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Abstract

A Change-point Problem and Preliminary Test Estimation in

Circular Statistics

Michael Marcelino Nava

This thesis investigates two different problems relating to circular data. One relates

to change-point problems. Tests in this context are meant to detect the point in time

at which a sample of observations changes the probability distribution from which they

came. Suppose one has a set of independent vectors of measurements, observed in a

time-ordered or space-ordered sequence. In our set-up, these observations are circular

data and we are interested as to which point in time does the distribution change from

having one mode to having more than one mode. In this work we model unimodality

or bimodality with a mixture of two Circular Normal distributions, which admits both

possibilities, albeit for different parameter values. Tests for detecting the change-point

are derived using the generalized likelihood ratio method. We obtain simulated distri-

butions and critical values for the appropriate test statistics in finite samples, as well as

provide the asymptotic distributions, under some regularity conditions. We also tackle

this problem from a Bayesian perspective. In the second part, the goal is to estimate the

concentration parameter of a Circular Normal distribution when the mean direction is

unknown. We present two alternate approaches that incorporate prior knowledge on the

mean direction (i) via a preliminary test on the mean direction, the so-called “preliminary

test estimators” and (ii) through an assumed prior distribution on the mean direction as

viii



one does in Bayes procedures. We compare such alternate estimators with the standard

maximum likelihood estimator and explore when one method is superior to the other.
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Chapter 1

Introduction

In cell biology, scientists are interested in studying various characteristics of the cell,

such as its morphology, size, cell cycle phase, DNA content, and the presence or absence

of specific proteins on the cell surface or in the cytoplasm. These characteristics are

useful for research in cell biology as well as in medical diagnostics for a wide range of

diseases such as cancer and AIDS.

Flow cytometry is among the most widely used platforms in biomedical research and

clinical labs. It is used for investigation of a wide variety of biological problems at single

cell level. Classical applications of flow cytometry include quantitative measurements of

DNA content and cell cycle progression (Darzynkiewicz et al. , 2004). It is also one of

the key platforms for studying dynamic cellular properties such as differentiation, prolif-

eration and apoptosis, especially in the context of stem cells and cancer ((Eds.)Krishan

et al. , 2011).
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Introduction Chapter 1

Given a group of cells, flow cytometry records characteristics, in a similar way our ink

jet printers work. The method applies an antibody with a florescent dye to the cells, then

sends the cells through a laser. Different types of substances are used to study different

characteristics needed by the scientist. Fluorescent Activated Cell Sorting (FACS) can

then sort the cells into two or more groups.

We refer to (Pyne et al. , 2009), (Ho et al. , 2012), and (Aghaeepour et al. , 2013)

as a few recent works which attempt to model the cell cycle. There are also studies that

model cell transitions over time. An important aspect of this transition is the observed

fact that the cell cycle of a stem cell before it transforms into a specialized cell, can be

modeled by a unimodal circular distribution, followed by a multimodal distribution after

transformation into a specialized cell. A biologist would be very interested to identify

the time point at which this change occurs. This change in modality is an indication

that the stem cell has become a specialized cell and that change-point is an crucial piece

of information to the cell biologist.

Given a set of independent vectors of circular observations, α˜1, α˜2, . . . , α˜T that are

time-ordered as in our case, we are interested to find the point in time in which the

observations change from having a unimodal distribution to a multimodal distribution.

Here, α˜j = (αj1, αj2, . . . , αjm), is a vector of independent observations observed at time

j with length of m. For simplicity, we will assume that each vector of observations is of

the same length m, although this can be generalized.

2



Introduction Chapter 1

Specifically, we assume there is some unknown but fixed k, (1 ≤ k ≤ T −1) such that

α˜1, . . . , α˜k have unimodal densities with pdf’s in {f1} and α˜k+1, . . . , α˜T have multimodal

densities with pdf’s in {f2}. The point k, is considered the “change-point” of the observed

data.

In our approach we use the Generalized Likelihood Ratio Test (GLRT) to test for the

presence of a change-point i.e., H0 : k = n versus H1 : 1 ≤ k ≤ T−1. The null hypotheses

corresponds to no change in distribution over the sequence of observations until perhaps

the end i.e. all the given data have a unimodal distribution. The alternative hypothesis

corresponds to there being exactly one change in modality of distribution at some kth

step in-between, before the end of the sequence.

This problem and the test involve two-dimensional directional data, also called circu-

lar data, which requires quite a different treatment and methodologies than traditional

linear statistical methods. So, before we continue in describing our change-point test, we

will give a brief introduction to circular statistics and methods.

1.1 An Overview of Circular Statistics

Whether scientists are studying the direction of the earth’s magnetic pole, the direc-

tion of flight of migrating birds, or to see if there is a preferred direction in which a cricket

or baseball player hits the ball, the type of data studied is referred to as directional data.

In each scenario that we consider in this thesis the scientist is only interested in direction

and not the magnitude, so the data can be represented as points on the circumference

3



Introduction Chapter 1

of the unit circle, which gives arise to the name “circular data”, or in the case of 3-

dimensional directions on the surface of the unit sphere, making for spherical data. Now,

one may be tempted to use linear statistical methods for their analysis but we will give

simple examples as to why linear statistical methods are inadequate and indeed wrong.

In the cricket example, suppose we record the hit direction of two batted balls by

one of the best cricket players of all time, Sachin Tendulkar. The opposing team would

like to see if Tendulkar has a preferred hitting direction based off his two previous hits.

After we have selected a suitable “zero direction” we have two measurements of α1 = 15 ◦

and α2 = 345 ◦. The usual summary statistic of interest would be the “mean” direction

of batted balls. If we used the usual arithmetic mean, the mean direction would be

ᾱ = 180 ◦. Figure 1.1 illustrates that the arithmetic mean direction points in the opposite

direction of the observed batted ball angles. The opposing team would make Tendulkar’s

day much easier if they shifted their outfielders to this, albeit wrong, average direction.

The opposing coach may lose her/his job over such a call. This implies the need for

different methodologies for analysis of circular data.

Supposing there are two other players on the team conducting their own statistical

analyses. One chooses true North as zero direction and the other chooses true East as

the zero direction. The first records his data as α1 = 30 ◦ and α2 = 60 ◦, while the second

records α1 = 170 ◦ and α2 = 200 ◦. Their preferred mean directions are ᾱ = 45 ◦ and 185 ◦

respectively. The three preferred means are spread around the circle and the linear mean

is dependent on the selected zero direction. The circular mean will give the same location

4



Introduction Chapter 1

on the circle for all three cases. This motivates the requirement that methodologies in

circular statistics be rotationally invariant, i.e. independent of the chosen zero direction.

Figure 1.1: Circular vs. Linear Mean

Since the observations can be represented as points on the circumference of the unit

circle, rectangular coordinates provide an appropriate representation of αi = (xi, yi).

Using polar coordinates, xi = r cos(αi) and yi = r sin(αi), with r = 1. Note that (xi, yi)

are not really bivariate data since x2
i + y2

i = 1 for all points on the unit circle which has

area 0 on the plane. With this representation, the first step in computing the circular

mean is to compute the resultant vector for the n observations:

R =

(
n∑
j=1

cosαj,
n∑
j=1

sinαj

)
= (C, S). (1.1)

The resultant vector is the result of the sum of two or more observations in unit vector

form. The direction of this resultant vector is proposed as the mean direction, denoted

as ᾱ0. Next, the following trigonometric function provides the mean direction:

ᾱ0 = arctan

(
S

C

)
(1.2)

5



Introduction Chapter 1

Of course, we need to pay attention to the quadrant-specific inverse tangent function

in (1.2). When the the circular mean method is applied to our example we get the circular

mean ᾱ0 = 0 ◦. As seen in Figure 1.1, this gives the true summary statistic for the data.

Other relevant and interesting properties of this mean direction ᾱ0, include:

n∑
i=1

sin(αi − ᾱ0) = 0 (1.3)

and
n∑
i=1

cos(αi − ᾱ0) = R. (1.4)

Suppose the sample is drawn from a population with mean direction µ:

n∑
i=1

cos(αi − µ) = V0, (1.5)

where in (Jammalamadaka & SenGupta, 2001), they prove V0 ≤ R, with equality if and

only if ᾱ0 = µ.

Thus using ᾱ0, the opposing team’s coach can now place his outfielders towards Ten-

dulkar’s true preferred hitting direction. Note that Tendulkar could make the opposing

team’s day more difficult if his hit directions were recorded as α1 = 0 ◦ and α2 = 180 ◦.

We see C in (1.2) would be 0 and the inverse tangent function is undefined. The inter-

pretation of this would be that Tendulkar does not have a preferred (or mean) direction

of hitting. So the placement of the outfielders for his next at-bat could be anyone’s guess.

This interpretation should make sense as the batted balls were hit in two opposite direc-

6
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tions. Whether or not there exists a preferred or mean direction for a population given a

sample of circular data, as opposed to isotropy, is a basic question in circular statistics.

We also need to define probability density functions with properties required for

circular data. Examples include the Circular Normal (CN, from now on) and mixture of

two Circular Normal probability density functions, which play an important role in our

work.

1.1.1 Circular Probability Densities

The total probability is concentrated on the circumference of the unit circle for a

circular probability distribution. If the probability density function, say f(α), exists

then it satisfies the properties:

(i) f(α) ≥ 0;

(ii)
∫ 2π

0
f(α)dα = 1 ;

(iii) f(α) = f(α + k2π) for any integer k (i.e., f is periodic with period 2π).

The circular distributions share similarities to the linear distributions but we require the

pdf’s to be periodic. Next we present the most commonly used and popular distribution

among the circular probability distributions, called the Circular Normal distribution.

7
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1.1.2 The Circular Normal Distribution

In circular statistics, the Circular Normal Distribution (CND, from now on) is con-

sidered the analog to the Normal distribution in linear statistics. A Circular Normal

random variable, α, has density function:

1

2πI0(κ)
exp(κ cos(α− µ)), 0 ≤ α < 2π (1.6)

The parameters of the distribution are the mean direction µ, and the concentration

parameter, κ, where 0 ≤ µ < 2π and κ ≥ 0. The modified Bessel function of the first

kind and order zero is involved in the normalizing constant for the CND and is given by,

I0(κ) =
1

2π

∫ 2π

0

exp(κ cosα)dα =
∞∑
r=0

(κ
2

)2r
(

1

r!

)2

. (1.7)

For more useful properties of the modified Bessel function refer to (Jammalamadaka

& SenGupta, 2001) and (Mardia & Jupp, 1999). The distribution is also called the

von Mises distribution after Richard von Mises (von Mises, 1918) who introduced this

statistical model.

One refers to this model as the Circular Normal (CN) to emphasize the similarities it

shares with the Normal distribution on the line. The CN is the most extensively studied

circular distribution and is most popular choice for most data analyses.

Figure 1.2 has images of CND drawn on the line [−π, π) with mean directions of

0 and concentration parameter values of 0.01, 1.5, 3. We see as κ becomes larger the

8
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distribution becomes more concentrated around the mean direction. Also, for all values

of κ the distribution is symmetric about the mean direction.

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

α

D
en

si
ty

 f(
,α

)

Figure 1.2: The Circular Normal Curve for κ=.01 (· · · ), 1.5 (- - -), 3 (—)

We list below some properties of the CND:

A Symmetry: By symmetry of cos(α − µ), the distribution is symmetric about the

mean direction, µ, and µ+ π.

B Mode at µ: Since cos(α− µ) has maximum at α = µ, the Circular Normal density

has maximum at α = µ. So µ is the modal direction with maximum value.

f(µ) =
eκ

2πI0(κ)
. (1.8)

9
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C Antimode at µ± π: cos(α− µ) : has minimum for α = µ± π, then µ± π is called

the anti-modal direction since the density is minimum at that direction.

f(µ± π) =
e−κ

2πI0(κ)
. (1.9)

D Role of κ: From equations (8) and (9) we have:

f(µ)

f(µ± π)
= e2κ. (1.10)

A larger value for κ will increase the ratio in (1.10). The increase results in a high

concentration towards the population mean and hence κ measures the concentration

towards the mean direction µ.

Given a random sample α1, . . . , αn from a CND(µ, κ), it can be checked that the

MLEs for µ and κ are given by:

ᾱ0 = arctan

(∑n
i=1 sin(αi)∑n
i=1 cos(αi)

)
(1.11)

and

κ̂MLE is the solution to:
I1(κ)

I0(κ)
=

1

n

n∑
i=1

cos(αi − ᾱ0) =
R

n
(1.12)

since
∑n

i=1 cos(αi − ᾱ0) = R.

10
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The MLE for the mean direction is independent of κ but the MLE for κ depends on

the estimate for the mean direction. When the mean direction is known, then the MLE

for κ is obtained by substituting the value µ in place of ᾱ0 in 1.12. The MLEs carry

asymptotic properties.

If we write

A(κ) =
I1(κ)

I0(κ)
,

then:

• 0 ≤ A(κ) ≤ 1

• A(κ)→ 0 as κ→ 0 and A(κ)→ 1 as κ→∞

• A′(κ) = (1− A(κ)
κ
− A2(κ)) ≥ 0.

The fact that A(κ) is a strictly monotonically increasing function of κ, guarantees a

unique solution for the MLE. Checking the determinant of the Hessian matrix evaluated

at our MLEs we are reassured that the estimates for µ and κ are maximum critical points

on the joint parameter space.

The Fisher Information matrix in this case is given by,

I =

A(κ)/κ 0

0 1− A(κ)
κ
− A2(κ)

 .

11
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Thus the asymptotic variance-covariance matrix for the MLE’s evaluated at (ᾱ0, κ̂MLE):

V =

1/Rκ̂ 0

0 1
n(1−R̄/κ̂−R̄2)

 . (1.13)

In the aforementioned properties we find some similarities to the Normal Distribution

as well as some major differences. In linear statistics, a univariate density f has a single

mode if f is non-decreasing up to a point M and non-increasing thereafter. The lack of

well-defined left and right-end points in circular statistics (i.e. -∞ and∞ on the real line)

leads the definition of the mode to also require an antimode A. A circular probability

density f(α) is unimodal with mode at M if there exists an antimode A such that f(α)

is non-decreasing for A ≤ α ≤M and non-increasing for M ≤ α ≤ A.

While the CND approaches a Circular Uniform distribution for small values of κ, we

see below that the CND will approach the linear Normal distribution for very large values

of κ.

Proposition 1 As κ→∞,

β =
√
κ(α− µ)

d−→ N(0, 1),

where α ∼ CN(µ, κ).

Proof 1 Recall the CND

12
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f(α) =
1

2πI0(κ)
eκ cos(α−µ), 0 ≤ α < 2π

.

Let β =
√
κ(α− µ). Then for large κ we have small β√

κ
,

cos(α− µ) = cos

(
β√
κ

)
' 1− β2

2κ
.

Here we used the Taylor series expansion for cos(α) and a change of variable. Suppose

g(β) is the pdf for β and we will use the fact that for large κ, I0(κ) ' exp(κ)/
√

2πκ to

get,

g(β) '
exp

(
κ cos

(
β√
κ

))
2πI0(κ)

1√
κ

'
exp

(
κ cos

(
β√
κ

))
2π exp(κ)√

2πκ

1√
κ

'
exp

(
κ
(

1− β2

2κ

))
eκ
√

2π

1√
κ

=
1√
2π

exp

(
−β

2

2

)
.

Therefore, β
d−→ N(0, 1).
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For concentration parameter, κ = 0, we have:

CN(α|µ, 0) =
1

2π
, 0 ≤ α < 2π,

where the CND becomes the Circular Uniform density, a density that does not have a

mean, or preferred direction. Note that the modified Bessel function in (1.7) equals to

one in this case.

The CN distribution is an extensively studied density in circular statistics with many

properties similar to that of the Normal Distribution in linear statistics. Note that the

CND can only have up to one mode. Referring back to our introduction, we are interested

in a circular density that can model one or more modes so a natural choice would be to

use a mixture of CND.

1.2 Mixture of two Circular Normal Distributions

We model multimodality with a mixture of CNDs. The resulting family of distribu-

tions can be unimodal or bimodal, symmetric/asymmetric, and can take on many shapes,

therefore mixtures of CNDs are good candidates for our parametric model. A circular

random variable is said to have distribution being a mixture of CNDs with j components

if the variable has density:

f(α) =

j∑
i=1

pi
2πI0(κi)

exp(κi cos(α− µi)) =

j∑
i=1

piCN(α|µi, κi), 0 ≤ α < 2π (1.14)
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where the mean direction of each component 0 ≤ µi < 2π, concentration parameters

κi > 0, and I0(κi) is the modified Bessel function as defined in 1.7. Also, pi is the assigned

weight of the ith single component to the mixture, with 0 ≤ pi ≤ 1, ∀i ∈ {1, . . . , j} and∑j
i=1 pi = 1. A mixture of j components can have up to j modes. The number of

modes depends on the values of the parameters of mixture component mean directions,

concentrations, and weights. Next we illustrate various shapes of the mixture of two

CNDs (mixCN from now on) with equal concentration parameters.

In Figure 1.3 we examine how the mixture distribution changes shape as a single

parameter is increased or decreased. In the graph on the left we begin with a mixCN(δ =

0, κ = 3, p = 0.05), where δ , µ2 − µ1, which is the unimodal curve with the solid line.

We increase δ to values of (π/4, 3π/8, 3π/4) and plot each pdf curve. As the difference

in the mean direction increases, the density curve become bimodal. In the center plot

we examine the pdf curve for changes in the mixing proportion p, where p1 = p and

p2 = 1 − p as in 1.14. In the graph we begin with a mixCN(δ = π/2, κ = 3, p = 0.85)

which is the curve with a solid line. As we decrease p to values of (0.7, 0.6, 0.5) the curve

changes from unimodal to bimodal. For the right panel of Figure 1.3 we examine changes

in the curve for different concentration parameter values of κ. In the right panel we begin

with a mixCN(δ = π/2, κ = 4, p = 0.05) which is the bimodal curve with the solid line.

We decrease the values of κ to (3, 2, 1) and the density becomes unimodal when κ = 1.

In our work to come, we note the importance of being able to maximize the parameters

over the restricted unimodal parameter space. The restricted parameter space can be

15
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Figure 1.3: The Various Shapes of The Mixture of Two CNDs: Left Panel - δ = {π/4(–
– –), 3π/8(- - -), 3π/4(· · · )}. Mid Panel - p = {(0.7(– – –), 0.6(- - -), 0.5(· · · )}. Right
Panel - κ = {3(– – –), 2(- - -) ,1(· · · )}.

difficult to compute in our case as the restricted parameter space is non-linear and the

boundaries are also non-linear. To the best of our knowledge, no work has been done

for finding the unimodal parameter space for a mixture with three or more components.

(Mardia & Sutton, 1975), find the unimodal parameter space for a mixCNDs. Using

their results, we use the mixCNDs as our parametric model for multimodality. Note in

this case, we can model data with up to two modes under the mixCND aasumption.

The Mardia-Sutton condition gives the parameter space for unimodality and bimodal-

ity for a two component mixCND. The pdf for a mixCND can be written:

f(α) = pCN(α|µ1, κ1) + (1− p)CN(α|µ2, κ2), (0 ≤ α < 2π). (1.15)

Without loss of generality we let µ1 = 0 and δ = µ2 − µ1 for the mean direction param-

eters. The resulting density is given by,
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f(α) = pCN(α|0, κ1) + (1− p)CN(α|δ, κ2), (0 ≤ α < 2π). (1.16)

The modes of the mixture (1.15) are solutions of:

f ′(α) = pκ1CN(α|0, κ1) sinα + (1− p)κ2CN(α|δ, κ2) sin(α− δ) = 0 (1.17)

Table 1.1 provides a listing of the parameter values for unimodality (Ω0) and bimodality

(Ω1) as presented by (Mardia & Sutton, 1975). Note that the parameter space may be

expressed as a union, Ω = Ω0

⋃
Ω1, where Ω0 corresponds to parameters for a unimodal

distribution while Ω1 corresponds to parameters for a bimodal distribution. Table 1.1

provides a list of the parameter space for bimodality that was presented by (Mardia &

Sutton, 1975).

Table 1.1: Parameter Subspaces determine Modality for Mixture of 2 Circular Normals

Case δ Range of p Type

(i) 0 0 ≤ p ≤ 1 Unimodal

(ii) π {1 + κ∗ exp(κ1 + κ2)}−1 ≤ p ≤ Bimodal

{1 + κ∗ exp(−κ1 − κ2)}−1

0 ≤ p < {1 + κ∗ exp(κ1 + κ2)}−1 Unimodal

{1 + κ∗ exp(−κ1 − κ2)}−1 < p ≤ 1 Unimodal
(iiia) 0 < δ < π 0 ≤ p ≤ 1 Unimodal

sin(δ) > h(α∗)

(iiib) 0 < δ < π {1− κ∗/u(α1)}−1 ≤ p ≤ {1− κ∗/u(α2)}−1 Bimodal

sin(δ) ≤ d(α∗) 0 ≤ p < {1− κ∗/u(α1)}−1 Unimodal

{1− κ∗/u(α2)}−1 < p ≤ 1 Unimodal

17
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Here κ∗ = {κ1I0(κ2)/κ2I0(κ1)} and u(α) = {sin(α− δ)/ sin(α)} exp(κ2 cos(α − δ) −

κ1 cos(α)) where 0 < α1 < α2 < δ are the two solutions of d(α) = sin(δ). Also, d(α) =

sin(α) sin(α− δ) {κ2 sin(αδ)− κ1 sin(α)} and α∗ maximizes d(α) for 0 < α < δ.

Case (i) is the obvious case for unimodal due the mean directions of the mixture

being equal. Case (ii) is another boundary case where the mean directions point in

opposite directions. Cases of (iii) are the more prevalent cases where the difference in

mean directions is between 0 and π.

In either case the range of the mixing proportion p leading to bimodality depends on

the mean direction δ, as well as the concentration parameters κ1 and κ2. In case (ii), as κ1

and κ2 increase, the range of p becomes larger for the bimodal case. For two distributions

with mean directions pointing in the opposite directions, the results indicate that an

increase in concentration parameters will make the individual component distributions

more concentrated around their mean direction in order to maintain bimodality.

Now that we have developed some tools for modeling unimodal as well as bimodal

circular data with a common distribution such as the mixCN, in Chapters 3 and 4 we

return to the question of testing for presence of a change-point in the number of modes

from a time-ordered series of mixCN data.

18



Chapter 2

Bayes and Preliminary Test

Estimators for the Concentration

Parameter

In this chapter we investigate how prior knowledge about the mean direction via a

preliminary test or a prior distribution will help improve the efficiency in estimating the

concentration parameter. Suppose we observe α1, α2, . . . , αn from a CND with unknown

mean direction and concentration parameter. Suppose our goal is to efficiently estimating

the concentration parameter, while considering the mean direction as a nuisance param-

eter. In this study we introduce a preliminary hypothesis test on the value of the mean,

and then exploit the knowledge so gained, to improve the estimation of the concentration

— the so-called Preliminary Test Estimator (PTE). See for instance (Saleh, 2006) for a
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review in the linear statistics setting. We compare such a PTE to the MLE in 1.12 and

the MLE of the Bayes-derived likelihood. These comparisons are made through the mean

square error (MSE) of the different estimators, obtained through simulation.

2.1 Introduction

(Saleh, 2006), provides an introduction and thorough review on PTEs and Stein-type

estimators for various linear models. In statistical inference, the use of prior information

on other parameters in a statistical model, usually leads to improved inference on the

parameter of interest. Prior information may be (i) known and deterministic which is then

incorporated into the model in the form of constraints on the parameter space, leading

to a restricted model, or (ii) uncertain and specified in the form of a prior distribution

or a null hypothesis. In (ii), choosing certain restricted estimators may be justified when

the prior information can be quantified i.e. comes with a specified confidence.

In some statistical models, certain parameters are of primary interest while other

parameters may be considered as nuisance parameters. One procedure to mitigate the

presence of nuisance parameters is to assess what value(s) such nuisance parameter(s)

take, by a preliminary test with a null hypothesis restricting the nuisance parameter

values. The null hypothesized value(s) of the nuisance parameter are either used or

not, depending on whether the observed preliminary test statistic falls in the acceptance

or rejection region of the hypothesis. That is, our final estimator for the parameter

of interest is thus a linear combination, conditional on whether the preliminary test
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statistic is in the acceptance or rejection region of the test, and is called a Preliminary

Test Estimator (PTE).

(Bancroft, 1944, 1964), and (Bancroft, 1965) were among the first to implement the

idea of preliminary test estimation (PTE) in an analysis of variance (ANOVA) framework

to analyze the effect of the preliminary test on the estimation of variance. The idea goes

back to a suggestion in (Snedecor, 1938), which considers testing differences between

two means after testing for the equality of variances; then using the usual t-test with

the pooled estimate for variance, if the variance test shows equality; otherwise, it falls

into the category of Behren’s Fisher problem. In these problems it became clear that the

performance of the PTE depended heavily on the significance level of the preliminary test.

(Han & Bancroft, 1968) were the first to attempt to find an optimum size of significance

level for the preliminary test for this two-sample problem.

(Stein et al. , 1955), (Stein et al. , 1956) followed by (James & Stein, 1961) pointed out

a paradoxical situation (the Stein-type estimator) that showed the sample mean vector to

be inadmissible under the quadratic loss function for the mean vector of a p-dimensional

multivariate normal distribution for p ≥ 3. This runs counter to the long held belief

that the sample mean is the “best” to estimate the population mean and that no other

estimation rule is uniformly better than the sample mean. The paradoxical aspect of

Stein’s work is that it contradicts this idea, in higher dimensions.

All Stein-type estimators involve appropriate test statistics for testing the adequacy of

uncertain prior information on the parameter space, which is incorporated into the actual
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formulation of the estimator. Stein-type estimators adjust the unrestricted estimator by

an amount of the difference between unrestricted and restricted estimators scaled by the

adjusted test statistics for the uncertain prior information. Usually, the test statistics are

the normalized distance between the unrestricted and restricted estimators and follow a

noncentral chi-square or an F -distribution. The risk or the MSE of Stein-type estimators

depends on the non-centrality parameter, which represents the distance between the full

model and restricted model. The PTE may be considered a precursor of the Stein-type

estimator. A simple replacement of the indicator function that we will see in the PTE

with a multiple of the test statistic, leads to a Stein-type estimator.

2.2 Other Estimators

The CND is the most widely used circular distribution in circular statistics. It plays

as central role as the Normal distribution does in usual ‘linear’ statistics. Recall that the

probability density for a CN random variable, α is:

1

2πI0(κ)
exp(κ cos(α− µ)), 0 ≤ α < 2π (2.1)

The mean direction is also referred to as the ‘preferred’ direction and the concentration

parameter can be thought of as the inverse of variance as it is a measure of concentration

around the mean direction. A larger value for κ implies that observations are more

concentrated around the mean direction, while a value of κ close to 0 implies there may
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not be a strongly preferred direction. When estimating the parameters of the distribution

it is important to have reliable estimates for both µ and κ parameters. We will now

provide the maximum likelihood estimates (MLEs) for the parameter κ in a classical and

Bayesian setting.

2.2.1 Maximum Likelihood Estimate for Concentration Param-

eter

As stated in the introduction, given a random sample α1, . . . , αn from a CND(µ, κ),

the MLE for κ when µ in unknown is given by:

κ̂MLE is the solution to:
1

n

n∑
i=1

cos(αi − ᾱ0) =
I1(κ)

I0(κ)
(2.2)

When the mean direction µ is known, then the MLE for κ is obtained by substituting

µ in place of ᾱ0 in 2.2. Since the estimation of concentration parameter is of main

interest here, we will denote κ̂MLE and κ̂µ the MLEs for κ when sample mean direction

is used (if µ unknown), and when the mean direction µ is known, respectively. In both

cases the MLEs carry the usual asymptotic properties. Analogous to the case of a linear

Normal distribution, κ̂µ is superior (has smaller MSE) than κ̂MLE, (Jammalamadaka &

SenGupta, 2001).
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If the sample comes from a population with population mean µ then by 1.5 and 1.13,

the MSE(κ̂µ) < MSE(κ̂MLE):

1

n(1− V̄0/κ̂µ − V̄0
2
)
≤ 1

n(1− R̄/κ̂MLE − R̄2)
(2.3)

where we have inequality if and only if µ = ᾱ0. Referring to 1.4 and 1.5 we denote

R̄ = R/n and V̄0 = V0/n. This raises the question whether we can do somewhere in

between if we have partial information on µ.

2.2.2 MLE for κ when there is a prior on µ

In this semi-Bayesian setting we will place a prior on the nuisance mean direction µ,

a convenient choice being a CN:

π(µ) =
1

2πI0(τ)
exp(τ cos(µ− µ0)), 0 ≤ µ < 2π (2.4)

where µ0 and τ are the mean direction and concentration parameters for the prior. The

value for τ measures confidence in the prior mean direction µ0. A larger value of τ makes

the prior distribution have higher concentration around µ0. A value of τ = 0 implies a

uniform prior on [0, 2π) for µ.

In this context, the parameter µ has a prior distribution, while the parameter κ is an

unknown parameter as in the classical setting. The parameter κ is of interest, while µ is
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the nuisance parameter. We thus blend together classical and Bayesian methods to get

an estimate for κ.

We begin with the usual likelihood given the data (α1, . . . , αn) independent and iden-

tically distributed:

L(µ, κ|α˜) =

(
1

2πI0(κ)

)n
exp

(
κ

n∑
i=1

cos(αi − µ)

)
, 0 ≤ αi < 2π (2.5)

Given the prior distribution on µ, we wish to estimate the concentration parameter κ.

We derive the likelihood function for κ by first averaging out our prior knowledge on µ.

The result is the likelihood for κ given by:

∫ 2π

0

L(µ, κ|α1, . . . , αn)π(µ)dµ = L(κ|α1, . . . , αn) (2.6)

In 2.6, we begin with joint likelihood for the µ and κ which is just the joint density of

the data. We then derive marginal distribution for the observations by integrating with

respect to µ. After incorporating our prior knowledge on µ and integrating with respect

to µ, we obtain a valid likelihood L(κ|α1, . . . , αn) for κ which we want to maximize with

respect to κ.

L(κ|α1, . . . , αn)

=

∫ 2π

0

exp (κ(
∑

cos(αi) cos(µ) +
∑

sin(αi) sin(µ))) + τ(cos(µ) cos(µ0) + sin(µ) sin(µ0)))

(2π)n(Io(κ))n2πIo(τ)
dµ

(2.7)
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where setting
∑

cos(αi) = R cos(ᾱ) and
∑

sin(αi) = R sin(ᾱ) in 2.7 gives,

=

∫ 2π

0

exp((κR cos(ᾱ) + τ cos(µ0)) cos(µ) + (κR sin(ᾱ) + τ sin(µ0)) sin(µ))

(2π)n(I0(κ))n2πI0(τ)
dµ. (2.8)

Putting κR cos(ᾱ) + τ cos(µ0) = γ cos(α∗) and κR sin(ᾱ) + τ sin(µ0) = γ sin(α∗), and by the

definition of the Bessel function I0(x), the resulting integral in 2.8 is our likelihood for κ which

is given by:

L(κ|α1, . . . , αn) =
2πI0

(√
κ2R2 + τ2 + 2κRτ cos(ᾱ0 − µ0)

)
(2π)n(I0(κ))n2πI0(τ)

. (2.9)

The likelihood is a ratio of Bessel functions as given in 1.7. Given the likelihood, prior

distribution on µ, and data we can find the MLE for κ. There is not a simple analytical

solution for the MLE, so numerical methods are required for the maximization of 2.9 with

respect to κ leading to the semi-Bayesian MLE κ̂Bay.

One interesting comparison would be of the frequentist MLE for κ as in 2.2 with the semi-

Bayesian MLE obtained from 2.9, using a circular uniform prior distribution on µ in the latter,

i.e. setting τ = 0. In some cases, placing uniform priors result in Bayes estimates that are

similar to classical MLEs. Using a circular uniform prior distribution on µ in 2.9, we derive the

Fisher Information to find the variance of our semi-Bayesian MLE. From 2.9, with a circular

uniform prior , the log-likelihood is,

` = ln I0 (κR)− n ln 2π − n ln I0(κ), (2.10)

and the semi-Bayesian MLE for κ is the solution to setting ˙̀ = 0 where ˙̀ = ∂`
∂κ ,
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˙̀ = R
I1(κR)

I0(κR)
− nI1(κ)

I0(κ)
(2.11)

The solution for MLE κ in this case is found by,

κ̂Bay is the solution to:
R

n
=

A(κ)

A(κR)
. (2.12)

Immediately we notice a difference when comparing κ̂MLE in 2.2. Taking another derivative of

2.11 we have obtained the Hessian where ῭= ∂2`
∂κ2 ,

῭=R2 I0(κR)I2(κR)− I2
1 (κR)

I2
0 (κR)

+ n
I2

1 (κ)− I0(κ)I2(κ)

I2
0 (κ)

(2.13)

=R2

(
I2(κ)

I0(κ)
−A2(κR)

)
+ n

(
A2(κ)− I2(κ)

I0(κ)

)
(2.14)

=
I2(κ)

I0(κ)
(R2 − n) + nA2(κ)−R2A2(κR). (2.15)

Then the Fisher Information (I) is given by,

I =
I2(κ)

I0(κ)
(n−R2)− nA2(κ) +R2A2(κR), (2.16)

where substituting the semi-Bayes MLE, the asymptotic variance (V ) of κ̂Bay:

V =

(
I2(κ̂Bay)

I0(κ̂Bay)
(R2 − n) + nA2(κ̂Bay)−R2A2(κ̂BayR)

)−1

(2.17)

Therefore the asymptotic variance of the MLE can be found using 2.17. Next, we can com-

pare the two MLE’s via their respective large-sample confidence intervals. The (1 − γ)×100%

confidence interval for κ is given by,
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(
κ̂MLE ± Z(γ/2)

√
1

n(1− R̄/κ̂MLE − R̄2)

)

κ̂Bay ± Zγ/2

√(
I2(κ̂Bay)

I0(κ̂Bay)
(R2 − n) + nA2(κ̂Bay)−R2A2(κ̂BayR)

)−1
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Figure 2.1: Histograms of κ̂MLE (MLE) and κ̂Bay (Bayes) with circular uniform prior
for 1000 simulations from CND(µ, κ).

Figure 2.1 displays histograms for κ̂MLE and κ̂Bay based on 1000 simulations from the CND

with κ = 1, 3, using sample size of n = 30. In each κ setting the histograms of estimated values

are nearly identical for κ̂MLE and κ̂Bay.
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2.3 Preliminary Test Estimators

A preliminary test estimator (PTE) is a method of estimation that introduces sample-

based prior information via a hypothesis test on the nuisance parameter to aid in estimating

the parameter of interest (Saleh, 2006). If we fail to reject the null, then we use an estimator

evaluated using the null hypothesis value. If we reject the null hypothesis, we use an estimator

based directly on the sample, the usual MLE. The parameter value in the null hypothesis

represents our prior knowledge. The idea is when the true parameter value is in or near the

null hypothesis value, the PTE will provide a better estimator in terms of mean squared error

(MSE), or any other risk function.

We observe data from a CND with unknown mean direction and concentration parameter.

We are interested in estimating the concentration parameter, with the mean direction being

a nuisance parameter. Our preliminary test has null hypothesis of mean direction equal to a

pre-specified direction, versus a two-sided alternative.

Our PTE for the concentration performs better than the usual MLE and Bayesian estimates

for the parameter. The result is similar to the linear case where we have a normal distribution

with unknown mean and variance, (Ohtani, 1991). This methodology can be used to improve the

estimation accuracy in many existing applications since the CND is one of the most commonly

used distributions in circular statistics.

2.3.1 Test for assumed Mean Direction

Suppose we have observations α1, . . . , αn from a CND with both mean direction and con-

centration parameter unknown. We want to test:
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H0 : µ = µ0 vs. H1 : µ 6= µ0 (2.18)

In the linear case with data from a Normal distribution, this is parallel to the standard

Student’s t-test. In (Jammalamadaka & SenGupta, 2001), the Likelihood Ratio Test (LRT) is

based on the test statistic:

V0 =

n∑
i=1

cos(αi − µ0) = R cos(ᾱ0 − µ0) or
V0

R
= cos(ᾱ0 − µ0) (2.19)

where we reject the null hypothesis for small values of the test statistic. Note the distribution

for V0 and V0
R depend on the nuisance parameter κ. However, the exact conditional test for the

mean direction of the CN can be obtained by using the conditional distribution of R|V0, which

is independent of κ. V0 is the length of the projection of sample resultant vector, R, towards

the null hypothesized mean direction, µ0 = (cos(µ0), sin(µ0)). In the conditional test we reject

null if V0 is too small for a given R, or equivalently, we reject the null if R is too large for a

given V0.

To illustrate the geometry of the test, suppose we have polar vector given by the null

hypothesis, (cos(µ0), sin(µ0)). Next, we have n observations and we calculate the length of

projection, c, of the sample resultant vector on the polar vector. Conditioning on the value of

c, we find the probability of observing our sample resultant vector, R, and larger values when

the null direction is true, conditional on the observed value of V0 = v.

The space consists of sample resultant vectors that have projection length, c, on the polar

vector. Suppose R1 and R2 are two resultant vector with equal projection length and R1 > R2.

Then the direction of R1 is further away from µ0, than R2’s direction.
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For significance level γ, we find the rejection region via the exact conditional distribution

of R|V0. That is, r0 is the solution to the equation that satisfies:

P(R > r0|V0 = v) = α. (2.20)

As shown in (Jammalamadaka & SenGupta, 2001), this critical point r0 is the solution to:

∫ n

r0

f(r|v)dr =

∫ n

r0

rΨn(r)√
r2 − v2f0(v)π

dr = α. (2.21)

where we solve for r0, for a given v and n. Equations for Ψn(r) and f0(v) can be found in

(Jammalamadaka & SenGupta, 2001). There is no analytical solution for r0 in this case, and

(Stephens, 1962) provides a table of rejection regions for various values of V0. To simplify our

hypothesis test we use results in (Upton, 1986), where approximate confidence intervals for the

mean direction are provided. Our test statistic derived from the approximate LRT is broken

into two cases:

(i) For R̄ ≤ 0.9, we reject H0 if:

R2 > V 2
0 +

1

4n
(2n2 − V 2

0 )Zγ (2.22)

where R̄ = R
n and Zγ is the upper quantile of the standard Normal distribution.

(ii) For R̄ > 0.9, we reject H0 if:

n log

(
n2 − V 2

0

n2 −R2

)
> χ2

1,γ (2.23)

These approximations hold well for even small sample sizes when the concentration is high.
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2.3.2 The PTE for the concentration parameter

Now we introduce our PTE for estimating the concentration parameter, where the mean di-

rection is a nuisance parameter. Given observations, α1, . . . , αn, with unknown mean direction

and concentration parameter we test our null hypothesized mean direction via the aforemen-

tioned hypothesis test. Our PTE is given by:

(i) For R̄ ≤ 0.9,

κ̂PTE = κ̂MLE1(Z > Zγ) + κ̂µ01(Z < Zγ) (2.24)

where Z is found by using 2.22 and solving for Zγ .

(ii) For R̄ > 0.9,

κ̂PTE = κ̂MLE1(χ2 > χ2
1,γ) + κ̂µ01(χ2 < χ2

1,γ) (2.25)

where χ2 is found by using 2.23.

we break the estimator into the two cases according to our hypothesis test. The PTE in either

case selects only one of the two estimators according to the result of the hypothesis test. The

performance of the PTE depends on the level of the test and the proximity of the true mean

direction to the null hypothesized value. We measure performance in terms of mean squared

error (MSE) of our estimator over different significance levels γ, and different true differences

between the mean directions δ = µ− µ0.

In Figure 2.2, we observe the simulation-based MSE of the PTE and MLE for the concentra-

tion parameter. We perform 1000 simulations of (α1, . . . , α20) ∼ CN(δj , κ), for j = 1, . . . , 50.

Here δ1, . . . , δ50 represent the 50 equally spaced points between 0 and π. For each δj , we record
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Figure 2.2: Simulation-based MSE of MLE and PTE for different significance levels γ.

the MSE. Each line represents MSE of an estimator over values of δ = µ − µ0, where δ rep-

resents the true difference between the population mean direction and the null hypothesized

mean direction.

For significance levels γ = .10, .15, .25, the PTE performs at least as good as the MLE,

and performs better when the true mean direction is closer to the null hypothesized value. For

larger significance levels the test requires less evidence to reject the null hypothesis, and when

we reject the null the PTE is equivalent to the MLE, κ̂MLE. In Figure 2.2, we observe that as

the significance level increases the PTE is more likely to use κ̂MLE for smaller values of δ. To

show the vast improvement in our PTE, we examine the mean-square relative efficiency (MRE)

of the 2 estimators PTE and MLE, defined by

e (κ̂PTE, κ̂MLE) =
MSE(κ̂MLE)

MSE(κ̂PTE)
(2.26)
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Values larger than unity imply that the PTE performs better than the MLE. In Figure 2.3, we

have the MRE of the MLE and PTE with γ = 0.01 across all values of δ. The relative efficiency

is greater than 1 for all δ less than approximately 0.65 radians. In this example, the PTE can

reduce the MSE by 20% when the true difference in mean directions is small. For .65 < δ < 1.5,

the MRE is less than 1 implying the MLE has the smaller MLE. This is due to our preliminary

test failing to reject the null hypothesis. For δ > 1.5, the preliminary test will almost always

reject the null hypothesis value and the PTE will be the same as the MLE resulting in the

MRE being equal to one.

In Equation 2.3, the MRE is maximum for δ = 0, and when the PTE will almost always

reject the null for large enough δ the MRE is equal to one. For 0 < δ < π the PTE may reject

or fail to reject the null hypothesis depending on the sample observed. In the case it fails to

reject, V0 =
∑n

i=1 cos(αi − µ0) is no longer minimized at µ0 since µ is the population mean

(Recall δ = µ − µ0). Therefore V0 < R if µ0 is closer to µ than ᾱ0, and V0 > R if ᾱ0 is closer

to µ than µ0. If the latter case appears more often than the former case for some intermediate

values of δ, then the MRE will be less than 1.

In Figure 2.2, we compare the MLE and PTE with γ = 0.01 from Figure 2.2 .The PTE with

γ = 0.01 has the best results for smaller values of δ, but could perform worse than the MLE for

intermediate values of δ. PTEs with γ = 0.1, 0.15, 0.25 perform at least as good as the MLE.

Now, we illustrate other possibilities that can occur and the performance of the PTE.

In Figure 2.4, we simulate from four different realities and examine the performance of our

PTE for the same significance levels as used in Figure 2.2. Note that the lines have same labels

as in Figure 2.2. For each plot we have simulated-based MSEs for each line. We perform 1000

simulations of (α1, . . . , αn) ∼ CN(δj , κ), for j = 1, . . . , 50. Here δ1, . . . , δ50 represent the 50
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Figure 2.3: Mean-Squared Error Relative Efficiency of MLE and PTE with γ = 0.01.

equally spaced points between 0 and π. For each δj , we record the MSE which creates our MSE

curve over δ for each scenario.

First examine that in all scenarios, the PTE with significance level γ = 0.01 performs the

best when the true difference in mean direction is null or small. In the top-left plot we have

n = 50 simulated observations from CN(δ, κ = 0.5); top-right plot we have n = 10 simulated

observations from CN(δ, κ = 0.5); bottom-left plot we have n = 40 simulated observations from

CN(δ, κ = 3); bottom-right plot we have n = 10 simulated observations from CN(δ, κ = 2.5).

In the top-right plot all of the PTE’s in this simulation performed uniformly better (over

δ) than κ̂MLE. In the remaining three plots there are values of δ where the κ̂MLE has better

performance. This occurs when our preliminary test fails to reject the null hypothesis for

intermediate values of δ. The difference becomes more obvious when we have a large sample

size and the value of κ is small as in the top-left plot. Here the PTE’s MSE increases for

intermediate values of δ, for relatively smaller significance levels. There is a similar pattern
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Figure 2.4: Simulation-based Comparison of PTE Performances for Sample Sizes n =
10, 40, 50 and Concentration Parameters κ ∈ {0.5, 2.5, 3}. Lines are labeled as in Figure
2.2.

in the bottom two plots. This pattern is to be expected, since smaller significance level will

require more evidence to reject the null hypothesis of the preliminary test.

In applications, the values of δ and κ are unknown. So how do we select the optimal

significance level given n observations from CN(µ, κ)? Following the work of (Saleh, 2006), we

create tables to find a PTE with minimum and maximum MREs.

Tables were constructed through simulations. Given a sample size n and value for κ, we

generate values from a CN(δ, κ) distribution to estimate the MRE over a grid of α and δ values,

where 0 ≤ δ ≤ π. For each α, we compute the maximum MRE, Emax, minimum MRE, Emin,

over all δ, and record the δ where Emin is located, ∆min. For almost all cases the location of

the maximum MRE is located at δ = 0 and the function MRE(δ) is monotone decreasing from
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δ = 0 to δ = Emin. For values δ > Emin, the function MRE(δ) increases back to unity since the

PTE will reject the null hypothesized values for larger δ. We then repeated this procedure for

different parameter values for κ.

The mean resultant vector is the normalized length of 1.1 since 0 < R̄ < 1 and is a measure

of concentration for a sample of observations. A value close to 1 implies high concentration and

a value close to 0 implies little to no concentration around any single direction. This estimate

does not depend on the knowledge of κ or of the mean µ of the distribution. For the CND,

there is a one-to-one correspondence between statistic R̄ and the concentration parameter κ.

Given a sample size n and κ, we observe the average R̄ over our simulations and use the average

as an indication of strength of concentration. In practice, we advise the user to find the sample

observed R̄ of the n observations, and then use the column of the table with the nearest R̄

value.

In Table 2.1, we provide a list of potential PTEs for n = 5. The rows list various significance

levels γ for the PTE ranging from 1% to 50%. The columns list the different observed values

for R̄. Suppose we have a sample size of 5 observations and observe R̄ close to 0.751. Following

the procedure in (Saleh, 2006), we then decide the minimum MRE preferred is Emin = 0.977.

Then using the Table 2.1, the optimal PTE corresponds to using α = 0.15. In the appendix we

provide tables for various sample sizes, where the tables require only knowledge of sample size,

R̄, and the predetermined Emin.

2.3.3 Comparison of the PTE and Bayes Estimators

Both the PTE and Bayes estimators in 2.12, use prior information on the the mean direction

µ to aid in estimation of the concentration parameter. A smaller significance level for the PTE
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requires stronger evidence to reject the null hypothesized value µ0. A smaller significance level

may be chosen to coincide with a stronger belief in the mean direction µ0. In the previously

mentioned Bayesian setting of this chapter, a larger value for the concentration parameter τ

focuses our prior distribution around the mean direction µ0. A larger value in parameter τ

represents a stronger belief in prior mean direction µ0.
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Figure 2.5: MSE of PTE and Bayes Estimators over δ: κ̂PTE (—) and κ̂Bay (- - -)

In Figue 2.5 we make a comparison of the MSE of our PTE with significance level of 1%

with the Bayes estimator with CN prior centered around the null hypothesis value µ0 and with

τ = 4. We plot the MSE curve of each estimator over values of δ.
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In each plot, the solid line is MSE curve for the PTE and the dashed line is the MSE curve

for the Bayes estimator. For κ = 1, κ̂PTE performs better overall for all sample sizes. For

n = 10, κ̂PTE performs uniformly better than κ̂bay. For n = 20 and n = 30 the estimators have

similar performances for small values of δ, but the MSE for κ̂bay is much larger for large values

of δ.

If κ = 3, we have different results when comparing the MSEs. In all sample sizes of

n = 10, 20, 30, the MSE of κ̂PTE is best for small values of δ. Also, for all sample sizes, κ̂bay

has the smaller MSE for the larger values of δ. In this case for large value of κ, κ̂bay would be

the preferred estimator since the performance is better overall.

In reality we do not know the value of κ, so need a data driven way to select κ̂bay versus

κ̂MLE. If we suspect a high conentration then we suggest to use κ̂bay, and for suspect a weak

concentration then use κ̂MLE. If given a sample size n, go to the corresponding PTE table for

the same sample size. In the table, go to the 7th column which gives the expected R̄ under

κ = 3 simulations. From your observed sample of size n, calculate R̄ in column 7, and compare

to the value from the PTE table. If less than the PTE table value, then use κ̂MLE, otherwise

use κ̂bay.

2.4 PTE Tables

Here we have constructed PTE tables for sample sizes of n = 5, 10, 15, 20, 30, 40 and 50. The

rows list several significance levels ranging between 1% to 50% for the PTE, while the columns

are organized by sample R̄ values. For each pair (α, R̄), we list Emax, Emin, and ∆min.
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Table 2.1: n = 5: Maximum and Minimum Guaranteed Efficiencies for the PTE

R̄
γ 0.403 0.400 0.402 0.560 0.668 0.751 0.802 0.845 0.890 0.916
0.01 Emax 0.997 0.997 1.044 1.855 3.126 3.28 3.265 4.788 9.047 12.751

Emin 0.992 0.984 1.007 1.002 0.972 0.969 0.954 0.917 0.894 0.871
∆min 2.244 0 3.142 2.885 2.629 2.436 1.667 1.603 1.282 1.218

0.02 Emax 1.031 1.036 1.202 2.313 2.483 2.554 3.513 4.492 5.608 5.43
Emin 1.022 1.027 1.027 0.998 0.978 0.977 0.938 0.938 0.919 0.919
∆min 3.142 2.052 3.142 2.821 2.5 1.795 1.603 1.539 1.218 1.218

0.05 Emax 1.137 1.183 1.592 1.939 1.885 2.352 2.677 2.676 2.679 2.512
Emin 1.131 1.128 1.052 0.993 0.986 0.958 0.962 0.956 0.961 0.963
∆min 0 3.142 3.142 2.629 2.116 1.603 1.603 1.282 1.218 1.218

0.1 Emax 1.165 1.217 1.515 1.56 1.601 1.884 1.894 1.776 1.785 1.656
Emin 1.157 1.142 1.042 0.993 0.972 0.968 0.975 0.976 0.98 0.982
∆min 0 3.142 3.142 2.5 1.667 1.603 1.282 1.218 1.218 1.218

0.15 Emax 1.124 1.157 1.353 1.368 1.39 1.621 1.538 1.512 1.459 1.383
Emin 1.113 1.107 1.034 0.994 0.974 0.977 0.983 0.986 0.988 0.989
∆min 0 3.142 3.013 2.436 1.603 1.346 1.282 1.218 1.218 1.218

0.2 Emax 1.099 1.119 1.245 1.238 1.27 1.449 1.346 1.34 1.301 1.261
Emin 1.082 1.071 1.024 0.993 0.98 0.983 0.989 0.991 0.992 0.993
∆min 0 3.142 2.949 2.052 1.603 1.346 1.282 1.218 1.218 1.218

0.25 Emax 1.075 1.089 1.176 1.148 1.184 1.327 1.245 1.232 1.213 1.19
Emin 1.065 1.051 1.018 0.991 0.985 0.989 0.992 0.993 0.995 0.995
∆min 0 3.142 2.885 1.731 1.539 1.282 1.282 1.218 1.218 1.218

0.3 Emax 1.057 1.064 1.125 1.097 1.132 1.234 1.18 1.152 1.168 1.137
Emin 1.049 1.039 1.011 0.989 0.987 0.991 0.994 0.996 0.996 0.996
∆min 0 3.142 3.142 1.667 1.346 1.282 1.282 1.218 1.218 1.218

0.35 Emax 1.041 1.046 1.096 1.067 1.09 1.173 1.136 1.114 1.12 1.102
Emin 1.035 1.029 1.008 0.988 0.99 0.993 0.996 0.996 0.997 0.997
∆min 0 3.142 3.142 1.603 1.346 1.282 1.218 1.218 1.218 1.218

0.4 Emax 1.03 1.033 1.069 1.048 1.059 1.134 1.099 1.077 1.094 1.078
Emin 1.026 1.022 1.006 0.989 0.992 0.996 0.997 0.997 0.998 0.998
∆min 0 3.142 3.142 1.603 1.282 1.282 1.282 1.218 1.218 1.218

0.45 Emax 1.022 1.024 1.047 1.032 1.038 1.098 1.07 1.053 1.062 1.059
Emin 1.016 1.017 1.004 0.991 0.994 0.997 0.998 0.998 0.998 0.998
∆min 0 3.077 3.142 1.603 1.346 1.282 1.218 1.218 1.218 1.218

0.5 Emax 1.016 1.018 1.035 1.017 1.031 1.062 1.054 1.037 1.049 1.039
Emin 1.012 1.012 1.002 0.992 0.995 0.998 0.999 0.999 0.999 0.999
∆min 0 3.142 3.142 1.539 1.282 1.282 1.282 1.218 1.218 1.218
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Table 2.2: n = 10: Maximum and Minimum Guaranteed Efficiencies for the PTE

R̄
γ 0.278 0.279 0.286 0.498 0.627 0.722 0.784 0.827 0.876 0.904
0.01 Emax 1.009 1.017 1.338 1.632 1.552 1.751 1.883 1.959 1.758 1.616

Emin 1.002 1.008 1.009 0.982 0.746 0.663 0.714 0.799 0.876 0.897
∆min 0 2.18 3.077 2.18 1.218 1.154 1.154 1.09 0.898 0.833

0.02 Emax 1.05 1.066 1.594 1.408 1.416 1.546 1.623 1.722 1.587 1.481
Emin 1.042 1.048 1.015 0.963 0.74 0.736 0.812 0.89 0.938 0.948
∆min 1.988 2.436 3.077 1.731 1.218 1.154 1.09 1.09 0.898 0.833

0.05 Emax 1.134 1.199 1.744 1.273 1.21 1.318 1.405 1.506 1.414 1.355
Emin 1.128 1.127 1.014 0.922 0.788 0.839 0.924 0.964 0.978 0.98
∆min 1.731 3.142 2.821 1.539 1.154 1.026 1.154 1.154 0.962 0.898

0.1 Emax 1.147 1.227 1.428 1.152 1.094 1.173 1.269 1.39 1.297 1.22
Emin 1.134 1.126 1.008 0.91 0.843 0.923 0.971 0.983 0.99 0.991
∆min 0 2.757 2.757 1.282 1.026 0.898 1.154 1.218 0.962 0.898

0.15 Emax 1.107 1.16 1.294 1.077 1.049 1.118 1.197 1.314 1.2 1.16
Emin 1.101 1.091 1.003 0.911 0.885 0.96 0.985 0.989 0.995 0.994
∆min 0 2.949 2.693 1.218 0.962 0.898 1.154 1.218 1.218 0.898

0.2 Emax 1.086 1.12 1.209 1.039 1.026 1.09 1.14 1.229 1.141 1.122
Emin 1.079 1.071 1 0.923 0.922 0.975 0.992 0.992 0.997 0.995
∆min 0 2.757 2.629 1.154 0.898 0.898 1.218 1.218 1.218 0.898

0.25 Emax 1.064 1.093 1.151 1.014 1.01 1.071 1.104 1.185 1.099 1.094
Emin 1.062 1.054 0.999 0.93 0.95 0.983 0.995 0.994 0.998 0.996
∆min 3.142 2.757 2.565 1.154 0.833 0.898 1.154 1.218 1.218 0.898

0.3 Emax 1.049 1.073 1.114 0.997 1.001 1.053 1.083 1.147 1.072 1.071
Emin 1.047 1.039 0.998 0.938 0.968 0.989 0.997 0.995 0.998 0.997
∆min 3.142 2.757 2.5 1.09 0.769 0.898 1.154 1.218 0.962 0.898

0.35 Emax 1.035 1.054 1.082 0.997 1.001 1.041 1.064 1.11 1.053 1.051
Emin 1.032 1.028 0.997 0.943 0.977 0.994 0.998 0.997 0.999 0.998
∆min 3.142 2.821 2.436 1.026 0.769 0.898 1.218 1.218 0.962 0.898

0.4 Emax 1.026 1.036 1.057 0.996 1.001 1.027 1.047 1.081 1.04 1.038
Emin 1.023 1.02 0.995 0.95 0.985 0.997 0.998 0.998 0.999 0.998
∆min 3.142 2.693 2.18 0.962 0.641 0.898 1.218 1.218 0.962 0.898

0.45 Emax 1.019 1.026 1.037 0.997 1 1.02 1.036 1.052 1.024 1.03
Emin 1.017 1.015 0.994 0.959 0.99 0.998 0.999 0.998 0.999 0.999
∆min 3.142 2.436 2.116 0.769 0.577 0.962 1.218 1.218 0.962 0.898

0.5 Emax 1.016 1.021 1.021 0.998 1 1.014 1.023 1.04 1.017 1.021
Emin 1.014 1.012 0.994 0.97 0.993 0.999 0.999 0.999 1 0.999
∆min 1.154 2.436 2.052 0.705 0.513 0.962 1.218 1.218 0.962 0.898
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Table 2.3: n = 15: Maximum and Minimum Guaranteed Efficiencies for the PTE

R̄
γ 0.226 0.227 0.232 0.483 0.620 0.717 0.777 0.820 0.870 0.900
0.01 Emax 1.016 1.021 1.534 1.46 1.448 1.315 1.241 1.262 1.139 1.075

Emin 1.011 1.012 1.002 0.832 0.614 0.747 0.868 0.906 0.906 0.905
∆min 2.693 0 2.885 1.346 1.09 0.833 0.833 0.833 0.769 0.769

0.02 Emax 1.054 1.079 1.701 1.371 1.281 1.159 1.185 1.241 1.128 1.072
Emin 1.048 1.044 1.002 0.796 0.685 0.847 0.924 0.955 0.949 0.943
∆min 3.142 3.142 2.821 1.218 1.026 0.833 0.833 0.833 0.769 0.769

0.05 Emax 1.132 1.212 1.467 1.185 1.097 1.074 1.126 1.224 1.113 1.079
Emin 1.12 1.103 0.997 0.784 0.822 0.943 0.977 0.989 0.981 0.98
∆min 3.142 3.142 2.693 1.154 0.833 0.833 0.898 1.026 0.833 0.769

0.1 Emax 1.147 1.234 1.298 1.049 1.025 1.051 1.085 1.168 1.094 1.075
Emin 1.132 1.098 0.996 0.814 0.925 0.978 0.991 0.994 0.993 0.992
∆min 3.142 3.142 2.629 1.09 0.769 0.833 0.898 1.218 0.833 0.833

0.15 Emax 1.107 1.176 1.203 1.009 1.013 1.034 1.062 1.125 1.076 1.06
Emin 1.097 1.074 0.995 0.841 0.96 0.987 0.995 0.996 0.996 0.995
∆min 3.142 3.142 2.565 0.962 0.769 0.833 0.898 1.218 0.898 0.833

0.2 Emax 1.085 1.138 1.146 1.004 1.011 1.027 1.042 1.093 1.064 1.051
Emin 1.077 1.058 0.991 0.876 0.978 0.993 0.997 0.998 0.997 0.997
∆min 2.244 3.142 2.052 0.898 0.769 0.833 0.898 1.218 0.898 0.898

0.25 Emax 1.065 1.1 1.101 1.003 1.007 1.019 1.029 1.068 1.056 1.035
Emin 1.059 1.044 0.99 0.912 0.987 0.996 0.998 0.998 0.998 0.998
∆min 2.436 3.142 1.731 0.833 0.769 0.833 0.898 0.962 0.898 0.833

0.3 Emax 1.049 1.071 1.069 1.002 1.002 1.018 1.022 1.047 1.041 1.032
Emin 1.045 1.033 0.986 0.938 0.991 0.997 0.999 0.998 0.998 0.998
∆min 2.436 3.142 1.603 0.769 0.769 0.833 0.898 0.898 0.898 0.898

0.35 Emax 1.035 1.052 1.041 1.001 1.001 1.008 1.017 1.034 1.033 1.024
Emin 1.032 1.023 0.983 0.956 0.995 0.999 0.999 0.999 0.999 0.999
∆min 0 3.142 1.603 0.641 0.769 0.833 0.962 0.962 0.898 0.898

0.4 Emax 1.026 1.039 1.027 1.001 1 1.004 1.014 1.03 1.023 1.017
Emin 1.022 1.016 0.982 0.969 0.996 0.999 0.999 0.999 0.999 0.999
∆min 0 3.142 1.539 0.577 0.769 0.833 0.898 0.898 0.898 0.898

0.45 Emax 1.019 1.029 1.016 1.001 1 1.003 1.011 1.022 1.015 1.012
Emin 1.016 1.012 0.983 0.978 0.998 0.999 1 0.999 0.999 0.999
∆min 0 2.885 1.346 0.385 0.577 0.769 0.962 0.962 0.898 0.898

0.5 Emax 1.015 1.02 1.005 1.002 1 1.002 1.008 1.017 1.012 1.01
Emin 1.012 1.01 0.984 0.987 0.997 0.999 1 0.999 1 0.999
∆min 0 2.885 1.346 0.256 0 0.769 0.962 0.898 0.898 0.898
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Table 2.4: n = 20: Maximum and Minimum Guaranteed Efficiencies for the PTE

R̄
γ 0.196 0.198 0.202 0.471 0.617 0.710 0.779 0.818 0.871 0.900
0.01 Emax 1.016 1.027 1.676 1.38 1.244 1.075 1.081 1.116 1.033 1.018

Emin 1.008 1.015 0.995 0.688 0.695 0.869 0.928 0.951 0.936 0.915
∆min 0 2.949 2.757 1.154 0.833 0.769 0.769 0.833 0.705 0.449

0.02 Emax 1.055 1.103 1.555 1.231 1.105 1.049 1.07 1.118 1.048 1.012
Emin 1.043 1.046 0.993 0.689 0.807 0.921 0.961 0.98 0.968 0.95
∆min 0 3.142 2.629 1.09 0.769 0.769 0.769 0.833 0.769 0.449

0.05 Emax 1.127 1.228 1.313 1.08 1.02 1.031 1.06 1.111 1.061 1.005
Emin 1.116 1.102 0.991 0.743 0.924 0.968 0.988 0.995 0.988 0.983
∆min 0 3.142 2.5 0.962 0.769 0.769 0.833 0.898 0.833 0.513

0.1 Emax 1.138 1.246 1.202 1.012 1.004 1.017 1.042 1.08 1.051 1.006
Emin 1.134 1.103 0.984 0.825 0.964 0.988 0.994 0.997 0.995 0.994
∆min 0 3.142 1.795 0.833 0.705 0.769 0.833 0.898 0.833 0.641

0.15 Emax 1.103 1.195 1.139 1.007 1.002 1.02 1.031 1.066 1.044 1.007
Emin 1.099 1.076 0.975 0.889 0.979 0.994 0.997 0.997 0.997 0.997
∆min 3.142 3.142 1.667 0.769 0.705 0.833 0.833 0.898 0.898 0.769

0.2 Emax 1.084 1.144 1.085 1.005 1.001 1.015 1.026 1.054 1.031 1.007
Emin 1.076 1.06 0.968 0.935 0.987 0.996 0.998 0.998 0.998 0.998
∆min 1.988 3.077 1.603 0.641 0.641 0.833 0.898 0.898 0.898 0.769

0.25 Emax 1.064 1.111 1.045 1.005 1 1.017 1.018 1.046 1.023 1.006
Emin 1.059 1.046 0.965 0.96 0.991 0.997 0.998 0.998 0.999 0.999
∆min 0 3.077 1.346 0.385 0.449 0.833 0.833 0.898 0.898 0.833

0.3 Emax 1.049 1.08 1.015 1.006 1 1.013 1.016 1.029 1.02 1.007
Emin 1.046 1.032 0.963 0.971 0.995 0.998 0.999 0.999 0.999 0.999
∆min 0 3.142 1.346 0.128 0.577 0.833 0.833 0.898 0.898 0.833

0.35 Emax 1.036 1.059 1.002 1.004 1 1.01 1.012 1.02 1.015 1.006
Emin 1.033 1.024 0.965 0.979 0.996 0.999 0.999 0.999 0.999 1
∆min 1.859 3.142 1.282 0 0.449 0.833 0.898 0.962 0.898 0.833

0.4 Emax 1.026 1.044 0.992 1.002 1 1.008 1.008 1.013 1.012 1.007
Emin 1.024 1.016 0.965 0.982 0.996 0.999 1 1 0.999 1
∆min 0 3.142 1.154 0 0 0.898 0.898 0.962 0.898 0.898

0.45 Emax 1.019 1.031 0.99 1.001 1 1.007 1.008 1.009 1.01 1.005
Emin 1.017 1.011 0.969 0.987 0.998 1 1 1 0.999 1
∆min 0 3.142 1.154 0 0 0.898 0.962 0.898 0.898 0.898

0.5 Emax 1.015 1.023 0.993 1.001 1 1.005 1.003 1.005 1.006 1.003
Emin 1.013 1.009 0.971 0.99 0.999 1 1 1 1 1
∆min 0 3.142 0.962 0 0.449 0.898 0.898 0.898 0.898 1.218
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Table 2.5: n = 30: Maximum and Minimum Guaranteed Efficiencies for the PTE

R̄
γ 0.165 0.164 0.163 0.460 0.604 0.706 0.772 0.814 0.867 0.897
0.01 Emax 1.019 1.037 1.506 1.24 1.02 1.007 1.017 1.041 1.009 1.016

Emin 1.014 1.01 0.984 0.621 0.881 0.942 0.969 0.977 0.965 0.906
∆min 0 3.142 2.436 0.962 0.705 0.641 0.705 0.769 0.449 0

0.02 Emax 1.059 1.119 1.344 1.116 1.011 1.006 1.026 1.046 1.014 1.01
Emin 1.048 1.048 0.977 0.705 0.927 0.965 0.982 0.988 0.985 0.939
∆min 3.142 3.142 2.052 0.833 0.641 0.641 0.769 0.833 0.705 0

0.05 Emax 1.125 1.26 1.244 1.017 1.004 1.006 1.03 1.043 1.034 1.004
Emin 1.12 1.085 0.942 0.862 0.963 0.983 0.994 0.995 0.995 0.972
∆min 2.372 3.142 1.603 0.769 0.513 0.641 0.833 0.833 0.833 0

0.1 Emax 1.14 1.276 1.118 1.011 1.001 1.008 1.023 1.037 1.042 1.002
Emin 1.133 1.079 0.921 0.938 0.981 0.993 0.998 0.997 0.997 0.989
∆min 0.833 3.142 1.346 0.513 0.321 0.769 0.833 0.833 0.898 0

0.15 Emax 1.105 1.212 1.055 1.005 1.001 1.009 1.016 1.03 1.041 1.001
Emin 1.096 1.06 0.914 0.963 0.989 0.996 0.998 0.999 0.998 0.997
∆min 0.833 3.142 1.218 0.449 0.256 0.769 0.833 0.898 0.898 0.385

0.2 Emax 1.084 1.155 1.007 1.003 1.001 1.008 1.02 1.024 1.03 1.001
Emin 1.077 1.048 0.919 0.977 0.991 0.998 0.999 0.999 0.999 0.999
∆min 0.833 3.142 1.154 0.385 0 0.833 0.898 0.898 0.898 0.513

0.25 Emax 1.064 1.119 0.996 1.002 1.001 1.006 1.016 1.016 1.022 1.003
Emin 1.059 1.04 0.926 0.984 0.994 0.999 0.999 0.999 0.999 0.999
∆min 0.769 3.142 1.09 0.192 0 0.833 0.898 0.898 0.898 0.769

0.3 Emax 1.048 1.087 0.994 1.001 1.001 1.003 1.012 1.014 1.021 1.004
Emin 1.045 1.028 0.928 0.988 0.993 1 1 0.999 0.999 0.999
∆min 0.769 3.142 0.962 0 0 0.898 0.962 0.898 0.898 0.833

0.35 Emax 1.035 1.06 0.994 1.001 1 1.003 1.008 1.012 1.018 1.004
Emin 1.033 1.021 0.93 0.991 0.994 1 1 0.999 0.999 1
∆min 0.641 3.013 0.833 0 0 0.898 0.962 0.898 0.898 0.833

0.4 Emax 1.026 1.041 0.993 1 1 1.001 1.006 1.01 1.015 1.005
Emin 1.023 1.014 0.936 0.994 0.997 1 1 1 0.999 1
∆min 0.705 2.949 0.705 0 0 0.833 0.898 0.898 0.898 0.833

0.45 Emax 1.019 1.03 0.995 1 1 1.001 1.005 1.006 1.008 1.004
Emin 1.017 1.011 0.945 0.996 0.997 1 1 1 1 1
∆min 0.641 2.949 0.641 0 0 0.833 0.833 0.898 0.898 0.833

0.5 Emax 1.015 1.022 0.996 1 1.001 1.001 1.003 1.004 1.005 1.002
Emin 1.014 1.008 0.959 0.996 0.999 1 1 1 1 1
∆min 0.769 3.142 0.513 0 0.641 0.898 0.833 0.898 0.898 0.833
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Table 2.6: n = 40: Maximum and Minimum Guaranteed Efficiencies for the PTE

R̄
γ 0.141 0.142 0.142 0.461 0.600 0.703 0.769 0.814 0.865 0.896
0.01 Emax 1.019 1.046 1.337 1.082 1.008 1.005 1.01 1.016 1.006 1.012

Emin 1.014 1.019 0.928 0.744 0.925 0.966 0.981 0.989 0.981 0.879
∆min 3.142 3.142 1.603 0.769 0.513 0.513 0.705 0.769 0.449 0

0.02 Emax 1.055 1.135 1.287 1.032 1.003 1.004 1.008 1.019 1.011 1.007
Emin 1.05 1.043 0.895 0.844 0.953 0.979 0.989 0.994 0.992 0.913
∆min 1.923 3.142 1.539 0.705 0.449 0.513 0.705 0.769 0.705 0

0.05 Emax 1.124 1.29 1.169 1.011 1.002 1.002 1.015 1.018 1.041 1.003
Emin 1.115 1.087 0.855 0.923 0.976 0.989 0.996 0.998 0.997 0.955
∆min 1.731 3.142 1.282 0.577 0.321 0.385 0.833 0.833 0.833 0

0.1 Emax 1.136 1.298 1.054 1.004 1.002 1.001 1.014 1.017 1.046 1.001
Emin 1.129 1.078 0.847 0.957 0.984 0.995 0.999 0.999 0.998 0.976
∆min 1.475 3.142 1.154 0.385 0 0.385 0.898 0.898 0.898 0

0.15 Emax 1.102 1.218 0.998 1.002 1.001 1.001 1.009 1.014 1.037 1.001
Emin 1.097 1.06 0.857 0.97 0.992 0.997 0.999 0.999 0.998 0.989
∆min 1.731 3.142 1.09 0.128 0 0.385 0.898 0.898 0.898 0

0.2 Emax 1.081 1.163 0.997 1.001 1 1 1.007 1.012 1.032 1
Emin 1.076 1.047 0.869 0.975 0.996 0.997 1 0.999 0.998 0.989
∆min 1.603 3.142 0.962 0 0 0 0.898 0.898 0.898 0

0.25 Emax 1.062 1.122 0.997 1.001 1 1.001 1.004 1.009 1.028 1
Emin 1.058 1.035 0.884 0.982 0.997 0.999 1 0.999 0.999 0.99
∆min 1.539 3.142 0.833 0 0 0.705 0.898 0.833 0.898 0

0.3 Emax 1.046 1.088 0.997 1 1 1 1.002 1.008 1.023 1
Emin 1.044 1.026 0.906 0.986 0.998 1 1 0.999 0.999 0.993
∆min 1.539 2.949 0.769 0 0 0.705 0.898 0.833 0.898 0

0.35 Emax 1.034 1.065 0.998 1.001 1 1.001 1.003 1.005 1.016 1
Emin 1.031 1.019 0.929 0.987 0.999 1 1 1 0.999 0.996
∆min 1.539 2.821 0.641 0 0 1.218 0.962 0.833 0.898 0

0.4 Emax 1.024 1.046 0.999 1.001 1 1 1.003 1.005 1.014 1
Emin 1.023 1.013 0.947 0.99 1 1 1 1 0.999 0.996
∆min 1.154 2.757 0.513 0 0.641 0.641 0.898 0.833 0.898 0

0.45 Emax 1.018 1.035 1 1 1.002 1 1.003 1.005 1.009 1
Emin 1.017 1.01 0.96 0.993 1 0.999 1 1 1 0.998
∆min 0.833 2.693 0.321 0 0.833 0 0.898 0.833 0.898 0

0.5 Emax 1.014 1.025 1.001 1 1 1 1.002 1.005 1.007 1
Emin 1.013 1.007 0.97 0.994 1 0.999 1 1 1 0.999
∆min 3.142 2.693 0.128 0 0.769 0 0.898 0.898 0.898 0
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Table 2.7: n = 50: Maximum and Minimum Guaranteed Efficiencies for the PTE

R̄
γ 0.126 0.124 0.124 0.455 0.604 0.705 0.767 0.814 0.866 0.896
0.01 Emax 1.024 1.056 1.335 1.028 1.004 1.004 1.004 1.004 1.013 1.008

Emin 1.016 1.021 0.842 0.837 0.949 0.976 0.979 0.987 0.994 0.907
∆min 0.962 3.142 1.346 0.641 0.385 0.449 0.128 0.385 0.769 0

0.02 Emax 1.062 1.155 1.245 1.015 1.004 1.003 1.002 1.007 1.032 1.004
Emin 1.052 1.052 0.801 0.893 0.962 0.986 0.99 0.995 0.997 0.936
∆min 1.154 3.142 1.218 0.513 0.128 0.449 0.385 0.769 0.833 0

0.05 Emax 1.134 1.327 1.111 1.005 1.003 1.002 1.001 1.015 1.04 1.002
Emin 1.114 1.091 0.778 0.942 0.975 0.993 0.997 0.998 0.998 0.97
∆min 1.154 3.142 1.154 0.385 0 0.385 0.513 0.833 0.898 0

0.1 Emax 1.15 1.335 1.006 1.002 1.001 1.004 1.002 1.013 1.029 1.001
Emin 1.126 1.065 0.802 0.964 0.99 0.998 0.999 0.999 0.999 0.984
∆min 0.833 3.142 1.026 0.128 0.256 0.769 0.769 0.898 0.898 0

0.15 Emax 1.114 1.252 1.005 1.001 1.001 1.007 1 1.011 1.022 1
Emin 1.097 1.051 0.828 0.972 0.994 0.999 0.999 1 0.999 0.99
∆min 3.142 3.142 0.898 0 0 0.833 0.513 0.898 0.898 0

0.2 Emax 1.085 1.183 1.005 1.001 1 1.006 1.002 1.01 1.013 1
Emin 1.078 1.043 0.864 0.982 0.995 0.999 1 1 0.999 0.993
∆min 3.142 3.142 0.833 0 0 0.833 0.769 0.898 0.898 0

0.25 Emax 1.069 1.132 1.004 1.001 1 1.007 1.001 1.007 1.012 1
Emin 1.061 1.03 0.902 0.984 0.997 0.999 1 1 0.999 0.995
∆min 0.833 3.142 0.769 0 0 0.833 0.705 0.898 0.898 0

0.3 Emax 1.051 1.098 1.004 1 1 1.006 1.002 1.005 1.011 1
Emin 1.046 1.021 0.931 0.987 0.998 1 1 1 0.999 0.997
∆min 0.833 3.142 0.641 0 0 0.833 0.833 0.898 0.898 0

0.35 Emax 1.037 1.072 1.004 1 1 1.004 1 1.003 1.01 1
Emin 1.033 1.015 0.952 0.991 0.997 1 0.999 1 0.999 0.998
∆min 2.629 3.142 0.513 0 0 0.833 0 0.833 0.898 0

0.4 Emax 1.025 1.048 1.004 1 1 1.003 1 1.003 1.009 1
Emin 1.024 1.01 0.974 0.994 0.997 1 0.999 1 1 0.999
∆min 2.693 3.142 0.385 0 0 0.833 0 0.833 0.898 0

0.45 Emax 1.018 1.033 1.005 1 1 1.002 1 1.003 1.007 1
Emin 1.017 1.006 0.986 0.996 0.998 1 0.998 1 1 0.998
∆min 0.898 3.142 0.385 0 0 0.833 0 0.833 0.898 0

0.5 Emax 1.014 1.025 1.005 1 1 1.002 1 1.003 1.006 1
Emin 1.014 1.005 0.99 0.999 0.999 1 0.999 1 1 1
∆min 0.833 3.142 0.128 0 0 0.833 0 0.898 0.898 0.769
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Chapter 3

Detecting Change in the number of

Modes

3.1 Previous Work

Previous work in circular statistics regarding change-point problems included detecting

change in the mean direction in a time-ordered sequence of observations, see (Ghosh et al. ,

1999). Likelihood ratio based tests were derived when both the concentration parameter is

known and unknown. Other examples of change-point problems can be found in (Jammala-

madaka & SenGupta, 2001).

Other work that relates to our current problem, considered testing for unimodality of circular

data. In (Basu & Jammalamadaka, 2000) a Bayesian test is derived to test whether a group

of circular observations is unimodal or not. Also relevant to our current work is the paper by

(Holzmann & Vollmer, 2008) who consider the asymptotic distribution of the likelihood ratio
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test statistic in dealing with the mixture of two CN densities. We first review the papers before

we embark on our investigation of detecting change in the number of modes.

3.1.1 Test for Change in Mean Direction

In (Ghosh et al. , 1999) a parametric test for the change-point problem is considered which

deals with the change in mean direction within a group of time-ordered circular observations.

An application of this for instance, is when a change in wind direction carries pollution from a

big city into a neighboring small town. Given a set of time-ordered wind directions a researcher

will be interested if there is a change in wind direction over a given period of time, for example

a single day, a week, or a month. This is useful in a context like the one studied in (Nava &

Jammalamadaka, 2008) and (Jammalamadaka & Lund, 2006) where the relationship between

ozone levels and wind direction is considered.

(Ghosh et al. , 1999) consider a set of univariate independent time-ordered observations

(α1, . . . , αn) and asks if there is a point of change k, such that (α1, . . . , αk) have a CND with

mean direction µ1, while the succeeding observations (αk+1, . . . , αn) have a CND with a different

mean direction µ2. We assume the change occurs at some unknown point k, (1 ≤ k ≤ n − 1).

The Generalized Likelihood Ratio Test (GLRT) method is used to derive a test for the null

hypothesis of no change-point (i.e. all the n observations have the same distribution), i.e.

H0 : k = n versus H1 : 1 ≤ k ≤ n− 1.

Let θ = (k, µ1, µ2) denote the parameter vector and for illustrative purposes we will assume

the concentration parameter κ is known, as in one of the cases presented in (Ghosh et al. ,

1999). The parameter space for this problem becomes Ω = {1, . . . , n} × [−π, π)× [−π, π). The

null hypothesis corresponds to no-change or that the change if any is at n corresponding to
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the subspace Ω0 = Ω ∩ H0 = {n} × [−π, π) × [−π, π) of Ω. The subspace corresponding to

a change at a specific k, 1 ≤ k ≤ n − 1 is given by Ωk = {k} × [−π, π) × [−π, π). For the

change-point problem the likelihood ratio is computed for each possible k where the change can

occur, resulting in the likelihood ratio for a single instance of k ∈ {1, . . . , n− 1},

λk =

sup
θ∈Ω0

n∏
i=1

1
2πI0(κ) exp(κ cos(αi − µ1))

sup
θ∈Ω0∪Ωk

k∏
i=1

1
2πI0(κ) exp(κ cos(αi − µ1))

n∏
i=k+1

1
2πI0(κ) exp(κ cos(αi − µ2))

=

sup
θ∈Ω0

exp(κ
n∑
i=1

cos(αi − µ1))

sup
θ∈Ω0∪Ωk

exp(κ
k∑
i=1

cos(αi − µ1) + κ
n∑

i=k+1

cos(αi − µ2))

Note, if k = n then λk = 1. In both the numerator and the denominator we compute the MLEs

for the parameters µ1 and µ2. As stated in 1.11, there is an analytic solution for the MLE of

the mean direction parameter. Specifically under H0, the MLE for µ1 is the solution to:

n∑
i=1

sin(αi − µ1) = 0 (3.1)

Under Hk, the alternative for a given k ∈ {1, . . . , n − 1}, the MLEs for µ1 and µ2 are

solutions to:

k∑
i=1

sin(αi − µ1) = 0 and

n∑
i=k+1

sin(αi − µ2) = 0 (3.2)
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We denote the MLEs in (3.1) as ᾱ0 and in (3.2) as ᾱ1k and ᾱ2k. The MLEs are computed using

the formula for mean direction in (1.2). The likelihood ratio for a single k ∈ {1, . . . , n − 1}

becomes:

λk = exp

[
κ

(
n∑
i=1

cos(αi − ᾱ0)−
k∑
i=1

cos(αi − ᾱ1k)−
n∑

i=k+1

cos(αi − ᾱ2k)

)]
= exp [κ(R−R1k −R2k)]

As stated in (1.4), each summation of cosine functions is equal to the length of the resultant

vector in (1.1) which are denoted by R, R1k, and R2k. In these models, the length of the

resultant vector, represents how concentrated the data are around the mean direction.

Since the location of the change-point is unknown, we compute the likelihood ratio for each

possible value of k, then choose the minimum λk over all possible k values. Or, alternatively we

take a Bayesian approach and assume a uniform prior distribution on possible change-points

{1, . . . , n}. In this case, the average of − ln(λk)’s forms the test statistic. In each case we reject

H0 for large values of:

λmax = sup
k∈1,...,n

(R1k +R2k)−R > c1; (3.3)

λavg =
1

n

n∑
k=1

(R1k +R2k)−R > c2; (3.4)

where the critical points c1 and c2 are determined by some pre-determined significance level.

The sampling distributions of the test statistics for CN are complicated and thus simulations
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were used to determine the cut-off points. See (Ghosh et al. , 1999) for further details and for

the case when κ is unknown.

3.2 Some Asymptotic Results for a Likelihood Ratio

Test

(Holzmann & Vollmer, 2008) propose a test for bimodality on a set of independent and iden-

tically distributed sample, based on the likelihood ratio test by using two-component mixtures.

As in (Basu & Jammalamadaka, 2000), their discussion does not involve any change-point but

just whether or not a group of independent and identically distributed circular observations

come from a unimodal distribution or not. The results of the paper can be applied to any

mixture of two densities that satisfy certain assumptions outlined below. For example, their

results are applicable to mixtures of two Normals, or two CNDs, and we will focus on the latter.

In the general set-up let f(α|θ), θ ∈ Θ ⊂ Rd, be a parametric family of densities with two

component mixtures:

g(α, θ1, θ2, p) = pf(α|θ1) + (1− p)f(α|θ2), (3.5)

where

(θ1, θ2, p) ∈ Θ×Θ× [0, 1] = Θmix ⊂ R2d+1.

They consider the mixtures to have equal variances or concentration parameters i.e., the

subset Emix ⊂ Θmix such that Emix ⊂ Rq where q ≤ 2d + 1. Since the mixture can have
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up to two modes we can split Emix disjointly into Eunim ∪ Ebim where Eunim is the unimodal

parameter set and Ebim is the bimodal parameter set. Also let ∂Eunim denote the boundary

between Eunim and Ebim. Given observations α1, . . . , αn i.i.d. from (3.5) the log-likelihood

function is given by,

`n(θ1, θ2, p) =
n∑
i=1

log f(αi; θ1, θ2, p) (3.6)

The following assumptions are now made:

Assumption 1. The partial derivatives of log f(αi; θ1, θ2, p) of order 3 with respect to θ1, θ2

and p exists a.s., at least in a neighborhood of N of the true value (θ0
1, θ

0
2, p

0).

Assumption 2. For (θ1, θ2, p) ∈ N , the first and second order partial derivatives of (3.5) are

uniformly bounded in absolute value by a function F (α) with finite integral, and the third order

partial derivatives of log f(αi; θ1, θ2, p) are uniformly bounded in absolute value by a function

H(α) with EH(α) <∞.

Assumption 3. The expectation of the matrix of the second order derivatives of log f(αi; θ1, θ2, p)

is finite and positive definite for (θ1, θ2, p) ∈ N .

Theorem 1 Suppose that the true parameter vector (θ0
1, θ

0
2, p

0) of the mixture density lies on

the boundary ∂Eunim, and locally around (θ0
1, θ

0
2, p

0), ∂Eunim is a smooth (q − 1)-dimensional

surface in Rq. Further, if Assumptions 1-3 hold, then we have

Rn := 2

(
sup

(θ1,θ2,p)∈Emix

`n(θ1, θ2, p)− sup
(θ1,θ2,p)∈Eunim

`n(θ1, θ2, p)

)
d−→
(
χ2

0 + χ2
1

)
/2, (3.7)
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where χ2
0 is the point measure at 0 and χ2

1 is the Chi-squared distribution with 1 degree of

freedom.

The theorem utilizes regularity conditions given in (Chernoff, 1954) and asymptotic prop-

erties of MLE’s in non-regular likelihood ratio settings discussed in (Self & Liang, 1987).

Assuming the concentration parameters to be equal and using (1.16) to represent the mix-

ture of two CNDs, we can check the Assumptions 1-3 and hence Theorem 1 holds in our case.

We refer back to Table 1.1 for the special case of κ1 = κ2. We note that all the cases where the

parameters (δ, κ, p) ∈ Ω0 give a unimodal distribution (see (Mardia & Sutton, 1975)) form a con-

tinuous set. For example, for sin(δ) = 2κ sin3(δ/2), the mixture is unimodal for all (0 < p < 1).

Also, as δ −→ π, then t(α)/(1− t(α)) −→ (1 + exp(2κ))−1 and we see how case (ii) and case(iii)

merge together in Table 1.1.

In Figure 3.1 we provide a visual representation of the negative log-likelihood via a contour

plot over all possible values of δ and p for a specific value of κ. The plot is obtained by

simulating one-thousand observations from a mixCND with (δ = π/2, κ = 4, p = 0.5). The

bold wine glass shaped curve is the boundary between the unimodal and bimodal parameter

subspaces. Inside the wine glass is the bimodal parameter space and outside the wine glass is

the unimodal parameter space. The distribution we simulated was bimodal and the bimodal

parameter space contains the MLEs for δ and p as expected.

For any fixed p, Theorem 1 applies directly for any combination of δ and κ. As p varies

there will occur a singularity on the boundary of the set of unimodal parameters at p = 0.50 if

sin(δ) = 2κ sin3(δ/2), but the test asymptotically preserves the critical values.
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Figure 3.1: The likelihood space for δ and p, given κ = 4 and simulation-bases data
from (α1, . . . , α1000) ∼ mixCN(δ = π/2, κ = 4, p = 0.5)

3.3 The Generalized Likelihood Ratio Test

Recall we have a set of independent, time-ordered vectors of circular observations, α˜1, α˜2, . . . , α˜n
and are interested to find the point when the observations change from having a unimodal dis-

tribution to a multimodal distribution. Here, α˜j = (αj1, αj2, . . . , αjm), is a vector of i.i.d.

observations at time j, where j ∈ {1, . . . , n}. We assume each of these is of the same length m

for simplicity, although this can be relaxed.

Specifically, we assume there is some unknown but fixed k, (1 ≤ k ≤ n − 1) such that

α˜1, . . . , α˜k have unimodal densities with pdf’s say {f1} and α˜k+1, . . . , α˜n have bimodal densities

with pdf’s say {f2}. Note, the the unimodal/bimodal vectors of observations are not required

to be identically distributed, for example two unimodal vectors could be centered around a
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different direction. The point k is considered the “change-point” of the observed data, which

is unknown.

Let Θ = (θ1,θ2, . . . ,θn, k) ⊂ Ω be the (3n+1)-dimensional parameter space where θj =

(δj , κj , pj) is the the parameter vector for the jth vector of data. Here, fj is our parametric

model that can be unimodal or bimodal, depending on the parameter values θj at the jth

stage. For a given θj = (µj , κj , pj) and fj , let ω0j represent the unimodal subspace as before,

while ω1j = ω − ω0j is the bimodal subset. Also for the full parameter set Θ let Ωk ⊂ Ω be

the subset of Θ values for which the change from unimodality to bimodality occurs at step k,

while Ω0 represents no change. Since we assume there is at most one change and the sequence

begins with a unimodal density, we re-state the null and alternative hypothesis in terms of the

parameter sets as follows:

- H0 : no change, i.e. the data continues to be unimodal. This corresponds to the unimodal

parameter space.

Θ ∈ Ω0 = (ω01 × ω02 × · · · × ω0n)︸ ︷︷ ︸
n times

.

- Hk : change at k + 1, i.e. unimodal until k, and multimodal from k + 1.

Θ ∈ Ωk = (ω01 × · · · × ω0k)︸ ︷︷ ︸
k times

× (ω1(k+1) × · · · × ω1n)︸ ︷︷ ︸
n-k times

- HA =
n−1⋃
k=1

Hk : we consider all possible change points k.

Below is an illustration of the parameter space Ωk for different values of k.
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Ω1 = (ω01)︸ ︷︷ ︸
1 time

× (ω12 × · · · × ω1n)︸ ︷︷ ︸
n-1 times

Ω2 = (ω01 × ω02)︸ ︷︷ ︸
2 times

× (ω13 × · · · × ω1n)︸ ︷︷ ︸
n-2 times

...

Ωn−1 = (ω01 × . . .× ω0(n−1))︸ ︷︷ ︸
n-1 times

× (ω1n)︸ ︷︷ ︸
1 time

Parameter space Ω1 corresponds to the change-point occurring at k = 1. Therefore the first

vector of time corresponds to the unimodal parameter space ω01 and the remaining vectors after

k = 1 correspond to the multimodal parameter spaces ω12, . . . , ω1n. Therefore α˜1 are drawn

from {f1}, and the remaining α˜2, . . . , α˜n come from {f2}. After considering all possible change-

points, the alternate hypothesis parameter space consists of the union over all the possible

change-point values thus, ΩA =
n−1⋃
k=1

Ωk.

We proceed to derive the GLRT for our change-point problem, which for a given value

k ∈ 1, . . . , n− 1 takes the form:

λk :=

sup
Θ∈Ω0

n∏
j=1

m∏
i=1

fj(αji,θj)

sup
Θ∈Ω0∪Ωk

k∏
j=1

m∏
i=1

fj(αji,θj)
n∏

j=k+1

m∏
i=1

fj(αji,θj)

(3.8)

Note that λk = 1 for k = n. Writing L(θj |α˜j) =
m∏
i=1

fj(αji,θj) for the likelihood at time j,

the likelihood ratio for a given k can be written as:
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λk =

sup
Θ∈Ω0

n∏
j=1

L(θj |α˜j)
sup

Θ∈Ω0∪Ωk

k∏
j=1

L(θj |α˜j) n∏
j=k+1

L(θj |α˜j)
(3.9)

=

n∏
j=1

sup
ω0∈Ω0

L(θj |α˜j)
k∏
j=1

sup
ω0∈Ω0

L(θj |α˜j) n∏
j=k+1

sup
ω∈Ω

L(θj |α˜j)
(3.10)

=

k∏
j=1

sup
ω0∈Ω0

L(θj |α˜j) n∏
j=k+1

sup
ω0∈Ω0

L(θj |α˜j)
k∏
j=1

sup
ω0∈Ω0

L(θj |α˜j) n∏
j=k+1

sup
ω∈Ω

L(θj |α˜j)
(3.11)

=
n∏

j=k+1

sup
ω0∈Ω0

L(θj |α˜j)
sup
ω∈Ω

L(θj |α˜j) (3.12)

Here λn = 1 since in the denominator of 3.9, Ω0 ∪Ωk=n = Ω0. In 3.11 we use independence

of the vectors, (α˜1, . . . , α˜n), as well as independence of observations (αj1, . . . , αjm) within each

vector for j = 1, . . . , n. From 3.11 to 3.12 we have:

Ω0 ∪ Ωk = (ω01 × ω02 × · · · × ω0n)︸ ︷︷ ︸
n times

∪

(ω01 × · · · × ω0k)︸ ︷︷ ︸
k times

× (ω1(k+1) × · · · × ω1n)︸ ︷︷ ︸
n-k times

(3.13)

= (ω01 × · · · × ω0k)︸ ︷︷ ︸
k times

× (ωk+1 × · · · × ωn)︸ ︷︷ ︸
n-k times

(3.14)

where ωj = ω1j ∪ ω0j , for j = 1, . . . , n, is the unrestricted parameter space. As a result, the

likelihood ratio reduces into a ratio involving only the data that occurs after the change-point

k. Since we have 0 < λk < 1 for k ∈ {1, . . . , n− 1}, we can re-express 3.11:
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λk =


∏n
j=k+1

sup
ω0∈Ω0

L(θj |α˜j)

sup
ω∈Ω

L(θj |α˜j) , if
∏n
j=k+1 sup

ω∈Ω
L(θj |α˜j) >∏n

j=k+1 sup
ω0∈Ω0

L(θj |α˜j)
1, o.w.

The maximum value of unity represents the case where the MLEs both lie in the unimodal

parameter space for k ∈ {1, . . . , n}, representing no change at the single vector of time.

For change-point tests, λk can be computed over each instance where a change can occur,

i.e. for k = 1, . . . , n−1. Since k is an unknown constant, the n−1 sub-test-statistics are usually

combined in one of two ways to form the overall test statistic for detecting change anywhere.

As discussed before, one uses either the supremum of the log-likelihood ratios over k (3.15) or

average the log-likelihood ratios over k (3.16), which agrees with a Bayesian setting assuming

a discrete uniform prior distribution on the change-point k. In either case, we would reject the

null hypothesis for large value of the test statistic where the critical regions, d1 and d2 are set

by some predetermined significance level.

λsup := sup
k=1,...,n−1

−2 log λk > d1 (3.15)

λavg :=
1

n− 1

n−1∑
k=1

−2 log λk > d2 (3.16)

Because of our set-up, the two test statistics reduce to considerably simpler form. Consider

first the logarithm of the likelihood for a single k:
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−2 log λk = −2 log

 n∏
j=k+1

sup
ω0∈Ω0

L(θj |α˜j)
sup
ω∈Ω

L(θj |α˜j)


= −2

 n∑
j=k+1

sup
ω0∈Ω0

`(θj |α˜j)−
n∑

j=k+1

sup
ω∈Ω

`(θj |α˜j)


=
n∑

j=k+1

2

(
sup
ω∈Ω

`(θj |α˜j)− sup
ω0∈Ω0

`(θj |α˜j)
)

The result is a sum of independent quantities because they are functions of independent

observations. Also, each term in the summation is non-negative thus −2 log λ1 ≥ −2 log λ2 ≥

. . . ≥ −2 log λn−1. This leads to the conclusion of the supremum of the likelihoods over all k

is λ1, i.e. the case where change-point occurs at time-point one. Also, an examination of the

average test statistic corresponds to a weighted sum of these independent quantities.

λsup = −2 log λ1 =

n∑
j=2

2

(
sup
ω∈Ω

`(θj |α˜j)− sup
ω0∈Ω0

`(θj |α˜j)
)

(3.17)

λavg =
1

n− 1

n∑
j=2

(j − 1)2

(
sup
ω∈Ω

`(θj |α˜j)− sup
ω0∈Ω0

`(θj |α˜j)
)

(3.18)

In each case the test statistic reduces to a sum of independent terms. In 3.17, the jth term

in the summation is the evidence against unimodality for each j ∈ {2, . . . , n} (single time point

of data). A zero value for the jth term indicates the unimodal and unrestricted MLEs are

the same at that time-point, indicating no evidence against unimodality at that time-point. A

value greater than zero implies the unrestricted MLE’s are better than the unimodal (restricted)
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MLEs, which indicates that the MLEs correspond to a multimodal distribution form. We reject

the null hypothesis for large values of the supremum test statistic.

In 3.18, the average test statistic reduces down into a weighted average of independent

terms. The terms are the same as in the supremum test 3.17, but the weight of each term

in the averaging process increases by an increment of 1
n−1 for every increase in a single unit

time-point. The last time-point of data has that largest weight of n−1
n−1 and time-point two

has smallest weight at 1
n−1 . The intuition behind this statistic is that change-points early in

the observation time period can be difficult to detect. The change may not be instantaneous

and could fluctuate between modes before the transition completes. Across all possibilities of

timings of a change-point, the last time-point vector of data would be the best indicator of the

occurrence of the change in distribution.

In either case, both 3.17 and 3.18 reduce down to a form of sum of independent terms. Each

term is the log-likelihood (or a weighted log-likelihood) for a single time-point of data. Though

the exact distributions of test statistics are very complex, this reduction promises potential for

obtaining the asymptotic distributions.

Thus far the discussion has been general and and holds for any unimodal or multimodal

densities. We now choose a specific model fj(αji, θj) for each i ∈ {1, . . . ,m} as in (3.8), the

mixture of two CNDs which allows for unimodality as well as bimodality.

A mixCND has a (3n+ 1)-dimensional parameter Θ with parameter space Ω = [−π, π)n ×

(0,∞)n × [0, 1]n × {1, . . . , n}. Under H0, the parameter space becomes Ω0 = Ω ∩ H0 = {θj ∈

ω0j ∀j} × {n}. Refer to Table 1.1 to view unimodal and bimodal parameter spaces.
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Under the mixCND special case, our likelihood ratio for single k ∈ {1, . . . , n − 1}, (3.8),

becomes:

λk =
n∏

j=k+1

sup
ω0∈Ω0

pCN(0, κ|α˜j) + (1− p)CN(δ, κ|α˜j)
sup
ω∈Ω

pCN(0, κ|α˜j) + (1− p)CN(δ, κ|α˜j) (3.19)

In the numerator of (3.19) we find the MLEs for (δ, κ, p) under the unimodal parameter space

for each vector of data.

In the denominator of (3.19) , we compute the unrestricted MLEs for (δ, κ, p) based on each

vector of data from the (k + 1)st to the nth. There is not an analytic solution for the MLEs

for the parameters of a mixCNDs. To find the MLEs we use the function nlimnb() in R which

uses a numerical minimization similar to Gauss-Newton algorithm for a non-linear parameter

space. See (Gay, 1990) for details.

With the assumptions made, combined with the simplified form of our test statistics we

can use the results in (Holzmann & Vollmer, 2008) to find the asymptotic distribution of the

test statistics. We begin with the results for the supremum statistic. In 3.17 the test statistic

reduced to a sum of independent vectors of data. Each term in the sum has the same form as

in 3.6 of (Holzmann & Vollmer, 2008). As long as there are a large number of observations for

each vector then each term converges in distribution to a mixture of chi-squared distributions.

The direct result is a convolution of independent mixtures of chi-square distributions. To see

how this convolution evolves, we examine a simple case where n = 3.
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For n = 3 the test statistic for the supremum will be the sum for two vectors of data.

Following notations as in (Holzmann & Vollmer, 2008):

λsuprem = R2m +R3m, (3.20)

where R2m
d−→
(
χ2

0 + χ2
1

)
/2 and R3m

d−→
(
χ2

0 + χ2
1

)
/2 for sufficiently large m.

The convolution of two distributions is defined as:

fX+Y (x) =

∫
fX(x− y)gY (y)dy (3.21)

Using the definition we have:

fX+Y (x) =

∫
1

2

(
χ2

0(x− y) + χ2
1(x− y)

) 1

2

(
χ2

0(y) + χ2
1(y)

)
dy

=
1

4

∫
1(x− y = 0)1(y = 0)dy +

1

4

∫
1(x− y = 0)χ2

1(y)dy

+
1

4

∫
1(y = 0)χ2

1(x− y)dy +
1

4

∫
χ2

1(x− y)χ2
1(y)dy.

The resulting integration can be broken down into cases:

fX+Y (x) =



0, ifx = y = 0

1
4χ

2
1(x), ifx = y

1
4χ

2
1(x), if y = 0

1
4χ

2
2(x), ifx > y.

We can express as f(x) = 1
4χ

2
0(x) + 1

2χ
2
1(x) + 1

4χ
2
2(x), a mixture of chi-square distributions.

This distribution is for the case of three independent vectors of observations. We now continue
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into the next case of 4 independent vectors.

λsuprem = (R2m +R3m) +R4m

Note the parenthesis since we proceed iteratively. Using the definition of convolution once

again, we have:

fX+Y (x) =

∫
1

2

(
χ2

0(x− y) + χ2
1(x− y)

) 1

4

(
χ2

0(y) +
1

2
χ2

1(y) + χ2
2(y)

)
dy

=
1

8

∫
1(x− y = 0)1(y = 0)dy +

1

4

∫
1(x− y = 0)χ2

1(y)dy

+
1

8

∫
1(x− y = 0)χ2

2(y)dy +
1

8

∫
χ2

1(x− y)1(x− y = 0)dy

+
1

4
χ2

1(x− y)χ2
1(y)dy +

1

8

∫
χ2

1(x− y)χ2
2(y)dy,

where the integral is once again represented into different cases:

fX+Y (x) =



0, ifx = y = 0

1
4χ

2
1(x), ifx = y,

1
8χ

2
2(x), ifx = y,

1
8χ

2
1(x), if y = 0,

1
4χ

2
2(x), ifx > y,

1
8χ

2
3(x), ifx > y.

The convolution is expressed as

fX+Y (x) =
1

8
χ2

0(x) +
3

8
χ2

1(x) +
3

8
χ2

2x+
1

8
χ2

3(x). (3.22)
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For Figure 3.2, we simulated 1000 test statistics of the supremum under the reality of the null

hypothesis. We have n = 4 time-points and examine the improvement of the λsup approximate

asymptotic distribution as the length of each vector (m) increases from 10, 30, to 50. In Figure

3.2, there is a point mass at 0 and then a Chi-square curve from there on. For m = 50, we plot

the asymptotic distribution in 3.22 over the histogram and notice a good approximation.

In Figure 3.3, we simulated 1000 test statistics of the average under the reality of the null

hypothesis and the results are similar to our asymptotic expectations. As m increases the

simulated distribution approaches a chi-square mixture distribution. The simulations support

our approximate distributions for m ≥ 20.

m = 10
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Figure 3.2: Simulated-based distribution of λsup for m = 10, 30, 50. Comparison of
simulated-based distribution to the asymptotic distribution in m = 50.
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m = 10
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Figure 3.3: Simulated-based distribution of λavg m = 10, 30, 50. Illustrate asm increases
an aymptotic distribution is obtained

The convolutions result in a mixture of Chi-square distributions with a growing number of

terms as the number of vectors increase. As the number of vectors increase there are a larger

number of terms to sum over which lead to Central Limit Theorem results.

Proposition 2 A general result for positive integers k and d, m ≥ 20. Then the asymptotic

distribution for the supremum test statistic is mixture of Chi-square distribution with weights,

number of terms, and degrees of freedom given by the following:

λsuprem =

n∑
i=2

Rim
d−→

n−1∑
i=0

(
n− 1

i

)(
1

2

)n−1

χ2
i (x) (3.23)
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These results work well for sufficiently large amount of data m from each vector, in our case

m ≥ 20. The mixture can become quite involved for larger number of time-points n. Referring

back to 3.17 and 3.18 are a sum of independent terms, where each term has asymptotic mixture

Chi-square distribution. One would suspect that as n increases the Central Limit Theorem

would give an approximate Normal distribution. The result would make the calculation of

rejection region much more user friendly.

In Figure 3.4, as n increases the distribution of λsup approaches a Normal distribution. In

each plot m = 50 and simulate the supremum test statistic for 1000 simulations. We then

examine the distribution as we increase the number of time-points n from 8,10, to 12. As n

increases the histogram of simulations becomes more and more symmetric and closer to a bell

curve shape. For n = 4 in Figure 3.2, the distribution is clearly skewed since there is much

weight on the point mass at 0 and we have chi-square distributions with 1 and 2 degrees of

freedom in the mixture. For statistics with n = 8 and n = 10 the histogram is shifting away

from skewness and becoming more symmetric. This is due to the fact of less weight on the

point mass at 0 and an increase in the number of Chi-square terms with increasing degrees of

freedom. For n = 12 there is a clear bell shaped curve and seems appropriate for a Normal

approximation via the Central Limit Theorem. We plot the asymptotic distribution and the fit

is close, but we recommend n ≥ 15.

Proposition 3 For sufficiently large m, R2m, . . . , Rnm are independent and identically dis-

tributed with 1
2χ

2
0 + 1

2χ
2
1 with mean 1 and variance 2. Then as n→∞,

(λsup − (n− 1))√
2(n− 1)

d−→ Φ(z), (3.24)
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n = 8
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Figure 3.4: Simulation-based distribution for n = 8, 10, 12 versus the CLT asymptotic
distribution of λsup

where Φ(z) is the Standard Normal cumulative distribution function.

We assume the process begins as a unimodal distribution, so we exclude the first time-point

of data. For the case of n = 12, the asymptotic distribution is N(11, 22) which close to the

behavior of the simulations. In Figure 3.5, we examine the simulation-based distribution of

λavg for n = 8, 10, 12 and note the density is approaching a Normal distribution shape. In each

plot m = 50 and simulate the average test statistic for 1000 simulations.

For m ≥ 20, we approximate the test statistics by a mixture of Chi-square distributions.

And if both m and n are sufficiently large, we can simplify our approximation into a single

Normal distribution by Central Limit theorem. If m is not large enough then we recommend to
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Figure 3.5: Simulation-based distribution for n = 8, 10, 12 of λavg. As n increases the
density is approaching a Normal distribution.

find critical values through simulations. Due to the the set-up of our problem and the parameter

spaces, the simulations must be performed for each set of data observed.

The exact distribution of test statistics (3.15) and (3.16) are unknown for small m, so the

critical values are found through parametric bootstrap simulations. That is, given the data we

find the MLEs for each vector of data under the unimodal parameter space. Then we use those

MLEs as the parameters for our simulations for each vector of data. In a simple example in

Table 3.3, we have a set of four independent vectors α˜1, α˜2, α˜3, α˜4, each with length 10 (m = 10),

and in this case, the data consists of ten observations at each of the four time-points.

In Table 3.3, the critical values for three different significance levels for each of the average

and supremum test statistics. The critical values were found by using the quantiles of simula-
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Table 3.1: Parametric bootstrap critical values for λsup and λavg statistics for data in
Table 3.3.

Significance Level : γ
0.10 0.05 0.01

Test Statistic
λavg 0.530 0.729 1.701
λsup 0.753 1.023 2.496

tions of the test statistics under the null hypothesis for two thousand iterations. In R, we use

the function rmixedvm() found in the circular package to simulate a mixCN random vari-

ables. The first two vectors of data (α˜1, α˜2) come from a unimodal distribution and the last two

(α˜3, α˜4) times come from a bimodal distribution. From Table 3.3, we see the first two vectors of

data are centered around 2π. For the third vector there are two separate concentrations around

2π and π/2. For the last vector in time there are two separate concentrations around 2π and

π.

Table 3.2: Small Sample Results with n = 4 and m = 10

n
1 2 3 4

m = 10
0.655 0.880 1.340 1.333
5.832 0.241 1.874 6.109
0.151 0.867 1.699 0.002
1.172 4.869 5.481 3.391
5.540 5.380 0.580 3.913
0.996 5.761 2.025 3.226
5.683 0.107 2.090 2.936
6.169 0.587 2.064 2.770
0.792 5.790 1.239 3.977
5.797 0.452 0.052 5.625

The observed test statistics for the data set were λsup = 1.910 and λavg = 1.865. For the

average test would reject the null hypothesis for the significance levels γ = 0.01, 0.05, 0.10. The
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supremum test rejects the null hypothesis for significance levels γ = 0.10, 0.05 with exception to

γ = 0.01. This parametric bootstrap produces fast and reliable results for small sample sizes.

Note that our test only tests for the existence of a change-point, whereas one also may concerned

with the location of the change-point k. We attempt to address this issue via Bayesian methods

in our next section.

Here is an outline on how to use GLRT for the change-point:

• If m < 20 and for any n, then estimate null distribution by simulating test statistic

under the null hypothesis using parametric bootstrap methods. That is, simulate the

test statistic according to the unimodal MLEs for each vector. Reject the null hypothesis

if the test statistic is larger than the upper γth percentile of simulations, where γ is the

significance level.

• If m ≥ 20 and n < 15, then reject null hypothesis if λsuprem > λsuprem(γ), where

λsuprem(γ) is the upper γth percentile of the distribution in 3.23.

• If m ≥ 20 and n ≥ 15, then reject null hypothesis if λsuprem > λsuprem(γ), where

λsuprem(γ) is the upper γth percentile of the distribution in 3.24.
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Chapter 4

A Bayesian Approach to detecting

change

In contrast to what was discussed in the earlier Chapter 3 relying on the GLRT, we now

take a completely different approach to detecting the change-point location k. Specifically, we

present a purely Bayesian approach that relies on computational tools such as the Markov Chain

Monte Carlo (MCMC). We specify prior distributions on each the parameters, including k, and

find the posterior distribution of the change-point k via the Metropolis-Hastings algorithm. In

Section 4.1, we first review a Bayes test for bimodality from (Basu & Jammalamadaka, 2000).

We then describe MCMC in Section 4.2 and in 4.3 we briefly review the Metropolis-Hastings (M-

H) algorithm. We briefly review the Metropolis-Hastings algorithm followed by an application

of the general theory to our situation. A good introduction to Metropolis-Hastings algorithm

can be found in (Chib & Greenberg, 1995). In Section 4.4 we apply M-H algorithm to estimate

the location of the change-point.
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4.1 A Bayes Test for Unimodality

As stated before, our goal is to consider a change-point problem but where the change-point

occurs in the number of modes of the true distribution from which the data is drawn. In (Basu

& Jammalamadaka, 2000), a Bayes test for bimodality for circular data is presented, which we

now review.

Let α1, α2, . . . , αn be i.i.d. observations from the circular density f(α). We want to test

H0 : f(α) is unimodal versus H1 : f(α) is not unimodal. A Bayes test is proposed based on

the observed data, which are assumed to come from a mixCND as in (1.15). The test uses

a prior distribution on the parameters. Independent priors are assumed for the parameters

µ1, µ2, κ1, κ2, and p. The posterior probability of f(α) being unimodal is then compared to the

prior probability of f(α) being unimodal. The probabilities are computed using Markov Chain

Monte Carlo sampling where the simulations used the densities described below.

The model structure for this procedure proceeds as follows:

- We observe circular observations α1, . . . , αn i.i.d. from density

f(α) = pCN(α|µ1, κ1) + (1− p)CN(α|µ2, κ2)

.
- The likelihood for the observed data is:

L(p, µ1, µ2, κ1, κ2|α˜) =

n∏
i=1

pCN(αi|µ1, κ1) + (1− p)CN(αi|µ2, κ2)

- The prior for µj is p(µj) = CN(νj , τj), j = 1, 2.

- The prior for κj is p(κj) = Gamma(νj , τj), j = 1, 2.

- The mixing proportion p has a Uniform[0,1] prior distribution.
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The choice of these prior distributions for mean directions and concentration parameters are

commonly chosen. The CN serves as a conjugate prior for the mean direction since the CND is a

member of the exponential family. There is no conjugate prior for the concentration parameter

κ, but since it takes non-negative values on the real line, a Gamma density provides a good

and flexible prior. As for the the mixing proportion, the Uniform prior density is used to reflect

maximum uncertainty. We also assume that these prior distributions are independent.

From the data and prior distributions a test is derived to determine which model best fits

the data. The Bayes factor is used to test H1 against H0 given the data and is defined as:

B10 =
Posterior Odds

Prior Odds
=

P(H1|data)P(H0)

P(H0|data)P(H1)
(4.1)

We would reject H0 for large values of the Bayes factor in (4.1). A table which lists the strength

of evidence against H1 is found in (Basu & Jammalamadaka, 2000).

The prior probability of unimodality is the integral of the joint prior density f(µ1, µ2, κ1, κ2, p)

over the region where the parameter space gives a unimodal density for the mixture of two

CNDs. The region of the parameter space Ω0 over which unimodality holds, is given earlier in

Table 1.1. Specifically,

P(H0) =

∫
Ω0

f(µ1, µ2, κ1, κ2, p)dω (4.2)

Since the prior densities are assumed independent, the joint prior distribution is the product

of five prior densities. However, the integral over the unimodal parameter space makes the

integral analytically intractable. Instead a Monte Carlo method was used to estimate P(H0)

and the method is outlined below:
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(i) Let φ˜ = f(µ1, µ2, κ1, κ2, p), then generate i.i.d. samples {φ˜(t) : t = 1, . . . , T1} from the

joint prior distribution of φ˜.

(ii) For each generated φ˜(t), we check if the mixture density is unimodal using the Mardia-

Sutton condition.

(iii) An estimate for P(H0) equals {Number of generated samples φ˜(t) in which f(α) was

unimodal}/T1.

Due to independence, simulating from the joint prior density reduces to simply simulate component-

wise densities at each step.

Next, we outline the calculation for the posterior probability of unimodality:

P(H0|data) =

∫
Ω0

f(µ1, µ2, κ1, κ2, p|data)dω, (4.3)

namely the posterior joint distribution integrated over the unimodal parameter space. The

procedure to estimating this probability would be the analogous to before in steps (i) and (ii).

However, direct simulation from f(µ1, µ2, κ1, κ2, p|data) is difficult since the joint distribution

is analytically intractable. So steps (ii) and (iii) remain the same as before, but step (i) of the

Monte Carlo sampling, we will use MCMC sampling for step (i). We will not outline the Gibbs

Sampling technique but the gist of the algorithm is to simulate alternately and iteratively for the

conditional posterior distributions of each unobservable given the data and other observables.

See for instance (Muralidharan & Parikh, 2012) for one example of the Gibbs Sampler. There

is no common agreement on how to derive the full conditionals needed for the Gibbs sampler

in the mixCN context so instead of Gibbs sampling, we use a Metropolis-Hastings approach.
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4.2 Markov Chain Monte Carlo Simulation

The usual approach to Markov chain theory on a continuous state space is to start with

a transition kernel P (x,A) for x ∈ Rd and A ∈ B, where B is the Borel σ-field on Rd. The

transition kernel is a conditional distribution function that represents the probability of moving

from x to a point on the set A. This transition kernel is a probability distribution function

such that P (x,Rd) = 1 and P (x, x) is not necessarily zero.

In Markov chain theory, we consider conditions needed to show the existence of an invariant

distribution π∗ and conditions for the iterations of the transition kernel to converge to the

invariant distribution. The invariant distribution satisfies

π∗(dy) =

∫
Rd

P (x, dy)π(x)dx (4.4)

where π is the density with respect to the Lebesgue measure of π∗. The nth iterate is given

by P (n)(x,A) =
∫
Rd P

(n−1)(x, dy)P (y,A), where P (1)(x, dy) = P (x, dy). Under some regularity

conditions, it can be shown that the nth iterate converges to the invariant distribution as

n→∞.

MCMC methods work in the opposite direction using the known invariant distribution

(perhaps up to a constant multiple). Here π(.), is the target density from which samples are

desired. To generate samples from π(.), MCMC methods find and utilize a transition kernel

P (x, dy) whose nth iterate converges to π(.) for large n. The process is then started for some

value of x and iterated a large number of times. After a sufficient amount of iterations the

generated observations approximates the target distribution.

Suppose that the transition kernel, for some function p(x, y) can be expressed as
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P (x, dy) = p(x, y)dy + r(x)δx(dy) (4.5)

where p(x, x) = 0, δx(dy) = 1 if x ∈ dy and 0 otherwise, and r(x) = 1 −
∫
Rd p(x, y)dy is the

probability that the chain remains at x. Note that since the chain can remain at x, the integral

of p(x, y) with respect to y does not necessarily equate to 1. Now we assume that p(x, y) in

(4.5) satisfies the reversibility condition:

π(x)p(x, y) = π(y)p(y, x) (4.6)

with this property we say π(.) is the invariant density of P (x, .). The verification of the result

is given by, ∫
P (x,A)π(x)dx =

∫ [∫
A
p(x, y)dy

]
π(x)dx

+

∫
r(x)δx(A)π(x)dx

=

∫ [∫
A
p(x, y)π(x)dx

]
dy

+

∫
A
r(x)π(x)dx

=

∫ [∫
A
p(y, x)π(y)dx

]
dy

+

∫
A
r(x)π(x)dx

=

∫
A

(1− r(y))π(y)dy +

∫
A
r(x)π(x)dx

=

∫
A
π(y)dy.

In the reversibility equation, 4.6, p(x, y) is the unconditional probability to move from x to y,

when x is generated from π(.). Also, p(y, x) is the unconditional probability to move from x
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to y, when y is generated from π(.). By reversibility the two sides are equal and thus π∗ is the

invariant distribution for P (., .). This result provides a sufficient condition for p(x, y) and next

we will demonstrate how a specific Metropolis-Hastings algorithm finds such a p(x, y).

4.3 Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm is akin to the Acceptance-Rejection sampling

method for generating independent samples, but since how we are simulating dependent Markov

chains, the density will depend on the prior point in the chain’s state. We begin with the

candidate-generating density denoted q(x, y), where
∫
q(x, y) = 1. The density generates a

value y when the process is currently at point x. If q(x, y) satisfies 4.6 for all x and y, then our

search is complete. This is the unlikely outcome and we may have for some x, y:

π(x)q(x, y) > π(y)q(y, x). (4.7)

.
In this special case, the process will move from x to y too often, and from y to x too

rarely. An easy correction to reduce the over abundance of moves from x to y is to introduce

a probability α(x, y) < 1 that the move is made. If a move is not made the process remains at

point x. Moves from x to y are determined by:

pMH(x, y) = q(x, y)α(x, y) x 6= y.

If 4.7 holds, α(y, x) is set to equal one since moves from y to x are not made often enough. And

α(x, y) is determined such that pMH(x, y) satisfies the aforementioned reversibility condition

i.e.,
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π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)

= π(y)q(y, x)

From this result α(x, y) = π(y)q(y, x)α(y, x)/ (π(x)q(x, y)), in order for pMH(x, y) to satisfy

the reversibility condition. Therefore,

α(x, y) = min

[
π(y)q(y, x)

π(x)q(x, y)
, 1

]
, if π(x)q(x, y) > 0, (4.8)

= 1, otherwise. (4.9)

Next we consider the possibility of the process to remain at point x. From our definitions,

we have the probability to remain at point x given by,

r(x) = 1−
∫
Rd

q(x, y)α(x, y)dy.

Then the transition kernel of the M-H chain, PMH(x, dy), is defined as,

PMH(x, dy) = q(x, y)α(x, y)dy

+

[
1−

∫
Rd

q(x, y)α(x, y)dy

]
δx(dy),

This is a particular case of 4.5 and since pMH(x, y) is reversible by construction, the M-H

kernel has π(x) as its invariant density. (Note, we can use similar proof as in the previous

general case). Note, if the candidate value is rejected, then the current value remains as the

process continues into the next step. Also, if the candidate-generating density is symmetric, i.e.

q(x, y) = q(y, x), then the probability of a move becomes π(y)/π(x). Another useful fact is the
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calculation of α(x, y) does not require the normalizing constant of π(.) because this normalizing

constant appears in both numerator and denominator.

As with any MCMC method, the chain takes time until the the transient (burn-in) stage is

passed. Meaning initial values generated from π(x) are discarded until the process has converged

to the invariant distribution. Under mild regularity conditions the chain is guaranteed to

converge if run infinitely long, but the selection of q(x, y) will determine the rate of convergence.

In (Chib & Greenberg, 1995), presents are five methods in selecting q(x, y), but we mention the

one used for our study that was first introduced by (Metropolis et al. , 1953).

The family of generating densities we use are specified such that q(x, y) = q1(y − x), where

candidate y is drawn according to process y = x + z. The candidate y is equal to the current

value x, plus some white noise z. If q1 is selected such that q(z) = q(−z),then the probability

of moving from x to y reduces to

α(x, y) = min

[
π(y)

π(x)
, 1

]
. (4.10)

This is referred as the ‘random walk’ chain. Common choices for q1 include Normal distributions

with mean equal to the current value x and variance selected such that we have a favorable

acceptance rate of approximately .45 as proposed by (Roberts et al. , 1997). The scale parameter

of the candidate-generating density determines the acceptance rate and if the parameter space

is fairly covered , i.e. our candidates can come from anywhere in the parameter space. If the

scale parameter is relatively large, then generated values have high probability of being far

from current value resulting in low probability of acceptance. If the scale is too small, the

chain will take longer to reach approximate convergence and spaces with low probability will

be under-sampled. The scale parameter is hence called the tuning parameter of our chain. A
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reduction of scale parameter in the former case, and an increase in scale parameter, will remedy

the issues.

One can construct an M-H algorithm, but care is needed when adjusting tuning parameters

for each set of data. (Roberts & Rosenthal, 2009) provide examples of how to make the M-H

algorithm adapt to different scenarios of data. In one example, they use the aforementioned

random walk M-H algorithm and periodically check the acceptance rate for the previous 50

iterations of the chain. If the acceptance rate is below the desired .45, then the adaptive

chain will increase the tuning parameter, and will decrease if acceptance rate above .45. This

adaptive tuning is performed until the process has traversed the transient state. With this

detailed introduction to the M-H algorithm, we will now apply the method in detecting the

change-point.

4.4 M-H Algorithm for Posterior Distribution of The

Change-Point

As mentioned earlier, the likelihood ratio test will determine if a change-point exists, but

is not specifically focused on pinpointing the location of that change. In this section, we use a

M-H algorithm to generate values from the posterior distribution of the change-point k. These

generated values will give the scientist a posterior probability distribution for the location of the

change-point. We now make one subtle but important change from our assumptions of Chapter

3 where we used the GLRT approach. For the change-point k, we now assume α˜1 . . . αk˜ are i.i.d.

vectors of observations i.e. we assume α˜1 . . . αk˜ follow the same unimodal distribution while
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the remaining α˜k+1 . . . α˜n vectors are i.i.d. from correspond to the same bimodal distribution

i.e. there are two sets of parameter values one before change and one after the change. This

avoids the multiple parameter vectors, one for each step j ∈ {1, . . . , n}, that were allowed in

the earlier GLRT set-up of Chapter 3.

Before we present our algorithm and the results we introduce the steps involved.

Let θu = (pu, µu, δu, cu, κu) and θb = (pb, µb, δb, cb, κb) represent the parameter vectors under

the unimodal and bimodal parameter spaces. We wish to simulate from the posterior of the

change-point distribution k which is given by,

π(k|θu,θb,α) =
fα(α|θu,θb)π(θu)π(θb)π(k)∫ ∫ ∫

fα(α|θu,θb)π(θu)π(θb)π(k)dθudθbdα
(4.11)

The constant in the denominator of posterior is not needed to sample from the posterior of

k when using the M-H algorithm. In this approach, we use a different re-parametrization

compared with the GLRT to avoid identifiability issues, since we wish to recover all parameters

involved including the change-point k. For example, with δ = |µ1 − µ2|, suppose the triple

(δ, κ, p) gives a unimodal distribution, then any (µ1, µ2) with difference δ will give the same

unimodal shape but have shifted centers. We can recover the true values of the pair (µ1, µ2) if

we re-express our mixCND in 1.15 as,

fα(α|θ) = pCN(µ+ cδ, κ) + (1− p)CN(µ, κ), (4.12)

where 0 < p < 1/2, κ > 0, 0 ≤ µ < 2π, 0 ≤ δ ≤ π, and c = {1,−1}. This parametrization

allows for easy reference in checking modality and for recovering the values of all parameters

involved. For a given value of κ, Figure 4.1, shows that for a given value κ, the parameter space
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is symmetric around the horizontal line p = 1/2. By symmetry we can restrict 0 < p < 1/2,

and thus speed up computations. Recall, area within the wineglass-shaped curve is the bimodal

parameter space and outside the wineglass shape is the unimodal parameter space. An increase

in the value of κ, will increase the area within the wineglass region.

Figure 4.1: Given κ, Unimodal and Bimodal Parameter from Table 1.1 is Symmetric
Around p = 1/2.

The symmetry in the parameter space allows the restriction on p. Also, µ1 = µ + cδ and

µ2 = µ as in 1.15, gives the location of (µ1, µ2). Where δ gives the absolute difference between

the mean directions and c gives the direction of the difference. Also in 1.15, µ1 = µ + cδ and

µ2 = µ in 4.12. The parameter c takes value either -1 or 1, depending if µ1 − µ2 is a negative

or positive difference.

We now introduce the probability distributions and the priors used.

• fα(α|θu,θb) =
∏k
j=1 mixCN(α˜j |θu)

∏n
j=k+1 mixCN(α˜j |θb)

where mixCN(α˜j |θu) = puCN(µu + cδu, κu) + (1− pu)CN(µu, κu),

and similarly for mixCN(α˜j |θb)
82



A Bayesian Approach to detecting change Chapter 4

• π(θu) Uniform distribution on unimodal space given by Table 1.1

• π(θb) Uniform distribution on bimodal space given by Table 1.1

• π(k) discrete Uniform distribution on values k = 1, . . . , n.

Our uniform priors are indication that we lack prior information of form of unimodal/bimodal

parameter spaces or where the change-point location may be. Now we will provide an outline

for the M-H algorithm. (Note that superscript in θ(c) represents candidate and c(t+1), cu, cb

denote the sign of difference between µ1 and µ2. The c has two different meanings and we

list to avoid any confusion.) Let θ = (θu,θb, k) and we use symmetric candidate generating

functions therefore the probability of process to move is as in 4.10, where α(θ(t),θ(c)) is given

by,

∏k
j=1 mixCN(α˜j |θ(c)

u )
∏n
j=k+1 mixCN(α˜j |θ(c)

b )|J(c)|∏k
i=1 mixCN(α˜j |θ(t)

u )
∏n
i=k+1 mixCN(α˜j |θ(t)

b )|J(t)|
(4.13)

where |J(t)| and |J(c)| are the determents of the Jacobian matrices. θ(t) and θ(c) represent the

current and candidate value of parameter vector θ. The need for the Jacobian matrices is due

to the fact that we generate functions of some parameters that ensure we have a symmetric

generating function. The list of generating functions for t ∈ {1, . . . , N} is given by,

• ω(c) ∼ N(logit(2p(t)), σ2
ω), thus p(c) = expω(c)

2(1+expω(c))2

• µ(c) ∼ CN(µ(t), τµ)

• ψ(c) ∼ CN(2δ(t), τψ), thus δ(c) = ψ(c)

2
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• c(t+1) = 1, w.p. ∝
∏k
i=1 mixCN(α˜j |θ(t)(c = 1))|J(t)|

= −1, w.p. ∝
∏k
i=1 mixCN(α˜j |θ(t)(c = −1))|J(t)|

• η(c) ∼ N(log(κ(t)), σ2
κ), thus κ(c) = exp η(c)

• k(t+1) is sampled from discrete distribution on {1, . . . , n} w.p.

P(K = i) ∝
∏i
j=1 mixCN(α˜j |θ(t)

u )
∏n
j=i+1 mixCN(α˜j |θ(t)

b )|J(t)| where i = 1, . . . , n.

The first five generating functions are in general form, but they are used for both the

unimodal and bimodal parameter sets. Each candidate value of θ(c) which are ω(c), µ(c), ψ(c), η(c),

are generated from a distribution that is centered around the current value, θ(t). The scale

parameters σ2
ω, τµ, τψ and σ2

κ are the tuning parameters of our algorithm.

• Repeat for t = 1, . . . , N

• Begin with θ(0) = (θ
(0)
u ,θ

(0)
b , k), where parameters are randomly selected within their

respective parameter spaces.

• Generate p(c)

– If p
(c)
u falls in the unimodal parameter space (given δ

(c)
u , κ

(c)
u ) continue to (*),

otherwise θ(t+1) = θ(t)

∗ Generate u ∼ U(0, 1), if u ≤ α(θ(t),θ(c))

—set θ(t+1) = θ(c)

∗ Else θ(t+1) = θ(t)

• Generate µ(c) and u ∼ U(0, 1)
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– If u ≤ α(θ(t),θ(c))

—set θ(t+1) = θ(c)

– Else θ(t+1) = θ(t)

• Generate δ(c)

– If δ
(c)
u falls in the unimodal parameter space (given p

(c)
u , κ

(c)
u ) continue to (*),

otherwise θ(t+1) = θ(t)

∗ Generate u ∼ U(0, 1), if u ≤ α(θ(t),θ(c))

—set θ(t+1) = θ(c)

∗ Else θ(t+1) = θ(t)

• Generate c(t+1) according to aforementioned sampling technique.

• Generate κ(c)

– If κ
(c)
u falls in the unimodal parameter space (given p

(c)
u , δ

(c)
u ) continue to (*),

otherwise θ(t+1) = θ(t)

∗ Generate u ∼ U(0, 1), if u ≤ α(θ(t),θ(c))

—set θ(t+1) = θ(c)

∗ Else θ(t+1) = θ(t)

• Repeat for parameters in θb, but check if triplet (pb, δb, κb) are bimodal.

• k(t+1) is sampled from aforementioned sampling technique.

• Increment t and repeat. Return the values for t ∈ {1, . . . , N}, {θ(1),θ(2), . . . ,θ(N)}
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When generating the values for δ, κ and p, we need to check if we are in the unimodal or bimodal

parameter space before we continue with the usual M-H acceptance-rejection step. In our first

example (Simulation 1) we simulate a scenario with α˜1, . . . , α˜8, i.e. 8 vectors of data each with

20 observations. Here the first 7 vectors of data come from a mixture with θu = (pu = .7, µu =

π/2, δu = π/8, κu = 1) and the last with θb = (pb = .65, µb = π/8, δb = π, κb = 5). The

density of the unimodal and the bimodal density is given in Figure 4.2, showing that both these

unimodal and bimodal densities are far from each other in shape and center of mass.
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Figure 4.2: Densities of Unimodal and Bimodal Mixtures used in Simulation 1

We ran our M-H algorithm for N = 100, 000 simulations and the trace plots for most

parameters are given in the Figures 4.3, 4.4, and 4.5. For each parameter we appear to have

approximately converged to the stationary univariate distribution given by the trace plots in

Figure 4.4. For the unimodal trace plots in Figure 4.5 we have satisfactory results. In the trace

plot for µu it seems there are jumps to larger values but this due to the alternating value from

1 to -1 for parameter cu, thus π/8 will become (2π−π/8), which are equivalent. The unimodal

distributions are very similar so this alteration in cu does not disrupt our process. The trace

plot ?? for the change-point is most impressive as the posterior distribution concentrates at

k = 7 very quickly and remains there for the remainder of the iterations. The value is correct
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as the first 7 vectors of data come from a unimodal distribution and the last vector comes from

a bimodal distribution.

In our next example (Simulation 2) we simulate from unimodal and bimodal distributions

more similar in terms of shape and center of mass. In Figure 4.6 we have the densities of

unimodal and bimodal distributions used for simulation. Here θb = (pb = .3, µb = π/4, δb =

π/2, κb = 4) and θu = (pu = .3, µu = 0, δu = 3π/8, κu = 2). The distributions have approxi-

mately the same center and the bimodal density is not very pronounced, meaning the bimodal

parameter values are near the unimodal boundary. Here we simulate 8 vectors of data again

where the first three are simulated under the unimodal density and the last five under the

bimodal density (k = 3).

In Figure 4.7, the trace plot fluctuates for k between k = 3 and k = 4, with slightly more

emphasis on k = 3. This is not the exact value but still a good approximation given that data

were simulated from two very similarly shaped distributions. In Figures 4.8 and 4.9 we have the

trace plots for the unimodal and bimodal parameters. The bimodal parameters converge quite

well, and in the unimodal parameter set have some jumps in µu which is caused by parameter

cu.

Overall, this method works very well with the additional but reasonable assumption of

identically distributed unimodal and bimodal distributions. If this assumption does not hold,

then the GLRT procedure discussed in the earlier Chapter is a more suitable test.
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Figure 4.3: Trace Plot for Change-Point k in Simulation 1
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Figure 4.4: Trace Plots for θb = (pb = .65, µb = π/8, δb = π, κb = 5) in Simulation 1
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Figure 4.5: Trace Plots for θu = (pu = .7, µu = π/2, δu = π/8, κu = 1) in Simulation 1
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Figure 4.8: Trace Plots for θb = (pb = .3, µb = pi/4, δb = π/2, κb = 4) in Simulation 2
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Figure 4.9: Trace Plots for θu = (pu = .3, µu = 0, δu = 3π/8, κu = 2) in Simulation 2
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Future Work

5.1 Preliminary Test Estimation

In the discussions on the PTE we relied primarily on numerical simulations, but can aim to

try to derive analytical forms for the MSE and MRE of the PTEs. We also will explore if the

non-centrality parameter has a connection to those obtained in linear models setting. Though

through our simulations, MRE in the circular context behaves similarly to the linear versions.

5.2 Change-point Problems

In our Bayesian approach for detecting a change in the number of modes, for each scenario,

we needed a manual adjustment of tuning parameters. One could follow the work of Roberts

& Rosenthal (2009), and implement an adaptive procedure. As stated there, an increase in

value of tuning parameter will decrease the acceptance rate, while a decrease will increase

the acceptance rate. An adaptive process can periodically monitor the acceptance rate, then
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increase the tuning parameter if acceptance rate is above 44% or decrease paramter if the

acceptance rate falls below 44%.

If we suspect that the unimodal/bimodal distributions are identical then the M-H algorithm

can be employed. If they are not identically distributed then our M-H algorithm will not suffice,

whereas use of the GLRT will be useful. In future work, we may be able to develop an M-H

algorithm for the non-identically distributed case, but it will require many more parameters in

the M-H simualtion.

A wrapped circular distribution comes from wrapping a linear distribution around the unit

circle. One example is wrapping a mixture of Normal distributions. Many interesting linear

properties like symmetry and bimodality of such a mixture are retained in the circular case (see

Jammalamadaka & Kozubowski (2015)). For example, if a mixture of Normals is bimodal, then

the wrapped version will also be bimodal. One can bring to bear the unimodal and multimodal

parameter subspaces of mixtures of Normals to our change-point problem, and we expect the

resulting analysis to be simpler than dealing with the mixCND that we analyzed.
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