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ABSTRACT 

 

Environmental Drivers of Giant Kelp Biomass and Physiological Condition  

through Space and Time 

 

by 

 

Thomas William Bell III 

 

 The giant kelp (Macrocystis pyrifera) is a globally distributed foundation species, 

which supports an incredibly productive ecosystem. While this species has been well 

studied over the past several decades, there exists much debate on the relative roles of 

external and intrinsic drivers of canopy dynamics. Much of this debate may stem from the 

geographic differences in the environments of this well-adapted species. In the first part of 

this dissertation I used multispectral satellite imagery to help build a dataset of giant kelp 

canopy biomass dynamics along the coast of California across nearly three decades. We 

were then able to decompose this spatiotemporal matrix into orthogonal modes that allowed 

for the ranking of the most important environmental drivers of the kelp canopy: wave 

disturbance, seasonal nutrient supply, and the North Pacific Gyre Oscillation. We then used 

generalized additive models to determine the nonlinear effect shapes of each potential 

biomass driver. In the next chapter, we explored the physiology of the giant kelp canopy and 

found that photosynthetic pigment state and the chlorophyll a to carbon ratio (Chl:C) of the 

kelp canopy more closely resembles changes in available nitrate rather than changes in 



 

 x 

available light at locations in southern California, while the reverse is true along the more 

nutrient-replete central California coastline. Temporally lagged Chl:C was positively related 

to changes in kelp biomass and net primary production along the periodically nutrient-

limited southern California coast. These results open the possibility of estimating net 

primary production of giant kelp over large spatial and temporal scales using present and 

planned remote sensing technologies and the modeling of Chl:C based on well measured 

environmental variables. In the final chapter, we used hyperspectral imagery to examine the 

physiological condition of the giant kelp canopy over a variety of scales to identify and 

elucidate ecological processes related to external environmental drivers and demographics. 

We found that regional patterns of Chl:C were associated with large-scale fluctuations in sea 

surface temperature, and by extension ambient nutrient concentration. Local scale variability 

in Chl:C across a single kelp forest equaled the regional variability, implying that local scale 

processes also play a role in the physiological condition of this species. Local scale 

examples showed that canopy Chl:C was related to the date when kelp canopy first 

emerged, suggesting that demographic patterns in kelp frond age influence the local 

physiological condition and persistence of giant kelp canopy. 
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I. Introduction 
 

Giant kelp (Macrocystis pyrifera) serves as the foundation species for an incredibly 

productive ecosystem whose consumptive and non-consumptive uses produce at least $250 

million in revenue per year (Dayton 1984; Mann 2000; Leet et al. 2001). Giant kelp is 

usually encountered in its diploid sporophyte stage, which consists of a bundle of vine-like 

fronds anchored by a common holdfast. Blades develop along the length of the frond with a 

single pneumatocyst (gas bladder) at the base of each blade buoying the fronds to the surface 

where a dense canopy is formed. Individuals routinely attain lengths over 20 m and under 

ideal conditions can elongate at rates of up to 50 cm per day (Clendenning 1971). This high 

growth rate of giant kelp is coupled with a relatively short lifespan, leading to standing 

biomass turnover 6 to 7 times per year (Reed et al. 2008). 

This variability in giant kelp biomass varies greatly across space and time. Recent 

studies have pioneered the use of remote sensing techniques to observe giant kelp canopy 

over scales that would have been infeasible or cost prohibitive otherwise (Cavanaugh et al. 

2011). Bell, Cavanaugh, and Siegel (2015) used canopy biomass estimates from Landsat 

satellites to examine the differences in periodicity of giant kelp along the central and 

southern California coastlines. They found that the kelp forest canopy was dominated by a 

consistent seasonal cycle along the central coast, and by an intermittent interannual cycle in 

southern California.  

This variability in giant kelp forest biomass is typically the result of the interplay of top-

down forces from herbivory, bottom-up forces from the supply of nutrients, and disturbance 

from ocean swell (Harrold & Reed 1985; Gerard 1982; Zimmerman & Kremer 1984; 

Seymour et al. 1989; Graham et al. 1997). These processes can vary with location and time 
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and the relative strength of these forces may be understood by studying the spatial 

distribution of this species through time.  

The growth of giant kelp thalli is fundamentally the result of available light and nutrients 

driving photosynthesis. While light availability to the canopy follows a highly predictable 

seasonal pattern, nutrient delivery to giant kelp forests is episodic with upwelling processes, 

internal waves, terrestrial storm runoff, and biological regeneration all driving important 

inputs (McPhee-Shaw et al. 2007, Hepburn & Herd 2005). As light and nutrient conditions 

change, giant kelp will vary cellular pigment levels to adjust to new photosynthetic demands 

(Kirk 1994). Under controlled light conditions, we would expect giant kelp to linearly 

increase its cellular concentrations of chlorophyll a as nutrient limitations were released, and 

that these increases in photosynthetic pigments will scale with growth rate (Laws & 

Bannister 1980; Shivji 1984).  

Canopy density and production are known to vary across a single kelp forest. The 

growth rate of fronds near the outside edge of the forest was greater than fronds located in 

the interior of the forest when canopy density was high (Stewart et al. 2009). Canopy density 

is also variable across a single forest, with greater density in the center and in areas with a 

high proportion of hard bottom substrate (Cavanaugh et al. 2010). These differences in 

growth rate and density likely lead to differences in net primary production across the forest 

possibly affecting food web dynamics and carbon storage. 

Aside from these external drivers of giant kelp variability and production are intrinsic 

factors like programmed senescence. Demographic patterns associated with progressive 

frond senescence have been shown to be a better predictor of frond loss than external 

environmental factors (Rodriguez et al. 2013). Blades also display a reduction in nitrogen 
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content and maximum photosynthetic capacity as they age, suggesting that there is a 

decrease in physiological condition in older, senescent fronds (Rodriguez et al. 2016). 

In this dissertation I aim to answer the overarching question: What are the controls of 

giant kelp canopy dynamics across space and time? I attempt to do this by utilizing field, 

laboratory, and remote sensing techniques and by synthesizing the results to better 

understand how and why this species varies the way it does. I believe that taking advantage 

of broad temporal and spatial scales can help us better understand the relative roles of 

extrinsic and intrinsic drivers on this foundation species.  
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II. Geographical variability in the controls of giant kelp biomass 
dynamics1 

 

Abstract 

Aim Coastal marine environments experience a wide range of biotic and abiotic forces 

that can limit and punctuate the geographical range and abundance of species through time. 

Determining the relative strengths and nonlinear effects of these processes is vital to 

understanding the biogeographical structures of species. There has been an ongoing 

discussion concerning the relative importance of these processes in controlling the dynamics 

of giant kelp, an important structure-forming species on shallow reefs in the eastern Pacific. 

We use novel spatial time-series that span nearly three decades to determine the dominant 

drivers of giant kelp canopy biomass and the temporal and spatial scales over which they 

operate across the dominant range of the giant kelp in North America. 

Location Near-shore areas from Año Nuevo, California, to the USA/Mexico border. 

Methods We employed empirical orthogonal functions to elucidate the primary drivers 

of giant kelp canopy biomass across space and time and then fit generalized additive and 

linear models to determine the nonlinear effect and relative importance of each of these 

potential drivers along the c. 1500-km study region over a 25-year period. 

Results Wave disturbance, nitrate availability and the state of the North Pacific Gyre 

Oscillation were the most important environmental predictors of giant kelp canopy biomass, 

explaining 24.5%, 12.7% and 6.1% of the variance, respectively. Environmental drivers of  

canopy biomass exhibited profound spatial differences in relative effect sizes. Nonlinear 
                                                
1 This chapter was published as Bell T.W., Cavanaugh K.C., Reed D.C., Siegel D.A. 2015. Geographical 
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effect shapes of each potential biomass driver were determined, which explained these 

spatial differences. 

Main conclusions These large-scale analyses help to reconcile the local-scale 

conclusions of canopy biomass dynamics across the California coastline and show that these 

dynamics differ predictably in space and time in accordance with local and regional 

differences in environmental drivers. By characterizing the nonlinear effects of these 

drivers, we identified spatio-temporal patterns of processes that cannot be detected by 

remote sensing. 

A. Introduction 

The spatial distributions of organisms are driven by a combination of abiotic and biotic 

forces. Abiotic forces include climate, physical features of the environment and resource 

availability, whereas biotic forces involve the physiological performance of individuals as 

well as interactions within and between species. The influence of these processes may 

change in direction and magnitude across a wide range of spatial and temporal scales 

(Menge 1976). This variability has led to seemingly contradictory conclusions about the 

primary drivers of population abundance in a number of systems (reviewed in Power 1992). 

Marine coastal environments experience a wide range of forces that can limit and 

punctuate the geographical range of an organism through time. For example, the 

distributions of two species of mussel (Mytilus edulis and Mytilus trossulus) in the north-

eastern Atlantic can be partly attributed to physiological stress caused by aerial exposure, 

whereas interannual variations in ice floes can interrupt the density trends along the 

mussels’ range (Tam & Scrosati 2011). Coastal environments also experience large-scale 

changes in ocean climate, which can fundamentally alter the distribution of a species. The 
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northward range expansion of Kellet’s whelk (Kelletia kelletii; Herrlinger 1981) has been 

attributed to either warming sea-surface temperatures (SST), ocean circulation changes, or 

some combination of the two, across a biogeographical boundary, probably linked to El 

Niño events (Zacherl et al. 2003). The complexity of the coastal environment may further 

complicate the mixture of drivers on a species through time. 

The coastline of California, USA, spans four shallow marine biogeographical regions 

(Hall 1964; Valentine 1966; Abbott & Hollenberg 1976; Blanchette et al. 2008), which are 

marked by differences in oceanographical environments: the Mendocinian, Montereyan, 

Southern Californian and Ensenadian regions. Winter storms in the North Pacific create 

large swell waves (> 4 m height) propagating from the north-west, whereas summer months 

see a mixture of smaller significant wave heights (< 3 m) from the south and north-west 

(O’Reilly & Guza 1993). The central coast of California (Año Nuevo to Point Conception) 

is more exposed to westerly and north-westerly swells as a result of its orientation, whereas 

the southern California mainland coast (Point Conception to the USA/Mexico border) has a 

range of wave exposures as a result of variable coastline orientations as well as the presence 

of the Californian Channel Islands. Coastal upwelling brings cold, nutrient-rich waters to the 

coastal shelf, and is strongest in the spring along the central coast, where nutrient-replete 

conditions persist for the entire year; upwelling is less intense and more intermittent in 

southern California, with low nutrient levels during the summer (Huyer 1983; McPhee-

Shaw et al. 2007; Reed et al. 2011). Large-scale low-frequency climate cycles, such as the 

Pacific Decadal Oscillation and El Niño–Southern Oscillation (ENSO), affect conditions on 

interannual time-scales and can have large impacts on the biogeography and structure of 

marine communities (Dayton et al. 1999; Parnell et al. 2010). 
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The giant kelp, Macrocystis pyrifera (L.) C. Agardh, is a canopy-forming macroalga 

that is widely distributed along the coast of California and serves as the foundation species 

to a productive ecosystem (Graham et al. 2007). Giant kelp abundance in California is 

extremely dynamic. It is highly susceptible to removal by ocean waves and it is not 

uncommon for entire forests to be destroyed during a single storm (Seymour et al. 1989; 

Graham et al. 1997; Edwards & Estes 2006); populations are, however, highly resilient, and 

recovery to a full canopy often occurs within 1–2 years after local extinction (Reed et al. 

2006). Individuals routinely attain lengths over 20 m and under ideal conditions can 

elongate at rates of 50 cm per day (Clendenning 1971), which implies an important role for 

nutrient supply to support these extreme growth rates (Jackson 1977; Gerard 1982; 

Zimmerman & Kremer 1984; Stewart et al. 2009). Large areas of kelp forest can be 

destroyed by grazing activities, primarily by sea urchins, which can denude large areas 

(Harrold & Reed 1985), and the removal of the surface canopy by mechanized harvesters 

causes additional reductions in kelp biomass (Kimura & Foster 1984; Foster & Schiel 2010). 

Importantly, the processes thought to dominate the regulation of giant kelp forests can vary 

with location and time (e.g. Jackson 1977; Dayton et al. 1992; Graham et al. 1997; Dayton 

et al. 1999; Edwards 2004; Lafferty & Behrens 2005; Parnell et al. 2010; Cavanaugh et al. 

2011; Reed et al. 2011). This suggests that the interplay between regulating forces may be 

understood by studying the spatial distribution of this species through time. 

Recent advances in satellite image analyses allow for frequent (monthly to seasonal), 

long-term (25 years and continuing), high-resolution (30 m), large-scale (continental) 

observations of giant kelp canopy biomass (Cavanaugh et al. 2011). These kelp data can be 

combined with spatially explicit time-series of potential drivers to quantify the effects of 
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these drivers on giant kelp biomass across a wide geographical region. Here, we use these 

data to explore how nutrients, wave disturbance, low-frequency oceanographical cycles, 

human harvest and herbivory by sea urchins structure the spatial distribution of giant kelp 

biomass through time, across the species’ region of dominance on the rocky reefs of 

California, USA. Our research focused on answering the following questions. (1) What are 

the dominant drivers of kelp canopy biomass dynamics? (2) How does the relative 

importance of these drivers vary across temporal scales of seasons to decades and spatial 

scales of 500 m to 1500 km? 

B. Methods 

1. Giant kelp canopy biomass data 

We studied giant kelp over its range of dominance along the coast of California, USA, 

encompassing the area between Año Nuevo, California, and the USA/Mexico border (c. 

1500 km of coastline; Fig. 1). Giant kelp canopy biomass was estimated at 30-m resolution 

from January 1986 to January 2011 using multispectral Landsat 5 Thematic Mapper (TM) 

satellite imagery following procedures developed by Cavanaugh et al. (2011). Briefly, each 

Landsat 5 TM image was atmospherically corrected to standardize the radiometric signals 

using 50 temporally stable ground control points (Furby & Campbell 2001). A multiple-end-

member spectral mixing analysis (Roberts et al. 1998) was applied to estimate the fractional 

cover of two end-members, one static kelp end-member, and one of 30 seawater end-

members unique to each image. Kelp canopy biomass was estimated using the observed 

relationship between diver-estimated kelp canopy biomass and Landsat pixel kelp fraction. 

Cloud-free imagery allowed kelp biomass to be estimated every 1–2 months. Canopy 

biomass determinations were binned into 500-m segments and interpolated onto a 3-month 
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time interval using piecewise cubic interpolation. The segment length of 500 m was chosen 

to avoid spatial autocorrelation, because synchrony among canopy biomass observations 

declines dramatically in the first 200 m of spatial separation (Cavanaugh et al. 2013). Each 

segment was scaled as a proportion of the maximum (top 3%) canopy biomass observed 

across the entire time-series to account for differences in the amount of kelp (referred to 

here as ‘proportional kelp biomass’). Coastline segments with zero canopy biomass in more 

than 75% of seasons were removed from analysis, for a total of 723 coastal segments. 

2. Physical, biological and harvest datasets 

Spatio-temporal data were compiled for variables that are anticipated to describe 

processes affecting giant kelp canopy biomass. Observations of significant wave height (Hs) 

were assessed using the National Buoy Data Center’s (NBDC; http://www.ndbc.noaa.gov/) 

Harvest platform and Harvest buoy, located c. 30 km offshore from Point Conception (Fig. 

1a). The Harvest platform collected hourly observations of Hs and period from January 1987 

to April 1999, and the Harvest buoy collected Hs, period and direction from March 1998 to 

present. Records from the platform and buoy were combined to form a single Hs time-series 

at the Harvest platform. Data from the Coastal Data Information Program’s (CDIP; 

http://cdip.ucsd.edu/) nowcast wave-propagation model were used to assess spatial 

variations in Hs. CDIP provided hourly estimates of Hs at a depth of 10 m from June 1998 to 

November 2011 for the entire domain at 800-m spatial resolution. Each coastline segment 

was assigned a seasonal maximum Hs from the closest CDIP wave-model pixel. To 

complete the record, Hs values were statistically modeled using a generalized additive model 

from observations of Hs and dominant period from the Harvest platform, and a probability 

distribution of swell direction. 
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Surface nitrate concentrations were estimated using sea-surface temperature (SST) 

records and the observed relationship between ocean temperature and nitrate concentration 

following Zimmerman & Kremer (1984). A continuous time series of SST is available near 

the center of the domain from the NBDC Point Arguello buoy (hourly from 1986 to 2011) 

located c. 20 km offshore from Point Arguello, and at each site from the Advanced Very 

High Resolution Radiometer (AVHRR; http://www.ncdc.noaa.gov/sst/) satellite images 

from 1987 to 2011. Seasonal mean nitrate values were determined for each coastline 

segment. 

Three oceanographical climate indices were also used in this study: the North Pacific 

Gyre Oscillation (NPGO; http://www.o3d.org/npgo), Pacific Decadal Oscillation (PDO; 

http://jisao.washington.edu/pdo), and the Multivariate ENSO index (MEI; 

http://www.esrl.noaa.gov/psd/enso/mei). These climate oscillations fluctuate over 

interannual to decadal time-scales and are known to have large effects on the California 

Current system in general and on giant kelp populations in particular (Dayton & Tegner 

1984; Di Lorenzo et al. 2008; Parnell et al. 2010). Positive values in the NPGO index 

correspond with stronger wind-driven upwelling, which leads to greater nutrient 

concentrations along the California coast, whereas positive MEI values are associated with 

El Niño conditions, with decreases in wind-driven upwelling, warmer surface waters and 

nutrient-poor conditions. Positive PDO values indicate warmer SST, and nutrient-poor 

conditions along the western coast of the contiguous United States. All environmental 

variables were lagged by one season, because wave disturbance and changes in nutrient 

concentrations were expected to affect giant kelp canopy biomass over relatively short time-

scales. 



 

 13 

Kelp canopy harvest records for every California Department of Fish and Wildlife 

administrative bed harvested by ISP Alginates were available from 1991 until harvesting 

ended in 2006 (Reed 2010). In order to calculate the amount of harvest effort in each 

coastline segment, the harvested kelp was apportioned to each segment based on the 

proportion of total kelp canopy biomass of the segment within the administrative bed. The 

amount of kelp harvested was then divided by the total segment canopy kelp biomass in the 

season prior to obtain a measure of harvest effort, ranging from zero (no harvest) to one 

(complete harvest of the kelp canopy). 

Densities of purple and red sea urchins (Strongylocentrotus purpuratus and 

Mesocentrotus franciscanus, respectively) were measured at a small fraction of the sites 

(Kenner et al. 2013; Kushner et al. 2013; Reed 2013). Annual sea urchin density surveys 

started between 1982 and 2001 for the 45 sites with records long enough to be included in 

the analyses. 

3. Empirical orthogonal function analysis 

Dominant drivers of kelp canopy biomass were identified using an empirical orthogonal 

function (EOF) analysis (Lorenz 1956). EOF analysis compresses a set of correlated time-

series into a ranked set of uncorrelated ones, each with a spatial map illustrating the loadings 

for that mode. EOF modes were ordered by the fraction of variance explained. Here, we 

decomposed the space–time distribution of kelp canopy biomass into a ranked set of 

orthogonal spatial loadings and temporal amplitude functions. Each EOF mode described a 

known fraction of the total variance in kelp canopy biomass and collectively accounted for 

the covariability of the space–time biomass distribution. A physical interpretation for each 

mode was made by examining the relationships between the EOF spatial loadings and 
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temporal amplitude functions with the different environmental parameters. Pearson product-

moment correlation coefficients between environmental variables and the EOF temporal 

amplitude function indicate how closely the variable matched the changes in direction and 

magnitude of the amplitude function through time, whereas correlations with the EOF 

spatial loadings indicate how closely the variable matched the magnitude of the loadings in 

space. Significance between EOF outputs and environmental variables was tested using 

permutation tests with 1000 permutations. 

4. Generalized additive model analysis 

A generalized additive model (GAM) was applied to each coastal segment in the study 

domain in order to determine the dynamic relationships between kelp canopy biomass and 

the environmental drivers. The general concept of GAMs is that a response variable (e.g. 

kelp biomass) can be modeled as the sum of non-linear functions of different predictor 

variables (Hastie & Tibshirani 1990). The underlying relationship between each predictor 

variable and kelp canopy biomass was determined using thin-plate penalized regression 

splines, which adds penalties to wiggly functions to avoid overfitting (Wood & Augustin, 

2002). The weight of these penalties was optimized using generalized cross-validation, 

which minimizes the root mean square error between the fit and data points. Optimal model 

form was selected by minimizing the Akaike information criterion, which helps balance the 

complexity of the model versus the goodness of fit. We used the R package MGCV to 

implement all GAMs with α = 0.05 (Version 1.8-6; Wood 2006). Standardized coefficients 

of each significant predictor were estimated at each coastline segment by using a multiple 

linear regression to fit each z-score scaled (mean, 0; variance, 1) variable to scaled 

proportional kelp canopy biomass. 
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The environmental correlates identified in the EOF analysis – maximum significant 

wave height, mean nitrate concentration and the value of the NPGO – were used as 

predictors in local GAMs for each coastline segment all lagged in time by one season (log 

link function; Gaussian error structure). Harvest effort was also added as a predictor to the 

model for the known harvested coastline segments, and a kelp occupancy term (the 

proportion of kelp canopy biomass in the previous season) allowed kelp canopy biomass to 

respond according to prior occupancy at each segment. Sea urchin density was added to the 

predictors already included in the GAM at sites with urchin observations. 

C. Results 

1. Spatio-temporal variability in kelp biomass 

Giant kelp canopy biomass was variable throughout the study area with mean seasonal 

biomass per 500 m coastline segment ranging between 1000 and 1.37 × 106 kg wet mass 

(Fig. 1a,b). The mean coefficient of variation (CV) averaged across all measured seasons 

was 1.4 for the entire study region and rarely dropped below 1 in any 500-m coastline 

segment, demonstrating the high variability of giant kelp canopy biomass during the 25-year 

study period (Fig. 1c). Marked spatial differences in CV were found between different sides 

of islands and between protected and exposed areas on the mainland. The study region 

supported a mean kelp canopy biomass of 1.39 × 108 kg, which ranged from a maximum of 

4.14 × 108 kg in the autumn of 2005 to a minimum of 4.74 × 106 kg in the spring of 1998, 

following winter storms during a large El Niño episode. 

2. Diagnosing correlates of kelp biomass dynamics 

EOF spatial loadings and temporal amplitude functions were linearly correlated with 
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environmental variables, revealing the dominant environmental processes that drive 

variations in giant kelp biomass (Table 1). The first mode explained 24.5% of the variance 

and its temporal variations displayed a clear seasonal pattern, with positive values in the 

winter and spring and negative values in the summer and autumn. This amplitude time-

series was significantly correlated with maximum Hs during the previous season from the 

Harvest buoy (r = 0.59; P < 0.001; Fig. 2a). The spatial loadings of the first mode revealed 

large negative values for the central coast and values near zero throughout much of the 

southern California with exceptions on the exposed sides of the Channel Islands (Fig. 2b). 

Mean seasonal maximum Hs along the California coast from the CDIP Hs model was 

strongly correlated with the spatial loadings (r = −0.69; P < 0.001), implying that swells 

have a large negative effect on kelp biomass throughout the central coast and much less of 

an impact in southern California, except for exposed sites. The loadings were significantly 

correlated with site-specific maximum Hs in both time and space; the overwhelmingly 

negative spatial loadings across the study area were indicative of negative effects on kelp 

biomass during winter and spring, the seasons in which the temporal amplitude function of 

the first EOF was positive. 

The second EOF mode explained 12.7% of the biomass variance and its temporal 

amplitude function displayed a strong seasonal pattern (Fig. 2c). This amplitude time-series 

was significantly correlated with mean nitrate concentrations in the surface waters during 

the previous season from the Point Arguello buoy (r = 0.49; P < 0.001), with positive 

amplitude during winter and spring periods of high nitrate, and negative mode amplitudes 

during summer and autumn periods of low nitrate. The second mode spatial loadings 

displayed positive values in southern California and values near or below zero along the 
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central coast (Fig. 2d). These loadings were significantly correlated with all of the spatial 

variables (P < 0.001), but only mean seasonal nitrate along the California coast was 

consistent with the positive spatial loadings throughout most of the study area (r = −0.73; 

P < 0.001). This correlation suggests that higher nitrate concentrations correspond to 

positive kelp biomass levels in areas with lower mean nitrate (e.g. southern California). 

The third mode explained 6.1% of the biomass variance and the temporal amplitude 

function displayed interannual changes that were significantly correlated with the NPGO 

index during the previous season (r = 0.44; P < 0.001; Fig. 2e). The third mode spatial 

loadings showed the highest positive values along the south-eastern corner of southern 

California, San Clemente and Santa Catalina Islands, which are the most oligotrophic 

regions of the study region, and the northern half of the central coast (Fig. 2f). Positive 

values of NPGO are related to periods of high nitrate availability (Di Lorenzo et al. 2008). 

The spatial loadings were significantly correlated with the percentage of seasons with a 

mean surface nitrate concentration below 1 µmol L−1 (r = 0.39; P < 0.001), the minimum 

threshold concentration needed to sustain kelp growth (Zimmerman & Kremer 1984). 

3. Modeling drivers of biomass dynamics 

A total of 723 coastline segments (500 m each) were analyzed using individual GAMs. 

The R2 of the individual segment models ranged from 0.09 to 0.79 (Fig. 3a), with an 

ensemble mean R2 equal to 0.41. Standardized coefficients of each significant predictor were 

estimated for each coastline segment using a linear model to fit each variable to proportional 

kelp biomass (Fig. 3b–g; Table 2). At the 470 southern California coastline segments, 

maximum Hs was the best predictor at 36.8%, mean nitrate at 28.9%, NPGO at 5.3%, kelp 

harvest at 9.2%, and no significant predictor at 19.8% of the sites. Of the 253 central 
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California segments, maximum Hs was the best predictor at 91.7%, mean nitrate at 5.5%, no 

significant predictor at 1.6%, and NPGO at 1.2% of the sites. Sea urchin density had the 

greatest magnitude-standardized coefficient at 9 of the 36 southern California sites and none 

of the central California sites, although southern California segments where sea urchin 

density was measured had lower median winter wave heights (0.94 m) than the southern 

California as a whole (1.23 m; P < 0.001; Wilcoxon rank-sum test). 

The mean additive effect of each predictor variable on proportional kelp biomass was 

found by averaging the individual effect relationships of each predictor from all coastal 

segments where the predictor was statistically significant (Fig. 4). These plots show the 

mean direction and magnitude of each predictor on kelp biomass. The mean relationship 

with seasonal maximum Hs was nonlinear and negative and showed the largest magnitude of 

effect, with larger swell having a negative effect at maximum Hs > 2.5 m. The mean 

relationship with nitrate showed a negative effect between values of 0 and 2 µmol L−1 and 

positive effects at concentrations above about 6 µmol L−1. The NPGO index displayed a 

nonlinear effect relationship with biomass, with larger positive index values showing an 

increasing positive effect. Kelp occupancy showed a positive mean relationship with 

biomass, with greater biomass in the previous season showing positive effects at values 

greater than 0.1 proportional biomass. Kelp harvesting showed a small positive effect at 

values below 0.8 harvest effort, whereas increases in harvesting effort beyond this point had 

a negative effect. Sea urchin density showed negative, but diminishing, additive effects on 

kelp biomass as urchin density increased. 

D. Discussion 
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1. Spatial heterogeneity in drivers of canopy biomass dynamics 

Understanding how consumer pressure, resource availability and disturbance control the 

dynamics of plant and algal populations is challenging, because the roles of these processes 

can vary in space and time (Estes & Palmisano 1974; Menge 1976; Hunter & Price 1992; 

Reed et al. 2011). Here, we have used EOF analysis and nonlinear additive modeling to 

identify and quantify the relative strengths of these population drivers. For the California 

coastline as a whole, wave disturbance was the dominant correlate of kelp canopy biomass, 

followed by nitrate availability and the state of the NGPO. However, the relative importance 

of these factors varied spatially. Studies that focus on one or a few sites may identify how 

these factors relate to one another locally, but will miss how these relative effects vary 

spatially. By examining hundreds of local coastline segments across many hundreds of 

kilometers and over many generations, a comprehensive understanding of how these factors 

contribute to the canopy dynamics of giant kelp can be achieved. 

Wave disturbance events are larger and more frequent along the central coast than 

the more protected southern California coastline, and thus represent a greater and more 

consistent driver of biomass along wave-exposed coastline (Reed et al. 2011). Wave 

disturbance showed an increasingly negative effect on kelp biomass at Hs > 2.5 m (Fig. 4). 

We saw a clear increase in the magnitude of the surface wave disturbance coefficient north 

of Point Conception, where the mean maximum winter Hs among all central coast sites was 

3.3 m. Wave disturbance can also have a large effect on kelp biomass throughout southern 

California, such as the large storm events associated with El Niño episodes (Dayton & 

Tegner 1984, although large wave events are less frequent in southern California (7.7 

seasonal maximum events above 2.5 m per coastline segment in southern California, versus 



 

 20 

39.7 in central California during the period of study) and thus explained a smaller amount of 

variation in kelp dynamics in southern California. 

The frond elongation rate is reduced at low nitrate concentrations, and surface water 

nitrate concentrations (as estimated from SST) showed a significant positive relationship 

with canopy biomass at 49% of the sites across the entire study region (Zimmerman & 

Kremer 1984). It was, however, the dominant correlate only at protected sites along the 

central coast or in southern California, where wave disturbance is reduced. Mean nitrate 

displayed negative effects on biomass at low concentrations and positive effects at high 

concentrations, with little effect at intermediate levels (2–6 µmol L−1; Fig. 4). Although 

canopy persistence depends on many factors (Rodriguez et al. 2013), in the absence of 

periodic removal by disturbance, kelp forests can maintain a canopy throughout the year and 

may be primarily influenced by interannual cycles of nutrient availability (Parnell et al. 

2010). Periods of high nutrient concentrations have been associated with increased kelp 

growth (Gerard 1982; Zimmerman & Kremer 1984; Stewart et al. 2009), and the shoaling of 

high-density, nutrient-rich waters over the inner shelf explains much of the interannual 

variation in kelp plant density in the southern end of the study area (Parnell et al. 2010). 

Interannual variation in nutrient concentrations is associated with changes in the state of the 

NPGO, which operates over interannual timescales and is characterized by increased 

upwelling and horizontal advection of cool waters from the north, extending to the southern 

Channel Islands (Di Lorenzo et al. 2008). These increased incursions of cold, nutrient-rich 

waters into the Southern California Bight may be partly responsible for the episodic 

dynamics of kelp forests in regions that are usually defined by oligotrophic conditions, such 

as San Clemente and Santa Catalina islands and the lower portion of the southern California 
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mainland coast (Kopczak et al. 1991; Di Lorenzo et al. 2008). Positive values of the NPGO 

index display positive effects on kelp biomass, with values above 1.4 having increased 

positive effects (Fig. 4). Although El Niño variations were not primarily correlated with any 

of the kelp biomass EOFs, the wave disturbance and nutrient conditions typical of these 

events may have been partly explained within the first three EOF temporal amplitude 

functions, where interannual variation in the strength of each seasonal cycle is evident, 

especially during strong El Niño episodes. 

Top-down effects by grazing sea urchins have been hypothesized to have increased 

in the past two centuries as a result of human-induced alteration of kelp forest food webs. 

This resulted from the extirpation of sea otters by hunting and overfishing of predatory 

species of fish and invertebrates, and may have led to increased abundances of sea urchins 

and other kelp grazers (Estes & Palmisano 1974). Our results show that higher sea urchin 

densities were associated with decreases in kelp canopy biomass and sea urchin density was 

the dominant correlate at 25% of the sites with long-term sea urchin records in southern 

California. For central-coast segments where urchin observations were available, sea urchin 

density was 20 times lower than in southern California. At two of the three central coast 

segments where the sea urchin density was significantly correlated with kelp biomass, a 

positive relationship was observed, indicating that increased kelp may be supporting greater 

numbers of sea urchins. This reinforces the notion that the top-down grazing by sea urchins 

is an important local-scale driver of kelp biomass in southern California, but not central 

California in areas where sea otters are prevalent (VanBlaricom & Estes 1988; Reed et al. 

2011). 
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2. Addressing unknown drivers 

The modeling of the biogeographical structure of a species requires an understanding of 

the relative importance of the causative environmental drivers (Fenberg et al. 2014). 

Remotely sensed and modeled datasets can provide insight into the mechanisms that cause 

populations to fluctuate at different spatial and temporal scales. Data for some potentially 

important covariates, such as sea urchin density, require time-consuming diver surveys, 

however, which limits their spatial and temporal extent. Furthermore, records for some 

predictor variables, such as kelp harvest, may not extend throughout the entire time-series. 

The lack of comprehensive data on such drivers limits our ability to fully understand the 

processes that control the dynamics and distribution of the species we study. 

Here, we use observations from a time-series of giant kelp canopy biomass and its 

major environmental drivers (e.g. wave heights, nitrate concentrations and oceanographical 

conditions) to model kelp biomass dynamics across a 1500-km stretch of the California 

coast. Sustained departures between these model predictions and observations may indicate 

the occurrence of unknown processes that have a significant impact on kelp biomass. An 

example can be seen at the Carpinteria kelp forest near Santa Barbara, California, where the 

time-series of sea urchin density was not included in the model (Fig. 5). From 1998 to 2005, 

kelp canopy was completely absent from the Carpinteria coastline segment, but the model 

predicted multiple cycles of kelp growth and removal during this absence. Sea urchin 

abundance was especially high during this absence of kelp canopy, suggesting that top-down 

grazing pressure overwhelmed the effects of wave disturbance and nutrient availability 

during this period. 

The detection of model mismatch throughout the time-series may provide a path for 



 

 23 

the elucidation of unknown or poorly-known environmental drivers. By relating the degree 

and duration of model–data mismatches to predictors measured at local-scale sites, one can 

infer where and when additional forces are likely to be dominant. This can lead to directed 

sampling efforts or the inference of the progression of drivers through time and space, 

providing additional insights into the importance of unknown factors in controlling 

populations. 

Understanding the spatial heterogeneity of processes that exert control over 

populations remains a major focus for landscape ecology and biogeography (Turner 1989). 

Our results demonstrate the importance of multiscale analyses of ecosystem dynamics. A 

variety of known and unknown environmental and biotic forces interact to structure these 

systems, which vary not only through time, but also in space. This spatial variability has the 

potential to lead to conflicting conclusions concerning the relative importance of different 

factors, as many studies investigating biomass and population dynamics are conducted in 

relatively small plots, in a small portion of a species’ geographical range. Large-scale, long-

term, persistently sampled datasets allow for a comprehensive characterization of spatial and 

temporal variability and the factors that influence this variability. Results from such studies 

inform not only what has happened in the past, but allow one to infer how future changes in 

drivers may disproportionately affect certain locations or regions. 
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Table 2.1. Correlation coefficients between empirical orthogonal function temporal mode 
amplitude functions/spatial loadings and physical and oceanographical variables. Mean 
nitrate concentrations estimated from sea-surface temperature. Bold values are significant at 
P < 0.05. 

 

Temporal 

amplitude 

function 

Proportion 

of variance 

Max. 

significant 

wave 

height (Hs) 

Mean 

nitrate 

North 

Pacific 

Gyre 

Oscillation 

index 

Pacific 

Decadal 

Oscillation 

index 

Multivariate 

ENSO index 

Southern 

Oscillation 

index 

1 24.5% 0.592 0.358 0.089 −0.188 0.025 −0.018 

2 12.7% 0.105 0.490 0.013 −0.021 −0.142 0.187 

3 6.1% −0.066 −0.115 0.436 −0.028 −0.354 −0.025 

 

Spatial loadings Spatial max. Hs Spatial mean nitrate % < 1 µmol L−1 nitrate 

1 −0.687 −0.762 0.725 

2 −0.648 −0.727 0.655 

3 0.088 −0.244 0.391 
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Table 2.2. Mean z-score standardized coefficient, for each tested environmental predictor of 
giant kelp canopy biomass, across all significant coastline segments and well as the 
percentage of coastline segments where the predictor was significant at α = 0.05. Mean 
nitrate concentrations estimated from sea-surface temperature. Sea urchin density was 
investigated at 45 of the 723 sites. 
 

Predictor Mean model coefficient Proportion 

significant 

Max. significant wave height −0.421 67.1% 

Mean nitrate 0.223 49.0% 

North Pacific Gyre Oscillation index 0.085 21.7% 

Kelp occupancy 0.384 88.7% 

Harvest effort −0.003 18.3% 

Sea urchin density −0.212 42.2% 
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Figure 2.1. (a) Mean giant kelp canopy biomass at every 500-m coastline segment across 
every measured season, from 1986 to 2011, along the coast of California, USA. The star 
shows the approximate location of the Harvest platform and buoy, Point Arguello buoy, and 
Point Conception (plate carrée projection). (b) Mean kelp canopy biomass plotted as lines 
running from south to north, including the Channel Islands inside the horizontal dashed 
lines. Site locations for each island start at the location of the arrow and proceed clockwise 
around the island. (c) The coefficient of variation (CV) of kelp canopy biomass at each 
coastline segment across all seasons and years. 
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Figure 2.2. (a) First (a), second (c) and third (e) temporal amplitude functions from the 
empirical orthogonal function analysis of the giant kelp canopy biomass dynamics along the 
coast of California, USA. Spatial time series as solid lines and temporally correlated 
physical and oceanographical variables as dashed lines, (a) maximum significant wave 
height (Hs), (c) mean nitrate, and (e) North Pacific Gyre Oscillation index. Mean nitrate 
concentrations estimated from sea-surface temperature. These three modes explain 24.5%, 
12.7% and 6.1% of the total variance, respectively. First (b), second (d), and third (f) spatial 
loadings as solid lines with spatially correlated environmental variables as dashed lines, (b) 
mean seasonal maximum Hs, (d) mean nitrate, and (f) percentage of seasons where mean 
nitrate < 1 µmol L−1. All correlations shown are significant at P < 0.001. 
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Figure 2.3. (a) Variance of giant kelp canopy biomass explained by a generalized additive 
model at each site, along the coast of California, USA. Vertical line is the ensemble mean 
R2. (b–g) z-score standardized coefficient of each significant (α = 0.05) predictor (maximum 
significant wave height (Hs), mean nitrate, North Pacific Gyre Oscillation index (NPGO), 
kelp occupancy, harvest effort, and sea urchin density) at each site. Mean nitrate 
concentrations estimated from sea-surface temperature. Sea urchin density observations 
were available from 45 of the 723 sites. Areas inside dashed lines represent the offshore 
Channel Islands. 
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Figure 2.4. Additive effect of each environmental predictor variable on the site-specific 
generalized additive giant kelp canopy biomass model over the measured range of each 
predictor along the coast of California, USA (maximum significant wave height (Hs), mean 
nitrate, North Pacific Gyre Oscillation index (NPGO), kelp occupancy, harvest effort, and 
sea urchin density). The solid line is the mean effect of the predictor and the shaded regions 
show the 95% confidence intervals across all sites were the predictor was significant at α = 
0.05. The frequency of each variable through space and time is shown by the histogram at 
the bottom of each effect plot. Mean nitrate concentrations estimated from sea-surface 
temperature. Sea urchin density observations were available from 45 of the 723 sites. 
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Figure 2.5. Giant kelp canopy biomass (solid line) at the Carpinteria kelp forest site, near 
Santa Barbara, California, compared with the model predictions (dashed line) based on 
relationships with wave disturbance, nitrate concentrations, North Pacific Gyre Oscillation 
index, and kelp occupancy. Annual sea urchin density is shown as black dots. 
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III. Giant kelp biomass and net primary productivity dynamics are 
associated with regional patterns of physiological condition 

 

Abstract 

Marine autotrophs vary their photosynthetic pigments in relation to their carbon mass 

(Chl:C) in response to changing environmental conditions. The Chl:C has been used as a 

proxy for the physiological condition of phytoplankton, and there is laboratory evidence that 

the growth rate of giant kelp (Macrocystis pyrifera) is strongly related to its Chl:C in 

nutrient-limited conditions. Understanding the relationship between Chl:C and net primary 

production of this species is important as it provides a key source of energy and structure for 

an economically significant and ecologically diverse ecosystem. We found that 

photosynthetic pigment state and Chl:C of the kelp canopy more closely resembles changes 

in available nitrate rather than changes in available light at locations in the Southern 

California Bight, while the reverse is true along the more nutrient-replete central California 

coastline.  Photosynthetically available radiation and nitrate concentration acted 

antagonistically to explain 70% of the variation in Chl:C of the kelp canopy. Chl:C was 

positively related to changes in kelp biomass integrated over a three-month time scale at the 

periodically nutrient-limited southern California sites. Time series of net primary production 

estimated through correlations with kelp canopy biomass and lagged Chl:C compared well 

to estimates from more complex methods. These results open the possibility of estimating 

net primary production of giant kelp over large spatial and temporal scales using present and 

planned remote sensing technologies and the modeling of Chl:C based on well measured 

environmental variables. 
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A. Introduction 

 The physiological condition of marine flora fluctuates through time and space in 

response to environmental variability. As light, nutrient, and temperature conditions change, 

marine autotrophs vary cellular pigment levels to adjust to new photosynthetic demands 

(Kirk 1994). In a steady-state, nutrient-limited culture, the marine diatom, Thalassiosira 

fluviatilis, now T. weissflogii, was shown to linearly increase its cellular concentrations of 

chlorophyll a (Chla), in relation to its carbon content (Chl:C; a known proxy for 

physiological condition) as nutrient limitations were released (Laws and Bannister 1980). 

The same diatom under nutrient-replete conditions decreased its Chl:C in a non-linear 

fashion in response to the addition of light. These results illustrate the potential of using 

measurements of Chl:C to diagnose physiological limitations in phytoplankton populations.  

Environmentally forced fluctuations in photosynthetic pigments are not limited to 

phytoplankton but apply to marine photoautotrophs in general. For example, four species of 

seagrasses were also found to non-linearly increase Chla concentrations in response to 

decreases in available light, in experiments simulating increased turbidity (Wiginton and 

McMillan 1979). Furthermore, seagrasses increased chlorophyll content and photosynthetic 

activity, and by extension growth rates and biomass accumulation in response to fertilizer 

additions while in a nutrient-limited environment (Agawin et al. 1996). These physiological 

responses appear to be similar across temperate and tropical seagrass species; a testament to 

the generality of extrinsic environmental factors affecting physiological condition dynamics 

in marine plants (reviewed in Leoni et al. 2008).  

 Values of the Chl:C ratio also scale with growth rate in phytoplankton and marine 

plants (e.g., Geider 1987; Shivji 1984). Sakshaug and others (1989) found that, in a nutrient-
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limited system, the Chl:C ratio was linearly proportional to the growth rate of a marine 

diatom for a given level of daily irradiance. Over the past decade, results from these and 

other laboratory studies have been combined with large spatial scale measurements of Chl a 

concentrations, phytoplankton carbon biomass, and incident light from satellite sensors to 

estimate phytoplankton growth rates for the global oceans (Behrenfeld et al. 2005). 

Phytoplankton and plant growth rates combined with carbon biomass determinations can 

then be used to estimate regional net primary production, the basis for ecosystem production 

and biogeochemical cycling (Jansen et al. 2015; Maiti et al. 2016; Wheeler et al. in review). 

This example shows how the knowledge of an organism’s physiological condition can 

improve our ability to estimate the production dynamics of important primary producers. 

 The marine macroalga Macrocystis pyrifera, hereafter referred to as giant kelp, is a 

globally distributed canopy forming species that serves as the foundation to an ecologically 

diverse and economically important ecosystem (Leet et al. 2001; Graham et al. 2007; Schiel 

& Foster 2015). This species is microscopic when it attaches to shallow (<30m depth) rocky 

reefs, but can reach the surface and form a dense canopy within several months (Dayton et 

al. 1992; Reed et al. 2006). The adult plant consists of a holdfast supporting a bundle of 

fronds with leaf-like blades extending off at regular intervals, each with a gas-filled 

pneumatocyst to buoy the fronds to the surface. The fronds commonly grow about 14 - 18 

cm a day, which requires high concentrations of nutrients from the surrounding waters 

(Gerard 1982; Zimmerman and Kremer 1986; Stewart et al. 2009). Frond elongation rate 

increases in a non-linear, saturating fashion in response to increased ambient nitrate 

concentrations (Zimmerman and Kremer 1984). Photosynthetic pigment concentrations and 

Chl:C are also known to increase with elevated ambient nitrate conditions and be positively 
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associated with increases in specific growth rate under nutrient-limited conditions (Shivji 

1984; Shivji 1985; Kopczak 1994).  

 Photosynthetic pigments and rates vary in giant kelp in response to changes in light 

along a depth gradient. Pigment content increases to a maximum in the canopy about 2 m 

back from the apical meristem and remains generally constant throughout much of the water 

column, until decreasing again in the oldest, deepest blades (Wheeler 1980, Rodriguez et al. 

2016). The variation in pigment was found to be dynamic as it changed within days of 

juvenile sporophytes being transplanted from depth to the surface (Wheeler 1980). Despite 

these changes in pigment, photosynthetic rates remained constant, a pattern expected due to 

changes in irradiance when nutrients are not limiting. Surface canopy blades have higher 

ultraviolet absorbing compounds and photoprotective pigment concentrations than blades at 

depth, allowing canopy blades to present the highest relative photosynthetic rates and make 

the largest contribution to production (Colombo-Pallotta et al. 2006). 

While much is known about how giant kelp responds to changes in light over a depth 

gradient at a single point in time, there is a dearth of research observing changes in 

physiological condition through time and over a latitudinal gradient. Understanding the 

relationships between the environment and growth of this foundational species would allow 

for the estimation of a major source of production entering this diverse and important food 

web. In this study, we aimed to determine the environmental drivers of giant kelp 

photosynthetic pigment concentration and Chl:C over multiple years at sites spanning ~750 

km of coastline in California, USA. We related measurements of Chl:C to field and remotely 

sensed time series of kelp biomass and net primary production to expose nonlinear and time 

integrated relationships. Due to the expectation that light and nutrients should act 
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antagonistically to balance photosynthetic pigments and Chl:C, and that changes in the 

Chl:C are expected to modulate growth rate in nutrient-limited systems, we aimed to answer 

two overarching questions: (1) What are the relative roles of nutrients and light to the 

photosynthetic pigment and Chl:C dynamics of the giant kelp canopy? (2) Are these 

fluctuations in physiological condition related to changes in giant kelp biomass and net 

primary production over ecologically relevant time scales? 

B. Methods 

1. Giant kelp condition, biomass, and net primary production data 

 We assessed the physiological condition and biomass of the giant kelp canopy across 

the species’ range of dominance in California, USA. This region is subject to seasonal 

fluctuations in both the surface nutrient and light environment.  Sea surface nitrate 

concentrations follow seasonal and geographic patterns consistent with coastal upwelling in 

the California Current with northern areas along the central coast typically experiencing 

cooler, nutrient-rich water for longer periods of the year (Bernal and McGowan 1981; 

Bograd et al. 2001; Bograd et al. 2009). Kelp forests south of Point Conception, in southern 

California, are subject to lower nutrient conditions, with summer and fall nitrate 

concentrations falling below 1 µmol L-1, the concentration were frond elongation rate begins 

to decline (Zimmerman & Kremer 1984; Reed et al. 2011). We sampled five kelp forest sites 

within this range: Pleasure Point (36.9564 N, 121.9641 W) near Santa Cruz, Arroyo 

Quemado (34.4677 N, 120.1191 W), Arroyo Burro (34.4003 N, 119.7446 W), and Mohawk 

(34.3941 N, 119.7296 W) in the Santa Barbara Channel, and La Jolla (32.8532 N, 

117.2750W) near San Diego. Sites in the Santa Barbara Channel were sampled monthly by 



 

 42 

the Santa Barbara Coastal Long Term Ecological Research (SBC LTER) project (August 

2012 – August 2015), while sites in Santa Cruz and San Diego were sampled quarterly (June 

2013 – July 2015). At each sample date, 15 mature canopy blades were haphazardly 

collected from different individuals. To standardize age, all blades were collected two 

meters from the tip of an actively growing frond. Blades were placed in a resealable plastic 

bag, which was then stored on ice in an opaque cooler for transport to the laboratory. Blades 

were then stored at 4°C until processed, which occurred within 24 hours of collection. 

 Once at the laboratory, a 5 cm2 disc was excised from the central portion of each 

blade, cleaned of epiphytes and rinsed in a 10% HCl solution. The 15 discs for each site 

were combined and weighed to record wet mass, then dried at 60°C for several days, after 

which, dry mass was recorded. The pooled discs were then ground to a fine powder using a 

mortar and pestle and analyzed for carbon and nitrogen content using an elemental analyzer 

(Carlo-Erba Flash EA 1112 series, Thermo-Finnigan Italia, Milano, Italy). A separate 0.8 

cm2 disc was excised adjacent to the larger disc for pigment analysis. Each disc was blotted 

dry and weighed, then placed in 4mL dimethyl sulfoxide for 45 minutes at room temperature 

in the dark. The disc was then removed and washed with 1 mL water, which was added to 

the dimethyl sulfoxide extraction, and then placed in 5 mL of a mixture of 3:1:1 acetone, 

methanol, and water for 2 hours at 4°C in the dark. Upon removal from the second extract 

the disc was a pale white color, indicating no remaining pigment (Wheeler 1980). The 

separate extracts were then placed in individual quartz cuvettes and absorbance was 

measured from 350 – 800 nm using a spectrophotometer (Shimadzu UV 2401PC, Tokyo, 

Japan). Concentrations of chlorophyll a (Chl a), chlorophyll c (Chl c), and fucoxanthin (FX) 

were calculated from absorbance at several wavelengths allowing for determination by 
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empirical equations following Seely et al. 1972. Chl:C was calculated by dividing the molar 

mass of Chl a by the dry mass of carbon for each disc.   

 Standing foliar biomass and net primary production were estimated monthly for the 

three Santa Barbara Channel sites by the SBC LTER (Rassweiler et al. 2013). Briefly, divers 

estimate standing foliar biomass, defined as the total plant biomass excluding the holdfast 

and reproductive sporophylls, and the proportion of giant kelp fronds and plants removed by 

senescence or disturbance processes in permanent plots monthly (200 m2 for Arroyo 

Quemado and Mohawk; 480m2 for Arroyo Burro). Each month divers characterized the 

length of each plant (> 1m in height) in three distinct plant sections: the subsurface (fronds 

which do not reach the surface), the water-column (the subsurface portion of canopy fronds), 

and the canopy (the surface portion of canopy fronds). Divers also count the number of 

fronds at 1 m above the bottom and at the surface. From these measurements, standing foliar 

biomass is estimated based on empirical relationships between these allometric 

measurements and total plant wet mass. Frond and plant loss rate is calculated by tagging 

the fronds of 10 – 15 haphazardly selected plants in each plot, and recording the loss of 

tagged fronds and plants at each time point. Net primary production is then calculated as the 

total amount of biomass produced during the period between each sampling date that 

explains the observed changes in standing foliar biomass given the frond and plant loss rate 

for that period. Detailed methods are presented in Rassweiler et al. 2008. To account for 

noise between months, a three-month running mean was applied to the monthly net primary 

production data.  
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 In order to generate consistent time series of giant kelp canopy fluctuations across all 

sites, including those not sampled by the SBC LTER, canopy biomass was estimated using 

the Landsat 7 Enhanced Thematic Mapper Plus and Landsat 8 Operational Land Imager 

satellites (detailed methods in Cavanaugh et al. 2011; Cavanaugh et al. 2014; Bell et al. in 

prep). The combination of these two sensors provides an image of the study area every eight 

days, and a cloud-free image approximately once a month. Briefly, images are 

atmospherically corrected and radiometrically standardized using 50 temporally stable 

pseudo-invariant targets (85 targets for Landsat 7 images to account for missing data due to 

the scan line corrector error; Furby & Campbell 2001). Multiple endmember spectral mixing 

analysis was then used to model each 30 x 30 m pixel as a linear combination of 2 

endmembers; one temporally and spatially stable kelp endmember and one of 30 seawater 

endmembers unique to each image (Roberts et al. 1998). Multiple seawater endmembers 

were chosen to account for spatial and temporal differences in water conditions due to 

sediment, glint, phytoplankton, etc. Kelp canopy biomass was then estimated using an 

empirical relationship between diver estimated kelp canopy biomass and fractional kelp 

cover in each pixel. A long-term (2002 – 2015) comparison of Landsat kelp fraction with 

diver estimated kelp biomass in the Santa Barbara Channel explains 62.4% of canopy 

biomass dynamics (Cavanaugh et al. 2011; Bell et al. in prep). A monthly time series of kelp 

canopy biomass was generated for each site over the study period by summing all Landsat 

pixels within a 100m radius of each sampling site.   
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2. Environmental datasets 

 Spatio-temporal datasets of environmental variables known to be associated with 

fluctuations in the physiological condition of marine autotrophs were compiled from 

measured and remotely sensed sources. In the California Current, as with other coastal 

upwelling systems, a non-linear inverse relationship exists between temperature and 

nutrients, allowing for the estimation of surface nitrate concentration from more spatially 

and temporally explicit measurements of sea surface temperature (Zimmerman & Kremer 

1984; Palacios et al. 2013). We developed a non-linear fit between measured surface 

temperature and nitrate concentrations from 26 years (1990 – 2015) of California 

Cooperative Oceanic Fisheries Investigations (CalCOFI) oceanographic cruises spanning the 

latitudes of our study sites (calcofi.org). We then produced a time series of surface nitrate 

concentrations at each of the five study sites using the nearest 9 km pixel of daily sea surface 

temperature from the MODIS Aqua satellite sensor (oceandata.sci.gsfc.nasa.gov). Daily 

determinations of photosynthetically active radiation (PAR) at the sea surface at 9 km spatial 

resolution was obtained from the MODIS Aqua satellite sensor 

(oceandata.sci.gsfc.nasa.gov).   

3. Relationship of environment to kelp pigment and physiological condition dynamics 

 In order to assess the effect of changes in available nutrients and light and kelp 

canopy physiological condition, we examined the relationship between known 

environmental driver data and the giant kelp canopy photosynthetic pigment concentrations 

and Chl:C. We would expect that the concentration of ambient nitrate and PAR affect the 

physiological condition of giant kelp across different time scales. We constrained these time 
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effects by modeling photosynthetic pigments, carbon content, and Chl:C from all sites as a 

function of mean nitrate concentration and mean PAR over various time lags. As there was 

unequal sampling effort across sites, we randomly resampled the data so that all sites had the 

same number of measurements. 

Once the appropriate time lag was found for each predictor variable, we used 

generalized least squares regressions to model each response variable as a function of nitrate 

and PAR for each region (nlme package; Pinheiro et al. 2016; R Core Team 2016). 

Generalized least squares regressions were used to account for autocorrelation between the 

residuals of the model. Beta, or standardized, coefficients were then calculated using the 

std_beta function (sjmisc package; Lüdecke 2016). To investigate the non-linearity of the 

effects of nitrate concentrations and PAR on the physiological condition of the giant kelp 

canopy, we used a generalized additive model with a Gaussian error distribution and the 

identity link function (mgcv package; Wood 2006). This approach models the response 

variable as the sum of non-linear functions of several predictor variables. Smoothness 

parameters were estimated with generalized cross validation. Data were resampled to 

account for differences in sampling effort across sites and the final model was validated 

using 5-fold cross validation. 

4. Relationship of physiological condition to the dynamics of canopy biomass and net 

primary production 

 Giant kelp biomass has been shown to be a function of the quantity of biomass 

present in the preceding season (Reed et al. 2008; Bell et al. 2015a). To account for these 

dynamic starting conditions, changes in giant kelp canopy biomass through time were 
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assessed by examining the residuals of an autoregressive time series model. At each site, we 

linearly regressed Landsat estimated canopy biomass at time t by canopy biomass at time t – 

3 months. We then examined the residuals, which represent the change in kelp biomass over 

the season with respect to the starting conditions, and compared these to our time series of 

site-specific physiological condition using simple linear correlations.  

 Monthly net primary production was modeled at the three sites in the Santa Barbara 

Channel as a function of diver estimated standing foliar biomass and measured Chl:C over 

multiple time lags using generalized additive models (mgcv package; Wood 2006). The 

potentially non-linear relationships between the predictor variables and net primary 

production were examined and model selection was based on the generalized cross 

validation score. Models were constructed using a Tweedie error structure (power function = 

1.1) with a log link and an AR(1) autoregressive model to account for temporal 

autocorrelation among residuals (mgcv package; Wood 2006). The Tweedie family error 

structure allows for a variable variance power function to fit the error structure of the data. 

Net primary production was then predicted based on the results of the generalized additive 

model and compared to the SBC LTER net primary production model for each site using 

simple linear correlations. 

C. Results 

1. Spatio-temporal variability in photosynthetic pigments and physiological condition 

 The Santa Cruz site experienced consistently higher nitrate concentrations in the 

surface waters throughout the year when compared to the southern California sites (Figure 
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1a). The Santa Barbara Channel sites experienced periodic increases in nitrate 

concentrations in the surface waters associated with spring upwelling and low (<1 μmol L-1) 

concentrations during the summer and fall. The San Diego site was characterized by low 

nitrate concentrations in the surface waters throughout the measurement record. PAR values 

followed a predicable seasonal cycle at all sites with slight variation between sites due to 

latitude, clouds, and sampling dates (Figure 1b). Chla and FX pigment concentrations as 

well as Chl:C, followed a cyclical pattern that varied slightly by region (Figure 1c-e). 

Carbon content displayed a more erratic pattern though time (Figure 1f). The photosynthetic 

pigments displayed larger variations than carbon content when compared to their means, 

with coefficients of variation of 0.43 for Chla, 0.38 for FX, and 0.22 for carbon content. 

 Time lags were consistent for the photosynthetic pigments Chla, FX, and FX:Chla, 

with a optimal lag of 5 days for nitrate and 18 days for PAR. Chl:C maintained an 18 day 

lag for PAR, but increased the lag to 11 days for nitrate concentration. All environmental 

variables were significant at the p = 0.05 level for the optimal lag times. Carbon content 

showed a nitrate lag of 19 days and a PAR lag of 18 days, although neither predictor was 

significant at the p = 0.05 level. 

 Concentrations of photosynthetic pigments at the Santa Cruz site were all negatively 

associated with changes in amount of PAR and not significantly related to changes in 

surface water nitrate concentrations (Table 1). In contrast, pigment concentrations at sites in 

the Santa Barbara Channel were positively related to changes in nitrate concentration. Chla 

and FX concentrations were negatively related to changes in PAR at the Santa Barbara 

Channel sites, however beta coefficient analysis showed that nitrate concentration effect was 
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about 3x that of PAR. Changes in pigment concentrations at the San Diego site were not 

found to be significantly related to nitrate concentrations or PAR. The ratio of fucoxanthin 

pigment to chlorophyll a pigment (FX:Chla) was positively related PAR at the Santa Cruz 

site, and was positively related to PAR and negatively related to nitrate concentrations at the 

Santa Barbara Channel sites. Carbon content was not significantly related to changes in 

nitrate concentrations or PAR at any site. Chl:C was negatively related to PAR at the Santa 

Cruz site, positively related to nitrate concentrations at the San Diego site, and both 

negatively related to PAR and positively related to nitrate concentrations at the Santa 

Barbara Channel sites.  

 The Chl:C of the surface canopy was modeled as non-linear functions of both surface 

water nitrate concentrations and PAR. Both variables were found to be significantly related 

to changes in Chl:C (R2 = 0.70, p < 0.001). Chl:C was negatively related to nitrate at low 

concentrations (0 to 0.5 µmol L-1), but showed an increasingly positive relationship up to ~2 

µmol L-1 (Figure 2a). There was no increasing effect of nitrate concentration on Chl:C from 

2 to 4 µmol L-1, this was followed by a weak increasing trend for nitrate concentrations 

above ~4 µmol L-1. PAR had a positive effect on Chl:C from 15 to ~30 Einsteins m-2 d-1 and 

a little effect as values increased from ~30 to 60 Einsteins m-2 d-1 (Figure 2b). 

2. Relationship between canopy biomass dynamics and physiological condition  

 At the northern Santa Cruz site, canopy biomass tended to be highest during the 

summer and lower during the winter months (Figure 3a). At the southern California sites, 

canopy biomass increased throughout 2013 and began to decline throughout 2014. Most 

canopy was lost during 2015 with few increases (Figure 3b-e). The dependence on the Chl:C 
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on the standing biomass in previous months varied greatly between central and southern 

California. Canopy biomass at a given time point was significantly related to canopy 

biomass three months in the past at all three Santa Barbara Channel sites: Arroyo Quemado 

(r2 = 0.20, p < 0.01, n = 34), Arroyo Burro (r2 = 0.27, p < 0.01, n = 19), Mohawk (r2 = 0.23, 

p < 0.01, n = 34). Temporal autocorrelation was marginally significant at the San Diego site 

(r2 = 0.25, p = 0.10, n = 9) and was non-significant at the Santa Cruz site (r2 = 0.05, p = 

0.48, n = 9). The biomass residuals of these autocorrelation functions were not significantly 

related to the sampled Chl:C time series at the Santa Cruz site (Figure 3a). However Chl:C 

was significantly and positively related to residuals from the three Santa Barbara Channel 

sites with a temporal lag time of two months (Figure 3b-d). Residuals from the Arroyo 

Burro site were not available after April 2014 as canopy biomass was too low to be detected 

by the Landsat sensor. The residuals from the San Diego site were also significantly related 

to Chl:C with a temporal lag time of three months (Figure 3e).  

3. Relationship between net primary production and physiological condition 

 Predictions of net primary production based on the generalized additive model that 

accounted for standing biomass and Chl:C closely matched those of the SBC LTER model 

at all three sites (Arroyo Quemado: r = 0.954, p < 0.001; Arroyo Burro: r = 0.813, p < 0.001; 

Mohawk: r = 0.784, p < 0.001; Figure 4). The relationship between standing foliar biomass 

and net primary production was asymptotic (p < 0.001; Figure 5a). There was a linear 

increase in the additive effect on net primary production as standing foliar biomass increased 

from 0 – 3 kg m-2, becoming positive at 2 kg m-2, reaching an asymptote from 3 – 9 kg m-2. 

Chl:C was significantly related to net primary production with a temporal lag of 6 months (p 
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< 0.001). There was near linear increase in the additive effect of the Chl:C state of the 

canopy to net primary production with a 6-month time lag, with positive effects occurring at 

Chl:C greater than 0.0125 mg mg-1 (Figure 5b). Using Chl:C and standing foliar biomass as 

predictors improved the model fit from R2 = 0.65 to 0.74, and reduced the generalized cross 

validation score from 0.00223 to 0.00196 versus using standing foliar biomass as the sole 

predictor variable. 

D. Discussion 

1. Spatial heterogeneity in drivers of photosynthetic pigment state and physiological 

condition 

 Understanding the effect of physiological condition on the dynamics of giant kelp is 

challenging as the variability of this foundational species is controlled by a combination of 

top-down, bottom-up, and disturbance forces (Schiel & Foster 2015).  One way to begin to 

tease apart these environmental effects on physiological condition is to examine changes in 

photosynthetic pigments and other physiological proxies over a spatial gradient of 

environmental conditions. The range of giant kelp in the NE Pacific spans a variety of light 

and nutrient environments, from the large seasonal light fluctuations of SE Alaska to the 

often warm, nutrient-poor waters of southern and Baja California (Graham et al. 2007). 

Therefore, we should expect this species to adjust its photosynthetic pigment concentrations 

according to its local environmental conditions.  

 During nutrient-replete conditions, marine autotrophs tend to increase pigment 

concentrations during low light seasons and decrease pigment concentrations during periods 
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of high light (Wiginton and McMillan 1979). It is not surprising then that fluctuations in 

photosynthetic pigments at Santa Cruz were strongly and negatively associated with changes 

in PAR rather than nutrients because kelp at this site is bathed in cool, nutrient-rich water 

throughout most of the year. Kelp canopy pigments in the Santa Barbara Channel showed a 

different pattern than the northern Santa Cruz site, as relatively high pigment levels were 

sometimes observed during periods of high light availability. Pigment concentration patterns 

closely mirrored seasonal and interannual variation in nitrate concentrations in the more 

oligotrophic waters of the Santa Barbara Channel. The light modulated relationship of the 

ratio of the accessory photosynthetic pigment FX to Chla may highlight an additional 

photoprotective function. While other accessory pigments ratios have shown a negative 

relationship to light levels, FX is an exception to this rule in other brown algae and diatom 

species (Brown & Richardson 1968). Carotenoid pigments like FX are light-harvesting 

pigments, however they can also exert a protective effect against photooxidation of cell 

material in high light environments, so this positive association with PAR levels may be an 

adaptive response (Clayton 1980; Di Valentin et al. 2012). 

 The patterns in Chl:C, our proxy for physiological condition, were also tied to 

fluctuations in light and nutrient conditions across the three regions. Seawater nitrate 

concentration has an increasingly positive relationship with physiological condition as one 

moves from the northern to southern sites where nutrient limitation should be more 

prevalent (Table 1). The differences in the magnitude of the relationships of nitrate 

concentration and PAR to the Chl:C of the kelp canopy are the result of nonlinear effects. 

The nonlinear relationship with nitrate showed a linear increase at concentrations from 0 – 2 

µmol L-1 (Figure 2a). This pattern fits with other studies that showed the growth of juvenile 
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kelp plants increased sharply over this range, and the observed reduction in frond elongation 

rate at nitrate concentrations < 1 µmol L-1 (Kopczak et al 1991; Gerard 1982; Zimmerman & 

Kremer 1984; 1986; Brzezinski et al. 2013). The steep decline in effect size for all but the 

lowest observed PAR values suggests that light limitation has little effect on the Chl:C of the 

giant kelp canopy in much of California except during the winter months (Figure 2b).  

2. The role of physiological condition in giant kelp dynamics 

 The present state of a system is often a good predictor of that system’s state in the 

near future. This statement can be extended to giant kelp forests where the amount of 

canopy biomass at present often foretells the biomass in the following season (Bell et al. 

2015a). Temporal autocorrelation explained a greater proportion of kelp forest biomass 

dynamics in southern California compared to central California, likely because seasonal 

cycles are more pronounced in the north due to greater wave disturbance in winter (Reed et 

al. 2011; Bell et al. 2015a; 2015b). Consequently canopy biomass was not positively related 

to Chl:C at Santa Cruz which tended to show high pigment levels in the winter when canopy 

biomass was typically at its lowest point. Photosynthetic pigments and physiological 

condition were also strongly correlated with PAR at Santa Cruz suggesting that the kelp 

canopy can freely adjust pigment concentrations in response to changing light conditions 

because nutrient concentrations are typically high (Table 1).  

 The positive relationship between changes in canopy biomass and Chl:C suggests 

that the physiological state of the canopy plays a role in the biomass dynamics of the often 

nutrient-limited southern California kelp forests (Figure 3b-e). These changes in canopy 

biomass involve several processes integrated over different time scales. For instance, 
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increases in frond elongation rates, which are related to the external nutrient environment, 

will manifest as canopy biomass accumulation over time as fronds grow and reach the 

surface or add to their surface length (Zimmerman & Kremer 1986). Additionally, frond 

dynamics are dominantly controlled by programmed senescence in which an individual 

frond has an average lifespan of ~100 days (Rodriguez et al. 2013). Fluctuations in canopy 

biomass may persist on timescales longer than the environmental changes which driven 

them. 

 Increases in biomass over a given period of time represent net primary production, 

which is the portion fixed carbon that remains after plant respiration (Chapin et al. 2002). 

The most comprehensive time series of net primary production in giant kelp relies on in situ 

measurements of changes in standing biomass from one period to the next, while 

simultaneously constraining several processes of biomass loss (Rassweiler et al. 2008; Reed 

et al. 2015). Simplifying the estimation of net primary production to a function of the 

present biomass state and lagged Chl:C compared well with this previous method (Figure 4). 

This simplification removes the need to estimate losses and opens the possibility of net 

primary production estimates over large spatial scales with available (or soon to be 

available) remotely sensed products (discussed below). We found a positive relationship 

between foliar standing biomass and net primary production that saturated at ~ 6 kg m2.  

One possible explanation for this relationship is a reduction in photosynthesis due to density 

dependent shelf shading as the size and biomass of the forest increases. Stewart and others 

(2009) found that canopy fronds growing on the offshore edge of the Mohawk kelp forest in 

the Santa Barbara Channel displayed a higher growth rate than canopy fronds growing in the 
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interior of the bed. Since giant kelp grows on limited areas of rocky reef, biomass may be 

added without any increase in edge area as the reef nears carrying capacity. 

 The physiological state of the canopy is implicitly associated with net primary 

production through the accumulation of biomass, however there was also a significant 

positive linear relationship with Chl:C with a 6 month lag (Figure 5b). This raises the 

possibility of longer-term associations in giant kelp robustness or demographics linked with 

physiological condition in the past. Stephens and Hepburn (2016) found that increases in 

seawater nitrate concentration increased photosynthetic pigment concentrations as well as 

the thickness of mature kelp blades, leading to enhanced tissue integrity and lower rates of 

blade erosion. This effect of environmental condition on the quality of kelp biomass, not 

merely the quantity, may lead to lagged effects on future growth potential through frond 

initiation dynamics, as frond elongation and initiation rates are positively related (Gerard 

1976; Zimmerman 1983). There may also be an indirect link of environmental conditions 

associated with physiological condition and kelp demographics. Kelp spore quality and 

quantity is associated with resource availability, where cooler, nutrient-rich water leads to 

increases in spore standing stock and decreases in the carbon:nitrogen ratio, while also 

leading to greater sorus area during the first half of the year when upwelling conditions were 

strongest (Reed et al. 1996; Castorani et al. in review). Additionally, Deysher and Dean 

(1986) reported the existence of giant kelp recruitment windows, where there was increased 

recruitment at cooler seawater temperatures associated with higher nutrient concentrations. 

It would be months before the microscopic recruits reached the size threshold (> 1 m tall) to 

be included in our estimates of foliar standing biomass (Rassweiler et al. 2008). There was a 

significant positive response of specific growth rate with changes in the proportion of recruit 
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biomass to total biomass, suggesting that young plants grew faster than older plants (Reed et 

al. 2008). Periods of time with poor environmental conditions leading to a closure of the 

recruitment window might reduce future net primary production, as the age structure of the 

forest becomes skewed towards older plants.  

3. Estimation of net primary production from remotely sensed imagery 

 Recent advances in the remote estimation of giant kelp biomass and physiological 

condition have revealed how its biomass dynamics are associated with changes in 

environmental conditions (Cavanaugh et al. 2011; Bell et al. 2015a; 2015b; Young et al. 

2016). Results presented here show how information on kelp biomass and the recent history 

of its physiological condition can be used to estimate net primary production. Currently, 

Landsat multispectral imagery is used to estimate canopy biomass of giant kelp forests in the 

NE Pacific (Cavanaugh et al. 2011; Bell et al. in prep). The inclusion of physiological 

condition in this estimation is important, as hyperspectral imagery has shown up to 2-fold 

differences in Chl:C across a single kelp forest when moving from the inshore to offshore 

edge (Bell et al. 2015b). The planned Hyperspectral Infrared Imager (HyspIRI) mission 

could provide global, repeat hyperspectral imagery on the appropriate spatial scales for 

estimating both giant kelp canopy biomass and physiological condition simultaneously (Lee 

et al. 2015; Hochberg et al. 2015; Bell et al. 2015b).  

 We have shown that the physiological condition of giant kelp canopy blades is a 

predictable function of sea surface nitrate concentrations and PAR (Figure 2), and both 

variables can be estimated from satellite imagery. Subregional (~4km resolution) data of 

estimated PAR and nitrate concentrations at the sea surface can be used with Landsat 
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estimates of kelp canopy biomass to generate estimates of net primary production. This 

potential time series could serve as a measure of carbon entering the giant kelp forest 

ecosystem through the giant kelp canopy, informing many active areas of research including 

food web dynamics, carbon storage, and changes associated with climate (Byrnes et al. 

2011; Johnson et al. 2011; Wilmers et al. 2012; Koenigs et al. 2015; Morton et al. 2016; 

Reed et al. in review). 

 Fluctuations in environmental conditions are associated with changes in the 

photosynthetic pigment state and physiological condition of giant kelp canopy, however the 

strength of these associations varies regionally. Many of these processes linking 

physiological condition to biomass accumulation, and thus net primary production, are 

integrated over varied timescales, and translate to measureable changes over the course of 

several months. By leveraging the present state of kelp forest biomass, along with 

knowledge of the physiological state of the canopy or the environmental processes 

associated with it, and remote sensing tools, it may be possible to generate spatially 

expansive time series of net primary production for this important foundation species.  
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Table 3.1. Beta coefficients of the photosynthetic pigments chlorophyll a (Chla) and 
fucoxanthin (FX) and pigment ratio (FX:Chla), carbon content, and chlorophyll to carbon 
ratio (Chl:C) in relation to changes in nitrate concentration and photosynthetically available 
radiation at each site. Bold values are significant at α = 0.05. 

 

 

Table&1&

!
Site! ! Chla! FX! FX:Chla! Carbon! Chl:C!
Santa!Cruz! NO3! 60.06! 0.03! 60.49! 60.21! 0.18!
n!=!9! PAR! !0.89& !0.86& 0.64& 0.45! !0.82&
SBC! NO3! 0.69& 0.71& !0.25& 60.02! 0.50&
n!=!111! PAR! !0.24& !0.21& 0.29& 0.04! !0.28&
San!Diego! NO3! 0.39! 0.24! 60.39! 60.99! 1.00&
n!=!9! PAR! 60.03! 0.02! 0.35! 60.67! 0.06!
!
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Figure 3.1. Time series of (a) seawater nitrate concentrations (5 day mean), and (b) 
photosynthetically active radiation (PAR; 15 day mean) at each site. Time series of (c) 
chlorophyll a (Chla), (d) fucoxanthin (FX), (e) chlorophyll to carbon ratio (Chl:C), and (f) 
carbon content taken from 15 samples at each of the five study sites: Santa Cruz (SC), 
Arroyo Quemado (AQ), Arroyo Burro (AB), Mohawk (MO), San Diego (SD). 
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Figure 3.2. Non-linear additive effect curves of (a) seawater nitrate concentration and (b) 
photosynthetically active radiation (PAR) on the chlorophyll to carbon ratio of giant kelp 
canopy blades across all sites. The solid line is the mean effect of the predictor and the 
shaded regions represent the 95% confidence interval. The frequency of each predictor 
variable through space and time is shown as the black histogram at the bottom of each plot. 
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Figure 3.3. Canopy biomass of the 30 closest Landsat pixels (30 x 30 m) to the study site 
(left) and residuals of the 3-month temporal autocorrelation function (right; solid line) and 
chlorophyll to carbon ratio (right; dashed line) for the five study sites: (a) Santa Cruz (SC), 
(b) Arroyo Quemado (AQ), (c) Arroyo Burro (AB), (d) Mohawk (MO), (e) San Diego (SD). 
Pearson correlation coefficients (r) and calculated probabilities (p) reported for residuals and 
chlorophyll to carbon ratio (one month lag for Arroyo Quemado and Mohawk; two month 
lag for Arroyo Burro) for each site through time. 
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Figure 3.4. The top row shows diver estimated standing foliar crop (SFC; solid line) and 
chlorophyll to carbon ratio (Chl:C; dashed line) time series for each site in the Santa Barbara 
Channel, Arroyo Quemado (AQ), Arroyo Burro (AB), and Mohawk (MO). The bottom row 
shows net primary production (NPP) estimated from Santa Barbara Coastal Long Term 
Ecological Research project diver data at multiple time points (solid line) and modeled net 
primary production from present time SFC and Chl:C with a six month lag (dashed line). 
The statistics represent the Pearson correlation coefficients (r) and calculated probabilities 
(p) between the diver data based NPP model and the model which incorporates SFC and 
Chl:C at a single time point.  
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Figure 3.5. Additive effect curves of (a) standing foliar crop and (b) chlorophyll to carbon 
ratio (Chl:C) on the net primary production of giant kelp across the three sites in the Santa 
Barbara Channel. The solid line is the mean effect of the predictor and the shaded regions 
represent the 95% confidence interval. The frequency of each predictor variable through 
space and time is shown as the black histogram at the bottom of each plot. 
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IV. Scale dependence of bottom-up vs. demographic control on the 
dynamics of giant kelp forests  

Abstract 

Examining patterns at a variety of scales is essential for identifying and elucidating 

ecological processes. In order to examine these patterns, it is essential to have high-

resolution, spatially explicit data, which are becoming more available with advances in 

remotely sensed imagery. Giant kelp (Macrocystis pyrifera) is a foundation species that 

supports an economically important and ecologically diverse ecosystem on shallow reefs in 

temperate seas throughout the world. While regional scale control of giant kelp has been 

linked to environmental drivers, local growth rate and canopy biomass dynamics often defy 

these regional patterns. We examined changes in giant kelp canopy biomass and the 

chlorophyll a to carbon ratio (Chl:C; our proxy for physiological condition) in the Santa 

Barbara Channel using a time series of airborne hyperspectral imagery. We found that 

regional patterns of Chl:C were associated with large-scale fluctuations in sea surface 

temperature, and by extension ambient nutrient concentration. Local scale variability in 

Chl:C across a single kelp forest equaled the variability regionally, implying that local scale 

processes also play a role in the physiological condition of this species. Local scale 

examples showed that canopy Chl:C was related to the date when kelp canopy first emerged, 

suggesting that demographic patterns in kelp frond age influence the local physiological 

condition and persistence of giant kelp canopy. 

 

 



 

 72 

A. Introduction 

 Ecological processes act at a variety of temporal and spatial scales to generate 

patterns that may or may not occur at the same scale at which those processes act (e.g., 

Levin 1992). For example, changes in climate can act to shift a species’ distribution. 

However, the movement of the species may depend on the local scale cohesion of habitat 

patches, where areas of low cohesion may act to inhibit movement of the species in the 

climatically influenced direction (Opdam & Wascher 2004). Furthermore, these shifts in 

climate may increase disturbance effects and further fragment the habitat, leading to lower 

habitat cohesion and greater local control of the species’ movements. Here we have two 

distinct processes acting on two scales, one on the continental and one on the local, with the 

larger scale process creating a positive feedback on the local scale process. If an observer 

were to ignore the local scale patterns in habitat fragmentation, the general pattern of species 

movement in response to climate change may be missed, and may even show the lowest 

amount of movement in the areas where shifts in climate are having the greatest effects. In 

order to elucidate these complex and potentially interacting processes it is important to 

examine pattern across a range of spatial scales.  

 In order to examine these patterns across space, it is essential to possess spatially 

extensive high-resolution data, which until recently has been rare in ecological studies. Over 

the past two decades there have been huge advances in environmental sensing, with 

exponential growth in ground-based meteorological and atmospheric gas flux towers, cheap 

and accurate global positioning systems, and increased availability of remotely sensed 

imagery (reviewed in Chave 2013). These technological advances have perhaps served 
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researchers the best in systems that are the most inaccessible. Asner et al. (2016) used a 

combination of hyperspectral imagery and coaligned light detection and ranging data to 

observe the spatial patterns of foliar nitrogen, phosphorus, and leaf mass per area across the 

Peruvian Amazon. From these spatial patterns, it was clear that elevation and substrate type 

were the two driving factors of these leaf trait distributions, and that these factors could 

strongly mediate trade-offs in leaf economic theory, such as resource acquisition versus 

storage. Understanding the importance of these processes at different spatial scales is key to 

predicting how these systems will change in the future. 

 The subtidal marine macroalga Macrocystis pyrifera (hereafter giant kelp) is a 

globally distributed foundation species that supports an incredibly productive ecosystem 

(Dayton 1985; Leet et al. 2001). Mature individuals consist of many vine-like fronds that 

possess leaf-like blades buoyed by pneumatocysts that enable the fronds to grow vertically 

in the water column to produce a canopy at the sea surface where it can take advantage of 

the high light environment. Giant kelp populations and biomass are dynamic and are 

influenced by environmental forcings such as upwelled nutrients and wave disturbance; 

however the relative importance of these drivers varies considerably across space (Reed et 

al. 2008; Reed et al. 2011; Bell et al. 2015a). Losses due to grazing can also have 

considerable impacts on giant kelp biomass and performance (Harrold & Reed 1985; 

Davenport & Anderson 2007). While external environmental drivers are important, intrinsic 

demographic processes such as frond senescence have been shown to be an important 

predictor of biomass dynamics (Rodriguez et al. 2013).  
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Physiological factors such as changes in the chlorophyll a to carbon ratio (Chl:C), 

our proxy for physiological condition, scale with growth rate for phytoplankton and juvenile 

sporophytes of giant kelp under nutrient-limited experimental cultures (e.g., Geider 1987; 

Shivji 1984). At larger scales, changes in Chl:C are associated with canopy biomass 

accumulation patterns and net primary production dynamics (Bell et al. in prep). In southern 

California, the Chl:C of growing giant kelp fronds is primarily associated with changes in 

nutrient concentrations associated with seasonal upwelling patterns; however fluctuations in 

giant kelp growth rate and canopy biomass often do not follow seasonal patterns of nutrient 

availability (Reed et al. 2008; Brzezinski et al. 2013; Bell et al. 2015a).  

 The idea of examining fluctuations in giant kelp systems across a variety of spatial 

scales is not new. Edwards (2004) examined the disturbance effect of the 1997/1998 El Niño 

event on giant kelp populations over five spatial scales ranging from a few meters to 

hundreds of kilometers. He found that the event acted across all spatial scales resulting in 

the loss of giant kelp throughout much of the NE Pacific, but that recovery was variable 

across scales. Giant kelp also displays spatially synchronous population dynamics over both 

local and regional scales (Cavanaugh et al. 2013). By contrasting these scales with those of 

known population drivers, it can be inferred that nutrients associated with ocean temperature 

and wave disturbance exert a greater pressure on giant kelp synchrony patterns across 

regional scales, while herbivory by sea urchins and kelp recruitment are more important on 

local scales. Demographic patterns associated with progressive frond senescence have been 

shown to be a better predictor of frond loss than external environmental factors (Rodriguez 

et al. 2013). While this has been shown to be a primary driver on the plot scale, there has 

been little published evidence of senescence patterns on larger spatial scales.  
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 In this study, we take advantage of a novel remotely sensed dataset to examine 

patterns in giant kelp canopy physiological condition (Chl:C) across local and regional 

spatial scales. We aim to answer these two overarching questions: (1) What are the regional 

patterns of Chl:C and how are these related to the spatiotemporal patterns of environmental 

variables? (2) Are there local patterns in Chl:C and do these patterns relate to kelp forest 

growth and decline? 

B. Methods 

1. Site Description 

 Changes in physiological condition and giant kelp canopy biomass were examined in 

the Santa Barbara Channel (SBC), California, USA, which comprises the mainland coast of 

California from Point Arguello in the west to Point Dume in the east, as well as the four 

Northern Channel Islands. This area lies within the California Current System, where cool, 

relatively fresh waters are moved equatorward offshore to the west of the SBC, while warm, 

saline waters are moved into the eastern parts of the SBC by the inshore California 

Countercurrent (Hickey 1979; Lynn & Simpson 1987). Equatorward winds drive upwelling 

north of Pt. Conception during the spring and summer along with an intensification of the 

California Current (Huyer 1983; Lynn & Simpson 1987). This recently upwelled water is 

advected into the SBC from the west, and along with locally upwelled waters, provides 

uniform cool temperatures across the study region. A temperature gradient is formed across 

the length of the SBC during the early summer when warm water from the Southern 

California Bight is advected into the SBC from the east while cooler waters are upwelled in 

the west (Otero & Siegel 2004). Increased poleward flow and seasonal warming leads to 
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warm temperatures across the SBC during the late summer and fall. While this seasonal 

pattern generally describes the observed ocean temperatures in the SBC, there can be 

significant interannual variability, usually associated with oceanographic oscillations such as 

the North Pacific Gyre Oscillation or El Niño Southern Oscillation, or large warming events 

like the North East Pacific Warm Anomaly (Di Lorenzo et al. 2008; Chelton et al. 1982; 

Bond et al. 2015, Reed et al. in review).  

 In the California Current System, changes in ocean temperature are inversely related 

to nutrient concentrations, and are associated with spatial patterns of phytoplankton 

productivity (Zimmerman & Kremer 1984; Palacios et al. 2013; Otero & Siegel 2004; 

Henderikx Freitas et al. in review). Giant kelp grows on the rocky reefs which line the 

shallow (<30m) margins of the SBC. These nutrient distributions and their onshore transport 

are important for the growth and persistence of this macroalga and its associated ecosystem 

(Wheeler & North 1980; Zimmerman & Kremer 1984). The majority of inorganic nitrogen 

delivered to the inner shelf is related to local upwelling and the advection of recently 

upwelled water into the SBC, with semidiurnal, vertical movements of nitrogen from 

internal waves becoming an important source during the summer months (McPhee-Shaw et 

al. 2007; Fram et al. 2008). Nitrogen inputs from terrestrial runoff only become an important 

source during winter storms (McPhee-Shaw et al. 2007; Romero et al. 2016). 

2. Environmental Data 

 In order to examine spatiotemporal changes in ocean temperature in the SBC, we 

produced a time series of sea surface temperature (SST) at a spatial resolution of 4 km from 

the MODIS Aqua satellite sensor (oceandata.sci.gsfc.nasa.gov). The mean SST for each 8-
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day period was assessed for the study period (June 2012 - December 2015). Longer scale 

climatology (1982 – 2015) was produced using the National Climatic Data Center Optimal 

Interpolation Sea Surface Temperature data, which combines measurements from several 

sources including ship, buoys and Advanced Very High Resolution Radiometer (AVHRR) 

satellite images to produce a daily averaged dataset with a spatial resolution of 0.25°	  (Figure	  

1a). To assess differences in temperature across the SBC with this dataset, we compared the 

western-most pixel to the eastern-most pixel within to the channel (Figure 1b). 

3. Estimates of Kelp Canopy Emergence 

 In order to track the progression of giant kelp canopy development, we estimated the 

approximate date of canopy emergence using Landsat 7 Enhanced Thematic Mapper Plus 

and Landsat 8 Operational Land Imager satellite imagery. The combination of these two 

sensors delivers an image every eight days, with a usable cloud-free image about once per 

month. We defined the date of canopy emergence as the first date where kelp canopy 

biomass was observed in an image. Landsat multispectral imagery has been used to 

successfully estimate the canopy biomass of giant kelp across the NE Pacific, and has been 

validated across several Landsat sensors (detailed methods in Cavanaugh et al. 2011; Bell et 

al. in prep). Briefly, images are atmospherically corrected and radiometrically standardized 

to a reference image using at least 50 temporally stable pseudo-invariant targets. Each pixel 

is then modeled as a linear combination of one temporally stable giant kelp canopy 

endmember and one of 30 temporally varying seawater endmembers, which are unique to 

each image date, using Multiple Endmember Spectral Mixing Analysis (MESMA; Roberts 

et al. 1998). The fractional cover of kelp canopy in each pixel was compared to diver 
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estimated kelp canopy biomass at two sites in the SBC measured by the Santa Barbara 

Coastal Long Term Ecological Research Project (SBC LTER) from 2002 – 2015 (r2 = 0.624, 

p < 0.001, Bell et al. in prep).  

4. Laboratory Analysis of Kelp Canopy Physiological Condition 

 We assessed giant kelp canopy physiological condition and biomass at three sites in 

the SBC, Arroyo Quemado (34.4677 N, 120.1191 W), Arroyo Burro (34.4003 N, 119.7446 

W), and Mohawk (34.3941 N, 119.7296 W) kelp forests. These sites were sampled monthly 

from August 2012 – August 2015. Fifteen mature blades were collected haphazardly from 

different plants inside a permanent 40 x 40m plot at each site. The blades were standardized 

for age by collecting approximately two meters from the tip of an actively growing frond. 

Blades were placed in a sealed plastic bag which was immediately placed on ice in an 

opaque cooler. The blades were then transported to the lab where they were stored at 4°C	  

until	  being	  processed	  within	  24	  hours	  of	  collection.	  

	   A	  5	  x	  5cm	  square	  was	  cut	  from	  the	  center	  of	  each	  blade	  approximately	  5cm	  

above	  the	  pneumatocyst.	  The	  reflectance	  of	  the	  square	  was	  then	  measured	  between	  

350	  –	  800nm,	  at	  1nm	  intervals,	  using	  a	  Shimadzu	  UV	  2401PC	  spectrophotometer	  with	  

an	  integrating	  sphere	  attachment.	  Chlorophyll	  a	  concentrations	  were	  determined	  from	  

a	  0.8	  cm2 disc excised from the center of each square. Each disc was weighed and placed in 

4mL of dimethyl sulfoxide for 45 minutes at room temperature in the dark. The disc was 

then removed and washed with 1mL water before being placed in 5mL of a 3:1:1 acetone, 

methanol, and water solution for 2 hours at 4°C in the dark (following Seely et al. 1972). 

The extracts were placed in individual quartz cuvettes and absorbance was measured in the 
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visible range using the spectrophotometer. Chlorophyll a concentration was determined 

using absorbance based equations (Seely et al. 1972). A separate 5cm2 disc was excised 

from each blade near the pneumatocyst and rinsed in a 10% HCl solution. These discs were 

weighed and combined for each site and date before being placed in a drying oven at 60°C 

for several days, after which, dry mass was recorded. The dried discs were ground to a fine 

powder and analyzed for carbon and nitrogen content using an elemental analyzer (Carlo-

Erba Flash EA 1112 series, Thermo-Finnigan Italia, Milano, Italy). Chl:C was calculated by 

dividing the molar mass of chlorophyll a by the dry mass of carbon for each disc.  

5. Hyperspectral Estimates of Kelp Canopy Physiological Condition 

 Bell et al. (2015b) developed an algorithm to determine kelp blade Chl:C from 

laboratory reflectance. The mean 1nm reflectance intervals for each site date were degraded 

to ~10nm bands consistent with the Airborne Visible Infrared Imaging Spectrometer 

(AVIRIS). Briefly, the change between band’s reflectance value was calculated to be the 

first derivative of pseudoabsorbance δ(ln 1/R), where R is the reflectance of each band 

(Yoder & Pettigrew-Crosby 1995). These spectral slopes were correlated to their 

corresponding mean measured Chl:C for each site date. The optimal spectral predictor of 

blade Chl:C was the first derivative of pseudoabsorbance between bands centered at 658 and 

677nm using an exponential relationship (Equation 1).  

Eq. 1     Chl:C = 0.0353e-7.53x  
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where x is equal to the slope of pseudoabsorbance between the two bands. Cross 

validation analysis found that this relationship explained 76% of the observed variance in 

laboratory assessed Chl:C (Bell et al. 2015b). 

 The AVIRIS sensor provided hyperspectral imagery, each image with an 11km 

swath width, of the SBC approximately three times per year (April, June, August) from 2013 

– 2015 as part of the HyspIRI Preparatory Airborne Campaign 

(http://hyspiri.jpl.nasa.gov/airborne). The AVIRIS sensor provides imagery of upwelling 

spectral radiance in 224 contiguous, 10nm bands (400-2500nm). For this study 

orthocorrected level 2 reflectance products were used. These images were provided at a 

spatial resolution of 18m and atmospherically corrected according to Thompson et al. 

(2015). All imagery are freely available (ftp://popo.jpl.nasa.gov/).  

The giant kelp Chl:C algorithm was applied to the hyperspectral imagery of the SBC. 

One issue with scaling from kelp blade measurements in the laboratory to measurements of 

kelp canopy in the imagery was that each pixel is a mixture of giant kelp canopy and 

seawater. To account for differences in fractional cover between pixels, MESMA was used 

as described above to calculate the proportional kelp cover for each pixel. Only pixels with 

greater than 0.1 proportional kelp cover were used in the analysis. For each image date, each 

kelp pixel was normalized for proportional kelp cover using the empirical relationship 

between the difference in reflectance for the bands centered at 658 – 667nm and the 

fractional kelp cover in that pixel. Equation 1 was then applied to all imagery to estimate the 

Chl:C of each kelp pixel in the SBC for each image date. To validate the algorithm for 

floating giant kelp canopy, we compared field sampled Chl:C from each site to the mean 
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Chl:C of the four AVIRIS pixels that overlaid each site for the sampling date closest to each 

image acquisition. If an image date fell between two field sample dates (>5 days) the later 

sampling date was used to account for changing environmental conditions. Field and image 

estimated Chl:C were compared using a reduced major axis least squared regression 

(lsqfitgm function, Matlab 2013a). 

6. Relationship of Kelp Physiological Condition to Environmental Variables and 

Canopy Emergence 

 To determine the relationship between SST and Chl:C estimated from hyperspectral 

imagery over regional scales, the coastline of the SBC was divided into 1km segments. All 

kelp pixels were binned into their closest coastline segment. If the coastline segment 

contained >100 classified kelp pixels, the mean of those pixels was calculated and assigned 

to that segment, for each image date. Each coastline segment was assigned a SST for each 

image date by taking the mean of all MODIS SST pixels within a 3.5km radius for the 8 day 

mean previous to the image date. Chl:C and SST for each segment were compared with each 

other in a linear fashion using a reduced major axis least squared regression for each image 

(lsqfitgm function, Matlab 2013a). Since the overall relationship among all dates may not be 

linear, a generalized additive model was used to elucidate the potentially non-linear fit using 

the mgcv package in R (Wood 2006).  

 Canopy emergence time was determined based on the date the kelp pixel was first 

observed before the AVIRIS flight. Each AVIRIS pixel was assigned an emergence date 

based on the emergence of its closest Landsat pixel. For each AVIRIS image date, pixels 

were grouped based on emergence date and the mean and standard error of the Chl:C 
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estimates for those pixels was determined. For canopy emergence to be determined, a 

particular kelp bed must have displayed no canopy biomass at least 120 days prior to the 

AVIRIS image acquisition date. Relationships between canopy Chl:C and emergence date 

were assess using reduced major axis least squared regressions (lsqfitgm function, Matlab 

2013a). 

C. Results 

1. Environmental Variability 

 The SST in the SBC displayed a seasonal pattern of cool temperatures in the winter, 

followed by periodic cooling due to seasonal upwelling during the spring and early summer. 

Temperatures rose throughout the summer and into the fall as upwelling decreased, 

combined with increased insolation (Figure 1a). The upwelling period during 2013 occurred 

earlier in the year and was greater in magnitude than both 2014 and 2015, which were 

associated with a warm water anomaly and El Niño event, respectively. April and June 

images generally occurred during cool periods associated with upwelling patterns, while 

August images occurred during warm water periods. The western end of the SBC generally 

maintained cooler SST than the eastern end of the channel (Figure 1b). The temperature 

differences in the SBC tended to be greatest in June and July, maintaining the general 

pattern observed in the past. The last two years of the record (2014-2015) displayed higher 

than average SST consistent with the North East Pacific Warm Anomaly and El Niño event. 
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2. Validation of Physiological Condition Estimates from Hyperspectral Imagery 

 A total of eight AVIRIS missions were assembled for comparison to field 

determined Chl:C (Table 1). Due to clouds or lack of sufficient kelp canopy at the sites, a 

total of 15 field data/image comparisons were made out of a possible 24. The image 

estimated Chl:C was significantly related to the field estimates with a strong, positive linear 

relationship (r2 = 0.67, p < 0.0001; Figure 2). The slope of the relationship was 0.98 

(standard deviation = 0.16), with a y-intercept of -5.1x10-4 (standard deviation = 0.0026), 

close to a 1:1 relationship.  

3. Relationship of Kelp Physiological Condition to Regional Environment 

 The regional patterns of Chl:C for each 1 km coastline segment and SST for each 

image are shown in Figure 3. Generally, Chl:C of the canopy is higher when the SST 

adjacent to that canopy is cooler, and Chl:C is lower when SST is warmer. When there is a 

gradient in SST across the SBC, we tend to observe an anticorrelated gradient in Chl:C of 

the giant kelp canopy on a 1km scale. The relationship between the coastline segments of 

mean Chl:C and mean SST are plotted as separate scatterplots with the best fit line 

determined by reduced major axis least squared regression (Figure 4). All images showed a 

negative, linear relationship except for the April 2015 (p = 0.145) and August 2014 (p = 

0.88) image, which showed no significant relationship (Table 1; shown as best fit lines in 

Figure 3). The overall relationship across all images required a non-linear fit with a 

negative, linear relationship from 12 - 20°C transitioning to a near zero slope from 20 - 25°C 

(r2 = 0.63, p < 0.0001). 
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4. Relationship of Kelp Physiological Condition to Local Canopy Emergence Pattern 

 There was considerable local-scale variation in canopy Chl:C and biomass across the 

study period. Within one image date there could be a 3-fold difference in canopy Chl:C, and 

these variations were not consistent through time (Figure 5). The relationship between Chl:C 

and days since canopy emergence were examined for six sites. These sites shared an initial 

state of zero kelp canopy at least 120 days before the date of the hyperspectral image 

acquisition in order to track the emergence patterns for the entire bed within the lifespan for 

a giant kelp frond. Spatial maps of canopy emergence and canopy Chl:C are presented in 

Figure 6, as well as the relationship between canopy emergence date and mean canopy 

Chl:C. Pixels were canopy had been observed earliest tended to have lower Chl:C, while 

canopy pixels that were first observed most recently tended to have higher Chl:C.  

D. Discussion 

1. Regional Patterns of Kelp Canopy Physiological Condition 

 Regional physiological condition of giant kelp canopy in the SBC changes through 

space and time. These changes in condition have implications for the growth and persistence 

of this foundation species as increases in the Chl:C are associated with biomass 

accumulation patterns in the Southern California Bight (Bell et al. in prep). On all but two 

dates, the regional patterns of Chl:C in the SBC were negatively related to SST (Figure 4). 

On one of the dates when there was no relationship there were uniformly warm water 

temperatures across the SBC, with corresponding uniformly low canopy Chl:C (August 

2014; Figure 3). The shape of the non-linear relationship comparing Chl:C to SST, across all 
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dates, closely resembles the SST vs. nitrate relationship (Figure 4). This relationship 

generally shows a steep, negative decline in nitrate concentrations as temperatures rise to 

about 15.5°C, at which point nitrate concentrations are about 1 μmol L-1, which then 

decrease at more gradual rate. The Chl:C of giant kelp and other marine flora generally 

increases in response to additional nitrogen when in a nutrient-limited environment, (Laws 

& Bannister 1980; Bell et al. in prep). The relationship between Chl:C and SST begins to 

flatten out when SST reaches about 20°C, a few degrees higher than the inflection point of 

the temperature vs. nitrate concentration relationship. While giant kelp does have a limited 

capacity for nitrogen storage, nitrogen content and elongation rate drop dramatically after 

about 2 weeks in a low nutrient environment (Gerard et al. 1982). A more probable 

explanation is that giant kelp obtains a significant proportion of inorganic nitrogen through 

semi-diurnal internal waves during the summer months (Zimmerman & Kremer 1984; 

McPhee-Shaw et al. 2007; Fram et al. 2008; Brzezinski et al. 2013). These regular 

incursions of cool, nutrient-rich water onto the inner shelf provide a seasonal source of 

inorganic nitrate that may be masked by a stratified water column with warm surface 

temperatures. 

 The similarity of the relationship between Chl:C and SST and between nitrate 

concentration and SST implies that the mean Chl:C of a kelp forest is determined by the 

nutrient concentrations in the surrounding water column. This has several implications for 

the growth and persistence of giant kelp across this region. Higher ambient nutrient 

concentrations have been associated with increased photosynthetic pigments and frond 

elongation rates (Kopczak 1994; Zimmerman & Kremer 1984). Increases in the Chl:C have 

been linked to increased growth rates in juvenile sporophytes and canopy biomass 
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accumulation (Shivji 1984; 1985; Bell et al. in prep). Furthermore increases in available 

nutrients increase spore production, elevating the probability of successful recruitment 

(Reed et al. 1996). However despite this clear regional pattern, there was often a large 

variation in the canopy Chl:C within a single kelp forest (Figure 6). The scatter about each 

best fit line and the offset of each image’s line from the mean relationship suggest that local 

scale factors also play a role in the physiological condition of this species. 

2. Local Scale Canopy Physiological Condition as a Demographic Process 

 The variability in Chl:C across a single kelp forest may display a range equal to that 

seen across the entire SBC (Figures 3, 5). However, there is little evidence to suggest that 

kelp forests uptake inorganic nitrogen at rates fast enough to be responsible for this nutrient 

gradient. Fram et al. (2008) found that, in a moderately sized kelp forest, the residence time 

of seawater moving through the forest was short, so ambient concentrations of nitrate were 

not affected by upstream kelp, and that uptake was primarily governed by uptake kinetics 

and not mass transfer. Furthermore, in the Point Loma kelp forest off of San Diego, CA, 

USA (one of the largest kelp forests in the world) nutrient concentrations inside the forest 

were not depleted by the kelp or enhanced by sediment regeneration, which implies fast 

exchange between water inside and outside of the kelp forest (Jackson 1977). Yet, 

variability in canopy Chl:C appears to exist and must be the result of a different process. 

 Progressive senescence processes may provide a better explanation of the dynamics 

of giant kelp fronds than extrinsic environmental forcings in the SBC (Rodriguez et al. 

2013). These internal biological processes may be especially important for giant kelp 

biomass dynamics as fronds make up 95% of the plant’s biomass and all of the canopy’s 



 

 87 

biomass (Rodriguez et al. 2013; North 1994). Fronds produce blades at the apical meristem, 

which is lost as the frond ages, ceasing blade production and initiating senescence (Lobban 

1978). Blades are the principle light harvesting structures on the frond and the maximum 

photosynthetic rate and nitrogen content decrease as a function of age (Wheeler 1980; 

Rodriguez et al. 2016). Because of the strong relationship between blade nitrogen content 

and Chl:C, as well as the links between Chl:C and growth rate through enhanced 

photosynthesis under high light conditions, it is logical to assume that Chl:C decreases as a 

function of blade age (Shivji 1984). 

 The spatial patterns of Chl:C estimated from hyperspectral imagery are related to the 

spatial patterns of canopy emergence (Figure 6). Canopy emergence shows growth starting 

in the center of the bed with new growth towards the edges. The oldest parts of the canopy 

tend to have the lowest Chl:C, with newer areas displaying higher values. Since the kelp at 

the edges represents new growth, it would follow that the fronds of these plants were 

actively growing and had not yet begun to senesce. The microscopic stages of giant kelp 

have high light requirements and are vulnerable to intra-specific competition through 

shading (Schiel & Foster 2006). In a kelp bed with developed canopy, the edges would 

represent the highest light environment and an optimal area to recruit. The spatial patterns of 

Chl:C in relation to the timing of canopy emergence allow for the deduction of a conceptual 

model of canopy growth and senescence (Figure 7). Each remote sensing pixel represents an 

average Chl:C of all canopy fronds within it. When new giant kelp canopy emerges, it will 

be comprised of all actively growing fronds whose Chl:C is a product of the regional 

nutrient and light environment. As these fronds age, they will lose their apical meristem, 

becoming a terminal frond, and cease the production of new blades. The blades on these 
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aging fronds will begin to senesce with reductions in photosynthetic performance and Chl:C. 

Simultaneously new growing fronds emerge but since the canopy is mixture of growing, 

terminal, and senescent fronds there will be a depression in the mean Chl:C for that pixel. 

As canopy ages, terminal and senescent fronds become a higher proportion of canopy 

biomass until the addition of new growing fronds equals frond loss through the process of 

progressive senescence (Rodriguez et al. 2013). As environmental conditions change, there 

will be changes in the frond initiation rate, shifting the proportion of new growing fronds in 

relation to terminal and senescent fronds in the canopy. If there is a cessation in the initiation 

of growing fronds only terminal and senescent fronds will form the canopy which will 

further depress the mean Chl:C and lead to eventual canopy loss (Figure 5). This loss of the 

kelp forest canopy represents not only a loss of photosynthetic material in a high light 

environment essential to the production of new fronds, but a loss of three dimensional 

structure for the species of the kelp forest ecosystem (Jackson 1987; North 1994). This 

structure serves as habitat to many reef fishes and serve as important recruitment sites for 

many fish and invertebrates (Carr 1989; 1991; Anderson 1994; Holbrook et al. 1990; 

Morton et al. 2013). 

3. Importance of Environment to the Detection of Process 

 Starting in late 2013, the NE Pacific was subject to an anomalous warming event that 

is unprecedented in the instrumental record (Bond et al. 2015). This event was immediately 

followed by one of the strongest El Niño events ever recorded. The SBC was subjected to 

high SST and low nutrient concentrations during this two-year period with brief upwelling 

events to stimulate productivity (Figure 1a; Reed et al. in review). One of the unexpected 
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opportunities to arise from this quick succession of extreme events was a natural experiment 

in the examination of giant kelp canopy growth and senescence patterns. Most kelp canopy 

was lost near the end of 2014 after a summer and fall of anomalously low seawater nutrient 

concentrations, which presumably led to low or nonexistent frond initiation rates. The onset 

of the spring upwelling in April 2015 led to a brief regrowth of kelp canopy, especially in 

the western part of the SBC where SST was reduced. This regrowth period was followed by 

another summer of high temperatures and low nutrient availability and subsequent canopy 

loss. This period of canopy emergence, growth, and decline of many kelp forests in the SBC 

was captured by three hyperspectral images (Figure 5). The absence of canopy in early 2015 

also allowed for an initial canopy emergence date for each pixel before the hyperspectral 

flights. Without this starting point it would have been impossible to construct canopy 

emergence maps as most giant kelp patches can persist for years in the Southern California 

Bight (Castorani et al. 2015). Simultaneous losses of frond cohorts have been observed at 

plot scales in the past, but the reset of giant kelp canopy driven by regional changes in the 

environment, along with multiple acquisitions of hyperspectral imagery unveiled a process 

showing how senescence and demographic structure can influence canopy dynamics on 

local scales. 

4. Future of Remotely Sensed Physiological Condition 

 The recent revolution in the processing speed, storage, and quantity of freely 

available remotely sensed imagery has allowed researchers to examine ecological questions 

over vast spatial and temporal scales (Goetz 2009; Wulder et al. 2012). One area of research 

that has led to multiple advances has been the estimation of giant kelp biomass dynamics 
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across the NE Pacific using Landsat (Cavanaugh et al. 2011; 2013; 2014; Bell et al. 2015a; 

Castorani et al. 2015; in review; Young et al. 2016). While multispectral imagery, like 

Landsat, can provide estimates of giant kelp canopy quantity, the measurement of numerous, 

continuous bands from hyperspectral sensors allows for the estimation of canopy quality 

(Bell et al. 2015b). The addition of physiological condition to biomass furthers our 

understanding of the spatial scales of production for this foundation species, which may help 

us understand its role in structuring the ecosystem which depends on it (Bell et al. in prep; 

Morton et al. 2016). The future of hyperspectral remote sensing involves moving from a 

mission based airborne sensor to a spaceborne sensor, capable of providing global, repeat 

imagery. The Hyperspectral Infrared Imager (HyspIRI) is a planned mission that will 

provide this imagery for a multitude of physiological, ecological, and geological uses 

(https://hyspiri.jpl.nasa.gov/; Lee et al. 2015; Hochberg et al. 2015). If only applied to giant 

kelp forests, using already developed algorithms, researchers could track changes in 

biomass, Chl:C, and canopy progression globally, all from the same images. Indeed, 

hyperspectral remote sensing will allow for many traits to be quantified simultaneously 

across ecosystems, and repeat imagery will monitor change in these traits on global scales.  
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Table 4.1. The slopes and offset (y-intercept) for each best fit line between chlorophyll a to 
carbon ratio (Chl:C) for each 1km coastline segment and sea surface temperature for each 
image date. Correlation coefficients are also shown. * = p < 0.05 and ** p < 0.01. 

 

 

 

Table&1&

Image! Slope! Offset! Correla4on&
coefficient!

April!11,!2013! ,0.0038! 0.0702! ,0.6764**!

June!6,!2013! ,0.0037! 0.0722! ,0.5142*!

April!16,!2014! ,0.0016! 0.0454! ,0.6000*!

June!6,!2014! ,0.0041! 0.0809! ,0.7163**!

August!29,!2014! 0.0007! ,0.0099! 0.0178!

April!16,!2015! ,0.0025! 0.0628! ,0.6657!

June!2,!2015! ,0.0048! 0.0902! ,0.3419*!

August!24,!2015! ,0.0030! 0.0689! ,0.3844*!
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Figure 4.1. (a) Monthly mean sea surface temperature (SST) for the Santa Barbara Channel 
(SBC) and (b) difference in SST between the western and eastern ends of the SBC. Line 
plots show means for each year 1982 – 2015 and means among months.  
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Figure 4.2. Field sampled chlorophyll a to carbon ratio (Chl:C) versus canopy Chl:C 
estimated from hyperspectral Advanced Very High Resolution Radiometer (AVIRIS) 
imagery. 
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Figure 4.3. Maps showing the mean canopy chlorophyll a to carbon ratio (Chl:C) for each 
1km coastline segment estimated from hyperspectral Advanced Very High Resolution 
Radiometer (AVIRIS) imagery. Background of each map showing mean sea surface 
temperature (SST) for the 8-day period prior to the AVIRIS image date for the Santa 
Barbara Channel.  
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Figure 4.4. Best fit lines between chlorophyll a to carbon ratio (Chl:C) for each 1km 
coastline segment and sea surface temperature (SST) for each image date shown as different 
colored lines with points. Blue curve represents the mean non-linear relationship for all 
image dates, shaded area represents 95% confidence interval. 
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Figure 4.5. Top row shows the canopy chlorophyll a to carbon ratio (Chl:C) of the Bulito 
kelp forest in the western part of the mainland coast of the Santa Barbara Channel at three 
images dates. The bottom row shows the corresponding kelp canopy fractional cover for 
each kelp pixel for each date.  
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Figure 4.6. Maps of the canopy emergence date (first column) prior to the canopy 
chlorophyll a to carbon ratio (Chl:C) image (second column). The mean Chl:C is shown for 
each canopy emergence date (error bars show standard error) in the third column. Kelp 
forests shown are as follows: a) Bulito on the western mainland coast of the Santa Barbara 
Chanel (SBC) in June 2015, b) western end of San Miguel Island in June 2015, c) southern 
end of San Miguel Island in August 2015, d) southwestern end of Santa Rosa Island in June 
2014, e) Arroyo Quemado kelp forest on the western section of the mainland coast of the 
SBC in April 2013. 
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Figure 4.7. Conceptual model of canopy growth and senescence. Each remote sensing pixel 
represents an average Chl:C of all canopy fronds within it. These fronds can be growing 
(actively growing apical meristem), terminal (no apical meristem or new blades forming), or 
senescent. AT time 1 new giant kelp canopy emerges, it will be comprised of all actively 
growing fronds whose Chl:C is a product of the regional nutrient and light environment. At 
time 2 these growing fronds age, lose their apical meristem, become a terminal frond, and 
cease the production of new blades. The blades on these aging fronds will begin to senesce 
with reductions in photosynthetic performance and Chl:C. Simultaneously new growing 
fronds emerge and the canopy is mixture of growing and terminal fronds. At time 3 terminal 
frond become senescent fronds there will be a depression in the mean Chl:C for that pixel as 
terminal and senescent fronds become a higher proportion of canopy biomass until the 
addition of new growing fronds equals frond loss through the process of progressive 
senescence. At time 4 environmental conditions change, and changes in the frond initiation 
rate, shifting the proportion of new growing fronds in relation to terminal and senescent 
fronds in the canopy. At time 5, there is a cessation in the initiation of growing fronds only 
terminal and senescent fronds will form the canopy which will further depress the mean 
Chl:C. At time 6, only senescent fronds remain and without new frond growth this will lead 
to eventual canopy loss. 
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V. Conclusion 

In this dissertation I aimed to answer the overarching question: What are the controls of 

giant kelp canopy dynamics across space and time? The answer to this question depends on 

location of the kelp forest in question. Along the central coast of California we observe a 

regular seasonal cycle with low kelp biomass with a high Chl:C in the winter and high 

biomass with a low Chl:C in the summer. This pattern suggests a disturbance-modulated 

system where large swells remove kelp canopy every winter and year round available 

nutrients allow for robust growth when light levels are adequate. Contrast this with small 

kelp forests off of the coast of Orange and San Diego counties, which appear for a few years 

time and then disappear for several years. These forests tend to be associated with the 

interannual swings of the North Pacific Gyre Oscillation. In fact, the climate scale variations 

of sea surface temperature, and by extension ambient nitrate concentrations, are explained 

by this strengthening pattern of the North Pacific Gyre, which advects cool, nutrient-rich 

water south into the most oligotrophic areas of the Southern California Bight. On top of all 

of this are demographic patterns associated with frond senescence. The timing of when a 

kelp forest initiates most of its fronds is going to affect the amount of canopy in the forest 

when those fronds detach. It is then of utmost importance to incorporate temporal lags into 

models that will attempt to predict kelp forest dynamics. 

The advent of hyperspectral satellite sensors will allow for the determination of giant 

kelp biomass, emergence time, and Chl:C simultaneously, along with several other 

characteristics researchers have yet to develop algorithms for. With this wealth of 

information, we will be much closer to understanding the dynamics of this foundation 
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species. In the meantime, there are several other avenues of research that will refine our 

estimates of giant kelp canopy production. First, we can use estimates of available light and 

seawater nitrate to model canopy Chl:C on subregional scales. We can then use Landsat 

biomass estimates to model net primary production on a patch scale and hindcast these 

estimates to at least the 1990’s. Production derived from giant kelp can be compared to 

production from phytoplankton on a subregional scale. These estimates should provide 

valuable information to ecologists studying how available energy sources are related to 

community structure and dynamics. Additionally, more work needs to be done relating 

Chl:C to photosynthetic rates of giant kelp blades. There is evidence that maximum 

photosynthetic rate decreases with blade age, however this work needs to be extended across 

time and space. Monthly quantification of the Chl:C and photosynthetic rates of blades from 

fronds of different ages from the SBC LTER sites would be a great start to this project. 

These values could easily be used to further refine the giant kelp net primary production 

model and be incorporated into hyperspectral estimates once they become available.  

 


