
stabilizing afteN = 1,500. Most of the transition probabilities rttet .80 recommendation
atNs> 5,000. Interestingly, the four transition probdigs that did not meet the cutoff were

all transitiongnto class 3, a class that is the least distinct froerést. In other words, many
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of the item-response probabilities in class 3 Itkd the other classes. This result is similar
to the one above, that sample size and transitiolgbilities are not the only influence on
statistical power; the separation of the latenéxlafluences it as well.

For models with high thresholds, power was stétl@ll N andNs> 5,000 had
adequate power for all transition probabilitiesafigition probabilities for classes with more
distinct thresholds were more likely to have higbewer. Similar to the moderate and
revised moderate thresholds model, there was gneateer when transitioning into class 1
and lower power when transitioning into class 3.

In summary, this poorly defined model with evemsgition probabilities and even
class sizes contributes the following findings duigion to what we have seen in results thus
far:

* The poorly defined model has more difficulty stailg than the well-defined

model.

* Measurement models with better class separatioa higher power.

» Transitions into distinct classes have higher paivan transitions into non-
distinct classes. Non-distinct classes in modetk {@rger thresholds had greater
power than lower thresholds, as larger threshoidsase homogeneity.

4.5.2 Uneven class sizes. This model experienced instability and difficulty
converging for the moderate thresholds and modeeatsed thresholds models (see Table
22 and Figures 33-35). For moderate thresholdsepdaes not stabilize under the sample
sizes included in this study. This model also ladhle converging, with only about a third
of replications completing even whah= 10,000. Difficulties converging are exhibited in

“spikes” in its power curve. With these thresholaisly two of the transition probabilities
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ever meet the .80 recommendation. As seen in thaequs model, these higher power
transition probabilities were goingto class la latent class with logit thresholds more
distinct from the other three classes. The nexthigbest power values were also for
transition probabilities goinmto class 1.

The revised moderate thresholds model had legsudtif converging, with 99.5% of
replications completing whex = 10,000. However, less than half of the replaai
converged wheil < 1,500. This model eventually stabilizes after 6,000 and did not
exhibit “spikes” in its power curve. Furthermoret ll transition probabilities met the .80
recommendation. Even whé&h= 10,000, three transition probabilities do noetrtbe .80
cutoff. These three transition probabilities atdraim a very small class (class 4), which
only has 5% of the overall sampletat 1. Again, this shows that the effect of sparssrtkie
to small class size. Recall that in the previousssation, there was strong power for a
transition probability of .01 going from class 4dass 1 when class sizes were equal. Now,
in this case with a very small class size, the pasvewuch lower and is even one of the
lowest power values in the entire model.

In the previous subsection, we saw that transgi@babilities were lower when
goinginto class 3 which was the least distinct of all treessés. Here, we can see how this
finding fares by comparing class size and powetHerrevised moderate thresholds with
even versus uneven class sizes (see Table 20 bdlbege models are identical in
measurement with the same transition probabiliiég only difference is in class sizeg at
1. For the transition probability from class 1 tass 3, power increased from .70 to .84 when
class size doubled from 25% to 50%. For the traomsfirobability from class 4 to class 3,

power decreased from .69 to .15 when class sizedsed from 25% to 5%. In summary,
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although the power for latent transition probailgtitgoing into class 3 are generally lower

than other classes, power values increase whea itherss sparseness in that particular cell.

Table 20:Comparison of Power for Even versus Uneven Class Sze Model in Poorly Defined
Model with Even Transition Probabilities and Revised Moderate Thresholds for N = 6,000

Even Class Sizes Uneven Class Sizes
Class Size Power Class Size Power
Clto C3 25% 0.70 50% 0.84
C2to C3 25% 0.71 30% 0.81
C3to C3 25% 0.66 15% 0.63
C41to C3 25% 0.69 5% 0.15

The high thresholds model had less difficulty dtainig and converging. This model
stabilized aroundl = 250. At sample siz& = 5,000, there was adequate power for all
transition probabilities. Again, we see the comsisfinding that transition probabilities for
larger classes have higher power. We also se¢hth@bmbination of transitioning from a
large class and transitioning into class 1 resaltagher power.

In summary, this poorly defined model with evemsgition probabilities and uneven
class sizes contributes the following findings ddigion to what we have seen in results thus
far:

» Although the poorly defined model has difficultyna@rging, poorly defined
models with higher thresholds are more likely tavarge and stabilize on

lower values of\.
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Table 21:Power Values for Poorly Defined Model with Even Transition Probabilities and Even Class Szes

N 11 21 31 41 12 22 32 42 13 3 33 43
Moderate Thresholds 100 0.40 0.40 0.40 0.43 0.3¢ 0.44 0.42 0.46 0.41 0.41 0.47 0.46
250 0.39 0.33  0.37 0.37 0.323 0.39 0.33 042 0.37  0.37 0.45  0.44
500 0.33 0.28  0.32 0.37 0.23 0.38 0.23  0.37 0.29  0.32 0.40  0.38
1000 0.41 0.43  0.34 0.39 0.41 0.44 042 046 035 028 039 104
1250 0.42 0.36 0.38 0.38  0.34 0.40 035 043 034 036 042 903
1500 0.46 0.37 0.40  0.37 0.3¢ 044 039 041 0.38 039 042 504
5000 0.51 0.45 0.44 052 0.4 0.42 0.39  0.43 041 039 045 704
6000 0.55 0.49 052 056  0.47 0.44  0.43 047 051 047 051 305
7000 0.60 051 053  0.62 0.45  0.44 040 0.5 050 046 048 105
8000 0.63 055 054  0.62 0.46  0.43 0.40  0.47 0.47 043 046 105
10000 0.66  0.57 0.58  0.68 0.46  0.44  0.42 0.8  0.51 0.44 046 51 Q.
Moderate (Revised) Thresholds 100 0.40 0.37 0.40 0.41 0.38 0.42 0.42 0.44 0.40 0.38 0.46 0.46
250 0.42 0.34  0.36 0.39  0.33 0.39 0.3 041 0.36  0.36 0.45  0.42
500 0.38 0.34  0.30 0.40  0.31 0.40 035 042 0.35  0.30 039 0.38
1000 0.49 0.48 049 048 0.4¢ 053 0.49 0.2 043 041 045 504
1250 0.52 050 0.47  0.47 0.5z 0.56 0.48 0.2 0.42 042 044 204
1500 0.56 059 052 056  0.64 0.66 0.55  0.€1 043 041 046 00.4
5000 0.85 086 0.83 085 0.87 0.88 0.85 0.8 063 066 062 50.6
6000 0.86 0.87 0.83 0.86 0.8¢  0.88 0.86  0.£7 070 071 066 90.6
7000 0.90 090 0.87 090 090 0.90 0.88  0.€9 0.72 072 071 207
8000 0.90 091 0.88 0.91 0.91 0.91 0.90 0.0 078 0.77 073 70.7
10000 0.93  0.93 091  0.93 0.93  0.94 092 093 034 083 079 840.
High Thresholds 100 0.60 0.49 0.43 0.59 0.4€ 0.50 0.42 0.51 0.39 0.37 0.41 0.46
250 0.75 057 0.64 085 0.51 053 053 056 0.53  0.48 0.52 0.65
500 0.84 073 0.82 0.91  0.5¢ 0.57 053 0.64 0.64 0.55 060 0.71
1000 094 0.89 093 0.97 0.72 0.66 069  0.77 073 069 069 30.7
1250 0.97 095 0.96 0.99 079  0.72 077 0.4 074 071 071 707
1500 0.98 0.97 0.98  0.99 0.8¢  0.78 0.83 0.8 079 077 077 90.7
5000 0.99 099 0.99 0.99 0.9¢  0.99 0.99 0.9 098 098 097 80.9
6000 0.98 0.99 0.98 0.99 0.9¢  0.983 0.98 0.8 098 098 098 80.9
7000 0.98 099 0.99 0.99 0.9¢  0.99 0.98 0.9 098 098 098 90.9
8000 0.98 098 0.98 098  0.97 0.98 0.98 0.8 0.97 098 098 90.9
10000 098 0.98 0.98 0.98 0.9¢  0.93 098 0.98 058 098 098 980.
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Figure 30. Poorly Defined Model/Even Transition
Probabilities/Even Classes/Moderate Thresholds.
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Figure 31. Poorly Defined Model/Even Transition
Probabilities/Even Classes/Moderate (Revised)
Threfholds.
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Figure 32. Poorly Defined Model/Even Transition
Probabilities/Even Classes/High Thresholds.
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Table 22:Power Values for Poorly Defined Model with Even Tprob and Uneven Class Szes

N 11 21 31 41 12 22 32 42 13 3 33 43
Moderate Thresholds 100 0.39 0.36 0.44 0.48 0.39 0.44 0.45 0.52 0.39 0.42 0.51 0.51
250 0.44 032 036 047 0.34 0.4. 0.33 047 0.38 036 048 051
500 0.40 028 037 041 0.34 0.34 035 036 0.29 034 041  0.40
1000 050 031 022 015 026 023 020 0.z3 023 026 032 00.2
1250 051 033 018 0.6 0.1& 019 024 019 028 026 031 50.2
1500 062 042 033 009 035 036 029 0.z2 043 033 041 502
5000 090 070 046 026 03¢ 036 028 0.z2 035 028 032 20.2
6000 093 078 057 038 040 039 028 025 041 036 038 00.2
7000 094 078 054 037  0.37 035 025 048 037 030 032 60.1
8000 095 082 059 041 036 035 021 0z0 039 031 035 90.1
10000 0.95 086 058 051 038 033 023 019 037 031 028 190.
Moderate (Revised) Thresholds 100 0.42 0.35 0.39 0.49 0.38 0.42 0.42 0.50 0.43 0.40 0.49 0.50
250 0.44 033 036 042 0.38 0.42 035 041 039 033 041 044
500 057 045 035 0.39 0.54 0.46 031 040 043 035 039 042
1000 0.82 072 034 036 0.77 066 030 033 050 039 036 403
1250 0.87 081 042 033 0.8Z 072 037 0.z8 055 043 032 80.2
1500 0.87 084 049 025 0.8Z 075 037 025 055 048 034 20.2
5000 098 098 090 032 09 095 087 021 076 076 056 60.1
6000 099 099 096 041 096 097 094 0.6 084 081 063 50.1
7000 099 100 098 044 09¢ 099 098 0.8 089 089 072 90.1
8000 1.00 1.00 099 046 0.9¢ 100 099 043 09 091 076 102
10000 1.00 1.00 099 052 1.00 100 1.00 047 096 096 085 280.
High Thresholds 100 0.72 0.50 0.39 0.33 0.55 0.52 0.33 0.35 0.59 0.38 0.41 0.39
250 0.89 070 050 0.35 0.61 0.54 043 042 072 053 039 029
500 098 089 075 0.64 0.71 0.60 0.5) 048 0.77 0.7 047 035
1000 1.00 099 096 093 0.8 074 062 0E5 081 076 061 704
1250 1.00  1.00 0.99 097 0.9Z 0.83 073 0.3 0.88 084 072 705
1500 1.00 1.00 099 099 098 089 079 070 09 088 076 406
5000 1.00  1.00 1.00 1.00 1.0 1.00 1.00 1.0 1.00 1.00 100 0 1.0
6000 1.00  1.00 1.00 1.00 1.0 1.00 1.00 1.0 1.00 1.00 100 0 1.0
7000 1.00  1.00 1.00 1.00 1.0 1.00 1.00 1.0 1.00 1.00 100 0 1.0
8000 1.00  1.00 1.00 1.00 1.0 1.00 1.00 1.0 1.00 1.00 100 0 1.0
10000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.00 1.00 00 1.
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Figure 33. Poorly Defined Model/Even Transition
Probabilities/Uneven Class Sizes/Moderate Thresholds.

Figure 34. Poorly Defined Model/Even Transition
Probabilities/Uneven Class Sizes/Moderate (Revised)
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Figure 35. Poorly Defined Model/Even Transition
Probabilities/Uneven Class Sizes/High Thresholds.
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4.6 Poorly Defined Model with Uneven Transition Probabilities

4.6.1 Even class sizes. Similar to other poorly defined models, this model
experienced difficulty converging, as seen in thgikes” in the moderate thresholds model
(see Table 23 and Figures 36—38). This poorly e@efimodel also exhibited instability at all
threshold levels. In fact, the moderate threshoiddel never stabilized. Only 7 out of 1,000
replications completed whesh= 10,000. Because so few replications converdrsinhodel
is not interpretable. It can be concluded that Mplwuld never arrive at this sort of solution
with such a poor measurement model and these thidssh

The revised moderate thresholds model perform#drbget still with only 592 out
of 1000 replications completedidt= 10,000. Because this model had difficulty coirey
and did not stabilize, results should be intergreteh great caution. For the same revised
moderate thresholds model with even transition @bdhies, 808 replications completed
(rather than the 592 we saw before). Thus, theseimaeased difficulty for the model to
converge on a plausible solution when transitiabpbilities were small. Similar to previous
findings, some transition probabilities performexdtér than others. In this model, larger
transition probabilities had the greatest powee hbxt best power values were for transition
probabilities equal to .15 (class 1 to class 2),(class 2 to class 3) and .07 (class 3 to class
2). The lowest power values were attributed to wmall transition probabilities (i.e., .01
and .02). Again, this result shows the effect thatvalue of a transition probability has on its
statistical power.

With high thresholds, power stabilizes\at 1,250. WherN = 10,000, power values
for all transition probabilities are near or exce®@ We see the same patterns seen earlier in

similar models. For instance, some transition pbdhigs are high for alN while others are

83



much lower. The high power transition probabilitees for those going into class 1, which

was deemed distinct from the other classes. Theplmmer transition probabilities are for

those going into class 3, which was deemed indistrom the other classes.

In summary, this poorly defined model with unevemsition probabilities and even

class sizes contributes the following findings duigion to what we have seen in results thus

far:

A combination of “poor” conditions makes it diffikdor statistical programs
to converge on a solution. It can be concludedithatnon-simulated study,
Mplus would not reach a solution on this modeh#ére were moderate

thresholds.

4.6.2 Uneven class sizes. From the findings thus far, one would expect thiedel to

have the poorest power of the ones consideredolthig point, we have seen that small

transition probabilities, small class sizes andrjyodefined models have lower power. Prior

to looking at results, one would expect:

the moderate thresholds model to have extremedii§i converging,
the revised moderate model to have improved yésstne difficulty
converging,

the high thresholds model to have little to noidiffty converging,
small class sizes to have lower power,

large class sizes to have higher power,

small transition probabilities to have lower power,

diagonal transition probabilities to have highewpoq,
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» transitioning into a distinct class (i.e., classvl) have higher power than
transitioning into an indinstict class (i.e., cl&sand

» larger transition probabilities and higher threslsatan help recover loss in
power.

These hypotheses are consistent with findingse@li@ this poorly defined model
with uneven transition probabilities and uneversglsizes (see Table 24 and Figures 39-41).
The moderate thresholds model never stabilizedy Ohlout of 1,000 replications converged
whenN = 10,000. Again, this moderate thresholds moddémmed uninterpretable. The
revised moderate thresholds model also had diffia@dnverging and never reached stability,
although 424 out of 1000 replications completed at10,000. Lastly, the high thresholds
model had little difficulty converging, with 999 kpleted replications & = 10,000.
Additionally, this model’s power curve reached dtgbat N = 5,000.

Findings regarding the interplay of class size$taansition probability values also
returned true with this model. For the high thrédhanodel, 6 out of 12 transition
probabilities reached adequate poweX at 5,000. As expected, these higher power
transition probabilities had one or more of thédwing attributes: larger transition
probability, larger class size, and/or transitigninto a distinct class (i.e., class 1). Ror
10,000, the transition probabilities that met @@ recommendation had a large class size
(class 1 or class 2 &t 1) and/or large transition probability (diagomalue or transition
probability greater than or equal to .12).

In summary, this model corroborates all otherifigd and expectations. Trends
regarding stability, convergence, sample sizesitem probabilities, class sizes,

homogeneity and class separation persist througiibortodels. The following chapter
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provides a discussion of all results, practicabremendations, limitations, and future

directions.
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Table 23:Power Values for Poorly Defined Model with Uneven Transition Probabilities and Even Classes

N 11 21 31 41 12 22 32 42 13 3 33 43
Moderate Thresholds 100 0.45 0.45 0.47 0.47 0.32 0.48 0.43 0.50 0.38 0.39 0.50 0.51
250 0.65 0.33 0.40 0.40 0.24 0.54 0.33 0.40 0.31 0.31 0.50 0.43
500 0.80 0.31 0.36 0.34 0.18 0.60 0.32 0.33 0.20 0.27 0.57 0.31
1000 0.91 0.15 0.20 0.18 0.1% 0.68 0.20 0.19 0.13 0.14 060 90.1
1250 0.96 0.10 0.17 0.15 0.14 0.69 0.13 0.14 0.03 0.09 061 30.1
1500 0.97 0.06 0.08 0.10 0.1% 0.81 0.09 0.11 0.09 0.10 073 80.0
5000 1.00 0.06 0.06 0.00 0.31 0.94 0.06 0.Cco 0.06 0.13 094 60.0
6000 1.00 0.00 0.00 0.06 0.19 0.69 0.00 0.C6 0.00 0.06 088 00.0
7000 1.00 0.08 0.08 0.08 0.31 0.92 0.00 0.Cco 0.00 0.00 069 00.0
8000 1.00 0.00 0.00 0.07 0.57 0.86 0.14 0.Co 0.00 0.00 064 70.0
10000 1.00 0.14 0.14 0.00 0.29 0.43 0.14 0.00 0.00 0.14 1.00 00 C.
Moderate (Revised) Thresholds 100 0.56 0.45 0.49 0.45 0.2¢ 0.54 0.41 0.43 0.39 0.33 0.48 0.44
250 0.83 0.40 0.44 0.41 0.2C 0.80 0.35 0.37 0.31 0.29 0.64 0.40
500 0.95 0.33 0.40 0.33 0.28 0.93 0.25 0.31 0.26 0.17 0.84 0.32
1000 0.97 0.26 0.26 0.26 0.59 0.97 0.18 0.25 0.16 0.21 093 40.2
1250 0.99 0.23 0.23 0.22 0.74 0.99 0.18 0.23 0.14 0.26 097 50.2
1500 0.98 0.17 0.19 0.17 0.81 0.99 0.15 0.14 0.13 0.29 097 70.1
5000 1.00 0.06 0.04 0.05 0.99 1.00 0.39 0.10 0.17 0.83 099 70.0
6000 1.00 0.06 0.03 0.04 0.99 1.00 0.48 0.10 0.18 0.89 099 70.0
7000 1.00 0.06 0.04 0.03 0.9¢ 1.00 0.51 0.12 0.22 0.92 099 50.0
8000 1.00 0.06 0.03 0.02 0.99 1.00 0.57 0.12 0.25 0.96 100 60.0
10000 1.00 0.06 0.04 0.05 1.00 1.00 0.70 0.13 0.31 0.98 1.00 07 0.
High Thresholds 100 0.70 0.44 0.50 0.42 0.18 0.55 0.35 0.41 0.24 0.25 0.48 0.45
250 0.95 0.31 0.44 0.33 0.5% 0.85 0.25 0.27 0.2.9 0.21 0.78 0.32
500 0.99 0.20 0.25 0.25 0.88 0.96 0.17 0.18 0..6 0.29 0.93 0.20
1000 1.00 0.13 0.09 0.16 0.99 0.99 0.17 0.22 0.35 0.49 099 90.1
1250 1.00 0.10 0.07 0.18 0.99 0.99 0.21 0.27 0.50 0.57 099 30.2
1500 1.00 0.14 0.09 0.17 1.00 1.00 0.26 0.5 0.63 0.66 100 80.2
5000 1.00 0.60 0.53 0.45 1.00 1.00 0.76 0.€9 1.00 0.99 100 10.9
6000 1.00 0.67 0.62 0.54 1.00 1.00 0.84 0.4 1.00 1.00 100 509
7000 1.00 0.76 0.69 0.59 1.00 1.00 0.89 0.8 1.00 1.00 100 80.9
8000 1.00 0.81 0.77 0.66 1.00 1.00 0.93 0.€9 1.00 1.00 100 909
10000 1.00 0.89 0.87 0.78 1.00 1.00 0.97 1.00 1.00 1.00 100 00 1.
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Figure 36. Poorly Defined Model/Uneven Transition
Probabilities/Even Class Sizes/Moderate Thresholds.

Figure 37. Poorly Defined Model/Uneven Transition
Probabilities/Even Class Sizes/Moderate (Revised) Thresholds.
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Figure 38. Poorly Defined/Uneven Transition Probabilities/Even
Class Sizes/High Thresholds.
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Table 24:Power Values for Poorly Defined Model with Uneven Transition Probabilities and Uneven Classes

11 21 31 41 12 22 32 42 13 o 33 43
Moderate Thresholds 100 0.64 0.43 0.48 0.49 0.26 0.52 0.45 0.52 0.32 0.38 0.49 0.52
250 0.74 0.40 0.46 0.49 0.23 0.6. 0.43 0.49 0.25 0.31 0.47 0.51
500 0.82 0.36 0.43 0.46 0.24 0.60 0.34 0.47 0.23 0.26 0.47 0.53
1000 0.90 0.26 0.36 0.47 0.30 0.72 0.37 0.46 0.19 0.25 052 804
1250 0.90 0.21 0.40 0.43 0.2¢ 0.71 0.38 0.47 0.16 0.24 049 10.5
1500 0.92 0.17 0.23 0.34 0.4% 0.74 0.25 0.23 0.13 0.17 051 303
5000 1.00 0.08 0.08 0.08 0.4& 0.88 0.00 0.8 0.00 0.04 060 20.1
6000 0.96 0.00 0.05 0.09 0.64 0.96 0.09 0.05 0.00 0.05 082 50.0
7000 1.00 0.00 0.10 0.00 0.7% 0.90 0.10 0.05 0.00 0.00 070 50.0
8000 1.00 0.00 0.00 0.00 0.50 0.75 0.00 0.co 0.00 0.00 069 00.0
10000 1.00 0.00 0.00 0.18 0.64 0.91 0.00 0.00 0.00 0.09 0.82 00 0.
Moderate (Revised) Thresholds 100 0.78 0.45 0.51 0.52 0.27 0.62 0.44 0.51 0.37 0.35 0.43 0.51
250 0.87 0.40 0.48 0.50 0.38 0.84 0.41 0.47 0.28 0.29 0.55 0.48
500 0.92 0.39 0.46 0.42 0.58 0.91 0.33 0.46 0.23 0.25 0.66 0.46
1000 0.96 0.36 0.42 0.41 0.8% 0.95 0.33 0.44 0.22 0.21 076 304
1250 0.97 0.32 0.37 0.37 0.8¢ 0.96 0.27 0.29 0.22 0.31 083 104
1500 0.98 0.30 0.40 0.42 0.9% 0.98 0.26 0.29 0.22 0.36 088 80.3
5000 1.00 0.21 0.25 0.32 1.00 1.00 0.23 0.26 0.49 0.88 099 70.2
6000 0.99 0.19 0.25 0.29 0.9¢ 1.00 0.25 0.24 0.55 0.92 098 60.2
7000 1.00 0.21 0.20 0.27 0.9¢ 1.00 0.28 0.22 0.65 0.94 099 40.2
8000 1.00 0.16 0.20 0.24 0.9¢ 1.00 0.31 0.z1 0.68 0.97 099 20.2
10000 1.00 0.14 0.16 0.22 0.99 1.00 0.24 0.16 0.79 0.98 099 18 0.
High Thresholds 100 0.88 0.53 0.69 0.65 0.52 0.71 0.43 0.70 0.31 0.37 0.54 0.71
250 0.97 0.33 0.53 0.46 0.81 0.90 0.35 0.50 0..6 0.26 0.64 0.54
500 0.97 0.33 0.53 0.46 0.81 0.90 0.35 0.50 0..6 0.26 0.64 0.54
1000 1.00 0.16 0.21 0.22 0.9¢ 0.99 0.20 0.15 0.67 0.567 096 40.2
1250 1.00 0.20 0.19 0.22 0.9¢ 0.99 0.19 0.11 0.81 0.75 098 20.2
1500 1.00 0.20 0.12 0.15 0.9¢ 1.00 0.19 0.10 0.88 0.82 098 40.1
5000 1.00 0.77 0.21 0.10 1.00 1.00 0.47 0.z1 1.00 1.00 100 301
6000 1.00 0.84 0.26 0.12 1.00 1.00 0.54 0.24 1.00 1.00 100 80.1
7000 1.00 0.89 0.32 0.10 1.00 1.00 0.62 0.29 1.00 1.00 100 20.2
8000 1.00 0.93 0.38 0.11 1.00 1.00 0.66 0.c2 1.00 1.00 100 60.2
10000 1.00 0.97 0.48 0.10 1.00 1.00 0.77 0.22 1.00 1.00 1.00 36 C.
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Figure 39. Poorly Defined Model/Uneven Transition
Probabilities/Uneven Class Sizes/Moderate Thresholds.

Figure 40. Poorly Defined Model/Uneven Transition
Probabilities/Uneven Class Sizes/Moderate (Revised)
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Figure 41. Poorly Defined Model/Uneven Transition
Probabilities/Uneven Class Sizes/High Thresholds.
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Chapter 5 Discussion

5.1 General Overview

LTA is a statistical model that can be used tdgtuwow individuals transition from or
stay in latent classes over time. LTA is commordgdiand gaining increasing popularity in
many fields including educational, health, and &ral research. Because only two
simulation studies have been conducted to exarhméaw the model specification and
sample size requirements for this model , the med this study was to investigate the
sample size needed to establish statistical paweetect latent transition probabilities under
various model conditions. These conditions inclusi@ehple size, well-defined versus poorly
defined measurement models, equal versus uneguaition probability matrices, equal
versus unequal class sizes, and variations of iegpense logit thresholds which relate to
the measurement quality of the latent class modefseta-analysis was conducted to
explore common characteristics of recently publisb€A studies. Using these attributes,
Monte Carlo simulations were conducted to help ararwhat level of power one can
expect under those conditions. This discussionaeutill review the general trends found
across results. This section will also provide gaheecommendations for applied
researchers using LTA. Lastly, this section wilaliss limitations to this study and future
directions for future LTA power studies.
5.2 Summary of Dissertation

In total, 308 models were generated across tleeciiwmditions included in this Monte
Carlo simulation study:

* Two time points

e 11 sample sizes
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* Two measurement models: well-defined, poorly define

* Two sets of transition probability matrices: equedequal

» Two sets of class sizes: equal, unequal

» Three to four variations in logit thresholds:

o =1, +2, +3, and 5 for the well-defined model
o moderate, moderate (revised), and high for thelpamfined model

Power values for 12 transition probabilities werevided and studied in Mplus
output, summing to a total of 3,696 power valugssall 308 models. Taken together,
results from this study revealed the effect of eamindition on the power to detect latent
transition probabilities, as well as the impactha combination of two or more conditions
on power.
5.3Key Trendsand Findings

The following section will walk through key trendad findings across all models
included in this dissertation. Multiple regressiovere conducted using Stata 12.1
(Statacorp, 2011) to statistically examine thetr@teship between power and all of the model
conditions. First, two measurement models wereuged in this dissertation to examine how
power performs in a well-defined model in companiso a poorly defined model. Results
show that the measurement model is a key compamewhether or not a transition
probability will have adequate power. Collins arehkza (2010) state that class separation
and homogeneity are two desirable attributes wioaisidering an LCA model. First, this
study helped show how high class separation iseebl@ higher power in the LTA model.
When comparing well-defined and poorly defined nigdeat were equivalent on all other

characteristics, the well-defined model always higther power than the poorly defined
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model. In the multiple regress analysis, holdingahditions constant, well-defined models
had significantly higher power than poorly defimaddels ( = .35,p < .001).

We also saw the effect of class separation iptuely defined models. Even when
all other conditions were equal, the power fordateansition probabilities going into class 1
was greater than going into class 3. A closer latothe measurement model revealed that
class 1 was the most distinct (i.e., had the beststwrement qualities) from the other three
classes, while the item-response probabilitieclass 3 were similar to another class. Thus,
this study helped show that high class separati@awell-defined model led to greater
power than a poorly defined model and also shoveeddn a smaller scale, within a poorly
defined model a class that is more separate tleaattiers will likely have higher power.

By varying logit thresholds, we could also see lhmmogeneity impacts the power
of a latent transition probability. Higher threstt®imply increased homogeneity, which is
synonymous with item-response probabilities near D, considered a good measurement
guality since we know with certainty how individaah a given class responded. When
thresholds were increased, we saw two importandtseg=irst, power was always higher in
models that had more homogeneous classes. Secbed tliresholds were increased,
unstable models were now more stable because Mgalsdess likely to fix standard errors.
Regression results support this finding. Threshwoldee, in fact, significant predictors of
power in both poorly definegi & .46,p < .001) and well-defined?(= .30,p < .001) models.

Other model attributes led to greater power. As imght expect, larger sample sizes
had better power and also more stability. In faample size was the greatest predictor of
both for both poorly defined model§ £ .50,p < .001) and well-defined models € .95,p <

.001). Additionally, larger transition probabiliiédrom larger class sizes had higher power
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than small transition probabilities from a smadlsd. For example, in a single model, a
transition probability of .80 from a class size50f6 att = 1 always had higher power than a
transition probability of .15 from a class size5@b. This result helped prove hypotheses that
sparseness would affect statistical power. Larfgascsizes have greater power than smaller
class. In other words, cells with more individuailsuld have greater power. Small class
sizes also had more difficulty stabilizing. Althdugegression results did not reveal
significant interactions between transition probabs and class size, there were significant
three-way interaction effects between transitiasbpbilities, class size, and thresholds. In
other words, larger thresholds have a greater teffeicansition probabilities and class size
on the power to detect latent transition probabdit

In summary, the following are the key findingslof study:

- The measurement model matters. Models with highpasated and homogeneous
classes are likely to have higher power.

- Large sample sizes—larger than we usually seephepbwork—is needed to
establish power for all parameters of the modgleeislly small latent transition
probabilities.

- Although the measurement and sample size are leslfgbors of power, applied
researchers must consider all model conditions, (Bamsition probabilities, class
size) when determining what sample size is necg$saadequate power.

- Non-convergence and fixed standard errors areatidics of poor model
measurement. This is also referred to as solutioprgety (Wolf, Harrington,

Clark, & Miller, 2013). In applied work, poor powand under-identification can
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be indicated by a large number of errors and tieel he re-specify models
numerous times.
5.4 Practical Recommendations

Researchers often ask what sample size is necdssahngir statistical model.
Regarding LTA, this extensive Monte Carlo simulatgtudy suggests the following
response: it depends. The sample size necessattaito adequate statistical power for latent
transition probabilities depends on a number ofattaristics including the measurement
model, item-response probabilities, latent traosiprobabilities, class sizes and sparseness
of cells. Looking at results from this study, ihdae argued that the measurement model and
sample size are the leading factors in whethearesition probability has adequate statistical
power. However, even with a well-defined model, shenple size needed for adequate power
depends on other characteristics.

In a simulation study, the researcher has thétahil control and manipulate the
model and all conditions. In this study, five difat conditions were varied and specified in
Mplus. However, realistically and practically, ma@sinditions are not controllable when
working with real-life data. A researcher might bdke ability to increase the sample size of
a study. However, other characteristics such &sktwlds, class separation, transition
probabilities and class sizes emerge from paranestanation. Although these conditions
are not controllable, one can expect a latent iiangprobability to have better power if it
has the following characteristics:

» Within a model with homogeneous classes

* Within a model with high class separation

* |n a class that is distinct from other classes
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e Larger transition probability value

» Larger class size at= 1

 LargerN

Researchers can use Tables 16-19 and Tables 24-a2guade for what one might
expect under those conditions. Table 13 shows hamyrtatent transition probabilities met
the .80 in each model, while Table 14 shows howymaplications converged in each
model. This study can help researchers understawdobor or strong model attributes
impacts the statistical power to detect a latemdition probability. For instance, a
researcher could say, “If | have a sample sizeD6f tny LCA model has homogeneous
classes but poor class separation, the power éztdetvery small latent transition probability
from a small class will likely be low.”

Results from this dissertation indicate that wecheample sizes larger than we are
used to seeing in applied social science studiessd larger sample sizes are needed to say,
with confidence, that all parameters in the modeiensufficient power. Additionally, it is
important to have good measurement models. Thaglifficult requirement to have a priori
because it is unknown what classes will emergetaltiee exploratory nature of LCA.
Researchers can look at similar previously conduc@A studies to speculate what the 2
classes may look like. Applied researchers shooidiact simulation studies in Mplus using
LCA results from previously conducted studies tecgpate possible results and to ensure
that their parameters will have sufficient power.

Applied researchers often run power simulationdistuto justify their sample size
and results. However, the “artificially high” patts that emerged in this dissertation reveal

some issues with this approach. For example, areser may run a single simulation and
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find that there is adequate power with a sample afN = 100 when in fact this power value
is artificially high due to the fixing of paramesathat Mplus does. If this researcher is not
aware that many standard errors are being fixeeto by reading the error messages
provided in the output, the researcher will havemect justification to support the small
sample size. Applied researchers should carefadli into parameter estimates and standard
errors to ensure that power values are correctignated and not artificially adequate.

Importantly, statistical power is the probabilioydetect an effect when there is in
fact an effect. When power is low, there is greateance for Type Il error. These Monte
Carlo simulations showed how varying one or momddmns could increase or decreases
power. Inversely, these simulations showed howiagrgne or more conditions could
decrease or increase the probability of making @eTlyerror. Researchers must consider the
effects of model characteristics on the power teatdatent transition probabilities and the
chance of committing a Type Il error.
5.5 Limitations and Future Directions

Because only two other LTA power studies have lmegrducted to date, the scope of
this dissertation was to examine how a set of ¢ influence the statistical power of
latent transition probabilities. The conditionsluded in the simulations were based on
commonalities found in recently published LTA sesliThis study did not exhaust all
possible variations of an LTA model. First, onlyottime points were simulated with 4-class
solutions at both time points. Additionally, measuent invariance was assumed, though it
is not a necessary condition of the LTA model. Bstens of this study should include more
time points, more or less classes, and even exgmower when measurement invariance is

not assumed. This study also only examined 5 catagandicators. Additional categorical
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and the inclusion of continuous variables can adti¢ results found in this study. One of
the two other LTA simulation studies to date (Gal& Wugalter, 1992) aimed to determine
if adding additional indicators in a LTA model wdybrovide better measurement or more
sparse contingency tables. The study found th&idinoy more indicators improved standard
errors even when the contingency tables were spadsitng more indicators to this study
could help eliminate issues such as artificiallyrhpower and inability to converge as a
result of sparseness and poor model measurement.

The variations of a latent transition probabiltimatrix are seemingly endless. This
study looked at two matrices to see how power faradng larger or smaller probabilities.
Other transition probabilities such as .50 couldnoduded in a future simulation study.
Future studies can also look at the importanceoafgp for small transition probabilities such
as .01. Further research can help answer queshiahs/ere not covered in this dissertation,
such as whether each transition probability nedds@ate power or if adequate power for
the majority of transition probabilities would sig#. Additionally, different combinations of
class size can be examined. This study includeshtriple sizes, though further simulations
should include sample sizes betwé&en 1,500 andN = 5,000. This could reveal earlier
instances of stability in the power curves. Lagtiytensions of this study can include latent
transition analysis models that include covariates distal outcomes and examine the power
to detect latent transition probabilities, givergsh explanatory variables.

Future extensions of this study could examine3tiséep approach in mixture
modeling (Asparouhov & Muthén, 2014). This approacbaining popularity for its
advantage in correcting for classification errorfugure simulation study could incorporate

the 3-step method to examine power in LTA. For egxamn a measurement model with
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high entropy yet a small sample size, the researdrefix individuals to classes and conduct
a cross-tabulation of class proportions atl andt = 2. This study can help reveal the
intersection between entropy, the measurement madeélsample size on power.

LTA is a valuable method that has been used tdwdrresearch a number of
different fields. This dissertation helped answeesiions about how various model
conditions can influence the statistical poweretedt an effect in latent transition
probabilities. It also has the potential to helgei@chers understand level of power they can
expect under certain circumstances. This simulatady is the very beginning of a body of
work that has yet to be conducted on LTA methodplégiture studies can help uncover

other mysteries that still remain regarding LTA.
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Appendix Sample M plus Output with Annotated Comments

Well-Defined Model with Even Transition Probab#isi, Even Class Sizes and Thresholds +1
with N = 250

nont ecar | o:
I names of indicator variables
nanes are ull-ul5 u2l-u25

I'the (1) indicates binary variables
generate = ull-ul5 u21-u25 (1);

lindicate that these are categorical and not continuous vari ables
categorical = ull-ul5 u2l-u25;

Icreate 4 classes at each time point
gencl asses = c1(4) c2(4);
classes = c1(4) c2(4);

Isanpl e size
nobservati on = 250;

I nunber of replications
nreps = 1000;

I saves paraneter estimates for each replication
results = 4c_even_wel |l _even_1 250. csyv;

lindicate this is a m xture nodel
anal ysi s:
type=m xture
par amet eri zati on=probability;

I paraneter values for overall popul ation
nodel popul ati on:

Iclass sizes
Y%overal | %
[ c1#1*. 25];
[ c1#2*. 25];
[ c1#3*. 25];
[ c2#1*. 25];
[ c2#2*. 25];
[ c2#3*. 25];

Ilatent transition probabilities
C2#1 on cl#1*. 25;
C2#1 on cl1#2*.25;
C2#1 on c1#3*.25;
C2#1 on cl#4*.25;

C2#2 on cl#1*. 25;
C2#2 on cl#2*.25;
c2#2 on cl#3*.25;
C2#2 on cl#4*.25;
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C2#3
C2#3
c2#3
c2#3

on
on
on
on

litemresponse |
nodel popul at

litemresponse |
% 1#1%
[ull$1*1]
[ul2$1*1]
[ul3s$1*1]
[uld$1*1]
[ul5$1*1]

litemresponse |

%e 1#2%
[ul1$1*1]
[ul12$1*1]
[u13$1*-1]
[u14$1*-1]
[u15$1*- 1]

litemresponse |
% 1#3%
[ulls$1l*-1]
[ul2$1*-1]
[ul3$1*-1]
[uld$1*x-1]
[ul5$1*-1]

litemresponse |
% 1#4%
[ull$1*-1]
[ul2$1*-1]
[ul3s$1*1]
[uld4$1*1]
[ul5$1*1]

cl#l*. 25;
cl#2* . 25;
c1#3*. 25;
cl#4*. 25;

ogit threshol ds
on-cl:

ogit threshol ds

(1);
(2);
(3);
(4);
(5);

ogit threshol ds

(6);

(7);
(8);
(9);
(10);

ogit threshol ds

(11);
(12);
(13);
(14);
(15);

ogit threshol ds

(16);

(17);
(18);
(19);
(20);

for

for

for

for

for

tine

time

cl ass

cl ass

cl ass

cl ass

litemresponse logit thresholds for time 2 these
val ues above because we are assum ng neasurenent

nodel popul at
% 2#1%
[u21$1*1]
[u22%1*1]
[u23$1*1]
[u24$1*1]
[u25%1*1]

Ye2#2%
[u21$1*1]
[u22$1*1]

on-c2:

(1);
(2);
(3);
(4);
(5);

(7);
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[u23$1*- 1]
[u24$1*- 1]
[u25$1*- 1]

Y 2#3%
[u21$1*-1]
[u22$1*-1]
[u23$1*-1]
[u24$1*-1]
[u25$1*- 1]

Ye 24#4%
[U21$1*- 1]

(8);
(9);
(10);

(11);
(12);
(13);
(14);
(15);

(16);

[u22%$1%-1] (17);
[u23$1*1] (18);
[u24%$1*1] (19);
[u25%1*1] (20);

I paraneter val ues for
Model :

%overal | %

overal | npdel

c2#1
c2#1
c2#1
c2#1

on
on
on
on

C2#2
C2#2
c2#2
c2#2

on
on
on
on

c2#3
c2#3
C2#3
C2#3

on
on
on
on
nodel c1l:

o 1#1%
[ull$1*1]
[ul2$1*1]
[ul3$1*1]
[ulda$1*1]
[ul5$1*1]

%e 1#2%
[ul1$1* 1]
[u12$1* 1]
[u13$1*-1]
[ul4$1*-1]
[u15$1*- 1]

% 1#3%
[ul1$1*- 1]
[u12$1*- 1]
[u13$1*- 1]

Cl#1*.
Cl#2*.
C1#3*.
cl#4*.

25;
25;
25;
25;

cl#1*.
cl#2*. 25;
cl1#3*. 25;
cl#4* . 25;

25;

cl#1*.
cl#2*. 25;
cl1#3*. 25;
cl#4* . 25;

25;

(1);
(2);
(3);
(4);
(5);

(6);

(7);
(8);
(9);
(10);

(11);
(12);
(13);
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[uld$1*-1] (14);
[ul5$1*-1] (15);

%€ 1#4%

[ull$1*-1] (16);
[ul2$1*-1] (17);
[ul3$1*1] (18);
[ul4$1*1] (19);
[ul5%$1%1] (20);

nodel c2:
%€ 2#1%
[u21%$1*1] (1);
[u22%1*1] (2);
[u23%$1*1] (3);
[u24%$1*1] (4);
[u25%$1*1] (5);

%e2#2%
[u21%$1*1] (6);
[u22%$1*1] (7);
[u23%$1*-1] (8);
[u24$1%-1] (9);
[u25%1%-1] (10);

%e 2#3%

[u21$1*-1] (11);
[u22$1*-1] (12);
[u23$1*-1] (13);
[u24$1*-1] (14);
[u25$1*-1] (15);

%€ 2#4%

[u21$1%-1] (16);
[u22%1*-1] (17);
[u23$1*1] (18);
[u24%$1*1] (19);
[u25%1%1] (20);

I'tech 1 provides paraneter val ues

Itech 9 provides informati on on each replication such as errors
Qut put: techl tech9;

108



