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Abstract

Testing galaxy formation and the nature of dark matter with satellite galaxies

by

Anna Mercedes Nierenberg

The abundance of low mass halos is one of the key predictions of Λ CDM, which

remains at apparent odds with observations of luminous structure. We present new mea-

surements of the spatial distribution and the cumulative luminosity function of satellite

galaxies up to a thousand times fainter than their hosts, as a function of host stellar

mass and morphology between redshifts 0.1 and 0.8, using imaging from the COSMOS

and GOODS fields in conjunction with a rigorous statistical analysis. We demonstrate

how these measurements provide powerful new constraints for abundance matching and

cosmological simulations in the context of both warm and cold dark matter, and how

future measurements of faint satellite colors using CANDELS, will provide important dis-

tinguishing power between warm and cold dark matter models. In addition, we present

results from a complementary gravitational lens modeling project in which we use strongly

lensed AGN narrow-line emission in order to detect dark matter subhalos, demonstrating

a promising new method for measuring the subhalo mass function in thousands of lensed

systems which will be discovered in ongoing and future optical surveys.
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Chapter 1

Introduction: Cold dark matter and satellite galaxies

The large scale distribution of structure (e.g. Komatsu et al. 2011; Planck Collabora-

tion et al. 2013), the kinematics of galaxy clusters (Clowe et al. 2004), and the rotation

curves of spiral galaxies (see e.g. Battaner & Florido 2000, and references therein) can

all be explained by assuming that the matter in the Universe is composed mostly of a

collisionless particle which does not interact electromagnetically. The success of the dark

matter theory is remarkable given that it is simple, while reproducing phenomena which

occur across a vast range of distance, mass and time scales. Despite this success, dark

matter itself remains elusive, and understanding its detailed physical properties remains

one of the most important open problems in modern physics.

There are numerous candidates for a dark matter particle or particles based on ex-

tensions to the standard model of particle physics, with the most commonly invoked

being weakly interacting massive particle (WIMP). This candidate is appealing because

a ∼GeV mass particle with a self interaction cross section characteristic of the weak force

would naturally produce a dark matter abundance consistent with what is observed (see

Strigari 2013, for a more thorough discussion).

One of the key aspects of WIMP dark matter is that its high mass leads to a negligible

1



free-streaming length so that dark matter structures (halos) form with scale-free power

down to extremely small, planet-mass halos. This and other candidates with short free

streaming lengths are known as ‘cold’ dark matter (CDM). CDM is the default model

assumed for cosmological simulations and ‘coldness’ is almost always assumed when in-

terpreting results of direct and indirect detection experiments.

If CDM is the correct model, high resolution cosmological simulations predict that the

halo of a galaxy with the mass of the Milky Way should host thousands of self-gravitating

dark matter halos embedded in the smooth distribution of the Milky Way dark matter

halo. This prediction is in stark contrast with observation, which find only about twenty

luminous low mass galaxies gravitationally bound to the Milky Way. This discrepancy

was identified originally in the Local Group by Klypin et al. (1999) and Moore et al.

(1999), and is observed to extend to the field with the significantly suppressed mass

function of low mass field galaxies identified in HI surveys (Papastergis et al. 2011). This

discrepancy remains one of the most significant challenges to the CDM theory of dark

matter.

There are two non-mutually exclusive classes of solutions for this discrepancy, an

astro-particle and an astrophysical solution.

The astrophysical solution attributes the discrepancy to the extremely complex, and

not well understood physics of star formation in low mass halos, which may cause a large

fraction of subhalos to be too dark to see. While dark matter theory can predict the

number of subhalos, an understanding of the extremely complex physics of star formation

in the shallow potential wells of subhalos is necessary in order to predict how much gas and

stars the subhalos should contain. In order to reconcile predicted cold dark matter (CDM)

2



6 Strigari et al.

Fig. 4.— The mass within 0.6 kpc versus the maximum circular
velocity for the mass ranges of Via Lactea subhalos corresponding
to the population of satellites we study.

10% by the finite numerical resolution.
We define subhalos in Via Lactea to be the self-bound

halos that lie within the radius R200 = 389 kpc, where
R200 is defined to enclose an average density 200 times
the mean matter density. We note that in comparing
to the observed MW dwarf population, we could have
conservatively chosen subhalos that are restricted to lie
within the same radius as the most distant MW dSph
(250 kpc). We find that this choice has a negligible effect
on our conclusions – it reduces the count of small halos
by ∼ 10%.

In Figure 4, we show how M0.6 relates to the more
familiar quantity Vmax in Via Lactea subhalos. We note
that the relationship between subhalo M0.6 and Vmax will
be sensitive to the power spectrum shape and normaliza-
tion, as well as the nature of dark matter (Bullock et al.
2001; Zentner & Bullock 2003). The relationship shown
is only valid for the Via Lactea cosmology, but serves as
a useful reference for this comparison.

Given likelihood functions for the dSph M0.6 values,
we are now in position to determine the M0.6 mass func-
tion for Milky Way (MW) satellites and compare this to
the corresponding mass function in Via Lactea. For both
the observations and the simulation, we count the num-
ber of systems in four mass bins from 4 × 106 < M0.6 <
4 × 108 M!. This mass range is chosen to span the M0.6

values allowed by the likelihood functions for the MW
satellites. We assume that the two non-dSph satellites,
the LMC and SMC, belong in the highest mass bin, cor-
responding to M0.6 > 108 M! (Harris & Zaritsky 2006;
van der Marel et al. 2002).

In Figure 5 we show resulting mass functions for MW
satellites (solid) and for Via Lactea subhalos (dashed,
with Poisson error-bars). For the MW satellites, the cen-
tral values correspond to the median number of galaxies
per bin, which are obtained from the maximum values
of the respective likelihood functions. The error-bars
on the satellite points are set by the upper and lower
configurations that occur with a probability of > 10−3

after drawing 1000 realizations from the respective like-
lihood functions. As seen in Figure 5, the predicted dark

Fig. 5.— The M0.6 mass function of Milky Way satellites and
dark subhalos in the Via Lactea simulation. The red (short-dashed)
curve is the total subhalo mass function from the simulation. The
black (solid) curve is the median of the observed satellite mass
function. The error-bars on the observed mass function represent
the upper and lower limits on the number of configurations that
occur with a probability of > 10−3.

subhalo mass function rises as ∼ M−2
0.6 while the visi-

ble MW satellite mass function is relatively flat. The
lowest mass bin (M0.6 ∼ 9 × 106M!) always contains 1
visible galaxy (Sextans). The second-to-lowest mass bin
(M0.6 ∼ 2.5×107M!) contains between 2 and 4 satellites
(Carina, Sculptor, and Leo II). The fact that these two
lowest bins are not consistent with zero galaxies has im-
portant implications for the Stoehr et al. (2002) solution
to the MSP: specifically, it implies that the 11 well-known
MW satellites do not reside in subhalos that resemble the
11 most massive subhalos in Via Lactea.

To further emphasize this point, we see from Figure 5
that the mass of the 11th most massive subhalo in Via
Lactea is 4 × 107 M!. From the likelihood functions in
Figure 1, Sextans, Carina, Leo II, and Sculptor must
have values of M0.6 less than 4 × 107 M! at 99% c.l.,
implying a negligible probability that all of these dSphs
reside in halos with M0.6 > 4 × 107 M!.

Using the M0.6 mass function of MW satellites, we
can test other CDM-based solutions to the MSP. Two
models of interest are based on reionization suppres-
sion (Bullock et al. 2000; Moore et al. 2006) and on there
being a characteristic halo mass scale prior to subhalo
accretion (Diemand et al. 2007). To roughly represent
these models, we focus on two subsamples of Via Lactea
subhalos: the earliest forming (EF) halos, and the largest
mass halos before they were accreted (LBA) into the
host halo. As described in Diemand et al. (2007), the
LBA sample is defined to be the 10 subhalos that had
the highest Vmax value throughout their entire history.
These systems all had Vmax > 37.3 kms−1 at some point
in their history. The EF sample consists of the 10 sub-
halos with Vmax > 16.2 kms−1 (the limit of atomic cool-
ing) at z = 9.6. The Kravtsov et al. (2004) model would
correspond to a selection intermediate between EF and
LBA. In Figure 6 we show the observed mass function of
MW satellites (solid, squares) along with the EF (dotted,

Madau et al. 7

Fig. 5.— Cumulative number of Via Lactea subhalos within r200 (solid curve) as well as all Milky Way satellite galaxies within 420 kpc
(filled squares), as a function of circular velocity. The data points are from Mateo (1998), Simon & Geha (2007), Munoz et al. (2006), and

Martin et al. (2007), and assume a maximum circular velocity of Vmax =
√

3σ (Klypin et al. 1999). The short-dashed curve connecting
the empty squares shows the expected abundance of luminous satellites after correcting for the sky coverage of the SDSS. Dash-dotted
curve: circular velocity distribution for the 65 largest Vmax,p subhalos before accretion (LBA sample). Long-dashed curve: circular velocity
distribution for the “fossil of reionization” EF sample. This includes the 61 largest (sub)halos at z = 13.6 [Vmax(z = 13.6) > 4 kms−1]
plus the 4 (sub)halos that reach a Vmax,p > 38 km s−1 after the epoch of reionization and are not in the largest 61 at z = 13.6.

is to allow star formation only above a relatively large
constant critical size, a scenario of permanently ineffi-
cient galaxy formation in all smallest systems, indepen-
dently of time-varying changes in the environment like
those triggered, e.g., by reionization. Today’s circular
velocity distribution of our LBA sample is shown in Fig-
ure 5: interestingly, this sample includes 12 of the 14
subhalos above Vmax = 20 km s−1 identified today, and
26 of the 35 identified above Vmax = 15 km s−1, i.e. the
most massive today and LBA subpopulations basically
coincide at large values of Vmax.

5 Therefore a solution
to the substructure problem in which only the largest 50-
100 Vmax,p subhalos at all epochs were able to form stars
efficiently would automatically place the luminous Milky
Ways dwarfs in the most massive subhalos at the present
epoch. To match the circular velocity function of the
LBA sample, however, the observed dwarf spheroidals

5 Note that the same is not true for the top 10 LBA subhalos
(Kravtsov et al. 2004; Diemand et al. 2007b; Strigari et al. 2007a),
as the largest Vmax,p systems suffer the largest mass loss and are
removed from the top ten list of more massive systems at z = 0.

(dSphs) must have circular velocity profiles that peak
at values well in excess of the stellar velocity disper-
sion (see Fig. 5 and discussion below). Note that the
cut in Vmax,p instead of Vmax of the LBA sample re-
quires star formation to be inhibited in all subhalos with
Vmax,p < 21.9 km s−1 or virial temperature

Tvir =
µmpV

2
max,p

2kB
< 17, 000 K. (6)

4. SUPPRESSING DWARF GALAXY FORMATION

The two thresholds for efficient star formation given in
equations (5) and (6) provide the correct total number of
luminous Milky Way satellites (assumed to be around 60-
70), not a match to the observed circular velocity func-
tion. A careful look at Figure 5 suggests two possible
solutions to the mismatch problem:

1. stars in the Milky Way dSphs are deeply embedded
within their dark matter halos. The halo circu-
lar velocity profiles peak well beyond the luminous
radius at speeds significantly higher that expected

Figure 1.1: Demonstrations of the missing satellite problem. Left: Comparison between
the differential subhalo mass function for masses measured within 600 pc of the center
of luminous Milky Way subhalos, reproduced from Strigari et al. (2007). Right : Com-
parison of predicted (solid blue line) and observed (black points) subhalo cumulative
maximum velocity function from Madau et al. (2008). The red dashed line indicates
the possible abundance after correcting for the limited sky coverage of the observational
sample. There is significant discrepancy between the dark matter model predictions and
observation in both cases, even after correcting for sky coverage effects.

halo mass functions at small scales with the observed satellite luminosity function it is

necessary to understand the complex interplay of numerous baryonic processes including

UV heating during reionization, tidal and ram-pressure stripping by the central galaxy,

supernova feedback, and stellar winds (Lu et al. 2012; Menci et al. 2012; Guo et al.

2011a; Bullock et al. 2000; Benson et al. 2002; Somerville 2002; Kravtsov et al. 2004a;

Kaufmann et al. 2008; Macciò 2010; Springel 2010). Star formation in satellite galaxies

is an interesting problem in its own right with numerous other important astrophysical

implications. In Section 1.1 of this Introduction, we discuss in more detail some of the

open questions regarding star formation in satellite galaxies and we provide an overview

of previous observational constraints.

The astroparticle solutions attribute the observed discrepancy to a fundamental break-
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down of the ΛCDM paradigm at small scales, possibly indicating that assumptions about

the nature of the CDM particle are incorrect. For instance, DM particles may have higher

kinetic energy than expected (e.g. Coĺın et al. 2000; Schneider et al. 2011; Menci et al.

2012) leading to suppressed fluctuations in the primordial power spectrum at small scales,

thereby decreasing the number of present day satellites (e.g. Kamionkowski & Liddle

2000; Zentner & Bullock 2003). The cleanest way to test this latter set of solutions is

with a direct measurement of the subhalo mass function which does not rely on an under-

standing of the baryonic physics in the subhalos. In Section 1.2 of this Introduction, we

summarize some of the basic principles of strong gravitational lensing, and discuss how

it has been used in the past to detect dark, low mass structure at cosmological distances,

potentially enabling a measurement of the subhalo mass function without requiring the

subhalos to contain any stars at all.

1.1 Introduction to luminous satellite galaxies

It is important to understand star formation in satellite galaxies not only as a means

of understanding CDM, but also because satellite galaxies are believed to have played a

crucial role in the size and mass growth of central galaxies, the buildup of stellar halos, and

the re-ionization of the Universe (Kaviraj et al. 2011; Bournaud et al. 2007; Conroy et al.

2007; Paardekooper et al. 2013; Bouwens et al. 2012; Kistler et al. 2013). While a variety

of theoretical star formation models have been shown to reproduce various properties of

observed luminous satellite galaxies, the physics of star formation in satellite galaxies

is still not well constrained, with numerous models which use widely different physical
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assumptions reproducing the mass function of the Milky Way satellites, for instance (Guo

et al. 2011a, see also, Chapter 4).

Baryonic processes are also invoked to resolve the discrepancy between the predicted

and observed central velocities of ΛCDM subhalos around the Milky Way (Boylan-

Kolchin et al. 2012) by lowering the subhalo central velocities, thereby making them

appear less massive. Simulations with baryons have produced conflicting predictions

as to whether supernovae can (Governato et al. 2012; Teyssier et al. 2013) or cannot

(Garrison-Kimmel et al. 2013) significantly alter the kinematics in the central regions of

dark matter halos.

The issue of the low central velocities of Milky Way subhalos is further complicated

by the fact that the ΛCDM prediction for the subhalo circular velocity function depends

sensitively on the virial mass of the Milky Way halo. Wang et al. (2012) showed that

taking into account the uncertainty on the measured Milky Way virial mass, the observed

subhalo circular velocity function is consistent with that observed in ensemble simulations

of dark matter halos. Purcell & Zentner (2012) further showed that even simulated halos

with masses corresponding to the observational mean have subhalo populations consistent

with the Milky Way a significant fraction (∼ 10%) of the time.

These studies demonstrate that it is essential to study the statistical properties of

satellite galaxies in observations and simulations for a large sample of host galaxies, in

order to determine whether apparent discrepancies are driven by the stochastic nature

of galaxy formation, or observational uncertainty, rather than poorly modeled physical

processes.

Furthermore, as the baryonic processes which affect the subhalo population occur over
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cosmological time scales, the predicted effects would ideally be compared with observa-

tions of the satellite population over as much of the history of the Universe as possible.

1.1.1 The luminosity function of satellite galaxies

Observations of Milky Way satellites are extremely deep, with satellite galaxies de-

tected which are as faint as MV = −2 (see Koposov et al. 2008, and references therein).

Outside of the Local Group, measurements have been restricted to brighter satellites.

Multiple studies using data from SDSS have measured the luminosity function of satel-

lites at low redshift (Guo et al. 2011a; Liu et al. 2011; Lares et al. 2011; Strigari & Wechsler

2012). The deepest study by Guo et al. (2011a), measured the luminosity function reli-

ably for satellites up to 7.5 magnitudes fainter than the hosts, while Strigari & Wechsler

(2012) placed upper limits on satellite numbers for satellites up to 10 magnitudes fainter.

All of these studies agreed on two main conclusions, first that the satellite luminosity

function depends on the host luminosity and second that the luminosity function of faint

satellites of the Local Group is consistent with that of field galaxies.

The first conclusion, that the satellite luminosity function depends on the host galaxy

magnitude, is due to the fact that for massive host galaxies, the host stellar mass is

believed to be a non-linear function of the host virial mass (e.g. Behroozi et al. 2010;

Wake et al. 2011; Leauthaud et al. 2012). Thus while the number of satellites at a

fixed virial mass ratio with the host is expected to be scale invariant (Kravtsov 2010),

the luminosity ratios may not be. The second conclusion has been tested for satellites

as faint as an absolute V band magnitude of -14 (Guo et al. 2011a; Lares et al. 2011;
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Strigari & Wechsler 2012), on the bright end only 10-20 percent of hosts with Milky

Way and Andromeda luminosities host satellites as luminous as the Large and Small

Magellanic Clouds (L/SMCs). The rarity of high mass companions is consistent with

predictions from ΛCDM simulations, indicating that the Milky Way luminosity function

is an outlier on the bright end rather than that there is an issue with the theory. However,

a significant discrepancy between theoretical predictions and observation of the satellite

luminosity function only begins to appear for satellites with absolute magnitudes fainter

than MV > −14. Thus, in order to test whether the missing satellite problem is due to

the Milky Way lacking satellites on the faint end, it is necessary to study even fainter

satellites.

In addition to providing a key to understanding star formation in low mass halos,

satellite galaxies are believed to have played a significant role in the evolution of the size

of the most massive galaxies (M∗ > 1010M�) (Boylan-Kolchin et al. 2006; Boylan-Kolchin

& Ma 2007; Hopkins et al. 2010) 1. Interestingly recent observations of the evolution of

early-type lens galaxies by Sonnenfeld et al. (2014) indicate that the growth of massive

ellipticals cannot be explained entirely by dry merging with satellite galaxies, thus a

constraint on the gas content, as well as the number of satellite galaxies is important.

The role of minor mergers in the evolution in size and mass has been observed in

numerous observational studies which used pair counting and assumptions about merger

time-scales to estimate the minor merger rate (Le Fèvre et al. 2000; Bell et al. 2006;

Patton & Atfield 2008; Bundy et al. 2009; Bezanson et al. 2009; Robaina et al. 2010;

Newman et al. 2012; Tal et al. 2011). Furthermore, measurements of disturbed mor-

1But see also Nipoti et al. (2012)
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phology and color gradients in an elliptical hosts as evidence for recent mergers (Kaviraj

et al. 2009; Kaviraj et al. 2011) show that minor merging is a key contributor to low

level star formation seen in the outskirts of early-type galaxies. These studies have all

been limited to the study of the most massive companions with stellar masses at least

ten percent of their host mass, which is ten times higher than the mass ratio between

the Milky Way and the LMC. In order to better constrain the effect of minor mergers

on the evolution of massive galaxies, it is necessary to push the study of companions at

cosmological distances to lower stellar masses (see also Bundy et al. 2007; Naab et al.

2009; Fakhouri et al. 2010).

1.1.2 The spatial distribution of satellite galaxies

The spatial distribution of satellites about their host galaxies is intimately tied to

the luminosity function of those satellite galaxies. Two competing effects contribute to

the link between satellite luminosity function and spatial distribution. First, baryons are

thought to play an important role in the preservation of subhalos in the inner regions of

the host dark matter halo by steepening the total mass profiles and making them less

susceptible to tidal stripping. Numerous hydrodynamical and semi-analytic simulations

have found that subhaloes with baryons are more centrally located in the host dark matter

halo than pure dark matter subhalos (e.g. Blumenthal et al. 1986; Libeskind et al. 2010;

Romano-Dı́az et al. 2009; Weinberg et al. 2008; Macciò et al. 2006; Gao et al. 2004).

However, baryons will also steepen the mass profile of the host, increasing the strength

of tidal shock heating of the gas and stars in satellites as they pass near the center of the
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halo, with the amount of heating and mass loss strongly dependent on the orbits of the

satellites (Gnedin et al. 1999; Choi et al. 2009; Boylan-Kolchin & Ma 2007; Dolag et al.

2009). D’Onghia et al. (2010) find that the effects of these interactions in suppressing

star formation is stronger for less massive subhalos. For these reasons, the slope of the

radial profile of satellites is of key importance to any analysis attempting to recover the

physics that governs the interactions between satellites and their host halo and central

galaxy. Figure 1.2 shows the predicted effect of baryons of satellites around a Milky Way

like host galaxy from high resolution hydrodynamic simulations by Brooks & Zolotov

(2014).

The radial profile of the number density of satellites has been measured with somewhat

contradictory results. Assuming a single power-law model for the projected number

density of satellites N as a function of distance from the host, where N(R) ∝ Rγ
p , Chen

(2008) measured γp = −1.5 ± 0.07 for satellites brighter than Mr ∼ −17.5 in SDSS. In

a study of SDSS satellites brighter than Mg < −21.2, Watson et al. (2010) measured

γp = −1.2± 0.1.

There are several likely explanations for the discrepancies in these measurements.

One possibility is differences in the technique used to separate satellites from back-

ground/foreground interlopers. Alternatively the difference in inferred slopes may be

due to differences in host masses studied, or differences in the luminosity of the satel-

lites. For example, Watson et al. (2012) measured the radial profile of satellite galaxies

brighter than Mr < −18 between 7 and 280 kpc as a function of satellite luminosity,

and found that the faintest satellites had significantly shallower radial profiles than their

more luminous counterparts. Tal et al. (2012) also found fewer faint satellites in groups
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within 25 kpc for satellites brighter than Mg < −22. However outside of this region,

they found that all satellites followed the same radial profile which was well described

by a combined Sersic+NFW profile, mimicking the total mass profile which follows R−1

(Gavazzi et al. 2007; Auger et al. 2010) for massive galaxies. In contrast to these studies,

Guo et al. (2012) found that for satellites brighter than mr < 22 in SDSS, fainter satel-

lites are more centrally concentrated than bright satellites. Budzynski et al. (2012) also

found an excess of fainter satellites in the innermost regions for satellites in groups and

clusters.

To make progress on understanding the satellite radial profile, it is necessary to make

measurements that take into account complexities, such as the host mass and satellite

luminosity. In addition, in order to learn about trends in merging rates it is interesting

to study evolution in the radial profile. Budzynski et al. (2012) found no significant

evolution in the radial profile of satellites in groups and clusters between redshifts 0.15

and 0.4. In this work we extend the measurement of the satellite radial profile to fainter

satellites and to higher redshifts.

The angular distribution of satellites also contains information about the effects of

anisotropic, filamentary accretion in ΛCDM and the shape of the host dark matter halo.

Pure dark matter simulations predict that satellites should be found in an anisotropic

distribution aligned with the major axis of the host dark matter halo (e.g. Zentner et al.

2005; Zentner 2006; Knebe et al. 2004; Aubert et al. 2004; Faltenbacher et al. 2007, 2008).

Thus by studying the orientation of satellite galaxies with respect to the major axis of

the host light profile it may be possible to learn about the relative orientation between

the stars in the host galaxy and the dark matter halo they reside in. In the Milky Way
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and Andromeda, satellite galaxies appear in an anisotropic distribution, preferentially

aligned with the minor axis of their hosts (e.g. Metz et al. 2009). When averaged,

however, studies of satellites in SDSS find that satellites are randomly located around

late-type galaxies (Bailin et al. 2008; Yegorova et al. 2011) and aligned with the major

axis of the host light profile for early-type hosts (Brainerd 2005; Agustsson & Brainerd

2010). The studies of the satellite angular distribution outside of the Local Group have all

been limited to relatively bright satellites (within 1-2 magnitudes of the host magnitude),

and they have not attempted to measure the relative ellipticity of the satellite angular

distribution. As stated above, measuring the angular distribution of fainter satellites is

of key interest because several simulations predict that satellites that have very elongated

orbits will lose the most gas as they pass through the host galaxy.Satellite dynamics 7

Fig. 6.— The cumulative distribution of radial distance from the
halo center for the subhalos. The solid black line shows the results
for the DM-only runs, while the dashed red line is for the baryonic
runs. Destruction of subhalos in the presence of a baryonic disk
leads to a depletion of the SPH satellites compared to the DM-only
runs.

40 kpc due to the stronger tidal forces present when
baryons cool to the center of the halo. We have veri-
fied that the Rperi values between matched counterparts
in the DM-only and baryonic simulations do not show
any global differences. For example, one might expect
that the SPH satellites could have smaller Rperi if adi-
abatic contraction occurred in the parent halo, but we
find no evidence for this.

In this section we discuss two effects that, in addi-
tion to tidal stripping, are likely to be important in
understanding the evolution of satellites – tidal heat-
ing and disk shocking. Within ∼ 20 kpc of the galaxy
center, tidal heating and disk shocking are the domi-
nant processes that lead to mass loss from subhalos (see
D’Onghia et al. 2010), and were not discussed in Z12.
Tidal heating is efficient for eccentric orbits and can de-
stroy satellites faster than tidal stripping (Gnedin et al.
1999). Disk shocking occurs when the subhalos pass
through the dense baryonic disk. The rapidly vary-
ing gravitational field adds energy to the subhalos, al-
tering the structure, and quickly leading to dissolution
(Ostriker et al. 1972).

In our simulations, 8 of the original 62 DM-only sub-
halos do not have a surviving SPH counterpart at z = 0.
Six of these subhalos have pericentric passages that
take them within 30 kpc of the galaxy center, 16 <
Rperi/kpc < 29. For comparison, the radial extent of
the parent halos’ disks are 7 < r/kpc < 10 at z = 1,
and 15 < r/kpc < 20 at z = 0. The other two dis-
rupted subhalos are subject to the cosmological context
of the simulations, encountering fly-bys with nearby ha-
los that lead to their destruction prior to accretion onto
the main halo. The destruction of these two halos em-
phasizes that, while the main culprit that reduces the
subhalo population is the disk of the parent halo, inter-
actions with nearby galaxies can also deplete the subhalo
population (see also Kravtsov et al. 2004).

The radial distribution of the subhalos at z = 0 is
shown in Figure 6. Figure 6 shows that there is only
one surviving subhalo within 30 kpc of the galaxy cen-

ter in the baryonic run at z = 0, (and no bright, clas-
sical dSphs interior to 40 kpc, dotted red line), consis-
tent with the results in both D’Onghia et al. (2010), and
Romano-Dı́az et al. (2010). This is also consistent with
the bright satellite distribution in the Milky Way, where
only Sagittarius is observed within 30 kpc, and is in the
process of being disrupted.

The satellite distribution in the DM-only run and bary-
onic runs is very similar out to ∼80 kpc, and then begins
to diverge (black solid line and red dashed line). There
is a tendency for the SPH satellites in the outer halo to
reside at larger distances than their DM-only counter-
parts. This is consistent with later accretion times in
the SPH runs than the DM-only runs, as also seen by
Schewtschenko & Macciò (2011).

All but one of the surviving DM-only satellites that
have destroyed SPH counterparts are further than 80
kpc from the galaxy center at z = 0. In other words,
most of the surviving DM-only subhalos with destroyed
counterparts are found beyond ∼80 kpc at z = 0, but
were within 30 kpc at some point in their orbital history.
Thus, when considering the halos within a DM-only run
that may have been completely destroyed by baryonic
effects, the entire orbital history needs to be accounted
for.

In summary, the presence of a disk acts not only to
reduce the overall masses of the SPH subhalos via tidal
stripping, but it can also reduce the number of satellites
overall. We quantify these combined effects further in
the next section.

4.2. The Velocity and Luminosity Functions

Figure 7 shows the combined effects of mass loss and
complete disruption on the resulting velocity and lumi-
nosity functions of the satellites. Solid circles show the
combined results for the two DM-only simulations, while
the open circles show the combined results for the two
SPH simulations. The left hand panel shows the vmax

function. In this panel we include all 62 of the subhalos
identified in the DM-only runs that have vmax(z = 0) >
15km/s and are within 300 kpc of the main halos.

The vmax function can differ quite dramatically be-
tween the SPH and DM-only satellites, due to multi-
ple physical effects. First, in a luminous subhalo (MV

brighter than −12), SN feedback can induce DM core
creation. DM is pushed out of roughly the central kpc
(Pontzen & Governato 2012). This redistribution of the
DM acts to lower vmax in the baryonic run to ∼90%
of the value in their DM-only counterparts. Second, the
presence of a disk leads to enhanced tidal stripping for all
of the subhalos. This process depends on infall time and
orbital history for any given satellite, and therefore does
not yield a smooth trend of mass loss as function of vmax,
but is instead stochastic. Third, the number of subhalos
at a given vmax is reduced because some of the baryonic
subhalos are destroyed entirely. While this final effect re-
moves halos entirely, the first two effects instead shuffle
the vmax distribution from that found in the DM-only
runs. This redistribution always acts to move subhalos
to lower vmax, so that the cumulative number above a
fixed vmax is always lower in the baryonic runs compared
to the DM-only runs. The top plot in the left panel of
Figure 7 shows that, at any given mass or vmax, there
are roughly half as many subhalos in the baryonic run

Figure 1.2: Theoretical model of the effects of baryons on the satellite radial distribution
from a high resolution, hydrodynamical simulation by Brooks & Zolotov (2014). Both
interactions between satellites and the host galaxy, as well as internal baryonic processes
lead to a steeper prediction for the satellite radial number density relative to the dark
matter only case.

In Chapters 2 and 3 we present new measurements of the satellite luminosity function

using deep, high resolution HST imaging, which enable the detection of faint satellites

which are up to a thousand times fainter than their hosts, at intermediate redshifts. In
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Chapter 4 we demonstrate how these measurements provide important leverage in distin-

guishing between various models of star formation in satellite galaxies which otherwise

predicted consistent results for low redshift satellites of Milky Way mass host galaxies.

1.2 Gravitational lensing

Strong gravitational lensing provides a powerful means of detecting dark subhalos

at cosmological distances. Here we provide a brief overview of the method, assuming,

without deriving key results from general relativity. For a derivation of these results we

suggest the review by Carroll (2004). A more thorough discussion of the applications of

strong lensing beyond measuring the subhalo mass function can be found in Treu (2010).

One of the major results of general relativity is that mass warps space-time, which

in turn alters the geodesics that light follows. Figure 1.3 is a schematic representation

of this effect. The viewer sees an image of the source which is offset from where the

source would appear if there was no intervening lens. It is convenient to consider the

‘lens equation’:

From general relativity, the amount that the light is deflected in the direction per-

pendicular to the unperturbed path α is given by an integral of the transverse gradient

relative to the light travel path of the gravitational potential, Φ along the light travel

path:

α =
2

c2

∫
∇⊥Φ(s) ds (1.1)

The gravitational influence of the lens galaxy is often relevant only over a very short

12



distance scale relative to the total path of the light, in which case the ‘thin lens’ approxi-

mation can be used. In this approximation, the mass of the lens is projected onto a plane

at the center of the three dimensional lens (i.e. the yellow ellipsoid in Figure 1.3).

Defining the two dimensional mass distribution projected along the z direction (from

the observer to the lens) to be:

Σ(ξ) =

∫
Φ(ξ, z′)dz′, (1.2)

where ξ is the two dimensional vector in the plane of the lens. The gravitational potential

in the thin lens approximation (Φt) becomes:

Φt(ξ) = 2G

∫
Σ(ξ′)

|ξ − ξ′|
(ξ − ξ′)2

dξ′ (1.3)

The integral in equation 1.1 becomes a delta function in the z direction evaluated in

the plane of the lens so that:

α(ξ) =
4G

c2

∫
Σ(ξ′)

|ξ − ξ′|
(ξ − ξ′)2

dξ′ (1.4)

It is useful to consider quantities relevant to the observer. Going back to Figure

1.3, we see that the ‘true’ transverse position of the source, β is related to the observed

position of the source θ simply by:

β = θ − DLSDL

DS

α(θ), (1.5)

where the angular transverse position θ is related to the physical transverse distance

ξ by the angular diameter distance:

θ =
DL

DS

ξ (1.6)
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The observed image position is thus determined by the gravitational potential of the

deflector, and angular diameter distances which depend on cosmology. This result can

be generalized to situations in which there are multiple significant lens galaxies at large

z separations by studying multiple lens planes (see e.g. McCully et al. 2014a).

From Equation 1.4 it can be seen how gravitational lensing can be used to detect

subhalos, via their alteration of the gravitational potential of a halo, which leads to a

shifted observed image position relative to where the image would have appeared if the

potential had been smooth. This method requires that the unperturbed gravitational

potential of the lens is well determined at the position of the images, which is possible

in the case of strong gravitational lensing.

In strong gravitational lensing, Equation 1.5 has multiple solutions, and thus multiple

images of the background source appear. Each lensed image yields a constraint on the

source position as well as the mass distribution of the deflector, known as the macromodel.

If the lensed images are extended (as in the case of a lensed galaxy source), then there is

significant angular constraint on the macro model, which makes it possible to robustly

detect substructure via astrometric perturbations to the image positions. This method,

known as gravitational imaging, proposed by Koopmans (2005), has been successfully

applied to HST and Adaptive Optics (AO) imaging Vegetti et al. (2012, 2010a), and

simulations indicate it will also work for ALMA data (Hezaveh et al. 2013). Recently

Vegetti et al. (2014) analyzed a sample of 11 lenses, finding a fraction of substructure

consistent with numerical simulations and results from analyses of four image quasar

lenses.

The mass sensitivity of gravitational imaging is determined by the signal to noise
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ratio and resolution of the data, as well as the intrinsic morphology of the lensed galaxy.

Current measurements with Keck AO are sensitive to substructure with masses of ∼

107.5M� and larger, while measurements with the Next Generation Adaptive Optics on

Keck, the Thirty Meter Telescope, Very Long Baseline Interferomety may allow the

sensitivity of this method to reach masses of ∼ 106M�.

Gravitational imaging is a relatively new method for detecting perturbing substruc-

ture as it requires very high resolution imaging and intensive computation in order to

rigorously model both the mass distribution of the deflector and the light profile of the

lens source.

Traditionally, substructure has been detected via perturbations to the magnification

of compact sources. The magnification is sensitive to lower mass perturbations as it

depends on the second derivative of the potential, rather than the first derivative as in

the case of the image position.

This can be seen by considering that the magnification is the ratio between the final

and initial size of an area element after gravitational lensing occurs. To calculate the

lensed size, we apply the differential lensing equation to see that the ith component of the

differential source element will be mapped onto the jth component of the image according

to the derivative of the lensing equation:

∂βi
∂θj

=
∂

∂θj

(
θi −

DLSDL

DS

αi

)
= δij −

DLSDL

DS

∂αi
∂θj

(1.7)

The determinant of the above matrix gives the ratio of the initial size to the final size,

and the magnification is the inverse of this.

As in the case of gravitational imaging, substructure is detected by deviations relative
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to the smooth model prediction. When magnifications are used to detect substructure,

the method is traditionally referred to as studying ‘flux ratio anomalies’, although this

term is somewhat misleading given that the image magnifications provide a constraint

on the local presence of substructure whether or not there is an anomaly.

In order to obtain robust constraints on the presence of substructure there are a few

observational requirements. First, given that the image magnifications depend on the

second derivative of the potential, the long range effect of a perturbing subhalo is smaller

than in the case of gravitational imaging, thus deviations to the image magnifications

are most apparent in lensed compact sources. Secondly, stars in the plane of the lens

galaxy can induce high magnifications over small areas, thus the background source

must be significantly larger than the lensing scale of these stars which is typically of

order microarcseconds. Finally, as in the case of gravitational imaging, a tight constraint

on the macro model is necessary in order to determine what the image magnifications

should have been in the absence of substructure.

Traditionally, these requirements have been met by studying the image magnifications

of the seven known quadruply imaged, radio loud, quasar sources. The radio jets are

compact enough to be significantly magnified by substructure which has a characteristic

lensing scale of order milliarcseconds, but they are thought to be extended enough to be

unaffected by microlensing. The four lensed images as well as a constraint on the position

of the host galaxy typically from optical imaging, have been shown to yield a sufficient

constraint on the macro model to detect significant flux ratio anomalies induced by

substructure. Dalal & Kochanek (2002) used a lensing simulation with smooth halos and

perturbing subhalos to model the image magnification in these seven systems and inferred
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that the lenses contained a fraction of mass in substructure which was broadly consistent

with predictions from CDM simulations, albeit with large uncertainties. Progress with

this technique has been limited by the small number of known suitable systems.

θ β 

ξ 
Source 

Image 

Lens 
Observer 

DL DS 

DLS 

α 

Figure 1.3: A schematic of the gravitational lensing effect. The path of light is curved
due to the presence of the intervening lens galaxy in the image plane. The observer sees
the light at a position θ which is a transverse distance α from β, the position the image
would have been at if there had been no intervening galaxy. DL, DS and DL,S are the
angular diameter distances from the observer to the lens, from the observer to the source
and from the lens to the source respectively, and are relevant to gravitational lensing
calculations.

In Chapter 6 we present a new method of using strong gravitational lensing to detect

substructure, which will enable substructure to be detected in a much larger sample of

systems than was previously possible.

Ultimately, measurements of the properties of luminous satellites and the subhalo

mass function can be combined to provide complementary constraints on star formation

physics in satellite galaxies. At present, the combination of gravitational lensing analyses

with luminosity function measurements is the only method to directly measure stellar

to virial mass ratios for satellites outside of the Local Group. In order to make such a

comparison, it is necessary to compare satellite populations of lens and non lens galaxies
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in an appropriate way. In Chapter 5 we compare the luminous satellite populations of

lens and non lens galaxies, to test for systematic differences in the two.
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Chapter 2

Luminous satellites I: Determining the number and

spatial distribution in a Bayesian framework

This chapter was published as Nierenberg, A. M., Auger, M. W., Treu, T., Marshall,

P. J., Fassnacht, C. D., “Luminous Satellites of Early-Type Galaxies I: Spatial Distri-

bution”, ApJ, 731, 44, (2011) and is included here with minor formatting adjustments

A powerful approach to understanding star formation efficiency in low mass satellite

galaxies is the combination of lensing studies to constrain the mass function of satellites,

and imaging studies to constrain the luminosity function (Treu 2010; Kravtsov 2010,

and references therein). With this goal in mind, we have started a new program to

characterize the visible properties of faint satellites of massive galaxies. In this first

chapter, we focus on the spatial distribution of faint satellites of early-type galaxies at

intermediate redshifts, 0.1 < z < 0.8, selected from the GOODS fields (Giavalisco et al.

2004). We concentrate on this population of hosts because early-type galaxies dominate

the sample of strong lensing galaxies (Auger et al. 2009) and are therefore the proper

host sample for comparison to the satellite mass function results from lensing studies.

An additional benefit to studying early-type galaxies is that they have relatively smooth

surface brightness profiles which are ideal when searching for nearby compact and faint
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companions.

For this initial analysis we only require one photometric band. We use z850 because it

is the reddest of the GOODS bands and therefore it is the most faithful tracer of stellar

mass.

This chapter is organized as follows: In §2.1 we discuss the properties of our host

galaxy sample. In §2.2 we summarize our image analysis method, including our elliptical

B-spline host galaxy subtraction and faint object detection and photometry method-

ologies. In §2.3 we take a first look at the satellite distribution by means of a binned

analysis, which is useful for visualizing the main trends and identifying the strength of

the signal. In §2.4 we describe our model for the combined satellite plus background

object spatial distribution and the parameters that we aim to constrain (average number

of satellites, power law slope, etc.) along with a number of nuisance parameters (density

of the background population, slope of the background number counts, etc.). In § 2.5

we present the results obtained by comparing our model to the data. In § 2.6 we discuss

our results and compare them to previous satellite studies. In § 2.7 we provide a concise

summary. The Appendix contains more detailed explanations of many of the methods

we used in this chapter.

2.1 Host Galaxy Sample

We select a population of early-type (E and S0) host galaxies from the catalog of

Bundy et al. (2005), which contains spectroscopic redshifts,stellar mass estimates, and

morphological classifications for 47% of its objects (see Treu et al. 2005a). The objects in
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this catalog were originally selected from Hubble Space Telescope photometric catalogs 1

made by the GOODS team using the SExtractor software (Bertin & Arnouts 1996).

In the GOODS-South field, we use COMBO-17 photometric redshifts (Wolf et al. 2004)

for our hosts where spectroscopic redshifts are not available. In the GOODS-North field

only a handful of objects have morphological classifications and stellar mass estimates

but no spectroscopic redshifts. We excluded these from our analysis.

We limit the host redshifts to z < 0.8 to guarantee that we can detect satellites with

host-satellite luminosity contrasts fainter than the equivalent contrast between the Small

Magellanic Cloud and the Milky Way at all redshifts, thus increasing the likelihood that

we observe approximately one satellite per host. We also exclude z < 0.1 galaxies, which

are few (owing to the small volume) and too extended in angular size to analyze in the

same way as the more distant sample. Finally we exclude two hosts which appear to be

undergoing major mergers as these have physical environments which are significantly

distinct from the majority of our sample. To ensure that we study the same population

of satellites for all hosts, despite their broad distribution in redshift, we only consider

satellites brighter than a fixed fraction (∆m) of the host galaxy luminosity (i.e. a fixed

difference in magnitude). We also require that all objects be brighter than the detection

threshold (z850= mmax = 26.5, as described in Section 2.2.2), and therefore we cut the

parent sample to a maximum value of z850, depending on the choice of ∆m, such that

mhost + ∆m < mmax.

As we increase the size of the magnitude range we study, the number of hosts that are

complete within that magnitude range drops; there are 202, 127 and 71 hosts complete

1The GOODS catalogs are available at http://archive.stsci.edu/prepds/goods
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to ∆m = 6.0, 5.5, and 5.0 respectively in the final host sample. At the same time, the

number of satellites per host is expected to increase with ∆m. The optimal choice of

∆m needs to strike a balance between the two effects. As we will show, for the present

GOODS dataset we find that ∆m=5.5 maximizes the signal to noise ratio of the detection

and therefore we will adopt this choice as our default. To illustrate the robustness of our

results to small changes in ∆m, we will also describe our findings for ∆m = 5 and 6.

The distributions of host redshifts, absolute magnitudes, and stellar masses for the three

choices of ∆m are shown in Figure 2.1. As ∆m becomes larger, the hosts that satisfy the

completeness requirements tend to become brighter and shift to lower redshift. As with

any flux limited sample, the lower redshift objects of the sample will be dominated by

the more abundant, intrinsically fainter galaxies, while the higher redshift objects will be

dominated by intrinsically brighter objects. We defer an analysis of evolutionary trends

to Chapter 3 Results in this chapter are an average of the properties of the satellite

population in the 0.1 < z < 0.8 redshift range.

We use the second order moment of the host intensity distribution, measured along

the major axis by SExtractor 2 as a scale factor which we represent by Rh. The use of

Rh compensates not only for varying angular size with redshift, but is also intrinsically

related to host masses via the size-mass relation (e.g. Trujillo et al. 2006; Williams et al.

2010) and thus adjusts for variations in host masses at a given redshift. Rh varies across

the host sample in physical size (0.8-5.5 kpc) with host mass variations and in angular

size (between 0.′′2-1.′′1). The median (and modal) values of Rh are 0.′′5 and 3 kpc. We use

these as fiducial values when converting our results to angular and physical scales.

2SExtractor ’s AWIN IMAGE

22



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
z

0

10

20

30

40

50

60

70
N

� m = 5.0
� m = 5.5
� m = 6.0

�23 �22 �21 �20 �19 �18 �17 �16
Mv

0

10

20

30

40

50

60

70

N

� m = 5.0
� m = 5.5
� m = 6.0

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Log10[M �/M�]

0

10

20

30

40

50

60

70

N

� m = 5.0
� m = 5.5
� m = 6.0

Figure 2.1: Clockwise from upper left: The distribution of host redshifts, absolute V band
magnitudes, and stellar masses in three host completeness ranges (∆m < mmax −mhost)
from Bundy et al. (2005).

2.2 Detection and photometry of close neighbors

Companions of high redshift galaxies are difficult to study because they are intrinsi-

cally faint and often obscured by the host galaxy light. In this section we describe our

method of modeling and subtracting the host galaxy light profile to allow us to identify

and perform accurate photometry on nearby objects. Note that while we model host

light in small regions around each host, we do not limit our analysis to objects within

this modeled region. We use the GOODS catalogs for photometry and astrometry for all

objects outside of the modeled cutout region.
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2.2.1 Host Galaxy B-Spline Models

Producing a good model for the light profile of the host galaxies is critical for studying

the population of faint objects near the host. We use a multi-step process to create an

accurate model of the host light profile which does not include the light from nearby

objects.

We model the host light profile in a small cutout centered on the host galaxy. We

choose this cutout to be 20 × 20 Rh in order to ensure that all significant levels of host

light are removed. In the first step of the modeling process, we use SExtractor to

identify all objects in the cutout region. The SExtractor parameters at this stage

are chosen to err on the side of identifying noise peaks as objects in order to ensure

that all real objects being obscured by the host light are recognized; see Appendix 2.8.1

for a detailed description of the SExtractor parameters and how they were chosen.

SExtractor outputs a segmentation map which we use to mask out all identified

objects other than the host galaxy. SExtractor also returns measurements of the axis

ratio and position angle of the host galaxy which we use in addition to Rh to define an

elliptical coordinate system for the cutout.

We then model the host light in the masked image using empirical polar B-spline

models. We choose B-spline models because they quickly fit the observed light distribu-

tion with a smooth model that is independent of PSF effects and is more flexible than

Sersic models, for example. Our method is similar to that described by Bolton et al.

(2005, 2006). Each iteration of the B-spline code fits a model to the masked data, sub-

tracts the model, and then identifies and masks new residual structures. This process
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is repeated three times. The final B-spline model is then subtracted from the data to

produce a residual image, which is used to perform object detection and photometry for

field galaxies near the host. Further details of the modeling and masking procedure are

provided in Appendix 2.8.1. Examples of our host subtraction procedure are shown in

Figure 2.2.

2.2.2 Object Detection and Photometry

We use SExtractor to detect and measure the properties of objects within the

host-subtracted cutouts. To ensure completeness, we limit the sample to objects with

MAG AUTO z850< 26.5 magnitudes, where the GOODS images are virtually 100% com-

plete, even close to the host galaxy as we will show below. Furthermore, we only study

objects fainter than z850> 21.0 magnitudes. This is because our analysis relies on an

accurate characterization of the background (see Section 2.4.2) and very bright objects

appear in low numbers with large fluctuations which can bias the number counts slope

near a particular host.

Because we use the GOODS catalog data outside of our cutouts, it is imperative

that our detections and photometry after host light subtraction are as close as possible

to GOODS detections and photometry. We confirmed this by running SExtractor

with our parameters on a large un-modeled section of the GOODS field. We recovered

virtually the same number of objects and our photometry was consistent with GOODS

photometry. This comparison is described in further detail in Appendix 2.8.2.

Due to the relative brightness of hosts compared to satellites, there is a minimum
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radius at which we will be able to accurately identify faint objects, regardless of how

careful we are during the host modeling process.

By simulating point sources at and fainter than our chosen limiting magnitude (26.5)

at varying distances from a representative subset of hosts, we find the minimum radius

for completeness to be 1.5 Rh (∼ 0.′′9) for the vast majority of cases. The few cases for

which highly flattened hosts have significant residuals extending to a larger distance are

identified manually; for those systems, appropriately larger inner regions are excluded

from our analysis (see Appendix 2.8.1).

Note that in the redshift range we study, even the most intrinsically faint sources will

have effective radii typically less than 0.′′1 (see, e.g., de Rijcke et al. 2009) which is smaller

than the FWHM of the GOODS PSF. Thus these sources are effectively point sources.

We test our sensitivity to intrinsically faint sources by simulating faint exponential disks

near our hosts at varying redshifts, with effective radii estimated from the relations

given by de Rijcke et al. (2009). In the innermost region, between 1.5 and 3.5 Rh, we

failed to detect approximately 20% 3 of 26.5 magnitude objects. Outside of this region

we recovered approximately 100% of the simulated objects. For brighter objects with

apparent magnitudes of 24.5 our recovery was approximately 100% complete even in this

inner region. In our final analysis we study the satellite population between 1.5 and 45 Rh.

Taking this into account, we can examine the worst case scenario in which all satellites

are exponential disks with apparent magnitudes of 26.5. Assuming that satellites are

distributed radially in projection as Psat(r) ∝ r−1, we would only underestimate the

3The true incompleteness estimate requires knowledge of the object luminosity function. We make
a rough estimate by averaging the results for objects at redshifts of 0.1, 0.4 and 0.8, where the redshift
0.1 objects are the most intrinsically faint and most difficult to detect.
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final satellite number by 1-2 % because even in this extreme case, the incompleteness

is confined to a small region. Thus we expect that the loss of completeness in the

innermost region for the faintest sources will have a negligible effect on the analysis of

the total sample.

To compile a single catalog and avoid duplications, we compare the position of each

object identified in the residual images to objects already in the GOODS catalogs. If the

object is already in the catalogs (position within 0.′′3), we replace the GOODS photometry

and astrometry with our own measurements, which do not suffer from being contaminated

by host-galaxy light (see Figure 2.3). The mean distance between ‘matched’ objects was

4±3 pixels, this corresponds to 0.′′12 which is the FWHM of the GOODS PSF. For objects

that are not matched to objects already in the GOODS catalog, we add a new entry.

Finally, for all objects outside of the host-subtracted cutouts, we use the measurements

from the GOODS catalog and we do not attempt to detect new objects. In Figure 2.2

we show examples of the modeling process for a variety of host ellipticities and physical

sizes, along with newly detected objects in the host-subtracted images.

2.2.3 Objects Detected in Cutout Regions

The host light subtraction has two important effects on our measurement of objects

near the host galaxy. The first is that it removes host light contamination and allows

for accurate photometry of nearby objects, as shown in Figure 2.3. This figure compares

GOODS photometry to host-subtracted photometry for objects that had already been

identified in the GOODS catalogs. As expected, we measure object magnitudes to be
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Figure 2.2: Demonstration of galaxy modeling for a range of host ellipticities and sizes.
Original images are shown with residuals after host model subtraction immediately below.
Host galaxy physical size and ellipticity decrease downwards and to the left. All images
are 20 Rh on a side. New object detections, made possible by the host light subtraction,
are circled in red. Objects that were detected in the GOODS catalogs and that have
complete photometry within the cutout (i.e. did not raise a SExtractor flag greater
than 2) are identified by blue squares. Some objects visible to the eye were omitted from
our final catalog because they were fainter than our detection limit (for instance, the
object just outside of the excluded region in the top right galaxy). The central region of
the host, excluded in our analysis, is identified by a black circle.
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slightly fainter than the GOODS photometry after host subtraction, with a mean differ-

ence of 0.12 ± 0.02 magnitudes for objects within 8 Rh (∼ 4.′′) of the host galaxy. Our

photometry is identical to GOODS photometry without host subtraction (see Appendix

2.8.2), and we confirmed that the host light removal was accurate by simulating faint

point sources near the hosts and ensuring that they were recovered with accurate pho-

tometry. Thus the difference in magnitude after host subtraction shown in Figure 2.3 is

entirely due to the removal of the host light contamination which has a significant impact

on photometry performed near bright objects.
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Figure 2.3: Comparison of photometry before (z850,G) and after (z850) host subtraction
for objects in cutout regions which had already been identified in the GOODS catalogs
prior to host subtraction.

The second important effect of host light subtraction is that it allows us to detect

new objects. If the newly detected objects are real rather than artifacts of the host light

subtraction, then we expect that object properties such as brightness and elongation will

be similar to the properties of objects that had already been detected in the GOODS

fields. The effect of weak lensing on magnification and shear is negligible for the small
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number of background sources close to the host Einstein radii in projection (the affected

region is typically an annulus of ∼ 1.′′0 ± 0.′′2 for massive ellipticals). One way to see this

is using the fact that the effect of weak lensing on the background number counts goes as

Nobs/Ntrue = 1/µ(β−1) where µ is the magnification due to the host galaxy and β is the

power-law slope of the faint end of the background galaxy flux distribution (Schneider

et al. 2006, see Equation 111 in Part 1) In the case of z850, β is fairly close to one (about

0.7) and thus we do not expect weak lensing to have a significant impact on our object

detection.

In the top panel of Figure 2.4, we compare the distributions of the axis ratios of the

GOODS catalog sources and the newly detected objects near the host galaxies. The

two distributions are indistinguishable, with a Komogorov-Smirnoff (KS) probability of

being drawn from the same distribution of 0.96. The second panel of Figure 2.4 shows

the distribution of contrast in MAG AUTO (δm= m −mh) between host and detected

objects. Note the use of lower-case δ, which denotes a specific contrast from the host and

is different from ∆m which describes the allowed maximum contrast between host and

neighboring objects for a particular data set. The KS value for the two distributions being

the same is 0.14. This value is low, but not low enough to rule out the possibility that

the distributions are the same. Note that our improved host galaxy light subtraction

procedure is important for detecting companion objects fainter than about δm= 2.5

magnitudes (which is about 0.5 magnitudes fainter than the magnitude contrast between

the Milky Way and the Large Magellanic Cloud).

As expected, the number density radial profiles are very different for newly detected

objects and objects that had already been detected in GOODS (bottom panel of Fig-
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ure 2.4), with a KS probability of 6.0 · 10−25 for new and GOODS objects being drawn

from the same spatial distribution. The number density of new detections increases

steadily towards the center of the host, while the number density of objects already in

the GOODS catalogs decreases. Host light subtraction triples the number density of

detected objects in the inner 3.′′.
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Figure 2.4: Comparison of the properties of objects detected in the GOODS catalogs
to those of newly detected objects. Top Left : The distribution of object ellipticities
(1 − q = 1 − b/a). Top Right : The distribution of magnitude differences from hosts
(δm= m −mh). Bottom: Number density of objects as a function of distance from the
host. Newly detected objects are closer to the host than those in the GOODS catalogs.
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2.3 First Look

The host light subtraction discussed in Section 2.2 allows us to create an enhanced

catalog of objects near the host galaxies. In this section, we show the radial and angular

profiles of objects in spatial bins in order to provide a qualitative sense of the properties

of objects near the hosts. Binning is useful because it provides a visual representation

of data. However, it is inherently limited because it requires data points to be averaged,

thereby losing valuable information. Thus we do not perform our analysis on the binned

data but instead use this section to justify our model choices in Section 2.4.

2.3.1 Radial Distribution
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Figure 2.5: Average number density of objects as a function of distance from the host in
units of the second order moment of the host intensity profile along the major axis (Rh).

In Figure 2.5 we show the average number density of objects as a function of distance

from the hosts. The number density of sources increases dramatically near the hosts.
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At large radii the number density becomes dominated by the isotropic and homogeneous

distribution of objects not associated with the hosts. In Section 2.4 we will describe how

we analyze the number density signal by inferring the combined properties of the satellite

and background/foreground populations.

2.3.2 Angular Distribution

In Figure 2.6 we plot the angular distribution of objects within 20 Rh of the host

galaxies, where φ = 0 is aligned with the host major axes. We show the distribution of

|φ| only for hosts with q< 0.6 in order to ensure all object angles are well measured (for

round hosts it becomes more difficult to measure the host position angle). The figure

shows that objects appear with more frequency towards φ = 0 than would be expected for

a uniform distribution (shown by a dashed line). We also compare the observed angular

distribution of objects to a uniform distribution by applying a KS test which rules out

the angular distribution being uniform with 95 % confidence. Recall that this is without

any kind of attempt to separate the background signal from the satellite signal. We

investigate this asymmetry more rigorously in Section 2.4.

2.4 Joint Modeling of Satellite and Background Galaxy

Populations

We have shown that the neighboring galaxies to the GOODS host galaxies exhibit

non-trivial radial and angular distributions, and we now seek to model these distributions.
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Figure 2.6: Number of objects at angle θ where θ = 0 is aligned with the host major axis
within radius of 20 Rh for hosts with axis ratio less than 0.6. The dashed line shows the
average bin heights for a uniform distribution.

We start in § 2.4.1 by defining the satellite model and the parameters we aim to constrain.

In § 2.4.2 we discuss the background model and the priors we will be using. In § 2.4.3

we summarize our inference methodology, which is described in more detail in Appendix

2.9. A summary of all model parameters and their priors is given in Table 2.1. Our

implementation of the model and inference algorithm has been extensively tested by

means of simulated data. To guide the reader, a schematic of a possible realization of

our satellite plus background model is shown in Figure 2.7.

2.4.1 Satellites

The scale-free nature of ΛCDM results motivates us to construct our model for the

spatial distribution of the satellite number density as a function of corresponding host

parameters. For simplicity, and owing to the relatively low signal-to-noise ratio of our

measurement, we do not allow for intrinsic scatter in these scaling functions. Thus our

inferences connecting host and satellite properties are averages for the entire population;
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Figure 2.7: Schematic illustrating a possible realization of our model.

individual systems will differ from the average.

We divide our discussion of our model for the satellite population into three subsec-

tions. We describe the probability of finding a satellite at a certain position in Subsection

2.4.1. We discuss choosing a region in which to search for satellites in order to normalize

the spatial distribution in Subsection 2.4.1. Finally the probability of finding a certain

number of objects around each host is discussed in Subsection 2.4.1.

Satellite Spatial Distribution

ΛCDM simulations indicate that the number density of satellites follows the mass

density profile of their host galaxy (Kravtsov 2010). In turn, observations indicate that

the three dimensional total mass density profile of elliptical galaxies can be approximated

by a power law ρ−γ
′
with γ′ ≈ 2, (with <10% scatter) (e.g. Koopmans et al. 2009a; Auger

et al. 2010). The power law profile seems to extend as far as 100 Re (e.g. Gavazzi et al.

2007; Lagattuta et al. 2010) which corresponds to approximately 70 Rh. We will thus
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model the radial distribution of satellites as a power law, with projected logarithmic slope

γp = 1− γ′.

We relate the angular light profile of the hosts to the mass profile following the results

from the Sloan Lens ACS (SLACS) by Bolton et al. (2008, hereafter B08). B08 used

gravitational lensing to study the relationship between the mass and light distributions

of massive elliptical galaxies. B08 found that the major axes of the light profiles of

the galaxies they studied were well aligned with the total central mass profiles and that

the axis ratios of the light and mass profiles were the same within measurement errors;

note that this agreement was established within the Einstein radii of the lensed galaxies,

which corresponds to roughly ∼ 1.′′ (see also Kochanek 2002). The majority of our hosts

are well represented by the properties of the SLACS lenses which are massive elliptical

galaxies with stellar masses in the range ∼ 1010.5 to 1012M� (Auger et al. 2009)4. This

implies that we can expect the angular distribution of satellites to roughly follow that of

host light and therefore that it is reasonable to construct a model of the satellite angular

profile which is related to parameters which describe the host light angular profile.

We model the satellite distribution in an elliptical coordinate system described by an

angle θ which is the same as the normal polar angle, and a radial coordinate R′ related

to Cartesian coordinates x, y by:

R′ =
√
x2 + y2/q2 (2.1)

Where q is the ratio between minor and major axes of the elliptical coordinate system.

The probability of finding a satellite on an elliptical contour within the area element

4We assume that the small number of hosts (∼ 10) in our sample which were less massive do not
deviate significantly from the relationship between mass and light orientation observed in their more
massive counterparts.
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R′dR′dθ′, goes as a power law with power γp

Ps(R
′)R′dR′dθ′ ∝ (x2 + y2/q2)γp/2dxdy. (2.2)

Changing to polar coordinates gives

Ps(r, θ|φ, q, γp) ∝

rγp [cos2 (θ − φ) + 1/q2 sin2 (θ − φ)]γp/2rdrdθ

(2.3)

where we introduce φ to allow for some offset between the major axis of the satellite

elliptical coordinate system and the major axis of the host galaxy; φ = 0o corresponds to

parallel alignment, and φ = 90o corresponds to perpendicular alignment (see Figure 2.7).

This is different from the coordinate θ, which describes the offset between a particular

object and the host major axis. We are only interested in the magnitude of the offset

between the host light profile and the satellite population so we infer |φ|, the absolute

value of the offset of the distribution from the host major axis.

In general the offset φ in 3 dimensions is related to the 2D projected offset in a non-

trivial way because of the random orientation of the host-satellite system in the plane

perpendicular to the projection plane. However, for many interesting and plausible sce-

narios, the alignment in 3 dimensions relates in an obvious way to the observed, projected

offset φ. Namely, if the satellites are aligned with the host light distribution in 3D then

the projection of the two systems will also appear aligned. Similarly, if the systems are

anti-aligned, the satellites will appear perpendicular to the host in projection. Finally,

if the satellites are oriented randomly with respect to the host in 3 dimensions, their

projection will appear isotropic. Thus the projected relationship between the satellite
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spatial distribution and the host light profile contains relevant information about the 3D

distribution.

We also aim to determine the connection between the ellipticity of the host light and

that of the satellite distribution. For this purpose, we define the ellipticity to be:

ε =
1− q2

1 + q2
, (2.4)

We introduce a parameter A to relate the ellipticity of the host profile, εh, to that of the

satellite distribution, εs:

εs =
εhA

1 + εh(A− 1)
(2.5)

We choose this parametrization because it returns valid ellipticities (0 < ε < 1) for all

values of A > 0. This is convenient when exploring the A parameter space with our

MCMC code. The parameter A can be understood as follows: when A = 0, the satellite

distribution is always round regardless of how flat the host distribution is; when A = 1

the satellite distribution has the same flattening as the host distribution; and for values

of A > 1, the satellite distribution is more flat than the host light distribution. Note that

formally A goes from zero to infinity. As A approaches infinity, the satellite distribution

approaches q = 0. We are interested in a qualitative characterization of the satellite

flattening so we simplify our inference on A by restricting our analysis to 0 < A < 2,

which will allow us to distinguish between isotropic and flattened satellite distributions

without having to explore an unnecessarily large parameter space.
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Spatial Normalization

We choose a maximum and minimum radius in which to search for satellites in order

to normalize our distribution. These radii are determined by observational constraints.

The inner radius is constrained to be rmin = 1.5Rh by our ability to accurately measure

faint object magnitudes near the host (see Section 2.2.2). For the outer radius we choose

rmax = 45Rh which corresponds to approximately 140 kpc. This choice is a compromise

between studying an area large enough to find LMC/SMC equivalent objects (which

are ∼ 60 kpc from the Milky Way), and keeping the area small enough to limit overlap

between host galaxies and allowing us to reasonably apply a background prior determined

by the entire field.

The normalized radial probability distribution is thus:

Ps(r|γp) =

(
γp + 2

r
γp+2
max − rγp+2

min

)
rγp+1, (2.6)

The normalization of the angular distribution is given by a generalized elliptical integral.

As discussed in Section 2.2.2, a few of our systems are not complete to the same inner

radius due to issues with light modeling for highly flattened hosts. Furthermore, some

of the regions far from the hosts are not complete to 45 Rh due to GOODS field edge

effects. We discuss how we account for this incompleteness in Appendix 2.8.3.

Number of satellites per host

Multiple dark matter simulations have found that the number of satellites with a

given mass relative to the host mass is constant (Moore et al. 1999; Kravtsov et al.

2004b; Gao et al. 2004). With this in mind, we model the number of satellites within
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a fixed magnitude range from the host as being drawn from a Poisson distribution with

some constant mean Ns.

It is important to keep in mind the following caveats. Due to baryonic physics, the

observable properties of galaxies are not exactly scale invariant. In fact, the virial mass

to light ratio is not a universal function and we expect it to vary for the host galaxies

and satellites. This means that in a fixed magnitude range we are not actually probing a

fixed virial mass range, but only a fixed range in luminosity ratio. However, it should be

noted that our host galaxies are typically luminous enough (several 1010L�) that their

satellites are also significantly brighter than the typical Local Group dwarf galaxies where

the M/L is believed to be much higher than in massive ellipticals. Thus our satellite mass

range is better characterized by the relative luminosity between host and satellites than

it would be for the Local Group.

Naturally, these assumptions will have no effect on our inference of the parameters

of the satellite spatial distribution, provided that it is also independent of host galaxy

luminosity within the spatial and mass ranges considered here.

2.4.2 Background/Foreground Objects

In addition to satellites, each of the host galaxies is surrounded in projection by

background/foreground objects. We isolate the satellite signal by using the properties

of the entire GOODS fields to provide a strong constraint on the background number

density.

Galaxies tend to cluster on scales of order a typical galaxy virial radius, or ∼ 400 kpc
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(e.g. Totsuji & Kihara 1969; Peebles 1974; Brainerd et al. 1995; Villumsen et al. 1997;

Zehavi et al. 2002; Morganson & Blandford 2009). This clustering is believed to be due

to the accretion of matter along dark matter filaments (e.g. Benson 2010, and references

therein). Because of clustering, the density of objects tends to be higher in regions near

bright galaxies and to have fluctuation amplitudes larger than Poissonian. Chen et al.

(2006) tested a variety of methods for removing ‘interloper’ (background/foreground) con-

tamination from their satellite signal using a set of ΛCDM simulations. Chen et al. (2006)

found that simply estimating the number density of background objects by studying ran-

domly selected regions in their field significantly underestimated the contamination from

foreground/background objects that appeared near their hosts in projection. They found

the most reliable estimate of the background was obtained by measuring the background

in annuli centered on their hosts and just outside of the area in which they studied the

satellite population. We adopt this method to build a prior on the background near

the hosts. We study the background in annuli between 45 and 60 Rh (typically 140-180

kpc). We choose this distance range to ensure that we are not including satellites in our

estimate, while still accurately characterizing the clustering of galaxies near the hosts.

We find that the density of objects near the hosts with magnitudes within our detection

range (21 < z850 < 26.5) is Σb,o = 125± 2 arcmin−2. As expected, this is higher than the

average density of objects in the GOODS fields (117 ± 0.6) and has larger fluctuations

than one would predict from Poisson noise.

Recall that we are studying objects brighter than a fixed magnitude contrast from

the host magnitudes. This means that the number of objects we study around a given

host is a fraction of the density of objects brighter than z850 = 26.5. We correct for this
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around each of the hosts by representing the cumulative distribution function (CDF) of

the background number counts by a power-law (e.g. Beńıtez et al. 2004)

Nb(< mmax) ∝ 10αbmmax (2.7)

where αb is the slope of the background number counts. The maximum magnitude mmax

for a particular host system is

mmax = mh + ∆m. (2.8)

Thus for a given choice of ∆m, the expected number density of background/foreground

objects around the jth host is

Σb,j = Σb,o10αb(mh,j+∆m−mlim). (2.9)

We measure the background slope to be αb = 0.28 ± 0.01 in the same annuli near the

hosts in which we estimate the number density of the background.

2.4.3 Analysis

In the previous two subsections we constructed a model which describes the proba-

bility of a satellite or foreground/background object appearing a given distance from the

host dependent on a choice of parameters. The parameters and their priors are listed

in Table 2.1. Of key importance in our work is that our results are unbinned and an-

alyzed in a fully Bayesian fashion. This means that for each parameter our result is a

posterior probability distribution function (PDF) which describes the probability of a

value of a parameter being true given our data (the likelihood) and our prior knowledge

of the parameter (the prior).
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Parameter Description Prior
Satellite Model
Ns Number of satellites per host U(0,20)
γp Logarithmic slope of the satellite radial distribution U(-5,0)
A Flattening of the satellite number density distribution relative to host light flattening U(0,2)
|φ| Offset between the major axis of satellite spatial distribution and that of the host. U(0,π/2)
Background Model
Σb,o Number density of background objects with magnitudes between 21 < z850 < 26.5 N(125,2)
αb Logarithmic slope of the z850 background number counts N(0.28,0.01)

Table 2.1: Summary of model parameters. U(a,b) denotes a uniform distribution between
a and b, and N(µ,σ) denotes a normal distribution with mean µ and standard deviation
σ.

In Appendix 2.9 we discuss the details of constructing the posterior probability func-

tion (Equation 2.17) which we use to study our parameter posterior PDFs. We compute

the posterior PDFs using a Markov Chain Monte Carlo (MCMC) method. At least 106

iterations per chain are performed in order to ensure convergence.

2.5 Results

We first discuss the results for the ∆m = 5.5 magnitude bin, which has the strongest

signal. Table 2.2 contains a summary of the results of the inference. The posterior PDF

for each variable is shown in Figure 2.8.

The first main result is the clear detection of a peak in the posterior PDF for Ns

which is well removed from zero, indicating the detection of a population of satellites.

Secondly, we find that the radial density profile of the satellite spatial distribution is

consistent with isothermal (γp = −1). Thirdly, the posterior PDF of φ is peaked at zero

indicating that the satellite spatial distribution is preferentially aligned with that of the

host. A KS test shows that a uniform distribution of angles is ruled out at more than a

99.99% CL.
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Our results are inconclusive for the relationship between ellipticity of the satellite

distribution and that of the host, described by the parameter A (see Figure 2.8). This

is not surprising as it takes a stronger signal to measure the ellipticity of a distribution

than to measure its alignment. Our inability to infer A is in part due to a degeneracy

between φ and A. If A is zero, all values of φ are equally probable. This can be seen in

the contour plot shown in Figure 2.8. We show the effects of removing this degeneracy by

performing a separate analysis on the ∆m = 5.5 data set, keeping φ fixed at zero. The

results for this are shown in Figure 2.9. When φ is fixed at zero, the inference disfavors

small values of A, which implies a disfavoring of satellite distributions that are rounder

that that of the stars.

We also verified that our results are robust to small changes in limiting magnitude by

repeating the analysis for ∆m = 6.0 and 5.0 magnitude bins. The ∆m = 6.0 bin clearly

shows the presence of a satellite population, with the same isothermal slope observed

for the ∆m = 5.5 range and the same angular alignment with the host major axis. The

inferred satellite number is also consistent with the ∆m = 5.5 measurement, although

there is a longer tail towards higher satellite numbers which might indicate a slightly

higher number, as expected given the fainter limit. As discussed in Section 2.1, the

number of hosts that are complete almost halves from ∆m = 5.5 to 6.0 so the errors

are larger for the ∆m = 6.0 inference overall. Interestingly, the analysis for ∆m = 5.0

did not conclusively detect a satellite population; the number of satellites is marginally

more than 1-σ greater than zero, and the uncertainties on the parameters describing

the spatial distribution are similarly larger. This shows the crucial need for deep data in

performing this kind of measurement. In all cases we recover our priors on the background
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parameters αb and Σb,o. We are not able to constrain these numbers further because in

our model they are both degenerate with each other and with the number of satellites.

An important degeneracy is that between Ns and γp. The inferred number of satellites

is larger for a shallow radial profile and vice-versa. From theoretical and observational

arguments (see the Introduction) we expect the radial profile to be close to isothermal

and we expect alignment between host and satellites. It is thus instructive to repeat the

analysis by fixing these parameters to their expected values γp = −1 and φ = 0, thereby

eliminating many of the degeneracies. The resulting posterior PDFs for ∆m = 5.5 are

shown in Figure 2.10, while results for all magnitude ranges are summarized in Table 2.3.

As expected, fixing γp and φ lowers the uncertainty of our inference and the detection

of satellites becomes more significant. It is also easier to compare the results across

magnitude bins, and we see how the number of satellites indeed increases with ∆m and

is consistent with a cumulative luminosity function going as L−1 (i.e. similar to the

cumulative mass function predicted from theory assuming m ∝ L−2), albeit with large

errors. Furthermore, the posterior PDF of A begins to disfavor a satellite population

that is more isotropic than the stars in the galaxy. This is also broadly in line with

expectations, as we expect that the distribution of stars has been made rounder than the

host halo by dissipational processes.

2.6 Discussion

This is the first measurement of the numbers and spatial distribution of faint satellites

of early-type galaxies at intermediate redshift so it is useful to provide some context for
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Figure 2.8: Bivariate posterior PDFs for all model parameters for the ∆m = 5.5 data set.
The dark and light contours contain regions of 68 and 95% of the probability respectively.
The diagonal shows the marginalized PDF for each parameter.

our result. Our measurement of the radial slope of the satellite spatial distribution is

consistent with an isothermal distribution, i.e. γp ≈ −1. This result is similar to that

found in W10, and the radial distribution of satellites appears to be consistent with that

of the total mass distribution measured in lensing studies (e.g., Koopmans et al. 2009a;

Auger et al. 2010). However, given the uncertainty on the inferred slope, the spatial

distribution of satellites is also consistent with the NFW profile inferred by C08. In

the radial range covered by our work (∼5–140 kpc), an NFW profile is characterized by
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Figure 2.9: Same as Figure 2.8, but with φ fixed at 0.

a radially averaged projected logarithmic slope of approximately γp ∼ −1, with large

variations depending on host scale radius. More accurate measurements of the radial

density profile of satellites are needed, in addition to a comparison of the radial profile

around different host masses, in order to determine whether the distribution of satellites

follows that of the total mass or that of the dark matter component.

The distribution of satellites is anisotropic and is preferentially aligned along the

major axis of the host light profile. This host-satellite alignment is consistent with obser-

vations of host-satellite systems in SDSS (e.g. Brainerd 2005). Furthermore, alignment is
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Figure 2.10: Same as Figure 2.8, but with fixed φ = 0 and γp = −1.

predicted by ΛCDM simulations which show satellites accreting anisotropically along fil-

aments and appearing aligned with the major axis of the host mass profile (e.g., Aubert

et al. 2004). Previous observations have established that the host light profile aligns

with the host mass profile (B08), and our observation of the satellite-host light align-

ment therefore implies alignment between the satellite distribution and the host mass,

in agreement with simulations. This alignment between host mass and satellite spatial

distribution has important implications for the frequency of flux ratio anomalies, as we

discuss below.

48



∆m γp Ns |φ| A Σb,o(Nb/arcmin2) αb
(68% confidence)

6.0 −1.1+0.5
−0.6 3+1

−1 < 44 - (a) 123+2
−2 0.283+0.009

−0.009

5.5 −1.0+0.3
−0.4 1.7+0.9

−0.8 < 42 - 123+2
−2 0.286+0.009

−0.009

5.0 −0.5+0.4
−0.8 0.5+0.8

−0.4 < 56 - 124+2
−2 0.282+0.009

−0.008

Table 2.2: Posterior Medians/Confidence Intervals, (a) No inference on the parameter
because the posterior distribution is approximately uniform

Fixed parameter ∆m γp Ns A Σb,o(Nb/arcmin2) αb
(68% confidence)

φ = 0 5.5 −1.0+0.3
−0.4 1.7+1.0

−0.8 > 0.73 123+2
−2 0.286+.009

−0.009

φ = 0, γp = −1 6.0 - 2+1
−1 > 0.83 124+2

−2 0.285+0.009
−0.009

φ = 0, γp = −1 5.5 - 1.8+0.7
−0.6 > 0.72 124+2

−2 0.288+0.008
−0.008

φ = 0, γp = −1 5.0 - 0.4+0.4
−0.3 > 0.73 124+2

−2 0.281+0.008
−0.008

Table 2.3: Posterior Medians/Confidence Intervals with fixed parameters

Although we do not expect the number of satellites of intermediate redshift elliptical

galaxies to be exactly equal to that of galaxies at lower redshift due to baryonic processes

and evolution, it is instructive to compare the GOODS satellites to other satellite popu-

lations. Figure 2.11 compares the cumulative luminosity function (CLF) of our satellites

to the CLF of the Milky Way and Andromeda satellites (adopted from Tollerud et al.

2008), with one sigma uncertainties calculated from Gehrels (1986), and to the CLF of

SDSS satellites of hosts with varying morphologies adopted from C08. Ideally, we would

have also liked to compare our study to J10 which is one of the few studies of satellites

of high redshift objects. However, the maximum value of ∆m in that survey was about

2.5 magnitudes which is too bright to be compared to our measurement in a meaningful

way.

C08 measured the number of satellites and their radial profile between approximately
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20 and 350 kpc. In order to compare our results appropriately, we use the C08 ‘interloper

subtracted’ fit to a radial power law given in their Table 2 in order to extrapolate their

measurement inward toward the host. We assume that the power law is constant in

the inner regions and use a fiducial value of Rh ∼ 3 kpc to estimate the number of

satellites C08 would have seen in the region that we studied (i.e., as close as 1.5 Rh).

The Milky Way CLF is complete in the same equivalent region as ours so we did not have

to make any adjustments in order to compare our numbers. All three studies measured

magnitudes in different filters; C08 used r band magnitudes at an effective redshift of

z = 0.1, we use observed-frame z850 magnitudes, and Milky Way measurements are in

rest-frame V . However, the corrections required to convert from r at redshift ∼ 0.1 and

observed z850 at redshifts of ∼ 0.5 into rest-frame V are negligible compared to the sizes

of the bins of ∆m that we study, and we therefore do not include explicit k-corrections

in our analysis. The three satellite CLFs are roughly consistent where the measurements

overlap, given the relatively large error bars (Figure 2.11). It is worth noting that our

GOODS satellite measurements have significantly smaller error bars than those for the

Local Group by virtue of the large sample of hosts we study which allows us to reduce

the sampling error. Furthermore, we are able to observe much fainter satellites than the

SDSS study.

It is also instructive to compare our inferred satellite number to the number of minor

mergers our hosts are expected to undergo in the time span we study. As many of

our satellites are very near their host galaxies, we expect that some of them will be

close to merging and that our estimate of the satellite number should account for the

predicted minor merger rate in the mass range we study. The merger rate depends on
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the ratio between the host and satellite virial masses (e.g., Fakhouri et al. 2010). Our

typical host has a stellar mass of M* ∼ 1010.5 M� (see Figure 2.1). From abundance

matching techniques (e.g., Behroozi et al. 2010), this corresponds to a halo mass of about

1012 M�. In the luminosity range of our satellites the stellar mass to light ratio of the

satellites should be approximately in the range 30-100% of that of the host galaxy (e.g.,

Kauffmann et al. 2003). Using this, the stellar mass of the satellites we study is in the

range of 0.6−2 ·108 M�. This corresponds to virial masses of ∼ 2−8 ·1010 M�, according

to the best fit to Equation 21 in Behroozi et al. (2010). Thus the we can detect satellites

with virial masses of order a percent of that of their hosts.

This estimate is subject to large uncertainties, including those arising from tidal forces

that tend to remove dark matter from satellites as they move closer to their host galaxy,

thus reducing their virial mass. Using the best fit to Equation 1 in Fakhouri et al.

(2010), we estimate that the majority of our hosts (60%) will undergo about 0.4-0.5

mergers (depending on the satellite stellar mass to luminosity fraction) between redshifts

0.1 and 0.8. It is reassuring that this number can be easily accounted for by our inferred

satellite number. Of course, a quantitative comparison requires a detailed evaluation of

the merging and visibility timescales, which is beyond the scope of this Chapter. However,

we will re-visit this point in a future work, as minor mergers have been suggested to play

an important role in the evolution of early-type galaxies (e.g. Bundy et al. 2007; Boylan-

Kolchin et al. 2008; Naab et al. 2009; Nipoti et al. 2009; Kaviraj et al. 2009; Hopkins

et al. 2010; Kaviraj et al. 2011).

Finally we discuss the effects our detected satellite population would have on flux

ratio anomalies in quadruply-imaged strong gravitational lens systems. We limit our

51



345678
� m

0

1

2

3

4

5

6

7

8

N
(<

�

 m
)

SDSS (Chen 2008)
Milky Way (Tollerud et al. 2008) 
GOODS ellipticals

Figure 2.11: Comparison of the measured number of GOODS satellites to those found
for the Milky Way and SDSS galaxies.

discussion here to order of magnitude estimates and general trends, leaving a rigorous

quantitative analysis to a future paper.

Dalal & Kochanek (2002, hereafter D02) used the magnifications of images in five

quad lenses to infer a mass profile for the lens galaxies. In order to reproduce the

observed magnifications, D02 inferred the presence of a non-smooth component to the

mass distribution with a mass fraction between 0.6 and 7 % near the lensed images. Mao

et al. (2004) and more recently Xu et al. (2009, hereafter X09) used ΛCDM simulations

to test whether dark substructure embedded within smooth halos could produce the flux

ratio anomalies observed by D02. These studies estimated that the mass fraction of CDM

substructure from their simulations would only be about 0.1 % near image positions,

which is insufficient to produce the flux ratios studied by D02. The inclusion of globular

cluster populations and baryonic processes does not change this result (Xu et al. 2010)

and underscores the importance of constraining the satellite population through direct
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observations.

From our inference, a few percent of our hosts have a satellite within the annulus

that would include the typical lens image positions studied by X09 (the Einstein radius

is approximately 1.′′). We therefore find that the average mass fraction in this annulus is

of order a few percent. Using the mass function (dn/dm ∝ m−1.9) described by X09, we

estimate that the average satellite mass fraction they would have observed in our mass

range is of order a percent, which is consistent with our result. It is worth considering the

possibility that the presence of a few relatively massive satellites may increase the lensing

cross-section significantly so that any attempt to measure the satellite mass function using

gravitational lenses would be automatically biased towards very high mass fractions near

the lens Einstein radius; we will explore this possibility in more detail in Chapter 5.

It is interesting to note that, although our typical hosts have similar halo masses to

those studied in X09, the most massive subhalo X09 observed in any of their simulations

has a virial mass of ∼ 1010 M �, which is on the very low mass end of the subhalos

studied in this work. Our simple extension of the virial to stellar mass relationship led us

to estimate that our hosts will have on average more than one halo at least this massive

even assuming that the mass to light ratio of our satellites is only a few percent of that

of the host halo. This discrepancy may be due to the fact that our mass estimate is very

approximate and, as already discussed, may not be appropriate for systems undergoing

strong interactions such as tidal stripping. On the other hand, the difference in estimated

satellite masses may indicate the importance of baryonic condensation in preserving the

mass in subhalos during accretion (see e.g., Weinberg et al. 2008; Romano-Dı́az et al.

2009).
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Our observation that satellites appear preferentially along the host major axis may

offer an additional route to reduce or eliminate the apparent discrepancy in the satellite

mass fraction as inferred by flux ratio anomalies. As pointed out by Zentner (2006),

an anisotropic satellite distribution can increase the effective projected mass of the host

‘felt’ by a lensed image by as much as a factor of six. Thus, the mass associated with

our observed luminous satellites could in principle be sufficient to explain the anomalies

detected by D02.

Our satellites are much fainter than a typical lensed quasar image and thus would

be easily obscured in any of these lensing studies. Our result highlights the importance

of studying the satellite population in non-lens systems in conjunction with the analysis

of perturbations in lens systems in order to attain an understanding of the mass and

luminosity functions of satellites.

To conclude, it is important to point out that the largest discrepancies between the

luminosity and mass function are seen for even fainter satellites than the ones probed

by this study (Kravtsov 2010). It is thus desirable to push the analysis of both the

luminosity and the mass function of satellites to even smaller fractions of the host galaxy

properties.

2.7 Summary

We use an advanced host light subtraction method to study the spatial distribution

of faint galaxies around 127 early-type galaxies in the GOODS fields between redshifts

0.1 and 0.8. We employ a self-consistent model in the framework of Bayesian inference
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to disentangle the satellite population from background/foreground galaxies. Exploiting

the depth and resolution of the HST images, we detect satellites up to 5.5 magnitudes

fainter than the host galaxy and as close as 0.′′5/2.5 kpc to the host. Our main results

can be summarized as follows:

1. Intermediate redshift, massive, early-type galaxies have on average 1.7+0.9
−0.8 satellites

within our luminosity ratio limit. This is consistent with the number of satellites

observed in the Milky Way.

2. The number density of satellites follows an approximately isothermal radial power

law profile P (r) ∝ rγp with γp = −1.0+0.3
−0.4.

3. The satellites are preferentially aligned along the major axis of the host light profile

with |φ| < 42o at the 68% confidence level.

4. When the offset φ between the satellite population and host light profile is fixed at

0 degrees, the satellite distribution is inferred to be preferentially more elongated

than the distribution of host galaxy light.

5. When the satellite number density profile is assumed to be isothermal, the average

number of satellites is inferred to be 1.8+0.7
−0.6.
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2.8 Appendix

2.8.1 Host Galaxy Light Subtraction

As we showed in Section 2.2, the detectability of satellite galaxies is quite sensitive to

the presence of light from the much brighter host galaxy. In this appendix we give more

details on how the light from the host galaxy was subtracted in order to allow the faint

satellites to be detected. Host galaxy surface brightness modeling is a two step process.

In the first step, we identify and mask all objects other than the host in the region in

which we want to model host galaxy light. This ensures that our host model does not

attempt to fit the light of nearby objects. Once the objects are identified and the mask

is created, in the second step we model the host galaxy surface brightness in 2D using

the unmasked parts of the image, interpolate over the masked parts, and subtract this

model from our original image.

Masking

The masking is done automatically using the segmentation map produced by an

initial SExtractor run, with parameters tuned to optimize the detection of small faint

objects in the presence of the host light. This optimization was performed by simulating
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Parameter Large Object Mask Point Object Mask Final Photometry
DETECT MINAREA 10 5 –

DEBLEND NTHRESH 64 – –
DEBLEND MINCONT 0.001 – –

DETECT THRESH – 2.5 –
ANALYSIS THRESH – 2.5 –

FILTER NAME – gauss 2.0 3x3.conv –
BACK TYPE MANUAL MANUAL MANUAL

BACK VALUE 0.0 0.0 0.0

Table 2.4: SExtractor parameters. Parameters not listed, or marked as “–
”, are those used by the GOODS team and can be found at http://archive.stsci.
edu/pub/hlsp/goods/catalog r2.

faint companion objects at varying positions around our hosts. We found that using

the GOODS SExtractor parameters at this stage gave unsatisfactory results, in that

objects we simulated near the hosts were not being masked. We found that, in order to

properly account for both faint point sources near our hosts and diffuse sources further

from our hosts, we needed to use a superposition of masks created with two different

sets of SExtractor parameters. These parameters are listed in Table 2.4. With this

masking routine, we were able to accurately recover magnitude 27 point sources as close

as 1.5 Rh (typically ∼ 0.′′9) from our host galaxy centroids.

B-spline model subtraction

In Figure 2.2 we show some representative examples of our host galaxy light sub-

traction process. Some of our hosts are very elongated or show disk-like features. The

surface brightness distribution of these objects is more difficult to model and tends to

leave residuals at larger radii than the rounder hosts. Residuals are easily identifiable

because of the symmetric pattern and distinct elongated shape that they appear in (see,
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e.g., the residuals of the upper right host in Figure 2.2). We deal with this small number

(∼ 20) of more disky/extended sources in two ways. The first way is to increase the

amount of flexibility in the B-spline fit, increasing the number of multipoles fitted in

each of our spline rings around the ellipse. The second thing we do is to exclude a larger

inner region from our analysis to ensure we are not identifying any residuals as objects.

2.8.2 Source Extractor Parameters and Photometry Compari-

son

After subtracting the main galaxy light out of the image we run SExtractor on the

residual image to identify the remaining objects. In this step we modify our SExtrac-

tor parameters by increasing the deblending threshold in order to match the parameters

used when making the GOODS catalogs. A full list of our SExtractor parameters is

listed in Table 2.4.

Even after matching the deblending parameters, there are two minor differences be-

tween our final SExtractor parameters and GOODS SExtractor parameters. The

first is that GOODS estimates the background by measuring the noise in an annulus with

100 pixel (3.′′) width around each object. This method of background subtraction is not

optimal for our measurement because we are focusing on a relatively small area (typical

image size was ∼ 200x200 pixels), within which we expect to have a relatively high object

density. Instead, we estimate the background by calculating the 3 σ clipped mean within

our image. Furthermore, the GOODS team made modifications to SExtractor that

changed the deblending process slightly.
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We compare the MAG AUTO output from SExtractor for the two methods in a

4 arcmin2 cutout from the GOODS field in order to study the effects of the different

background subtraction and deblending (see Figure 2.12). Using our parameters, we

identify 484 objects with MAG AUTO<26.5. Of these, 22 objects do not have a center

within 0.′′3 of an object in the GOODS catalog. The major outliers in the MAG AUTO

comparison are all in areas of high object density and thus most likely due to differences

in deblending. The mean difference (not including major outliers) in the MAG AUTO

estimate is (−1.9± 6.0) · 10−3.
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Figure 2.12: Comparison of our photometry with GOODS in a 4 arcmin2 field cutout
with no host galaxy subtraction.

2.8.3 Completeness

In Section 2.4 we discuss our model for the spatial distribution of satellites which we

can use to calculate the probability that there are a certain number of objects N̂ within

1.5 < r/Rh < 45, with positions x. Before comparing a particular model prediction

to the data it is necessary to account for observational limitations such as field edge
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effects. In this section we explain how we account for these observational limitations

when inferring our model parameters.

Following Kelly (2007), we define a completeness function, P (I|x), which describes

the probability of observing an object at position x, where I = 1 indicates an object

is detected and I = 0 indicates a non-detection. Note that because we have chosen to

study only magnitude ranges in which we are complete, our completeness function will

only depend on position in a given field. As discussed in Appendix 2.8.1, we measure

our completeness near the host galaxy by placing simulated objects around the host

and calculating our recovery rate and the accuracy of our photometry as a function of

position. Far from the host, we estimate our completeness in annuli to account for field

edge effects. To simplify this analysis, we ignore regions of partial completeness so that

a region in the field is either 100% complete or 0% complete.

Taking completeness into account, the likelihood of detecting Nobs total objects (satel-

lites and background),with positions {x}, given model parameters θ, becomes

Pr(Nobs, {x}|θ) = Pr(I|{x})Pr(N̂ , {x}|θ) (2.10)

Our fields have varying sizes but the model parameter N̂ gives the number of objects

we expect to find in an ideal field where we have 100% completeness between 1.5 and

45 Rh. As discussed above, some of our host systems have restricted areas, between rmn

and rmx, where the total area is smaller than in the ideal case. In these cases we must

scale the model prediction by the probability of finding the object in the reduced area

compared to the probability of finding the object in the ideal area, and we therefore

60



define an updated prediction for the number of objects N̂ ′ given by

N̂ ′ = N̂

∫ rmx
rmn

Pr(x′|θ)dx′∫ 45

1.5
Pr(x′|θ)dx′

(2.11)

Note that N̂ is a smooth model prediction of the number of true objects in a field. In order

to properly account for the fact that the true number of objects in a field is discrete, we

must introduce a Poisson probability, which relates the “true” discrete number of objects

to the model number of objects. The likelihood that we observe Nobs objects at positions

x given our model parameters, is a product over the likelihood of each of those positions

being true given our model parameters

Pr({x}|θ) =
Nobs∏
i

Pr(xi|θ) (2.12)

Thus the probability that we observe Nobs given a set of model parameters, taking into

account varying total areas of completeness, is given by:

Pr(Nobs, {x}|θ) = Pr(Nobs|N̂ ′)
Nobs∏
i

Pr(xi|θ). (2.13)

Properly, we should also include a term which accounts for the probability of not observing

N −Nobs objects. However, in our case, the region of parameter space we exclude due to

observational limitations is always much smaller than the region we do study, and thus

the number of objects our model predicts that we expect to observe is much larger than

the number that we cannot observe. Therefore, for simplicity, we do not include this

term in our analysis.
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2.9 Inference methodology

In this section we discuss in detail how we characterize the posterior PDFs for our

satellite model parameters θs = {Ns, γp, A, φ}, and our background model parameters

θb = {Σb,o, αb}. We present a top-down description of our model in which we start with

the posterior PDF we would like to obtain and break it apart to show where we have

inserted different pieces of information.

Our final data set, D, is composed of a set of measurements for all of our host-

field systems, D = {D1,D2, ...,DNh} Where Dj = {hj,dj}, and hj is the set of

measurements of the magnitude, axis ratio and RMS of the jth host light profile, and

dj =
[
Nobs
j , {(x1), (x2), ...(xNobs

j
)}
]

is the number of objects observed around the jth

host and their positions. Using Bayes’ theorem we can express the probability of a set of

model parameters being true given the data by:

Pr(θ|D) ∝ Pr(D|θ)Pr(θ) (2.14)

In the above equation the term Pr(D|θ) is the likelihood of the data being true given

a set of model parameters and Pr(θ) is the prior information we have about the model

parameters. Our model parameters and their priors are listed in Table 2.1.

The first term on the right of Equation 2.14 is a product of likelihoods for individual

host systems:

Pr(D|θ) =

Nh∏
j

Pr(dj|θ,hj) (2.15)

Notice that in our model, the measurements of the host light profile are treated

as model parameters which we assume are known exactly. This is because we have
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constructed our model such that its parameters do not predict the properties of the host

light profile.

Equation 2.15 is itself composed of a product of the likelihood of measuring Nobs
j

objects around each host times the probability for measuring each object position,

Pr(dj|θ,hj) = Pr(Nobs
j |θ)

∏
i

Pr(xi|θ,hj) (2.16)

Recall that in Section 2.4 we built a model that was composed of separate contributions

from a satellite and background population. This means that the probability of finding

any object at a given location is the sum of the probability of finding a background object

at that location with the probability of a finding a satellite at that location:

Pr(dj|θ,hj) = Pr(Nobs|θ)
∏
i

Pr(xi|θ,hj, S)Pr(S|θ,hj) + Pr(xi|θ,hj, B)Pr(B|θ,hj)

(2.17)

The term Pr(xi|θ,hj, S) is the probability of finding a satellite at a certain position (given

by Equation 2.3) and Pr(xi|θ,hj, B) is the probability of finding a background/foreground

object at a certain position (which is uniform). The term Pr(S|θ,hj) is the probability

of an object being a satellite given only the model parameters,

Pr(S|θ,hj) =
Ns

Ns +Nb

(2.18)

and Pr(B|θ,hj) is defined in an analogous way for the line-of-sight interlopers. The

functions that determine Ns and Nb in terms of model parameters are discussed in Section

2.4.
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Chapter 3

Luminous satellites II: Cosmic evolution and

dependence on host properties of the satellite

luminosity function and spatial distribution

This chapter was published as Nierenberg, A. M., Auger, M. W., Treu, T., Marshall,

P. J., Fassnacht, C. D., Busha, M. T., “Luminous Satellites II Spatial Distribution,

Luminosity Function and Cosmic Evolution”, ApJ, 752, 99, (2012) and is included here

with minor formatting adjustments

In this chapter we address three questions: 1) What is the spatial distribution and

cumulative luminosity function of the satellites of massive galaxies? 2) How does the

spatial distribution vary with satellite luminosity? 3) How do these properties vary with

host morphology, stellar mass and redshift? We conclude by discussing how our results

can be interpreted in the context of ΛCDM.

In the previous chapter, we developed a method of modeling and subtracting the host

light profile to allow us to detect faint (msat − mhost > 5.5) satellites at intermediate

redshifts near early-type host galaxies in the GOODS (Giavalisco et al. 2004) fields. We

also introduced a statistical model which we used to simultaneously infer the spatial and
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angular distribution of satellites along with their numbers. In this work, we expand our

analysis to include the satellites of host galaxies selected from the COSMOS (Scoville

et al. 2007) field which is approximately 20 times larger than the GOODS field although

somewhat shallower. This dramatic increase in our sample size allows us to analyze the

properties of the radial and angular distribution and the number of satellites, for satellites

more than a thousand times fainter than their host galaxies. Furthermore, the greatly

increased number of host-satellite systems allows us to analyze these properties in bins of

redshift, host morphology, satellite luminosity and host mass. This is of key importance

because, as has been discussed, the number and luminosity of satellites are believed to

depend strongly on the properties of host galaxies. In order to make our results more

easily relatable to theoretical predictions, we select our host samples by stellar mass and

luminosity and analyze the number density of the satellite radial profile in units of R200

in addition to units of the half-width at half-max of the host light profile.

This Chapter is organized as follows: In §3.1, we describe the images and catalogs

used in this analysis. In §3.2 we discuss the selection and properties of the host galaxy

sample. In §3.3 we briefly review the host modeling and subtraction technique developed

in Chapter 2 In §3.4 we present the binned radial and angular profiles of satellites to

provide a qualitative sense of the signal. In §3.6 we discuss the theoretical model of the

cumulative number of satellites per host as a function of host luminosity from Busha

et al. (2011) which we compare with our measurements. In §3.7 we explain how we

tested our statistical analysis and its limitations. In § 3.8 we present the results. In

§ 3.9 we compare our results with similar studies performed at low redshift. In § 3.10 we

discuss the broader implications of our results. In § 3.11 we provide a concise summary.
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The Appendix contains more detailed explanations of many of the methods used in this

chapter.

3.1 Imaging and Catalogs

To achieve the depth and area required to study satellite properties and their evo-

lution, we use imaging and photometric catalogs taken from the COSMOS survey 1. In

Chapter 2 we used the deeper GOODS survey to develop and test our method. However,

the GOODS survey is not sufficiently wide to allow us to perform a binned statistical

analysis of the satellite population as a function of host properties as we do in this

chapter.

The COSMOS field has extensive spectroscopic and photometric ground-based cov-

erage which we use to catalog the redshift, stellar mass and morphology of the host

galaxies. Spectroscopic redshift measurements from Lilly et al. (2007) are available for

roughly 1/7 of the host galaxies. When spectroscopic measurements are not available we

use ground-based photometric redshift measurements from the catalog by Ilbert et al.

(2009), which is the same catalog we use for all stellar mass measurements. Finally for

morphological categorization, we use the Cassata et al. (2007) morphological catalog.

The Cassata et al. (2007) catalog is created by a computer algorithm which is known to

fail in certain cases. For instance, spiral galaxies with large bulges can be misclassified as

ellipticals. Thus we visually confirmed all morphological classifications using COSMOS

ACS imaging. This resulted in the re-categorization of ∼ 10% of the morphologies of

1COSMOS photometric catalogs and surveys are available at
http://irsa.ipac.caltech.edu/data/COSMOS/datasets.html
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host galaxies.

3.2 Host Galaxy Selection

In selecting our host galaxy sample, we had two main goals. The first was to ensure

that we selected hosts that maximized our ability to detect neighboring satellites, and

the second was to select a host sample that could be easily related to predictions from

simulations. In Chapter 2, we achieved the first goal by selecting massive early-type host

galaxies which had relatively smooth light profiles that made it easy to find nearby com-

panions. However, galaxy morphology is not well reproduced by current simulations (e.g.

Hoyle et al. 2011), making it difficult to select matching host galaxies from simulations.

In contrast, simulations have had success matching the stellar mass function of massive

galaxies, to dark matter halos in simulations (Berlind & Weinberg 2002; Zheng et al.

2007; Conroy & Wechsler 2009), making a mass-selected host sample more appealing.

To compromise between the two goals, we selected relatively high stellar mass,

log[M∗
h/M�] > 10.5 host galaxies, as these have well studied stellar masses, redshifts

and luminosities, and a greater number of satellites visible down to a fixed apparent

magnitude (e.g. Kravtsov 2010; Busha et al. 2011). We study hosts in a redshift range

between 0.1 < z < 0.8. This range allows us to study evolutionary properties while

still guaranteeing that we can detect satellites with luminosity contrast from the hosts

equivalent to that of the SMC relative to the Milky Way at all redshifts. By doing this,

we expect to observe approximately one satellite per host. We exclude z < 0.1 galaxies,

which are few and too extended in angular size to analyze in the same way as the more
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distant sample.

We also required host galaxies to be relatively isolated in order to ensure that they

themselves are not satellites of larger central galaxies. This is important for our analysis

because we do not want to count objects associated with the larger host as satellites

of a smaller galaxy. Using the stellar mass and redshift catalogs, we include only host

galaxies which are not within the R200 of a neighbor that has more than its stellar mass

and is at the same redshift within measurement uncertainties. We calculate R200 given

stellar mass using Equation 3 from Dutton et al. (2010), which provides a by eye fit to

the observed and inferred relationships between stellar and halo mass of galaxies as a

function of morphology. For early-type galaxies the best fit function is:

y = 102.0
( x

1010.8

)−0.15
[

1

2
+

1

2

( x

1010.8

)2
]0.5

(3.1)

And for late-types:

y = 101.6
( x

1010.4

)−0.5
[

1

2
+

1

2

( x

1010.4

)]0.5

(3.2)

Where y = 〈M200〉 /M∗ and x = M∗.

Although there is uncertainty in the stellar mass estimate and additionally in R200,

we consider these values to be know with absolute precision for the purposes of our

analysis. We tested the effect of uncertain stellar mass on our analysis by doubling

masses before calculating R200 and found no significant impact on our inference result.

The final sample has 1901 early-type and 1524 late-type galaxies. The distribution of

stellar masses, redshift and absolute r-band magnitudes are shown in Figure 3.1.

As discussed in the Introduction, there is theoretical and observational evidence that

satellite properties may depend strongly on the properties of host galaxies. In order to
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study these trends, we divide host galaxies into bins of redshift, morphology and stellar

mass when performing our analysis of the satellite population. We choose two bins of

stellar mass with 10.5 < log10M
∗
h < 11.0 and 11.0 < log10M

∗
h < 11.5, and two bins in

redshift with 0.1 <z< 0.4 and 0.4 <z< 0.8.

When we analyze the satellite population, we study bins of cumulative magnitude

contrast from the host galaxy, such that all satellites have magnitudes brighter than

msat −mhost < ∆m. In each bin of ∆m we only study host-satellite systems such that

the host is at least ∆m magnitudes brighter than the limiting survey magnitude. This

means a different subset of host galaxies is used to study ∆m = 8.0 satellites than

∆m = 2.0 satellites, leading to some variation in host properties within a stellar mass,

redshift and morphology bin. In Tables 3.2 and 3.3, we summarize the average stellar

mass, redshift and luminosity of the host galaxies used in each ∆m analysis, split into

bins of redshift, stellar mass and host morphology. Host galaxies used to study the

faintest satellites tend to be at lower redshift than the average in a fixed redshift bin.

3.3 Detection and photometry of close neighbors

In order to study the satellite population, we require an accurate catalog of object

positions and magnitudes as close as possible to the host galaxies. Companions of bright

galaxies are difficult to study because they are intrinsically faint and often obscured by

the host galaxy light. This is a serious issue when attempting to measure the slope of the

power law-radial profile of the satellite spatial distribution, as the innermost regions of

the system provide the best constraint on the slope. Furthermore, close to the host, the
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Figure 3.1: The distribution of stellar mass, redshift and absolute r band magnitude for
upper : early and lower : late-type hosts.

ratio of the number of satellites to background/foreground galaxies is the most favorable.

In Chapter 2, we developed a method of removing the smooth component of the host

galaxy light profile to overcome some of these challenges. This process makes automated

object detection much more accurate and reliable near the host galaxy. We use the results

to update the COSMOS photometric catalog with newly detected objects, and to replace

the photometry for objects that had already been detected near the hosts.

In this section we discuss the new objects this method allows us to identify in the

COSMOS data. All SExtractor parameters used are listed in Table 3.4 in the Ap-

pendix.
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3.3.1 Object detection and photometry

We detect objects in the host-subtracted images using SExtractor parameters

tuned to match the object detection and photometry that was used to make the COSMOS

catalogs. Appendix 3.12.1 contains a comparison of our photometry and object detection

to that of the COSMOS catalogs in a large non host-subtracted field.

In order to test our sensitivity to low surface brightness objects, we simulated faint

sources near our hosts with Sersic indices and effective radii and tested our recovery

rate and photometric accuracy for these objects after host subtraction. Results of these

simulations can be found in Figure 3.11 in the Appendix. We use the results from these

simulations to identify a minimum radius at which we can detect at least 90 percent of

simulated satellites with accurate photometry, and define this as the minimum radius at

which we study the properties of the satellite population. We find that we can accurately

recover satellites with MAG AUTO I814W < 25.0 as close as 2.5 Rh in COSMOS for the

majority of hosts with early-type light profiles. This corresponds to a mean distance of 1.′′2

(7 kpc) with a standard deviation of 0.′′7 (3 kpc). The inner detection boundary is slightly

higher for host galaxies with M∗
h > 11.0 and z < 0.4 as these tend to have light profiles

that extend above the background further from the host centers. Late-type galaxies

have more extended light distributions in addition to spiral arms which are difficult to

distinguish from neighboring galaxies, thus we choose a more conservative inner boundary

of 4 Rh(3±1 arcseconds, 17± 6 kpc) for these hosts. On average, these minimum radii

correspond to 0.02 and 0.07 R200 for early and late-type galaxies respectively.
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3.3.2 Properties of Objects Detected in Cutout Regions

In this section we compare the properties of newly detected objects after host light

subtraction to the properties of objects already in the COSMOS photometric catalog near

the host galaxies. The upper panel of Figure 3.2 shows the distribution in the contrast in

MAG AUTO measurement (δm= m−mh)2 between hosts and objects detected within 2.′′5

of the host galaxies. The distributions are compared for objects already in the COSMOS

catalog and newly detected objects. For both types of objects, photometry is performed

after host light removal. Newly detected objects are about a magnitude fainter than

objects that were already in the COSMOS photometric catalog, with average δm values

of 3.22 compared to 4.44 for previously detected objects within the same region, with

typical measurement uncertainty of 0.05 mag.

The lower panel of Figure 3.2 shows the number density of objects as a function of

distance from the hosts. The number density of objects in the COSMOS photometric

catalogs drops within the inner 1.′′5, while the number density of newly detected objects

rises, more than doubling the number of COSMOS detected objects in this region. The

sum of the two number density signals increases steadily with decreasing distance from

the host galaxy. Thus host subtraction and rigorous measurements of completeness in

the innermost regions are necessary for an accurate measurement of the radial profile and

number of objects close in projection to the host galaxies.

2Note the use of lower-case δm, which denotes a specific contrast from the host and is different
from ∆m which describes the allowed maximum contrast between host and neighboring objects for a
particular data set.
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Figure 3.2: Comparison of the properties of objects detected in the COSMOS catalogs
to those of newly detected objects after host light subtraction. Left : The distribution
of magnitude differences from hosts (δm= m − mh) within 2.′′5. Right : The number
density of objects as a function of distance from hosts. Newly detected objects are closer
to the hosts than those in the COSMOS photometric catalog and make a significant
contribution to the measurement of object number density within 2 arcseconds from the
center of the host.

3.4 First Look

Before describing our model for the radial and angular profiles of objects near the

host galaxies, it is instructive to show these distributions in spatial bins in order to

provide a visual representation of the data. However, binning is inherently limited be-

cause it requires the averaging of data, thereby losing information. Furthermore it is

not conducive to accurate subtraction of foreground/background galaxies over a range of

redshifts. Thus we do not perform our analysis on the spatially binned data, but instead

use this section to justify our model choices in Section 3.5.

3.4.1 Distance Scaling and Radial Distribution

We scale measured object distances to account for the range of redshift and host mass

scales in our sample. A scale relating to the host light profile is the natural choice for the
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observer as this will vary with host redshift as well as host mass according to the size-mass

relation (e.g. Trujillo et al. 2006; Williams et al. 2010). For this distance scale, we use Rh

which is AWIN IMAGE from SExtractor . We also perform a parallel study with all

distances scaled by R200 of the host galaxies. Unlike Rh, R200 can be calculated in dark

matter only simulations and is thus a better choice when attempting to compare results

with simulations. However, estimating R200 requires multiband photometry and stellar

mass modeling which is not always possible, so it is useful to perform this analysis using

both distance scalings to see if one choice or the other leads to systematic differences.

Figure 3.3 shows the average number density of objects as a function of distance from

the hosts, with distances scaled by Rh in the upper panel and R200 in the lower panel.

The behavior is qualitatively similar for both choices of distance scaling; the number

density of sources increases as a power-law near the hosts. At large radii, the number

density becomes dominated by the isotropic and homogeneous distribution of objects not

associated with the hosts, represented by the gray dashed lines.

In Section 3.5 we describe how we analyze the number density signal by inferring the

combined properties of the satellite and background/foreground populations. In Section

3.8.1, there is a comparison of the results using the two distance scalings.

3.4.2 Angular Distribution

In Figure 3.4 we show the angular distribution of objects within 10 Rh, plotted for

all hosts, early-type hosts and late-type hosts, where θ = 0 is aligned with to the major

axes of the host light profiles. This figure only includes host galaxies with axis ratio
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Figure 3.3: The average number density of objects near hosts as a function of radial
distance. Left : In units of the second order moment of the intensity of the host-light
profile along its major axis (Rh), and Right : In units of R200 estimated from the host
stellar mass.

b/a<0.6, to ensure that the direction of the host major axis is clearly measurable. As

background/foreground objects are expected to be distributed isotropically relative to the

host galaxy, any anisotropy we observe is caused by correlated structure presumably, in

the form of satellites. In this region we expect a significant contribution to the number

density to come from satellites, as evidenced by the strong satellite signal within this

region in the upper panel of Figure 3.3.

Near early-type galaxies, the angular distribution shows a dominant component aligned

with θ = 0. A Komogorov-Smirnoff KS test gives a probability of ∼ 10−8 that the objects

near early-type galaxies have a uniform angular distribution. In contrast, the objects near

late-type galaxies appear more isotropically with a KS probability of being uniform of

a few percent. This simple examination has been done without any effort to remove

background/foreground contamination. However, it indicates that the satellites of early

and late-type hosts may have different angular distributions relative to their host light

profiles. To test this further, we separate satellite populations based on host morphology
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in our inference of the parameters of the satellite spatial distribution.
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Figure 3.4: The average number of objects at angle |θ| from the major axis of the host
light profile, within 10 Rh, for hosts with elongation (b/a) less than 0.6. The distribution
of objects near early-type hosts is more aligned with the host light profile than the
distribution of objects near late-type hosts.

3.5 Joint Modeling of Satellite and Background Galaxy

Populations

3.5.1 Background/Foreground Objects

We model the background/foreground number density signal around each host as a

homogeneous, isotropic signal, with mean surface density Σb with magnitudes brighter
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than the field magnitude limits (I814W < 25.0). We inform our inference of Σb by mea-

suring the local background around each of our hosts and using the mean and standard

deviation of this distribution to create a prior.

We follow the method recommended by Chen et al. (2006) of estimating the local

background around our host galaxies (rather than taking the field average) in order to

accurately measure Σb. This is important for removing correlated line of sight structure

which is not within the virial radii of the host galaxies. In Chapter 2, we measured the

background between 45 and 70 Rh, where no significant satellite signal was apparent.

For consistency, in this analysis, we estimate the background in the same region when

scaling distances by Rh. When performing the analysis in units of R200, we calculate the

background between 1.0 and 1.5 R200, following the simulation results from Liu et al.

(2011).

Various studies have shown that the local projected number density of objects is

correlated with host stellar mass and morphology. To account for this, we measure the

mean and standard deviations separately for each data set that we run the inference on

and use this local background information as a prior when inferring the properties of the

satellite distribution.

For a given value of ∆m and host galaxy magnitude, mh, only a fraction of the total

number of background/foreground objects will appear in our analysis. To calculate this

fraction, we model the cumulative distribution function (CDF) of the background number

counts by a power-law (e.g. Beńıtez et al. 2004). Defining Σb,o as the background density

measured for all objects with magnitudes brighter than the limiting survey magnitude

mlim, the number density of background/foreground objects around the jth host is given
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Parameter Description Prior
Satellite Model

Ns Number of satellites per host U(0,20)
γp Logarithmic slope of the satellite radial distribution U(-10,0)
A Relative flattening between satellite angular dist. U(0,2)

and host light
|φ| Angle between the major axis of satellite angular dist. and U(0,π/2)

that of the host light.
Background Model

Σb,o Number density of all background objects with I814W < 25 varies with host mass and ∆m
αb Logarithmic slope of the background number counts N(0.300, 0.005)/N(0.305,0.005)

Table 3.1: Summary of model parameters and priors. U(a,b) denotes a uniform dis-
tribution between a and b and N(µ,σ) denotes a normal distribution with mean µ and
standard deviation σ.

by:

Σb,j = Σb,o10αb(mh,j+∆m−mlim). (3.3)

We measure the background slope to be 0.305± 0.005 near low mass early and late-type

galaxies and 0.300± 0.005 near high mass host galaxies.

3.6 Theoretical Prediction for the Number of Satel-

lites per Host

Our choice to model the number of satellites as being constant for all hosts within a

fixed magnitude contrast from the host magnitude is a simplification of a more compli-

cated picture. Dark matter only simulations predict that dark matter halos should host

an approximately constant number of dark matter subhalos with a given dark matter

mass fraction of the host halo, regardless of the host halo mass (Kravtsov 2010, and

references therein). This scale-invariance relates in a non-trivial way to our chosen ob-

servable which is the number of satellites we expect to see within a fixed magnitude

contrast from from host halo. This is due to the non-linearity of the stellar-mass to halo-
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mass relationship for hosts with M∗
h > 1010M� as can be seen, for example, in Behroozi

et al. (2010).

In recent work, Busha et al. (2011) (hereafter B11) modeled the number of satellites

per ∆m m bin as a function of host luminosity using SubHalo Abundance Matching

(SHAM) techniques (Kravtsov et al. 2004a; Behroozi et al. 2010), to connect dark-matter

halos in the Bolshoi simulations, (Klypin et al. 2011; Trujillo-Gomez et al. 2011) to the

r-band luminosity function of galaxies. In order to properly mimic the observational

selection function in this work, we have reproduced the measurements of B11 using the

luminosity function from the AGES simulations (Cool et al 2012) as applied to the Bolshoi

halo catalog at the appropriate redshift.

To test how the inference method responded to the non-Poissonian distribution of

satellites predicted by theory we ran simulations using the distribution of host lumi-

nosities in our sample to generate the number of satellites per host based on Equation

8 from B11. Spatial positions for satellites and background/foreground objects were

drawn stochastically from the model described in Section 3.5. As desired, our inference

accurately returned the mean number of satellites per host along with the other input

parameters in the simulations.

3.7 Analysis

In Chapter 2, we provided details for the construction of the posterior probability

distribution function (PDF) which allow us to infer values for the parameters of our

model given the data and prior knowledge of the background listed in Table 3.1. For
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each parameter in each subset of the data listed in Tables 3.2 and 3.3, we compute

the posterior PDF using a Markov Chain Monte Carlo (MCMC) method. At least 104

iterations per chain are performed in order to ensure convergence.

To study variation with host properties, satellites are analyzed in bins of ‘high’

and ‘low’ host stellar mass corresponding to 10.5 < log10[M∗
h/M�] < 11.0, 11.0 <

log10[M∗
h/M�] < 11.5, as well as ‘low’ and ‘high’ host redshift corresponding to 0.1 <

z < 0.4 and 0.4 < z < 0.8 and early and late-type host galaxies. Every bin in ∆m is

analyzed separately for each bin in host morphology, redshift and stellar mass, using an

appropriate prior on Σb,o estimated using the local background for that subset of host

galaxies.

In order to combine results from different data sets, we bin the posterior PDFs for

the parameters of interest and multiply them together. When data sets were analyzed

in different regions around the host, we first re-normalize the inferred satellite numbers

using the posterior median values of γp and Ns to account for the differences in examined

areas, before combining the posteriors.

We tested our inference by running simulations with varying background and satellite

properties. We find that in order to accurately infer the radial profile γp we need a

minimum of 50 host galaxies and at least 20 satellites. The first requirement guarantees

that the inference has an adequate estimate of the background density, and the second

that there is a sufficient satellite signal. Inferring the angular distribution of satellites is

more difficult as this requires two dimensions of information. We find that at least 50

satellites are necessary to recover A and |φ|. Furthermore, the inference on |φ| becomes

inaccurate for values of A less than 0.5, thus we do not report confidence intervals of |φ|
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where the posterior favors values of A less than 0.5.

3.8 Results

We divide this section into the three characteristics of the satellite population that our

inference constrains, namely the radial and angular distribution of satellites as well as the

cumulative luminosity function. For each characteristic we discuss variation with host

morphology redshift and stellar mass as well as with satellite luminosity by comparing

results in high and low redshift and stellar mass bins as well as in bins of host morphology,

as discussed in Section 3.7. Summaries of the inference results for each subsample Tables

3.2 and 3.3 in the Appendix. To show typical results, Appendix 3.13.1 contains the full

bivariate posterior PDFs for all model parameters for high mass, early and late-type

hosts for the ∆m = 4.0 bin.

3.8.1 Radial Distribution

In Figure 3.5 we show the inferred value of the projected slope of the radial profile

of the satellite number density as a function of ∆m, divided by host morphology, stellar

mass and redshift. We further compare these results when distances are scaled by Rh

and by R200.

This figure contains several important results. The first is that there is a significant

detection of a population of objects with a power-law radial distribution up to 6.5 mag-

nitudes fainter than low redshift hosts, and 5.5 magnitudes fainter than high redshift

hosts. Using the average luminosity of the host galaxies in each of those data sets, this
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corresponds to approximate absolute r band magnitudes of -16.1 and -17.4, respectively.

The former is about one magnitude brighter than Sagittarius, the latter is similar to the

absolute magnitude of the present day SMC.

Second, there is no significant difference in the inference of γp when distances are

scaled by Rh or by R200. This is remarkable given the number of assumptions that

go into estimating the virial mass given the stellar mass, and is a very useful result for

comparisons between theoretical and observational work for future satellite surveys where

accurate host stellar masses are not available. For simplicity, for the remainder of the

chapter we discuss results only for distances scaled by R200. Results for both distance

scalings are listed in Tables are listed in Tables 3.2 and 3.3 in the Appendix.

Third, there is no significant variation in γp as ∆m varies with fixed host properties

over ranges as large as 5.5 magnitudes. This is consistent with the physical processes

governing the satellite luminosity function being not spatially related to the host galaxy

over this fairly large luminosity range within the distance scales we study, given our

measurement uncertainties.

The average values of γp for host galaxies of all morphologies are: −1.1± 0.1, −1.3±

0.4, −1.2±0.1 and −1.0±0.1 for satellites of low mass-low redshift hosts, high mass-low

redshift hosts, low mass-high redshift hosts and high mass-high redshift hosts respectively.

Individual subsets of host morphology do not show any significant deviation from these

values.3 As there are no significant differences in the results for these samples, we argue

that the satellite population can be well described by a power law with γp = −1.1± 0.3

3Although the high mass low redshift sample of late-type galaxies appears to have a steeper satel-
lite number density radial profile, this sample is relatively small (only 54 hosts) and does not show a
statistically significant deviation.
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within the level of precision afforded by our data.
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Figure 3.5: Projected radial profiles of the satellite number density distribution with
distances scaled by Rh and R200 for satellites divided by host morphology, redshift and
stellar mass. Horizontal lines indicate the average median value of γp. Large markers in-
dicate results for satellites of higher stellar mass hosts and small markers for the satellites
of lower stellar mass hosts.

3.8.2 Angular Distribution

The satellites of early and late-type galaxies display markedly different angular dis-

tributions where the sample of satellites and host galaxies is large enough to allow an

inference on the parameters on the angular distribution. As an example, in Figure 3.6

we show the two dimensional bivariate posterior distributions for the parameters A and

|φ| for satellites with ∆m < 4 for early and late-type hosts with 0.4 < z < 0.8 and

11.0 <Log[M∗]< 11.5. The results for this subsample which are representative of all

non-uniform posterior PDFs. One sided confidence intervals for A and |φ| for other

non-uniform subsamples are listed in Tables 3.2 and 3.3.
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Figure 3.6: Bivariate posterior distributions of |φ| and A for the satellites of Left:
early and Right : late-type host galaxies, for hosts with 0.4 < z < 0.8 and 11.0 <
log[M∗

host/M�] < 11.5

Satellites of early-type galaxies show strong anisotropy, with the most likely value of A

at 2 and A > 0.9 at a 68% confidence level. This indicates that the angular distribution of

satellites is more flattened than the light profiles of the early-type galaxies. Furthermore,

the satellites of early-type galaxies, are found preferentially along the major axis of the

host light profiles. The offset, |φ| has a most likely value of 0 and is less than 20 degrees

at a 68% confidence level.

In contrast, the average angular distribution of the satellites of late-type galaxies is

consistent with being isotropic relative to the host disks, with A having a most likely

value of 0 and A < 1.1 at a 68% confidence level. As discussed in Section 3.7, the

inference on |φ| is unreliable for small values of A as |φ| has decreasing influence on the

likelihood function for small values of A.

There is a concern with regards to describing the ellipticity of the angular distribution

of satellites as a fraction, A, of the host ellipticity (see Equation 2.5). Namely, late-type

galaxies are much more elongated than early-type galaxies but there is no reason to
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expect the satellites to reflect this. It may be that the satellites of late-type galaxies

have anisotropic distributions on average but that the flattening of their distribution is

less than the extreme flattening of the disks, making them look isotropic in comparison.

To test whether the inferred isotropy is due to the extreme flattening of late-type hosts,

we re-ran the inference on late-type hosts, this time artificially changing any late-type

axis ratio b/a to 0.6 that was previously flatter than 0.6. We found that the posterior

PDF still favored A = 0. However, the inference on the angular distribution for late-type

hosts is difficult due to the large region obscured by spiral arms. To try to maximize

the signal to noise, we performed a combined inference on late-type hosts of all redshifts

and stellar masses. In this case, there was evidence for slight anisotropy, with satellites

aligned with the galactic disk. Thus, an analysis of the satellites of late-type hosts with

a large data set is warranted before any strong conclusions are reached.

3.8.3 Cumulative Luminosity Function

We detect a significant population of satellites as faint as 6.5 magnitudes fainter than

their host galaxies. Results for the inferred number of satellites per host as a function

of maximum contrast between host and satellite magnitude (mhost −msat < ∆m) can be

found in Tables 3.2 and 3.3. A dominant uncertainty in this analysis is caused by the

covariance between γp and Ns as can be seen in Figure 3.12; the same total number of

objects can be achieved if there are more satellites following a shallower radial profile or

if there are fewer satellites with a very steep radial profile, and more background objects.

We alleviate this degeneracy by performing the inference a second time, using a Gaussian
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prior on γp from the results in Section 3.8.1. Given that γp showed no significant variation

given measurement uncertainties as a function of satellite magnitude, host redshift or host

morphology (see Section 3.8.1) we apply the same Gaussian prior on γp to all data sets,

with mean −1.1 and standard deviation of 0.3.

Results for the inferred number of satellites using the prior are consistent with results

without the prior and are listed in Tables 3.2 and 3.3 The prior on γp allows for a

significant detection of satellites up to 8 magnitudes, or more than a thousand times

fainter than their host galaxies for the low reshift host sample. Using the average absolute

r band magnitude of hosts, this corresponds to satellites with Mr ∼ −13.5/ − 14.7 for

low and high mass host samples respectively, and is similar to the absolute magnitude of

Fornax. The range of ∆m does not change for the higher redshift sample but the average

measurement uncertainty is decreased.

In Figure 3.7 we plot the number of satellites per host, Ns, in increasing bins of

∆m, for varying host morphologies, stellar masses and redshifts between 0.07 and 1.0

R200 (∼ 17 − 200 kpc). The points for ‘All’ morphology hosts come from binning and

multiplying the posterior PDFs of the early and late-type hosts 4. We always combine

the posteriors even when the inference on the late-type host galaxies is not sufficiently

determined to plot (i.e. for ∆m > 4 for more massive, high redshift late-type hosts). The

satellite CLF is a fairly constant power-law with slope approximately N(L) ∝ L−0.5±0.1.

There is a slight upward shift in the normalization for satellites with ∆m > 6.5, which

is attributable in part to the slight increase in average host stellar masses for these bins

4This is valid as these data sets are independent. The product of the two posterior PDFs can be
viewed as a measurement of the number of satellites per host for the entire sample
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(see Tables 3.2 and 3.3). We leave a more detailed unbinned analysis of the satellite

luminosity function to a future chapter.

There is a strong dependence between early-type host stellar mass and number of

satellites within a fixed value of ∆m. The dependence on stellar mass is less apparent

for late-type host galaxies, with the more massive hosts having barely more satellites

on average than less massive host galaxies despite the fact that the low and high mass

late-type hosts have the same average stellar masses as the low and high mass early-type

hosts. While there is a large difference between the number of satellites of the more

massive early and late-type hosts, the numbers are the same for less massive hosts.

Figure 3.7 also shows the B11 theoretical prediction for the mean number of satellites

given the distribution of host luminosities in each sub-sample. The dotted line repre-

sents an extrapolation of the theoretical model, to luminosities where the simulation

used begins to suffer from incompleteness effects. The theoretical model is in excellent

agreement with observation for objects with 0.1 < z < 0.4, while it tends to underpre-

dict the abundance of satellites of higher redshift objects (although the slopes remains

in good agreement). It should be noted, however, that the luminosity function used in

the model in the range 0.4 < z < 0.8 suffers from significant observational uncertainties.

Such uncertainties directly impact halo occupation in non-trivial ways, since parameters

such as M∗ and φ∗ have a significant impart on the mass-luminosity relation for massive

objects. Additionally, we assumed a fixed scatter in the mass-luminosity relation of 0.16

dex, which has been shown to be in good agreement with z = 0.1 galaxies (Behroozi et al.,

2010), but has yet to be explored at higher redshift. A full exploration of the theoretical

uncertainties relating to this prediction is beyond the scope of the current chapter and
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is left for future studies.

As expected, subhalo abundance matching predictions which are constructed without

taking host morphology into account cannot capture the morphological dependencies.

A possible explanation for the variations is given by the morphology-density relation

(Dressler 1980; Postman & Geller 1984; Treu et al. 2003), in the sense that at fixed

luminosity, early-types tend to reside in denser environments and have more massive

dark matter halos than late-types. This in turn might affect the properties of luminous

satellites and points to limitations of the present SHAM models.

3.9 Comparison with previous work

We can make several comparisons between our work and low-redshift studies of the

satellite population. To start, our inference on γp = −1.1± 0.3 is consistent with results

from the low redshift SDSS study of LRGs by Watson et al. (2010) and of satellites with

luminosities similar to that of the LMC (Tollerud et al. 2011). It is slightly shallower,

even though marginally consistent, than what was measured by Chen (2008). Given

uncertainties in the scale radii of host galaxies, we are unable to determine whether

our result is consistent with NFW as was observed by Guo et al. (2012). Our result

is consistent with our previous work (Chapter 2), in which we studied the satellites of

early-type galaxies from the GOODS fields.

In contrast to Watson et al. (2012), we do not find a significant trend between ∆m

and γp over the 5 magnitudes in ∆m that we studied. While Watson et al. (2012)

measured the satellite radial profile changing from γp ∼ −2 for satellites with Mr = −21
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Figure 3.7: The cumulative number of satellites per host between 0.07 and 1 R200 as
a function of the magnitude contrast between host and satellite galaxies, plotted for
different samples of host redshift, stellar mass and morphology. Purple squares, red
circles and blue diamonds represent all, early and late-type hosts respectively. The gray
solid and dashed lines are theoretical predictions for the satellites of high and low mass
host galaxy samples respectively. Thin dotted lines indicate an extrapolation of the
theoretical prediction which was made for satellites brighter than Mr < −17. Note that
the mean host stellar mass and redshift within each bin shifts slightly towards higher
masses and lower redshifts starting at ∆m = 6 (see Tables 3.2 and 3.3). .

to γp ∼ −1 for satellites with Mr = −18.5. The closest matching data-set in this study

is the low-redshift, high-mass sample, for which we infer γp = −0.7+0.4
−0.6 for ∆m = 1.5

satellites (which is approximately Mr ∼ −21) and −1.7+0.6
−0.9 for ∆m = 4.5 satellites

(approximately Mr ∼ −18.5). The difference may be due to the fact that our enhanced
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detection technique allows us to detect a significant new population of faint satellites

which would have otherwise remained obscured, causing the radial profile to appear to

be flatter. Given our measurement uncertainties we cannot rule out a small increase in

the concentration of fainter satellites towards the center as was observed by Tal et al.

(2011) and Guo et al. (2012).

The dependence of the satellite angular distribution on host morphology is consistent

with numerous previous low-redshift studies of bright satellites (Bailin et al. 2008; Brain-

erd 2005; Agustsson & Brainerd 2010), which also found that satellites of early-type hosts

tend to be found along the major axis of the host light profiles. Furthermore, these works

found no significant anisotropy in the angular distribution for the satellites of late-type

hosts (see also Yegorova et al. 2011).

The satellite numbers we measure for lower redshift hosts are consistent with the

results from low redshift SDSS studies of hosts with similar masses. In Figure 3.8, we

compare the number of satellites of low mass, low redshift host galaxies to the number in

the Milky Way and near other low mass, low redshift host galaxies by Guo et al. (2011a),

Liu et al. (2011), and Strigari & Wechsler (2012). The Milky Way has an absolute

magnitude of Mr ∼ −21.2, which is slightly lower than the typical host luminosity in the

low stellar mass, low redshift data set in this sample (Mr ∼ −21.6). However we expect

some passive evolution in the stellar mass to light ratio of order one between redshifts 0.8

and 0.1 (e.g. Treu et al. 2005b), which would make the average luminosity approximately

-21.3 at present day. Furthermore, the typical stellar mass in the low mass, low redshift

subset of galaxies is log10[M∗
h/M�] ∼ 10.7 which is equivalent to the stellar mass of

the Milky Way within measurement uncertainties (McMillan 2011). Thus the hosts are
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approximate Milky Way analogs at redshift 0.3.

In Figure 3.8, we also plot two theoretical predictions. The B11 subhalo abundance

matching is identical to that plotted in the corresponding panel in Figure 3.7. The second

shows the 10-90 percent tails of the predicted satellite distribution from Guo et al. (2011b)

semi-analytic models of galaxy formation applied to the Millennium and Millennium II

simulations (Springel et al. 2005; Boylan-Kolchin et al. 2009).

At all comparable magnitudes our inferred number of satellites is consistent with

that measured by Guo et al. (2011a), Liu et al. (2011) and Strigari & Wechsler (2012).

At the bright end, there are on average fewer satellites per host than what is observed

in the Milky Way. The infrequent presence of Magellanic Cloud-equivalent satellites

(∆m = 2.0) of Milky Way mass hosts has been noted in numerous surveys before this

(Guo et al. 2011a; Lares et al. 2011; Liu et al. 2011). We are able to measure the satellite

number down to 8 magnitudes fainter than the host galaxies and corresponds to an

average r band luminosity of about -13.3 which is similar to the Fornax satellite. At

the faint magnitudes the satellite numbers fall just under the upper limits from Strigari

& Wechsler (2012) and the slope of the luminosity function is consistent with that at

brighter satellite magnitudes.

At higher redshifts, Newman et al. (2012) measured the pair fraction of galaxies

∆m < 2.5 between redshifts 0.4 and 2. Scaled to the same region as our study, they

found Ns = 0.48±0.09. This number is somewhat higher than our measurement for low-

mass host galaxies which had 0.14 ± 0.1 in the same region. This discrepancy is likely

due to the fact that the authors used global rather than local background subtraction,

meaning they estimated the average background across the entire field. This leads to
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a lower estimate of the number density of background objects than local background

estimation as it does not take into account the filamentary clustering of galaxies. The

authors estimate that using local rather than global background estimation increases their

pair fraction by a factor of two relative to local background techniques, which brings the

results into agreement (0.24 ± 0.05 compared to our measurement of 0.14 ± 0.1). The

authors observed no significant evolution in the pair fraction in the redshift interval they

studied.

In Figure 3.9 we show the satellite CLF for varying host luminosities and redshifts.

For comparison, we include the measurement of intermediate luminosity hosts from Guo

et al. (2011a) at redshift 0.1 along with the theoretical prediction from B11 for redshift

0.3 hosts . This figure highlights the the strong dependence of the number of satellites

per host on the host stellar mass and luminosity. At the same time, there is no significant

redshift evolution in the number of satellites. This highlights the important of selecting

constant host mass samples when attempting to study trends in the satellite population.

As shown by the curves, theoretical predictions using the techniques of B11 match

our inferred satellite numbers well for the sample of ‘All’ morphology hosts at z = 0.3,

as discussed above.

3.10 Discussion

In the Introduction we discussed a large number of physical processes that can be

tested by the spatial distribution and number of satellite galaxies. These processes can

broadly be divided into three sets. First how satellites are affected by interactions with
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Figure 3.8: Summary of measurements of the satellite population of Milky Way-
luminosity hosts. The legend lists the mean value and variation in the r band absolute
magnitude for each study. The theoretical prediction from Guo et al. (2011b) represents
the 10 and 90 percentiles of the satellite probability distribution. Low-mass, low-redshift
hosts in this work have a mean redshift of 0.3 and < Mr >∼ −21.6 which is brighter
than the present day Milky Way. However, accounting for passive evolution of roughly
one magnitude from redshift one to present, these galaxies represent approximate Milky
Way analogs at redshift 0.3. The upper x-axis is shifted to the left by 0.4 mags for these
hosts.

their host galaxies, second how host galaxies are affected by satellites, and third how our

observations fit into the framework of ΛCDM.

In terms of the first question, we see no evidence for strong physical interaction

between satellite galaxies and central host galaxies on the distance scales we study (∼

10− 250 kpc). This is evidenced by the lack of any kind of trend in the steepness of the

radial profile of the satellite number density as a function of host redshift, stellar mass,
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legend. The gray dashed and solid lines are theoretical predictions for high and low
mass, low redshift host galaxies from this work. The satellite numbers depend strongly
on host luminosity, while there is no significant trend with redshift given measurement
uncertainties.

or morphology or as a function of satellite luminosity. In a future paper, we will allow

the slope of the radial profile to vary with distance from the host galaxies to allow us to

compare the profile with NFW. We see evidence that the satellite angular distribution

follows the host mass profile. Assuming that the satellite number density follows the dark

matter halo, our result indicates that early-type host galaxies have light profiles that are

aligned with their dark matter halos. The alignment for satellites of disk galaxies is

weaker indicating that disk galaxies may be less aligned with their dark matter halos.
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This interpretation of morphologically dependent galaxy-halo alignment is consistent with

results from weak lensing (Mandelbaum et al. 2006), and recent theoretical modeling of

disk galaxy formation (Deason et al. 2011). The fact that satellites of early-type hosts

appear in elliptical distributions which are more flattened than the host galaxy light

profile may indicate that the extended dark matter halo is more elongated than the

galaxy light profile at the center. Several simulations show that baryons can have a

dissipational effect on the central dark matter halo, causing it to be more isotropic than

it would have been in absence of baryons (Dubinski 1994; Kazantzidis et al. 2010).

With respect to the second question, the constant radial distribution and number of

satellites over time indicate a constant accretion of satellites for all host galaxies between

redshifts 0.8 and 0.1 for satellites brighter than ∆m < 5.5. Newman et al. (2012) observed

no evolution for bright ∆m < 2.4 pairs between 0.4 and 2.0. The combination of these

results indicate that the number of satellites per host has been in equilibrium for at least

half the age of the universe. From this we expect that host galaxies have been accreting

stellar mass at a fairly constant rate over this time. Newman et al. (2012) estimate that

the added stellar mass from the bright pairs is roughly ∼ 6% per Gyr.

The strong dependence on host mass in the normalization of the satellites of early-

type galaxies within a fixed bin of ∆m reflects the non-linear relationship between host

stellar mass and halo mass. The fact that late-type hosts do not show a significant

corresponding trend may indicate the effects of environment. As discussed above, from

the morphology-density relation, early-type hosts are more likely to be found in groups,

while late-type hosts exist in more isolated environments. This suggests that dark matter

halo mass-luminosity relation may also be dependent on environment, something that has
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been largely ignored in most theoretical models. The relationship between host mass and

satellite numbers is fundamental to the missing satellite problem, as clusters of galaxies

have satellite numbers similar to what is predicted by ΛCDM while isolated field galaxies

do not (Kravtsov 2010; Klypin et al. 1999).

Gravitational lensing is currently the only viable method of measuring the halo mass

of satellite galaxies outside of the Local Group. Dalal & Kochanek (2002) used flux ratio

anomalies in five quadruply-lensed quasars to estimate the fraction of dark matter in

satellite galaxies to be between 0.6 and 7 % near the lensed images, demonstrating the

potential of this technique to test the smallest mass scales of ΛCDM at cosmological

distances. More recently, Vegetti et al. (2010a, 2012) used reconstructions of the mass

profile of lens galaxies to detect low mass sub-halos near the lensing galaxies. From this

Vegetti et al. (2012) estimated a mass fraction of 3.3+3.6
−1.8 in satellites near lensed images.

Simulations find a somewhat lower mass fraction in satellites near the Einstein radius

(Xu et al. 2010) of 0.1%.

We can use the results from this work to make an estimate of the fraction of satel-

lites we would expect near massive, intermediate redshift, early-type galaxies (typical

of lenses). Assuming a typical Einstein radius of ∼ 1”, we expect roughly 5 % of the

more massive, early-type host galaxies in our sample to host a satellite with ∆m > 7.5,

indicating an average mass fraction in satellite galaxies of a few percent in this region,

on average. As discussed in the Introduction, the most massive sub-halos are stripped

of dark matter in the inner regions of the host halo. The discrepancy between simu-

lation results and observation may therefore indicate the importance of baryons in the

preservation of the most massive satellites close to the central galaxy.
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Finally, the detection of significant anisotropy in the satellite angular distribution has

important implications for using flux-ratio anomalies to detect satellites. The anisotropy

increases the line of sight mass between a lensed image and the host galaxy, effectively

making the host galaxy more massive in a particular direction by up to a factor of 6

(Zentner 2006). In a future paper, we will perform a detailed study of the predicted flux

ratio anomalies caused by luminous satellites using the results from this work.

3.11 Summary

We employ the host light subtraction method developed in Chapter 2 to study

the satellites of 3425 host galaxies selected from the COSMOS field. The depth of

the ACS images allows us to measure the satellite luminosity function more than one

thousand times fainter than host galaxies at low redshift, while the combination of host

light subtraction and high resolution images allows us to accurately detect faint sources

as close as 0.3 (1.4) arcseconds (kpc) to host galaxies. Using the large volume of the

COSMOS field, we examine trends in the satellite radial distribution, angular distribution

and luminosity function. We further examine how these trends vary with redshift, host

stellar mass and host morphology. Our main results can be summarized as follows:

1. The number density of satellites of all host galaxies in the sample is well-described

by a power-law P (R) ∝ Rγp with γp = −1.1+0.3
−0.3. There is no significant deviation

from this as a function of host morphology, stellar mass or redshift. Furthermore,

there is no evidence for variation in γp with satellite luminosity.

2. The inference results are the same when satellite distances are scaled by the half-

97



width at half-max of the host galaxy light profile (Rh) or by R200 determined from

the host stellar masses.

3. Satellites of early-type hosts, follow angular distributions which show strong align-

ment with the major axis of the host light profile, and fall in an ellipse that is more

flattened than the host light profiles. In contrast, the satellites of late-type hosts

do not show strong anisotropy.

4. The satellite cumulative luminosity function (CLF) is a power-law with faint end

slope approximately N(L) ∝ L−0.5±0.1.

5. The satellite CLF of early-type galaxies shows a strong mass dependence in the nor-

malization, with more massive early-type hosts having significantly more satellites

than less massive early-type hosts. A similar trend is not apparent for late-type

host galaxies. This likely reflects the fact that massive early-type hosts are more

likely to be found in groups and exist in more massive dark matter halos than

their late-type counterparts. This highlights the mass dependence of the satellite

luminosity function which is fundamental to the missing satellite problem.

6. There is no significant evolution evident in the CLFs of satellites between redshift

bins of median 0.6 to median 0.3. Satellite numbers from the redshift interval

0.1-0.4 are consistent with lower redshift studies (z < 0.1) of the satellites of host

galaxies with equivalent masses.

7. Predictions from subhalo abundance matching (Busha et al. 2011) broadly agree

with the measured satellite numbers when host morphology is not considered. How-
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ever, the theoretical predictions were not created to match trends with host mor-

phology. We find that such models systematically overpredict the abundance of

satellites surrounding massive late-type hosts, and underpredict the abundance

around early-type hosts. As the observations show smaller differences for the satel-

lite abundance around lower mass hosts (10.5 < log[M∗
h/M�] < 11.0), the theoret-

ical model tends to have smaller discrepancies. Additionally, agreement is better

at lower redshifts (z ∼ 0.3) then for higher redshifts (z ∼ 0.6). As discussed, this is

likely due to errors in the model predictions, due to uncertainties in the luminosity

function and scatter in the mass-luminosity relation at these higher redshifts.
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3.12 Appendix

Tables 3.2 and 3.3 list the one sigma confidence intervals for the inferred parameter

values in the case of early and late type host galaxies respectively.
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∆m Nh log[M∗/M�] (a) z(b) Mr (a) Ns (c) γp (c) A (c,d) |φ| (c,d) Ns (e) γp (e) Ns (c,f)
10.5 < log[M∗/M�]< 11.0, 0.1<z<0.4, 0.02 < R/R200 < 0.5, 2.5 < R/Rh < 45
1.5 210 10.7± 0.1 0.31± 0.07 −21.7± 0.4 ...(g) ... ... ... ... ... 0.13+0.1

−0.08

2.0 210 10.7± 0.1 0.31± 0.07 −21.7± 0.4 ... ... ... ... ... ... 0.14+0.1
−0.08

2.5 210 10.7± 0.1 0.31± 0.07 −21.7± 0.4 ... ... ... ... ... ... 0.2+0.1
−0.1

3.0 210 10.7± 0.1 0.31± 0.07 −21.7± 0.4 ... ... ... ... ... ... 0.2+0.2
−0.1

3.5 210 10.7± 0.1 0.31± 0.07 −21.7± 0.4 0.3+0.2
−0.2 −1.2+0.5

−0.9 ... ... 0.6+0.2
−0.2 −0.9+0.3

−0.3 0.4+0.2
−0.2

4.0 210 10.7± 0.1 0.31± 0.07 −21.7± 0.4 0.2+0.3
−0.2 −1.3+0.6

−1 > 0.7 < 48 0.5+0.2
−0.2 −0.9+0.4

−0.4 0.3+0.2
−0.2

4.5 208 10.7± 0.1 0.31± 0.07 −21.7± 0.4 0.4+0.3
−0.2 −1.4+0.4

−0.5 > 0.7 < 24 0.6+0.3
−0.3 −1.1+0.4

−0.5 0.5+0.2
−0.2

5.0 182 10.7± 0.1 0.31± 0.07 −21.7± 0.4 0.5+0.4
−0.3 −1.4+0.5

−0.7 > 0.9 < 26 0.7+0.4
−0.4 −1.1+0.5

−0.7 0.7+0.3
−0.3

5.5 182 10.7± 0.1 0.31± 0.07 −21.8± 0.4 1.4+0.6
−0.6 −1.1+0.4

−0.4 > 0.7 < 31 1.6+0.8
−0.7 −0.8+0.4

−0.5 1.4+0.6
−0.5

6.0 58 10.8± 0.1 0.23± 0.06 −21.8± 0.4 2+1
−1 −1.0+0.4

−0.5 > 0.7 < 51 2+1
−1 −0.8+0.4

−0.6 2.0+0.9
−0.6

6.5 28 10.8± 0.1 0.19± 0.05 −21.6± 0.4 ... ... ... ... ... ... 1.3+2
−0.9

7.0 18 10.9± 0.1 0.18± 0.05 −21.7± 0.5 ... ... ... ... ... ... 5+3
−3

7.5 5 10.9± 0.1 0.13± 0.03 −21.5± 0.4 ... ... ... ... ... ... 9+7
−5

8.0 3 10.9± 0.1 0.12± 0.01 −21.5± 0.3 ... ... ... ... ... ... 11+9
−7

11.0 < log[M∗/M�]< 11.5, 0.1<z<0.4, 0.05 < R/R200 < 0.5, 4 < R/Rh < 45
1.5 92 11.2±0.1 0.32±0.06 −22.6± 0.4 0.6+0.3

−0.3 −0.7+0.4
−0.6 > 0.7 < 47 0.5+0.3

−0.3 −0.8+0.4
−0.5 0.6+0.3

−0.2

2.0 92 11.2±0.1 0.32±0.06 −22.6± 0.4 0.8+0.3
−0.3 −1.1+0.4

−0.6 > 0.7 < 36 0.6+0.3
−0.3 −1.0+0.4

−0.4 0.9+0.3
−0.3

2.5 92 11.2±0.1 0.32±0.06 −22.6± 0.4 1.2+0.4
−0.4 −1.1+0.4

−0.5 ... ... 0.9+0.3
−0.3 −1.2+0.3

−0.4 1.2+0.4
−0.3

3.0 92 11.2±0.1 0.32±0.06 −22.6± 0.4 1.1+0.5
−0.4 −1.5+0.4

−0.6 ... ... 0.9+0.4
−0.4 −1.4+0.3

−0.5 1.6+0.5
−0.5

3.5 92 11.2±0.1 0.32±0.06 −22.6± 0.4 1.5+0.7
−0.7 −1.2+0.4

−0.6 > 0.7 < 31 1.2+0.6
−0.6 −1.1+0.3

−0.4 2.1+0.6
−0.6

4.0 92 11.2±0.1 0.32±0.06 −22.6± 0.4 1.7+0.8
−0.7 −1.4+0.5

−0.7 > 0.9 < 20 1.5+0.7
−0.7 −1.2+0.3

−0.4 2.1+0.6
−0.6

4.5 92 11.2±0.1 0.32±0.06 −22.6± 0.4 1.9+0.9
−0.7 −1.5+0.4

−0.6 > 1.1 < 18 1.7+0.7
−0.7 −1.0+0.3

−0.4 2.5+0.7
−0.7

5.0 92 11.2±0.1 0.32±0.06 −22.6± 0.4 2.0+1.0
−0.9 −1.4+0.5

−0.7 > 1.0 < 25 1.4+0.8
−0.7 −1.1+0.4

−0.5 2.6+0.8
−0.7

5.5 92 11.2±0.1 0.32±0.06 −22.6± 0.4 3+1
−1 −0.9+0.3

−0.4 > 0.7 < 66 1.6+0.9
−0.8 −1.1+0.4

−0.5 3.3+1.0
−0.9

6.0 81 11.2±0.1 0.31±0.06 −22.6± 0.4 6+1
−1 −0.7+0.3

−0.3 > 0.7 < 67 3+1
−1 −1.0+0.3

−0.4 5+1
−1

6.5 39 11.3±0.1 0.27±0.07 −22.6± 0.4 9+2
−2 −0.7+0.3

−0.3 > 0.7 < 58 3+2
−2 −1.7+0.5

−0.9 9+2
−2

7.0 15 11.3±0.1 0.21±0.04 −22.6± 0.4 ... ... ... ... ... ... 15+4
−4

7.5 9 11.3±0.1 0.19 ±0.04 −22.6± 0.4 ... ... ... ... ... ... 17+8
−7

8.0 3 11.3±0.1 0.19 ±0.04 −22.7± 0.4 ... ... ... ... ... ... 23+16
−13

10.5 < log[M∗/M�] < 11.0, 0.4<z<0.8, 0.02 < R/R200 < 0.5, 2.5 < R/Rh < 45
1.5 1038 10.7±0.1 0.6±0.1 −21.8± 0.5 0.16+0.07

−0.06 −1.2+0.3
−0.4 > 0.7 < 27 0.17+0.06

−0.05 −1.0+0.3
−0.4 0.18+0.06

−0.06

2.0 1019 10.7±0.1 0.6±0.1 −21.8± 0.5 0.21+0.08
−0.08 −1.1+0.3

−0.3 ... ... 0.20+0.05
−0.06 −0.9+0.3

−0.3 0.21+0.08
−0.06

2.5 997 10.7±0.1 0.6±0.1 −21.8± 0.5 0.41+0.09
−0.09 −0.9+0.2

−0.2 ... ... 0.30+0.07
−0.08 −0.9+0.2

−0.2 0.38+0.11
−0.08

3.0 893 10.7±0.1 0.6±0.1 −21.9± 0.4 0.4+0.1
−0.1 −0.8+0.2

−0.3 ... ... 0.37+0.1
−0.09 −0.7+0.2

−0.2 0.4+0.1
−0.1

3.5 642 10.8±0.1 0.6±0.1 −22.0± 0.4 0.5+0.2
−0.2 −0.6+0.3

−0.4 ... ... 0.4+0.1
−0.1 −0.7+0.3

−0.4 0.4+0.2
−0.2

4.0 372 10.8±0.1 0.5±0.1 −22.0± 0.4 0.8+0.2
−0.2 −0.9+0.3

−0.3 ... ... 0.5+0.2
−0.2 −1.0+0.3

−0.4 0.7+0.2
−0.2

11.0 < log M∗/M�] < 11.5, 0.4<z<0.8, 0.02 < R/R200 < 0.5, 2.5 < R/Rh < 45
1.5 331 11.2±0.1 0.6±0.1 −22.8± 0.4 0.5+0.1

−0.1 −0.7+0.3
−0.2 > 0.7 < 54 0.4+0.1

−0.1 −0.8+0.3
−0.3 0.4+0.2

−0.2

2.0 331 11.2±0.1 0.6±0.1 −22.8± 0.4 0.6+0.2
−0.2 −0.8+0.2

−0.3 ... ... 0.5+0.1
−0.1 −0.8+0.3

−0.2 0.5+0.2
−0.2

2.5 331 11.2±0.1 0.6±0.1 −22.8± 0.4 1.0+0.2
−0.2 −0.8+0.2

−0.2 ... ... 0.8+0.2
−0.2 −0.9+0.2

−0.2 0.9+0.2
−0.2

3.0 331 11.2±0.1 0.6±0.1 −22.8± 0.4 1.2+0.2
−0.2 −0.9+0.2

−0.2 > 0.8 < 16 1.0+0.2
−0.2 −0.9+0.2

−0.2 1.1+0.3
−0.3

3.5 322 11.2±0.1 0.6±0.1 −22.8± 0.4 1.7+0.3
−0.3 −0.8+0.1

−0.2 > 0.7 < 21 1.2+0.2
−0.2 −0.8+0.2

−0.2 1.6+0.3
−0.3

4.0 272 11.2±0.1 0.6±0.1 −22.8± 0.4 1.8+0.3
−0.3 −0.8+0.2

−0.2 > 0.8 < 28 1.5+0.3
−0.3 −0.7+0.2

−0.2 1.7+0.3
−0.3

4.5 170 11.2±0.1 0.6±0.1 −22.8± 0.4 2.4+0.5
−0.5 −0.9+0.2

−0.2 > 1.0 < 18 1.9+0.4
−0.5 −0.9+0.2

−0.2 2.3+0.5
−0.5

5.0 86 11.2±0.1 0.5±0.1 −22.8± 0.4 2.3+0.7
−0.7 −0.9+0.3

−0.3 > 0.8 < 26 2.7+0.8
−0.8 −0.7+0.3

−0.3 2.1+0.7
−0.7

5.5 31 11.2±0.1 0.5±0.1 −22.9± 0.3 5+2
−1 −1.1+0.3

−0.3 > 0.7 < 23 4+2
−1 −0.9+0.3

−0.3 5+1
−1

Table 3.2: Summary of early-type host galaxy properties and results from the inference
using distances scaled by R200
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∆m Nh log[M∗/M�] (a) z(b) Mr (a) Ns (c) γp (c) A (c,d) |φ| (c,d) Ns (e) γp (e) Ns (c,f)
10.5 < log[M∗/M�]< 11.0, 0.1<z<0.4, 0.07 < R/R200 < 1.0, 4 < R/Rh < 45
1.5 274 10.7±0.5 0.31±0.07 −21.6± 0.5 ...(g) ... ... ... ... ... 0.12+0.1

−0.08

2.0 274 10.7±0.5 0.31±0.07 −21.6± 0.5 ... ... ... ... ... ... 0.2+0.2
−0.1

2.5 274 10.7±0.5 0.31±0.07 −21.6± 0.5 ... ... ... ... ... ... 0.3+0.2
−0.2

3.0 274 10.7±0.5 0.31±0.07 −21.6± 0.5 0.2+0.3
−0.2 −1.2+0.6

−0.9 < 1.3 ... 0.2+0.2
−0.1 −1.7+0.9

−1 0.3+0.2
−0.2

3.5 274 10.7±0.5 0.31±0.07 −21.6± 0.5 0.3+0.3
−0.2 −1.2+0.6

−0.8 < 1.3 ... 0.3+0.3
−0.2 −1.4+0.7

−1 0.4+0.3
−0.3

4.0 274 10.7±0.5 0.31±0.07 −21.6± 0.5 0.5+0.3
−0.3 −1.4+0.4

−0.6 < 1.3 ... 0.6+0.3
−0.3 −1.4+0.4

−0.5 0.7+0.3
−0.3

4.5 262 10.7±0.5 0.31±0.07 −21.6± 0.5 0.8+0.4
−0.3 −1.4+0.4

−0.5 ... ... 0.8+0.3
−0.4 −1.4+0.4

−0.5 0.9+0.4
−0.3

5.0 228 10.7±0.5 0.30±0.07 −21.7± 0.5 0.8+0.5
−0.4 −1.4+0.5

−0.6 < 1.3 ... 1.0+0.5
−0.5 −1.1+0.4

−0.5 1.1+0.5
−0.4

5.5 158 10.7±0.5 0.28±0.08 −21.7± 0.5 1.1+1
−0.7 −1.2+0.6

−1.0 < 1.3 ... 1.4+0.8
−0.8 −1.1+0.4

−0.8 1.4+0.7
−0.6

6.0 94 10.8±0.1 0.25±0.08 −21.8± 0.5 2+2
−1 −1.1+0.5

−0.9 < 1.3 ... 2+1
−1 −1.0+0.6

−1 2+1
−1

6.5 39 10.7±0.1 0.18±0.05 −21.6± 0.5 ... ... ... ... ... ... 1.0+1
−0.8

7.0 25 10.7±0.1 0.16±0.04 −21.6± 0.5 ... ... ... ... ... ... 4+3
−2

7.5 15 10.7±0.1 0.13±0.03 −21.4± 0.4 ... ... ... ... ... ... 5+5
−3

11.0 < log[M∗/M�] < 11.5, 0.1<z<0.4, 0.07 < R/R200 < 1.0, 4 < R/Rh < 45
1.5 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 ... ... ... ... ... ... 0.4+0.3

−0.2

2.0 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 ... ... ... ... ... ... 0.4+0.3
−0.3

2.5 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 ... ... ... ... ... ... 0.4+0.4
−0.3

3.0 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 0.5+0.5
−0.3 −1.7+0.8

−1 ... ... 0.8+0.5
−0.5 −1.1+0.6

−0.8 0.7+0.5
−0.4

3.5 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 0.6+0.5
−0.4 −1.8+0.7

−1 ... ... 0.8+0.6
−0.5 −1.3+0.6

−0.9 0.9+0.6
−0.5

4.0 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 0.8+0.6
−0.5 −1.8+0.6

−0.9 ... ... 1.1+0.7
−0.6 −1.3+0.6

−0.8 1.2+0.6
−0.6

4.5 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 0.8+0.6
−0.5 −2.3+0.7

−1 ... ... 1.1+0.8
−0.6 −1.8+0.6

−0.9 1.4+0.7
−0.7

5.0 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 1.0+0.6
−0.5 −2.5+0.7

−1 ... ... 1.0+0.6
−0.5 −2.3+0.7

−0.9 1.7+0.7
−0.8

5.5 54 11.2±0.1 0.32 ±0.06 −22.3± 0.4 1.2+0.8
−0.5 −2.3+0.7

−0.8 ... ... 1.4+1
−0.7 −1.8+0.6

−0.8 2.0+0.9
−1

6.0 45 11.2±0.1 0.31±0.06 −22.4± 0.4 2+2
−1 −1.9+0.6

−0.7 ... ... 2+2
−1 −1.5+0.5

−0.8 3+1
−1

6.5 14 11.2±0.1 0.24±0.04 −22.3± 0.5 ... ... ... ... ... ... 2+3
−2

7.0 9 11.2±0.1 0.23±0.04 −22.4± 0.5 ... ... ... ... ... ... 4+4
−3

7.5 9 11.2±0.1 0.23±0.04 −22.4± 0.5 ... ... ... ... ... ... 7+6
−4

10.5 < log[M∗/M�]< 11.0, 0.4<z<0.8, 0.07 < R/R200 < 1.0, 4 < R/Rh < 45
1.5 857 10.7 ±0.1 0.6±0.1 −21.8± 0.5 0.2+0.2

−0.1 −1.0+0.4
−0.5 < 1.0 ... 0.13+0.08

−0.08 −1.2+0.5
−0.6 0.23+0.1

−0.09

2.0 857 10.7 ±0.1 0.6±0.1 −21.8± 0.5 0.2+0.1
−0.1 −1.2+0.5

−0.8 < 1.1 ... 0.09+0.08
−0.07 −1.5+0.7

−1 0.2+0.1
−0.1

2.5 814 10.7 ±0.1 0.6±0.1 −21.8± 0.5 0.2+0.2
−0.1 −1.3+0.5

−0.7 < 1.1 ... 0.16+0.1
−0.07 −1.6+0.5

−0.6 0.3+0.1
−0.1

3.0 726 10.7 ±0.1 0.6±0.1 −21.9± 0.5 0.4+0.2
−0.2 −1.4+0.4

−0.5 < 1.1 ... 0.2+0.1
−0.1 −1.8+0.5

−0.7 0.5+0.2
−0.1

3.5 583 10.7 ±0.1 0.6±0.1 −22.0± 0.5 0.5+0.2
−0.2 −1.6+0.3

−0.5 < 0.7 ... 0.3+0.2
−0.2 −1.7+0.4

−0.6 0.6+0.2
−0.2

4.0 372 10.7 ±0.1 0.5 ±0.1 −22.1± 0.5 0.5+0.3
−0.2 −1.7+0.5

−0.6 < 1.1 ... 0.4+0.2
−0.2 −1.9+0.5

−0.7 0.7+0.2
−0.2

11.0 < log[M∗/M�]< 11.5, 0.4<z<0.8, 0.07 < R/R200 < 1.0, 4 < R/Rh < 45
1.5 182 11.2±0.1 0.6±0.1 −22.5± 0.5 0.1+0.1

−0.1 −2.0+0.8
−1 < 1.2 ... 0.2+0.1

−0.1 −1.9+0.7
−1 0.2+0.1

−0.1

2.0 182 11.2±0.1 0.6±0.1 −22.5± 0.5 0.3+0.2
−0.2 −1.8+0.5

−0.7 < 1.2 ... 0.4+0.2
−0.2 −1.6+0.4

−0.6 0.5+0.2
−0.2

2.5 182 11.2±0.1 0.6±0.1 −22.5± 0.5 0.5+0.2
−0.2 −2.1+0.5

−0.8 < 0.8 ... 0.6+0.2
−0.2 −1.7+0.4

−0.5 0.8+0.3
−0.2

3.0 181 11.2±0.1 0.6±0.1 −22.5± 0.5 0.9+0.3
−0.3 −1.6+0.4

−0.5 < 0.9 ... 1.0+0.3
−0.3 −1.4+0.3

−0.3 1.0+0.3
−0.3

3.5 170 11.2±0.1 0.6±0.1 −22.6± 0.4 0.7+0.4
−0.3 −1.7+0.5

−0.6 < 1.0 ... 0.8+0.4
−0.4 −1.5+0.4

−0.7 1.0+0.4
−0.3

4.0 139 11.2±0.1 0.6±0.1 −22.6± 0.4 0.7+0.5
−0.4 −1.6+0.5

−0.7 < 1.1 ... 1.0+0.5
−0.5 −1.0+0.5

−0.7 0.9+0.4
−0.4

Table 3.3: Summary of late-type host galaxy properties and inference results. (a) Ge-
ometric Means, (b) Mean, (c) Satellite distances scaled by R200, (d) 68 % one-sided
confidence interval, (e) Satellite distances scaled by Rh (f) Satellite distances scaled by
Rh, Inference performed with a Gaussian prior on γp with mean −1.1 and standard devi-
ation 0.3, (g) Blank spaces indicate no inference on the parameter as the posterior PDF
was essentially uniform
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3.12.1 Source Extractor Parameters and Photometry Compar-

ison

After removing host galaxy light from cutout images, we run SExtractor on the

residual image to identify remaining objects. In this step we use SExtractor param-

eters tuned to match the photometry and completeness of the COSMOS photometric

catalog. We could not directly the parameters listed by the COSMOS team, as their

photometry was performed on images with 0..′′03 resolution pixels while at the time of

this work, the publicly available images had 0.′′05 pixels.

To check the effects of using different SExtractor parameters and pixel scales,

we compare our completeness and photometry to that of the COSMOS photometric

catalog in a 4 arcmin2 cutout of the COSMOS field. In this area, we detect 817 objects

with I-band MAG AUTO<25. Of the 817 objects we identified, 792 have matches in

the COSMOS photometric catalog to the same depth and within half an arcsecond. In

Figure 3.10, we compare the MAG AUTO output from SExtractor to the values in

the COSMOS photometric catalog for matching objects. The mean difference in the

MAG AUTO estimate is (−2.53 ± 51) × 10−3. The major outliers in the MAG AUTO

comparison are all in areas of high object density and thus most likely due to differences

in deblending.

A full list of our SExtractor parameters is given in Table 3.4

102



Parameter Value
Large Object Mask Point Object Mask Final Photometry

DETECT MINAREA 10 6 6.5
DETECT THRESH 1.8 3 1.7

ANALYSIS THRESH 1.8 3 1.7
DEBLEND NTHRESH 64 64 64
DEBLEND MINCONT 1E-6 1E-6 0.05

FILTER NAME gauss 2.5 5x5.conv gauss 1.5 3x3.conv gauss 2.5 5x5.conv
BACK TYPE MANUAL

BACK VALUE 0.0
SEEING FWHM 0.1

INTERP MAXXLAG 2
INTERP MAXYLAG 2

WEIGHT TYPE MAP RMS

Table 3.4: SExtractor Parameters. Parameters not listed are SExtractor default
values. Blank spaces indicate that the parameter is the same for all rows.
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Figure 3.10: Comparison of our photometry with no host galaxy subtraction to COSMOS
photometry in an 18 arcmin 2 field cutout.

3.13 Completeness

To estimate our sensitivity to low surface brightness companions to host galaxies, we

simulate dwarf galaxy-like objects in the ACS images with Sersic profiles given by de

Rijcke et al. (2009) at a range of redshifts representative of the redshift range studied

in this work. We then perform the host subtraction routine and estimate the fraction
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of objects we recover and the output magnitude relative to the input magnitude. The

results of these simulations are shown in Figure 3.11. For comparison we also show the

results without host subtraction but with object detection performed using the same final

SExtractor parameters as are used in the host-subtracted case.

We choose the minimum radius at which we search for satellites where completeness

begins to drop below 90% for early-type hosts. For late-type hosts, the minimum radius is

chosen to ensure spiral arms are excluded from the analysis. Images after host subtraction

are checked for every host to ensure that these minimum radii exclude spiral arms or

extended residuals from disk structure (see Chapter 2).
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Figure 3.11: Results of completeness simulations. Red solid and blue dot-dashed vertical
lines show the imposed minimum radii at which we study the satellite population for
early and late-type galaxies respectively. On the left, the horizontal black line indicates
that the input and output magnitudes are the same. On the right the horizontal line
indicates 90% completeness. Host subtraction is essential both for photometric accuracy
and for completeness at small radii.

3.13.1 Full Posterior PDFs
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Figure 3.12: Full posterior PDFs for dm = 4.0 satellite of high mass clockwise from top
left : Low redshift early-type hosts, high redshift early-type hosts, high redshift late-type
hosts, low redshift late-type hosts. Dark and light gray contours indicate regions of 68
and 95% confidence respectively.

105



Chapter 4

Luminous satellites III: Comparison of the

luminosity function with theoretical predictions

This chapter was published as Nierenberg, A. M., Treu, T., Menci, N., Lu, Y., Wang,

W. “The Cosmic Evolution of Faint Satellite Galaxies as a Test of Galaxy Formation

and the Nature of Dark Matter”, ApJ, 772, 146, (2013) and is included here with minor

adjustments

As was discussed in the Introduction, star formation in satellite galaxies is not yet well

understood because it is driven by a large number of non-linear processes. A number

of astrophysical models, with varying models of star formation can all reproduce the

luminosity function of satellites around low redshift, Milky Way mass host galaxies. In

this Chapter, we demonstrate how the observations from the previous two chapters make

it possible to break degeneracies in these star formation models, by testing the prediction

in a new range of redshifts and host stellar masses.

We focus on three semi-analytic galaxy formation models which we discuss in more

detail below. We also implement one of the models with both Warm and Cold Dark

Matter substructure mass function in order to show how variations in the halo mass

function produce different predictions from variations in baryonic physics. We compare
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the predictions from these models with the observed abundance of satellite galaxies as a

function of host galaxy mass and cosmic time.

This test is made possible by two recent developments. On the observational side, the

implementation of powerful statistical tools to detect and count satellites in deep archival

Hubble Space Telescope images provides data to compare with model predictions as dis-

cussed in Chapters 2, and 3. On the theoretical side, advances in computational methods

have allowed for cosmological simulations with unprecedented volume and resolution. In

this work we focus on predictions from four independent cosmological simulations, which

have semi-analytic models applied to dark matter merging trees, which we describe in

more detail below.

This chapter is organized as follows: In §4.1 we summarize the key aspects of the

theoretical models. In §4.2, we compare the observations with the theoretical predictions.

In §4.3 we compare a few of the main properties of the models and present new predictions

for the distribution of colors of satellite galaxies across cosmic time. In §4.4 we compare

the model results with other observations taken from the literature. Finally in §4.5 we

conclude with a discussion and summary of the results.

4.1 Theoretical Models

We study three different semi-analytic models implemented in three different cosmo-

logical Cold Dark Matter simulations. In addition, we apply one of the semi-analytic

models to a Warm Dark Matter cosmology. This section provides a description of both

the Cold and Warm Dark Matter simulations and their models for galaxy formation.
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4.1.1 Cold Dark Matter Models

When studying the satellite luminosity function, it is extremely useful to compare

multiple cosmological simulations along with different star formation parameters in order

to understand the range of theoretical predictions given different assumptions. In this

work we focus on three Cold Dark Matter cosmological simulations, each with its own

semi-analytic model for galaxy. The simulation parameters governing star formation and

the underlying dark matter mass function were fully specified prior to performing this

test and are the same as in previous papers, in which a more complete description can be

found (Menci et al. 2012; Lu et al. 2012; Guo et al. 2011b). Below we briefly summarize

the relevant aspects of these simulations.

Menci et al. 2012

The semi-analytic models are described in detail by Menci et al. (2012). In brief, the

backbone of the models are computations of dark matter merging histories that can re-

solve halos down to masses of 105M�, allowing for an extremely accurate characterization

of the survival and merger histories of satellites. This is essential for studying the faint

end of the satellite luminosity function. The models predict mass distributions of halos,

and the merging rates of DM halos and subhalos based on an input power spectrum, and

generate luminosities for these halos based on a set of star formation prescriptions.

These galaxy formation prescriptions connect the complex baryon physics of star

formation to the dynamical evolution of the DM haloes. For each subhalo hosting a

galaxy, the model predicts radiative gas cooling, ensuing star formation and associated
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feedback from Supernovae (SNae) events. Cooled gas settles into a rotationally supported

disk with radius and rotational velocity related to the DM mass of the subhalo. This gas

gradually condenses into stars at a rate consistent with the observed Kennicut-Schmidt

law (Kennicutt 1998). SNae return part of the cooled gas to the hot gas phase at the virial

temperature of the halo. Star formation is also triggered by galaxy-galaxy interaction-

driven starbursts, which induce gas accretion onto the central supermassive Black Holes.

It is important to note that the set of parameters used in these models is much smaller

than the number of observables they are simultaneously consistent with. In brief, the star

formation parameters are tuned to simultaneously match the field luminosity function in

multiple bands from redshifts 0 to 6, the Tully-Fisher relation (Tully & Fisher 1977), the

stellar mass function of field galaxies from between redshifts 0 and 4, the stellar mass-star

formation relation to a redshift of 2, the colors and color magnitude relations of both

field and cluster galaxies in addition to the AGN luminosity function.

The observations from the previous chapter required host galaxies to be outside of

R200 of any galaxy with a higher stellar mass, where R200 was estimated using the formula

from Dutton et al. (2010). Ideally this selection would be duplicated when comparing

with the simulation, however this is not possible for the Menci et al. (2012) models,

as they do not contain spatial information. This should not significantly affect our

results, as comparisons with the Millennium and Bolshoi N-Body simulations (described

below) show that the central isolation criteria used in the previous chapters are efficient

at returning central host galaxies (∼ 90%), and that the use of the matching selection

criteria in these cases did not significantly alter the inferred predicted number of satellites

per host, relative to simply using the simulation selection of central galaxies.
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Guo et al. 2011

The semi-analytic model of Guo et al. (2011b) is based on two very large dark matter

simulations, the Millennium Simulation (MS; Springel et al. 2005) and the Millennium-II

Simulation (MS-II; Boylan-Kolchin et al. 2009). The box size of the MS is 500h−1Mpc

and its merger trees are complete for subhaloes above a mass limit of 1.7× 1010h−1M�.

The MS-II follows a cube of side 100h−1Mpc, but with 125 times better mass resolution

than the MS (subhalo masses greater than 1.4×108h−1M�). Both simulations adopt the

WMAP1-based ΛCDM cosmology (Spergel et al. 2003) with parameters h = 0.73,Ωm =

0.25,ΩΛ = 0.75, n = 1 and σ8 = 0.9. Due to the lower resolution of the MS, Wang

& White (2012) found that the luminosity functions of satellites flattens for satellites

with Mr > −18. For brighter satellites with Mr < −18, the simulations are consistent.

Since satellite luminosity functions will be measured to about three-orders of magnitude

fainter than central primaries in this chapter, we will focus on the semi-analytic model

implemented on MS-II hereafter1.

In general, the galaxy evolution model of Guo et al. (2011b) is based on those devel-

oped by Springel et al. (2005); Croton et al. (2006); De Lucia & Blaizot (2007). The model

includes a few main modifications such as the different definition of satellite galaxies, the

gradual stripping and disruption of satellites, a mass-dependent model of supernova feed-

back, a modified model for reionization and a more realistic treatment of the growth of

stellar and gaseous disks. Free parameters of these models by (Guo et al. 2011b) were

determined to give close predictions to the abundance and clustering of low redshift

1Here we use the data downloaded from http://www.mpagarching.mpg.de/millennium for registered
users.
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galaxies, as inferred from SDSS, and are functions of their stellar mass, luminosity and

color.

There are two types of satellites in the simulation: i) those with an associated dark

matter subhalo (type-1) and ii) those whose dark subhalo has fallen below the resolution

limit of the simulation (type-2). For the latter, the position and velocity of the orphan

galaxy is given by those of their most bound particle. Type-2 satellites are removed from

the galaxy catalogues when one of these two conditions is fulfilled: 1) the time passed from

the disruption of the subhalo is longer than their estimated dynamical-friction timescale,

or 2) the integrated tidal forces from the host halo exceed the binding energy of the

galaxy.

We project the simulation box in three orthogonal directions (along their x, y and z

axes). In each projection we assign each galaxy a redshift based on its “line-of-sight” dis-

tance and peculiar velocity. We select isolated primaries using criteria which are directly

analogous to those used to obtain the observational results in the previous chapters.

Satellites are defined to be all companion galaxies whose distances to the isolated pri-

maries are smaller than the halo virial radius (R200). To directly compare results based

on COSMOS, the real Rvir provided in the database is ignored, and instead we used the

empirical formula of Dutton et al. (2010) to estimate Mvir and R200 from stellar masses

of galaxies.

Lu et al. 2012

The baryonic processes implemented in this semi-analytic model are described in Lu

et al. (2011, 2012). Different from the previously published versions, this version of the
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model is applied on a set of halo merger trees extracted from a large cosmological N -body

simulation, the Bolshoi simulation (Klypin et al. 2011), which has a box size 250h−1 Mpc

on a side. The simulation adopted a cosmology favored by WMAP7 data (Jarosik et al.

2011) and WMAP5 data (Dunkley et al. 2009; Komatsu et al. 2009) with parameters

with Ωm,o = 0.27, ΩΛ,o = 0.73, Ωb,o = 0.044, h = 0.70, n = 0.95 and σ8 = 0.82. The

mass resolution of the simulation is 1.35× 108h−1M�, which allows us to track halos and

subhalos with mass ∼ 7×109h−1M�. Dark matter halos and subhalos are identified with

the Rockstar halo finder (Behroozi et al. 2012) based on adaptive hierarchical refinement

in phase-space.

As with the two other models in this work, the semi-analytic model follows the dark

matter merger tree and calculates the rates of gas cooling, star formation, outflow in-

duced by star formation feedback, and galaxy-galaxy mergers. The kinematics of satellite

galaxies is followed by using subhalo information from the simulation whenever the sub-

halo is resolved. When a halo becomes a subhalo, we instantaneously strip the hot gas

associated with the halo, while the stellar mass and cold gas mass remain intact.

When the subhalo is no longer resolved in the simulation, the model applies dynamical

friction (Binney & Tremaine 1987) to estimate when the satellite has merged into the

central galaxy, and it assumes that the tidal stripping is strong enough to also strip the

stellar mass and cold gas mass. At this point, the entire cold gas disk is stripped and is

mixed into the hot gas of the host primary halo. Starting from that time, a fraction of

stellar mass is tidally stripped per orbital timescale. The efficiency of the tidal stripping

is controlled by a parameter, which is tuned to yield 30% of the stellar mass is stripped

in every orbital timescale to match the conditional stellar mass function of local galaxies.
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Other parameters governing star formation and feedback are tuned using an MCMC

optimization to match the local galaxy stellar mass function (Moustakas et al 2013). The

model is guaranteed to produce a global galaxy stellar mass function which provides the

best possible match to the data between 109 and 1012 M� at redshift zero, within the

observational uncertainty and given the chosen model parametrization.

To compare with observation, hosts were selected using the same isolation criteria as

used for the observations, with hosts required to be not within R200 of a host with higher

stellar mass, where R200 is estimated from Dutton et al. (2010), using the relationship

for early-type hosts. The satellite luminosity function was measured within this region,

rather within Rvir as given by the simulation.

4.1.2 Menci Warm Dark Matter Model

Warm Dark Matter has been proposed as a means of suppressing the satellite lu-

minosity function by reducing the number of low mass dark matter halos, suppressing

power with respect to CDM below a certain cutoff-scale.

In this work, we use WDM merger trees from Menci et al. (2012) which are based on a

cutoff scale of ∼ 1 Mpc, corresponding to a ∼0.75 keV/c2 thermal relic, which suppresses

the power spectrum on sub-Mpc scales and has behavior equivalent to that of a ∼ 3.4

keV/c2 sterile neutrino. We chose this mass to be low enough to affect satellite-scale

structure while still agreeing with limits from observations of large-scale and local group

structure which constrain the particle mass to be larger than 0.6 keV/c2 for a thermal

relic and 2.5 keV/c2 for a sterile neutrino DM particle (Viel et al. 2009; Boyarsky et al.
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2009; Polisensky & Ricotti 2011; Kang et al. 2012).

The fiducial mass function from Menci et al. (2012) was based on an Extended Press

Schechter formalism (EPS, Bond et al. 1991). In our predictions, we consider the effects

of a complete suppression of progenitors with masses below that corresponding to the

free-streaming scale; this maximizes the possible effects of different window functions and

collapse thresholds in the WDM merging trees (see Benson et al. 2013). We include the

possible range of model predictions under different assumptions for the building up of

merging trees in the uncertainty regions in Figure 4.1.

The mass function from Menci et al. (2012) is based on on the Extended Press

Schechter formalism (EPS, Bond et al. 1991), which is modified to take into account

the suppression of structure below the free-streaming scale (see, e.g. Menci et al. 2012;

Benson et al. 2013). The uncertainties associated with this modification are reflected in

the width of the prediction for the final WDM satellite luminosity function.

Our goal in this comparison was to explore how the effects of varying the power

spectrum compare with the effects of varying semi-analytic star formation parameters.

To achieve this, the same semi-analytic model of star formation is used for the WDM

models as was applied to the CDM merging trees in the Menci CDM model. The CDM

semi-analytic model was selected to provide a good match to the field color distribution.

Menci et al. (2012) show that this model provides a good fit to the field luminosity

function when applied to a WDM power spectrum.
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4.2 Results

The improvements in observations and the implementation of semi-analytic models in

cosmological scale simulations allows a comparison between the observed and predicted

number of satellites as a function of host galaxy mass and cosmic time for the first time,

thus allowing for significantly more discriminatory power than tests based only on the

MW or the local volume.

The results of the comparison are presented in Figure 4.1, where we plot the observed

number of satellites as a function of the ratio between host and satellite luminosities

in SDSS-r, along with the WDM and CDM model predictions. Among the CDM model

predictions, two main trends are evident. First, no one CDM prediction precisely matches

the observation at all redshift and stellar mass intervals. This highlights the importance

of using data from a range of redshift and stellar mass when tuning the parameters of

semi-analytic models. All three models show qualitatively similar behavior with a strong

dependence on the number of satellites per host on the host galaxy mass. Taking into

account the covariance between data points (calculated by bootstrap resampling), the

generalized chi-squared between the models and the data is 529, 653 and 105 for the

Menci, Guo and Lu models respectively for 41 degrees of freedom.

The Menci WDM model shows distinct behavior in comparison with the CDM mod-

els. Notably, it predicts weaker host mass dependence and less redshift evolution than

predicted by any of the CDM models. Of the four models it provides the best agreement

with the data with a chi-squared of 56.

One of the most interesting results of the above comparison is the significant difference
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Figure 4.1: Comparison of CDM and WDM model predictions to observed number of
satellites over a range of redshift and host stellar masses. The purple, blue and red curves
represent predictions from three CDM based simulations with separate semi-analytic
models for star formation. The gray curve shows the prediction for one WDM simulation
with star formation parameters identical to those used in Menci, CDM prediction. For
the Lu and Guo models, the line widths represent the scatter in the mean value across
the simulation boxes. For the Menci CDM model, the shaded region represents the
range of model predictions possible given the observational uncertainty in the selection
of host halo masses. For the Menci WDM model, the shaded region also accounts for the
uncertainties in the suppression of progenitors below the free-streaming scale (see 4.1.2)
The points with vertical error bars are measurements from the previous chapter. The
top panels show the comparison for lower mass hosts at lower (left) and higher redshift
(right), while the lower panels are the equivalent for higher mass hosts.
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in the predicted satellite luminosity functions, even among the three CDM models. In

the following section, we perform a detailed comparison of some of the properties of the

four models in order to explore the cause of these differences.

4.3 Comparison of simulation properties

In the previous section we found significant differences in the model predictions for the

satellite luminosity function. As discussed in Section 4.1, numerous physical processes

contribute to the final predicted luminosity function. In this section, we compare key

aspects of the models in order to elucidate which model assumptions drive the predicted

differences. We first compare the subhalo mass function in the models, before the effects

of tidal stripping take effect, for all subhalos regardless of final luminosity. We then show

the stellar mass to halo mass relationship for hosts and satellites in the luminosity range

considered in this work, before the subhalos have undergone tidal stripping. We conclude

by comparing the predicted satellite colors to show the differences in star formation

histories.

4.3.1 Unstripped subhalo mass function

The four simulations all assumed slightly different cosmologies and had different mass

resolutions, so it is important to consider how much the differences in the predicted results

are due to these effects. In Figure 4.2 we plot the mass function of subhalos in a mass

range representative of the hosts and subhaloes from Figure 4.1. Note that this mass

function is purely based on dark matter mass, and does not directly correspond to the
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Figure 4.2: Comparison of the subhalo mass function at the time of subhalo accretion for
the four models, for a range of masses representative of the host halos and subhalos in
Figure 4.1. Note that these mass functions do not include the effects of tidal stripping by
the main halo, nor are they selected to host luminous satellite galaxies, or host galaxies
with the same stellar masses as the hosts in Figure 4.1

satellite galaxies in Figure 4.1, as there is no luminosity selection.

The Guo, Menci, and Lu CDM subhalo mass functions are extremely similar, while

the WDM model shows significant truncation for subhalos with log[Msub/Mhost] < −1

for the less massive hosts and log[Msub/Mhost] < −1.5 for the more massive hosts, and

predicts similar behavior to other WDM models with sub-Mpc cutoff scales (e.g. Coĺın

et al. 2000; Smith & Markovic 2011; Kamada et al. 2013).
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4.3.2 The halo mass to stellar mass relationship

One of the most important physical processes relied on in this comparison between

simulation and observation, is the relationship between host halo mass and stellar mass,

because the number of subhalos around a given host galaxy is strongly dependent on the

halo mass of the host galaxy (see e.g. Busha et al. 2011), particularly in the case of CDM.

Furthermore, as we always consider the quantity log10[Ls/Lh] > −3, it is important to

distinguish whether differences in the models are caused by differences in Ls or in Lh.

In Figure 4.3 we plot the halo to stellar mass relationship for the four models, in

addition to the observed relationship from Dutton et al. (2010), which was used to es-

timate R200 for the host galaxies in the observations. For bright galaxies with stellar

masses greater than 1010.5M�, the models are all very similar to each other and to the

observed relationship, within the large scatter. Thus we conclude that the differences in

amplitude in the predictions for the satellite luminosity function are not driven primarily

by differences in the halo to stellar mass relationship for host galaxies.

Towards the faint end, all models are very similar within the scatter, although the

Menci models show a marginally higher dark matter mass at fixed stellar mass. As we

show in the following section, the Menci satellite colors tend to be bluer than the Guo

and Lu colors. From (Bell et al. 2003), Table 7, the bluer colors of the Menci model,

correspond to an r band mass-to-light ratio which is lower by roughly 0.1-0.2 dex on

average than for the Guo and Lu models. Thus, as the final luminosity functions are

similar, it is expected that the Menci models would produce galaxies with on average

slightly lower stellar masses for fixed halo mass.
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Figure 4.3: Comparison of the virial to stellar mass relationship for both host and satellite
galaxies for the four models. The subhalo virial masses are taken at the time of accretion,
and thus do not include the effects of tidal stripping.
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4.3.3 Satellite galaxy colors

The intrinsic colors of satellite galaxies are dependent on the star formation history.

As discussed above, this is determined by the metallicity, feedback and UV heating, in

addition to environmental effects as the satellites enter the influence of the host galaxy

halo. All three models used the same stellar population synthesis models from (Bruzual &

Charlot 2003), thus satellite galaxy colors provide an important means of distinguishing

between different physical models for the suppression of star formation in low mass halos.

Two models which produce similar luminosity functions may rely on very different star

formation prescriptions, which will result in different color distributions. In Figure 4.4, we

plot the predicted distribution of rest-frame u-i colors for satellites with log10[Ls/Lh] >

−3.

In order to summarize these predictions, we fit each of the distributions to a skewed

normal distribution (Azzalini 1985) where the probability of having color c is given by:

P (c) ∝ e
(c−co)2

2σ2

(
1 + erf

(
a(c− co)√

2σ

))
(4.1)

Here co and σ are the usual mean and standard deviations of a normal distribution

while the parameter a describes the skewness. The best fit values for these parameters

are listed in Table 4.1 2. The parametrization of the distributions as being skewed normal

is not physically motivated, but rather intended to facilitate future comparison between

observation and these predictions.

The models all predict significantly different color distributions for the satellite galax-

ies, with the exception of the Menci CDM and WDM models, for which the same star

2We do not consider the secondary peaks in the Menci models in this fit.
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Figure 4.4: The normalized rest-frame distribution of colors, for the satellite galaxies
plotted in 4.1. The solid lines indicate the best fit skewed normal distributions defined
by Equation4.1, with fit parameters listed in Table 4.1
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formation parameters were used. We highlight the fact that although the luminosity

function predicted by the Menci WDM and Lu CDM models are similar within some

redshift and host stellar mass ranges, the color distributions are very different. This is

due to the fact that in the Lu CDM model, the faint end of the luminosity function is

suppressed mostly by the effects of feedback and ram pressure stripping and heating of

the gas by the host halo, while in the Menci WDM model, the luminosity function is

suppressed by the lack of low mass subhalos, as expected.

In order to facilitate comparison with observation, it is important to also consider

the effects of dust extinction. In Figure 4.5, we show the prediction for the rest-frame

colors of satellite galaxies with dust. The Menci models behave very differently with the

addition of dust, relative to the Guo and Lu models, with the Menci color distributions

becoming much wider and significantly redder while the Guo and Lu models develop a

longer redward tail, without significant other alteration. The secondary peaks in the

Menci model become more prominent with the addition of dust, so we fit the Menci

models with the sum of two skewed normal distributions with parameters reported in

Table 4.1, where the value A2/A1 describes the relative amplitudes between the two

skewed normals.

4.4 Comparison with literature

The models presented in this work predict a broad range of observables, many of

which have already been compared to observations, either at lower redshifts, or of brighter

objects than those considered in this chapter. Below we provide a brief comparison with

123



Figure 4.5: The normalized rest-frame distribution of colors, with dust extinction for
the satellite galaxies plotted in Figure 2, along with the best fitting skewed normal
distributions. The Menci models are fit with a sum of two skew normal distributions, to
account for the prominent secondary peak that appears.
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Host Properties Dust Guo et al. 2012 Lu et al. 2012 Menci, CDM Menci, WDM
co, σ, a co, σ, a co, σ, a, co, σ, a,

A2/A1, co,2, σ2, a2 A2/A1, co,2, σ2,a2

10.5 < log[M∗/M�]< 11.0, 0.1<z<0.4 Yes 1.7, 0.5, 8.8 1.9, 0.4, 2.5 1.6, 0.2, -5.0 1.4, 1.0, 9.3
1.4, 1.0, 1.5, 12.5 0.2, 3.3, 0.25, -1.9

No 2.0, 0.3, 1.5 1.7, 0.5, 7.0 1.3, 0.3, 1.4 1.9, 0.5, -4.0
10.5 < log[M∗/M�]< 11.0, 0.4<z<0.8 1.6, 0.5, 5.6 1.8, 0.3, 2.4 1.4, 0.3, -9.0 1.3, 0.3, 3.0

3.1, 2.9, 0.9, 2.5 1.5, 2.1, 0.5, 1.6

1.9, 0.3, 1.2 1.6, 0.4, 4.5 1.7, 0.5,-5.4 1.7, 0.4, -4.4
11.0 < log[M∗/M�]< 11.5, 0.1<z<0.4 1.8, 0.6, 5.1 1.2, 0.5, 2.7 1.5, 0.24, -5.9 1.3, 1.1, 5.5

4, 2.6, 0.5, 0 0.3, 3.3, 0.3,-4.5

2.5, 0.3, -1.2 1.8, 0.5, 4.3 2.0, 0.5,-4.4 1.9, 0.5, -4.2
11.0 < log[M∗/M�]< 11.5, 0.4<z<0.8 1.7, 0.5, 4.6 1.9, 0.5, 2.9 1.3, 0.25, 0 1.6, 0.2, 0

2.3, 2.9, 0.7, -2.6 1.3, 2.0, 0.5, 1.7

2.4, 0.3, -1.3 1.7, 0.5, 3.7 1.7, 0.5,-6.2 1.7, 0.4, -5.3

Table 4.1: Best fit parameters of the color distributions

some of these observations, a more detailed discussion of many of these comparisons can

be found in the original papers describing the models (Menci et al. 2012; Guo et al.

2011b; Lu et al. 2012).

4.4.1 Satellite luminosity function

Studies of the satellite luminosity function typically focus on satellite galaxies at low

redshifts with z < 0.1, both in simulation and observations. As we have shown in the pre-

vious chapter, the COSMOS field can be used to study satellites at higher redshifts, and

yields luminosity functions at low redshifts which are consistent with satellite luminosity

functions from SDSS (e.g. Guo et al. 2011a; Liu et al. 2011; Lares et al. 2011; Strigari &

Wechsler 2012), and the Milky Way satellite luminosity function (Tollerud et al. 2008).

All four of the models provide good fits to the satellite luminosity function of Milky

Way mass hosts at low redshifts, by design. The extra information of redshift and host
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galaxy stellar mass provides additional constraints to these models. For instance, when

comparing to bright field galaxies observed by Pérez-González et al. (2008), Guo et al.

(2011b) found their model agreed well at low redshift, while becoming discrepant with

observation by a redshift of 1.

4.4.2 Satellite Colors

In Section 4.3.3 we showed that the three CDM models predicted significantly different

distributions for the colors of faint satellite galaxies. Although we cannot directly test this

prediction in this work, some comparisons can be made with measurements of field galax-

ies at low redshifts. In particular, Guo et al. (2011b) found that their model predicted

colors matched observed SDSS colors well except for low masses (log10[M∗/M�] < 9.5),

which were redder in the simulation than in observations. Menci et al. (2012) found that

down to an absolute magnitude of Mr = −18 (roughly a stellar mass of ∼9 log[M∗/M�]),

their color distribution agreed well with SDSS measurements from Baldry et al. (2004).

They did not compare for fainter satellites.

The Lu and Guo semi-analytic models were not optimized to reproduce the observed

galaxy color-magnitude relation at low redshifts, thus future implementations of these

semi-analytic models which include this information may yield significantly different pre-

dictions for the color distribution of satellite galaxies.

Recently, Knobel et al. (2012) measured the red fraction of massive (log10[M∗/M�] >

10) satellites between redshift 0.1 and 0.8, and found no evidence for significant evolution

over this time, indicating that these low redshift results may apply to higher redshifts.
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From a different point of view, Behroozi et al. (2012) used abundance matching techniques

to infer that low stellar mass (log10[M∗/M�] ∼ 9) field galaxies on average continue to

form a significant fraction of their stars at redshift ∼ 1. However, this result cannot

be directly applied to satellite galaxies, as star formation in satellite galaxies has been

shown to be quenched relative to field galaxies at low redshifts (Pasquali et al. 2010;

Geha et al. 2012; Kauffmann et al. 2004).

Future measurements of faint satellite colors since intermediate redshifts will provide

interesting new constraints on these models, by helping to distinguish between suppres-

sion of the satellite luminosity function by environmental quenching and supernovae

feedback, or the subhalo mass function at the low mass end.

4.5 Discussion and conclusion

We have compared predictions from three current semi-analytic models applied to

CDM simulations and one semi-analytic model applied to a WDM simulation to obser-

vations of satellite galaxies in two redshift intervals and with two host mass bins. By

comparing multiple models, we demonstrated that the effects of varying star-formation

prescriptions within semi-analytic models, and varying the underlying dark matter mass

function have fundamentally different effects on the predicted host stellar mass depen-

dence, and redshift evolution of the satellite luminosity function. In particular, the

WDM model predicts a satellite luminosity function with much weaker host stellar mass

dependence and redshift evolution than any of the CDM models.

We find that the WDM provides the best match to observation in all redshift and
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host mass intervals, most closely matching the host mass dependence and lack of redshift

evolution in the data. This comparison highlights the importance of comparing models

of satellite galaxy evolution to observations from a range of redshifts and stellar mass

regimes, as a model that provides a close match to observation in one regime can perform

more poorly than other models in a different regime.

This exploration of different CDM models suggests that current models generically

have difficulty reproducing the mass and redshift dependence of the satellite luminosity

function. However, future improvements to the semi-analytic models for star formation

prescriptions may allow for improvements between the CDM predictions of the satellite

luminosity function. In fact, as shown in Chapter 3 subhalo abundance matching tech-

niques (Busha et al. 2011) can reconcile our observations with the CDM subhalo mass

function. Although abundance matching is descriptive and not directly linked to known

physical processes, it is possible that future semi-analytic models will be able to produce

the stellar mass to halo mass relation as illustrated by this approach.

Numerous studies have shown that abundance matching techniques can be used to

map measured properties of star formation to simulated halo masses, and thus provide

important constraints for semi-analytic models (e.g Behroozi et al. 2012; Reddick et al.

2012; Behroozi et al. 2010; Busha et al. 2011). The descriptive power of abundance

matching is limited for low mass satellite galaxies by the resolution of dark matter sim-

ulations and the depth and redshift range of observations. Higher resolution simulations

with varying dark matter power spectra, in conjunction with environmentally dependent

abundance matching, can potentially provide very interesting constraints for the physical

processes governing star formation in low mass halos in varying cosmologies.
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Additional observational data are needed to further constrain the models and there-

fore help distinguish between whether the discrepancy between predicted and observed

satellite luminosity function can be mitigated by either improved baryonic physics in

CDM models or a WDM power spectrum. For example, we have shown in this work

that the Lu CDM model which most closely matches the data predicts a significantly

different color distribution for the satellite galaxies than the Menci WDM model, indi-

cating that future observations of the colors of faint satellites will provide an important

test of whether the luminosity function of satellites is suppressed primarily by baryonic

processes or by a WDM mass function. We plan to carry out such measurement in the

near future by exploiting the rich multicolor datasets publicly available in the HST legacy

fields.
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Chapter 5

The luminous satellites of gravitational lenses

This chapter was published as Nierenberg, A. M., Oldenburg, D., Treu, T., “Do grav-

itational lens galaxies have an excess of luminous substructure?”, MNRAS, 436, 2120,

(2011) and is included here with minor formatting adjustments

As was discussed in the introduction, outside of the Local Group, a powerful way to

measure the subhalo mass function without relying on the presence of baryons is with

strong gravitational lensing by a galaxy deflector. When a luminous background source

is strongly lensed by an intervening galaxy, the number, positions, and magnifications

of the images that appear depend only on the mass distribution of the lens galaxy and

the relative angular positions of the lens and the source (see Treu 2010, and references

therein). Substructure along the line of sight can be identified via a deviation in the

magnification, positions or time delays of lensed images from what would be expected

given a smooth deflector mass distribution (e.g. Mao & Schneider 1998; Metcalf & Madau

2001; Keeton & Moustakas 2009).

Gravitational lensing has been applied to a variety of lens systems in order to detect

subhaloes and place constraints on their mass function (e.g. Dalal & Kochanek 2002;

Vegetti et al. 2012; Fadely & Keeton 2012; Xu et al. 2009, 2013a). Due to the small
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numbers of systems available for this type of analysis, the uncertainties on the inferred

subhalo mass function remain large. However, future wide-area surveys such as LSST

and PANSTARRS are expected to find thousands of new lens galaxies (Oguri & Marshall

2010) which can be analysed for substructure. Furthermore, the next generation of large

telescopes and adaptive optics will make the deep, high resolution imaging required for

the analyses of lensed images fast and therefore feasible for a large number of lenses, with

sensitivity extending to lower masses.

In order to use the subhalo mass function measured around gravitational lenses as a

test of ΛCDM, it is crucial to understand the lensing selection function, and in particular

whether lens galaxies are representative of field galaxies. Several works have used simu-

lations of different galaxy scale lenses with background point sources to determine which

dark matter halo properties, and survey selection criteria affect the gravitational lensing

cross section (Keeton & Zabludoff 2004; Mandelbaum et al. 2009; van de Ven et al. 2009;

Arneson et al. 2012; Dobler et al. 2008) . These studies found that the lensing cross

section is by far most strongly dependent on the surface mass density of the deflector.

Treu et al. (2009), showed that lens galaxies in the Sloan Lens Advanced Camera for

Surveys (SLACS) (Bolton et al. 2004, 2005, 2006; Auger et al. 2009) exist in environments

with densities which are consistent with those of non lens galaxies with similar stellar

masses and velocity dispersions. Fassnacht et al. (2011) found a similar result for a sample

of intermediate redshift lens galaxies. Furthermore, Auger et al. (2010) and Kochanek

et al. (2000) showed that the fundamental plane for SLACS and CLASS (Myers et al.

2003; Browne et al. 2003) lens galaxies is consistent with that of non-lens, early-type

galaxies.
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In order to generalise the measurements of the subhalo population mass function of

lens galaxies it is essential that we understand whether lens galaxies have substructure

populations typical of their non-lens counterparts. Outside of the Local Group, the

comparisons between the subhaloes of lens and non-lens galaxies are only possible for

those subhalos which contain a significant population of stars. Those subhaloes which

contain stars are expected to be the most massive, and therefore affect the lensing cross

section most strongly. We expect that the properties of the subhalo population which

significantly alter the probability of lensing should be evident in the subhalos containing

luminous galaxies which are the most massive. Of course, with this sort of analysis we

cannot test whether there are indirect selection effects connecting lens galaxies and the

dark subhalo population, which do not directly influence the lensing cross-section.

As an important test, Jackson et al. (2010) counted the number of projected compan-

ions within 20 kpc apertures around lens galaxies in SLACS and CLASS, and compared

them with the number of objects around early-type galaxies selected from Sloan and

COSMOS ACS imaging. Jackson et al. (2010) found that SLACS lenses had a simi-

lar number of companion objects to other early-type galaxies in Sloan, while CLASS

lenses had orders of magnitude more companions in projection than non-lens galaxies in

COSMOS field galaxies.

In this work we revisit the question of the populations of luminous companions of

gravitational lenses, taking into account several important developments with regards to

the detection and study of satellites. First, we apply the image processing and statistical

analysis developed in Chapters 2 and 3 to ACS images of SLACS lenses, which enables

us to directly study the satellite population of these galaxies to more than a thousand
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times fainter than the host galaxies, and very close in projection (∼1.′′0).

Secondly, we infer, for the first time, the dependence of the number of satellites on

the host galaxy stellar mass for both SLACS lenses and COSMOS field galaxies. This

allows us to rigorously incorporate differences in the distribution of host stellar masses

when comparing between the two samples, which is essential given the strong observed

dependence on the number of satellites as a function of host stellar mass as seen in

Chapter 3.

The Chapter is organised as follows: in §5.1 we describe the selection of the sample

of lens and non-lens host galaxies around which we study satellite galaxies. In §5.2 we

describe our procedure for detecting companion objects around each of the samples of

hosts. In §5.3 we explain the statistical method we use to infer the typical number of

satellites per host galaxy as a function of stellar mass and redshift. In §5.4 we compare

the inferred number of satellites per host for the SLACS and non-lens galaxies. In §5.5

we compare the number of satellites around COSMOS and CLASS hosts. Finally in §5.6

we conclude with a discussion and summary of the results.

5.1 Host Galaxy Selection

We restrict the galaxies analysed in this work to those which are imaged with suffi-

cient depth and resolution to allow us to detect faint satellite galaxies. Furthermore, as

the number of satellites is known to depend on the stellar mass of the host galaxy, we

study only systems which had previously estimated stellar masses or multiple bands of

photometry and a measured redshift, which enables us to estimate the stellar mass of
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the systems. Figure 5.1 contains a summary of the redshift, stellar mass and apparent

magnitude distributions of the host galaxies.

5.1.1 Lens Host Galaxies

In this work we focus mainly on measuring the properties of satellites around SLACS

lens galaxies. SLACS candidates were detected in Sloan spectroscopy by searching for

spectra which were composed of early-type, low redshift lenses superimposed with a

higher redshift emission-line galaxy. Lens status was then confirmed using either ACS or

WFPC2 imaging to confirm the morphological characteristics expected in gravitational

lensing (Bolton et al. 2004, 2005, 2006).

We restrict our comparison to those confirmed SLACS early-type lenses with redshifts

z > 0.1 which have deep (multiple exposure) I814 imaging in order to enable us to measure

the satellite population using the same tools which we apply to COSMOS imaging. We

also require that the lenses were imaged with ACS rather than WFPC2, in order to

ensure that there was a sufficient area of deep, high-resolution imaging around the lenses

to allow for an accurate measurement of the satellite population. We excluded one system

with detector artefacts very near the lens due to a saturated star, and one system which

had four companions of comparable brightness in the field, making the detection of faint

satellites impractical. The final sample contained 32 hosts. Host stellar masses, redshifts

and photometry were obtained from Auger et al. (2010).
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5.1.2 Non-Lens Host Galaxies

We select non-lens host galaxies from the COSMOS ACS survey. We study host

galaxies with stellar masses greater than M∗ > 1010.5M� as measured by Ilbert et al.

(2010) using ground based photometry in conjunction with ACS imaging (Auger et al.

2010). Hosts are restricted be between redshifts 0.1<z< 1 and to not be within R200

of a more massive companion, where R200 is estimated using the observed relationship

between stellar mass and R200 from (Dutton et al. 2010). This isolation requirement is

included to ensure that we are not studying host galaxies which are themselves satellites

of a more massive system. We also use the strong gravitational lensing catalog by Faure

et al. (2008) in order to exclude strong gravitational lenses from our sample.

COSMOS host stellar masses are based on SExtractor’s MAGAUTO (Bertin & Arnouts

1996) from ACS imaging, unlike SLACS photometry which was performed using deVau-

couleurs profile fitting. However, for bright galaxies, we found that this did not make a

difference in COSMOS photometry (see also Beńıtez et al. 2004).

5.2 Companion Detection

We use the same method to detect companion objects around SLACS and COSMOS

host galaxies as was used in Chapters 2 and 3.

For COSMOS host galaxies, we compare our detections to those detections already

in the COSMOS ACS photometric catalogs. New detections are added, while we replace

the photometry for objects which were already in the photometric catalogs within ∼ 20

reff of the host galaxies, with our own, thereby ensuring that the host light does not
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Figure 5.1: Stellar mass and redshift distributions of host galaxies considered in this work.
Lens galaxies are systematically more massive than non-lens galaxies. This is expected
given that the lensing cross section increases as velocity dispersion to the fourth power.
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contaminate nearby objects.

For SLACS we detect objects in the full ACS images around the lens galaxies and

then add in the new detections from the subtracted cutouts in the same way we do for

COSMOS. For the SLACS images, bright stars and detector artifacts were masked by

hand.

For both CLASS and SLACS hosts, we study all objects with I814 < 25 magnitudes

AB.

5.3 Inference of the Number of Satellites Per Host

In order to study satellite galaxies using single band photometry, we use the statistical

method discussed in Chapter 2, with two new additions to the model. These additions

allow for an accurate comparison between samples of host galaxies with different stellar

mass distributions, and uncertain virial radii. We conclude by describing the priors used

for the model. The likelihood function and a more detailed description of the statistics,

including how we adjust for masked regions in the images can be found in Appendix 5.7.

5.3.1 Number of satellites as a function of host stellar mass

In order to account for the differences in the stellar mass distributions of COSMOS

and SLACS host galaxies (Figure 5.1), we infer the number of satellites as a continuous

function of host stellar mass for the two samples.

Ns ∝ Ns,o(1 + log10[M∗host/M�]− 11.4)κs (5.1)

Given that the amount of correlated structure is also a function of the host stellar
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mass, we also infer the number density of background objects as a function of stellar

mass:

Σb = (Σb,o + κb(log10[M∗host/M�]− 11.4)) (1 + z)δz,b (5.2)

This redshift evolution term in the foreground/background number density is not

necessary for SLACS which covers a much smaller redshift range than the COSMOS

hosts. We do not study redshift evolution in the number of satellites per host as there

was no strong dependence apparent in Chapter 3.

5.3.2 Uncertainty in the virial radius

In order to account for variations in host halo mass and projected angular sizes due to

redshift variations, it is important to choose an appropriate distance scale within which

to study the satellite population. In 3 we scaled all distances by R200 as estimated by

the observed relationship between stellar and halo mass from Dutton et al. (2010). This

relationship becomes increasingly uncertain for high stellar masses (e.g. Behroozi et al.

2010).

The median stellar mass of the SLACS lens galaxies is log[M∗host/M�] = 11.4, which

is approximately where the halo mass to stellar mass relation becomes very uncertain

(e.g. Behroozi et al. 2010; Leauthaud et al. 2012). To account for this, for all hosts with

stellar masses greater than log[M∗host/M�] > 11.4, the true virial radius is included as a

model parameter, with mean and standard deviation given by Dutton et al. (2010). We

further restrict the inference to only allow for virial masses Mvir < 1014M�, as there are

no clusters in either the COSMOS or SLACS samples, given group richnesses and lensing

139



profiles. For our final results, we marginalise over the inferred virial radii. We note that

the exact threshold where virial mass uncertainty is included does not significantly affect

our results, as at lower stellar masses the stellar mass to virial mass uncertainty becomes

smaller and the uncertainty due to the significantly smaller number of satellites per host

dominates.

5.3.3 Priors

We use Gaussian priors on the parameters describing the number density of back-

ground/foreground objects (Σb,o, κb and δz,b). We obtain these priors by measuring the

background properties in annuli between 1.0 < r < 1.5 R200 around the COSMOS hosts.

For SLACS, we use priors with the same means as in COSMOS, but with broader stan-

dard deviations to allow for the fact that the COSMOS field is on average denser than

pure-parallel fields (Fassnacht et al. 2011). We do not allow for redshift variation in

the background/foreground number density in SLACS due to the small sample size and

narrow redshift range of the central galaxies.

For COSMOS satellites, we apply a prior on the slope of the projected radial profile

of γp from 3. Values for mean and standard deviations for these priors are listed in Table

5.1. We infer the properties of SLACS satellites with and without this prior on γp.

We infer all parameters in bins of magnitude offset between companion and host

galaxy (∆m = msat −mhost).
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Parameter Description COSMOS Prior SLACS Prior
Ns,o Number of satellites for hosts with M∗ = 1011.4M� U(0,100)a U(0,100)
κs Dependence of satellite number on host stellar mass U(0,60) U(0,60)
γp Projected radial slope of the satellite number density N(-1.1,0.3)b U(-9,0)
Σb,o Number of background/foreground (b/f)

objects per arcmin2 with I814 < 25 N(47,0.3) N(47,2)
αb Slope of the b/f number counts as a function of magnitude N(0.300,0.005) N(0.3,0.1)
κb Dependence of the number of b/f objects on host stellar mass N(1.5,0.3) N(1.5,0.3)
δz,b Dependence of the number of b/f objects with redshift. N(0.03,0.02) ...

Table 5.1: Priors used in the inference of the number and spatial distribution of satel-
lite galaxies around SLACS and COSMOS host galaxies. (a) Uniform prior between
(min,max), (b) Normal prior with (mean, standard deviation)

∆ m Ns,o κs γp Σb,o αb Ns,o
a κs

a

4 6+3
−3 2.1+1

−0.7 -0.7+0.2
−0.3 47+2

−2 0.38+0.05
−0.04 3+2

−2 3+1
−1

5 9+5
−3 2.4+1

−0.8 -0.8+0.2
−0.3 47+2

−2 0.36+0.04
−0.02 7+3

−3 2.8+1
−0.9

6 20+5
−4 2.7+0.5

−0.5 -0.7+0.1
−0.1 47+2

−2 0.39+0.02
−0.02 18+4

−4 2.7+0.7
−0.6

7 28+7
−6 2.7+0.5

−0.5 -1.0+0.1
−0.2 46+2

−2 0.39+0.02
−0.02 27+5

−5 2.7+0.5
−0.5

8 37+9
−7 3.4+0.7

−0.5 -1.0+0.1
−0.2 42+2

−2 0.39+0.02
−0.02 38+7

−7 3.5+0.6
−0.6

Table 5.2: Summary of inference results for SLACS satellites, see Equations 5.1 and 5.2.
Inferred between 0.03 < R < 0.5 R200. (a) Inferred with a Gaussian prior on γp with
mean -1.1 and standard deviation 0.3

5.4 Results

In Tables 5.2 and 5.3, we present the results of our inference on the cumulative number

of satellites per host galaxy as a function of stellar mass and host redshift, in two bins

of magnitude offset between host and companion objects ∆m = msat −mhost.

The results can be summarized as follows. For both COSMOS and SLACS hosts, we

detect a significant dependence of the number of satellites per host on the host stellar

mass, which is consistent between the samples. These results are also consistent with the

results of Chapter 3, in which we observed that the number of satellites per host at fixed

∆ m was significantly higher for hosts with 11 < log[M∗host/M�] < 11.5 than for hosts
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∆ m Ns,o κs γp

2 0.8+0.2
−0.2 1.4+0.3

−0.3 -1.1+0.1
−0.1

3 1.7+0.3
−0.3 1.7+0.3

−0.3 -1.2+0.1
−0.1

4 2.9+0.4
−0.4 1.6+0.3

−0.2 -1.1+0.1
−0.1

5 4.2+0.7
−0.8 1.8 +0.4

−0.3 -1.1+0.1
−0.1

6 12+1
−1 2.3+0.4

−0.3 -0.6+0.1
−0.1

7 20+3
−3 1.8+0.5

−0.5 -0.8+0.2
−0.2

Table 5.3: Summary of inference results for COSMOS satellites inferred between 0.03<
r < 0.5 R200, see Equations 5.1 and 5.2.

with 10.5 < log[M∗host/M�] < 11.

We find that the slope of the power-law radial profile of the satellite number density of

satellites around SLACS lenses is consistent with that of COSMOS field galaxies and goes

approximately as γp ∼ −1. As discussed in Chapters 2 and 3, this slope is approximately

isothermal. Given the range of host concentrations across our sample, and the fact that

we are fitting only a single power-law to the radial profile of satellites, this result can be

reproduced by a sum of Navarro Frank and White radial profiles (Navarro et al. 1996)

for the satellite number density, which is approximately the density profile which would

be expected if satellite galaxies followed the density profile of the host halo, as predicted

by simulations (e.g Kravtsov 2010).

Therefore, we perform the inference a second time, for SLACS galaxies using the same

Gaussian prior on the projected radial profile as was used for COSMOS. These results are

listed in the last two columns of Table 5.2. The Gaussian prior lowers the uncertainty

in the inferred number of satellites, but it does not significantly affect the number of

satellites per host.

In Figure 5.2, we compare the inferred number of satellites for COSMOS and SLACS
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Figure 5.2: The average cumulative number of satellites per host between 0.03<
R200 <0.5, near COSMOS and SLACS hosts, for two values of ∆m where all objects
analysed are restricted to have mobj−mhost < ∆m . The filled curves show the one sigma
confidence intervals for the inferred number of satellites per host as a continuous function
of the host stellar mass. The inferred values for these functions are listed in Table 5.3.
These results are inferred with a Gaussian prior on the projected slope of the satellite
radial profile γp with mean −1.1 and standard deviation 0.3.

hosts using the same prior on γp. The number of satellites as a function of host stellar

mass is consistent at all stellar mass values, although there may be a small trend in

a steeper slope for the SLACS satellites, the difference is significant only at the ∼ 1σ

level. Note that although values of individual parameters are not always consistent for

COSMOS and SLACS, the average number of satellites as a function of host stellar mass

is, due to degeneracies between the parameters κs and Ns,o, and the final number of

satellites as a function of stellar mass. In Figure 5.3 we show the bivariate posterior

probability distributions for κs and Ns,o for ∆m = 4 and 7.
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Figure 5.3: Comparison between posterior probabilities for the parameters κs and Ns,o

for ∆m= 4 and 7, for SLACS and COSMOS host galaxies. The colours have the same
meaning as in Figure 5.2. The darker inner contours and the lighter outer contours
represent the 68 and 95 % confidence intervals respectively.

5.5 Comparison with CLASS

Although the focus of this work is with the satellite population of SLACS lenses, it is

interesting to see whether the CLASS lenses have a relatively higher rate of companion

detection than COSMOS galaxies, given the stellar mass distribution of CLASS hosts,

and the results for our inference on the dependence between satellite number and host

stellar mass.

Gravitational lenses in the Cosmic Lens All Sky Survey (CLASS, Myers et al. 2003;

Browne et al. 2003) were selected by searching for flat-spectrum radio sources with mul-

tiple spatial components. This selection is very distinct from the SLACS selection, as

it is purely based on the detection of a gravitationally lensed radio source, and has no

requirements for the detection of the deflector galaxy. For this reason, the CLASS galax-

ies span a much larger range in redshift space than SLACS galaxies, and they do not

all have well measured photometry or redshifts. For this comparison we consider only
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CLASS hosts which have I814 imaging with either WFPC2 or ACS 1 and spectroscopic

redshift measurements.

We obtained stellar masses of the CLASS lenses by compiling photometry from the

literature (Lagattuta et al. 2010; Rusin & Kochanek 2005; Muñoz et al. 1998), and

applying the stellar population synthesis modelling code by Auger et al. (2010). Due to

the non uniform methods of obtaining photometry across the different works, we assume

a factor of ∼ 2 uncertainty in estimated stellar masses. We further restrict our sample to

those lenses which have estimated stellar masses greater than M∗/M� > 1010.4 in order to

allow us to continue to use the functional form from Equation 5.1. The final comparison

sample consists of 14 hosts 2 with properties shown in Figure 5.1.

We use companion object detection from Jackson et al. (2010) who used SExtractor to

detect objects within 20 kpc of the CLASS deflectors, with an I814 magnitude limit of 24.9.

Jackson et al. (2010) visually excluded lensed images to ensure they were not counted

as companion objects. After these considerations, Jackson et al. (2010) detects four

companion objects within 20 kpc of the 14 CLASS host galaxies which have spectroscopic

redshift measurements, and meet our stellar mass requirements.

Using the stellar mass distribution of the CLASS hosts, we apply the results from the

previous section to estimate the number of companion objects we would have expected

around COSMOS hosts with the same stellar mass distribution. To do this, we drew

randomly ten thousand times from the posterior probability distribution functions for

κs,γp and Ns,o, as well as from Gaussian distributions centred on the estimated stellar

1with the exception of 1422 which has I791 imaging
2CLASS B0128+437, MG0414+0534, CLASS B0445+123, CLASS B0631+519, CLASS B0712+472,

CLASS B1030+074, CLASS B1152+199, CLASS B1422+231, CLASS B1608+656, CLASS B1933+503,
CLASS B1938+666, CLASS B2045+265, CLASS B2108+213, CLASS B2319+051
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masses with standard deviations of 0.3 dex in order to account for uncertainty in the

host stellar mass estimates. We used the values of γp to rescale the expected number of

satellites to the smaller area studied by Jackson et al. (2010).

Assuming that the closest satellites could be found only as close as 10 kpc, to the

host centres, due to obscuration by the host galaxy, a sample of 14 COSMOS hosts

with the same stellar masses, and brightnesses as the CLASS hosts would have about

4 ± 2 satellites, and approximately 4 ± 2 background/foreground objects, depending

on the assumed background/foreground number density around CLASS hosts. Given

the small number statistics, this prediction is marginally consistent with the detection

of four objects around CLASS hosts, however these numbers do not take into account

obscuration by lensed images.

We can roughly account for obscuration by lensed images, by assuming that the

lensed images are found in annuli at the lens Einstein radii, with radial width of 0.′′4.

For double image lenses, we assume that about one third of the annulus is blocked

by lensed images, and for four image lenses, we assume the full annulus is blocked,

although the exact fraction of blocking does not significantly affect the results. Using

this approximate accounting for lensed image obscuration, we expect 2-3 satellite galaxies

and 1-2 foreground/background objects to be detected around CLASS host galaxies.

Although the main search radius in Jackson et al. (2010) was within 20 kpc, many of

the companion objects around CLASS lenses were found even closer to the host galaxy,

and brighter than the detection limit of 24.9. If we instead consider the number of objects

between 4 and 14 kpc, within 3.3 magnitudes of the central galaxy magnitude, our model

would predict about 2 satellites and 1 background/foreground object, including the effects
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of obscuration which are less relevant this close to the central galaxy, in comparison with

the four companion objects Jackson et al. (2010) detected which met these criteria.

Therefore, taking into account the fact that the CLASS host galaxies are very massive,

we find that they have approximately the same number of nearby companion objects as

we observe around COSMOS host galaxies with comparable stellar masses. This result

highlights the importance of considering host stellar masses when comparing samples of

satellite galaxies.

5.6 Summary

We have measured the spatial distribution and number of satellites per host as a

function of host stellar mass for SLACS lens galaxies and COSMOS field galaxies using

host light subtraction, object detection and an updated version of the statistical analysis

developed by Nierenberg et al. (2011, 2012). Furthermore, we compared the number of

projected companion objects found within 20 kpc apertures of CLASS lens galaxies by

Jackson et al. (2010) to what we would have expected around COSMOS field hosts with

similar stellar masses

Our main results are summarised below:

1. We detect a significant population of luminous satellites around SLACS lens galax-

ies. Parametrising the spatial distribution of satellites as Psat(r) ∝ rγp we find

γp ∼ −0.8 ± 0.2, which is consistent with the spatial distribution of luminous

satellites around COSMOS non-lens galaxies.

2. Parametrising the number of satellites per host within a fixed magnitude offset
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from the host galaxy (∆m = msat −mhost) to be Ns ∝ Ns,o(1 + log10[M∗host/M�] −

11.4)κs , we find κs to be ∼ 2.9± 0.6 for SLACS satellites as measured for hosts

between 1011 < log10[M∗host/M�] < 1011.8, and ∼ 1.8± 0.5 for COSMOS satellites as

measured between 1010.5 < log10[M∗host/M�] < 1011.8. Given degeneracies between

κs and Ns,o, the number of satellites per host as a function of host stellar mass is

consistent within the measurement uncertainties for all values of ∆m.

3. Using the above results, we find that the number of close companions to CLASS

lenses found by Jackson et al. (2010) is consistent with what we observe around

COSMOS non-lens galaxies, taking the distribution of CLASS host stellar masses

into account, as well as obscuration due to bright lensed images.

From these results we conclude that the subhalo mass function measured from these

strong gravitational lenses is representative of the global subhalo mass function for haloes

of the same masses.
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5.7 Appendix: Likelihood function

Here we describe how we infer the model parameters θ (listed in Table 5.1), which de-

scribe the number and spatial distribution of satellite and background/foreground galax-

ies between 0.03 and 0.5 R200 as a function of host stellar mass, within a fixed magnitude

offset from the host galaxy (mobj −mhost < ∆m), given our data D.

Using Bayes’ theorem, the probability of the model parameters being true given the

data is proportional to:

Pr(θ|D) ∝ Pr(D|θ)Pr(θ) (5.3)

Where Pr(θ) is the prior on the model parameters.

For the jth host in our sample, the data consist of a set of object radii relative to the

host galaxy rj, the total number of objects around the host galaxy, Nobs
j , and the host

stellar mass M∗
h,j. The likelihood function can be decomposed into a product over each

host galaxy of the individual likelihoods :

Pr(θ|D) ∝
Nh∏
j

Pr(dj|θ,M∗
h,j)Pr(θ) (5.4)

For each host galaxy, the likelihood is the probability of measuring Nobs
j times the

product of the likelihoods for each object position given the model parameters.

Pr(dj|θ,hj) = Pr(Nobs
j |θ)

∏
i

Pr(ri|θ,hj) (5.5)
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The first term on the right hand side is a Poisson probability comparing the model

predicted number of objects with the observed number of objects

The model prediction for the number of objects is given by the sum of the model

prediction for the number of satellite galaxies and the number of background/foreground

objects, where the number of background/foreground objects is given by:

Nb = AΣb (5.6)

Where Σb is defined in Equation 5.1, and A is the area (in arcminutes) in which objects

were observable for a given host.

The model prediction for the observable number of satellites N ′s,j, for the jth host is

given by:

N ′s,j = Ns,j

∫ rmax,j

rmin,j
rγpfj(r)rdr∫ 0.5

0.03
rγprdr

(5.7)

Where Ns,j is the model prediction for the number of satellites per host between

0.03 and 0.5 R200,j, as defined in Equation , fj(r) is the fraction of observable area as a

function of radius, and rmin,j and rmax,j are the minimum and maximum observable radii

respectively in units of R200,j. Note that this is where uncertainty in the virial radius

enters in to the likelihood function. For hosts with stellar masses greater than 1011.4 M�,

the virial radius is an additional model parameter.

The second term on the right hand side of Equation 5.5 is the likelihood of the

observed objects being at their observed positions given the model parameters. As we

do not know whether a certain object is a satellite or a foreground/background object,

the total probability of it appearing at a given position is the sum of the probability

of it being there if it was a satellite, and the probability of it being there if it was a
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background/foreground object, weighted by the relative probabilities of an object being

a satellite or a background/foreground object given the model parameters:

Pr(ri|θ,hj) = Pr(ri|θ,hj, S)Pr(S|θ,hj)

+Pr(ri|θ,hj, B)Pr(B|θ,hj)
(5.8)

The terms Pr(S|θ,hj), and Pr(B|θ,hj) are the relative probabilities of something

being a satellite or a background/foreground object given the model parameters. For

example:

Pr(S|θ,hj) =
N ′s,j

N ′s,j +Nb,j

(5.9)

The term Pr(B|θ,hj) is defined analogously.

The probability of observing a satellite at position ri is given by:

Pr(ri|θ,hj, S) =
r
γp+1
i fj(r)∫ rmax,j

rmin,j
rγpfj(r)rdr

(5.10)

The probability of observing a background/foreground object at position ri is:

Pr(ri|θ,hj, B) =
rifj(r)∫ rmax,j

rmin,j
fj(r)rdr

(5.11)
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Chapter 6

Detection of dark matter halos with strong lensing of

narrow-line emission

This chapter has been accepted for publication in MNRAS as Nierenberg, A. M.,

Oldenburg, D., Treu, T., “Detection of a substructure with adaptive optics integral field

spectroscopy of the gravitational lens B1422+231”, MNRAS, (2014) and is included here

with minor formatting adjustments

As we discussed in the Introduction, the measurement of the subhalo mass function

with gravitational lensing is currently limited by the small number of suitable systems.

In this chapter we demonstrate that subhalos can be detected via perturbations to image

magnifications using strongly lensed narrow-line quasar emission, as originally proposed

by Moustakas & Metcalf (2003), by combining adaptive optics with integral field spec-

troscopy in order to obtain spatially resolved spectra of individual lensed images.

Strongly lensed narrow-line quasar emission provides an alternative means of measur-

ing the subhalo mass function (Moustakas & Metcalf 2003) Quasar narrow-line emission

at low redshift is observed to be typically extended over tens to hundreds of parsecs

depending on the source luminosity (Bennert et al. 2002), which corresponds to mil-

liarcseconds for typical source redshifts, well above the microlensing scale. A benefit to
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studying narrow-line emission is that many more quasars have detectable narrow-line

emission as opposed to radio emission. This makes this method ideal for measuring the

subhalo mass function in the thousands of quad quasar lenses which are expected to

be discovered based on their optical properties in ongoing and future surveys including

PANSTARRS, DES and LSST (Oguri & Marshall 2010).

While promising, spatially resolved spectroscopy of narrow line emission of quasar

lenses has proven difficult to attain. Sluse et al. (2012b) and Guerras et al. (2013) have

measured lensed image spectra for pairs of quasar images, and for wide image separa-

tion double lenses, and observed differential lensing between the broad and continuum

emission, which is evidence for microlensing. In order to study the lensing signal of sub-

structure as discussed before, it is necessary to measure the spectra of images individually.

Metcalf et al. (2004) and Keeton et al. (2006), achieved sufficient spatial resolution in

order to measure the broad emission in individual quad quasar images, but neither of

these studies detected narrow emission with sufficient signal to noise ratio.

In a pioneering work, Sugai et al. (2007) used integral field unit (IFU) optical spec-

troscopy in order to measure narrow [OIII] fluxes in the gravitational lens RXJ1131. The

relatively wide separation between the lensed images (∼ 1.′′0) made it possible to spatially

resolve the lensed images, and place an upper limit on the mass of perturbing substruc-

ture. Interestingly, they found that unlike the continuum and broad fluxes, the [OIII]

image fluxes did not deviate significantly from a smooth model prediction without sub-

structure. In order to apply this method to a larger sample of systems and to probe lenses

with configurations with smaller image separations (such as fold lenses) it is essential to

obtain higher spatial resolution via HST (Keeton et al. 2006), or adaptive optics from the
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ground. In order to extend this method to the larger population of quasar lenses which

are typically at redshift 1 and above, it is essential to obtain higher spatial resolution in

order to resolve typical image separations of 0.′′5 or less. In this work, we demonstrate

for the first time that subhalos can be detected using strongly lensed narrow-line quasar

emission of a high redshift (z=3.6) quasar by combining adaptive optics with integral field

spectroscopy in order to obtain spatially resolved spectra of individual lensed images.

In this chapter, we present a measurement of narrow-line lensing with unprecedented

accuracy using the OH Suppressing Infra-Red Imaging Spectrograph (OSIRIS Larkin

et al. 2006) with laser guide star adaptive optics (LGS-AO) (Wizinowich et al. 2006) at

Keck. We choose as initial case to study the famous system B1422+231 (Patnaik et al.

1992). Previous extensive studies across many bands of photometry (including radio)

enable us to compare our measurement with more traditional methods.

The structure of the chapter is as follows: In §6.1 we present our observations. In

§6.2 we describe our Bayesian method for combining multiple exposures to get sub-pixel

sampling of the images and extract spectra optimally. In §6.3 we present the extracted

spectra and show fits to the broad and narrow line components in each of the lensed

images, and the inferred fluxes from each. In §6.4 we discuss the gravitational lens models

we use to fit the observed image fluxes and positions. In §6.5 we present results from a

gravitational lens model assuming a single perturbing subhalo. In §6.6 we discuss future

prospects for this method. Finally in §6.7, we summarise our results. Throughout this

chapter, we assume a flat ΛCDM cosmology with h = 0.7 and Ωm = 0.3. All magnitudes

are given in the AB system (Oke 1974) unless otherwise stated.
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6.1 Observations

We observed the gravitationally lensed quasar B1422+231 on June 10 2012 at the

W. M. Keck 10 m telescopes, using OSIRIS with LGS-AO corrections. To maximise the

signal-to noise ratio we used the largest available pixel scale which is 0.′′1. We used broad-

band K (λ =2.17 microns) filter which provided a spatial field of view of ∼ 1.′′6x6.′′4 and

a spectral range of 416 nm in the observed frame. At the time of our observations, the

instrument had recently been moved and the full calibration had not yet been performed.

As a result we were limited to a bigger wavelength range and smaller field of view that

made it possible to only fit three of the four images in the field of view. We observed

the system using 300 s exposures, dithering along the long axis of the field of view, with

sub-pixel offsets in order to recover more spatial information, for a total of 2700s of

integration. We used the OSIRIS data reduction pipeline to turn the raw CCD images

from each exposure into rectified, telluric corrected, and sky emission-subtracted data

‘cubes’ in which the spatial information of the images appeared in the x-y plane of the

images, and the wavelength varied along the third dimension.

6.2 Data Reduction

Our goal is to measure integrated line fluxes separately for each lensed image, taking

into account all uncertainties regarding image positions, image deblending, and PSF

properties. We do this in a three step process.

First, we infer the properties of the PSF and image positions in ‘white’ images, which

we created by taking the variance-weighted mean of the data cube over the wavelength
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region dominated by the broad and narrow line emission between rest frame 4700 - 5100

Å. These white images are effectively narrow band images of the system. Figure 6.1

shows the white image for a single exposure.

Next, we use a Bayesian inference in order to model the system as three point sources

(e.g., the three observed lensed-QSO images). The centre of lens galaxy is not within

the field of view (Figure 6.1), and is ∼ 3 magnitudes fainter than the QSO images,

thus we do not include its contribution to light in the image. The model contains a

set of global parameters that are the same for all exposures (the offsets between the

three sources and their relative fluxes) and a set of parameters that vary from exposure

to exposure (the sky level, the absolute location of the images, the total flux of the

three images, and properties describing the shape of the PSF for each exposure). The

PSF is modelled as two concentric Gaussians to represent the seeing halo and the AO

corrected diffraction core. The inner diffraction core is fixed to be circular and to have

a full width at half maximum (FWHM) of 0.′′065, based on the size of the telescope

and the wavelength of observation (see also van Dam et al. 2006). The seeing halo

Gaussian FWHM, ellipticity, position angle, and amplitude relative to the diffraction

core Gaussian are free parameters. We run an Markov Chain Monte Carlo (MCMC)

sampler for at least ten thousand steps in order to explore the full posterior probability

distribution function, including degeneracies between the parameters. We tested this

method by simulating images with the same image separations and signal-to-noise ratio

as our data set, and found that we could recover the image positions to an accuracy of

better than 5 mas, and the image fluxes to percent level accuracy.

The resulting measured image positions are given in Table 6.1. The relative image
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positions positions are consistent with radio and HST measurements of the system. Our

observations occurred during excellent conditions, with typical Strehl ∼ 0.2-0.3, and

seeing of ∼ 0.′′3

Finally, we extract the spectra using the inferred PSF properties and image positions,

relying on the fact that the PSF does not vary significantly over the short wavelength

range we are considering (∼ 180 nm observed). We draw sets of parameters describing the

PSF and image positions from the MCMC chains obtained in the previous step. Then,

for each set of parameters, for each wavelength slice in the data cube, we perform a χ-

squared optimisation via linear inversion in order to find the best fit amplitudes for the

lensed images simultaneously for all exposures, allowing for variations in the background

flux as a function of wavelength and exposure. The final extracted spectrum for each

image is then given by the mean and standard deviation of the best fit image fluxes

in each wavelength slice after iterating over all of the parameter draws. This method

allows us to quickly and robustly incorporate uncertainties in our inference of the image

positions and PSF parameters directly into our spectral extraction. Image spectra are

plotted in Figure 6.1.

6.3 Integrated Line Fluxes

Having extracted spectra for each of the lensed images, the next step in our analysis

is to measure the integrated line fluxes by modelling the spectra as a sum of narrow H-β

and [OIII], broad H-β and continuum emission1.

1We also tested for the presence of broad iron nuclear emission, but did not find a significant contri-
bution, and thus omitted it from the final analysis.
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Figure 6.1: Upper Left: HST NICMOS F160W image. Upper Right: Single 300s K band
exposure of target using OSIRIS with adaptive optics at Keck, we were restricted to
the small field of view due to instrument difficulties. Lower panels: The final extracted
spectra for each of the images.
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Component dRa dDec [OIII] flux broad H-β continuum
A 0.387 ±0.005 0.315 ±0.005 0.88 ± 0.01 4.67 ± 0.06 46.3 ± 0.1
B 0 ±0.005 0 ±0.005 1.00 ±0.01 5.2 ±0.1 44.6 ±0.1
C -0.362 ±0.005 -0.728 ±0.005 0.474 ± 0.006 2.5 ±0.1 24.1 ±1
D 0.941 ±0.01 -0.797 ±0.01 - - -
G 0.734 ±0.01 -0.649 ±0.01 - - -

Table 6.1: Image positions and fluxes for images A B and C measured with OSIRIS.
Fluxes are in units of the [OIII] flux of image B which was measured to be 1.4 ± 0.2 ×
10−14erg/(s cm2) by Murayama et al. (1999). Distances are in units of arcseconds. The
position for image D comes from averaging the offsets from radio observations by Patnaik
et al. (1999) (see Equation 6.1), while the position for the main lens galaxy (G) comes
from averaging the offsets from HST observations from the CASTLES website.

Our data give us three independent measurements of the quasar spectrum, which we

expect to be magnified relative to each other due to gravitational lensing. We model the

broad H-β emission and narrow emission lines as being composed as linear sums of 5th

and 3rd order Gauss Hermite polynomials respectively, while the continuum is modelled

as a power law. We allow more flexibility in the fit to the broad emission line to account

for winds which may cause significant asymmetries in the line profile. The model imposes

the same narrow line FWHM and centroid for all 3 lensed QSO images. The broad and

narrow emission lines are allowed to be redshifted relative to each other to account for

winds.

The amplitudes of the continuum, narrow, and broad emission lines are all free to

vary between the lensed images. The broad line width and shape (i.e. the width and

amplitudes of the component Gauss-Hermite polynomials which are summed to model

the broad line emission), and the continuum slope are also inferred separately for each

spectrum to account for the differential effects of microlensing and intrinsic variability,

which will more strongly affect the continuum and high-velocity tails of the broad emission
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Figure 6.2: Demonstration of best fitting model spectrum to the spectrum of image B,
as well as each of the separate line components.

line as these are emitted from the smallest physical area. Figure 6.2 shows an example of

the decomposition of the spectrum into the four components for image B. Uncertainties in

the decomposition are incorporated into the final calculated line fluxes by drawing 1000

random samples from the posterior probability distribution of the spectral parameters

and re-computing the line fluxes for each sample draw. The integrated line fluxes with

measurement uncertainties for each image are given in Table 6.1. In the case of [OIII],

the fluxes of both lines are summed together.

6.3.1 Astrometry of image D and the main lens galaxy

Although our measurement with OSIRIS only contains information for image fluxes

and positions for three of the four images of the system, we incorporate information on

the position of the fourth image from previous radio imaging by Patnaik et al. (1999).

The position of the fourth image aids in the constraint of the model for the main deflector,
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and is not expected to vary relative to the other images over time. We take the position

of image D to be the mean position after applying the offsets measured by Patnaik et al.

(1999) between the three measured image positions:

xD = 1/3
∑

i=A,B,C

xi − (xi,p − xD,p), (6.1)

where xp,i represents position measurements of the ith image by Patnaik et al. (1999),

and xi is the corresponding measurement in this work. The uncertainty in position D is

the standard deviation of the positions. The flux of image D is not used as a constraint

in the lens modelling.

Similarly, we use the relative position of the lens galaxy in HST imaging from the

CfA-Arizona Space Telescope LEns Survey (CASTLES) website2 in order to constrain

the centroid of the main deflector in the lens model.

6.4 Gravitational Lens Modelling

Having obtained the integrated narrow-line fluxes and image positions, we can now

test for the presence of substructure in the system using gravitational lens modelling.

As noted in the introduction, the positions and fluxes of the lensed narrow-line emission

images are determined by the first and second derivatives respectively of the gravitational

potential of the deflector, and therefore can be used to recover the mass distribution of

the perturber as well as the main deflector.

We begin in Subsection 6.4.1 by modelling the lens as containing a single main de-

2www.cfa.harvard.edu/castles/
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flector with no substructure in an external shear field, and find the best fit mass model

parameters given our image fluxes and positions using gravlens by Keeton (2001b,a).

As with previous studies, we find that this mass model provides a poor fit to the image

fluxes (Mao & Schneider 1998; Keeton 2001c; Bradač et al. 2002; Sluse et al. 2012a;

Dobler & Keeton 2006). In Subsection 6.4.2, we explore the effects of adding a single

perturber to the system with varying mass profiles.

6.4.1 Singular Isothermal Ellipsoid Deflector

Following numerous previous studies, we model the deflector as a singular isothermal

ellipsoid (SIE) which has been shown to provide a good fit to the macroscopic mass

distribution of lens galaxies (Treu 2010). The SIE has a density distribution given by:

ρ(r) =
ρo
r2

=
σ2
v

2πr2G
=

b

2πr2

(
c2

4πG

DS

DLSDL

)
(6.2)

Where σv is a velocity dispersion, b is the Einstein radius of the lens, and DS, DLS and

DL are the angular diameter distances from the observer to the source, from the lens to

the source and from the observer to the lens respectively. In gravlens, the radius is in

elliptical coordinates such that:

r =
√
x2(1− ε) + y2(1 + ε), (6.3)

where ε is related to the axis ratio q by q2 = (1−ε)/(1+ε). This means that the Einstein

radius is defined along the intermediate axis between the major and minor axes.

As is customary, we also allow for the presence of external shear γ in the direction θγ

in order to account for the fact that B1422+231 is a member of a group of galaxies (e.g.

Kundic et al. 1997).
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We determine the lens model parameters by first using the gravlens optimisation

routine in order to find the maximum likelihood parameters for the central deflector

given the observed image positions and narrow-line flux ratios. We then use emcee

hammer (Foreman-Mackey et al. 2013), which is a Markov Chain Monte Carlo algorithm

which is efficient at exploring highly degenerate parameter spaces, in order to determine

uncertainties in the parameter values. We initialise the proposal values in a small region in

parameter space around the best fit solutions from gravlens, and then for each proposed

set of host properties, we use gravlens in order to optimise the source position and

compute the χ2 for the resulting image positions and magnifications.

The inferred median and one sigma uncertainties for the lens model parameters are

given in Table 6.2. The corresponding model prediction for the image fluxes and positions

are given in Table 6.3. The model provides an excellent fit to the image positions,

matching them within the measurement uncertainties, however the predicted image flux

ratios deviate significantly from the observation, so that the typical model χ2 is ∼ 50

for seven degrees of freedom. As an additional test, we repeat the inference, this time

not including image fluxes as a constraint (row two of Table 6.3). In this case, the fit is

much better, with a χ2 of ∼1 for four degrees of freedom. The inferred model parameters

in this case are consistent with previous studies which used IR and radio data but did

not include flux information in their lens models (Mao & Schneider 1998; Keeton 2001c;

Bradač et al. 2002; Sluse et al. 2012a).

The significant deviation between the observed [OIII] image flux and the smooth

model prediction is consistent with previous observations of the system across a broad

range of wavelengths, which also found that flux of image A is about 20% brighter
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relative to image B than predicted by the single deflector model (Mao & Schneider 1998;

Keeton 2001c; Bradač et al. 2002; Sluse et al. 2012a; Dobler & Keeton 2006). Figure 6.3

compares the [OIII] flux ratios between images A, B and C with measurements made at

other wavelengths, and also relative to the smooth model prediction.

In Figure 6.3, we also show our measured flux ratios in the continuum and broad

Hβ emission. The broad Hβ emission has flux ratios consistent with that of the narrow

emission, while the continuum emission deviates more dramatically from the smooth

model prediction. This is consistent with microlensing which can act in conjunction with

millilensing by a subhalo, and would most strongly affect the smaller continuum source

size. Note that while the macromodel can be adjusted to provide a reasonable fit to the

C/B flux ratios at other wavelengths, this is not possible in the case of the A/B flux

ratios.

In order to improve the model fit, a natural solution is to add a perturber less massive

than the central galaxy. This can alter image fluxes without significantly shifting image

positions, because image fluxes depend on the second derivative of the lensing potential,

while image positions depend on the first derivative. In the following subsection we

explore the effects of adding a single perturbing mass to the lens system.

6.4.2 Smooth model plus Perturber

As can be seen in Figure 6.3, the ratio between the fluxes of images A and B deviates

significantly from the smooth model prediction while the ratio between fluxes of image C

and B does not. The simplest solution is that image A has been magnified by a nearby
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F555W 

F791W 

F160W 
N11.7  8 GHz  5 GHz  

Ks 

Figure 6.3: Comparison of measured ratios of images A B and C as a function of rest
frame wavelength, with the narrow (star), broad (triangles) nd continuum Ks measure-
ment from this work. Continuum measurements are labelled with the observed filter for
convenience. We include HST measurements with WFPC2 F791W and F555W measure-
ments from the CASTLES website, while the NICMOS F160Wa measurement is from
Sluse et al. (2012a). The mid-IR N11.7 measurement is from Chiba et al. (2005). Radio
measurements are from Patnaik et al. (1992, 1999). The solid and dashed lines represent
the best-fit prediction to the [OIII] fluxes for the flux ratios between images A/B and
C/B respectively, assuming one lens galaxy which is a singular isothermal ellipsoid with
external shear. While the ratio between image B and C agrees well with the model, the
ratio between A/B is significantly different from the smooth model prediction.
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perturber (Mao & Schneider 1998; Dobler & Keeton 2006; Bradač et al. 2002), with

the amount of magnification depending on the perturber position, mass scale and mass

profile.

We explore the simple case of adding a single perturber to the SIE plus external

shear model. This is a useful way to understand how our astrometric and photometric

precision allows us to constrain the presence of substructure, and to compare our results

with previous works, which have also assumed a single perturbing subhalo to the smooth

lens model. In reality, the system is likely to contain thousands of lower mass subhalos.

However the majority of these subhalos will be too low in mass and too far from the lensed

images to affect them. The degeneracies between perturber positions and mass make

it difficult to distinguish between the effects of populations of perturbers and a single

perturber added to the main lens system (Fadely & Keeton 2012). With a larger sample

of lens systems, the statistical properties of the perturber population can be inferred

more robustly, thus we will leave a more physical model with a realistic population of

substructure to a future work in which we consider a larger sample of lensed quasar

systems.

For illustrative purposes we consider three mass profiles for the perturber, in order to

explore how the mass profile affects the perturber lensing signal. Below we discuss each

of the mass profiles in detail.

The simplest mass profile computationally is the singular isothermal sphere (SIS)

given by Equation 6.2, with ellipticity set to zero. This profile is not physical as it

diverges as r goes to zero and extends outward indefinitely, however it provides a good

approximation to the small scale density profiles of galaxies (e.g. Gavazzi et al. 2007;
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Koopmans et al. 2009a; Lagattuta et al. 2010).

It is expected that a subhalo will undergo truncation by tidal forces from the main

halo. This truncation can be modelled by a pseudo-Jaffe profile (PJ, Muñoz et al. 2001),

which has a density distribution:

ρ(r) =
ρo
r2

a4

r2 + a2
, (6.4)

where ρo is the same as in Equation 6.2. The truncation radius, a, is traditionally

calculated by assuming that the perturber is exactly within the plane of the lens galaxy

at the Einstein radius, bhost, so that a =
√
bsubbhost (Metcalf & Madau 2001). In reality,

tidal stripping depends on a variety of factors, including the orbit of the perturber around

the host galaxy. This assumption for the tidal truncation radius assumes that the current

projected position is also the pericentre of the satellite orbit. The SIS and PJ models

bracket two extreme cases of no tidal stripping on the one hand, and maximum tidal

stripping (in the absence of baryons) on the other.

The third mass profile we consider is the Navarro Frenk and White (Navarro et al.

1996, NFW) profile. This mass profile is predicted by dark matter-only simulations,

which may be a better match to the mass profile of subhalos than the SIS profiles. In

fact the mass profile of subhalos may be even shallower than this at the centre (e.g.

Walker & Peñarrubia 2011; Wolf & Bullock 2012; Hayashi & Chiba 2012), but we leave a

more complete exploration of the effects of mass profile variations to a future work. The

density distribution of the NFW halo is:

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
(6.5)

Where rs and ρs are the scale radius and the density at the scale radius respectively. To
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reduce the number of free parameters, we apply the mass-concentration relation predicted

by Macciò et al. (2008), assuming a WMAP5 cosmology (Dunkley et al. 2009). This is a

large extrapolation at dwarf galaxy scales, but allows us to make a useful one-parameter

comparison with the steeper mass profiles.

As a first step, we again use gravlens to find the best-fit model to the narrow-line

fluxes and positions for the macromodel parameters (host and external shear) as well as

the perturber mass and position in the case of each of the three perturber mass profiles.

As with the SIE only model, we then use emcee hammer to infer the model parameters,

allowing both the macromodel and the substructure parameters to vary, assuming a

uniform prior on the perturber position and log-uniform prior on the perturber mass.

For each proposed perturber mass scale, position and set of host properties, we use

gravlens in order to optimise the source position and compute the χ2 for the resulting

image positions and magnifications.

As we will demonstrate below, despite the degeneracies, the possible perturber posi-

tions are restricted by the proximity of image B to image A, as well as by the critical curve

of the main lens. Furthermore, the astrometric precision of the measurement prevents a

subhalo large enough to cause significant astrometric deviations from the smooth model.

These effects can all be accounted for in the gravlens code. We also place lower limits

on the mass of the perturber based on the finite size of the source, which we describe

below.

168



6.4.3 Finite Source Effects

The finite nature of the source places lower limit to the perturber mass that can cause

the observed magnification (Dobke & King 2006). This can qualitatively be understood

by the fact that observed magnification is the convolution of the magnification pattern

with the source surface brightness distribution. The larger the source the more small-

scale features in the magnification due to low-mass substructure will be smeared out. In

the following subsection we discuss how we infer the narrow-line emission source size and

use this to place lower limits on the perturber mass for the three different perturber mass

profiles.

The observed images in each exposure are a convolution of the PSF in that exposure

which we modelled as the sum of two concentric Gaussians in Section 6.2, with the

source which we assumed to be a point source. This was a valid assumption given that

the flux in the images between 4500-5100 Å is dominated by continuum and broad H−β

emission, which are point-like (µas) relative to the resolution of the telescope. Narrow-

line emission, on the other hand, is seen to extend out to hundreds or even thousands of

parsecs for the most luminous Seyferts at low redshift (e.g. Bennert et al. 2002), although

the dominant contribution to the narrow-line luminosity comes from the central tens of

parsecs (Müller-Sánchez et al. 2011).

In order to determine the size of the lensed narrow-line source, we adjust the analysis

described in Section 6.2, this time modelling the flux as being emitted from a Gaussian

light distribution. This Gaussian source, when convolved with the PSF Gaussian yields
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observed image widths given by

σeff =
√
σ2
PSF + (µ1/2σsource)2, (6.6)

where σ2
PSF is the standard deviation of the seeing-halo, and µ is the best fit magni-

fication given by gravlens at each of the image positions.

We apply this analysis to a narrow-line image, created by subtracting a variance

weighted mean image of the continuum region between rest-frame 5070-5140 Å from a

variance weighted mean image which contains [OIII] plus continuum between rest frame

4980-5030 Å. We infer an intrinsic source size of ∼ 15 mas. This analysis assumes

that the diffraction core of the AO corrected PSF had a fixed size of 6.5 mas, while

in reality the size of the diffraction core depends on the AO performance and weather

conditions, and can vary from night to night. To test this, we also infer the source size

in an image containing light from only the quasar continuum, which we expect to be

unresolved. Instead, we find that the continuum image has an intrinsic source size of ∼

10 mas, implying that the diffraction core of the PSF is not as narrow in reality as in our

model. However, the [OIII] emission is definitely larger and thus resolved. Subtracting

the two in quadrature we estimate the intrinsic [OIII] size to be roughly ∼ 10 mas. This

corresponds to approximately 60 pc at the redshift of the quasar.

Based on the size-luminosity relation for type-I AGN measured in the Local Uni-

verse by Bennert et al. (2002), we would have expected the full narrow-line region in

B1422+231 to extend to several hundreds of pc. However, we are likely to only be sensi-

tive to the highest surface brightness parts of the narrow line regions because of surface

brightness sensitivity and cosmological dimming. So it is expected that our measure-
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ment be smaller than in the local universe. Furthermore, we do not consider lensing

shear distortions which are expected to cause the images to be elongated tangentially to

the radial direction, rather than simply enlarged isotropically as our analysis assumes.

Thus this simple calculation should be considered a lower limit to the true narrow line

emission region size, which corresponds to a conservative lower limit to the perturber

mass. In other words, a larger narrow line region would result in a more narrow posterior

distribution function of the perturber mass.

Dobler & Keeton (2006), computed the relationship between the source size and the

minimum Einstein radius of an SIS perturber that can cause the observed magnification

of image A, given the convergence and shear of the system B1422+231. They found

that an SIS perturber must have mass within the Einstein of b > 0.056a, where b is the

Einstein radius of the SIS perturber, and a is the unlensed source size. This corresponds

to a lower mass limit of ∼ 106.5 and ∼ 106 M� within 600 pc in the case of the SIS and

PJ perturbers respectively, assuming the perturbers are in the plane of the lens galaxy3

The mass limit on the NFW perturber cannot be computed analytically. We approx-

imate this limit by computing the average magnification in a grid of points with a size

of the magnified image, for increasing perturber masses. The limit is then given approx-

imately by the minimum perturber mass that can achieve the observed magnification in

a region the size of the magnified image. This is an approximate result, as it assumes

the source is magnified isotropically rather than distorted as it actually is. In the case

of the SIS perturber, for instance, with this method we find that the perturber must

3The interpretation of the enclosed mass given a fixed Einstein radius and density profile depends on
the perturber redshift.
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have b > 0.04a, which is slightly lower than the true value computed by Dobler & Keeton

(2006), but is good enough for an order of magnitude estimate of the minimum perturber

mass. In the case of an NFW perturber with mass concentration relation given by Macciò

et al. (2008), the perturber must have a scale radius which is approximately five times

larger than the unlensed source size, which corresponds to a mass limit of ∼ 106.5M�

within 600 pc.

6.5 Results

The SIE host plus perturber lens models show significant improvement relative to the

SIE-only model for all three perturber mass profiles, with best fit χ2 of one or smaller

for four degrees of freedom. The model prediction for the image positions and fluxes

are listed in Table 6.3, for the case of an SIE host with an SIS perturber. The model

parameters which determine the properties of the main SIE lens and external shear field

are consistent for the SIE plus perturber model and the SIE only model when fluxes were

not included as a model constraint. This illustrates how the perturber can alter image

fluxes without significantly affecting image positions.
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In Table 6.2 we list the median and one sigma confidence intervals for the lens model

parameters in the case of an SIE host galaxy and an SIS perturber. The host model

parameters are consistent with those in the smooth model case, which is expected given

the fact that the perturbing halo is a relatively small addition to the mass of the system.

It is useful to quantify the significance of the perturbation to the smooth model.

Here we discuss three different model testing methods. First, the inferred distribution

for the perturber position and mass is informative given that the SIE plus perturber

models allows for solutions in which the perturber does not contribute significantly to

the lensing, for instance if it were low mass and far from the lensed images. In this sense

the more complex SIE plus perturber model also includes the simpler possibility of the

SIE-only model. We find that in 1.8 million iterations of the MCMC, the perturber is

always located such that it is contributing significantly to the magnification of image A

relative to the smooth model at that location.

In addition, the maximum likelihood χ2 per degree of freedom for the SIE-only model

is 7 and the for SIE plus SIS perturber model it is 0.1. Results are similar for the other

two perturber mass profiles. An alternative way to compare models is via the Akaike

Information Criterion, (Akaike 1974) modified to take into account the relatively large

number of model parameters relative to data in this case (AICc Hurvich & Tsai 1989).

This is useful when trying to determine whether the addition of new parameters to a

model improves the fit relative to the ‘true’ underlying model (Kelly et al. 2014).

The AICc is calculated as:

AICc = 2k − 2 log pml +
2k(k + 1)

n− k − 1
(6.7)
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Where here k is the number of model parameters, pml is the maximum likelihood fit to

the data given a model choice, and n is the number of independent data points used

to constrain the model. The AICc is similar to the χ2 with an additional penalty for

extra model parameters. Given maximum log p values of the SIE only and SIE plus SIS

models, the AICc values are 60 and 50. This indicates that the SIE plus SIS model is of

order 100 times more likely than the SIE only model.

While all three perturber mass profiles provide equally good fits to the observations,

the posterior probability distributions for the perturber’s position and mass vary signif-

icantly as can be seen in Figure 6.4. There is similar qualitative behaviour in the sense

that the further a perturber is from image A, the more massive it must be to achieve the

same lensing effect. Furthermore, in all three cases, the mass range is limited naturally

by the astrometric precision of the measurement. If the perturber becomes too massive

it causes significant astrometric perturbations to the whole system, rather than just af-

fecting the flux of image A. However, the posterior probability distribution for the SIS

perturber position is much broader than in the case of the PJ profile. This is due to the

fact that the SIS mass profile extends outward indefinitely, so that it has a fundamentally

different lensing effect than the PJ perturber outside of the truncation radius of the PJ

perturber. We discuss this in more detail in the Appendix. Another interesting feature

is that the shallower NFW profile is not restricted by the position of the lens critical

curves in the way the SIS and PJ perturbers are. This shallower profile integrates to a

larger total mass for fixed aperture mass. Given that the lensing effect is determined by

the aperture rather than total mass, this implies that to achieve the same magnification

as the SIS or PJ perturbers, the total mass of the NFW perturber must be higher. This
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limits the 95% and 68% position contours for the NFW profile to be closer to image A

than the other two profiles.

In Figure 6.5, we plot the marginalised posterior probability distribution for the per-

turber mass within 600 parsecs, assuming that the perturber is located in the plane of

the lens galaxy. We note that for PJ perturbers with masses lower than ∼ 108.5, the

truncation radius falls inside of 600 pc. The 68% confidence intervals for the logarithm

of the perturber mass within 600 pc are 8.2+0.6
−0.8, 8.2+0.6

−1 and 7.6+0.3
−0.3 log10[Msub/M�], for

a singular isothermal sphere, PJ, and NFW mass profile respectively. The PJ perturber

can have lower masses relative to the SIS mass profile due to the truncation radius which

simulates tidal stripping, and falls within 600 pc for PJ perturbers with masses less than

∼ 108.5M� within 600 pc. The NFW profile is restricted to a small range of masses due

to its shallow density profile which gives it an effectively weaker lensing signal. For ease

of comparison with Local Group studies, the mass within 300 parsecs is shown in the

upper panel of Figure 6.5, and has a 68% confidence interval of 7.8+0.6
−0.7,8.0+0.6

−0.8, 7.2+0.2
−0.2

log10[Msub/M�] for the three mass profiles.

Given the significantly different lensing effects in the three cases, it will be possible

with a larger sample of lenses to learn about both the typical mass profile as well as the

mass function of the perturbers.

6.6 Discussion

Our primary goal in this work is to demonstrate that strongly lensed narrow-line emis-

sion provides an alternative to radio emission in lensed quasars for detecting substructure,
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G 

Figure 6.4: Posterior probability distributions of the perturber position relative to the
lensed images shown as red squares, and lens galaxy shown as a green circle, for a single
SIS, PJ, and NFW perturber from top to bottom. The grey scale represents the perturber
mass within 600 pc assuming the perturber is in the plane of the lens galaxy, and solid
and dashed contours represent the 68 and 95% confidence contours respectively relative
to the most likely position.
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Figure 6.5: Marginalised posterior probability distribution of the perturber mass within
300 pc (upper row) and 600 pc (lower row) assuming an SIS, PJ and NFW mass profile
respectively from left to right.

yielding lens model constraints with consistent results and comparable accuracy. In this

section we discuss previous results for this system, how the analysis can be improved

by considering additional systematic uncertainties, as well as future prospects for the

method

6.6.1 Comparison with previous work

B1422+231 is a bright, radio loud system which enabled one of the earliest detections

of dark substructure at cosmological distances (e.g. Mao & Schneider 1998; Keeton 2001c;

Bradač et al. 2002). These studies found that the observed radio fluxes could be best

explained by a perturbing substructure with characteristic Einstein radius of a few mas.

Although there was some question about how macromodel assumptions might affect the

inference of substructure (Kawano et al. 2004), Kochanek & Dalal (2004) demonstrated
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that smooth macromodels that are consistent with observations of galaxies using weak

lensing and galaxy morphology do not provide a good fit to the observed image positions

and flux ratios. Our analysis based on lensed narrow-line emission yields consistent

results to these studies.

6.6.2 Limitations of our analysis

We have explored how our data can be used to constrain a mass model with a main

lens in external shear and one perturbing subhalo. As we discussed in Section 6.4.2, this

model makes several important simplifying assumptions.

First, for simplicity we adopt a macro-model composed by a singular isothermal

ellipsoid with external shear. This is in general found to be a good model for early-

type galaxies both in terms of radial profile Koopmans et al. (2006, 2009b) and angular

structure (Yoo et al. 2005, 2006). However, allowing for more flexibility in the model

could inflate the uncertainties on the inferred substructure, or reduce its significance,

even though in the case of B1422+231 it is hard to find physically plausible models that

fit the data without a localized substructure (Evans & Witt 2003).

Second, as with previous works, we explore the effects of a single perturbing subhalo

(MacLeod et al. 2009; McKean et al. 2007; MacLeod et al. 2013). When studying the

effects of subhalos on lensed compact image fluxes and positions, full populations of

subhalos are computationally expensive and not well constrained by a single lensing

system (Fadely & Keeton 2012). In the future, when large samples will be available, it

will be important to carry out a systematic analysis of the entire population of subhalos
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using hierarchical modelling to infer at once the mass function and spatial distribution

of the subhalos.

Third, similarly to other works of this type, we have assumed that the perturbing

substructure is in the plane of lens galaxy in order to estimate the perturber mass (e.g.

Dalal & Kochanek 2002; MacLeod et al. 2009; Fadely & Keeton 2012; Vegetti et al.

2010b, 2012; Vegetti et al. 2014). Xu et al. (2012) showed that line of sight structure

may contribute significantly to image magnifications, although the observed frequency of

radio flux ratio anomalies can be explained with in situ perturbers predicted by CDM (Xu

et al. 2013b; Metcalf & Amara 2012). This has important implications for the inferred

subhalo mass function as all masses are inferred assuming the redshift of the perturber

is known. The lensing effect varies with mass if the perturber is not within the plane of

the lens galaxy (Xu et al. 2012; McCully et al. 2014b).

We have also demonstrated the effects of varying the assumed mass profile of the

perturbing subhalo, which significantly change the posterior probability distribution for

the perturber mass and position. It would be interesting in a future work to consider

a range of subhalo mass profiles which are drawn directly from simulations, so that

differential tidal stripping as a function of three dimensional distance from the lens halo

centre, and scatter in the subhalo concentration mass relation can be taken into account

for instance.
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6.6.3 Future Prospects

Many more quasars have significant narrow-line emission than radio emission, thus

this method can be extended to study substructure in a larger sample of systems. There is

significant future potential for this method as ongoing and planned optical surveys such as

DES, LSST, PANSTARRS and GAIA are expected to find thousands more lensed quasars

based on their optical rather than radio properties (Oguri & Marshall 2010). The next

generation of adaptive optics systems (NGAO), (Max et al. 2008), and telescopes such

as the Thirty Meter Telescope and the European Extremely Large Telescope will make

it possible to measure narrow-line lensing rapidly and with high precision for those large

samples of objects. In the nearer future, upgrades to the Keck AO system will enable

PSF telemetry which will thereby make it possible to obtain better constraints on the

source size, and thus place stronger lower limits on perturber masses.

Significant information is also contained in deep imaging of the lensed systems, which

can sometimes reveal luminous substructure (McKean et al. 2007; MacLeod et al. 2009).

If a luminous satellite is detected, it can be used to break the degeneracy between the

subhalo mass and position, as well as providing a measurement of the subhalo mass to

light ratio.

6.7 Summary

We used OSIRIS at Keck with adaptive optics in order to obtain spatially resolved

spectroscopy of the gravitational lens B1422+231. We developed a new pipeline which

enabled us to robustly extract lensed image spectra, by first inferring the PSF and image
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positions in each exposure. Using this information, we detected a significant deviation

from a smooth gravitational lens model, which we used to infer the presence of a per-

turbing low mass subhalo. Our main results are summarised below:

1. Using our data reduction pipeline, we were able to measure image positions to 5

mas accuracy and integrated line flux ratios with ∼3% uncertainties.

2. The narrow-line flux ratios are consistent with radio measurements, and deviate

significantly from the smooth model predictions. The broad-line flux ratios are

consistent with the narrow line measurements. Our measurement of the continuum

is significantly offset, showing a much stronger deviation from the smooth model,

possibly indicative of microlensing in addition to millilensing.

3. Based on the assumption that the deviation of observed narrow-line fluxes from the

smooth model is due to a single perturbing subhalo, we infer the mass and position

of the perturbing subhalo for three different mass profiles. The mass profile signif-

icantly affects possible perturber positions and masses, with an NFW subhalo re-

stricted to the smallest region of parameter space by its shallower mass profile which

has a relatively weaker lensing signal. The 68% confidence intervals for the logarith-

mic perturber mass within 600 pc are: 8.2+0.6
−0.8, 8.2+0.6

−1 and 7.6±0.3 log10[Msub/M�],

for a singular isothermal sphere, pseudo-Jaffe, and NFW mass profile respectively.

The mass within 300 pc is 7.8+0.6
−0.7 and 8.0+0.6

−0.8, 7.2+0.2
−0.2log10[Msub/M�.
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6.8 Appendix: Variation in lensing effect with per-

turber mass profile

In this appendix we illustrate the difference in the posterior probability distributions

for the perturber position and mass seen in Figure 6.4 in the case of the PJ and SIS

perturber, by means of a simple example. The most notable difference between the two

models is the large gap to the East of image A in the case of the PJ perturber. In order

to clarify the origin of this difference, in Figure 6.6 we show the model prediction for

the image positions as the perturber Einstein radius is varied for fixed position and host

macromodel, in the case that the perturber is in the gap (position 2), and also in the

region further North which is permitted for both mass profiles (position 1). We also

show the results in the case of a point mass perturber, which has no convergence at all

at the image positions. This is the extreme opposite to the SIS, which has a density

profile which extends outward indefinitely. The perturber positions relative to the lensed

images are given in the lower left panel of Figure 6.6.

The first thing to note in this figure is that the perturber in position 1 does not

provide a good fit to the observation in either the case of the SIS or PJ perturber (the
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Figure 6.6: Demonstration of how the model image positions vary relative to the ob-
served image positions as the perturber Einstein radius is varied logarithmically for fixed
perturber position and SIE macromodel parameters, for an SIS, PJ and point mass per-
turber represented by circles, triangles, and red stars respectively. Point sizes increase
with increasing perturber Einstein radius. We explore two perturber positions, illus-
trated in the upper left panel by open and filled triangles, where the red squares and
green circle represent observed image and galaxy positions respectively and the solid and
dashed contours represent the 68% and 95% confidence interval for the position of the
perturber in the case of the PJ mass profile.
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best fit χ2 per degree of freedom is approximately 8 in the case of the SIS perturber, and

∼ 50 in the case of the PJ perturber). This figure illustrates the fundamental difference

in the lensing effect between the truncated and non-truncated perturber profiles, due to

the fact that the lensing signal in the case of the truncated profile is dominated by shear,

while the SIS profile has significant convergence at the image position. In fact, the PJ

perturber has an almost identical effect to the point mass perturber. In position 2, the

PJ profile simply cannot provide a good fit to the astrometry, irrespective of its mass.

In Figure 6.7 we plot the resulting flux ratios as the perturber masses are varied in

the three cases. As before, we see that in the three cases, the perturber in position 2

provides a less good fit to the observation in the case of the SIS. The fit is much worse

though in the case of the PJ and point mass perturbers which again show almost identical

behaviour. Unlike the case of the SIS profile, in position 2 the flux of image A relative

to image B does not increase significantly as the perturber mass is increased for the PJ

perturber. As expected, the flux ratio between image B and C does not vary significantly

as the perturber mass is varied, since the dominant effect is to alter the flux of image A.
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Figure 6.7: Model flux ratios as the perturber mass is varied for fixed position for two
different mass profiles in the same way as in Figure 6.6. For clarity, we show results for
positions one and two separately.
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Chapter 7

Conclusions and future directions

This thesis explores how observations of satellite galaxies can be used to constrain

ΛCDM at sub-galaxy scales, and to test theories of galaxy formation in low mass halos.

There is significant future potential for the methods discussed here. In particular, we have

highlighted the importance of studying satellite galaxies outside of the Local Group, as

significant physical insight can be gained by studying the evolution of satellite galaxies,

and how their luminosity function varies with the properties of the host galaxy. In

Chapter 4, we discussed how significant future insight can be gained by studying the

colors of satellite galaxies at a range of redshifts and mass scales. In Chapter 6, we

discussed how narrow-line lensing could be applied to a much larger sample of systems,

thereby enabling a more sophisticated gravitational lensing constraint on the subhalo

mass function.

In this Chapter, we discuss future plans in more detail. In Section 7.1 we discuss how

multi-band imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy

Survey (CANDELS, Grogin et al. 2011; Koekemoer et al. 2011) WFC3 survey will enable

a measurement of the colors and stellar mass function of satellite galaxies, as well as a

deeper measurement of the satellite luminosity function. In Section 7.2, we outline future
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prospects for the narrow-line lensing program. Finally in 7.3 we discuss how results from

the two research programs can be combined.

7.1 The colors and stellar mass function of satellite

galaxies

The CANDELS survey is a large Wide Field Camera 3 (WFC3) survey which covers

five legacy fields which have extensive prior multi-band HST and ground based imaging

and spectroscopy. Most exciting for the study of satellite galaxies is the near-IR CAN-

DELS imaging with F125W, F140W and F160W which covers ∼ 945 square arcminutes.

This deep near-IR imaging is very sensitive, enabling the detection of fainter satellite

galaxies than was possible with the F850LP or F814W in Chapters 2 and 3. Figure 7.1

shows the limiting stellar mass sensitivity of the CANDELS fields, estimated using a

range of possible galaxy spectral energy distributions, as well as the predicted number of

satellites and host galaxies that we will detect based on abundance matching predictions

from (Busha et al. 2011). Combining the wide and deep fields, we expect this survey

to contain approximately 2000 host-satellite systems with host stellar mass greater than

1010.5M� (the minimum host mass criterion in Chapter 3) between redshifts 0.1 and 1.4.

In this section we discuss our ongoing measurement of the colors and luminosity function

of satellite galaxies in CANDELS, as well as future work we plan to undertake, measuring

the satellite stellar mass function.

Figure 7.2 shows the satellite detection limits we expect in the CANDELS fields
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Figure 7.1: Left: The limiting stellar mass sensitivity of the CANDELS wide and deep
fields, estimated using a range of galaxy spectral energy distributions. The y axis on
the right shows the magnitude difference between the lowest mass detectable satellite
and a host galaxy with stellar mass of 1011M�. Right: Predicted number of hosts
and satellites with CANDELS imaging as a function of redshift. Satellite numbers are
estimated using subhalo abundance matching predictions from (Busha et al. 2011)

based on the stellar mass sensitivity of the survey, relative to the COSMOS observations

from Chapter 3 and the theoretical predictions discussed in Chapter 4. By measuring

the luminosity function of satellites in CANDELS, we will gain significant additional

constraining power between these and other theoretical models for the satellite luminosity

function, because these models vary the most for fainter satellites and at higher redshifts.

In addition to a much deeper and higher redshift measurement of the satellite lumi-

nosity function, the CANDELS survey will enable the measurement of satellite colors,

thereby making it possible to directly test the theoretical predictions for the satellite

color distribution discussed at the end of Chapter 4. We will use the multi-band imaging

in order to measure satellite colors. In Figure 7.3, we show the color predictions from

Figure 4.5, now in HST filters chosen to straddle 4000 Åbreak. Clearly the models predict

very different color distributions for the satellite galaxies as they did in the rest frame u-i
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Figure 7.2: Comparison of the number of predicted and observed cumulative number
of satellites as a function of the difference between host SDSS−r magnitude (mr,h) and
satellite magnitude (mr,s), over a range of redshift and host stellar masses. Black points
with error bars, and the purple blue and red curves are the same as in Figure 4.1.
The hatched regions indicate the satellite luminosity range accessible in the CANDELS
fields. This data makes it possible to test these and other star formation models at
unprecedented magnitudes and redshifts.

colors in Figure 4.5, indicating that this measurement will have significant distinguishing

power between the models.

Figure 7.3: Model predictions for the distribution of satellite colors transformed from
Figure 4.5 into HST filters selected to straddle the 4000 Å break in each redshift interval.
Our measurement of satellite colors in CANDELS imaging will be able to distinguish
between these models.

To perform this measurement, we will jointly infer the number, spatial distribution,
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and colors of satellites using both the full COSMOS F814 field and the multi band

CANDELS fields. The large single-band field constrain the satellite spatial distribution,

while the CANDELS fields will provide additional depth and color. We will account

for the fact that the spatial distribution of satellites may vary with magnitude in our

analysis.

Formally, the probability of measuring Nobs objects with positions xi, magnitudes mi

and colors {ci} around the jth host with stellar mass and redshift described by hj, given

a set of model parameters θ is given by product over the sum of all of the likelihoods of

the object having those colors, magnitudes and positions if it were a satellite and if it

were a background/foreground object.

Pr(dj|θ,hj) = Pr(Nobs|θ)
∏

i Pr(xi,mi, {ci}|θ,hj, S)Pr(S|θ,hj)+

Pr(xi,mi, {ci}|θ,hj,B)Pr(B|θ,hj)
(7.1)

The term Pr(xi,mi, {ci}|θ,hj, S) is the probability of finding a satellite at a certain

position is described by the the spatial distribution, which we parametrize as a radial

power-law, plus elliptical angular distribution while the color distribution of satellites

is parametrized as a skewed Normal distribution (N13), and the luminosity function is

described by a power-law. The best-fit parameters of these functions will be inferred via

a Monte-Carlo sampling of the likelihood function described above.

The term Pr(xi,mi, {ci}|θ,hj, B) is the probability of finding a background/foreground

object at a certain position (which is uniform), with a certain magnitude and colors. The

parameters for these three functions will be constrained using measurements of the local
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field properties.

The term Pr(S|θ,hj) is the probability of an object being a satellite given only the

model parameters,

Pr(S|θ,hj) =
Ns

Ns +Nb

(7.2)

and Pr(B|θ,hj) is defined in an analogous way for the line-of-sight interlopers.

The deep IR imaging in CANDELS also makes it possible to constrain the stellar

mass function of satellite galaxies, given the tight correlation between IR luminosity

and stellar mass (Bell et al. 2003). The stellar masses of satellite galaxies are useful for

comparisons with abundance matching, and can help place new constraints on the growth

mechanisms of central galaxies, in addition to providing an important new baseline for

theoretical models of star formation in satellite galaxies.

Our team is currently undertaking a measurement of the satellite colors and luminos-

ity function, and is funded by the HST archival grant HST-AR-13271. We plan to begin

measuring the satellite stellar mass function in the coming year.

In the more distant future, JWST will enable deep, high resolution measurements

which will allow a new regime of measurement of satellite galaxies at intermediate and

high redshifts.

7.2 Narrow-line lensing going forward

In Chapter 6 we described our pilot analysis of narrow-line lensing in the strong

gravitational lens B1422+231. As we discussed, in order to derive a meaningful constraint

on the subhalo mass function it is necessary to both increase the sample of narrow-line
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lenses, and to use a more sophisticated gravitational lens model which involves realistic

populations of subhalos as well as foreground/background structure. In this section we

describe ongoing work to increase the sample of narrow-line lenses as well as future plans

to use more realistic theoretical models.

7.2.1 Ongoing data analysis

We have obtained OSIRIS IFU data for five targets total. Of these, three (1422,

1413 and 1138) were observed during good weather conditions, and have sufficiently high

signal-to-noise ratio to perform the same analysis as was performed for 1422. Two of the

targets, 0924 and 0810 were observed during poorer weather conditions.

Figure 7.4 shows a preliminary extraction of the spectrum of image D. The narrow-

line emission is detectable although with a low signal to noise ratio. Recently, the OSIRIS

grating was upgrading, improving the total instrument throughput by a factor of two.

We have applied for time to re-look at 0924 and 0810 as well as to measure narrow-line

lensing in three new systems, 0134, 1330 and 2045. In addition to enabling significantly

higher signal-to-noise ratio measurements of [NII] emission, the more isolated [SII] and

[OI] emission lines should also be detectable with the new grating in similar exposure

times.

As we discussed in Chapter 6, thousands of quad quasar lenses are expected to be

discovered in ongoing optical surveys which include DES, LSST and PANSTARRS (Oguri

& Marshall 2010). While portions of these fields are accessible to Keck, the most southern

targets will require observation from an alternate site. One promising alternative is HST
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Figure 7.4: The preliminary extracted spectrum of the faintest image of the gravitational
lens 0924 with 5400 seconds exposure time in poor conditions. [NII] is detected with a
signal to noise ratio of ∼ 10. The new grating will make it possible to double the signal-to
noise ratio in the [NII] measurement, in addition to significantly detecting narrow [SII]
and [OI] emission

WFC3 grism spectroscopy. The space-based imaging provides sufficient spatial resolution

to resolve the lensed images, while the spectral resolution is sufficient to resolve Hβ and

[OIII] lines. High signal to noise ratio line fluxes can be obtained in about one orbit for

most targets brighter than 18th magnitude.

7.3 Combining the results

In this thesis, the subhalo mass function and the properties of luminous satellites have

been presented as two separate means of understanding galaxy formation and ΛCDM.

An important future step will be combining information from these two probes, which

will yield highly complementary information. First, by comparing stellar mass function

of satellites around lens-like host galaxies, with the subhalo mass function inferred from

the gravitational lensing analysis, it will be possible to test whether there is a significant
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population of massive, dark, subhalos. This can be compared with results from Boylan-

Kolchin et al. (2012), for instance, who noted that the most luminous Milky Way satellite

galaxies exist in subhalos with significantly lower characteristic velocities than predicted

by simulations, possibly indicating the presence of massive, dark subhalos. Secondly, the

measurement of the subhalo mass function will place important constraints on models of

star formation in satellite galaxies by potentially ruling out cosmological models such as

warm dark matter which do not contain low mass subhalos (Menci et al. 2012). Finally,

some simulations have demonstrated that baryonic effects such as continuous bursts of

supernovae can significantly flatten the density profile of dark matter halos of low mass

galaxies which would in turn affect their lensing signature (Teyssier et al. 2013; Zolotov

et al. 2012; Brooks et al. 2013). By measuring satellite stellar masses and spectral energy

distributions at intermediate redshifts, we will be able to test whether these models are

feasible which will allow us to test a physically motivated range of subhalo density profiles

in our lensing analysis.
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Coĺın, P., Avila-Reese, V., & Valenzuela, O. 2000, ApJ, 542, 622

Conroy, C., & Wechsler, R. H. 2009, ApJ, 696, 620

Conroy, C., Wechsler, R. H., & Kravtsov, A. V. 2007, ApJ, 668, 826

Croton, D. J., Springel, V., White, S. D. M., et al. 2006, MNRAS, 365, 11

Dalal, N., & Kochanek, C. S. 2002, ApJ, 572, 25

De Lucia, G., & Blaizot, J. 2007, MNRAS, 375, 2

de Rijcke, S., Penny, S. J., Conselice, C. J., Valcke, S., & Held, E. V. 2009, MNRAS,
393, 798

Deason, A. J., McCarthy, I. G., Font, A. S., et al. 2011, MNRAS, 415, 2607

Dobke, B. M., & King, L. J. 2006, A&A, 460, 647

Dobler, G., & Keeton, C. R. 2006, MNRAS, 365, 1243

Dobler, G., Keeton, C. R., Bolton, A. S., & Burles, S. 2008, ApJ, 685, 57

Dolag, K., Borgani, S., Murante, G., & Springel, V. 2009, MNRAS, 399, 497

D’Onghia, E., Springel, V., Hernquist, L., & Keres, D. 2010, ApJ, 709, 1138

Dressler, A. 1980, ApJ, 236, 351

Dubinski, J. 1994, ApJ, 431, 617

Dunkley, J., Spergel, D. N., Komatsu, E., et al. 2009, ApJ, 701, 1804

Dutton, A. A., Conroy, C., van den Bosch, F. C., Prada, F., & More, S. 2010, MNRAS,
407, 2

198



Evans, N. W., & Witt, H. J. 2003, MNRAS, 345, 1351

Fadely, R., & Keeton, C. R. 2012, MNRAS, 419, 936

Fakhouri, O., Ma, C., & Boylan-Kolchin, M. 2010, MNRAS, 406, 2267

Faltenbacher, A., Jing, Y. P., Li, C., et al. 2008, ApJ, 675, 146

Faltenbacher, A., Li, C., Mao, S., et al. 2007, ApJL, 662, L71

Fassnacht, C. D., Koopmans, L. V. E., & Wong, K. C. 2011, MNRAS, 410, 2167

Faure, C., Kneib, J.-P., Covone, G., et al. 2008, ApJS, 176, 19

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306

Gao, L., White, S. D. M., Jenkins, A., Stoehr, F., & Springel, V. 2004, MNRAS, 355,
819

Garrison-Kimmel, S., Rocha, M., Boylan-Kolchin, M., Bullock, J., & Lally, J. 2013,
ArXiv e-prints, arXiv:1301.3137

Gavazzi, R., Treu, T., Rhodes, J. D., et al. 2007, ApJ, 667, 176

Geha, M., Blanton, M. R., Yan, R., & Tinker, J. L. 2012, ApJ, 757, 85

Gehrels, N. 1986, ApJ, 303, 336

Giavalisco, M., et al. 2004, ApJL, 600, L93

Gnedin, O. Y., Hernquist, L., & Ostriker, J. P. 1999, ApJ, 514, 109

Governato, F., Zolotov, A., Pontzen, A., et al. 2012, MNRAS, 422, 1231

Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35

Guerras, E., Mediavilla, E., Jimenez-Vicente, J., et al. 2013, ApJ, 764, 160

Guo, Q., Cole, S., Eke, V., & Frenk, C. 2011a, MNRAS, 1278

—. 2012, ArXiv e-prints, arXiv:1201.1296

Guo, Q., White, S., Boylan-Kolchin, M., et al. 2011b, MNRAS, 413, 101

Hayashi, K., & Chiba, M. 2012, ApJ, 755, 145

Hezaveh, Y., Dalal, N., Holder, G., et al. 2013, ApJ, 767, 9

Hopkins, P. F., Bundy, K., Croton, D., et al. 2010, ApJ, 715, 202

Hoyle, B., Masters, K. L., Nichol, R. C., & Bamford, S. P. 2011, ArXiv e-prints,
arXiv:1110.6320

199



Hurvich, C. M., & Tsai, C.-L. 1989, Biometrika, 76, 297

Ilbert, O., Capak, P., Salvato, M., et al. 2009, ApJ, 690, 1236

Ilbert, O., Salvato, M., Le Floc’h, E., et al. 2010, ApJ, 709, 644

Jackson, N., Bryan, S. E., Mao, S., & Li, C. 2010, MNRAS, 403, 826

Jarosik, N., Bennett, C. L., Dunkley, J., et al. 2011, ApJS, 192, 14

Kamada, A., Yoshida, N., Kohri, K., & Takahashi, T. 2013, ArXiv e-prints,
arXiv:1301.2744

Kamionkowski, M., & Liddle, A. R. 2000, Physical Review Letters, 84, 4525
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