
UNIVERSITY OF CALIFORNIA

Santa Barbara

Programming Environments for Children: Creating a Language that Grows with you

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in Computer Science

by

Charlotte Hill

Committee in charge:

Dr. Diana Franklin, Lecturer, Co-chair

Professor Tobias Hollerer, Co-chair

Professor Danielle Harlow

June 2015

The thesis of Charlotte Hill is approved.

 __
 Diana Franklin, Committee Co-chair

 __
 Tobias Hollerer, Committee Co-chair

 __
 Danielle Harlow

June 2015

 iii

ABSTRACT

Programming Environments for Children: Creating a Language that Grows with You

by

Charlotte Hill

Recent efforts have increased the number of elementary and middle schools teaching

computer science — but do they have the right tools for the job? Elementary school teachers

are usually responsible for teaching all subjects, and often do not have a background or

training in computer science. Fourth through sixth grade students are still developing their

math and reading skills as well as learning how to type and use computers. Fortunately,

computer science is one of the only domains that can adapt to meet the needs of the user.

Unlike math or physics, computer science has few constants; computers, languages, and

development environments have changed over the last decades and will continue to evolve.

How can programming languages and environments better meet the needs of upper

elementary classes learning computer science? This paper looks at designing block-based

programming environments for upper elementary school students as a part of a larger

research study on early computer science education.

 Block-based programming environments let children create complex, visual

programs without worrying about compiling or syntax errors. This paper describes the

research studies completed in the design and implementation of block-based programming

 iv

environments created alongside the development of KELP-CS, a computational thinking

curriculum for 4th — 6th grade. Both the programming environment and curriculum were

piloted in schools across California as part of a design-based research project.

 v

TABLE OF CONTENTS

I. Introduction .. 1

II. Related Work .. 3

A. Block-based Programming ... 3

B. Computer Science in Elementary & Middle School 6

III. Prior Experience .. 10

A. Animal Tlatoque ... 10

B. Hairball ... 11

C. My Contributions .. 12

IV. KELP-CS ... 14

A. Overview of Depict & KELP-CS ... 14

B. Guiding Research Questions ... 14

C. Learning Progressions ... 15

D. Overview of the Curriculum ... 16

E. Digital Storytelling Module, 2013-2014 ... 17

F. Digital Storytelling Module, 2014-2015 ... 17

G. My Contribitions ... 19

H. Future Work .. 20

V. The Octopi Application Suite ... 21

A. Overview ... 21

B. Guiding Research Questions ... 22

C. Background & Motivation .. 22

 vi

D. Implementation ... 23

E. OctopiStudent & OctopiDeveloper ... 25

1. Script and sprite options .. 26

2. Customizing the language and interface .. 27

3. Separating development and runtime .. 28

4. Snapshots of student work ... 29

F. OctopiResearcher & Collecting Student Work 30

G. KelpPlugin & Understanding Students' Ideas about Initialization 31

H. Lessons Learned & Future Work .. 34

VI. LaPlaya & Octopi .. 37

A. Overview ... 37

B. Guiding Research Questions ... 37

C. Methods & Findings .. 38

1. The interface .. 3842

2. The language .. 39

D. Motivation & Design Principles ... 40

1. Support multiple types of tasks .. 4242

2. Require only grade- and age- appropriate content 42

3. Include an age-appropriate interface ... 43

4. Support project developers .. 43

E. Implementation .. 43

F. Reading LaPlaya Programs ... 4444

G. Future Work .. 46

 vii

VII. Conclusion .. 48

References .. 50

 viii

LIST OF FIGURES

Figure 1. A Blockly project from Code.org’s “Frozen” Hour of Code 3

Figure 2. A Scratch project .. 4

Figure 3. A ScratchJr project ... 5

Figure 4. Comparison of Hairball and student researcher scoring of broadcast and receives.

Hairball detected 100% of instances of broadcast and receives in student projects, while

student researchers missed 12 instances when assessing projects 12

Figure 5. Depict’s hypothesized learning progressions for computational thinking . 16

Figure 6. Components of the revised digital storytelling module 18

Figure 7. A project in Scratch version 1.4 ... 21

Figure 8. The mammals project from the KELP-CS digital storytelling module in

OctopiDeveloper .. 25

Figure 9. The mammals project from the KELP-CS digital storytelling module in

OctopiStudent .. 26

Figure 10. Student view of KelpPlugin feedback for a KELP-CS assignment on the Octopi

Submit website ... 31

Figure 11. KelpPlugin results of initialization in two KELP-CS initialization projects –

Animal Sprint, the original project, and Pinata, the revised project. 33

Figure 12. The ballerina project from the animation assignment from the revised KELP-CS

digital Storytelling module, open in LaPlaya in developer mode 41

Figure 13. The ballerina project from the animation assignment from the revised KELP-CS

digital Storytelling module, open in LaPlaya in student mode 42

 ix

Figure 14. How students used visual cues to predict aspects of a LaPlaya program.

Parentheses distinguish visual cues that were categorically false affordances. “X”

signifies that students used a visual cue when making predictions about the first project

 ... 46

 1

I. Introduction

Graphical programming environments make code come to life for elementary school

students. In many modern block-based languages, colorful characters appear next to the

scripts that make them run, jump and dance. These environments do more than just reduce

syntax errors; they draw novice programmers into a world that can be programmed and

modified almost as quickly as their imaginations come up with possibilities. Over the past

decade, options for block-based languages have grown with their increase in popularity. The

social media boom has impacted graphical programming as well, and new websites and

online communities encourage programmers to share their block-based programs online for

others to play and modify. Unlike most text-based languages, block-based languages are

often designed for children. Scratch, a popular online block-based programming

environment, was developed for 8-14 year olds.

 Studies show that introducing students to concepts at a younger age makes them

more likely to pursue that field in the future. Programming has been taught to children for

decades, but with mixed results. There are many layers to this problem, but this work will

attempt to address one: common programming languages weren’t designed with children in

mind, and pose many challenges when used in elementary school classrooms. This thesis

addresses the question: How can programming environments better meet the needs of upper

elementary classes learning computer science? To answer this question, I created and

implemented design principles for a block-based programming environment for upper

elementary school students as a part of a larger, design-based research study on early

computer science education. I began researching early computer science education as an

undergraduate at UCSB, and continued in the masters program at UCSB. For my masters, I

 2

worked as part of a group researching how 4th — 6th graders learn computer science, and my

research focused on creating programming environments for those age groups.

 This paper starts with a look at related work and my prior work in the field. Next, I

describe the KELP-CS curriculum, a computational thinking curriculum for 4th — 6th grade.

Then, I describe two different programming environments and associated tools created for

KELP-CS: Octopi, a modification of Scratch; and LaPlaya, a reimplementation of Octopi

with design principles based on the KELP-CS pilot and other block-based languages.

Finally, I conclude with a review of design principles for block-based environments for

children and suggestions for future work in this area.

 3

II. Related Work

A. Block-based Programming

Growing interest in computer science education has led to an increase in the language

and editor options for children learning to code. Many of these languages are block-based,

allowing students to ignore syntax and focus on creating programs. Block-based languages

provide a set of programming commands in Lego-like blocks that users drag together like

puzzle pieces to create scripts. These scripts often control characters or other images that can

be used to create a game, tell a story, or more. Block-based programming languages lower

the cognitive barrier to programming by reducing possible syntax errors and providing a

smaller set of commands than most textual programming languages.

 Many block-based environments are designed for touch screen devices, since typing

Figure 1. A Blockly project from Code.org's "Frozen" Hour of Code

 4

is limited and drag and drop is the primary method of interacting with the application.

Hopscotch, a block-based environment available for iPads, provides a set of colorful

characters that users can program to create their own stories or games [23]. Other

applications provide a more structured environment for learning to code. Lightbot (available

for iPads, Android, and online) guides users through a set of interactive tutorials and puzzles

to teach users how to program [29]. Similarly, code.org has sets of programming tutorials

for different age groups in Blockly, a block-based language developed by Google (see

Figure 1) [5, 1]. The inspiration for these applications can be seen in Scratch (Figure 2), a

block-based programming environment developed by MIT [40]. Scratch also has an online

community where users can share their Scratch projects. Other users can “remix” (similar to

“save as”) and create their own project using one posted to the website. Block-based

languages like Scratch can improve students’ attitudes and increase confidence in

Figure 2. A Scratch project

 5

programming [28].

 Block-based environments have colorful, interactive interfaces with limited typing,

making them a natural fit for children. However, developers of block-based environments

for children should still consider the developmental levels and limitations of the target age

group. Young children have had fewer linguistic experiences than adults, making them less

likely to understand common technological metaphors such as a button with an image of a

floppy disk indicating that the button is used to save [4]. Children may also have difficulties

with using the mouse and typing [17]. For example, children struggle more than adults to

hold down the mouse for longer periods of time, leading to difficulties with the drag and

Figure 3. A ScratchJr project

 6

drop control scheme common in most block-based languages [17]. Designers should

consider hiding advanced tools that children may get “lost” in, as complicated interfaces can

distract younger users [18].

 The development of ScratchJr (Figure 3), which is based on Scratch, is an interesting

example of adapting a successful block-based environment for a younger age group.

Developers made numerous changes to both the interface and programming language to

better fit the needs of the target audience, 5-7 year olds, rather than the 8-16 year olds that

Scratch was designed for. The ScratchJr designers removed many of the interface options,

such as the “instant gratification” buttons that produced an immediate effect (like adding a

sprite), so that children would spend less time playing with the interface and more time

creating [26]. However, creating does not aways translate to coding — kindergarteners

using ScratchJr in their class spend a significant amount of time using the paint editor rather

than coding [12].

B. Computer Science in Elementary & Middle School

Children in elementary and middle school are often referred to as “digital natives” —

since children today have never known a time without computers or the internet, adults may

see them as naturally technologically adept. However, children are still at different

developmental stages than adults and their academic knowledge is rapidly increasing as they

progress throughout elementary school and into middle school. Developmental psychology

is an important factor when deciding whether – and if so, how – to teach programming to

children [8]. Some computational thinking concepts required for more advanced

programming might be beyond the developmental stage of an age group. Seiter and Foreman

created a model showing the progression through which elementary students move when

 7

learning computational thinking [39]. Older age groups are better suited to reach higher

levels of understanding of computational thinking material; for example, using a “repeat”

loop versus using a “repeat until __” loop and specifying a condition that makes the repeat

end.

 Elementary and middle school students’ academic knowledge is expanding, a

development environment for this age group must be flexible and expand as they learn, or

the students will outgrow it. The focus of this paper is on fourth through sixth grade, an

important transitional time for children’s development. In second and third grade, “the

mechanical demands of learning to read are so taxing at this point that children have few

resources left over to process the content. In fourth through eighth grade, children become

increasingly able to obtain new information from print” (p. 333) [38]. Fourth through sixth

graders differ academically and developmentally in important ways from their younger and

older counterparts. These students are developing linguistic, kinesthetic, and cognitive skills

necessary to successfully interact with computers. At the same time, this age group is

learning key concepts from other fields, like math and science, needed to successfully

program. Many math concepts used in Scratch, such as division, negative numbers, and

percentages, are taught during upper elementary school. These factors should be taken into

account when developing programming environments or programming curricula for

children.

 Children have been programming for decades. In Mindstorms: Children, Computers,

and Powerful Ideas, Seymour Papert discusses the invention of Logo, an early educational

programming language, and case studies of young students learning the language [35].

Papert’s work on students learning other subjects such as math and physics through

 8

programming and his theory that teachers at any grade level could incorporate programming

into their curricula set the stage for the next decades of computer science education research.

Since computer science is not a part of the standards for K-12, resources for early computer

science education range from lesson plans which teachers incorporate into their regular

lessons to online tutorials that guide students through the material. ScratchEd takes the first

approach, with lesson plans for teaching coding with Scratch and an online community

where educators can help each other with the material [41]. The Computer Science Teaching

Association offers more general standards for teachers to follow when incorporating

programming into their K-8 classes [7]. Other curricula, such as those provided by code.org,

are made up of interactive tutorials that can be used in or out of the classroom. Computer

Science Education Week has grown in popularity in recent years, and now multiple

platforms provide short tutorials or projects every December for students to try out

programming [6].

 Despite these developments in programming environments and curricula as well as a

nation-wide push to include programming at more grade levels, the vast majority of children

do not learn coding in schools prior to high school. Limited teacher education and lab

resources make it challenging to introduce computer science in middle and elementary

schools. Elementary school teachers are usually responsible for teaching all of the subjects,

and rarely have a background in computer science. Some strategies to assist teachers without

computer science subject knowledge are all-inclusive online tutorials (such as the previously

mentioned code.org) or automated grading tools to make grading finished projects or finding

struggling students easier for teachers [3]. Additionally, although most schools now have

computer labs with internet access in order to accommodate standardized testing, these labs

 9

are in various states of usefulness — when we piloted our curriculum, labs we encountered

ranged from new, networked netbooks controlled by a district technology supervisor to

rooms of old PCs without lab managers or anyone at the school with administrator

privileges. Successful computer science curricula must be flexible enough to work in all

these types of classroom environments.

 10

III. Prior Experience

A. Animal Tlatoque

Prior to entering the masters program, I worked as an undergraduate researcher at the

Animal Tlatoque summer camp [13]. Animal Tlatoque was a part of a larger research effort

to study middle school students’ attitudes towards computer science and how extracurricular

programs could influence these attitudes, as well as to teach programming concepts.

Although the underlying goal of the summer camp was to teach Scratch programming,

computer science was deliberately intertwined with other subjects to attract students who

might not otherwise be interested in a computer science camp. Mayan culture and animal

conservation were picked as the other subjects of the camp to attract both Latinas/os and

girls, respectively, two groups who are minorities in computer science.

 The first summers of Animal Tlatoque successfully focused on developing a camp

that would appeal to these demographics and improve students’ perceptions of computer

science [13]. During the third summer, the Animal Tlatoque team also studied whether or

not the camp participants were actually learning computer science concepts [14]. UCSB

students working as camp assistants recorded the level of help they gave to students during

the camp. Then, after the camp, a team of computer science undergraduate researchers

(myself included) looked at each of the students’ projects for the different assignments to

determine to what extent the students met the goals of the assignments. We also ran these

projects through an automated grading assistance tool to double-check the undergraduates’

assessments of the projects. This assessment showed that students were able to use several

key computer science concepts — such as event driven programming and initialization —

without much help from the camp assistants [14].

 11

B. Hairball

Assessing Scratch projects can be tedious and time-consuming work. There isn’t any

easy way to open multiple files at once or search for items inside of a file. Additionally,

code is split up by sprites, so a grader has to look at each sprite’s code and determine its

place within the larger program. We created an auto-grading tool, Hairball, to speed up the

grading process for Scratch projects. The base of Hairball takes any number of Scratch

projects and uses a Python library, Kurt [27], to turn these projects into dictionaries. Then,

Hairball can run any number of Hairball plugins on these projects and return a report of the

results. Custom Hairball plugins assess all of the assignments for Animal Tlatoque that the

undergraduate researchers also graded by hand. Afterwards, we compared Hairball’s results

with the undergraduate researchers’ results.

 Hairball grades projects as “correct” or “incomplete” for each attribute checked by a

plugin. Hairball was built to be an auto-grading tool, not the complete grading system, so

“incomplete” projects are ones that need a closer look by a human grader. This is partially

because of the visual nature of Scratch and the types of things we were assessing. For

example, Hairball did not find a lot of “correct” instances of animation, because what we

recognize as an animation is hard to define by the code that produces it — you just know it

when you see it. In this case, there were a lot of “incomplete” projects marked by Hairball

that would need manual grading by a person who could watch the projects to determine

whether or not they include animation. Hairball was more effective for other subjects, such

as message passing. In Scratch, correct message passing includes a broadcast block with a

name of a message, and then a corresponding script that starts with a “When I receive” block

with the same message name. Complex broadcast/receive projects may have multiple

 12

messages and broadcast/receive scripts across many sprites, making them hard to grade by

hand. In this case, we found that Hairball did a better job than the undergraduate researchers

at determining whether projects were correct or not (Figure 4). Although Hairball cannot

take away the job of the grader completely, it simplifies grading for large numbers of

Scratch projects.

C. My Contributions

I worked on numerous aspects of Animal Tlatoque during my summer as an

undergraduate researcher. I worked alongside the rest of the team to create camp curricula

before the start of the camp, and answer students’ questions and assist the lesson instructors

during the camp. However, my primary focus was on Hairball and assessing student work.

Throughout the summer, I wrote the Hairball plugins used to assess the Scratch projects.

Figure 4. Comparison of Hairball and student researcher scoring of broadcast and

receives. Hairball detected 100% of instances of broadcast and receives in student

projects, while student researchers missed 12 instances when assessing projects

 13

After the camp, two other undergraduate researchers and I manually graded all of the

students’ Scratch projects. Then, I ran the Hairball plugins on the projects and compared the

results. Some projects received different “grades” from Hairball and the manual graders, so I

went through each of those projects a second time to establish the “ground truth” grade, or

the final, accepted grade. Finally, I made graphs of the results for all of the projects (See

Figure 4 for an example). These results, and the other work I did during the summer, were

showcased in two papers at SIGCSE [3, 14].

 14

IV. KELP-CS

A. Overview of Depict & KELP-CS

Depict is an interdisciplinary research group with members from the Education and

Computer Science department. Led by Danielle Harlow and Diana Franklin, its goal is to

study how 4th-6th graders learn computational thinking. In 2013, Depict developed a set of

learning progressions for computational thinking at this age group, and tested the lower

anchor points in focus groups. The results of these focus groups informed both the learning

progressions, and the design of a computational thinking curriculum and programming

environment for 4th — 6th grade [10]. We piloted this programming environment and the 4th

grade module of the curriculum in the 2013-2014 school year, and then used a refined

version of each in additional classrooms during the 2014-2015 school year. My research

focus in the Depict group has been on developing programming environments for 4th — 6th

graders [20]. In this section, I’ll describe the learning progressions and curriculum created

for KELP-CS. In the following sections, I’ll go into more detail on the design,

implementation, and testing of the programming environments developed for KELP-CS.

B. Guiding Research Questions

Our work on the KELP-CS curricula is inspired by several research questions. First,

what are the lower anchor points, or knowledge that students have of computational

thinking before formal instruction? And what are the learning progressions fourth through

sixth graders follow when learning computational thinking? In Section C, I briefly describe

the KELP-CS learning progressions. We tested the lower anchor points of two strands of

these learning programs during focus groups at local elementary schools [9, 10]. Next,

 15

Sections D, E, and F describe the curriculum we created to answer the question, how can

these learning progressions be successfully implemented in an elementary school

classroom? Finally, Sections V and VI address the question, what types of tools are needed

in an elementary school computational thinking class? Sections V and VI describe

programming environments and other tools I created for classes and researchers to use with

the KELP-CS curricula.

• What are the lower anchor points, or knowledge that students have of computational

thinking before formal instruction?

• What are the learning progressions fourth through sixth graders follow when learning

computational thinking?

• How can these learning progressions be successfully implemented in an elementary

school classroom?

• What types of tools are needed in an elementary school computational thinking

class?

C. Learning Progressions

Depict created a series of learning progressions for computational thinking (Figure 5)

based on the CSTA learning progressions and findings from Animal Tlatoque [13, 14].

Learning progressions are the series of partial understandings, or steps one takes when

learning a new subject. The lower anchor points of these learning progressions are the base

knowledge on which the rest of the learning progressions are constructed, and are concepts

or skills that children of the target age group would have with little or no instruction. We

tested our lower anchor points in focus groups at elementary schools in Santa Barbara [9,

10]. Our findings from the focus groups changed the lower anchor points of our learning

progressions and informed our curriculum design.

 16

D. Overview of the Curriculum

The Kelp-CS curriculum was originally intended for 4th — 6th grade, with a module for

each grade level. These modules would teach different aspects of computer science and

computational thinking according to the learning progressions, and would each have their

own overarching theme. As of April 2015, the fourth and fifth grade modules are complete,

and the fourth grade module was piloted in classrooms across California. The fourth grade

module, Digital Storytelling, teaches sequential and event-driven programming,

initialization, and animation, which the students then incorporate into their own digital

stories [15]. The fifth grade module, Game Design, teaches message passing, loops, sensing

Figure 5. Depict’s hypothesized learning progressions for computational thinking

 17

and decisions, and variables, which students then use to create their own games. The

proposed sixth grade module would teach parallelism and using hierarchy and abstraction to

break down problems. The original fourth grade module was piloted in the 2013-2014

school year, and then taught in more schools during the 2014-2015 school year with

modifications based on findings from the pilot.

E. Digital Storytelling Module, 2013-2014

The fourth grade module, Digital Storytelling, was originally imagined with multiple

tracks: each track would tie to different grade-level content such as, for example, California

history. The programming assignments used for the pilot spanned the themes, so that

different assignments would focus on different subject areas, rather than only testing one

subject track. The module consisted of 8 programming assignments, or Wired-Up activities,

and 4 off-computer exercises, or Fired-Up activities. Each Wired-Up activity taught a new

concept, such as initialization, which the accompanying Fired-Up activity tied back to

students’ every day lives.

 The fourth grade pilot was taught in fifteen classrooms in California with over 400

students. Graduate student researchers from Depict taught or helped out at local classrooms,

and computer lab teachers taught the module at the distant classrooms. We collected on-

computer and on-paper student work from all the classrooms, as well as video and audio

recordings and graduate student researchers’ analytic memos from the local classrooms.

F. Digital Storytelling Module, 2014-2015

 18

Depict made numerous changes to the module based on the results of the pilot (Figure

6). The pilot showed that students struggled with programming assignments that relied on

other subject knowledge, so the programming assignments were modified to eliminate

outside subject knowledge [16]. A new programming environment, LaPlaya, and online

curriculum platform, Octopi, were created to better fit the needs of the students and their

teachers. The programming assignments were split into smaller tasks that built off of each

other, so that students could receive more feedback while working during the short lab time.

The pilot showed that students struggled with initialization and message passing, so the

initialization assignment was expanded to present the need for initialization in multiple

ways, and the programming language was altered so that message passing could be moved

into the fifth grade module instead. Additionally, the digital storytelling aspect of the

module was extended so that students could work on their stories throughout the quarter,

instead of starting them at the end. The new digital storytelling format also includes an

emphasis on design thinking, which is a part of the Next Generation Science Standards [30].

Finally, we added multiple choice assessment questions to all of the programming

Figure 6. Components of the revised Digital Storytelling Module

 19

assignments. Although they have not yet been tested, these assessment questions will gather

more data on how students learn computational thinking and programming in KELP-CS.

 The revamped module was also taught in classes across California. Depict sent

graduate student researchers to local classrooms, and collected data through online and on-

paper student work, videos of student work and classrooms, graduate student researchers’

analytic memos, audio recordings of graduate student researchers and teachers helping

students, and iPhone videos taken by students of their own work. Additionally, we

interviewed teachers and held focus groups with students to gather data on how KELP-CS

could be improved, and how students engaged with the programming content.

G. My Contributions

My primary focus as a member of the Depict team was developing programming

environments to use with KELP-CS. I created three Scratch modifications, OctopiStudent

(and a PC version), OctopiDeveloper, and OctopiResearcher, as well as a Snap!

modification, LaPlaya [32, 33, 34, 21]. I was the sole developer for the Octopi applications,

and the primary developer for LaPlaya (I was the sole developer for about four months, and

then worked and supervised others working on it as well for around six months). I was also

the primary developer for KelpPlugin, an extension of Hairball with a new set of plugins. I

wrote the original architecture as well as several plugins. I used these plugins to research

student ideas about initialization during the KELP-CS pilot [22].

I also worked with the rest of the Depict team on curricular development and research. I

analyzed the videos of focus groups that informed our learning progressions and curricula

[10]. I helped create multiple assignments for Module 1 and 2, and ran the teacher and

student websites during the Module 1 pilot. I participated in multiple teacher training

 20

sessions, as well as running one at a remote school. I also visited local schools to teach

lessons, assist students during the lessons, answer teachers’ questions, install applications

and download assignments onto lab computers, and serve as tech support. I lead student

interviews and focus groups at multiple schools [11]. Finally, I gave talks on Depict projects

at multiple conferences, including ICER and SIGCSE. As a member of Depict, I contributed

to numerous papers referenced in this thesis [9, 10, 11, 15, 16, 20, 21, 22].

H. Future Work

The completed fifth grade module may be piloted similarly to the fourth grade module.

Although an outline for the sixth grade module exists, developing and implementing it are

also left as future work. While piloting the Digital Storytelling module, Depict researchers

found that English Language Learners in particularly struggled with the literacy

requirements of the programming language and environment. Depict plans to study the

experiences of English Language Learners in computer science classes, and how to improve

programming curricula to better fit their needs.

 21

V. The Octopi Application Suite

A. Overview

The Octopi application suite is a set of three block-based programming environments

developed for the first year of KELP-CS. All three applications are all based on Scratch, a

block-based programming language and environment developed at MIT [37], and modified

to better fit the age group and research goals of KELP-CS. OctopiDeveloper allows teachers

and curriculum developers to create starting files for student assignments [32].

OctopiStudent is the most similar to Scratch, and is used by students and teachers to view

and add to the starting files [34]. The third application, OctopiResearcher, provides extra

options for researchers to quickly look through projects from OctopiStudent [33].

Figure 7. A project in Scratch version 1.4

 22

B. Guiding Research Questions

I created the Octopi applications to address several research questions. Most broadly, the

Octopi applications attempt to determine: how can the programming environment support

students, teachers, and curriculum developers? OctopiStudent and OctopiDeveloper,

described in Section E, look more specifically at how much of a language should be visible

to students while they learn programming? And how does the language (the blocks) impact

student learning and success? We changed several blocks during the KELP-CS pilot,

particularly ones that included math above the fourth grade level. Then, we observed

changes in student success in assignments that used these types of blocks [2]. Finally, we

developed OctopiResearcher and KelpPlugin while looking at what types of programs can

we use to assess student learning in block-based programming environments?

• How can the programming environment support students, teachers, and curriculum

developers?

• How much of a language should be visible to students while they learn

programming?

• How does the language (the blocks) impact student learning and success?

• What types of programs can we use to assess student learning in block-based

programming environments?

C. Background & Motivation

Scratch version 1.41 (Figure 7), and the programming environments in the Octopi suite,

are desktop applications designed for novice programmers. The environment provides a set

of programming command blocks that the user drags and snaps together like puzzle pieces

to create scripts that control sprites, 2D images (usually characters) that are shown to the

right of the scripting area. Scripts are event-driven, and run when the user presses a key,

1 The current version of Scratch, Scratch 2.0, is a web application

 23

clicks on the sprite that owns the script, clicks on the green flag in the interface, or when

another sprite broadcasts the corresponding message. Scratch is a programming playground

designed for children and adults to experiment with code, and can be used to make anything

from simple “Hello world” programs to complicated games or interactive stories. Scratch

also has a booming online community where users can share their Scratch programs or play

programs created by other users [40].

 Scratch 1.4 was used for the Animal Tlatoque summer camp. During the camp, we

found that, although Scratch is intended for ages 8-16, younger students struggled with

aspects of the interface. Additionally, it didn’t have all the components required for the

KELP-CS curriculum. In KELP-CS, students use starting files, or files created by the KELP-

CS curriculum designers with example scripts for the students to build on and other, more

complicated scripts that would run in the background but that wouldn’t be edited by the

students. Additionally, we theorized that complicated scripts or block options would confuse

or overwhelm students who were just starting out in the development environment. For

KELP-CS, we wanted a programming environment similar to Scratch that was modified to

better fit the needs of our curriculum.

D. Implementation

Each Octopi application is a separate modification of Scratch version 1.4. The open

source version of Scratch contains all of the programming environment functionality of

Scratch, but does not include the networking utilities used to connect with the online Scratch

community. Scratch is a Squeak Smalltalk application, a unique language that has its roots

in computer science education as well. Smalltalk is not frequently used today and works

differently than most commonly used languages today, so I’ll provide a short overview here.

 24

 Smalltalk was created by Alan Kay, who also made significant contributions to

computer science education and today’s modern operating systems [25]. Smalltalk is all

about objects: like in Scratch, everything is an object, and objects send messages to each

other in order to accomplish things. There are multiple varieties of Smalltalk but Scratch is a

Squeak Smalltalk application. Squeak is a version of Smalltalk created by Dan Ingalls and

Alan Kay for Disney [25]. Programming in traditional Squeak2 requires three components: a

virtual machine, an image file, and a change file. These components make up the entire

language and your own codebase; rather than creating an application written in a language,

when programming in Squeak you download a Squeak image and an associated change file,

and then add features to it to create your application. You open your application with the

virtual machine. Each application in the Octopi suite is a modified version of the Scratch

image, and includes the Scratch objects and functions as well as the basic Squeak objects

and functions.

Scratch is built on an older Squeak image— version 2, while the latest version number is

4.5 [25]. Scratch does not have all the functionality of modern Squeak, and because of the

way Smalltalk works, there’s no feasible way to “update” Scratch to a newer version of

Squeak. This poses a few problems — the older version has less documentation, a less

modern programming environment, and is missing some functionality needed for

OctopiStudent. Modern Squeak has methods to create, add to, and open zip files. Although

parts of these classes are in version 2, it is not fully implemented. The biggest change made

to core functionality was to essentially implement this zip class from version 4 inside of the

OctopiStudent image (which is built on Squeak version 2.) Unlike other changes

2 Modern Squeak also has an all-in-one system, but Scratch is implemented in the three-

component system

 25

implemented while creating the Octopi applications, this required changing and creating

primitives in the language as well as determining the associations and dependencies of the

version 4 zip class in order to incrementally add functionality to the OctopiStudent image in

the correct order. Other changes made to the Octopi applications were less involved, and

more similar to adding classes and methods in other languages.

E. OctopiStudent & OctopiDeveloper

OctopiDeveloper is a block-based programming environment that allows developers to

create customized starting files for assignments (Figure 8). These customizations change the

features available when the file is opened in OctopiStudent (Figure 9). Both

OctopiDeveloper and OctopiStudent are very similar to Scratch, but support new features

designed specifically for KELP-CS and similar curricula. In this section, I’ll describe the

new features and modifications that make OctopiStudent and OctopiDeveloper unique from

Figure 8. The mammals project from the KELP-CS digital storytelling module

in OctopiDeveloper

 26

Scratch, and how they relate to the KELP-CS curriculum.

1. Script and sprite options

We designed the Kelp-CS curriculum with short lab sessions in mind; in many schools,

classes only have an hour a week in the computer lab. We wanted short, focused projects

that resulted in working programs that students could complete in less than an hour. We

decided that the best way to do this would be to give students starting files to add to and

develop in the lab. These starting files would already have some or all of the sprites students

would need to program, as well as some scripts for students to use as examples or just run in

the background along with the scripts they wrote themselves. However, we worried that

students would change or delete the provided scripts needed to make the programs we gave

them run. OctopiDeveloper provides more options for scripts and sprites when developing

starting files in a block-based, Scratch-like environment. OctopiDeveloper lets curriculum

Figure 9. The mammals project from the KELP-CS digital storytelling module in

OctopiStudent

 27

designers make scripts “visible” or “hidden”, and sprites “editable”, “locked”, or “hidden”.

These options change the availability of these objects when the same file is opened in

OctopiStudent.

2. Customizing the language and interface

Curriculum designers can also change how much of the language and interface are

available when the project is opened in OctopiStudent. Although all blocks are available by

default, blocks or block categories can be hidden in OctopiDeveloper. Hidden blocks can

still be used in the project by developers, but they’re a lighter shade than the original block

color and if students delete these blocks, there’s no way for them to get these blocks back;

for this reason, these blocks are only used in hidden scripts.

 Additionally, developers can decide how much of the interface is available to

students. We decided to give the option to limit interface abilities (for example, adding or

deleting sprites) because we did not want students to break the starting files we gave them

(such as by deleting sprites) and because, when we were in the classroom, we found that

some of the interface options were distracting or difficult for students to understand. For

example, the toolbar in Scratch allows students to change the size of or delete sprites by

clicking on a toolbar option and then on a sprite. Fourth graders in particular are at an age

where they explore by clicking different parts of the interface almost at random, and many

students deleted or changed sprites without intending to. We removed the toolbar completely

from the interface (since there were other ways to do all of its commands) and let developers

choose whether to allow the following features: add sprites, remove sprites, view the

costumes tab, view the sounds tab, add costumes, add sounds, and edit existing costumes.

 28

The default for all of these interface features and blocks is to make them visible and

available for students.

3. Separating development and runtime

Graduate student researchers who helped in the KELP-CS pilot classrooms noticed that

students did not see a distinction between development and runtime. The line between

development and runtime in Scratch is blurry by design. Sprites are located on the stage next

to the scripting area, so users can modify or move them while programming or even while

the program is running. Unlike many textual languages, Scratch doesn’t need to be

compiled. Users can run scripts at any time by triggering events that start scripts or by

clicking on the scripts themselves. During the KELP-CS pilot, many students ran scripts by

clicking on them rather than triggering events.

 The first project, Animal Maze, instructed the students to “pick up the animals with

the net”. Students interpreted this to mean that the goal of the task was to pick up each

animal at some point during the lab. However, the instructions meant to say that students

should write a program that will make the net pick up all the animals. Many students instead

wrote and deleted short scripts that made the net pick up each animal. Students clicked

directly on the script to run it each time, so the initialization scripts that make the previously

picked up animals reappear never ran [2]. However, if students had restarted the whole

program rather than clicking on the script (as we intended), they would see that the animals

they previously picked up were no longer in the net since the script they wrote only picked

up the next animal. Additionally, young children have less dexterity and had issues

distinguishing between clicking and double clicking on a script, often running it by accident

 29

when they meant to edit or move it instead. We decided to disable “click to run” on scripts

to alleviate these issues.

 Although the implementation of this decision is simple, its consequences are not.

Development and runtime are interesting abstractions, and it’s debatable whether or not they

should actually be distinct. Bret Victor’s work explores this area and its applications in

textual programming [44]. Victor theorizes that programming environments should respond

immediately to the programmer, and in a sense, get the programmer’s ideas on the page as

soon as possible. Victor’s ideas can be seen in Apple’s Playgrounds, a programming

environment developed to blur the line between runtime and development in textual

programming [24]. However, it’s not always clear how to visualize code in the environment,

particularly a text-based one. Exploring the boundaries of runtime and development in a

block-based programming language such as Scratch is an interesting issue and has potential

for future work.

4. Snapshots of student work

During Animal Tlatoque, we collected and analyzed student projects using Hairball.

However, final projects don’t show how the student’s project evolved over time, or the

different methods or problem solving techniques students may have tried out and then

deleted. Additionally, students often played in the programming environment after finishing

the assignment without starting a new file, so the file they turned in might not actually be the

“finished” project. We wanted to capture the ongoing process of students’ work as well as

the final projects in LaPlaya. However, writing to the file was sometimes slow, particularly

in networked computer labs. As a compromise, OctopiStudent automatically saves a

“snapshot”, or version, of the project whenever the student clicks on the green flag button

 30

after making at least five changes to the program since the last time it was saved. These

snapshots show how the student changes a project throughout the class, since most

assignments require students to click on the green flag to start the program. OctopiStudent

zips the new “snapshot” of the file with any other snapshots of projects with the same name

created in the last hour in that folder. When students finish working on their project, they

now have two files: an Octopi file that they can open and change in any Octopi suite

application, and a zip of all the snapshots created while working on the project.

F. OctopiResearcher & Collecting Student Work

We created multiple websites for students and teachers to use with the KELP-CS

curriculum. Each school had its own teacher and student webpages for students to download

starting files, and for teachers to download solution files and worksheets. At the end of each

lab, students uploaded their assignments to an additional website, Octopi Submit, which

stored all of the assignments and let students and teachers download students’ submitted

work (Figure 10). These projects were than analyzed using OctopiResearcher.

 OctopiResearcher is the companion to OctopiDeveloper; it is used by KELP-CS

researchers to look through student projects. As described in the previous section,

OctopiStudent creates a zip file of the different “snapshots” of the project while the student

is working. Scratch-like projects are time consuming to look through; there’s no “quick

look” or way to search through a set of projects. OctopiResearcher knows the file structure

created by OctopiStudent, and has next and previous buttons so users can move to the next

or previous snapshot or project without leaving the application or going through the “File ->

Open” menu. We used OctopiResearcher with KelpPlugin to analyze student projects.

 31

G. KelpPlugin & Understanding Students’ Ideas about Initialization

KelpPlugin is an automated grading tool similar to Hairball used to assessing student

snapshots as well as the final versions of assignments. Hairball and KelpPlugin are both

based on Kurt, a Python library for analyzing Scratch projects [27]. Kurt takes a Scratch file

and turns it into a dictionary, making it possible to write simple Python scripts to analyze the

contents of Scratch projects. An extension made it possible to use Kurt on Octopi files,

rather than Scratch files. KelpPlugin, a collection of grading plugins like Hairball, allows

developers to look through all of the snapshots of an assignment rather than just the final

version.

 By using KelpPlugin and OctopiResearcher together, we could study the approaches,

or “paths” students take when working on programming assignments and observe the

problems students encounter when completing an assignments. Previous work has found that

the paths students take to complete programming projects have a much stronger correlation

Figure 10. Student view of KelpPlugin feedback for a KELP-CS assignment on the

Octopi Submit website

 32

to future success than the final state of the project [36]. By using OctopiResearcher

alongside KelpPlugin, we can determine paths that students took and also examine projects

to see what these paths represent. We used OctopiResearcher to look at the trends we found

with KelpPlugin to better define students’ problem-solving approaches. We used this

combined approach to study students’ ideas about initialization during the KELP-CS pilot

[22].

 In traditional programming, variables are initialized at the start of the program or

before the code segment that uses those variables. The variables are initialized, or set to

initial values, in order for them to be useful; it doesn’t make sense to use a variable that

you’re not storing something in. However, the visual nature of Scratch, OctopiStudent, and

similar environments makes initialization work differently. The “variables” you’re

initializing in OctopiStudent are usually aspects of the sprites — their location on the stage;

their color, size or other visual attributes. These attributes are never “undefined” in the same

way that variables can be in text-based programming; sprites always have a size, a location,

etc. However, sprites might move or change color during a program, and if the program

doesn’t initialize these attributes then they’ll still be in that last state the next time the

program is run. This makes initialization in Scratch more like “resetting” than actually

“initializing”. When we analyzed student projects from the initialization assignment from

the KELP-CS pilot, we found that students did not understand when sprites needed to be

initialized — at the beginning or the end of the program (Figure 11).

 33

 We also found that the students who initialized their sprites did it in ways we did not

expect. Some attributes, such as location, are affected by multiple types of blocks — blocks

that set the attribute to a specific value, blocks that change the attribute by a value, blocks

that change or set the value over time, and blocks that change or set the value

instantaneously. We were surprised to find that many students initialized attributes with

blocks that included timing — for example, glide _ seconds to x: _ y: _ rather than go to x: _

y: _. In traditional programming, initialization is instantaneous and invisible; it’s not really

something that the user would normally see. However, in OctopiStudent the barriers

between development and runtime are blurred, and there’s no predefined starting point for

programs. We theorized that the nature of the programming environment changed the ways

that novice programmers thought about initialization, and that aspects of initialization in

text-based languages might not be as relevant in visual languages like Scratch. We made

Figure 11. KelpPlugin results of initialization in two KELP-CS initialization projects –

Animal Sprint, the original project, and Pinata, the revised project.

 34

several changes based on our research of student views of initialization. We realized that

many initialization blocks rely on math concepts that are taught after fourth grade, such as

x,y coordinates, negative numbers, and percentages, so we modified and added new blocks

to give younger students other ways of initializing. We also changed the way students run

starting files — in the pilot, most assignments were started by clicking on the green flag, but

in the new version of the module, we put a stronger emphasis on starting programs the same

way every time. We added another button next to the green flag button, the “get ready”

button. The “get ready” button runs “get ready” scripts, giving students a predefined place to

initialize their sprites.

H. Lessons Learned & Future Work

The Octopi application suite changed over the course of the KELP-CS pilot in response

to feedback from teachers, students, and graduate student researchers in the classroom.

However, by the end of the pilot it was apparent that there were fundamental issues with

using OctopiStudent in the classrooms that could not be addressed through minor changes.

 The frequent changes to the application that resulted from the design-based structure

of the research project were time consuming and frustrating, since each update meant that

the application needed to be downloaded and reinstalled. The variety of lab setups meant

that no schools updated the same way. One school had a computer lab manager who could

install the updates on the networked computers. Another had a remote district administrator

in charge of installing updates on the networked computers. A school near UCSB did not

have networked computers or a computer lab manager, so updates had to be installed on

each individual machine any time we changed the program.

 35

 The starting files also posed problems in the classrooms. Each programming

assignment required a starting file for students to modify and add to. These files were

packaged separately from the application, so someone (such as a computer lab instructor or

me) had to download all the files and put them in an easily accessible area on the computers,

or the students had to download that assignment’s file in the beginning of each lab.

However, fourth graders do not have a good understanding of file systems. Students couldn’t

find files in the “File-> Open” window that they had placed on the desktop. In classes that

downloaded files at the start of the lab, students often didn’t understand how to tell if a file

had been downloaded and where it was stored when it did, so some students had dozens of

copies of the same file in their downloads folder. Even in the best case, where the files were

already downloaded and placed in the “Octopi projects” folder that the application goes to

first when “File -> Open” is selected, the students struggled to select the right file since the

names were complicated and their reading skills weren’t always at grade level. Like the

application, the starting files changed throughout the course of the pilot, so if the files had

all been downloaded at the start of the pilot, someone would have to replace them with the

new versions. Schools started at different times of the year, so different schools would end

up with different versions of each project. This meant that each school needed its own

teacher and student page, which would be updated and maintained separately.

 Collected student work was challenging for similar reasons. At the end of each lab

period, students uploaded the zip file for the assignment to the Octopi submit website.

Students struggled to navigate to the website, log in, and select the correct assignment name

to upload to. Students also had problems navigating in the upload dialog. Some schools had

multiple classes participating in the KELP-CS pilot, and students would accidentally upload

 36

another student’s assignment from the shared lab computer. OctopiStudent creates two files:

filename.oct and filename.octx. The former is the project file that is read by the Octopi

application suite, and the latter is the zip file of snapshots created by OctopiStudent.

Students were expected to upload the octx file, not the oct file, but many uploaded the oct

file by accident so we did not have snapshots for all the students. For the first half of the

pilot year, students had to manually select which project they were uploading, and the

original file name of the uploaded file would be replaced. However, students often skipped

this step, leaving it set to the first name in the project drop down so the projects had to be

manually sorted into the proper categories.

 In response to these issues, we decided to move completely online. An online

programming environment would allow us to push updates easily and more frequently.

Students would not have to download or upload any files. The new online version of Scratch

did not yet have an open source version available, so instead the successor to OctopiStudent

is based on the open source programming environment Snap!, created by UC Berkeley [42].

Snap! is a Javascript application based on Berkeley’s previous block-based environment, a

Scratch modification called BYOB. Snap! is inspired by Scratch that extends its

functionality to make it better for more advanced programmers. LaPlaya, the new KELP-CS

programming environment, took it in the other direction, simplifying Snap! and

implementing many of the features we created in the Octopi application suite.

 37

VI. LaPlaya & Octopi

A. Overview

LaPlaya is an online programming environment created for the second year of running

the KELP-CS curriculum in classrooms. LaPlaya is a modification of Snap! by UC Berkeley

[42] and inspired by Scratch by MIT [40]. LaPlaya runs inside of Octopi, a web application

for hosting block-based programming curricula. In designing LaPlaya, we kept many of the

features created for the Octopi application suite. Developers can create starting files with

hidden or sample scripts and customized interface and language options in developer mode,

which are modified by students in student mode. Starting files are organized by the

curriculum developers in Octopi, allowing them to open projects directly from the website.

Rather than saving multiple “snapshots”, LaPlaya logs all changes made while students are

working on the project, allowing researchers to get a better idea of how the projects were

changed over time. More detailed information about LaPlaya and Octopi can be found in

[21] and [19], respectively, but I’ll summarize the design and implementation of LaPlaya

and Octopi here.

B. Guiding Research Questions

Our work with LaPlaya continued addressing the research questions we looked at with

the Octopi applications. In addition, we developed design principles for block-based

programming environments for fourth through sixth grade, which are described in the next

section. We also addressed the research question, how do students engage with block-based

programming environments? Section E describes our research on how students read and

engage with block-based programs.

 38

• Design principles for block-based programming environments for fourth through

sixth grade

• How do students engage with block-based programming environments?

C. Methods & Findings

During the KELP-CS pilot, we found that students struggled with aspects of the

programming environment (OctopiStudent) interface and language [21]. We piloted the

curriculum in fifteen 4th – 6th grade classrooms at five schools across California. We refer

to these schools as A, B, C, D and E, with A being the first school trial and E being the last.

In schools B and E, we collected only student projects. In schools A, C, and D, we observed

instruction and interviewed students. The schools had varying numbers of classrooms,

grades participating, start dates, and order of projects. During this pilot, we found that

students struggled with some math concepts in the language and with parts of the interface.

For this analysis, we focus on schools A and B, which used a version of OctopiStudent that

was very similar to Scratch. I made multiple changes to the programming environment

based on our findings in these classrooms before the later schools used it.

1. The interface

Students in the KELP-CS pilot struggled with aspects of the interface that were

distracting or made it too easy to delete parts of the starting files without clear ways to

recover. Some students deleted the scripts or sprites in the starting file, which are difficult or

even impossible in some cases to add back later. In schools A and B (142 students, 516

projects), we found that students deleted provided sprites in at least 4.5% of projects, and

deleted provided scripts in at least 9.6% of projects. These numbers might be lower than the

actual amount – students who deleted parts of the starting files often restarted the

 39

assignment with a new, unchanged version of the starting file, and our numbers do not

include those students.

Some aspects of the programming environment were distracting for students. For

example, a “surprise sprite” button adds a new random sprite to the stage every time you

click on it. These buttons can be distracting for younger age groups. As an example, one

student in our study added 34 sprites to one project. In schools A and B, students added

unnecessary sprites in 10.1% of projects. Although it is important to allow students to

explore and find different ways of solving the problem, “instant gratification” buttons can

switch from being vehicles for exploration to distractions that spread through the computer

lab as students observe their peers’ computers.

2. The language

Many of the blocks used to move the sprites and change their appearances rely on math

concepts above the fourth grade level. Throughout the KELP-CS pilot, I made changes to

the OctopiStudent language based on findings from schools A and B. Other graduate student

researchers and I observed that students struggled with Cartesian coordinates, negative

numbers, and percentages, which are all above the fourth grade level, as well as decimals,

which are taught during fourth grade. Since KELP-CS could be taught at any time during the

fourth grade school year, its content cannot rely on math content at grade level, as well as

above it. Next, I’ll describe how these math concepts are used in Scratch, as well as the

original version of OctopiStudent.

Cartesian coordinates are used to position the sprites on the stage. Setting a sprite to an

absolute location is done with a go to (sprite or mouse pointer) block or a go to x: y: (x and

y coordinates) block. Alternatively, students can drag the sprite to the location where they

 40

want it to go before selecting the block, as OctopiStudent and Scratch auto-populate the x

and y values based on the sprite’s location. This is not a great solution however, since it

requires a lot of repetition and memorization. Negative numbers are also used in these

blocks, since the coordinate plane in OctopiStudent was originally centered on center of the

stage (I later moved this to the lower left corner to get rid of negative coordinates).

Additionally, negative numbers are used in the change (something) by X blocks to reduce the

size, volume, x or y coordinate, and variable value. Finally, percentages are used to control

the size and volume. Not only must students understand percentage parts of a whole, they

also need to understand what 100% means for that variable; for example, the size

percentages are of the original picture size, which the students are unlikely to know.

D. Motivation & Design Principles

LaPlaya is based on the Octopi application suite, which, as described in the previous

section, is a set of Scratch modifications tailored to fit the KELP-CS curriculum that failed

to fit the needs of the classroom environment. Some of the biggest implementation concerns

were that Octopi was a desktop application that needed to be installed and required students

or teachers to download and upload assignments from a separate website. Additionally,

Octopi did not run on iPads, which some classrooms wanted to be able to use. To address

these concerns, we moved our programming environment completely online. LaPlaya is a

Javascript application that runs inside of Octopi, a Ruby on Rails web application that

manages student, teacher, and researcher accounts and access to the KELP-CS assignments.

In Octopi, students can click on an assignment to open it in LaPlaya and then just save and

close at the end of the lab, rather than downloading the starting file and then uploading the

result later on. We also made several changes to the programming environment itself.

 41

 Our findings from the KELP-CS pilot — as well as our experiences with other

block-based languages — informed our design principles for LaPlaya. Scratch, ScratchJr,

and LaPlaya are all block-based environments designed for or used in curricula for children.

However, they are all structured differently. Scratch was designed to be an open-ended

playground for a wide age group of programmers to explore. ScratchJr, which is based on

Scratch, has a similar design but is targeted for a younger age group, so it has fewer blocks

and uses symbols instead of words. Blockly was designed to be a flexible block-based

environment for multiple block-based languages. Unlike Scratch or ScratchJr, Blockly does

not have an editor for working from blank files — instead, each Blockly project uses a

starting file created in Javascript. The following design principles build off of aspects of

each of these languages.

Figure 12. The ballerina project from the animation assignment from the revised

KELP-CS digital Storytelling module, open in LaPlaya in developer mode

 42

1. Support multiple types of tasks

The new version of module 1 has two types of programming assignments — short,

targeted tasks that use prepopulated starting files, and longer, open-ended projects where

students can explore the LaPlaya language. Scratch and ScratchJr both provide playground-

like environments for open-ended assignments, but don’t allow for interface or language

customization. Blockly is a great tool for creating customized starting files, but it lacks the

type of environment needed for open-ended exploration. LaPlaya allows both of these types

of projects by allowing developers to optionally hide aspects of the language and interface in

developer mode, similarly to OctopiDeveloper (Figures 12 & 13).

2. Require only grade- and age- appropriate content

We also made several changes to the blocks in the LaPlaya language. During the pilot,

we found that students struggled with Scratch blocks that required math knowledge above

Figure 13. The ballerina project from the animation assignment from the revised

KELP-CS digital Storytelling module, open in LaPlaya in student mode

 43

their grade level, such as using percentages and coordinates [21, 16]. Some of these blocks

required only small changes to make them more suitable for 4th grade. For example, many

attributes can be changed with change _ by __ blocks. In LaPlaya, these blocks are

rewritten to increase/decrease _ by _ with a drop down where users select increase or

decrease, eliminating the need for negative numbers.

3. Include an age-appropriate interface

Students who participated in the KELP-CS pilot ran into difficulties with some parts of

the interface. For example, it was too easy to delete sprites or scripts and there wasn’t a good

way to get them back. Other aspects of the interface were distracting for students, such as

the “add sprite” button. Some students added dozens of sprites but then never wrote scripts

for them — they just liked the instantaneous feedback delivered by the “add sprite” button.

Similarly to OctopiDeveloper, LaPlaya developers can hide these aspects of the interface in

developer mode.

4. Support project developers

The previous two design principles both support customization, a major component of

Blockly. However, Blockly customization is done in Javascript. We wanted non-

programmers to be able to create starting files for the KELP-CS curriculum. LaPlaya, like

OctopiDeveloper, lets curriculum designers create starting files in a drag and drop

environment.

E. Implementation

LaPlaya is based on Snap!, an open source Javascript programming environment by UC

Berkeley. The Snap! source code is based on Morphic, a web-GUI inspired by Squeak [AN].

 44

Morphic defines a set of Morph classes that all inherit from a base Morph, similar to the

class structure in Squeak Smalltalk. All of the Snap! classes and functionality are built from

these Morph classes rather than built-in Javascript classes. This design decision makes

adding to and modifying Snap! more like programming in Squeak than Javascript. It also

makes for a larger codebase, making it harder to both accelerate loading and running scripts

in LaPlaya. Although technically able to run on iPads and less computationally intensive

devices, LaPlaya takes a long time to load and larger projects run too slowly to be very

useful in a classroom setting.

F. Reading LaPlaya Programs

During the second year of KELP-CS, we held focus groups with students participating in

the curriculum to learn more about how 4th graders read programs in LaPlaya [11]. When

reading a block-based program someone else wrote, there is more content to look at than

simply the words on the blocks. Block-based programs are written and read in very different

environments than text-based languages. Most are focused on visual characters or scenes,

and as such are organized differently than text-based environments. Block-based scripts

usually appear alongside characters or other pictures that can give contextual clues to the

program’s content. We wanted to know more about how children read and understand code

in this type of environment.

 In the context of block-based programming, affordances are objects that have

possibilities for action. Visual cues, such as block color or the location of a sprite on the

stage, provide information about the possible actions. In this study, we asked the question:

what perceptible, hidden, and false affordances of a block-based programming environment

do students use to read block-based programs? We interviewed pairs of students at two local

 45

schools, and asked them to read and make predictions about several LaPlaya projects. These

focus groups showed the types of affordances that students used to make predictions about

what LaPlaya programs do. Affordances are categorized by their intended use and how

students actually use them. Affordances that the designers intended to be meaningful but are

not used by the students are called hidden affordances. Conversely, affordances that students

use that the designers did not intend to be meaningful are called false affordances. For

example, many students made predictions about the first project based on what the sprites

looked like. They used these false affordances to tell stories about what they thought the

sprites would do, based on their prior knowledge of those types of animals.

 The first project has a desert scene with three animals: a bat, a unicorn, and a dragon.

Each animal does something different, and each animal runs on a different event. During the

focus groups, the interviewer asked questions about the first project before running the

program; for example, “What do you think would happen if you ran the program?” or “What

do you think the bat would do?” We coded students’ responses to these questions by the

type of affordance and what visual cues (such as the position of the sprites or the wording of

the blocks) the students used. This coding scheme was then incorporated into a table of

visual cues in LaPlaya, and how students use them (Figure 14).

Students used many visual cues we had intended for them to use, but also employed

visual cues that we did not expect. Students use many attributes of the programming

environment that designers of block-based programming environments might not have

meant for them to use. For example, some students in the focus groups predicted the bat

would fly down because of its position at the top of the stage. Reading programs is a skill,

 46

like reading comprehension, that should be taught as a part of a computer science curriculum

rather than expecting that students will already know how to do it.

G. Future Work

Our findings from the second year of KELP-CS could lead to new design principles, or

new ways to implementing them. LaPlaya is one implementation, but it has obvious

technical flaws — such as how long it takes for projects to load — that could be fixed by a

reimplementation without the dependency on the morph class. Another approach could be

based on Blockly. Since Blockly was created for flexible block-based languages, creating a

Figure 14. How students used visual cues to predict aspects of a LaPlaya program.

Parentheses distinguish visual cues that were categorically false affordances. “X” signifies that

students used a visual cue when making predictions about the first project.

 47

LaPlaya-like language would not be very time consuming. A Blockly project creator

application could be created for developers to build their own assignments in a drag and

drop environment similar to developer mode in LaPlaya.

 48

VII. Conclusion

Block-based languages such as Scratch and LaPlaya were created to give novice

programmers an environment as welcoming and intuitive as a box of Legos. However, this

work has shown many of the potential problems with using block-based environments in

elementary school classrooms. Environments with too many options can distract students

from programming. Traditional languages often contain math or language beyond the scope

of the elementary school curriculum. While teachers can benefit from programming

environments that do not require specialize knowledge, those same environments can

exclude them from the learning process. Additionally, younger children have less physical

dexterity than adults and often struggle with typing and using the mouse — an issue for

block-based languages that rely on drag and drop. Here, I offer some suggestions for new

design principles addressing these issues to address my larger research question, How can

programming environments better meet the needs of upper elementary classes learning

computer science?

Streamline the environment and remove distractions: Consider removing file menus and

limiting non-programming aspects of the environment, like we did with OctopiStudent and

LaPlaya. However, ScratchJr designers found that even in a simplified programming

environment, students spent a lot of time drawing rather than coding [12]. Another solution

is to make programming itself more engaging, so students are less likely to be distracted by

“instant gratification” buttons or the paint editor. For example, Playgrounds gives

programmers “instant gratification” by showing the result of each line of code while the

programmer is typing [24].

 49

Support teachers as well as project developers: Online communities like ScratchEd can

engage teachers and give them resources for teaching a new subject. Give teachers platforms

to create their own projects, like “developer mode” in LaPlaya. Octopi provides grading

tools, lesson plans, and sample LaPlaya project solutions, but it could do more to educate

and prepare teachers before the lesson starts. How could a programming environment

engage teachers as well as students? A new programming environment or interactive tutorial

could show teachers not only possible solutions to assignments but also possible problems,

guiding teachers though parts of the environment and language that students might find

challenging.

Consider alternatives to drag and drop with mice: Develop programming environments

for touch screen devices, like ScratchJr. Keyboard-based drag and drop accessibility options,

such as sticky keys, can work as a quick fix for online environments like LaPlaya. Drag and

drop is arguably not a crucial aspect of block-based programming, so a redesigned interface

could give students other ways of selecting blocks and their new locations. Alternatively,

developers can use tangible blocks that can be read by a webcam such a Tern [43] to engage

students in a different way.

 Computer science education is a growing field, and there is a need for IDE

developers focusing on language requirements and environment needs of elementary school

programmers and their teachers. New programming environments for children have the

potential to change the way future generations of computer scientists think about

programming. Expanding the options for entry-level programming languages may also

encourage more children to be interested in programming, bringing greater diversity to the

field as a whole.

 50

References

1. Blockly. Retrieved April 14, 2015, from https://developers.google.com/blockly/

2. Boe, B. A. (2014). Enabling wide-scale computer science education through
improved automated assessment tools (Doctoral dissertation). Available from
ProQuest Dissertations & Theses A&I. (Accession Order No. AAT 3645611).

3. Boe, B., Hill,, C., Len, M., Dreschler, G., Conrad, P., & Franklin, D. (2013).
Hairball: Lint-inspired Static Analysis of Scratch Projects. In Proceedings of the
45th Technical Symposium on Computer Science Education (SIGCSE ’13). Denver,
CO: ACM.

4. Bruckman, A., Bandlow, A., & Forte, A. 2012. HCI for kids. In J. A. Jacko (Ed.) The
human-computer interaction handbook: fundamentals, evolving technologies, and
emerging applications (841 – 862). Boca Raton, FL: Taylor & Francis Group, LLC.

5. code.org: Anybody can learn. Retrieved April 14, 2015, from http://code.org

6. Computer Science Education Week. Retrieved April 14, 2015, from
http://csedweek.org/

7. CSTA, Computer Science K-8: Building a Strong Foundation.
http://csta.acm.org/Curriculum/sub/CSK8.html

8. Duncan, C., Bell, T., & Tanimoto, S. (2014). Should your 8-year-old learn coding?
In Proceedings of the Ninth Workshop in Primary and Secondary Computing
Education (WiPSCE '14) (pp. 60-69). New York, NY, USA: ACM.

9. Dwyer, H., Boe, B., Hill, C., Franklin, D., & Harlow, D. (2013). Computational
Thinking for Physics: Programming Models of Physics Phenomenon in Elementary
School. In Proceedings of the 2013 Physics Education Research Conference (PERC
’13). Melville, NY: AIP Conference Proceedings.

10. Dwyer, H., Hill, C., Carpenter, S., Harlow,, D., & Franklin, D. (2014). Identifying
Elementary Students' Pre-Instructional Ability to Develop Algorithms and Step-by-
Step Instructions. In Proceedings of the 45th Technical Symposium on Computer
Science Education (SIGCSE ’14). Atlanta, GA: ACM.

11. Dwyer, H. A., Hill, C., Hansen, A., Iveland, A, Franklin, D & Harlow, D. (Submitted

for review). Elementary School Students Reading Block-Based Programs:
Predictions, Visual Cues, and Affordances. ICER, 2015.

12. Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick,
M. (2013). Designing scratchjr: Support for early childhood learning through

 51

computer programming. In Proceedings of the 12th International Conference on
Interaction Design and Children (pp. 1-10). New York, NY: ACM.

13. Franklin, D., Conrad, P., Aldana, G. & Hough, S. (2011). Animal tlatoque: attracting
middle school students to computing through culturally-relevant themes. In
Proceedings of the 42th Technical Symposium on Computer Science Education
(SIGCSE ’11). Dallas, Texas: ACM.

14. Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., Dreschler, G.,
Aldana, G., et al. Assessment of Computer Science Learning in a Scratch-Based
Outreach Program. In Proceedings of the 45th Technical Symposium on Computer
Science Education (SIGCSE ’13). Denver, CO: ACM.

15. Franklin, D., Harlow, D., Dwyer, H., Henkens, J., Hill, C., Iveland, A., Killian, A. &
Development Staff. (2014). Kids Enjoying Learning Programing (KELP-CS) —
Module 1 Digital Storytelling. A computer science curriculum for elementary school
students. Available at www.discover.cs.ucsb.edu/kelpcs/educators

16. Franklin, D., Hill, C., Dwyer, H., Martinez, T., Iveland, A., Killian, A., & Harlow,
D. (2015). Getting started in teaching and researching computer science in the
elementary classroom. In Proceedings of the 46th Technical Symposium on
Computer Science Education (SIGCSE ’15). Kansas City, MO: ACM.

17. Gelderblom, H., & Kotze, P. 2009. Ten design lessons from literature on child
development and children’s use of technology. In IDC 2009.

18. Halgren, S., et al. 1995. Amazing AnimationTM: Movie making for kids design
briefing. In SIGCHI ’95.

19. Henkens, Johan. (2014). Octopi, a Scalable Web Application for Online Computer
Science Curricula Using a Block-based Language (Unpublished master project).
University of California, Santa Barbara.

20. Hill, C. (2014). Computational Thinking Curriculum Development for Upper
Elementary School Classes. In Proceedings of the 10th annual conference on
International computing education research (ICER ’14). Glasgow, UK: ACM.

21. Hill, C., Dwyer, H. A., Martinez, T., Harlow, D., & Franklin, D. (2015). Floors and

flexibility: Designing a programming environment for 4th - 6th grade classrooms. In
Proceedings of the 46th Technical Symposium on Computer Science Education
(SIGCSE ’15). Kansas City, MO: ACM.

22. Hill, C., Dwyer, H., Iveland, A., Kilian, A., Martinez, T., Harlow, D. & Franklin, D.
(2014) The complexity of initializing Scratch programs: A design-based research
study with upper elementary school students. TS. Collection of Depict research
group, UC Santa Barbara.

 52

23. Hopscotch - Learn to program. Make awesome things. Retrieved April 14, 2015,

from https://www.gethopscotch.com

24. Introducing Swift. Retrieved April 14, 2015, from https://developer.apple.com/swift/

25. Introduction to Squeak Smalltalk. Retrieved April 14, 2015, from
http://www.cosc.canterbury.ac.nz/wolfgang.kreutzer/cosc205/smalltalk1.html

26. Kazakoff, E. R. Cats in Space, Pigs that Race: Does self- regulation play a role when
kindergartners learn to code? (Unpublished doctoral dissertation). Tufts University,
Massachusetts, 2014.

27. Kurt [Computer Software] (2014). Retrieved April 14, 2015, from
https://github.com/blob8108/kurt.

28. Lewis, C. M. 2010. How programming environment shapes perception, learning and
goals: Logo vs. scratch. In SIGCSE ’10.

29. Lightbot - Solve Puzzles using Programming Logic. (n.d.). Retrieved April 14, 2015,
from http://lightbot.com

30. NGSS Lead States. (2013). Next Generation Science Standards: For States, By
States. Washington, DC: The National Academies Press.

31. Octopi: A platform for learning with LaPlaya. (2015). Retrieved April 14, 2015,
from https://octopi.herokuapp.com

32. OctopiDeveloper [Computer Software]. (2014). Retrieved April 14, 2015, from
www.charlottehill.com/octopideveloper.zip

33. OctopiResearcher [Computer Software]. (2014). Retrieved April 14, 2015, from
www.charlottehill.com/octopiresearcher.zip

34. OctopiStudent [Computer Software]. (2014). Retrieved April 14, 2015, from
www.charlottehill.com/octopistudent.zip

35. Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York,
NY: Basic Books, Inc.

36. Piech et al. Modeling how students learn to program. In SIGCSE, pages 153–160,
2012.

37. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009).
Scratch: Programming for all. Communications of the ACM, 52(11), 60-67

 53

38. Santrock, J. W. Child Development. McGraw Hill, Boston, 2004.

39. Seiter, L. & Foreman, B. (2013). Modeling the learning progressions of

computational thinking of primary grade students. In Proceedings of the 9th.Annual
International ACM Conference on International Computing Education Research
(ICER ’13). .New York, NY: ACM.

40. Scratch - Imagine, Program, Share. (n.d.). Retrieved February 9, 2015, from
http://scratch.mit.edu/

41. ScratchEd. (2014). Scratch Curriculum Guide. Retrieved February 10, 2015 from
http://scratched.gse.harvard.edu/resources

42. Snap! (Build Your Own Blocks) 4.0. (n.d.). Retrieved April 14, 2015, from
https://snap.berkeley.edu

43. Tern — Tangible programming. Retrieved April 14, 2015, from
http://hci.cs.tufts.edu/tern/

44. Victor, Bret. (2012) Learnable Programming. Retrieved April 14, 2015, from
http://worrydream.com/#!/LearnableProgramming

