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Abstract

Towards a Nonviolent Alternative for the Black Hole Information Paradox

by

Yinbo Shi

In the semiclassical approximation, quantum field theory suggests that black

holes eventually evaporate in a manner largely independent of their internal struc-

ture. Doing so, however, leads to a violation of unitarity of quantum mechanics,

rendering the system inconsistent. One possible resolution is soft violations of

locality in the near horizon region. The first consistency check is whether such a

proposal can actually get the information out. Using quantum information tech-

niques, a large class of evolutions into paired states is ruled out. More generally,

information transfer can be characterized by the mutual information of a specially

prepared state. Minimizing this quantity saturates a subadditivity inequality,

leading to “subspace transfer”; maximizing it generically leads to an enhanced

particle flux. Using the tools of effective field theory, one can then try to model

the nonlocality as arising from an effective source localized near the horizon. To

get information out at the right rate, this source must have a characteristic size.

The horizon is altered, but nonviolent. This model also naturally accommodates

black hole mining, avoiding a potential flaw. Having passed important consistency

checks, nonviolent nonlocality is a viable solution to the information paradox.
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Chapter 1

Introduction

1 Black hole evaporation [1] reveals an apparent conflict2 between the foundational

principles of our description of nature via local quantum field theory (LQFT): the

principles of quantum mechanics, the principles of relativity, and the principle of

locality. The thought experiment begins with collapsing matter forming a black

hole. Since curvature is small except in a region near the singularity, relativity

tells us that the spacetime far from the singularity is Minkowski up to correc-

tions of order the curvature size. In particular, the curvature near the horizon

scales inversely with the square of the mass of the infalling matter. One can then

quantize a field on this background. Since the horizon is nearly flat, relativity

constrains the quantum state to one where there is substantial entanglement be-

tween the interior and exterior of the black hole. Furthermore, this state radiates

energy from the black hole, so energy conservation requires that the black hole

evaporates eventually. However, the entanglement of this state increases with-

1Reprinted paper (reorganized) Giddings, Steven B. and Shi, Yinbo, Phys. Rev. D 89, no.
12, 124032 (2014). Copyright 2014 by the American Physical Society.

2For some reviews, see [2, 3, 4, 5, 6, 7, 8, 9, 10].
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Introduction Chapter 1

out bound, resulting in the radiation having a large entropy, yet entangled with

nothing. This entropy characterizes the amount of “missing” information. Since

local evolution apparently forbids its escape while the black hole is larger than

the Planck scale, this parameterizes the unitary violation of LQFT.

3 Some have argued that this thought experiment leads to violation of quan-

tum mechanics [11] and energy conservation [12], or to black hole remnants with

unboundedly large number of internal states, producing catastrophic instabilities

[13, 14]. If one assumes that quantum mechanics is valid, without unphysical

instabilities, this apparently contradicts the locality property of LQFT, and thus

calls for a different underlying quantum framework. In quantum mechanics, this

should be given in a Hilbert space description. Such a framework should then re-

produce LQFT as an excellent approximation in familiar circumstances, e.g. those

avoiding ultra-planckian collisions. This fits into a picture where the fundamental

quantities are defined as quantum objects, such as states in Hilbert space, and

not in terms of spacetime.

Additional structure is needed to characterize the physics; a particular problem

is that of recovering locality to an excellent approximation. One way to define a

basic notion of localization, in such a framework, is by specifying smaller tensor

factors of a given Hilbert space. These can be thought of as corresponding to

different “regions”. Indeed, in LQFT, the field operators localized to a given

region produce such a tensor factor structure, underlying the algebraic approach

to LQFT[15].4 Thus, a proposal is that part of the basic framework for gravity is

3Reprinted paper (reorganized) Giddings, Steven B. and Shi, Yinbo, Phys. Rev. D 87, no.
6, 064031 (2013). Copyright 2013 by the American Physical Society.

4Banks[16] has also explored using tensor factor structures to give a holographic description
of space time.
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Introduction Chapter 1

a network of tensor factors[17].

In this approach the basic “stuff” is quantum information, and it is conserved

under unitary quantum-mechanical evolution, defined in an appropriately general

sense. In LQFT, locality also constrains such evolution, and we likewise expect

constraints here. A basic hypothesis is that we should think of the black hole

and its surroundings as corresponding to subsystems of a larger quantum system,

yielding a tensor factor structure. The problem, then, is to understand unitary

evolution of the combined system. Part of this problem then becomes a more

generic problem in quantum information theory: characterizing unitary informa-

tion transfer between two subsystems.

The remainder of this introduction includes a more detailed description of

black hole evaporation, during which we establish useful definitions and conven-

tions. Since this evaporation process results in a paradox, we then motivate why

one should discard locality, and what other features to keep. A key part of these

features is the tensor factor structure of a quantum mechanical Hilbert space. The

next chapter 2 is dedicated to investigating the quantum information aspects of

unitary evolution. In doing so, a large class of possible evolution into entangled

states is ruled out. Possible evolution can be characterized by a quantity known

as mutual information; there is a minimal form that corresponds to subsystem

transfer, as well as a maximal form that allows for additional entanglement. The

final chapter 3 then attempts to construct an effective field theory model for soft,

nonlocal information transfer from black holes. To be interesting, it has to at least

be able to fix the problems involved. Beyond that, it also has to satisfy a large

number of consistency constraints, including black hole mining. The appendix A

3



Introduction Chapter 1

includes proofs for claims made in the paper, as well as a WKB estimate for the

tunneling rates of modes of intermediate energy.

1.1 Background Spacetime

The story begins with the formalism of LQFT on curved spacetime, which will

be briefly summarized here. The first ingredient is the background spacetime in

which the chosen field content lives. The time evolution of this background can

be described in the ADM formalism [18]. For simplicity, consider perturbations

about a spherically symmetric metric,

ds2 = −N2dT 2 + gxx(dx+NxdT )(dx+NxdT ) + r2(T, x)dΩ2 , (1.1)

where N and Nx are the usual lapse and shift functions, respectively. Here a

choice of time-slicing has been made; T labels the constant time slices and x is a

coordinate parameterizing the radial direction along the slice.

To simplify further, we consider the Schwarzschild geometry. While simple,

one might wonder the degree to which the Schwarzschild geometry approximates

a black hole, even as a thought experiment. For instance, this geometry possesses

another asymptotically flat region and a white hole in the past. Real black holes

are expected to form from collapsing stars, and thus have neither of these features.

To address this issue, consider a collapsing null shell; the interior is ordinary

Minkowski, and the exterior is Schwarzschild. Patching the inside and outside

together, one obtains a spacetime with one asymptotically flat region and no

white hole [2]. Since the patching only occurs near the collapsing matter and we’re

4



Introduction Chapter 1

interested in the late time behavior of the black hole, Schwarzschild is adequate.

The metric is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2 . (1.2)

Specifically, considering a 3 + 1 dimensional black hole with Schwarzschild radius

R,

f = 1− R

r
. (1.3)

Modes propagating in this background are simply understood by introducing tor-

toise coordinates, in which the metric takes the form

ds2 = f(r∗)(−dt2 + dr2∗) + r2(r∗)dΩ2 . (1.4)

The tortoise coordinate is defined by

r∗ =

∫
dr

f(r)
. (1.5)

There is an arbitrary integration constant, chosen for later simplicity; our choice

differs slightly from the traditional one, and specifically is defined via

er∗/R =
( r
R
− 1
)
er/R−1 (1.6)

r

R
− 1 = W

(
er∗/R

)
, (1.7)

where W is Lambert’s W function. 5 For later convenience, we can also introduce

5W (z) is the principal branch of z = W (z)eW (z).
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null coordinates x± = t± r∗, in which the metric is

ds2 = −f(r∗)dx
+dx− + r2(r∗)dΩ2 . (1.8)

An alternate notation often appears in the literature, where x− appears as u and

x+ appears as v.

This slicing is convenient due to its static nature, but different time slicings are

possible; nice slices [19] clearly exhibit the tension between LQFT and unitarity.

An explicit construction of such slices is given in [17], in the approximation of

static geometry. These slices asymptote to constant Schwarzschild-time slices at

infinity, and asymptote to a constant radius inside the horizon, thus avoiding the

singularity.

1.2 LQFT

With the background in place, LQFT can be set up by quantizing on this

slicing. It is simplest to consider a free massless scalar quantum field, although

other fields can be treated, including metric perturbations. The action is as usual,

Sφ = −1

2

∫
dV4 (∇φ)2 . (1.9)

Explicitly, the equation of motion �2φ = 0 in the coordinates (1.4) is

1

fr2
[
−r2∂2t φ+ ∂r∗(r

2∂r∗φ)
]

+
1

r2 sin θ

[
∂θ(sin θ∂θφ) +

1

sin θ
∂2φφ

]
= 0 . (1.10)

6
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Its classical solutions can be expanded in a mode expansion of the form (taking

advantage of separation of variables)

φ(x) =
∑
Alm

∫ ∞
0

dω

2π2ω

[
UA
ωlm(x)bAωlm + h.c.

]
, (1.11)

with

UA
ωlm = uAωl(r∗)e

−iωtYlm(Ω)

r
. (1.12)

In this expansion, bAωlm are arbitrary coefficients and Ylm(Ω) are the usual spherical

harmonics. Plugging (1.12) into (1.10), one finds that the radial wavefunctions

uAωl(r∗) are solutions of a 1 + 1-dimensional flat space wave equation in r∗ and t,

(
∂2

∂r2∗
+ ω2

)
uAωl = Vlu

A
ωl , (1.13)

with an effective potential,

Vl = f(r∗)

[
l(l + 1)

r2
+
R

r3

]
. (1.14)

The boundary conditions are like in Minkowski (with transmission and reflection

due to barrier) since Vl → 0 as r∗ → ±∞.

Different bases for solutions of (1.13), labeled by the index A, may be chosen

[20, 21], as illustrated in 1.1. One basis is the past modes (with simple behavior in

the asymptotic past), for which A ∈ (p →, p ←), and another basis is the future

modes (with simple behavior in the asymptotic future), with A ∈ (f →, f ←).

7
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⇀
up
ωl

eiωr∗ −→

⇀

Rωle
−iωr∗ ←− −→ Tωle

iωr∗

↼
up
ωl

←− e−iωr∗
−→

↼

Rωle
iωr∗Tωle

−iωr∗ ←−

↼
uf
ωl

e−iωr∗ ←−
⇀

R∗ωle
iωr∗ −→ ←− T ∗ωle

−iωr∗

⇀
uf
ωl

−→ eiωr∗

←−
↼

R∗ωle
−iωr∗T ∗ωle

iωr∗ −→

Figure 1.1: Schematic of the different bases for modes. The black curve rep-
resents the potential. Past modes are purely incoming from r∗ = ±∞ in
the asymptotic past; in the future, they have both reflected and transmit-
ted parts from the potential barrier. Future modes are likewise purely outgoing
to r∗ = ±∞ in the asymptotic future. The past and future bases are related
by complex conjugation.

Specifically, these bases have asymptotic behavior (with names as in [20])

r∗ → −∞ r∗ →∞

~u = ~up (up) eiωr∗ + ~Rωle
−iωr∗ Tωle

iωr∗

~u = ~up (in) Tωle
−iωr∗ e−iωr∗ + ~Rωle

iωr∗

~u∗ = ~uf (down) e−iωr∗ + ~R∗ωle
iωr∗ T ∗ωle

−iωr∗

~u∗ = ~uf (out) T ∗ωle
iωr∗ eiωr∗ + ~R

∗
ωle
−iωr∗

(1.15)

Different bases are useful depending on the physical question being asked. Since

these functions are pairwise linearly independent, any two of the four will form a

basis. However, only the past and future bases are orthogonal bases.

Quantization of φ is performed with the following conventions. The modes

8
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(1.12) have been chosen to have invariant Klein-Gordon norm

(UA
ωlm, U

A′

ω′l′m′) = i

∫
r2dr∗dΩUA∗

ωlm

←→
∂ tU

A′

ω′l′m′

= 2ωδll′δmm′

∫
uAωlu

A′∗
ω′l dr∗

= 2π2ωδ(ω − ω′)δll′δmm′δAA′ ,

(1.16)

as seen e.g. from the asymptotic behavior in (1.15), where A,A′ are chosen to

range over either past modes, or over future modes. The canonical commutation

relations are

[∂tφ(x), φ(x′)] = −iδ(r∗ − r′∗)
δ2(Ω− Ω′)

r2
, (1.17)

and result in commutators

[bAωlm, b
A′†
ω′l′m′ ] = 2π2ωδ(ω − ω′)δll′δmm′δAA′ . (1.18)

These bA†ωlm generate a Hilbert space Hext for the exterior of the black hole. A

similar process generates the interior, HBH. The combined Hilbert space is then

H = HBH ⊗Hext.

It is helpful if the mode functions are chosen to be approximately localized in

position and momentum, subject to uncertainty-principle constraints. For exam-

ple, one such construction is the windowed Fourier transform[1, 22, 17]

uja =
1√
ε

∫ (j+1)ε

jε

dkeik(x−2πa/ε) , ũja =
1√
ε

∫ (j+1)ε

jε

dke−ik(x−2πa/ε) , (1.19)

where ε is a resolution parameter and j, a index the localization in the radial

momentum and radial position, respectively. Clearly other approximately lo-

9
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calized bases exist. Such localized modes give us a way to further decompose

the Hilbert space; in particular, we can decompose the exterior into Hext(T ) =

Hnear(T ) ⊗ Hfar(T ) at a given time. We think of states associated with modes

localized within a few times the Schwarzschild radius, but outside the horizon, as

comprising Hnear(T ). This decomposition changes with time; more will be said

about this later in this document.

The Hawking radiation can be exhibited in terms of a particular entangled

state in HBH ⊗ Hext. An important condition for determining this state is that

the infalling observer sees no high-momentum excitations near the horizon – these

modes are in their vacuum. But, evolution of this state produces correlated pairs

of excitations, with one half of each pair escaping as a quantum of Hawking

radiation, and one falling into the BH interior. Since the high-momentum modes

are in their vacuum, it is useful to introduce a high-momentum cutoff to describe

this state. Specifically, focusing on the outgoing, near-horizon modes, this state

takes the form [17]

|ψ〉 =
∏
jl

A(T )∏
a

(
Sjal|0̂〉|0〉

)
|0〉A(T ) . (1.20)

Here a < A(T ) is needed for the high-momentum cutoff, with A(T ) = ε(T +

kR)/(2π), and k a constant determined by the cutoff momentum. The corre-

sponding short-wavelength modes are in their vacuum, |0〉A(T ). Sjal is a squeeze

operator, of the form

Sjal = exp
{
z(ωj)

(
b̂†jalb

†
jal − b̂jalbjal

)}
, (1.21)

10
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with

tanh z(ω) = e−βω/2 . (1.22)

In keeping with conventions used in [22, 7], hatted quantities correspond to inside

states. This construction is particularly explicit in two-dimensional models [22].

1.3 The Paradox

To understand the paradox, we need a final piece: a notion of quantum infor-

mation. Consider a Hilbert space that is a tensor product of two smaller subsys-

tems. In a pure state, the “missing” information from one subsystem is given by

the von Neumann entropy of its density matrix, ρi

Si = −Tr(ρi ln ρi). (1.23)

The information is “missing” in the sense that knowledge of the i subsystem is

not enough to construct the part of the state that resides in that Hilbert space.

One key feature is that Si ≤ ln dim(Hi), which allows one to place a lower bound

on various subsystems. Thus, a finite Hilbert space can be described by a finite

amount of information, as expected. Another key feature is that it is invariant

under local unitaries. This means that no amount of local changes of only the i

Hilbert space can increase or decrease the missing information; this information

is stored in the other subsystem.

Time evolution in quantum mechanics takes the form of a unitary operator.

For a density matrix corresponding to the whole Hilbert space, the unitary oper-

11
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ator corresponding to its time evolution is automatically local. Thus, information

is conserved under time evolution. In particular, pure states will map to pure

states. For small subsystems, this need not be the case. Consider some gas in

a pure state placed in a steel box. Once the gas thermalizes with the box, it is

no longer in a pure state; information is lost to its environment. This is a simple

example of a pure state evolving into a mixed state, and in isolation, cannot be

described by a unitary time evolution operator. However, if in our analysis we also

included the full quantum state of the environment, then we will still conclude

that pure states map to pure states.

Back to the black hole, the Hawking radiation can be described by a density

matrix, formed by tracing out the black hole interior states. This results in a

thermal density matrix 6

ρ(T ) =
1

Z

∑
{njal},a<A(T )

e−βH |{njal}〉〈{njal}| , (1.24)

where njal are mode occupation numbers. As T grows, so does A(T ), and the en-

tropy (1.23) of (1.24) grows. If one considers evolution to time scales comparable

to the evaporation time Tevap ∼ RSBH, with SBH the Bekenstein-Hawking entropy,

the von Neumann entropy will be of size SBH. This represents the missing infor-

mation. Since the initial state could be chosen to be pure, and this evaporation

process leaves behind a mixed state, this process cannot be unitary. This is the

information paradox.

The most obvious solution is to accept this story at face value and abandon

6This discussion neglects reflection – see [17] for more discussion.
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unitarity. Generically doing so would require drastic changes to quantum mechan-

ics, which somehow only fails in a black hole context. Hawking originally proposed

[11] to replace the unitary S matrix that maps pure states to pure states with a

$ matrix that maps density matrices to density matrices. However, this model

is just like the gas in a box situation described earlier. If the Hilbert space is

enlarged to include the missing information, the resulting evolution can still be

unitary. Some have called this extra factor a “baby universe”, which branches off

and separates from ours. This then raises a different set of issues. For instance, the

initial conditions will have to account for this enlarged Hilbert space. Without a

more complete theory of quantum gravity, very little can be said about the future

evolution of this missing information or even if it has any impact on the rest of

the universe. One also has to be careful because many such models are vulnerable

to catastrophic instabilities [12], though stable models exist [23]. Overall though,

models that have the right kind of information loss and that conserve energy don’t

appear to exist.

Continued exploration of constraints on consistent scenarios and properties

of quantum gravity strongly suggest that locality is a more likely candidate for

revision. Different proposals have been made for modifications to locality, ranging

from complementarity/holography[24, 25], which represents a significant modifica-

tion to the notion of localization of information, to the possibility that information

escapes a black hole due to new effects that transfer information in a fashion that

appears superluminal or nonlocal when described with respect to the semiclassical

black hole geometry[26, 27, 28, 29, 17, 30].

If the answer is that information leaks out of a black hole due to such new

13
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“nonlocal” effects, this raises a number of questions. Foremost among them is the

question of what more fundamental framework is responsible; spacetime itself may

only be emergent from this framework.7 Another, more modest, question is how

to describe such effects as a correction or modification to the usual semiclassical

description of a large black hole.8 Once a black hole has reached a sufficient age,

of order its half-life, a very general argument due to Page[31, 32] indicates that the

new effects must transfer information at a minimum rate of order one qubit per

time R, where R denotes the black hole radius. Such an effect could be comparable

in magnitude to the Hawking radiation, which is itself a very small correction to

the evolution of a large black hole; this suggests that such modifications are not

necessarily implausible.

However, even such “small” effects have the potential to be dangerous. It has

long been recognized that the Hawking radiation is characterized by the condition

that infalling observers crossing the horizon see a near-vacuum state, and this

implies specific entanglement between excitations on the two sides of the horizon.

If information is to escape the black hole via some modification of this state

that only affects the outgoing modes right at the horizon, then that destroys this

entanglement and produces a state that the infalling observer perceives to contain

many high-energy particles (this argument was sharpened in [5, 27, 33, 7, 29]) or

that even destroys the horizon[17]. Such a picture was taken seriously by [34], who

argue that a sufficiently old but arbitrarily large black hole consequently becomes

shrouded in a violent high-energy “firewall,” behind which classical spacetime

7For one proposed outline of some features of such dynamics, see [17]; also see [16].
8Though, note that such a description may be no more fundamentally correct than an attempt

to parameterize the evolution of the quantum atom within classical physics.

14
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ceases to exist.

The simplest version of this firewall scenario assumes nonlocal transfer of infor-

mation: initially a black hole can form from collapse, but subsequently information

transfers from deep within its interior to the horizon, producing the firewall. In

fact, the basic scenario is a limit of the general massive remnant scenario proposed

in [26], where the star-like remnant surface that ultimately replaces the horizon

lies essentially at the would-be horizon. The reason for the singular behavior

of [34] is that while such nonlocality is apparently needed, [34] assumes it stops

sharply at the would-be horizon: information can nonlocally transfer a distance

ten times the radius of the solar system, for the largest known black holes, but

not more than a Planck distance further.

Of course, this discussion doesn’t exhaust all logical possibilities. Among

other proposals, one could add a boundary condition in the future [35], or one

could conjecture locality violations on cosmological scales [36]. We’re going to

take a more conservative approach. In particular, we wish to keep as much of

the existing structure as we can. Clearly, the paradox requires that something is

broken. The above discussion suggests that this something is locality. To answer

questions regarding how severe the consequences must be, we should first establish

the structures within which we are investigating.

15
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1.4 Hilbert Spaces and Unitary Evolution For

Black Holes

If nature is quantum-mechanical, at a minimum[37] we expect it to be de-

scribed in terms of a Hilbert space of quantum states. In LQFT, this space of

states is supplied by a Fock space construction or interacting generalization. How-

ever, it has been argued (see [26, 27, 38, 39, 40, 41]) that no such local description

is consistent with quantum mechanics together with basic properties of gravity,

and in particular black holes.

Therefore, we seemingly need a quantum theory that doesn’t originate in

LQFT. However, there are strong constraints – one being the statement that

LQFT emerges as an excellent approximation in familiar circumstances. A generic

quantum mechanical system, even with sufficiently large Hilbert space, would not

exhibit this behavior. A particular constraint – though one which we expect to be

subtly violated – is that of spacetime locality. Generic nonlocality contradicts our

experience, and treated as a modification of a quantum field theory framework,

leads to trouble with causality, and consequent paradoxes. A difficult question is

how to achieve approximate locality, without having the precise locality of LQFT.

Ref. [17] proposed that a more general structure, implementing a coarser no-

tion of localization, is provided by a Hilbert space with certain tensor factors.

Specifically, the tensor factors might be thought of as associated with states in

different “regions” of spacetime. Such a structure arises with Fock space of LQFT,

but clearly can be more general. In addition, a full statement of approximate lo-

cality involves restriction of the unitary evolution, so that “distant” elements of

16
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the tensor factor structure don’t strongly interact. Ref. [17] proposed that these

elements could provide a framework for a complete theory of quantum gravity.

If such a structure is relevant to quantum gravity, it should in particular sup-

ply a description of quantum evolution of a black hole. Ref. [29] gave illustrative

simple models for such unitary evolution, on a restriction of the Hilbert space, and

ref. [17] proposed a more general description of the possible Hilbert space struc-

ture, and unitary evolution, for describing black holes. This paper will explore

further constraints on such evolution, arising from various physical and mathe-

matical criteria. In order to do so, we first review aspects of the Hilbert space

structure described in [29, 17].

Consider the space of states of a black hole, interacting with its surroundings,

in, e.g., asymptotically flat space. We will assume that this is a Hilbert space,

with states contained in a tensor product

H ⊂ HBH ⊗Hext , (1.25)

corresponding to a description at a particular “time.”9 This is a non-trivial as-

sumption about the quantum mechanical configurations of the system, but we

deem it as plausible and worth exploring.

The description at a different time is related by a unitary operator. More pre-

cisely, this evolution map may change the factors in (1.25), and in particular their

dimensions. But, we assume that it is one-to-one on the image of physical states

9While we expect to have more general notions of time, for simplicity, this may be taken
to be time at infinity. Then in a geometrical description there is the question of choosing the
particular time slice. In the present framework, we expect changes of this slice could correspond
to unitary equivalences, as briefly outlined in ref. [17].
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H, and preserves the inner product. These thus preserve quantum information;

knowledge of the current state allows postdiction of prior events. While techni-

cally such maps are only isometries[42], we refer to them as “unitary”. Thus, most

generally we are describing interacting quantum subsystems of a larger system,

such that the size of the subsystems can change through evolution.

We expect additional structure in order to capture the physics of black holes.

First, while LQFT evolution contradicts unitarity[11], we do expect the evolution

of low-energy states of Hext far from the black hole to have an excellent LQFT

description. Moreover, for a large black hole, we expect a good approximate

LQFT description of some features of the nearby external states, and of the states

“inside” the black hole – for example of measurements of an infalling observer,

before collision with the strong curvature region.

For unitarity’s sake, we do however expect possible departures from a LQFT

description for the black hole and near states and their evolution. We will make

the apparently reasonable assumption that the only significant departures affect

these two subsystems, and thus further divide Hext into Hnear⊗Hfar. Concretely,

we don’t expect unitary evolution of a solar-mass black hole here to nonlocally

relay information to Alpha-Centauri – although we propose that small departures

from LQFT are possible on the scale corresponding to the Schwarzschild radius,

R ∼ 1 km, under appropriate circumstances. Specifically, we expect significant

modifications of HBH, and assume that the unitary evolution coupling this space

with the black hole “atmosphere” Hnear departs from that of LQFT, but that

the couplings of Hnear with Hfar are for practical purposes well-approximated by

LQFT.
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Chapter 2

Quantum Information

Perspective

If the dynamics can indeed be described in terms of subsystems (1.25), we need

unitary evolution such that the dimension of HBH shrinks, while unitary evolution

transfers its information to Hext. Here, apparently, evolution must depart from

that of LQFT. A basic goal of this chapter is to refine understanding of possible

such evolution.

Important constraints were outlined in [17]. First, we seek Hilbert spaces and

evolution with “least possible” deviation from LQFT, which we expect to work

well in familiar circumstances. One reasonable expectation is that black holes

have familiar general features, both for outside and infalling observers. We might

also expect that at least at the coarse-grained level, and at sufficiently early times,

black holes evaporate approximately thermally as predicted by Hawking. These,

together with the demand of unitary evolution of the black hole, with shrinking
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HBH, apparently provide nontrivial constraints.

Indeed, in characterizing the evolution we also use constraints from information

theory. Information theory traditionally deals with finite dimensional spaces, but

the LQFT Hilbert space (Fock space) is infinite dimensional. Many results in

information theory extend to infinite dimensional Hilbert spaces, but the proofs

are often substantially more obfuscated or non existent1.

However, there are well-motivated reasons to expect that for our purposes

we only need to consider finite-dimensional Hilbert spaces. First, as has been

noted, we seek a description where HBH is finite-dimensional. Secondly, we have

suggested an apparently reasonable assumption that it only interacts significantly

with the black hole atmosphere Hnear; usual LQFT evolution then carries the

information outward (or, brings information in fromHfar). SinceHnear is the space

of states corresponding to the region from the horizon to a few times larger radius,

the LQFT description of this space is finite-dimensional in the presence of a UV

cutoff. In order not to introduce major deviations from the Hawking radiation –

which would be seen by an infalling observer as high-energy particles – we might

expect modifications of LQFT only to affect excitations at wavelengths longer

than such a cutoff, say A(T ) of (1.20). Thus, the unitary information transfer

takes place between finite-dimensional Hilbert spaces.

In fact, an even stronger possible condition[29, 17] is that the departures from

LQFT only affect quanta seen by infalling observers to have energies < K/R,

with K a modest number, say K < 5. This makes such modifications appear very

innocuous to infalling observers. In this case, the dimension of the relevant part

1Fortunately, strong subadditivity remains true in infinite dimensions [43], as does Klein’s
inequality, which is used to prove strong subadditivity
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of Hnear is correspondingly small, with ∼ K2/(2π) modes.

Indeed, the basic features we have described suggest simplified toy models for

black hole evolution, and such toy models have been explored in [7, 8, 29, 44, 17].

Specifically, the thermal factor with temperature T ∼ 1/R tells us that quanta

with asymptotic energies � 1/R have exponentially suppressed amplitudes, and

gray body factors suppress emission with energies � 1/R. Indeed, in practice

it is useful to take the arbitrary resolution parameter in (1.19) to be ε ∼ 1/R.

Then, we find that one particle with energy ∼ 1/R is emitted for each time ∼ R.

The simplest model[7] forgets all but occupation number zero or one of one such

mode, and replaces the thermal factor by one; in this case, evolution through a

time ∼ R maps the initial state |φ〉 of HBH ⊗Hext by

|φ〉 → |φ〉 |0̂0〉+ |1̂1〉√
2

. (2.1)

This is a simplified form of evolution corresponding to shifting the cutoff in (1.20);

the hatted/unhatted qubits correspond to modes just inside/outside the horizon.

Such toy qubit models can be generalized, and their generalizations can be used

to explore modifications to and information-theoretic constraints on evolution.

In outline, the first section constrains possible unitary evolution. The next

section focuses on general quantum information-theoretic results characterizing

information transfer between subsystems and is largely independent of the black

hole story; those interested primarily in information-theoretic issues should read

this section first, consulting the other sections for cultural references. In particu-

lar, we characterize evolution in terms of a minimal form – “subsystem transfer,”
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which saturates a subadditivity inequality – and departures from that, and also

compare the role of such transfer to that of scrambling. The last section then

extends these basic ideas and constraints into the black hole context, and in par-

ticular investigates existing classes of models for such evolution. We also discuss

the question of whether physical constraints imply evolution that is close to sat-

urating subsystem transfer.

2.1 Paired states, a no-go theorem, and Schrödinger’s

cat in a black hole

The evolution of eq. (2.1) corresponds to an increase of the entropy of the

external state of one bit per time step, mirroring the more general statements

made below eq. (1.24). We would like to understand what kinds of modifications

to evolution avoid the increase in entropy, and in fact reduce the entropy of the

external state.

Note a prominent feature of the Hawking state is the pairing between internal

and external quanta, seen in eqs. (1.21) and (2.1). Indeed, this pairing is part of an

explanation for why the infalling observer sees nothing violent: it can be shown[27]

that while interactions between that observer and individual blue-shifted Hawking

particles inside or outside the horizon can be large, there are cancellations between

the interactions with the inside and outside modes.

This suggests considering modifications that retain this pairing. Ref. [7] con-

siders small admixtures of (|0̂0〉 − |1̂1〉)/
√

2, and argues that small corrections of

this form to the toy Hawking evaporation (2.1) do not decrease the entropy of the
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external state.

In fact, there is a much more general result, that does not rely on smallness of

corrections, but only on this pairing property. Specifically, begin with a state of

the form (1.20), which is linear combination of a countable number of basis states.

Because they are countable, they can then be well ordered in some manner. An

arbitrary black hole pure state (including matter that made the original black

hole, infalling Hawking particles, and outgoing Hawking particles) can be written

as

|φ〉 =
∑
i,j

C ′i,jψ̂
′
iχ
′
j (2.2)

where ψ̂′i and χ′j are orthonormal bases for HBH and Hext, respectively. By choice

of new bases ψ̂i and χj for HBH and Hext, respectively, this can be put in the

Schmidt decomposed/singular value form

|φ〉 =
∑
k

Ckψ̂kχk (2.3)

where for each k, Ck ≥ 0 .

Consider a general time evolution, in which new particles are emitted in states

with internal/external pairing, |n̂n〉. Here the integer n can either label differ-

ent modes, or their occupation numbers, or even more general paired quantum

numbers. A general evolution to such states is

χi → χi

ψ̂i → ψ̂0
i |0̂0〉+ ψ̂1

i |1̂1〉+ ψ̂2
i |2̂2〉+ ...

(2.4)
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We could also consider unitary evolution of the χi. But that does not change

the analysis since we can always choose to use the evolved χi in the analysis (as

long as this evolution is largely independent of the black hole, as we expect for

Hawking particles emitted some time ago, which have long since left the black hole

vicinity). The ψ̂ni are just some (generally not normalized) linear combination of

ψ̂i. Unitarity preserves norms, so for each i,

∑
n

||ψ̂ni ||2 = 1 . (2.5)

Combining (2.3) and (2.4), the new state is

|φ〉′ =
∑
i

Ci

(
ψ̂0
i |0̂0〉+ ψ̂1

i |1̂1〉+ ψ̂2
i |2̂2〉+ ...

)
χi

=

(∑
i

Ciψ̂
0
i χi

)
|0̂0〉+

(∑
i

Ciψ̂
1
i χi

)
|1̂1〉+ ...

= Λ0|0̂0〉+ Λ1|1̂1〉+ ...

(2.6)

with Λn =
∑

iCiψ̂
n
i χi.

In the case of the Hawking state, Λn = (e−βEn)Λ0. The Hawking pair factors

out, and it is clear that every pair increases the entanglement entropy between

the inside and outside.

Since Hawking’s result is not exact, many have speculated that small correc-

tions, contributing to many Hawking pairs, may allow information escape. As

noted, ref. [7] explored this in such paired models by adding a small admixture

of (|0̂0〉 − |1̂1〉)/
√

2 that could depend on the internal state of the black hole. It

then showed that the entropy increases by at least ln(2)− 2ε for each pair (where

24



Quantum Information Perspective Chapter 2

ε � 1 is a parameter that defines the size of the perturbation), demonstrating

that such small perturbations cannot restore unitarity.

The broader result states that for general evolution of the form (2.6), the

entropy of the external state cannot decrease – independent of the question of

smallness of the corrections. The proof appears in appendix A. So, one finds that

the real issue is not smallness of the corrections, but the evolution into paired

states of internal and external particles.

At first glance, this may seem like an odd result. For example, consider a

unitary operator that maps

|0̂0〉 → |0̂0〉

|1̂0〉 → |1̂1〉 .
(2.7)

A CNOT gate does this, and is known to be unitary. It certainly seems that

the outside observer can uniquely determine the initial state of the interior based

on what is observed coming out. Unfortunately, this is an illusion that stems

largely from the fact that this operator is a legitimate classical cloner. The No

Cloning Theorem, of course, prohibits quantum cloning. To see that this evolution

doesn’t extract the information, consider its action on the following orthogonal

states: 1√
2

(
|0̂0〉+ |1̂0〉

)
and 1√

2

(
|0̂0〉 − |1̂0〉

)
. In both cases, the outside observer

measures a density matrix proportional to the identity - what comes out is in fact

indistinguishable from uniform noise.

These observations extend that of the earlier proven No Hiding Theorem [45].

This states that if all density states ρI on some subspace I unitarily map to the

same density state ρO on O, then all the information about I resides in H/O.
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More intuitively, this theorem prevents generic quantum information from hiding

purely in the correlations between two subsystems of a Hilbert space (i.e. local

measurements in either or both Hilbert spaces reveal nothing about the informa-

tion hidden). What we’ve proven is stronger: even if ρO is allowed to depend on

ρI , ρO does not contain the information if the evolution involves paired states.

Note parenthetically that the preceding comments connect to recent discussion

of the question of measuring Schrödinger’s cat inside a black hole[46]. If |0̂〉 and

|1̂〉 represent “live” and “dead,” respectively, then evolution (2.7) would allow an

external observer to measure whether the cat is alive or dead. But, such evolution

is not sufficient to transfer the quantum information of the state from inside the

black hole to the outside, and arbitrary measurements of the state of the cat can’t

be performed from measuring the outside bits. This example thus illustrates

the importance of complete quantum information transfer for unitary black hole

evolution.

This discussion should make it clear that there are important constraints to

be satisfied in order to restore unitarity to black hole decay, and in particular

that one needs to go beyond even large departures from the Hawking result which

involve paired quanta. Classes of models that do so were given and illustrated

in [29, 17], and will be discussed below. But, a first question is how to generally

characterize the type of information transfer needed, and refine our understanding

of physical constraints on unitary evolution of black holes. We next turn to these

general information-theoretic considerations.
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2.2 Characterizing Information Transfer

Motivated by the preceding discussion, we are interested in a general char-

acterization of quantum information transfer between subsystems of a quantum

system, via unitary evolution. In order to discuss this in a general setting, in this

section we will use A in place of the black hole Hilbert space HBH, and B in place

of the external Hilbert space Hext (or Hnear). Thus, we consider unitary maps

U : A⊗B → A′ ⊗B′ (2.8)

that transfer quantum information from a subsystem A to a subsystem B. The

information capacity of each system is given in terms of its dimension as ln |A|,

ln |B|. In general, we allow the dimensions of A and B to change. In fact, the

terminology “unitary” is a minor abuse, as the map U may not be onto A′ ⊗ B′;

more precisely we consider maps that are isometries.

Making contact with standard notions of quantum information theory, each

such unitary (2.8) can be characterized as a set of quantum channels from A→ B′.

To see this, start with an initial density matrix ρ = ρA ⊗ |φB〉〈φB|, with ρA on A

and |φB〉 a basis state on B, that maps to ρ′ under unitary action. Each φB then

labels a channel TrB(ρ) = ρA → TrA′(ρ
′). These channels are time dependent;

part of the time evolution derives from the change in the unitary action, and part

from allowing the dimensions of A and B to change.

The space of unitary transformations is large, but a number of them don’t

transfer information. For example, unitaries of the form UA ⊗ UB, which can

be described as local unitaries, do not do so. Of course, one of the reasons the
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von Neumann entropy (1.23) is useful in characterizing information content is its

invariance under such local unitaries.2

There is also a particularly simple class of transformations that do transfer

information between subsystems. For example suppose that A is a tensor product,

A = A1⊗A2, with bases |i1〉, |i2〉 for the two factors, and let |φ〉B be an arbitrary

state of B. Then, consider a unitary U that maps to A′ = A1, B
′ = A2 ⊗B via

|i1i2〉A|φB〉 → |i1〉A′ |i2φ〉B′ . (2.9)

In other words, it simply transfers the subsystem A2 between the subsystems. We

will refer to such a transformation as subsystem transfer; a special case is qubit

transfer. Clearly subsystem transfer can be generalized to also include the action

of local unitaries before or after the transfer.

Obviously there are other, more complicated, forms of information transfer.

We would like to better understand the features of and constraints on such trans-

fer.

2.2.1 Tracking information transfer with a reference Hilbert

space

While entropy is a useful characteristic of information transfer, more refine-

ment is possible. Suppose there is a subsystem, say A, whose information we want

to track. To do so, as described in [48], introduce an auxiliary subsystem C with

2For a simple example, consider the transfer of information from one qubit to another. A
generic unitary acting on this system is described by SU(4). Of its 15 generators, only 3 are non-
local [47]. Of those, only 1 or 2 actually characterize information transfer. This is a substantial
simplification of the original problem of characterizing all possible unitaries.
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the same dimension |A| as the subsystem. Then, choose an orthonormal basis for

each and consider a maximally entangled state of A and C:

|ψ〉 =
1√
|A|

|A|∑
i=1

|iA〉|iC〉 . (2.10)

Evolution acting on A is extended by trivial evolution on C; if U is a unitary

acting on A (possibly together with other subsystem of the full system),

U → U ⊗ IC . (2.11)

The correlations with the |iC〉 can be used to track where the quantum information

in A goes, under evolution; picturesquely, we can think of these correlations as

‘ropes’ between these states and the corresponding states in A, or their images.

If, after evolution, there are correlations between C and some other subsystem B

of the full Hilbert space, those characterize the quantum information transfer to

that subsystem from A.

For example, suppose that we start with uncorrelated state of two subsystems

A and B; the general such state is of the form |ψA〉|φB〉, and can be formed as

a superposition of |iA〉|φB〉. Information can be encoded in A by taking different

superpositions of these, and it can be transferred to B by action of a general

unitary (2.8). Thus, consider introducing the tracking state (2.10):

|ψ〉|φB〉 ∈ HA ⊗HB ⊗HC , (2.12)

and its corresponding density matrix ρABC = |ψ〉|φB〉〈φB|〈ψ|. From this, we
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can find the density matrices of the different subsystems, e.g. ρA = TrBC ρABC ,

ρB = TrAC ρABC , ρAB = TrC ρABC , etc. Due to lack of correlations between A

and B, ρB is a pure state; its entropy (1.23), vanishes: SB = 0. Likewise ρAC is

pure, but ρAB and ρA are mixed, with entropy SAB = SA = ln |A|, representing

the correlations with the auxiliary subsystem C.

Now, evolve via a unitary (2.8), (2.11). If ρB remains pure, information has

not been transferred B. But, if after evolution SB 6= 0, correlations have been

transferred to or formed with B. Note that SAB stays fixed at ln |A|0, by unitarity

of U ⊗ 1C . No information transfer takes place between A⊗B and C: the latter

is just a tool used in tracking.

While SB 6= 0 indicates that correlations have been formed with B, that does

not mean information has been transferred “out of” A; it could for example reside

in non trivial correlated states of the two subsystems. One way to diagnose this

is to look at SA. Its decrease, representing a decrease of correlation between A

and C, is an indication of information transfer out of A. Indeed, we see that

SA defined in this fashion is a good measure of the amount of information in

subsystem A. In particular, evolution to SA = 0 corresponds to complete transfer

of the information from subsystem A to subsystem B.

These entropies obey a triangle inequality[49]:

|SA − SB| ≤ SAB ≤ SA + SB , (2.13)

and the rightmost inequality is the subadditivity inequality. We can rewrite this

as SB ≥ SAB − SA, and interpret it as saying that if correlations with A are
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decreased by (2.11), there is a lower bound to the increase of the correlations

with B. Exceeding this lower bound is caused by entanglement between A and

B. Correspondingly, one defines the mutual information of A and B,

I(A : B) = SA + SB − SAB , (2.14)

which parameterizes the correlations between A and B.

We might ask if there is a “minimal” form of information transfer, that pro-

duces final states saturating the subadditivity inequality, that is, so that the

mutual information I(A : B) stays fixed at zero. It turns out that there is – and

this is subsystem transfer.

2.2.2 Saturation of subadditivity implies subsystem trans-

fer

The preceding statement takes the form of a theorem.

THEOREM Consider evolution (2.8), (2.11) of |ψ〉|φB〉, where |ψ〉 is the

tracker state (2.10). Suppose that ρAB after evolution saturates subadditivity.

U can then be expressed, up to local unitaries, in the canonical form (2.9) for

subsystem transfer.

Saturation of subadditivity, SAB = SA + SB holds if and only if [50] ρAB =

ρA⊗ρB. If the eigenvalues of ρA are {ρi}, and of ρB are {σj}, then the eigenvalues

of ρA ⊗ ρB are {ρiσj}.
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On the other hand, the evolution of |ψ〉|φB〉 takes the form

U(|ψ〉|φB〉) =
1√
|A|
(
|ψ1〉|1C〉+ · · ·+ |ψ|A|〉||A|C〉

)
, (2.15)

with |ψi〉 = U(|iA〉|φB〉), giving the density matrix

ρAB = TrC(|ψ〉〈ψ|) =
1

|A|
(
|ψ1〉〈ψ1|+ . . . |ψ|A|〉〈ψ|A||

)
(2.16)

So, the eigenvalues of ρAB are |A| copies of 1/|A|.

This means all the nonzero eigenvalues of ρA are the same, and the same

applies to ρB. Since we know their respective entropies, their eigenvalues must

be |A|/k copies of k/|A| and k copies of 1/k, respectively, with k an integer that

divides |A|.

Indeed, this follows from a corollary:

Corollary: In this context, saturation of subadditivity is equivalent to SB =

ln k and SA = ln |A|
k

.

In one direction, this follows because ρA and ρB are proportional to the identity,

and their respective entropies must be ln of corresponding integer dimensions.

Saturation implies that the product of these integers is |A|. In the other direction,

SA + SB = ln |A|
k

+ ln k = ln |A| = SAB, so subadditivity is saturated.

This then implies that ρA is spanned by the kets/bras of an |A|/k dimensional

subspace of A, {|1̂〉 . . . ||̂A|/k〉}. Similarly, ρB is spanned by the kets/bras of a k

dimensional subspace of B, {|1〉 . . . |k〉}. Since their tensor product spans ρAB,

U (A⊗ |φB〉) = {|1̂〉 . . . ||̂A|/k〉} ⊗ {|1〉 . . . |k〉}.

Now that we have a basis for the image of A⊗ |φB〉, we can apply the inverse

32



Quantum Information Perspective Chapter 2

operator U−1 acting on the image to find a basis for A ⊗ |φB〉. This new basis

will in general not correspond to the original basis for A mentioned in the setup.

Appropriately labeling this basis then expresses U in canonical form. To put this

more concretely,

|1̂⊗ 1〉 ⊗ |φB〉 = U−1(|1̂〉 ⊗ |1〉) U−1

←− |1̂〉 ⊗ |1〉

|1̂⊗ 2〉 ⊗ |φB〉 = U−1(|1̂〉 ⊗ |2〉) |1̂〉 ⊗ |2〉
...

|1̂⊗ k〉 ⊗ |φB〉 = U−1(|1̂〉 ⊗ |k〉) |1̂〉 ⊗ |k〉

|2̂⊗ 1〉 ⊗ |φB〉 = U−1(|2̂〉 ⊗ |1〉) |2̂〉 ⊗ |1〉
...

|̂|A|
k
⊗ k〉 ⊗ |φB〉 = U−1(| ˆ|A|

k
〉 ⊗ |k〉) | ˆ|A|

k
〉 ⊗ |k〉

(2.17)

With this labeling of the new basis, U is manifestly subsystem transfer:

|1̂⊗ 1〉 ⊗ |φB〉 U−→ |1̂〉 ⊗ |1〉

|1̂⊗ 2〉 ⊗ |φB〉 |1̂〉 ⊗ |2〉
...

|1̂⊗ k〉 ⊗ |φB〉 |1̂〉 ⊗ |k〉

|2̂⊗ 1〉 ⊗ |φB〉 |2̂〉 ⊗ |1〉
...

|̂|A|
k
⊗ k〉 ⊗ |φB〉 | ˆ|A|

k
〉 ⊗ |k〉

(2.18)

Specifically, a subsystem of dimension k leaves subsystem A and enters B.

A basis for A naturally given by the physics of the problem may not be the

same as that in which the subsystem transfer takes this canonical form. For that
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reason, it is nice to have a basis-independent test of whether such a basis exists,

in the form of saturation of the subadditivity inequality.

We should also note what the theorem does not say. In particular, we have

kept the initial state of B, |φB〉 fixed, though arbitrary. This means that we

have only investigated a single quantum channel, as described above. To test a

different channel, we could check whether subadditivity is saturated for |ψ〉|φ′B〉.

If it is, then the map U is subsystem transfer in both cases. But, the subsystem

that is transferred could be a different subsystem depending on |φB〉 vs. |φ′B〉. So,

each channel should be checked individually. Furthermore, since the transferred

subsystems can in general differ, action on |ψ〉(|φB〉+|φ′B〉)/
√

2 will not correspond

to subsystem transfer. Nonetheless, this can be a useful result.

2.2.3 Saturating vs. non-saturating transfer

While subsystem transfer is the simplest form of unitary information transfer,

and as we have shown follows from saturation of the subadditivity inequality in

(2.13), clearly there are more general forms of information transfer that produce

states not saturating this inequality. One question is whether we expect unitary

black hole evolution to be simple saturating subsystem transfer, or not. A second

question is to better understand the more general forms of evolution. We turn

first to the latter.

First, note that the discrete nature of subsystem transfer means that contin-

uous evolution accomplishing it will, at intermediate stages, not saturate subad-
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Figure 2.1: An illustration of basic bounds on information transfer. We assume
that SA decreases linearly to zero. SB is bounded below by the lower solid
(blue) line, corresponding to I(A,B) = 0 (saturation), and bounded above by
the upper solid (purple) line, corresponding to maximal nonsaturation.

ditivity. A simple illustration of this is the continuous transfer of one bit:

|0̂0〉 → |0̂0〉

|1̂0〉 → cos τ |1̂0〉+ sin τ |0̂1〉 .
(2.19)

At τ = π/2, subsystem transfer has completed, but at intermediate stages the

two systems are entangled in a more complicated way and I(A : B) 6= 0.

As another illustrative example of non-saturating transfer, consider (2.7),

which we can characterize with our method of tracking information. Here, SB

increases, indicating information transfer to B. But, SA does not decrease com-
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mensurately – the information has not been transferred out of A. Instead, it

resides in correlations of the two systems.

Indeed, in (2.7) the evolution produces “extra” excitation, in that two bits are

in the excited state “1.” This is another sense in which the information transfer

is non-minimal. Saturation is a condition for minimal, direct transfer. Non-

saturation corresponds to production of “extra” entanglement, for a given amount

of transferred information.

To further illustrate these considerations, we might ask whether there is a

maximal departure from saturation, that is, one maximizing the mutual informa-

tion I(A : B). To begin with, a bound on this can be found as follows. Since the

combined state ρABC we consider is pure, the leftmost inequality (2.13) implies

SB = SAC . Then, the rightmost subadditivity inequality (2.13) implies

SB ≤ SA + SC = SA + ln |A| . (2.20)

Thus the mutual information satisfies the bound

I(A : B) = SA + SB − SAB ≤ SA + (SA + ln |A|)− ln |A| = 2SA . (2.21)

A unitary maximizes I(A : B) iff (2.20) is saturated. The complete state is

pure, so saturation of (2.20) implies saturation of strong subadditivity[43] (using

SAB = SC , SBC = SA),

SAB + SBC − SABC − SB ≥ 0 . (2.22)
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A lemma given in appendix B then implies that the unitary takes the simple form

1√
|A|
∑
i

|iA〉|iC〉|φB〉 → |ψAL〉 ⊗
1√
|A|
∑
i

|iR〉|iC〉 . (2.23)

Here B must decompose as B = HL⊗HR. The state |ψAL〉 is in A⊗HL, and has

no entanglement with C, and |iR〉 ∈ HR. Thus all the information has transferred

out of the subsystem A, but entanglement between A and B remains. Removing

the reference subsystem, this evolution is

|iA〉|φB〉 → |ψAL〉 ⊗ |iR〉 (2.24)

In the limit that SA → 0, HBL is trivial ; the result is saturating transfer

that transfers everything. This is consistent since I(A : B) ≤ 2SA = 0. This is

illustrated in fig. 1. Of course, SB ≤ ln |B|, so unitary evolution is only possible

if the final dimension of B is as large as the initial dimension of A.

Note also that deviation from saturation is bounded by the entropy SB. Specif-

ically, for the evolution (2.11),

I(A : B) = SB + (SA − log |A|) ≤ SB . (2.25)

2.2.4 Scrambling vs. transfer

We close this section by touching on another aspect of unitary evolution of

coupled subsystems. First, in considering general evolution (2.8), distinct forms of
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evolution are scrambling, and information transfer; moreover in time-dependent

evolution these can have different time scales. Scrambling of A[51, 52, 53] cor-

responds to mixing of the degrees of freedom of A, and thus is represented by a

local unitary. Note that its definition is basis dependent (as is the definition of a

scrambling time), since it can be undone by a unitary change of basis. Transfer

of information between the subsystems A and B, as we have described, may take

place on an independent time scale. (Of course, information transfer contributes

to scrambling of the composite system.)

Both can be relevant if we want to see how fast a given degree of freedom is

transferred, since that depends both on how fast it scrambles with the rest of A,

and on how fast the transfer from A to B takes place. The former dependence

is because scrambling can move a given bit into a subspace that then undergoes

transfer. These basic points arise in the context of models for black hole evolution.

2.3 Characterizing Unitary Black Hole Evolu-

tion

We now turn to discussion of how the preceding considerations apply in the

context of describing possible black hole evolution. Let us first summarize some

expectations and assumptions, following [17].

First, we assume unitary evolution of the form (2.8), coupling subsystems

corresponding to the black hole and its environment:

U : HBH ⊗Hext → HBH
′ ⊗Hext

′ . (2.26)
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We expect a sequence of such transformations, which might for example be pa-

rameterized by a quantity identified as “time at infinity.”

We assume that HBH decreases in dimension with evolution. One natural

proposal is that ln |HBH| is equal to the Bekenstein-Hawking entropy SBH(M)

corresponding to the decreasing mass of the black hole, although one may wish

to consider more general time dependence. This requires a significant departure

from the semiclassical picture, since the latter describes many more states of the

black hole. This can be seen by starting with a black hole of mass M0, and

describing it in a nice-slicing[19, 17]. After evaporation to M � M0, in the

nice slice description one has O(exp{S(M0)}) internal states, correlated with the

outgoing Hawking radiation.

Another apparently reasonable assumption is that the external Hilbert space

lies in a decomposition

Hext ⊂ Hnear ⊗Hfar . (2.27)

The idea behind this is that the states and evolution on Hfar are described by

LQFT, as long as we consider low energy states without strong gravity effects.

Evolution of the “black hole atmosphere” Hnear may depart from that of LQFT,

in particular through couplings to the states of HBH. A simplest alternative to

consider is that the states of Hnear are otherwise well-approximated by LQFT,

although other alternatives might be considered, for example in proposals with

large departure from semiclassical black hole geometry near the horizon[26, 38, 54].

Likewise, a simplest alternative is that the couplings between Hnear and Hfar are

well-approximated by LQFT evolution.

A key question is the evolution of HBH, and its coupling to Hnear. In LQFT,
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this evolution does not allow quantum information transfer from HBH to Hnear,

and this results in buildup of states in HBH. Thus, LQFT evolution needs to

be modified, along with the description of Hnear, noted above. Nonetheless, one

might seek a “most conservative,” minimal departure from LQFT in describing

this evolution. For example, we might expect the states of an infalling observer

and her immediate surroundings to be well-described by LQFT, until either they

impact strong curvature, in some gauge choices, or until a long time has elapsed

in other gauges such as the nice slicings. But, ultimately, unitary decrease in the

size of HBH requires information transfer to Hext, and this is apparently outside

a LQFT description. While such evolution seems to violate locality, it does not

necessarily violate causality[28].3

Thus, unless motivated otherwise by other compelling considerations, we seek

unitary evolution with minimal deviation from LQFT. Basic aspects of the semi-

classical approximation are the presence of the horizon, and that the atmosphere is

essentially featureless to an infalling observer; departure from this would seem sur-

prising. There is potential tension between this statement and the statement that

information is transferred into Hnear; for example, transfer into highly blueshifted

Hawking modes would lead to a large departure from the Hawking state, and po-

tentially painful effects for infalling observers. But, in the context of more general

unitary evolution, we can examine the proposal[29, 17] that information transfer

only occurs to “soft” states of Hnear, that is, those that correspond to quanta

of moderate wavelength, and thus to particles that an infalling observer doesn’t

3A brief explanation of this is that while in Minkowski space, Lorentz symmetry transforma-
tions can convert evolution outside the light cone into evolution backwards in time, the global
symmetries of a black hole background do not include such transformations – the black hole can
be thought of as choosing a frame.
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see as highly energetic. Then, with the required information transfer rates, the

alteration of the Hawking state can have minimal impact on these observers.

One expects that other physical requirements should be added to this list (see

e.g. [17]), but we next turn to discussion of some simple models of unitary black

hole evolution exhibiting some of these features, and the considerations of the

preceding discussion.

2.3.1 Page’s random unitaries, and subadditivity

An early description of one kind of unitary evolution is Page’s [31]. This anal-

ysis assumes that there are black hole and radiation subsystems, with respective

dimensions |HBH| = exp{SBH} and |Hrad| = exp{Srad}, and that these dimensions

change so that

N = |HBH| × |Hrad|, (2.28)

remains constant. Page does not describe more details of the states or dynamics,

but does consider properties of a random pure state in the product Hilbert space,

resulting from random unitary evolution. A particular question is the entangle-

ment entropy of such a state, as a function of the changing dimension |HBH|.

Under these conditions, he finds that the entropy of the radiation subsystem in-

creases, until the dimensions of the two subsystems become comparable, after

which the entropy of the radiation subsystem decreases to zero.

Since the dimension of the full Hilbert space remains constant under the uni-

tary evolution, and initially the radiation system is empty, we see that what is

being assumed is an example of subsystem transfer: degrees of freedom (or sub-
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systems) are being directly transferred from the BH subsystem to the radiation

subsystem. In particular, the entropies are at the maximum possible, given by

the dimensions of the subsystems, if all states are tracked with the auxiliary sub-

system.

2.3.2 Unitary models approximating LQFT

One would like to go further, and give a more detailed description of the

internal and external Hilbert spaces and their evolution, that ultimately fits in

a consistent framework for quantum gravity, and matches LQFT evolution in

appropriate circumstances. Specifically, we might investigate how these could

more-or-less closely match semiclassical expectations, such as benign evolution

for infalling observers, and radiation that approximates Hawking’s.

In the context of qubit models, [29] provides such examples, and [17] explains

how these are generalized to more realistic degrees of freedom.

One type of evolution is described in (4.18) of [17], and generalizations. The

simplified qubit version of this kind of evolution takes the form

|0̂〉|0̂〉|â〉|a〉 → Û |â〉 ⊗ N
(
|0̂〉|0〉+ e−βω/2|1̂〉|1〉

)
⊗ U |a〉

|0̂〉|1̂〉|â〉|a〉 → Û |â〉 ⊗ |0̂〉|1〉 ⊗ U |a〉

|1̂〉|0̂〉|â〉|a〉 → Û |â〉 ⊗ |1̂〉|0〉 ⊗ U |a〉

|1̂〉|1̂〉|â〉|a〉 → Û |â〉 ⊗ N
(
e−βω/2|0̂〉|0〉 − |1̂〉|1〉

)
⊗ U |a〉

(2.29)

for a single time step transferring one bit of information, with normalization factor

N = (1 + e−βω)−1/2 . (2.30)
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This evolution saturates subadditivity. This can be seen directly by defin-

ing |0̃〉|0̃〉 = N (e−βω/2|1̂〉|1̂〉 + |0̂〉|0̂〉) and |1̃〉|1̃〉 = N (e−βω/2|0̂〉|0̂〉 − |1̂〉|1̂〉). This

basis exhibits the evolution of (2.29) as subsystem transfer of one qubit. This

can also be seen more indirectly by noticing that this map includes all possible

states and preserves dimension. One way to describe this model is to say that

the usual Hawking pair that appears arises from an initial “vacuum” state of

the black hole. But, as the interior piles up with other states, either partners

of previously-emitted Hawking particles, or from infalling matter, the black hole

behavior changes. In the absence of rapid scrambling (which can be described via

Û), this model will take quite some time before the internal space starts coming

out, prolonging semiclassical behavior. With rapid scrambling, the information

begins to come out on the scrambling time scale, and in this sense the semiclas-

sical approximation breaks down equally quickly. This discussion illustrates the

separation between the roles of information transfer, and scrambling.

A second type of model is (4.19) of [17], and generalizations, whose simplified

qubit form is

|q̂1q̂2〉|â〉|a〉 → Û |â〉 ⊗ N
(
|0̂〉|0〉+ e−βω/2|1̂〉|1〉

)
⊗ |0̂′0̂′′〉|q′1q′′2〉 ⊗ U |a〉 . (2.31)

Here the information from internal degrees of freedom imprints on modes q′1, q
′′
2

that do not otherwise have large excitation in the Hawking state. This model does

not saturate subadditivity and so is not simple subsystem transfer. It can however

be thought of as a combination of subsystem transfer of the information of two

qubits, followed by Hawking pair production. In this sense, it is similar to (2.23).
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This model can be described by saying that Hawking production behaves normally,

but there is an additional flux of information (hence energy) from the interior of

the black hole. In the limit of a large black hole and slow evaporation rates, this

evolution can still be rather innocuous, and not introduce large stresses near the

horizon. A necessary condition for unitary evolution ending with a pure exterior

state is that the information transfer rate exceed the rate of new entanglement

being created by the Hawking pairs.

These models merely serve as particular examples; as noted they can be gen-

eralized to more realistic multi-mode models[17], and in the absence of further

constraints, evolution could even include both. We next turn to further com-

ments on general features of black hole evolution.

2.3.3 Scrambling and transfer

Section 2.2.4 makes the general distinction between information scrambling

and transfer in the context of interacting subsystems; let us consider their roles

when a black hole interacts with its environment. Note that one characteristic of

the two types of evolution is the timescale on which they operate. To illustrate

this, let us compare various semiclassical predictions with the unitary models that

we have described.

In the semiclassical description of black hole evolution first given by Hawking,

the transfer time is effectively infinite: the information never transfers to the

external state (though the calculation certainly fails once the black hole reaches

Planck size). The scrambling time, however, appears gauge-dependent, in accord

with the general discussion of sec. 3.4. Specifically, if we base our description
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on a set of “nice” spatial slices, which are chosen to avoid the strong curvature

region (for more details see [17]), the excitations have frozen time evolution on the

slice and in particular never scramble. On the other hand, if we use a “natural”

slicing[28, 17], such as described by observations of a collection of satellites freely

falling into the black hole, semiclassical evolution of inside particles terminates

on timescales ∼ R where they encounter strong curvature. It is not unreasonable

to assume that degrees of freedom then scramble, in the absence of a concrete

description. These nice and natural slicings are expected to be related by a unitary

transformation – modulo details of Planck scale dynamics.

For the Page dynamics summarized above, the scrambling time is short, as is

the transfer time. Namely, Page assumes the action of a general random unitary

on the internal state, and transfer that begins immediately. However, as Page

shows, the amount of information that is transferred out is very small until the

black hole and exterior subsystems are of comparable size.

In the models described in sec. 3.3, information transfer from internal degrees

of freedom is immediate. However, this does not mean that a given bit that has

fallen in (or is paired with an outgoing Hawking quantum) immediately begins to

transfer. At one extreme, consider (2.29) where Û is simply nice-slice evolution

of LQFT. A given bit then freezes, until it hits the leftmost position in the state,

and is transferred according to (2.29). If there are O(SBH) total bits, this can

take a time ∼ RSBH . Similar considerations hold for (2.31).

Alternately, Û could describe more rapid scrambling, resulting in more rapid

transfer of a given bit.4 If one only had the picture motivated by natural slices,

4After a long enough time, information of a given bit can be recovered on the scrambling
time scale [48].
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one might in fact conjecture rapid scrambling. But, if the nice slice picture is

valid, it suggests that there is a gauge where the scrambling is slow. While one

might consider transfer acting on any of the bits, generalizing (2.29) or (2.31), the

picture where they only transfer after a long time, when they have reached the

“leftmost” position, is in a sense “closest” to the vanishing transfer and scrambling

of the semiclassical nice-slice picture. Indeed, this can be motivated by noting

that there are arguments[55, 28] that the perturbative nice-slice state fails to

describe the black hole quantum state after a time ∼ RSBH . But, one can also

consider an intermediate continuum of more rapid scrambling and transfer times

in investigating models for the true non-perturbative dynamics.

2.3.4 The question of saturation

In describing information transfer from a black hole to its surroundings, a first

question to answer is how close the transfer is to the saturation of subadditivity,

described in section 3.2. As shown there, saturation implies that the information

transfer is simple subsystem transfer, essentially direct transfer of degrees of free-

dom (or quanta), whereas departure from this would indicate transfer involving

more complicated interactions. We have noted that either kind of transfer can be

described; the former was assumed in [31], but more detailed models are given for

both saturating and non-saturating evolution in [29, 17].

There are motivations for expecting that the information transfer is near sat-

uration. One reason for this is that, as noted in section 3.2, departure from

saturation involves extra excitation. If we imagine that information transfer from

a black hole is a small correction to semiclassical evolution, due to a weak effect,
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this suggests it involves minimal extra excitation.

A second argument arises from the discussion of section 4.5 of [17], and from

the discussion of section 3. Suppose that the information transfer from the black

hole to surroundings is only via couplings to Hnear, that is takes the form

1√
|A|
∑
i

|iC〉|iA〉 ⊗ |φnear〉 ⊗ |φfar〉 →
1√
|A|
∑
i

|iC〉 ⊗ U(|iA〉|φnear〉)⊗ |φfar〉 ,

(2.32)

and that subsequently information transfers unitarily to Hfar e.g. through evolu-

tion of LQFT form. If, as we have discussed, the relevant modes of Hnear span a

space with a relatively small dimension, as summarized in section 2.3, this limits

the departure from saturation. One can think of this limitation as arising from the

limited “bandwidth” of communication through Hnear to the rest of Hext. Specif-

ically, the constraint of small |Hnear| combined with (2.25) limits the deviation

from saturation at each step of the evolution. Essentially, information transfer

to the environment only results from interactions with the BH atmosphere, and

restricting the relevant modes of the latter limits the transfer and its deviation

from minimality.

Note that saturation of subadditivity is closely connected with the usual ther-

modynamic condition of statistical independence of subsystems; in particular, for

vanishing mutual information, SAB = SA + SB. For a hot body that radiates

subsystems (photons, etc.), one typically assumes such independence.

Also, we saw in (2.31) that deviation from saturation can produce extra energy

flux. Indeed, recall that in general SA + SB ≥ SAB = const., with equality

corresponding to saturation. So, deviation from saturation increases in a process

47



Quantum Information Perspective Chapter 2

where ∆(SA + SB) > 0. If energy is conserved, this corresponds to

dE

dSB
< − dE

dSA
. (2.33)

Specifically, if the energy per bit of excitation of B is ∼ β−1 ∼ 1/R, then

dE/dSA . −β−1. If so, the black hole can radiate all of its energy before SA

goes to zero, returning us to the paradoxes of remnants or information loss. The

only obvious way to avoid this is if in the non-saturating case, the typical excita-

tion energies of B quanta are lower than ∼ β−1.
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Effective Field Theory Models

If some effective nonlocality is operative on a scale ∼ R, then it plausibly al-

lows quantum information to transfer into modes further from the horizon than

a Planck distance, and potentially to modes out to a few times R, which form

the black hole atmosphere [29, 17, 27]. The transfer need not sharply stop at

the stretched horizon. This suggests a nonviolent alternative to the firewall pro-

posal advanced in [34]. Specifically, if the information content/entanglement of

modes is modified in such a soft, long-distance fashion, this does not necessarily

produce particles that the infalling observer sees as damaging, or that destroy

the horizon. The basic underlying assumption of this scenario is thus that the

unitarity-restoring corrections preserve the classical picture of the near-horizon

spacetime, to a good approximation, but may modify the outgoing radiation, in

order to transfer information, in a manner that does not do violence to this pic-

ture. This is specifically a violation of axiom 2 of black hole complementarity[56],

stating that evolution outside the horizon is described by local quantum field the-
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ory. This scenario is less radical than that of [34] both in being nonviolent, and in

not requiring fine-tuning of the nonlocal transfer. This is plausible, particularly

given that we may not know precisely where the horizon is; instead the nonlocal

information transfer ranges over a characteristic scale ∼ R.

To be believed, such a scenario needs to be subject to some consistency tests.

The problem of describing restoration of unitarity is remarkably constrained –

so much so that, as we have outlined, certain assumptions lead to unphysical

behavior[34]. An important – and sharp – question is thus whether there is “room”

for consistent modification of local quantum field theory that describes the quan-

tum information transfer necessary to save quantum mechanics, while at the same

time also preserving an approximate semiclassical picture.

A first step regarding such tests was giving more detailed models for the pro-

posed behavior[57, 58]. Ref. [58] in particular suggested modeling the physics in

an effective field theory framework, but with additional interactions that accom-

plish the transfer of quantum information needed to save unitary evolution. Such

a model gives a way to check various possible features of such a scenario. One

aspect to be checked is that of nonviolence – if the new interactions are sufficiently

large to transfer the needed information, for example at the minimum rate de-

scribed above, we would like to verify that they do not lead to large effects unduly

damaging infalling observers or the horizon. One would also like to check that

such a picture also gives a non-problematic story in the presence of black hole

mining[59, 60, 61, 62, 63], which provides an important test by enhancing black

hole decay rates. Another question regards correspondence: in the large-R limit,

where the vicinity of a black-hole horizon approaches flat space, one expects ob-
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servations of stationary observers to match onto the usual field-theory description

of accelerated observers[64]. Yet another set of constraints come from the need

for a consistent statistical/thermodynamic description[57, 65, 66], where one in

particular finds that generic enhancement of the black hole disintegration rate due

to the extra interactions indicates a black hole entropy smaller than that given by

Bekenstein and Hawking.

Responses to the first two questions – regarding nonviolence and mining – were

outlined in [58], and will be provided in further detail here. Specifically, after

giving a more detailed description of models for the proposed interactions and

of black hole metrics and modes, section two demonstrates the effect of a simple

example of such interactions on fields surrounding a black hole. Section three then

investigates the asymptotics of the resulting excitations, and the resulting stress

tensor, both at null infinity, and in the vicinity of the horizon. The latter shows

that for a wide class of interactions, the effect near the horizon is indeed nonviolent.

Specifically, section four shows that if the asymptotic flux of excitations is the

benchmark size to unitarize black hole disintegration, there is a corresponding

modest increase in the energy density in modes near the horizon. This energy

density decreases with increasing R – providing a test of correspondence.

Moreover, the new interactions are generically expected to couple to modes

with various angular momenta. If they do so with roughly uniform strength for

higher partial waves, there is very little effect on the black hole decay rate, due

to large gray-body suppression factors for asymptotic radiation. But, if mining

apparata are introduced into the black hole atmosphere, providing an additional

channel for excitations to escape, there is a commensurate increase in the rate
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that the interactions can transfer information to outgoing modes [58]. Further

details of this important consistency check in the presence of mining – which

demonstrates a natural mechanism to avoid the potential problem of “overfilling”

black holes with information – are also provided in section four. Section five closes

with discussion of generalizations of the simplified models explicitly treated in this

paper and with brief discussion of the generic extra energy flux, and then returns

to elaborate on the important question of correspondence.

3.1 The effective-source approximation

It has seemed increasingly apparent that local quantum field theory (LQFT)

cannot give a unitary description of black hole evolution, and that we must seek

a different, and more fundamental, framework. If that framework respects the

principles of quantum mechanics, one promising approach to its formulation is

through a structure of nested and overlapping quantum subsystems, giving a ver-

sion of localization that might approximate that of LQFT[17]. For example, the

Hilbert space describing a black hole and its environment might be contained in

a product of the form [29, 17]

H ⊂ HBH ⊗Hnear ⊗Hfar , (3.1)

where we have separate subsystems for the black hole, the near black hole “atmo-

sphere,” and states asymptotically far from the black hole. Further refinement of

the subsystem structure is also expected to be possible (see e.g. [66]). For a big

black hole and for many purposes, the states of this Hilbert space and evolution
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should be well-approximated by LQFT.

Of course, a departure from LQFT that apparently must become important for

even a large black hole is transfer of information[29, 17, 30] from the internal states

of the black hole to degrees of freedom that escape to infinity. For a sufficiently

old black hole, of radius R, such transfer must take place at a minimum rate of

at least one qubit per time R. Such transfer can be described in terms of unitary

evolution with an infinitesimal generator including terms of the form [57]

Htrans ∼
1

R
a†nearNabh + h.c. , (3.2)

with operators acting to annihilate excitations in HBH and create those in Hnear,

or vice versa (N is a transfer matrix). Alternatively, such dynamics could be

described by introducing bilocal1 contributions to the action[58],

SNL =
∑
AB

OAGABOB , (3.3)

where OA are operators acting on HBH, OB are operators acting on Hnear, and

GAB are coefficients describing the propagation between the two.2

For a big black hole over sufficiently short times, we expect that the statesHnear

of the atmosphere can be well-approximated via LQFT, and in particular that the

1Higher-order terms may also be present.
2A possible straightforward generalization is transfer to Hfar, but this involves a more signif-

icant departure from usual locality and will not be developed in this paper. Note in particular
that there are many more low-energy modes available at long distance that could carry the in-
formation, and that these could be e.g. populated at low temperature. These are not ordinarily
accessed near the black hole, due to the centrifugal barrier. But, nonlocal transfer to scales
� R would avoid this restriction. Also, OB in (3.3) may be generalized to act on “degrees of
freedom” just inside the horizon, in a more refined description[66].
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operators in (3.3) can be replaced by local operators of the theory, OB → Ob(x).

While terms like (3.2) or (3.3), need to give an O(1) perturbation to the Hawking

process, the latter is a very small effect for a large black hole. This suggests that

interactions of the required size can be treated as a perturbative correction to the

description of the dynamics via LQFT in a semiclassical background [58]. This

evolution is in particular nonlocal with respect to the causal structure defined by

the semiclassical background geometry.

While understanding the full unitary quantum dynamics is clearly very im-

portant, there are also important questions that largely depend only on how the

dynamics act on states near the horizon. In particular, there has been long-

standing awareness, sharpened in [5, 27, 7, 29, 17], that interactions that transfer

information from the black hole interior to short-wavelength excitations near the

horizon produce high-energy particles as seen by the infalling observer, and are

typically expected to destroy the horizon. To avoid such violence, [29, 17, 57]

postulated that the information transfer (which can be characterized in terms of

entanglement transfer[48, 30, 67]) is instead to excitations at longer wavelengths,

up to scales ∼ R.

The question of whether nonviolent information transfer to such longer-wavelength

modes can be accomplished, with sufficient magnitude to restore unitarity to black

hole disintegration, and without destroying the horizon or infalling observers, is

largely dependent on how interactions such as (3.3) act on the state outside the

black hole. For the purposes of investigating this question, one may make an

additional approximation, and replace the operators in (3.3) that depend on the
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internal state of the black hole by sources in the external field-theory action:

SNL →
∑
Ab

∫
dV4OAGAb(x)Ob(x)→

∑
b

∫
dV4Jb(x)Ob(x) , (3.4)

where dV4 is the volume element and Ob(x) acts on fields near the black hole.

While in the more fundamental description (3.3) the sources Jb correspond to op-

erators dependent on the black hole internal state and dynamics, for investigating

the information-relaying capacity of such interactions, and characterizing their

effects on modes and observers near a black hole horizon, these sources may for

many purposes be approximated as external, classical sources. We refer to this as

the effective source approximation.

Ultimately the unitary mechanics underlying quantum gravity should deter-

mine the interactions (3.3) and which operators they couple to in an effective de-

scription (3.4). Given the universality of gravity – and the need to conserve gauge

charges – one interesting possibility is a coupling of the form JµνTµν . However,

to investigate basic features of such interactions, for present purposes we con-

sider linear couplings to field operators. As we will find, such couplings illustrate

important points of principle, and in particular the possibility of transmitting

the necessary information without doing violence to the horizon or to infalling

observers.

For simplicity, let us again consider a single massless scalar field. We will

consider the simple model of an effective source that couples linearly to this scalar
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field, through a term in the lagrangian

SJ = −
∫
dV4J(x)φ(x) . (3.5)

Important questions will include 1) what J(x) would produce sufficient excitation

to carry out the quantum information necessary to unitarize black hole disintegra-

tion, including in the possible presence of black hole mining[59, 60, 61, 62, 63, 34],

and 2) what effects does such a J(x) have on the atmosphere of the black hole,

and on observers falling through that atmosphere.

A first approach to answering the preceding questions is to find the quantum

stress tensor resulting from a source like (3.5). The stress tensor for the scalar

field φ takes the form

Tµν = − 2√−g
δS[φ]

δgµν
= ∂µφ∂νφ−

gµν
2

[
(∂φ)2 + 2Jφ

]
. (3.6)

Before the source (3.5) is introduced, we assume that the black hole is in a state

|0〉 which could be either the Unruh or Hartle-Hawking vacuum. Such a vacuum

results in an outgoing Hawking flux, which can be seen by calculating, with a

careful regulator,

〈0|Tµν |0〉 = Tµν . (3.7)

The effect of the source (3.5) can be described by treating it as a perturbation,

and working in the interaction picture. In its presence, the state outside the black

hole becomes

|J, t〉 = T exp
{
− i
∫ t

dV ′4J(x′)φ(x′)
}
|0〉 , (3.8)
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where time ordering is performed with respect to a choice of time slicing of the

exterior geometry of the black hole. For such a linear coupling in the field, the time

ordering can be removed at the price of a c-number phase β(t) (see appendix):

|J, t〉 = eiβ(t) exp
{
− i
∫ t

dV ′4J(x′)φ(x′)
}
|0〉 . (3.9)

For both the Unruh and Hartle-Hawking vacua, the field has vanishing expectation

value, 〈0|φ(x)|0〉 = 0. However, with the source the field picks up an expectation

value,

φJ(x) ≡ 〈J, t|φ(x)|J, t〉

= 〈0|φ(x)|0〉+ 〈0|
[
φ(x),−i

∫ t

dV ′4J(x′)φ(x′)

]
|0〉

=

∫
dV ′4GR(x, x′)J(x′) ,

(3.10)

where the retarded Green function is

GR(x, x′) ≡ −iθ(t− t′) [φ(x), φ(x′)] . (3.11)

Note that φJ behaves like a classical field; in particular, due to vanishing equal-

time commutators, ∂µφJ(x) is equal to 〈J, t|∂µφ(x)|J, t〉. The two-point functions

in (3.6) then have a simple form, following from

ei
∫ t Jφ∂µφ(x)∂νφ(x)e−i

∫ t Jφ
=
[
ei

∫ t Jφ∂µφ(x)e−i
∫ t Jφ] [ei ∫ t Jφ∂νφ(x)e−i

∫ t Jφ]
= [∂µφ(x) + ∂µφJ(x)] [∂νφ(x) + ∂νφJ(x)] .

(3.12)
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The change of the expectation value of the stress tensor (3.6) due to J then follows

〈J, t|Tµν |J, t〉 = 〈0|ei
∫ t Jφ [∂µφ∂νφ− 1

2
gµν (gρσ∂ρφ∂σφ+ 2Jφ)

]
e−i

∫ t Jφ|0〉
= Tµν + Tµν [φJ ] ,

(3.13)

where Tµν [φJ ] is (3.6) evaluated with φ = φJ given by (3.10). This gives the

extra flux resulting from J , which is similar to that of a classical field on top of a

quantum background.

Equation (3.13) has an important implication. Specifically, such a classical

field produces a positive flux of energy at infinity. This means that extra interac-

tions like (3.5) would increase the decay rate of the black hole above the Hawking

rate[17, 30, 57, 58]. Such an extra flux has potentially important consequences

for black hole statistical mechanics[66].

To determines the stress tensor through (3.13), we next calculate φJ . Specif-

ically, from the mode expansion (1.11) and the commutators (1.18), eq. (3.11)

determines the retarded Green function as

GR(x, x′) = −iθ(t− t′)
∑
Alm

∫
dω

2π2ω

[
UA
ωlm(x)UA∗

ωlm(x′)− c.c.
]
. (3.14)

(Unless otherwise noted, ω integrals are over the positive reals, and all other

integrals are over the full domain – e.g. reals for one-dimensional integrals or R4
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for volume integrals.) Thus, from (3.10), φJ becomes

φJ(x) = −i
∫ t

dV ′4J(x′)
∑
Alm

∫
dω

2π2ω

[
UA
ωlm(x)UA∗

ωlm(x′)− c.c.
]

= −i
∑
Alm

∫
dω

2π2ω

[
αAωlm(t)UA

ωlm(x)− c.c.
]
,

(3.15)

with coefficients α defined as

αAωlm(t) =

∫ t

dV ′4U
A∗
ωlm(x′)J(x′) . (3.16)

Let J be given by the mode expansion

J(x) =
∑
lm

∫
dω

2π
jωlm(r)e−iωt

Ylm(Ω)

r
+ c.c. , (3.17)

and introduce the notation

〈a(r), b(r)〉 =

∫ ∞
−∞

fa∗(r)b(r)dr∗ =

∫ ∞
R

dra∗(r)b(r) . (3.18)

Then, the coefficients become

αAωlm(t) =

∫ t

dt′
∫
dω′

2π

[
〈uAωl, jω′lm〉ei(ω−ω

′)t′ + (−1)m〈uAωl, j∗ω′l−m〉ei(ω+ω
′)t′
]

=

∫
dω′

2π

[
〈uAωl, jω′lm〉

ei(ω−ω
′)t

i(ω − ω′) + ε
+ (−1)m〈uAωl, j∗ω′l−m〉

ei(ω+ω
′)t

i(ω + ω′) + ε

]
,

(3.19)

where in the last equality we introduce the small convergence factor ε > 0 to
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regulate the integrals. Thus, the expression (3.15) for φJ becomes

φJ(x) = −
∑
Alm

∫
dω

2π2ω

dω′

2π

[ 〈uAωl, jω′lm〉
ω − ω′ − iεu

A
ωl(r)e

−iω′tYlm(Ω)

r

+ (−1)m
〈uAωl, j∗ω′l−m〉
ω + ω′ − iε u

A
ωl(r)e

iω′tYlm(Ω)

r
+ c.c.

]
.

(3.20)

3.2 Asymptotics

We would next like to determine the asymptotic form of φJ , and the corre-

sponding stress tensor, both at r, r∗ →∞ and near the horizon, r∗ → −∞. First

consider r∗ → ∞. The asymptotic form can be found by using the future basis.

Inserting its asymptotic behavior (1.15) into (3.20) and using the coordinates x±

of (1.8) gives

φJ → −
∑
lm

∫
dω

2π2ω

dω′

2π

{
Ylm
r

[(
〈 ~ufωl, jω′lm〉T ∗ωl + 〈~ufωl, jω′lm〉 ~R

∗
ωl

) ei(ω−ω′)(−r∗)e−iω′x+
ω − ω′ − iε

+ (−1)m
(
〈 ~ufωl, j∗ω′l−m〉T ∗ωl + 〈~ufωl, j∗ω′l−m〉 ~R

∗
ωl

) ei(ω+ω′)(−r∗)eiω′x+
ω + ω′ − iε

+ 〈~ufωl, jω′lm〉
ei(ω−ω

′)r∗e−iω
′x−

ω − ω′ − iε + (−1)m〈~ufωl, j∗ω′l−m〉
ei(ω+ω

′)r∗eiω
′x−

ω + ω′ − iε

]
+ c.c.

}
.

(3.21)
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This expression is simplified using the distributional identities:

2πδ(ω) = lim
t→∞

−ieiωt
ω − iε (3.22)

0 = lim
t→−∞

−ieiωt
ω − iε . (3.23)

The second of these implies vanishing of the first and second rows of (3.21), and

the first, together with ω, ω′ > 0, implies vanishing of the last term of (3.21),

giving the r∗ →∞ result

φJ → −i
∑
lm

∫
dω

2π2ω

[
Ylm
r
〈~ufωl, jωlm〉e−iωx

− − c.c.

]
. (3.24)

Similar steps can be applied to derive the behavior as r∗ → −∞:

φJ → −i
∑
lm

∫
dω

2π2ω

[
Ylm
R
〈 ~ufωl, jωlm〉e−iωx

+ − c.c.

]
. (3.25)

Let us first consider the asymptotic form of the stress tensor T [φJ ] at infinity,

r∗ → ∞. Specifically, the outgoing flux is given by the components T−−, in the

coordinates x±. The time-average of this flux follows from (3.13) and (3.24),

∫
dtT−− →

∫
dt

(∑
lm

∫
dω

4π

[
Ylm
r
〈~ufωl, jωlm〉e−iωx

−
+ cc

])2

=
∑
ll′mm′

YlmY
∗
l′m′

r2

∫
dω

4π
〈~ufωl, jωlm〉〈~ufωl′ , jωl′m′〉∗ ,

(3.26)
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and integrating over angles yields the total radiated energy

E =

∫
r�R

dt r2dΩT−− =
∑
lm

∫
dω

4π
|〈~ufωl, jωlm〉|2 . (3.27)

The source J also produces a flux into the black hole, which may be found

by similarly computing the r∗ → −∞ behavior of T++, using (3.25). This gives

integrated flux

∫
dtT++ →

∫
dt

(∑
lm

∫
dω

4π

[
Ylm
R
〈 ~ufωl, jωlm〉e−iωx

+

+ cc

])2

=
∑
ll′mm′

YlmY
∗
l′m′

R2

∫
dω

4π
〈 ~ufωl, jωlm〉〈 ~ufωl′ , jωl′m′〉∗ ,

(3.28)

and total absorbed energy

E =

∫
r=R

dtR2dΩT++ =
∑
lm

∫
dω

4π
|〈 ~ufωl, jωlm〉|2 . (3.29)

We will investigate the size of these fluxes in the next section, in scenarios

where the outward flux is large enough to carry the needed information away

from the black hole. But, before doing that, there is another important check.

Specifically, if there is an outward flux present that is traceable back to the horizon,

due to infinite blueshift that flux becomes singular at the horizon, as described

in [5, 27, 7, 29, 17, 34]. Thus, to parameterize a “nonviolent” scenario where the

horizon is regular, as seen by infalling observers, we need to check that the J ’s we

consider do not produce such a singular flux.
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3.3 Nonviolent horizon

The infinite blueshift witnessed by infalling observers is readily understood by

transforming from the x± coordinates to Kruskal coordinates X±, through the

relation

X± = ±2Re
±x±
2R

. (3.30)

While the x− coordinates are singular at the future horizon, the Kruskal coordi-

nates are non-singular coordinates for observers falling through the horizon. From

(3.30), we find ∂X−/∂x− = e−x
−/2R = −X−/2R. Thus,

TKrusk
−− =

(
2R

X−

)2

T−− (3.31)

will be singular unless the outward flux T−− vanishes at least as rapidly as (X−)2

at the horizon, X− = 0.

To check this, we examine the behavior of

∂X−φJ = ex
−/2R∂−φJ (3.32)

near the horizon. φJ satisfies the classical equation of motion,

∇2φJ = J . (3.33)

Expanding in partial waves,

φJ =
∑
lm

φlm(t, r∗)
Ylm(Ω)

r
, J =

∑
lm

jlm
Ylm(Ω)

r
, (3.34)
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this becomes [
−∂2t + ∂2r∗ − Vl(r)

]
φlm = f(r)jlm , (3.35)

with f given in (1.3) and Vl given in (1.14). This reduces the problem to a

collection of 1+1-dimensional problems. To reduce clutter, we will fix l,m for the

remainder of this section, and suppress these subscripts. Thus (3.35) becomes

− 4∂+∂−φ− V φ = fj . (3.36)

With the problem rewritten in terms of the potential (3.35), (3.36), the basic

idea is that at a fixed point (t, r∗0) near the horizon, the right-moving piece ∂−φ

receives contributions from two places: the source J that is located to the left

of r∗0, and left-moving waves sourced to the right of r∗0 that then reflect off of

the potential V and become right-moving. Since the potential is small near the

horizon (see (1.14)), we will treat it perturbatively, and correspondingly expand

φ = Φ0 + Φ1 + · · · .

To zeroth order in V , (3.36) has solution

∂−Φ0 = −1

4

∫ x+

−∞
dx+fj = −1

4
e−x

−/2R

∫ x+

−∞
dx+

R

r
e1−r/Rex

+/2Rj , (3.37)

where we have used (1.6). This implies

∂X−Φ0(x
−, x+) = −1

4

∫ x+

−∞
dx+

R

r
e1−r/Rex

+/2Rj(x−, x+) (3.38)

is finite, i.e. the horizon is regular, as long as the latter integral is finite, which

will be true if J(x−, x+) is smaller than exp{−x+/(2R)} as x+ → −∞.
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The first-order equation is

− 4∂+∂−Φ1 = V Φ0 , (3.39)

which likewise implies

∂X−Φ1 = −1

4

∫ x+

−∞
dx+

R

r
e1−r/Rex

+/2RV

f
Φ0 . (3.40)

In this equation, the r-dependent factors are approximately finite constants near

the horizon (see (1.14)), and the integral converges for any finite Φ0. One may

likewise proceed to find finite higher-order contributions to the solution. We see

from (3.34) that ∂X−φJ has an additional term,

∂X−φJ =
∑
lm

(
∂X−φlm + φlm

f

2r

∂x−

∂X−

)
Ylm
r
→
∑
lm

∂X−φlm
Ylm
R

+
φJ
2R

ex
+/2R .

(3.41)

but that this is also finite near the horizon.

In summary, we find that there are explicit factors in each of the contributions

to φJ , which cancel the potentially divergent behavior at the horizon, x− → ∞.

As a result, for sufficiently regular J , the outward flux T−− near the horizon is

finite, and the configuration is nonviolent to infalling observers.3 Regularity of

T+− can likewise be checked.

Note that one obtains finite stress tensor near the horizon even though a

3Note that violence to infalling observers is relative – even Hawking radiation is violent, for
a sufficiently small black hole. But effects scaling to zero as a power of R will be taken to be
nonviolent.
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generic J of the form (3.17) is singular at the horizon. To see this, note that

e−iωt =

(
X+

−X−
)−iωR

. (3.42)

Thus, ∂X−e
−iωt is divergent at the horizon, X− = 0. This behavior may be im-

proved if jωlm(r) are chosen so that J vanishes at the horizon, say as a power

(X−)p, though even then (3.42) shows that the source is singular. While such sin-

gular but simple sources are nonetheless useful for illustrating the general results

of couplings (3.5), an additional condition of regularity in the Kruskal coordi-

nates X± may be imposed. Of course, as explained in section two, these classical

sources are merely parameterizations of the effects that arise from the couplings

(3.2), (3.3) between the modes in the black hole atmosphere and the internal black

hole states. These are likewise expected to be regular.

An alternate way to characterize the absence of violence at the horizon is in

terms of a condition on the state that is created by the nonlocal interactions. In

particular, we can write a “no-firewall condition” as

ai|J〉 ' 0 (3.43)

(with obvious generalization to states created by the more basic interactions (3.3))

where ai is any annihilation operator corresponding to a Kruskal mode that an

infalling observer would see as a high-energy mode when crossing the horizon.
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3.4 Examples, Magnitudes, and Consistency Checks

To understand the size of effects due to effective sources, consider the simple

illustrative example

J(x) =
∑
lm

j0lmθ(2R− r)e−iωlmt
Ylm(Ω)

r
+ c.c. , (3.44)

where the j0lm are constants; the step function cuts the source off at r = 2R. The

resulting asymptotic flux is given by (3.26), (3.27), with coefficients 〈~ufωl, jωlm〉

given by (3.18) and modes as pictured as in 1.1. The mode ~ufωl in the range

r < 2R has size governed by the transmission factor Tωl. For Rω � l, this factor

is very small; we return to this case shortly. For Rω & l the potential barrier has

much less effect, |Tωl| ∼ 1.

To make order-of-magnitude estimates at small l, we thus simply approximate

the potential as vanishing, and so take Tωl = 1. Then,

〈~ufωl, jωlm〉 ∼
j0lm
−iωlm

e−iωlmR2πδ(ω − ωlm) . (3.45)

From (3.27), this corresponds to a total radiated energy per unit time

dE

dt
∼
∑
lm

(j0lm)
2

ω2
lm

. (3.46)

3.4.1 Outgoing Flux

As described previously, the source J is really a placeholder for the more com-

plicated interactions responsible for transferring and emitting quantum informa-
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tion from the black hole. In order for black hole evaporation to be unitary, a basic

benchmark rate for such transfer is one qubit is emitted per time R, corresponding

to the rate of emission of Hawking quanta,

1

TH

dE

dt

∣∣∣
bench

∼ 1

R
, (3.47)

where TH is the Hawking temperature. Thus, excitations are created with suffi-

cient bandwidth to carry the needed information if

j0lm ∼
ωlm
R

(3.48)

for the relevant modes. In particular, note that if quanta are emitted with ωlm

appreciably different from 1/R, but with the same energy flux, the rate of emis-

sion is dE/(ωlmdt) but each quantum carries ωlmR times more entropy in timing

information, so the rate of information transfer is essentially unchanged.

Specifically, suppose as an example that ωlm ∼ 1/R. Then only a few of the

lowest-l modes have significant transmission, and with

j0lm ∼ 1/R2 , (3.49)

they can carry enough information to restore unitarity. If we suppose that inter-

actions of size (3.49) are present even for modes with l� 1 and frequency ∼ 1/R,

that has very little effect on the energy and information that can be transmitted

to infinity. Indeed, through 〈~ufωl, jωlm〉, the flux (3.27) in such modes will be sup-

pressed by an extra factor |Tωl|2 relative to (3.46); this is easily seen from 1.1 and
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the assumption that jωlm is insignificant except near the left side of the barrier.

For Rω � l, the transmission factors have approximate size[68, 69]4

|Tωl| ∼ 2(Rω)l+1 l!2

(2l)!(2l + 1)!!

√√√√ l∏
n=1

[
1 +

(
2Rω

n

)2
]
. (3.50)

Using Stirling’s approximation and ignoring the square root,5 these are approxi-

mately

|Tωl| ∼ Rω

√
π

2l

(e
8

)l(Rω
l

)l
(3.51)

and they thus give contributions to (3.46) suppressed by a large power of Rω/l.

For a somewhat different example, suppose that

〈~ufωl, jωlm〉 = j(ω)Tωl , (3.52)

independent of l and m. In this case, the radiated energy (3.27) can be written

in terms of the absorption cross section at frequency ω,

σabs(ω) =
π

ω2

∞∑
l=0

(2l + 1)|Tωl|2 . (3.53)

Specifically,

E =

∫
dω

4π2
ω2|j(ω)|2σabs(ω) . (3.54)

The Hawking flux is of the same form, with the replacement |j(ω)|2 → 2ωδ(0)/(eω/TH−
4Technically, this expression is only valid for Rω � 1, but WKB gives a similar estimate of[

e
8

Rω√
l(l+1)

]√l(l+1)

e
3π
2 Rω

[
1 +O

(
R2ω2√
l(l+1)

)]
– see appendix B.

5The square root is bounded from above by
√

sinh(2πRω)
2πRω .
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1). For Rω & 1
2
[70]

σ ∼ 27πR2

4

[
1− 8πe−πsinc

(√
27πRω

)]
(3.55)

and for Rω . 1
2

[71],

σ ∼ 4πR2 . (3.56)

3.4.2 Ingoing Flux

Sources like we have described also contribute to an ingoing radiation flux

raining down on observers just outside the horizon,6 described by (3.29). Inspec-

tion of 1.1 shows that in the example (3.44) this flux has, for each l,m, a similar

magnitude to (3.46), with no suppression from the transmission factor Tωl. This

corresponds to an energy density E per mode of size j2lm/ω
2
lm, or, in the example

ωlm ∼ 1/R, with rate from (3.49), E ∼ 1/R4 per mode – the rain is red, in the

large-R limit. Again, as an example, if interactions are present for all l ≤ lmax,

the total resulting local energy density near the black hole is of size

E ∼ l2max
R4

. (3.57)

This result is important in order to derive a correct correspondence limit for

the nonlocal mechanics responsible for the information transfer. Specifically, we

might expect that effects that depart from the LQFT description should vanish

6We thank R. Bousso for discussions on this point.
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in the R → ∞ limit, since this limit is conventionally viewed as yielding flat

space with the black hole exterior asymptoting to Rindler space. For lmax ∼ Rk

with k < 2, the local energy density vanishes in this limit. In particular, note

that the maximal mining rate[72] (for more on mining, see below) corresponds to

introducing ∼ R cosmic strings, and a benchmark for this is

lmax ∼
√
R . (3.58)

The corresponding [58] extra energy density from (3.57) is then ∼ 1/R3.

It is true that an accelerated observer hovering just outside the horizon sees a

blue-shifted version of the energy density (3.57); specifically, the transformation of

the stress tensor to orthonormal coordinates for an observer at r0 gives an energy

density of size

Ē ∼ l2max
f(r0)R4

. (3.59)

However, such an observer experiences an Unruh temperature TH/
√
f(r0) =

a/(2π), with proper acceleration a, and with a corresponding energy density[59]

ĒUn ∼
1

f 2(r0)R4
∼ a4 . (3.60)

Thus, in the large-R limit, the size of (3.59) relative to this characteristic energy

is

Ē ∼ l2max
R2a2

ĒUn . (3.61)

For lmax � R, as in (3.58), and R → ∞ with a fixed, this contribution is thus

negligible by comparison to the effects of the Unruh radiation.
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3.4.3 Mining and avoiding overfull black holes

The phenomenon of black hole mining[59, 60, 61, 62, 63] poses a challenge[34]

to scenarios for unitary black hole evolution, since it allows a black hole to shrink

faster than found by Hawking. In particular, suppose that a black hole has reached

a time where the entropy of its radiation equals that describing the number of

its internal states; if the later is SBH this is the Page time[31, 32].7 If a mining

apparatus is introduced – a very concrete example is a cosmic string – the resulting

enhancement of the black hole evaporation suggests the possibility of arriving at

the inconsistent situation where the entropy of the black hole is smaller than its

entanglement entropy with the outgoing radiation; we refer to this as an “overfull”

black hole[58]. Of course, what this would really mean, in a quantum mechanical

scenario, is that the black hole has more than the expected number of internal

states; the final outcome, once the black hole finishes evaporating, would be a

Planck-scale remnant, with the resulting inconsistencies[73, 3, 13, 14]. For this

reason, we expect that, in a consistent scenario, the flux of quantum information

out of the black hole should increase commensurately with the increased rate of

black hole decay due to mining.

The presence of interactions modeled by sources like those described earlier in

this section directly addresses this problem. Mining corresponds to introducing

an additional channel for Hawking radiation to flow out of the black hole. In the

concrete example with a cosmic string, it changes the spectrum of the theory such

7As described in [29, 17, 30, 57, 58], the interactions necessary to restore unitarity to black
hole evaporation may imply extra flux and thus [66] Sbh < SBH , where Sbh is the actual black
hole entropy and SBH is the Bekenstein-Hawking entropy, making the corresponding time earlier
than the Page time.
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that there are additional modes whose potential barriers to escaping the black hole

are suppressed. If there are couplings of the form (3.5) (or more generally, (3.2),

(3.3)) to all such fields that can be mined, and these include in particular the

higher-l couplings described above, then opening the extra channel also allows an

additional flux of information-bearing excitations created by the source J . In par-

ticular, couplings with strengths corresponding to effective sources of size (3.48)

are parametrically large enough to yield sufficient information transfer, to match

the enhanced decay rate of the black hole. Thus the presence of such couplings

gives an in-principle way to avoid the potential problem of overfull black holes re-

sulting from mining. These couplings to higher-l modes provide a straightforward

mechanism to enhance information flow precisely when mining is performed. This

at least partially addresses the “implausible conspiracy” objections of [34]S.

Note also that higher-l interactions like we have described only create appre-

ciable excitation of outgoing excitations when a mining channel is opened, e.g. by

introducing a cosmic string. This may be relevant to discussions[74] that suggest

a special role for “mineable modes.” Before the mining apparatus is introduced,

such modes are not excited and play no obvious special role in the dynamics; in

particular, they do not “carry” the extra quantum information that escapes once

mining does take place.

It also can be noted that the methods of this paper provide a way to eval-

uate putative scenarios involving manipulation of mined energy/information[34].

Specifically, such manipulations are described, in LQFT, in terms of interactions

of the form (3.4), which parameterize the interaction between an experimental

apparatus (“external source”) and the modes being manipulated. This provides
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a means to assess the considerable inherent limitations of such scenarios.

3.5 Generalizations, extra flux, correspondence,

and causality

While explicit calculations have been performed using an effective source of

the form (3.5), we stress that this merely serves to illustrate some basic features

of the possible information transfer from a black hole. Again, we expect that

this transfer could arise in a more fundamental description of quantum gravity,

which may well not be based on a fundamental spacetime picture. We do expect

that a spacetime picture gives a good approximate description of a large black

hole, for many purposes. However, transfer of information from the black hole

states to excitations that escape to infinity is not described by LQFT. We may

attempt to parameterize it, as a departure from the LQFT dynamics, in terms of

interactions of the form (3.3). Then, for the purposes of considering the effects

of such interactions on the region exterior to the horizon, we make a further

approximation of replacing the interactions by effective sources of the general

form (3.4).

In a complete description of the black hole dynamics, we might expect cou-

plings of such interactions to other operators in the theory, which are more general

than those to the fundamental field operators in (3.5) (indeed, care is needed to

enforce charge conservation for couplings of the latter form). As noted, a specific

and potentially interesting example, given the universal nature of gravitational

phenomena, is a coupling to the stress tensor. A coupling of the form JµνTµν
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would excite modes in all fields. Indeed, one way to regard the Hawking radia-

tion is as induced from such a coupling between the the non-trivial metric of the

black hole, and the stress tensor. If additional such couplings are present and

responsible for the information transfer from the black hole, we may even think of

them as analogous to couplings to extra fluctuations of the metric, e.g. reminis-

cent of horizon fluctuations. We expect important features of such couplings to

be represented by the behavior of the Jφ couplings we have investigated. These

in particular include the possibility of transmitting, via such couplings, informa-

tion from the black hole states, at a sufficient rate, without producing singular

behavior at the horizon.

An important point[17, 30, 57, 58] is that generically such couplings produce

extra energy flux, beyond that of Hawking, increasing the black hole disintegration

rate. Specifically, the change in the asymptotic flux for our present example (3.5)

is, from (3.13),

T−−[φJ ] = (∂−ΦJ)2 . (3.62)

Such an increased decay rate has important consequences for the statistical me-

chanics and thermodynamics of black holes[66], and in particular indicates a

smaller number of black hole states, with corresponding entropy Sbh, than given

by the Bekenstein-Hawking entropy SBH . A question is whether this conclusion

can be avoided, due to special such couplings that do not produce extra flux[75].

A key question, in pursuing a more basic description of the quantum physics

incorporating gravity, is that of correspondence [76]: specifically, if such mechanics

departs from LQFT, it should be well-approximated by LQFT in appropriate

limits, including, e.g., regimes probed so far by experiment. For a black hole of
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size R, there are at least two such limits of interest.

In the first, we consider phenomena at large distance from the black hole.

For these, we might anticipate that LQFT gives a good description, as long as

we don’t for example consider states where strong gravitational effects become

relevant to longer scales than R. This in particular motivates the assumption

that quantum information transfer from the black hole involves effects departing

from LQFT on scales of size R, but not at much larger distances – in contrast

to other proposals. The latter include proposals with delocalization on enormous

scales, such as A = RB[77, 78, 79] or ER=EPR[36]. If departures from standard

locality are only operative on scales R, this also indicates how the new effects

could contribute to virtual processes, without leading to larger-scale violations

of locality which could be problematic for causality. Specifically, nonlocalities on

scale R do not necessarily imply violation of causality at scales large as compared

to the black hole [28], providing a way to avoid possible paradoxes due to such

real or virtual black hole effects.

In a second such limit we investigate the vicinity of a large black hole, on scales

small as compared to the black hole. Here, in classical gravity the equivalence

principle would tell us that a small region near the black hole is only distinguish-

able from flat space if we measure effects sensitive to the scale R, such as tidal

effects. If the new mechanics are not based on a classical geometrical description,

the correct formulation of the equivalence principle is not clear though it may arise

from a deeper symmetry principle of the more basic theory. This means that we

do not necessarily expect its classical formulation to hold as an exact statement

in quantum gravity. However, correspondence does suggest that departures from
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LQFT should likewise vanish parametrically in R for smaller-scale observations

near a large black hole – in contrast to assertions of [34, 65] and to expected prop-

erties of other scenarios [54]. We have shown, in section four, that it is possible

to introduce interactions with sufficient information carrying capacity to transfer

the necessary quantum information, and which also have this property of scaling

away in the large-R limit.

Thus, scenarios such as those of [34] and [54] make the would-be horizon a

special – and likely violent – place, implying major departure from the equiva-

lence principle, and also calling into question derivation of the Hawking radiation

and black hole thermodynamics. In a nonviolent scenario the deviations from

field theory evolution in a semiclassical background only lead to departure from

the equivalence principle which make the black hole atmosphere a special place.

Moreover, the departure is only through “dilute” effects that scale away in the

limit of large black holes. If this picture is correct, the equivalence principle as

currently formulated remains true in an approximate sense – as might be expected

of a statement about classical spacetime.
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Conclusion

As one can see, the naive semiclassical description of blackhole formation and

evaporation leads to an inconsistency. Resolving it requires one to modify some

combination of unitarity, relativity, or locality. To be conservative, we wish to

modify only one of them, and to have minimal impacts in areas that have been

thoroughly experimentally tested, for instance the standard model. The possibility

pursued in this paper is locality violations at intermediate scales defined by the

black hole in question.

Our first approach was to investigate the situation from a quantum informa-

tion theoretical perspective. Nonviolence at the horizon requires a very specific

entangled state near the horizon, and it is the unbounded growth of this entan-

glement that leads to the paradox. Naturally, one might want to tweak this state

with admixtures of other entangled states, but this is proven to not fix the prob-

lem. Since that doesn’t work, we need a way to describe evolution that does.

One technique to track information is to tensor on a copy of the relevant sub-
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system, and initialize the state to one that has maximal entanglement between

the subsystem and its copy. The entropy of this subsystem then corresponds to

how much information is still there. For evolution where information leaves, this

quantity decreases to zero. A crucial quantity for characterizing this evolution is

the mutual information between the subsystem and its complement (but not the

copy). Minimizing this quantity leads to a familiar notion of subsystem transfer.

In the black hole context, it is argued to be not large.

Our next approach was then to construct a possible effective field theory model

for nonlocal evolution. Just like the fact that radio waves from an antenna can

be modeled as originating from a classical source, the radiation resulting from

nonlocality near the horizon can also be modeled similarly. This takes the form of

a minimal coupling between a classical source and the field. The field then picks

up an expectation value, from which the stress energy tensor can be calculated.

To get information out at a reasonable rate, the source has to have some char-

acteristic size. Assuming this characteristic size, one can do order of magnitude

consistency checks. The horizon is no longer empty, but remains nonviolent, as

claimed. Generically, there is also ingoing radiation, which is potentially falsifiable

with better observational data. However, it is parametrically smaller than Unruh

radiation for a hovering observer. A final consideration is black hole mining, a

process which can make black holes evaporate faster. It is argued that our model

can accommodate mining consistently.

Completely resolving the paradox will likely require observational evidence. It

has been suggested [80] that if signatures of deviations from classical gravity exist

and aren’t too small, they may already be hiding in existing observations (of eg
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accretion disk). Even in the near future, new advances in astronomy may also

constrain or demonstrate nonclassical behavior. Until a smoking gun is found or

constrained to be implausibly tiny, this paper provides evidence that nonviolent

nonlocality is at least plausible. Regardless of what happens, black holes are

stranger than expected. At the very least, the horizon is not so empty, as classical

considerations may imply.
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Appendix

A.1 No information escape via paired states

In this appendix, we provide the proof of the statement, given in section 2.4,

that information cannot escape the black hole if corrections take the form of paired

Hawking-like states, (2.4) – even if such corrections are large.

This result follows from strong subadditivity (2.22), which can be written

equivalently [50]

SAB + SBC ≥ SA + SC . (A.1)

Setting A = χold (preexisting state outside black hole), B = χnew (new outgoing

particle(s)), and C = ψ̂new (new inside particle(s)), gives

S(χold ∪ χnew) + S(pair) ≥ S(χold) + S(ψ̂new)

S(χall) ≥ S(χold) +
[
S(ψ̂new)− S(pair)

]
.

(A.2)
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Looking back at (2.6), we see that the density matrix for the pair is

ρpair =


〈Λ0|Λ0〉 〈Λ0|Λ1〉 · · ·

〈Λ1|Λ0〉 〈Λ1|Λ1〉 · · ·
...

...
. . .

 . (A.3)

Looking at (A.3), we see that the density matrix for the new inside state is

ρnew in =


〈Λ0|Λ0〉 0 0

0 〈Λ1|Λ1〉 0

0 0
. . .

 . (A.4)

Since the density matrix of the new inside state is just the diagonal of the

density matrix of the pair, it does not have a lower entropy. A proof of this claim

is included below. This implies that the square bracket in (A.2) is bounded from

below by zero. Our desired result is then

S(χall) ≥ S(χold) . (A.5)

Therefore, as claimed, the entropy of the black hole cannot decrease.

The necessary claim follows from Klein’s inequality. As a preliminary, let ρ be

a density matrix, and σ be its diagonal. Then Tr(ρ lnσ) = Tr(σ lnσ), as trivially

follows from diagonality of σ. Klein’s inequality states

Tr(ρ ln ρ− ρ lnσ) ≥ 0 . (A.6)
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So, combined with the preceding result, this implies that S(σ) ≥ S(ρ).

A.2 Canonical form of a unitary with maximal

departure from saturation

Ref. [81] proved that all tripartite states that saturate strong subadditivity

(2.22) with equality

SAB + SBC − SABC − SB = 0 (A.7)

have the following structure: HB can be decomposed HB =
⊕

jHLj ⊗HRj and

ρABC =
⊕
j

qjρALj ⊗ ρRjC (A.8)

From this the following useful lemma can be proved.

Lemma: If ρABC is both pure and saturates strong subadditivity, then HB

can be decomposed HB = HL ⊗ HR such that ρABC = ρAL ⊗ ρRC ; furthermore,

ρAL and ρRB are both pure.

This is easy to see since purity of ρABC and concavity of entropy implies that

there is no sum over j. The final clause follows from additivity of entropy.

This lemma can be used to prove the canonical form (2.23) for a unitary with

maximal departure from saturation. The lemma implies that for the resulting

state, B can be decomposed as HL ⊗HR such that ρABC = ρAL ⊗ ρCR. Each of

these factors are in turn pure, so we have ρABC = |ψAL〉〈ψAL| ⊗ |ψRC〉〈ψRC |. So
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far, the unitary has the following structure:

U :
1√
|A|
∑
i

|iA〉|iC〉|φB〉 → |ψAL〉 ⊗ |ψRC〉 . (A.9)

C is still maximally entangled, and maximally entangled bipartite states are

unique up to a choice of basis, so |ψRC〉 = 1√
|A|

∑
i |iR〉|iC〉. This suffices to

prove the aforementioned canonical form (2.23). As a final observation, there is

still residual entanglement between A and B determined by ρAL, but independent

of the initial state on A.

A.3 Time Ordering

For operators whose commutator is central, a time-ordered product like (3.8)

can be reexpressed without time ordering. Specifically, using

eA1eA2 = e
1
2
[A1,A2]eA1+A2 , (A.10)

a time-ordered product can be rewritten

Te
∫ t
−∞ A(t′)dt′ = e

1
2

∫ t
−∞ dt′

∫ t′
−∞ dt′′[A(t′),A(t′′)]e

∫ t
−∞ A(t′)dt′ . (A.11)

By assumption of centrality, the extra factor is a complex number; for antihermi-

tian A, it is a pure phase.
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A.4 WKB estimate of gray body factors

Consider a solution of (1.13) with ω below the barrier given by Vl, eq. (1.14).

According to the WKB approximation, the transmission coefficient is

|Tωl| ' e−I , (A.12)

with I being the integral between the turning points r∗− and r∗+,

I ≡
∫ r∗+

r∗−

√
Vl − ω2dr∗ . (A.13)

For large l, the R/r3 term in (1.14) is negligible, and Vl can be approximated by

Ṽl ≡ f(r)

[
l(l + 1)

r2

]
. (A.14)

Note that Ṽl < Vl < Ṽ√
(l+ 1

2
)2+1− 1

2

< Ṽl+ 1
2l

, which is a tight bound for moder-

ately sized l. Similar considerations apply for the deformed turning points. These

bounds imply that the transmission coefficients calculated with the actual poten-

tial Vl can be bounded by those of the modified potential with slightly different l:

|Tω,l+ 1
2l
|Ṽ < |Tωl|V < |Tωl|Ṽ .

Since we are interested in the regime Rω � l, it is natural to define a variable

whose size characterizes this limit,

A ≡
√
l(l + 1)

Rω
� 1 . (A.15)
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For convenience, also define

B ≡ l(l + 1) . (A.16)

Using dimensionless parameters, µ ≡ r/R, the integral I with potential Ṽl can be

rearranged as

Ĩ =
√
B

∫ µ+

µ−

√
f(r)

µ

√
1− 1

A2

µ2

f(r)

dµ

f(r)
. (A.17)

Between the two turning points,

0 <
1

A2

µ2

f(r)
≤ 1 , (A.18)

which is the regime in which the Taylor series for the square root converges. The

endpoints also converge, though parametrically slower. Thus,

Ĩ = −
√
B
∞∑
n=0

an

∫ µ+

µ−

1

µ
√
f(r)

[
µ2

A2f(r)

]n
dµ (A.19)

where

an =
4−n

2n− 1

(2n)!

(n!)2
. (A.20)

Due to (A.18), each integral is smaller than the previous. This fact coupled with

the fact that an ∼ 1/n3/2 means that the series does indeed converge if the first

integral is finite. The left and right turning points for the modified potential Ṽl

are, respectively,

µ− = r−/R = 1 +
1

A2
+O

(
1

A4

)
(A.21)

µ+ = r+/R = A− 1

2
+O

(
1

A

)
. (A.22)
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The integral for n = 0 of (A.19) is

cosh−1(2µ− 1)
∣∣µ+
µ−

= ln 4A− 3

A
+O

(
1

A2

)
. (A.23)

A closed form expression for the integrals in (A.19) also exists for each n > 0, but

practically, these terms quickly become unwieldy. Instead, we find leading-order

contributions to them in 1/A. These integrals can be written as the difference of

the function

F (µ) =
1

A2n

∫ µ

a

dµ
µ2n−1(

1− 1
µ

)n+1/2
(A.24)

evaluated at µ+ and µ−; a is arbitrary. For the former, we expand the integrand

of (A.24) in 1/µ, and integrate term-by-term, using (A.22), to find

F (µ+) =
1

2n
+

1

2n− 1

1

A
+O

(
1

A2

)
. (A.25)

For the latter, the expansion is in µ− 1, and using (A.21) gives

F (µ−) = − 2

2n− 1

1

A
+O

(
1

A2

)
. (A.26)

Adding all the terms of (A.19) that are non zero as A→∞ gives

√
B

(
ln 4A−

∞∑
n=1

an
2n

)
=
√
B ln

8A

e
, (A.27)
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and the sum of terms at order 1/A gives

− 3

√
B

A

(
1 +

∞∑
n=1

an
2n− 1

)
= −3π

2

√
B

A
. (A.28)

Combining these gives an estimate for the transmission factor (A.12), via (A.17),

(A.19):

|Tωl| ∼
[
e

8

Rω√
l(l + 1)

]√l(l+1)

e
3π
2
Rω

[
1 +O

(
R2ω2√
l(l + 1)

)]
. (A.29)

To understand when the WKB estimate (A.29) is good, note that the change

of the potential in a wavelength should be small compared to the inverse squared

wavelength,

1

4

∣∣∣∣∣ V ′

(V − ω2)3/2

∣∣∣∣∣� 1 . (A.30)

This condition holds asymptotically, where both V and V ′ approach zero. In

order for (A.29) to be a reasonable estimate of the transmission coefficient, (A.30)

should hold inside the classically forbidden region. There, for large l, and Rω � l,

the condition holds as long as f ≈ 1. To check the behavior at the lower end of

the potential, note that with ω2 � V , (A.30) becomes

∣∣∣∣ V ′V 3/2

∣∣∣∣ ≈ |1− 3f |√
f
√
l(l + 1)

� 4 . (A.31)

Above the turning point, r/R > 1 + 1/A2, so f > 1/A2. Then, (A.30) is still

satisfied as long as Rω � 1/4.
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