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ABSTRACT 

 
Effects of Short Interval Wildfires on Southern California’s Wildland Communities 

Using Historical Aerial Photographs 

by 

Stephanie Akemi Ma 

 
Wildfire return intervals are expected to decrease in shrubland communities 

across southern California due to increasing anthropogenic fire ignitions and climate 

change. These shortened fire intervals may initiate a positive feedback, placing native 

chaparral species at risk of replacement by alien annual grasses. This shift is predicted 

because many chaparral species require multiple years to recover from a wildfire 

disturbance (i.e., to replenish the seedbank or to replenish underground carbohydrate 

reserves) and if a second wildfire occurs in quick succession, these species may 

experience a severe population decline or even extirpation as new seedlings or young 

resprouts are killed.  

After generating a wildfire occurrence map, I selected twelve polygons that 

experienced two wildfires within five years to evaluate vegetation change following a 

short-interval fire. All polygons were located in Ventura or Los Angeles County, 

California and spanned a temporal range from 1956 to 2003. These polygons were then 

compared to adjacent polygons that experienced only one wildfire within the same five-

year period. In order to capture prefire vegetation conditions, historical aerial 

photographs (HAPs) were selected as-close-to before the first wildfire as possible. In 

order to capture the maximum postfire growth, HAPs were chosen to be no less than six 

years following the second wildfire. Prefire and postfire images were georectified and 
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used to calculate ground cover using five community types: chaparral, alien annual grass, 

sage scrub, tree or bare ground/exposed rock.  

To determine the role of regional moisture gradients and environmental 

conditions in predicting vegetation change I investigated aspect, location in relation to the 

Santa Ana wind corridors, distance from the coast, time since fire, and prefire cover 

values as potential predictors of the strength and direction of vegetation responses. 

Results showed no significant differences in vegetation cover from short-interval 

wildfires compared to adjacent single wildfires. Prefire vegetation cover was highly 

correlated with postfire cover. Chaparral and sage scrub cover showed strong trends in 

relation to the time since fire, especially following a single wildfire: positive vegetation 

change for chaparral and negative vegetation change for sage scrub. Location in relation 

to the Santa Ana wind corridors and distance from the coast were not found to be 

significant factors of vegetation change. By contrast, ‘aspect’ correlated with significant 

differences in vegetation cover, regardless of wildfire history, for chaparral and sage 

scrub communities: chaparral cover declined and sage scrub cover increased after 

wildfire on north, but not south, aspects. This study did not find evidence of chaparral 

loss strictly as a result of a single short-interval wildfire. I propose that additional factors, 

such as aspect and initial community cover (extent), may be equally or more important 

than a single short-interval fire when predicting vegetation changes following wildfire in 

southern California.  

 

Keywords: chaparral, alien annual grass, short interval wildfire, historical aerial 

photographs, southern California 
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I. INTRODUCTION 
 

Fire-prone ecosystems in the United States are experiencing alterations from their 

historical fire regime due to increased human influence (Syphard et al. 2007a, Nowacki 

and Abrams 2008). Fire frequency, or the interval time between fire events, is the most 

direct way humans can alter a fire regime. For example, fire suppression has lengthened 

the interval time between fires in the northern Rockies (Barrett and Arno 1982), in 

western Washington (Everett et al. 2000), and in the Eastern US (Nowacki and Abrams 

2008). As a result, fire-adapted tree species have been replaced by fire-sensitive, shade-

tolerant ones. A shorter fire interval can also place fire-prone ecosystems at risk. In 

southern California, a fire return interval shorter than what is considered to be historical, 

can result in native shrub species being replaced by alien annual grasses (Haidinger and 

Keeley 1993, Zedler et al. 1983, Keeley 2001).  

In these southern California chaparral ecosystems, the historical fire return 

interval is approximately 20-60 years (Keeley 1987, Keeley et al. 2004) and in some 

locations may be as long as 150 years (Syphard et al. 2006). Fires are typically crown 

fires, burning all of the above-ground biomass, in this classic Mediterranean climate 

region (Hanes 1971). Chaparral shrubs then return to prefire canopy cover generally 

within the first decade (Hope et al. 2007, Peterson and Stow 2010) and to prefire stand 

conditions within the second decade following fire (Hanes 1971).  

In contrast, the current fire return interval can be much shorter due to increased 

anthropogenic fire ignitions caused by increasing human populations (Keeley and 

Fotheringham 2001) and an expansion of the wildland-urban-interface (Syphard et al. 

2007b). Climate change is also expected to shorten mean fire return intervals as southern 
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California becomes warmer (Krawchuk and Moritz 2012). Furthermore, with the 

introduction of alien annual grasses, chaparral communities can be driven toward a new 

successional trajectory (D’Antonio and Vitousek 1992) leading to the extirpation of many 

shrub species and the expansion of opportunistic alien annual grasses (Brooks et al. 2004, 

Keeley and Brennan 2012). 

Unintentional shifts from chaparral dominated communities to alien annual grass 

dominated communities due to a short interval fire sequence was proposed in the 1980’s 

by Zedler et al. (1983) when two wildfires burned portions of San Diego County in 1979 

and 1980, the latter fire reburning a portion of the former. Zedler et al. (1983) found a 

reduction in density of key chaparral shrub species including Ceanothus oliganthus and 

Adenostoma fasciculatum in the initial postfire year in the reburned area. They also noted 

that Bromus and Avena were highly abundant without being seeded into the site. 

Haidinger and Keeley (1993), also in San Diego County, monitored A. fasciculatum 

regrowth following a short interval wildfire (1986, 1991) and likewise found a reduction 

in resprout and seedling density compared to sites that burned only once (1991). They 

also found an increase in weedy species such as Schismis barbatus and Brassica nigra. 

Later on, Keeley and Brennan (2012) monitored regrowth following a short fire interval 

(2003, 2007) and again recorded a reduction in A. fasciculatum and Ceanothus 

tomentosus density and an increase in Bromus madritensis, an invasive alien annual 

grass, at sites with the four-year fire interval compared to sites that had a nine- to thirty-

one-year interval.  

A decline in chaparral cover and an increase in annual grasses have also been 

predicted with vegetation models. Simulating three fire-regime treatments (60, 30, 15 
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years), Syphard et al. (2006) found the shortest fire-regime treatment (15 years) led to the 

highest amounts of annual grass cover and lower amounts of chaparral cover compared to 

the longest treatment (60 years). They further predicted direct conversion from chaparral 

to annual grasses under the shortest fire regime treatment (15 years).  

Some studies, however, indicate a natural tendency for chaparral shrubs to regain 

dominance over annual species, or at least more complex interactions of vegetation 

communities under differing conditions, and several practitioners have noted how 

difficult it is to eliminate chaparral (Bentley 1967, Rosario and Lathrop 1974, Fuhrmann 

and Crews 2001). Keeley et al. (2006) found most chaparral species recovered to prefire 

conditions five years after wildfire in San Diego County. From the same wildfire, Keeley 

et al. (2005a) also observed a continued increase in shrub and subshrub cover and a 

decline in annual species cover over time, suggesting a correlation between total shrub 

cover and time since fire. Furthermore, Syphard et al. (2007b) predicted conversion from 

alien annual grass cover back to chaparral cover under a fire frequency of 60 years 

suggesting that with enough fire-free years, chaparral could reestablish after annual grass 

invasion.  

Thus, although loss of individual shrubs and declines in shrub seedling 

recruitment have been observed on very short postfire time scales, the question remains 

as to what happens to chaparral on a longer time scale following a short interval fire? 

Jacobson et al. (2004) compared long (≥12 years) and short interval fires (≤6 years), in 

Los Angeles County, with seven to twenty-five fire-free years postfire. They measured 

present-day functional group densities in the field and found significantly fewer chaparral 

species that rely on seeds for recruitment and a significant increase in coastal sage scrub 
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species (drought deciduous shrubs and subshrubs) at sites that experienced a short 

interval fire. Meng et al. (2014) used 30-meter multispectral Landsat TM data to calculate 

the difference in chaparral cover across southern California between paired sites of long 

and short (<8 years) interval wildfires with one to eight fire-free years postfire. Their 

results found no strong overall trends in shrub reduction due to a short interval fire (i.e., 

half of the sites increased in chaparral cover following a short interval fire while the other 

half either remained the same or chaparral cover declined), but they did find a strong 

correlation between elevation and postfire chaparral regrowth. Specifically, chaparral 

communities at lower elevations were more susceptible to reduced recovery, which 

coincides with elevations where sage scrub and alien annual grasses were abundant, 

suggesting that conversion could be occurring but only in some portions of the landscape.  

While plot level data (e.g., Jacobson et al. 2004) offer insight into change at very 

local scales, Landsat data (e.g., Meng et al. 2014) are taken at a very large scale and are 

only available since 1983, obscuring the ability to detect more subtle vegetation changes 

driven by fire. Historical aerial photographs offer a level of resolution between Landsat 

and on the ground plot data but have not been used yet to study patterns of chaparral 

cover change after wildfire. In this study, I measured the difference in vegetation cover 

following a long or short interval wildfire using historical aerial photographs. This 

approach allowed me to evaluate vegetation regrowth after numerous historical wildfires 

(1956-2003) with six to thirty-eight fire-free years postfire. In contrast to Meng et al. 

(2014), this method allowed for examination of the landscape at a much finer (one-meter) 

spatial resolution and over a longer time interval. Through evaluation of pre- and postfire 

images, I asked 1) does mature chaparral cover decline following a single short interval 
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wildfire event in comparison to a single wildfire? and if so 2) where are chaparral 

communities declining? Furthermore, I explored 3) what landscape variables may help 

predict future chaparral vegetation losses or gains. 

 

 

II. METHODS 
 
A. Mapping the occurrence of short interval wildfires 

Fire history data (1879-2009) were acquired from the Fire and Resources 

Assessment Program (FRAP) database (CALFIRE, www.fire.ca.gov), reporting fires ≥ 4 

hectares. The shapefile was then clipped to select for wildfires that fell within the study 

area of Ventura and Los Angeles Counties.  

To map the occurrence of short interval wildfires, the fire history data were 

manipulated in ArcMap (ArcGIS 10.1) using the Feature to Polygon tool to create 

polygons with unique wildfire histories (e.g., “Fire Alarm Date”). A centroid point was 

then placed within each polygon with the Feature to Point tool and the two layers (the 

polygon layer and the point layer) were merged to count how many polygons overlapped 

each centroid point, following the “spaghetti and meatballs” technique (Honeycutt 2012, 

Moritz 2003). The output file was a merged shapefile with unique wildfire histories that 

preserved all the original wildfire perimeter information.  

Next the attribute table of the merged shapefile was exported to Microsoft Excel 

(Microsoft) and new metrics such as “Minimum Fire Interval” and “Number of Fires” 

were calculated. Wildfire perimeters were corrected to eliminate single wildfires that 

were reported by multiple agencies, for example if a polygon had multiple “Fire Alarm 
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Dates” in the same year (Jacobson et al. 2004). The modified Excel table was finally 

joined back to the merged shapefile in ArcMap. The resulting polygons of the merged 

shapefile reflected the complete fire history of each location with original fire perimeters 

and Fire Alarm Dates from the fire history data as well as the calculated interval time (in 

years) that occurred between each wildfire at each location (Figure 1a, Table 1).  

 

B. Selection of twelve paired sites in Ventura and Los Angeles Counties 

Ventura and Los Angeles Counties are ideal for determining the effects of a short 

interval wildfire because the region is highly vulnerable to fire during the dry months 

(July-October) when Santa Ana wind conditions promote fast spreading wildfires 

(Hughes and Hall 2010). In addition, the number of short interval wildfires is predicted to 

increase as the population of southern California continues to grow (Keeley and 

Fotheringham 2001, Myers and Pitkin 2013). 

To quantify the effect of a single short interval wildfire on vegetation in this 

region, twelve sites of adjacently paired polygons that experienced either one wildfire or 

two wildfires within the same five-year period were identified. Polygons that experienced 

two wildfires within five years were considered the “short interval fire” samples. 

Polygons that experienced one wildfire within the same five-year period were considered 

the “historical interval fire” samples; these “historical” polygons had, on average, 

experienced a wildfire 28.6 years prior to this study and two of the twelve polygons, at 

Site 004 and Site 110, had no prior record of fire since the early 1900s (Appendix A). 

Beyond burn history, all polygons were 0.5 km2 (50 hectares) or larger (Appendix 

A) and were selected along a moisture gradient from inland to the coast (Figure 1b). All 
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sites were selected for locality in relation to the Santa Ana wind corridors. Areas within 

the Santa Ana wind corridors are more likely to experience multiple wildfires and thus a 

short interval wildfire, compared to areas outside the Santa Ana wind corridors.  

Polygons that experienced both the first and second wildfire were labeled “twice 

burn”, where as “once burn” polygons only experienced the second wildfire. This choice 

was designed to capture the same number of regrowth years. For two of the twelve sites 

(Site 006 and 103), “once burn” polygons were selected from the first wildfire year which 

occurred ≥19 years prior to analysis. This exception was allowed assuming any 

difference in vegetation cover between once burn and twice burn polygons would be 

negligible after ≥19 total years of regrowth (Zammit and Zedler 1992).  

 

C. Selecting aerial photographs  

Historical aerial photographs (HAPs) were acquired from the Map and Imagery 

Laboratory (MIL) at the University of California Santa Barbara 

(www.library.ucsb.edu/mil). Prefire HAPs were selected as close to before the first 

wildfire as possible to record initial vegetation cover and postfire HAPs were selected six 

years or more following the second wildfire to capture maximal vegetation cover without 

encountering a third wildfire (Appendix A). Vegetation communities were assumed to 

return to prefire canopy cover within six years following wildfire (Muller et al. 1968, 

Schlesinger and Gill 1978). Seasonality of images was not controlled for under the 

assumption that mature communities appear distinguishable year-round (i.e., sage scrub 

communities reflect more light than evergreen chaparral communities and less light than 

alien annual grasses). Final HAP selection was based on availability for specific locations 
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and timeframes (Table 2). HAPs were chosen between 1952 and 2009 for corresponding 

wildfires spanning 1956 to 2003. 

 

D. Georectifying aerial photographs  

To compare pre- and postfire vegetation cover on a pixel-by-pixel basis, all HAPs 

were georectified to the same base image. Grayscale, 2009, one-meter spatial resolution, 

digital orthophoto quarter quads (DOQQ) of Ventura or Los Angeles County, collected 

by the United States Geological Survey, were used as the base image. Temporally stable 

objects such as large shrubs or trees, rock outcrops, and crests and troughs of the 

mountainous landscape were used as registration points (RPs), observed at 12 times 

magnification. Dirt roads and permanent structures were also used, although these more 

permanent features were rare in the HAPs particularly in remote locations. The terrain of 

the HAPs was mountainous and highly variable so RPs were placed at a high density to 

increase warping accuracy. Each HAP was then warped using triangulation and pixels 

were resampled to the nearest neighbor, creating a georectified HAP with one-meter 

spatial resolution.  

 Georectified HAPs (gHAPs) were then mosaicked together to minimize edge 

distortion and to increase spatial accuracy for vegetation analysis. Mosaicked gHAPs 

covered the entire once burn and twice burn polygon of a site under prefire and postfire 

conditions. Only two sites were not georectified across their entire once burn polygon due 

to a lack of available HAPs and/or their extensive size. For Site 003, the entire twice burn 

polygon was georectified and an equivalent area within the once burn polygon was 
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georectified. For Site 103, the entire twice burn polygon was georectified and 

approximately four times its area was georectified in the once burn polygon. 

Mosaicked gHAPs were validated for their spatial accuracy by identifying 40-100 

RPs corresponding to the 2009 DOQQ base map. Validation RPs had a final root mean 

square error of ten pixels (i.e., ten meters) or less. 

 

E. Subsite selection on north and south aspects 

Random points were generated in the prefire mosaicked gHAPs to select subsites 

for vegetation cover analysis. Each subsite was 50 x 50 pixels (50 x 50 meters) and was 

located in a once burn or twice burn polygon on either a north or south aspect (north: 0.0° 

to 67.5° or 292.5° to 360°; south: 112.5° to 247.5°) to account for differences in solar 

irradiance (northern aspects receive less solar irradiance than southern aspects) and soil 

moisture (Miller et al. 1983). 

Thirteen to 20 subsites were randomly selected within each site for a total of 198 

subsites (Appendix A). Ninety-nine subsites were located in once burn polygons and 99 

subsites were located in twice burn polygons with 104 subsites on north facing aspects 

and 94 subsites on south facing aspects. Subsites were considered “independent” after 

including site as a covariate and finding no significant influence on subsite data.  

To ensure subsites did not overlap a mountain ridge or valley, they were adjusted 

to fit entirely on one aspect. Aspect was verified with 30-meter USGS Digital Elevation 

Model (DEM) data and/or visually with Google Earth. All prefire subsites were 

replicated in the postfire mosaicked gHAPs to capture vegetation regrowth at the same 

location.  
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Prescribed burns were reviewed and two of the 198 subsites overlapped with a 

prescribed burn. These two subsites were not omitted from analysis assuming they would 

not significantly change the trends found among subsites or sites.  

 

F. Quantifying vegetation cover within subsites 

To quantify vegetation cover at each subsite, the “dot grid” method was used 

(Floyd and Anderson 1982, Dublin 1991). A 10 x 10 grid (100 points) was overlaid on 

each subsite with a spacing of five pixels (five meters) between each point. Vegetation 

cover was observed at five times magnification and classified to life form: chaparral, 

alien annual grass, sage scrub, tree, or bare ground/exposed rock. All grass cover was 

assumed to be non-native based on the 1930’s Wieslander Maps and the 2001 USDA 

California Vegetation map. For classification consistency, all sites were examined twice 

to account for initial training and improvement in classification over time.  

To improve classification accuracy, solar zenith was considered to account for 

shadows and Google Earth was referenced for cover and seasonal changes (available 

years: 1990-2015). Verification trips to the field were also conducted at six of the twelve 

sites. Current day photographs were taken from points of public access to capture 

vegetation cover of general areas within the fire perimeter and were compared against the 

HAPs for vegetation confirmation.  

 Vegetation cover was tallied to quantify total percent (%) vegetation cover by 

class at each subsite (100 points = 100% cover). Prefire vegetation cover (Figure 2, 

Appendix C.10) was subtracted from postfire vegetation cover to quantify the amount of 

vegetation change (“delta vegetation”) at each subsite. The impact of two wildfires in five 
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years compared to one wildfire in five years was examined by comparing delta vegetation 

values for each vegetation class.  

 

G. Datasets for abiotic variables 

Aspect was calculated from USGS digital elevation models (DEMs) with a 30 x 

30 meter horizontal resolution and a one-meter vertical resolution. Site location “outside” 

or “within” the Santa Ana wind corridors (Table 2) were visually determined from 

existing maps (Moritz et al. 2010) and from the Minimum Fire Interval map (Figure 1a). 

Distance from the coast was calculated in ArcMap by determining the centroid point of 

each polygon and measuring the shortest distance to the coastline “as the crow flies” 

(Table 2). 

 

H. Statistical analysis 

Statistics were calculated using RStudio (RStudio, Inc. version 0.98.1103) and 

were either run at the subsite level (e.g., 99 once burn subsites and 99 twice burn 

subsites) or at the polygon level (e.g., 12 once burn polygons and 12 twice burn 

polygons). Polygon values were calculated as the mean of subsite values. 

A negative binomial regression was used to calculate the amount of change for 

each vegetation class by burn history (once burn: n = 99 subsites, twice burn: n = 

99subsites), by burn history within a site (e.g., Site 113 – once burn: n = 8 subsites, twice 

burn: n = 8 subsites), by aspect (north: n = 104 subsites, south: n = 94 subsites) or by 

location in relation to the Santa Ana wind corridors (outside: n = 66 subsites, within: n = 

132 subsites). An ANCOVA was used to calculate vegetation change across polygons by 
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distance from the coast (once burn: n = 12 polygons, twice burn: n = 12 polygons) and 

time since fire (once burn: n = 12 polygons, twice burn: n = 12 polygons). Linear 

regressions (e.g., postfire cover by prefire cover for once burn and twice burn subsites) 

were performed in JMP12 (SAS, 2015).  

 

 

III. RESULTS 
 
A. Average vegetation change by fire interval 

Subsite analysis (n = 198) showed no significant difference in delta values, i.e., 

percent (%) vegetation change from pre- to postfire between once burn and twice burn 

subsites, for all five vegetation classes (Figure 3, Appendix C.1). Average delta chaparral 

values were negative following either amount of wildfire (once burn = -0.76%, twice 

burn = -1.17%), although standard error bars for both wildfire histories approached or 

crossed zero (“no change”). The average pre- to postfire vegetation change for alien 

annual grass also showed no significant difference between once and twice burn subsites 

(0.37% and -0.02% respectively) and also had standard error bars that crossed zero (“no 

change”). The average delta sage scrub value in twice burn subsites was positive (2.28%), 

with standard error bars that did not cross zero, however it was not significantly different 

than the delta values in once burn subsites (0.05%, p = 0.16). Average delta tree and 

average delta bare ground values were negative in twice burn subsites and they were also 

not significantly different than once burn subsites.  

When site was included as a covariate with fire history (once burn or twice burn), 

eleven of the twelve sites had similar delta values for each vegetation class. Site 2 was 
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the only site that had a significantly more negative delta chaparral value and a 

significantly more positive delta alien annual grass value when a negative binomial 

regression was applied (see Appendix B for site details). 

 

B. Average vegetation change by location 

Aspect: north or south 

 When subsites were analyzed by north (n = 104) or south (n = 94) aspect, prefire 

conditions revealed northern aspects were typically dominated by chaparral and southern 

aspects were typically dominated by sage scrub (Figure 2, Appendix C.10). When 

calculated for percent (%) vegetation change, regardless of burn history, average delta 

chaparral and average delta sage scrub values showed significant differences (Figure 4, 

Appendix C.2). Delta chaparral values were significantly more negative on north aspects 

(-2.95%) compared to south aspects (1.23%) (negative binomial regression: p = 0.010). 

Delta sage scrub values were significantly more positive on north aspects (3.26%) 

compared to south aspects (-1.15%) (negative binomial regression: p = 0.005). No 

significant differences were found between north and south aspect for average delta alien 

annual grass, average delta tree, or average delta bare ground values (Figure 4, Appendix 

C.2). Subsites were further analyzed to include burn history and no significant differences 

were found in average delta vegetation values between once and twice burn sites on north 

facing or south aspects (Figure 5, Appendix C.3).  

When site was included as a covariate with aspect, two of the twelve sites showed 

significantly different delta vegetation values. Site 2 had a more negative delta chaparral 

value and a more positive delta alien annual grass value and Site 104 had a more negative 
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delta sage scrub value compared to the ten other sites when a negative binomial 

regression was applied (see Appendix B for site details). 

Santa Ana wind corridors: within or outside 

The response of vegetation communities to wildfire, independent of wildfire 

history (once burn or twice burn), did not differ between subsites located within (n = 66) 

and outside (n = 132) of the Santa Ana wind corridors (Figure 6, Appendix C.4). Delta 

chaparral values were more negative outside the wind corridors (-1.43%) although they 

were not significantly different than delta chaparral values within them (0.02%) (negative 

binomial regression: p = 0.42). Similarly, average delta sage scrub values were more 

positive outside of the wind corridors (1.90%) but not significantly different than delta 

sage scrub values within them (0.30%) (negative binomial regression: p = 0.19). Analysis 

at the site level also showed no difference in delta values between sites located within the 

Santa Ana Corridors (n = 8) compared to outside of them (n = 16) (Appendix C.4).  

Wildfire interval (once burn or twice burn) was included as a covariate along with 

location relative to the Santa Ana wind corridors and there were no significant 

differences in subsite delta values for all five vegetation classes (negative binomial 

regression, Figure 7, Appendix C.5). When site was included as a covariate, eleven of the 

twelve sites were similar in their overall response to wildfire. Site 2, located outside the 

Santa Ana wind corridors, had a significantly more negative delta chaparral value (p = 

0.0002) and a significantly more positive delta alien annual grass value (p = 0.0389) 

compared to the eleven other sites (see Appendix B for site details).  

Subsite location in relation to the Santa Ana wind corridors was further analyzed to 

include north and south aspects (Figure 8, Appendix C.6). Delta chaparral and delta sage 
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scrub values again showed strong differences based on aspect regardless of location 

relative to the Santa Ana wind corridors. Delta chaparral values were strongly more 

negative on north aspects both outside (-3.39%, p = 0.0453) and within (-2.03%, p = 

0.0995) the Santa Ana wind corridors and delta sage scrub values were significantly more 

positive on north aspects both outside (3.80%, p = 0.0428) and within (2.15%, p = 

0.0432) of the Santa Ana wind corridors.  

Distance from coast 
 

A site's distance from the coast was not correlated with average delta values for 

any of the five vegetation classes whether analyzed by fire history (once burn: n = 12 

polygons, twice burn: n = 12 polygons) or by overall trends (n = 24 polygons) (Appendix 

C.7). Even when delta values were standardized by the number of postfire years no strong 

correlation was observed (Appendix C.7). 

 

C. Average site vegetation change by time since fire 

Average delta values for chaparral and sage scrub cover were significantly 

correlated with time since fire (Appendix C.8, n = 24 polygons). Average delta chaparral 

values increased significantly with additional postfire years (p = 0.0103, slope = 0.2848) 

and average delta sage scrub values decreased significantly with additional postfire years 

(p = 0.0145, slope = -0.2662) independent of whether polygons were once or twice 

burned.   

When examined by wildfire interval, once burn polygons were revealed to be 

driving the vegetation trends observed in postfire years (Figure 9, Appendix C.8). 

Average delta chaparral values in once burn polygons significantly increased with time 
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since fire (p = 0.01, R2 = 0.50, slope = 0.38) and average delta sage scrub values strongly 

decreased with time since fire (p = 0.05, R2 = 0.33, slope = -0.28). In comparison, 

average delta chaparral and average delta sage scrub cover in twice burn polygons 

showed no significant correlation with number of postfire years (p = 0.29 and p = 0.13 

respectively). Average delta alien annual grass, average delta tree, and average delta bare 

ground values showed no strong correlation with number of postfire years. 

 

D. Postfire by prefire correlation using subsite values 

Postfire values for chaparral, alien annual grass, sage scrub, and tree cover could 

be readily predicted by their prefire values (Figure 10, Appendix C.9, >90% of variation 

explained). However, there was a wide amount of variation observed among subsites 

(Figure 11). For example, Site 2, with six years of postfire recovery, had subsites with 

less chaparral recovery (negative delta values) or more alien annual grass recovery 

(positive delta values) than predicted by the 1:1 (prefire:postfire) regression. While Site 

113, with twenty-two years of postfire recovery, had a subsite that increased in chaparral 

cover (positive delta value) more than the 1:1 (prefire:postfire) regression line.  

Site 2 had the subsite with the largest increase in sage scrub cover from 0% prefire 

to 62% postfire, as well as three additional subsites that experienced large increases in 

sage scrub cover (0% prefire to 24%, 34%, or 45% postfire). Site 113 had the subsite 

with the largest decrease in sage scrub cover changing from 54% prefire to 8% postfire. 

Regarding tree cover, Site 111 had one twice burn subsite that experienced a large 

decline in tree cover (77% prefire, 33% postfire) (Appendix C.9) following a two-year 

fire interval and twelve years postfire. Bare ground/exposed rock cover had relatively low 
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prefire and postfire cover values and the regressions only explained 39% of once burn 

cover and 61% of twice burn cover.  

 

 

IV. DISCUSSION 
 
 

In this study, a single short interval fire was not a significant factor in predicting 

vegetation change at the landscape scale (all subsites combined, Figure 3) nor did it result 

in a rapid increase of alien annual grass cover. Instead, all vegetation types were resilient 

to wildfire in terms of total cover, over the timescales measured (Figure 10, Appendix 

C.9). Despite this resilience, aspect (Figure 4) and time since wildfire (Figure 9) 

correlated with significant differences of chaparral and sage scrub cover between pre- and 

postfire images.  

A. Vegetation change at the landscape level 

Prominent increases in alien annual grass cover following a single short interval 

wildfire were not observed across the landscape (Figure 3). Yet, while no differences 

were found at the landscape scale, changes were observed at the site, polygon, (Appendix 

B) and subsite scale (Figure 11). For example, there was one subsite where alien annual 

grass cover increased by 41% (six years postfire) and another that decreased by 45% 

(eight years postfire) compared to the prefire images. These findings suggest alien annual 

grass cover can change at the local subsite scale but assessment of it may be masked by 

analyses at the landscape scale. This also suggests that to better understand where 

vegetation change might be occurring, detailed images with higher resolution would be 

required for analysis.   
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Average sage scrub cover increased following a single short interval fire (Figure 

3), which was similarly found by Jacobson et al. (2004). This suggests that a single short 

interval wildfire may drive conversion from a chaparral-dominated community to a sage 

scrub-dominated community. In other words, sage scrub may be an intermediate step 

towards loss of chaparral. Perhaps repeat short interval fires at a single location are 

needed to cause a conversion from chaparral all the way to alien annual grasses, as has 

been shown in models where ongoing wildfires occur (Syphard 2006). 

Chaparral communities decreased an average of only 1% following any amount of 

wildfire, although the change was not different than “no change” (Figure 3, Appendix 

C.1). These data suggest that chaparral communities are resilient to wildfires at the scale 

measured or that other factors, such as postfire precipitation or fire intensity (Keeley et al. 

2005b), are more important to chaparral recovery than just a single short wildfire interval 

alone. 

Another explanation as to why significant differences were not found between 

chaparral cover at once burn and twice burn polygons is that the HAPs used in this study 

were not of high enough resolution (one-meter resolution) to detect species compositional 

change within the shrubland communities. We could readily differentiate between 

vegetation life forms (e.g., grasses, deciduous shrubs, chaparral shrubs) but not plant 

species. This is important because chaparral species have multiple ways of recruiting or 

recovering after wildfire including species classified as obligate seeders, obligate 

resprouters, or facultative resprouters (Keeley 1991, Syphard et al. 2006).  Short interval 

wildfire events could be selecting against certain species or types of species, but we were 

not able to detect this. 
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Obligate seeders only recruit from the surviving seedbank and all adult shrubs are 

consumed by the fire (e.g., Ceanothus megacarpus, Ceanothus gregii, Arctostaphylos 

glauca). These species require seven to fifteen years to reach reproductive maturity 

(Zammit and Zedler 1992) and are at risk of extirpation if another fire comes through 

before the seedbank has been replenished (Zedler et al. 1983, Keeley and Brennan 2012). 

Obligate resprouters, on the other hand, only recruit from the lignotuber (the underground 

carbon stores) of a surviving adult (e.g., Heteromeles arbutifolia, Quercus berberidifolia, 

Cercocarpus betuloides) as their seeds are killed by fire (Keeley 1991). Finally, 

facultative resprouters can recruit from the seedbank as well as from surviving adults 

(e.g., Adenostoma fasciculatum, Malosma laurina, Arctostaphylos glandulosa, Rhus 

ovata). 

 The ability to quickly resprout following fire is advantageous as shrubs can 

readily acquire resources (i.e., sun, water, nutrients) in a low competition environment. 

Indeed, facultative resprouters, such as M. laurina, have been known to have higher 

resprout survivorship than obligate seeders under the same postfire conditions (Thomas 

and Davis 1989). These different recruitment strategies are important because they could 

explain why some delta values for chaparral are similar between “historical” and short 

interval wildfires. If chaparral species with resprouting capabilities are strongly 

competitive they could outcompete obligate seeders (Tyler and D’Antonio 1995) causing 

a mixed chaparral stand to become a monoculture of A. fasciculatum or M. laurina, for 

example. While recruitment strategy is an important component to consider, this study 

used one-meter HAPs to evaluate landscape-scale changes and not compositional 

changes.  
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B. Vegetation change due to aspect 

Chaparral cover decreased (-3.0%) on north aspects and unexpectedly increased 

(1.2%) on south aspects (Figure 4). An increase on south aspects following wildfire was 

unexpected because south aspects tend to have more xeric conditions, receiving more 

solar radiation and less water for long-lived shrubs to thrive (Miller et al. 1983). One 

explanation of why chaparral communities could have increased in cover on south 

aspects is due to the expansion of M. laurina, a tenacious facultative resprouter as 

discussed above, which can outcompete other species when water resources are limited 

(Thomas and Davis 1989). Because these shrubs can reach similar heights and canopy 

densities as mixed chaparral stands, monocultures of M. laurina would have been 

classified as “chaparral” in the HAPs.  

An explanation as to why chaparral cover did not increase on north aspects could be 

due to the method of data collection. Since values from the dot-grid method only span 0-

100%, subsites with close to 100% chaparral cover prefire had little room to increase in 

chaparral cover postfire. At subsites that had 100% chaparral cover prefire, only a 

decrease in cover or “no change” was possible. Indeed, average prefire chaparral cover 

on north aspects was 72% compared to only 26% on south aspects (Figure 2, Appendix 

C.10). Standardizing the data in relation to prefire cover was attempted but calculations 

often inflated non-biologically important results and hid larger community changes. For 

example, an increase from 1% to 3% cover would be a 3-fold change whereas an increase 

from 50% to 75% cover would only be a 1.5-fold change.  
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C. Vegetation change due to time since fire 

Chaparral and sage scrub communities showed strong yet opposing trends in recovery 

following fire. Not accounting for fire history, chaparral communities overall increased 

significantly (p = 0.01) with additional years after fire whereas sage scrub cover strongly 

declined (p = 0.05) with additional years after fire (Appendix C.8, n = 24). When 

accounting for  fire history, average delta chaparral values were negative until 17 or 22 

years (once burn or twice burn respectively) and average delta sage scrub values were 

positive until 15 or 25 years (once burn or twice burn respectively) (Figure 9). This is in 

support of previous studies that suggest sage scrub is successional to chaparral and thus 

sage scrub cover dominates during the first 15 years postfire but slowly declines as 

individuals are shaded out by the canopy of chaparral shrubs (McPherson and Muller 

1967, Gray 1983). This dynamic in canopy cover is concurrent with the assumption that 

chaparral communities require five to thirty years to recover from wildfire (Hanes 1971, 

Hope et al. 2007, Schlesinger and Gill 1978) and subshrubs, common in sage scrub 

communities, decline as chaparral shrubs mature around them.  

The increase in chaparral cover, beyond prefire conditions, could be explained by a 

shift in species composition from, say, one species with a smaller canopy to a species 

with a more expansive canopy. This again illustrates the resolution limitation of the 

HAPs; vegetation life form can be identified at a 1 x 1 meter resolution although 

identifying species is not possible.  

Another explanation to why chaparral cover exceeded prefire conditions could be due 

to site variation. Site 104 had 22 years of regrowth preceding the prefire HAPs and 38 

years, the longest duration of regrowth, between the second wildfire and the site’s 

postfire HAPs (Table 2). It was also the most inland site (Table 2) and had almost no 
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south facing subsites: six out of eight once burn subsites and nine out of nine twice burn 

subsites were on northern aspects. The other eleven sites had approximately equal 

proportions of subsites with northern and southern aspects (e.g., four subsites on northern 

aspects and four subsites on southern aspects). However, when Site 104 was omitted, the 

rate of chaparral change over time increased from 0.38 to 0.47 for once burn subsites and 

from 0.19 to 0.25 for twice burn subsites (Table 3). The rates of chaparral change over 

time calculated with all 12 sites (12 once burn polygons and 12 twice burn polygons) are 

more consistent with the current thought that chaparral-dominated communities increase 

slowly over time if they increase at all (Hanes 1971, Keeley 1986). Presumably the rate 

of chaparral change would eventually reach an asymptote as the amount of chaparral 

cover at each subsite cannot exceed 100% cover. 

Finally, an increase of 2% to 6.5 % in chaparral cover might actually be occurring 

over a postfire period of 38 years. As modeled in Syphard et. al (2006), other vegetation 

community types were predicted to convert to chaparral communities under the longest 

fire treatment (average fire return interval of 10 years). Thus, it could be possible that 

with enough fire-free years, chaparral communities could expand and other communities 

could convert to a chaparral-dominated community. 

 

D. Vegetation resilience to fire 

The strong correlation between prefire and postfire cover (Figure 10) suggests strong 

resilience for all vegetation types in response to wildfire disturbance at the classification 

scale of ‘vegetation type’. Yet there was evidence for vegetation change at the local scale 

(Figure 11); some subsites had large increases or decreases in cover that did not fit the 
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overall trend. Subsites at Site 2 for example, experienced large declines in chaparral 

cover (Figure 11a), which could be due to the site’s minimal number of postfire years 

following fire (six years) or because it is the only site that experienced a previous short 

interval fire many years earlier (Appendix A). Site 113 also had subsites that experienced 

a decline in chaparral cover following fire (Figure 11b) and it is not clear what is 

different about this site compared to the others. Again, these results suggest that, even 

though landscape scale changes among communities were minimal, more dramatic 

changes can occur at the local scale. 

 

E. Additional wildfire history 

 The goal of this study was to consider the effect of a single short interval wildfire 

on southern California vegetation communities. Results may have been different if sites 

which experienced repeated short interval wildfire were included or if the entire wildfire 

history (1878-2009) of a location was considered in the analysis. As discussed by Zedler 

(1995), the variability in years between fires may be equally important as the number of 

short interval fires that occur. Further investigation into sites that experienced more than 

one short interval wildfire would be valuable, though it becomes more challenging to 

identify comparable sites for analysis.  

 Another factor that might have led to different results is the time frame of analysis 

(i.e., 1956-2003). Perhaps resilient shrub species had already been selected for in 

locations that experienced multiple wildfires. In this situation, any vegetation change that 

would have occurred due to a short interval wildfire had already occurred, prior to 1956 

when our first imagery was available. This could also explain why there was no 
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observable difference in vegetation change between sites within and outside of the Santa 

Ana wind corridors (Figure 6, Appendix C.4). Perhaps vegetation communities within the 

Santa Ana wind corridors had already been selected for resilient species, resulting in 

almost no change among sites within the wind corridors and a greater amount of 

vegetation change outside of the wind corridors, where sites may be more vulnerable to 

wildfire due to limited exposure to previous wildfires.  

 

F. External factors and the future 

While this study did not find a consistent increase in alien annual grass cover 

following a single short interval wildfire in this region, these alien annual grasses likely 

still pose a risk to the surrounding vegetation communities. They create highly ignitable 

fuel across the landscape when they senesce and can carry wildfire into chaparral stands 

that otherwise would not have ignited (Keeley 2001). The Zaca Fire (2007), Jesusita Fire 

(2009), and Springs Fire (2013) are examples of fires that started in dry alien annual grass 

and quickly spread into chaparral.  

An expanding wildland-urban-interface is expected to create additional risks for 

southern California’s wildlands as new urban development pushes into existing 

shrublands. As Syphard et al. (2007a) found, ignition risk is highest with intermediate 

human populations (35-45 people/km2) and an intermediate mix of urban development 

and wildland communities. Climate change will also pose an increased threat to 

wildlands as the climate in southern California becomes hotter and possibly drier 

(Krawchuk and Moritz 2012). Periods of drought are expected to lengthen and rainfall 

events are expected to become more punctuated. With extended periods of drought-like 
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conditions, wildfire seasons will further expand as live fuel moisture diminishes and alien 

annual grasses will senesce earlier providing higher ignition risk throughout a longer 

period of the year.  

 

 

V. CONCLUSION 
 

The aim of this study was to identify if mature vegetation communities obviously 

change to other vegetation types in response to a single short interval wildfire (defined as 

two wildfires within five years), and where changes in vegetation might be occurring on 

the landscape. These results showed chaparral cover declined following wildfire, 

regardless of fire history, and sage scrub cover, rather than alien annual grass cover, 

increased following a single short interval wildfire. We found little support for the 

assertion that a single short interval wildfire could convert chaparral to alien annual 

grassland.  

In predicting vegetation change due to wildfire, aspect was the best predictor of 

differences in chaparral and sage scrub cover while time since fire was the best predictor 

of chaparral and sage scrub stand regrowth, especially following a “historical” wildfire 

interval. Postfire and prefire cover were highly correlated for all vegetation types, 

although variations among subsites were apparent, suggesting that vegetation change 

occurring at the local scale may not be statistically significant at the landscape scale.   

In conclusion, vegetation community types of southern California are resilient but 

their resilience following wildfire is dependent on a multitude of factors. While overall 

vegetation types appeared to be relatively stable in response to wildfire regardless of the 
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wildfire histories examined here, there may be specific locations that are more 

susceptible to change that were not detected under a landscape level analysis. 

Furthermore, caution is advised when managing these vegetation communities since little 

is still known about their actual successional trajectories or how environmental variables 

(e.g., amount of precipitation in postfire years) influence recovery at both the landscape 

scale and the field scale. Fire regime is only one factor that may lead to changes in 

vegetation and possibly stronger drivers are aspect, prefire and postfire conditions, and 

time since wildfire. These additional variables need to be considered when predicting 

changes in vegetation communities due to wildfires in southern California. 
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VII. FIGURES 
Figure 1. (a) Minimum fire intervals as reported in the CalFire database 

(frap.fire.ca.gov) for Ventura and Los Angeles County from 1878 to 2009.              
(b) Twelve sites where one polygon burned twice within five years (“twice burn”, 
red) and the other polygon burned once within the same five-year period (“once 

burn”, orange).  
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Figure 2. Average prefire vegetation cover by burn history and aspect ± one 
standard error across 198 subsites. See Appendix B for site details. 
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Figure 3. Average vegetation change (%) following one or two fires in the same five-
year period ± one standard error across 198 subsites. A value of 0 signifies “no 

change” between postfire and prefire conditions. Site was considered as a covariate 
in a negative binomial regression analysis and was not significant except for Site 2 

(chaparral, alien annual grass). See Appendix B for site details. 
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Figure 4. Average vegetation change (%) on north or south aspect ± one standard 
error across 198 subsites. Site was considered as a covariate in a negative binomial 

regression analysis and was not significant except for Site 2 (chaparral, alien annual 
grass) and Site 104 (sage scrub) See Appendix B for site details. ** p-value < 0.01  
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Figure 5. Average vegetation change (%) by fire history on (a) north or (b) south 
aspect ± one standard error across 198 subsites. Significance determined by a 

negative binomial regression analysis. Site was considered as a covariate and was 
not significantly different except for Site 2 (chaparral, alien annual grass, sage 
scrub), 104 (sage scrub), and 109 (chaparral). See Appendix B for site details. 
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Figure 6. Average vegetation change (%) located outside or within the Santa Ana 
wind corridors ± one standard error across 198 subsites. Site was considered as a 
covariate in a negative binomial regression analysis and was not significant except 

for Site 2 (chaparral, alien annual grass). See Appendix B for site details.    
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Figure 7. Average vegetation change (%) by burn history located (a) outside or (b) 
within the Santa Ana wind corridors ± one standard error across 198 subsites. Site 

was considered as a covariate in a negative binomial regression analysis and was not 
significant except for Site 2 (chaparral, alien annual grass) outside the Santa Ana 

wind corridors. See Appendix B for site details. 
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Figure 8. Average vegetation change (%) by aspect located (a) outside or (b) within 
the Santa Ana wind corridors ± one standard error across 198 subsites. Site was 
considered as a covariate in a negative binomial regression analysis and was not 

significant except for Site 2 (chaparral, alien annual grass) and Site 104 (sage scrub) 
outside the Santa Ana wind corridors. See Appendix B for site details.                       

* p-value < 0.05, + p-value < 0.1 
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Figure 9. Average vegetation change (%) by time since wildfire for once burn (n = 
12) and twice burn (n = 12) polygons. “Years since fire” is equivalent to Years of 

Regrowth in Table 2. 

 

 
 

 

 

 

 

 



 40 

Figure 10. Postfire by prefire vegetation cover (%) for (a) chaparral and (b) sage 
scrub cover considering 198 subsites. Gray line represents 1:1 ratio.  

 

(a) 

(b) 



 41 

Figure 11. Postfire by prefire vegetation cover with subsites from Site 2 (a, c, e) and 
Site 113 (b, d, f) highlighted. Gray line represents 1:1 ratio. a-b: chaparral cover, c-

d: alien annual grass cover, e-f: sage scrub cover. 
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VIII. TABLES 

 

Table 1. Total area of minimum fire intervals in Ventura (5,720 km2) and                                   
Los Angeles (12,310 km2) County 

MINIMUM FIRE INTERVAL AREA (km2) AREA (%) 

2-5 years 687.31 10.16 

6-10 years 416.31 6.15 

11-20 years 519.09 7.67 

>20 years 5,142.69 76.01 

total area burned at least once 6,765.40 100.00 
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APPENDIX B: AVERAGE VEGETAION CHANGE BY SITE 
1. Average vegetation change (%) per site following one or two wildfires within the same 
five year period ± one standard error. A value of 0 indicates “no change” from prefire to 
postfire vegetation cover. Significance determined by applying a negative binomial 
regression analysis to subsite data: + p-value < 0.08, * p-value < 0.05, ** p-value < 0.01. 
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Inspecting each site individually, nine of the twelve sites showed no significant 
differences in vegetation change following a single short interval wildfire (twice burn) 
compared to a longer, more historic, wildfire interval (once burn). Site 1, located near 
Santa Paula in Ventura County, showed strong differences in alien annual grass cover (p 
= 0.076) and sage scrub cover (p = 0.052) between once and twice burned polygons: alien 
annual grass cover was lower and sage scrub cover was greater in the twice burn polygon. 
Site 6, located near Ojai, CA and also in Ventura County, showed a greater increase in 
sage scrub cover (p = 0.035) in the twice burn polygon compared to the once burned 
polygon. Site 102, located in the Santa Monica Mountains in Los Angeles County, was 
the only site to show a significant difference in delta chaparral cover (p = 0.006) between 
twice and once burned polygons with a greater increase in chaparral cover and a greater 
decline in sage scrub cover in the twice burn polygon. Each percent change in vegetation 
cover is approximately 206 m2 (Appendix A). 
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APPENDIX C: SUPPLEMENTAL DATA 
1. Average vegetation change (%) by burn history (once burn/twice burn) across 198 
subsites ± standard error. Significance determined by a negative binomial regression 
analysis. Site was considered as a covariate in a negative binomial regression analysis 
and was not significant except for Site 2 (chaparral, alien annual grass). See Appendix B 
for site details.  
 

 
 

Vegetation 
class 

 

Burn 
history 

Number of 
subsites 

Mean 
(%) 

Std. 
error 

Min   
(%) 

Median 
(%) 

Max  
(%) p-value 

chaparral 
once 99 -0.76 1.18 -47 0 46 

0.805 
twice 99 -1.17 1.12 -62 0 27 

alien 
annual 
grass 

once 99 0.37 0.57 -16 0 33 
0.782 

twice 99 -0.02 0.70 -45 0 41 

sage scrub 
once 99 0.05 1.04 -46 0 45 

0.163 
twice 99 2.28 1.24 -27 0 62 

tree 
once 99 0.38 0.44 -22 0 24 

0.434 
twice 99 -0.73 0.48 -44 0 6 

bare grd/ 
exposed 

rock 

once 99 -0.05 0.25 -9 0 11 
0.82 

twice 99 -0.37 0.27 -14 0 7 
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2. Average vegetation change (%) by aspect (north/south) across 198 subsites ± standard 
error. Significance determined by a negative binomial regression analysis. Site was 
considered as a covariate and was not significant except for Site 2 (chaparral, alien 
annual grass) and Site 104 (sage scrub). See Appendix B for site details. ** p-value < 
0.01 

  
 

Vegetation 
class Aspect Number of 

subsites 
Mean 
(%) 

Std. 
error 

Min   
(%) 

Median 
(%) 

Max  
(%) p-value 

chaparral 
north 104 -2.95 0.68 -62 0 28 

0.00962 
south 94 1.23 0.058 -39 0 46 

alien 
annual 
grass 

north 104 0.24 1.19 -45 0 41 
0.925 

south 94 0.11 1.05 -16 0 33 

sage scrub 
north 104 3.26 1.13 -28 0 62 

0.00529 
south 94 -1.15 1.13 -46 0 36 

tree 
north 104 -0.47 0.60 -44 0 24 

0.657 
south 94 0.16 0.20 -7 0 14 

bare grd/ 
exposed 

rock 

north 104 -0.09 0.14 -10 0 7 
0.852 

south 94 -0.35 0.35 -14 0 11 
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3. Average vegetation change (%) by fire history on (a) north or (b) south aspect ± one 
standard error across 198 subsites. Significance determined by a negative binomial 
regression analysis. Site was considered as a covariate and was not significantly different 
except for Site 2 (chaparral, alien annual grass, sage scrub), Site 104 (sage scrub), and 
Site 109 (chaparral). See Appendix B for site details.  

  
 

Aspect Vegetation 
Class 

once burn polygon 
(n = 50) 

twice burn polygon 
(n = 54) 

 

Mean Std. error Mean Std. error p-value 

north 

chaparral -2.78 1.78 -3.10 1.60 0.6625 

alien annual 
grass 0.34 0.60 0.16 1.19 0.9678 

sage scrub 1.9 1.27 4.52 1.82 0.1209 

tree 0.5 0.79 -1.37 0.88 0.325 

bare grd/ 
exposed rock 0.04 0.15 -0.20 0.24 0.900 

  once burn polygon 
(n = 49) 

twice burn polygon 
(n = 45)  

south 

chaparral 1.31 1.50 1.16 1.48 0.919 

alien annual 
grass 0.41 0.97 -0.22 0.60 0.759 

sage scrub -1.84 1.61 -0.40 1.58 0.566 

tree 0.27 0.37 0.04 0.07 0.949 

bare grd/ 
exposed roc -0.14 0.47 -0.58 0.53 0.901 
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(a) Vegetation change: once burn/twice burn by north aspect 
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(b) Vegetation change: once burn/twice burn by south aspect 

!
!
!
!
!
!
!
!

 
 
 
 
 
 
 
 

alien ann. grass 

 
 
 
 
 
 
 
 

sage scrub 

 
 
 
 
 
 
 
 

tree 

 
 
 
 
 
 
 
 

bare ground 

 
 
 
 
 
 
 
 

chaparral 

!
!
!
!
!
!
!
!



 53 

4. Average vegetation change (%) by location in relation to the Santa Ana wind corridors 
(outside/within) across 198 subsites. Site was considered as a covariate and was not 
significantly different expect for Site 2 (chaparral, alien annual grass) outside the Santa 
Ana wind corridors. See Appendix B for site details. Significance determined by a 
negative binomial regression analysis. Tables below include (a) mean values ± standard 
error calculated across 198 subsites, (b) mean values ± standard error calculated across 24 
polygons, (c) detailed subsite results (n = 198), and (d) detailed polygon (n = 24) results. 

   

(a) Subsite 

Santa Ana 
wind 

corridors 

Average percent change (post – pre) (n = 198 subsites) 

chaparral alien annual 
grass sage scrub tree bare grd/ 

exposed rock 

outside 
n = 132 -1.43 ± 1.03 0.00 ± 0.65 1.90 ± 1.03 -0.11 ± 0.33 -0.36 ± 0.25 

within  
n = 66 -0.02 ± 1.30 0.53 ± 0.39 -0.30 ± 1.30 -0.30 ± 0.74 0.09 ± 0.21 

 
(b) Polygon 

Santa Ana 
wind 

corridors 

Average percent change (post – pre) (n = 24 polygons) 

chaparral alien annual 
grass sage scrub tree bare grd/ 

exposed rock 

outside 
n = 16 -1.32 ± 1.32 -0.09 ± 0.78 1.88 ± 1.28 -0.22 ± 0.30 -0.25 ± 0.25 

within 
n = 8 -0.06 ± 1.63 0.55 ± 0.40 -0.19 ± 1.54 -0.40 ± 0.81 0.10 ± 0.16 
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(c) Subsite 

Vegetation 
class 

Santa 
Ana 

Number 
of 

subsites 
Mean 
(%) 

Std. 
error 

Min   
(%) 

Median 
(%) 

Max  
(%) p-value 

chaparral 
outside 132 -1.43 1.03 -62 0 35 

0.415 
within 66 -0.02 1.30 -39 0 46 

alien 
annual 
grass 

outside 132 0.00 0.65 -45 0 41 
0.725 

within 66 0.53 0.39 -9 0 15 

sage scrub 
outside 132 1.90 1.03 -33 0 62 

0.194 
within 66 -0.30 1.30 -46 0 36 

tree 
outside 132 -0.11 0.33 -22 0 24 

0.896 
within 66 -0.30 0.74 -44 0 14 

bare grd/ 
exposed 

rock 

outside 132 -0.36 0.25 -14 0 11 
0.763 

within 66 0.09 0.21 -6 0 7 

 
(d) Polygon 

Vegetation 
class 

Santa 
Ana 

Number 
of 

polygons 

Mean 
(%) 

Std. 
error 

Min   
(%) 

Median 
(%) 

Max  
(%) p-value 

chaparral 
outside 16 -1.32 1.32 -13.56 0 6.50 

0.9317 
within 8 -0.06 1.63 -5.75 0 7.67 

alien 
annual 
grass 

outside 16 -0.09 0.78 -8.67 0 4.78 
0.4666 

within 8 0.55 0.40 -0.88 0 2.14 

sage scrub 
outside 16 1.88 1.28 -5.17 0 11.00 

0.2685 
within 8 -0.19 1.54 -7.67 0 3.43 

tree 
outside 16 -0.22 0.30 -3.20 0 2.11 

0.638 
within 8 -0.40 0.81 -5.57 0 2.13 

bare grd/ 
exposed 

rock 

outside 16 -0.25 0.25 -1.89 0 1.80 
0.931 

within 8 0.10 0.16 -0.44 0 0.88 
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5. Average vegetation change (%) by burn history (once burn/twice burn) (a) outside or 
(b) within the Santa Ana wind corridors across 198 subsites. Site was considered as a 
covariate and was not significantly different expect for Site 2 (chap., alien annual grass) 
outside the Santa Ana wind corridors. See Appendix B for site details. Significance 
determined by negative binomial regression analysis. 

  

Santa Ana 
wind 

corridors 

Vegetation 
Class 

once burn subsites 
(n = 66) 

twice burn subsites 
(n = 66) 

 

Mean 
(%) Std. error 

Mean 
(%) 

Std. error p-value 

outside 

chaparral -1.091 1.541 -1.778 1.375 0.746 

alien annual 
grass 0.591 0.816 -0.584 1.000 0.497 

sage scrub 0.439 1.344 3.365 1.544 0.147 

tree 0.258 0.585 -0.473 0.290 0.676 

bare ground/ 
exposed rock -0.197 0.326 -0.530 0.386 0.848 

  once burn subsites 
(n = 33) 

twice burn subsites 
(n = 33)  

within 

chaparral -0.091 1.769 0.061 1.924 0.953 

alien annual 
grass -0.061 0.477 1.121 0.610 0.632 

sage scrub -0.727 1.580 0.121 2.081 0.742 

tree 0.636 0.615 -1.242 1.341 0.445 

bare ground/ 
exposed rock 0.242 0.340 -0.061 0.265 0.902 
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6. Average vegetation change (%) by aspect (north/south) outside or within the Santa Ana 
wind corridors across 198 subsites. Site was considered as a covariate and was not 
significantly different expect for Site 2 (chaparral, alien annual grass) and Site 104 (sage 
scrub) outside the Santa Ana wind corridors. See Appendix B for site details. Significant 
determined by a negative binomial regression analysis: * p-value < 0.05, + p-value < 0.1. 

Santa Ana 
wind 

corridors 

Vegetation 
Class 

north 
(n = 70) 

south  
(n = 62) 

 

Mean 
(%) 

Std. 
error 

Mean 
(%) 

Std. 
error p-value 

outside 

chaparral -3.391 1.541 0.774 1.375 0.045* 

alien annual 
grass 0.092 0.816 -0.097 1.000 0.917 

sage scrub 3.802 1.344 -0.242 1.544 0.043* 

tree -0.360 0.585 0.177 0.290 0.759 

bare ground/ 
exposed rock -0.143 0.326 -0.613 0.386 0.787 

  north 
(n = 34) 

south  
(n = 32)  

within 

chaparral -2.029 0.802 2.125 2.502 0.100+ 

alien annual  
grass 0.559 0.453 0.500 0.655 0.981 

sage scrub 2.147 1.073 -2.906 2.356 0.043* 

tree -0.706 1.442 0.125 0.117 0.735 

bare ground/ 
exposed rock 0.029 0.029 0.156 0.445 0.959 
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7. Average vegetation change (%) by distance from coast across 12 sites (12 once burn 
polygons, 12 twice burn polygons). Significance determined by linear regression analysis 
in JMP. Distances (km) are in Table 2. Tables (a) and (b) include average vegetation 
change by fire history or by overall trends regardless of fire history. Tables (c) and (d) 
include average vegetation change standardized by the number of postfire years by fire 
history or by overall trends regardless of fire history.  
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a) Average vegetation change by fire history 

Vegetation Class 

once burn polygons                                  
(n = 12) 

twice burn polygons                                   
(n = 12) 

R2 coefficient p-value R2 coefficient p-value 

chaparral 0.0050 0.0201 0.8275 0.0188 -0.0403 0.6709 

alien annual grass 0.0054 0.0081 0.8197 0.0001 -0.0016 0.9784 

sage scrub 0.0001 -0.0018 0.9818 0.0020 0.0128 0.8909 

tree 0.0513 -0.0135 0.4791 0.02712 0.0168 0.6090 

bare ground/ 
exposed rock 0.0793 -0.0128 0.3752 0.0537 0.0123 0.4685 

 
 
b) Average vegetation change by overall trends regardless of fire history 

Vegetation Class 

Overall trend: once burn & twice burn polygons 
(n = 24) 

R2 coefficient p-value 

chaparral 0.0012 -0.0101 0.8711 

alien annual grass 0.0006 0.0036 0.9124 

sage scrub 0.0002 0.0035 0.9540 

tree 0.0010 0.0029 0.8823 

bare ground/exposed rock <0.0001 0.0001 0.9926 

 
 
 
 
 



 59 

c) Standardized average vegetation change by fire history 

Vegetation 
Class 

Standardized once burn polygons                                  
(n = 12) 

Standardized twice burn polygons                                   
(n = 12) 

R2 coefficient p-value R2 coefficient p-value 

chaparral 0.0331 -0.006 0.57 0.0970 -0.013 0.32 

alien annual 
grass 0.0661 0.004 0.42 0.0072 0.002 0.79 

sage scrub 0.0333 0.004 0.57 0.0720 0.010 0.40 

tree 0.0285 -0.001 0.60 0.0004 <0.000 0.95 

bare ground/ 
exposed rock 0.0678 -0.001 0.41 0.0227 0.001 0.64 

 
d) Standardized average vegetation change by overall trends regardless of fire history 

Vegetation Class 

Standardized overall trend: once burn & twice burn polygons 
(n = 24) 

R2 coefficient p-value 

chaparral 0.0637 -0.0096 0.2340 

alien annual grass 0.0213 0.0029 0.4967 

sage scrub 0.0483 0.0071 0.3023 

tree 0.0010 -0.0003 0.8838 

bare ground/ 
exposed rock 0.0005 -0.0001 0.9142 
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8. Average vegetation change (%) by time since fire across 12 sites (12 once burn 
polygons, 12 twice burn polygons). “Time since fire” is equivalent to Years of Regrowth 
in Table 2. Table (a) vegetation change by once burn and twice burn polygons. Table (b) 
overall vegetation change with combined once burn and twice burn polygon. Significance 
determined by linear regression analysis in JMP: * p-value < 0.05, + p-value < 0.06. 
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a) vegetation change by once burn and twice burn polygons 

Vegetation Class 

once burn polygons                       
(n = 12) 

twice burn polygons                             
(n = 12) 

R2 coefficient p-value R2 coefficient p-value 

chaparral 0.50 0.38 0.01* 0.11 0.19 0.29 

alien annual grass 0.13 -0.08 0.25 0.01 -0.03 0.79 

sage scrub 0.33 -0.28 0.05+ 0.21 -0.26 0.13 

tree <0.01 -0.01 0.83 0.20 0.09 0.14 

bare ground/ 
exposed rock 0.06 -0.02 0.44 0.02 0.01 0.77 

 
b) overall vegetation change with combined once burn and twice burn polygon 

Vegetation Type 

Overall trend: once burn & twice burn polygons 
(n = 24) 

R2 coefficient p-value 

chaparral 0.2635 0.2848 0.0103 

alien annual grass 0.0337 -0.0533 0.3903 

sage scrub 0.2424 -0.2662 0.0145 

tree 0.0531 0.0405 0.2788 

bare ground/ 
exposed rock 0.0038 -0.0058 0.7762 
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9. Postfire by prefire vegetation cover (%) across 198 subsites. Significance determined 
by linear regression analysis in JMP.  

 
 

Vegetation Class 
once burn subsites                                

(n = 99) 
twice burn subsites                                 

(n = 99) 

R2 coefficient p-value R2 coefficient p-value 

chaparral 0.926 0.965 <0.01 0.936 0.964 <0.01 

alien annual grass 0.937 1.007 <0.01 0.926 0.959 <0.01 

sage scrub 0.929 0.976 <0.01 0.896 0.962 <0.01 

tree 0.966 1.007 <0.01 0.900 0.754 <0.01 

bare ground/ 
exposed rock 0.387 0.665 <0.01 0.609 0.555 <0.01 
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10. Prefire vegetation cover (%) by burn history (once burn/twice burn polygons) and 
aspect (north/south) for 198 subsites. Significance determined by a negative binomial 
regression analysis. Table below includes mean values ± one standard error. 

 
 

Burn 
History Aspect chaparral  

(% prefire) 

alien 
annual 
grass        

(% prefire) 

sage scrub 
(% prefire) 

tree 
(% prefire) 

bare grd./ 
exp. rock 

(% prefire) 

once 
burn 

north  67.98 ± 5.70 4.70 ± 2.33 13.12 ± 3.70 13.92 ± 4.06 0.28 ± 0.13 

south 32.59 ± 5.33 10.6 ± 3.65 52.37 ± 5.48 2.71 ± 1.94 1.65 ± 0.52 

twice 
burn 

north 76.09 ± 5.01 1.59 ± 0.92 15.87 ± 4.18 5.72 ± 2.45 0.72 ± 0.27 

south 19.51 ± 4.26 21.22 ± 5.09 56.18 ± 4.96 0.53 ± 0.51 2.56 ± 0.88 
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