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Abstract

Cosmic Ray Dynamics in Galaxies and Galaxy Clusters

Joshua Wiener

Cosmic rays comprise a significant amount of energy in galaxy clusters, and are

as energetically important in galaxies as the thermal gas. A careful treatment of

cosmic ray transport is necessary to predict dynamics (such as CR driven winds)

based on the radio observations which indicate their abundance. Yet the physics

of cosmic ray transport are not very well understood. In this dissertation I will

discuss how cosmic rays travel through and couple energetically with magnetized

plasma, focusing specifically on the effects of streaming and heating in cluster and

galactic environments.
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Introduction

Cosmic rays (CRs) comprise a significant amount of energy in the Milky Way

- they are in rough equipartition with galactic magnetic fields and thermal gas.

Their dynamics thus impact a great deal on the evolution of our galaxy. This

dissertation is a collection of work dedicated to understand how cosmic rays evolve

in the fluid approximation, and how their resulting transport mechanisms affect

observable phenomena in galaxies (i.e. CR driven winds) and galaxy clusters (i.e.

radio halos).

I begin with a very broad overview of CR dynamics in the fluid approximation,

including the idea of CR self-confinement which will be instrumental in the work

described here. An individual CR is just a highly-energetic, charged particle

traveling through space. In the presence of a uniform magnetic field, its trajectory

can be described by a simple helix twirling around the magnetic field lines. A CR

traveling along a magnetic field line in this way can scatter off of irregularities in
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the field, changing its pitch angle (the angle between the CR trajectory and the

background magnetic field).

If we now consider a large population of CRs traveling along a magnetic field,

we can treat the CRs as a fluid if we assume the scattering rate of the CRs

off of these magnetic irregularities is fast, by some measure. That is, that the

mean free path of CRs to this scattering is small. Modeling CR dynamics in this

approximation is then relatively straightforward.

There is a situation where we can reasonably expect this approximation to

hold true. A well-known instability involving CRs called the streaming instability

was described by Kulsrud and Pearce [58]. Imagine a CR population drifting with

some bulk streaming speed vs with respect to the ambient gas, along the magnetic

field. If this streaming speed exceeds the local Alfvén speed (the characteristic

speed of magnetohydrodynamic Alfvén waves), this causes Alfvén waves to be

unstably generated at a rate that depends on vs. These waves then act as CR

scatterers, scattering CRs in pitch angle until the CRs are isotropic in the frame

of the waves. Once isotropy is established the CRs are streaming at the Alfvén

speed vA and the instability shuts off. In this way the CRs are forced to stream

at the Alfvén speed.

This picture, where the CRs cannot stream faster than vA, is referred to as

CR self-confinement. The CRs generate the same magnetohydrodynamic (MHD)
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waves that they then scatter off. In all of the works presented here, we assume

self-confinement holds. This includes the assumption that scattering from external

sources of MHD waves is small, such that the CRs are not externally confined. We

will see that the self-confinement picture carries along with it a certain energetic

coupling between the CRs and the ambient gas, using the magnetic field as an

intermediary, that plays an important role in many of the observed phenomena

we discuss.

In chapter 1, we discuss how MHD wave damping mechanisms can allow CRs

to stream faster than vA, and how this may affect predictions of radio emission in

radio halos in galaxy clusters. In chapter 2 we examine how the energy coupling

alluded to above might serve as an additional heating mechanism in certain regions

of the Milky Way, potentially explaining observed ion abundances. In chapter 3

we consider the effects of CR dynamics on cold clouds embedded in galactic halos

with the aim of predicting the structure of thermal interfaces of clouds. Finally

in chapter 4 we present a series of simulations demonstrating the difference in CR

dynamics when the self-confinement picture is and is not applicable.
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Chapter 1

Cosmic Ray Streaming in

Clusters of Galaxies

This article has been accepted for publication in Monthly Notices of the Royal

Astronomical Society c©: 2013 Joshua Wiener. Published by Oxford University

Press on behalf of the Royal Astronomical Society. All rights reserved.

http://mnras.oxfordjournals.org/content/434/3/2209

1.1 Introduction

Cosmic rays (CRs) in the intra-cluster medium (ICM) can arise from structure

formation shocks [73, 81], turbulent reacceleration of existing non-thermal parti-

cles [22], galactic winds and supernovae [109], and radio galaxy jets [37, 39, 71].
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They are visible in clusters in radio emission, and gamma-ray emission (via

hadronic interactions). However, unlike in our interstellar medium (ISM), CRs in

the ICM are energetically subdominant; for instance, current upper limits on CR-

induced gamma-ray emission in Perseus suggest CRs are ∼< 1−2% of the thermal

energy density [2]. Why then are CRs in clusters of astrophysical significance?

Firstly, unlike in the ISM, cosmic ray protons (CRp) with E ∼< 107GeV remain

confined and have lifetimes of order a Hubble time [109, 10]; they therefore encode

archaeological information about the cluster assembly history as well as AGN and

supernova activity. Secondly, the ICM provides stringent tests of plasma physics

in a regime very different from the ISM. CRs in clusters represent an opportunity

to study the unknown efficiency of shock acceleration [12] in a low Mach number

M ∼ 1 − 5 and high plasma beta β ∼ 100 regime. Transient radio phenomena

can also teach us about magnetic field amplification at shocks. Thirdly, even a

low level of CRs could have interesting astrophysical implications. These range

from pressure support (thus affecting the use of clusters for cosmology) to heating

which suppresses cooling flows [51] or energizes filaments [45, 46], and distributing

metals and heat via buoyancy-induced turbulent convection [26, 102].

One drawback of cosmological simulations of CRs in clusters is that they gen-

erally do not include CR transport processes; the CRs are assumed to be frozen

into the gas, and advected with it. In practice, CRs can move relative to the gas
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by streaming along magnetic field lines down a CR gradient, as well as diffusing

across field lines by scattering off plasma waves. As CRs stream, their momentum

anisotropy excites plasma waves, which in turn scatter the CRs, isotropizing the

CR distribution in the frame of the waves. This generally limits streaming speeds

to the speed of the waves, which is the Alfvén speed vA. In our ISM, rapid pitch-

angle scattering due to the CR streaming instability1 [64, 58, 113, 105] can explain

the observed spatial isotropy of CRs, as well as the escape time of CRs from the

Galaxy [99, 60]. Applying the same CR self-confinement scenario to the ICM, the

low implied drift speed of CRs vD ∼ vA ∼ 100 km s−1, seems to justify neglect of

cosmic ray transport [56]. Early calculations of CRs in isolated clusters [13, 66]

which considered CR diffusion at a level comparable to ISM values found it to be

negligible as a transport process. They argued that if CRs were injected at the

cluster center by an AGN, they would quickly dominate pressure support at a level

inconsistent with observations. [51] resolved this in their calculations of CR heat-

ing by allowing CRs to be transported by rising buoyant bubbles, as seen in high

resolution Chandra images, which are subsequently shredded by Kelvin-Helmholz

and Rayleigh-Taylor instabilities to disperse the CRs.

1In principle, CRs can also scatter off MHD turbulence, though this is thought to be weak due
to the increasing anisotropy at small scales, with power concentrated in modes with wave-vectors
transverse to the B-field, while CRs efficiently scatter off the parallel component [25, 118]. Fast
magnetosonic modes could potentially scatter CRs more efficiently [22], but a treatment of this
is beyond the scope of this paper.
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However, this assumption of slow CR streaming and diffusion may not be fully

justified. The plasma waves which scatter the CRs are also subject to a variety

of damping mechanisms. If damping is stronger in the ICM than in the ISM,

then pitch-angle scattering of the CRs off the attenuated waves will be reduced,

and the CRs retain some momentum anisotropy in the frame of the waves. They

can therefore stream faster than the waves, and will no longer be limited by the

Alfvén speed. In principle, if the waves are very strongly damped, the CRs could

stream up at speeds up to ∼ c. While the possibility of super-Alfvénic or even

free streaming was appreciated early on [58, 61, 105, 43, 40] — albeit largely in

cold clouds in the ISM where ion-neutral damping of Alfvén waves is extremely

strong — generally vD ∼ vA and diffusion coefficients appropriate for the hot ISM

have been uncritically applied to the ICM environment. In an influential recent

paper, [36] noted the interesting possibility of super-Alfvénic streaming in the

ICM, adopted the sound speed cs as a characteristic streaming speed, and were

the first to discuss the wide-ranging observational consequences.

A particularly interesting possibility they focused on was whether the interplay

between advection and streaming could be responsible for the observed bimodal-

ity seen in radio halo luminosity. Giant radio halos are generally only seen in

disturbed clusters which show signs of merger activity. This bimodality has been

a stumbling block for hadronic models (e.g., [83]). These models track the long-
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lived CR protons (CRp) formed during structure formation shocks, and find that

the secondary electrons formed when the CRps undergo hadronic interactions are

sufficient to explain radio halo observations. Transience or correlation with turbu-

lence is generally not expected in such models. As a result, radio halos are often

attributed to the re-energization of seed electrons by Fermi II acceleration when

the ICM turbulence becomes transonic during mergers [23, 22]. As the turbulence

dies away, the CR electrons (CRe) cool via synchrotron and inverse Compton

emission on a relatively short (∼ 108 yr) timescale. However, the origin of the

seed electrons is uncertain; low energy electrons will rapidly Coulomb cool in the

dense cluster center. [36] suggested instead that transonic turbulence advects CRs

from the plentiful reservoir on the cluster outskirts. Hadronic interactions of the

inwardly advected CRp with the dense central ICM can then produce CRe2. Once

turbulence dies down, subsequent outward CR streaming switches off the radio

halo. This rapid outward streaming also explains why radio halos turn off in the

original hadronic scenario, which is otherwise difficult to understand. For these

explanations to work, the CR streaming timescale must be relatively short, or

vD � vA. [36] adopted vD ∼ cs and examined its implications, but only justified

this assumption qualitatively.

2Alternatively, low energy relic CRe advected from the cluster outskirts could provide seeds
for turbulent reacceleration.
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This paper aims to critically examine the possibility that super-Alfvénic stream-

ing could play a crucial role in CR transport in the ICM, by building more quan-

titative models to clarify its plausibility and importance. It has three main goals:

(i) a quantitative calculation of CR streaming speeds in quasi-linear theory and its

dependence on plasma parameters, when a variety of wave damping mechanisms

are at play. In particular, we consider the effects of non-linear Landau damping

and turbulent damping. We also give expressions for parallel diffusivities and CR

heating rates in this regime. Of particular interest is the countervailing effects

of turbulence: it affects CR transport both by turbulent advection of CRs from

the cluster outskirts, as well as damping of CR generated waves, which enables

faster outward streaming. We assess their relative importance. (ii) A reevaluation

of CR heating due to central injection by an AGN [51], taking these streaming

effects into account. (iii) A 1D simulation of radio halo turnoff due to CR stream-

ing, to establish if the required dimming by at least an order of magnitude can

take place within a reasonable timescale. We also calculate how the gamma-ray

luminosity evolves with time. A non-linear, time-dependent calculation is needed

since the streaming speed itself depends on CR energy density. In their analytic

calculations, [36] consider a steady-state profile where inward turbulent advection

and outward CR streaming are in rough balance. This scenario seems somewhat

unlikely; it seems more probable that at a given point in time, either inward advec-

9



tion or outward streaming dominates. To calculate radio halo turnoff, we consider

the latter. These calculations also enable us to compute a fundamental prediction

of this model: spectral steepening and frequency-dependent dimming which arise

from energy-dependent streaming speeds. We compare these with observations.

The outline of this paper is as follows. In §1.2, we calculate in quasi-linear

theory cosmic-ray streaming speeds when different wave damping mechanisms are

dominant, and derive expressions for the resulting parallel diffusivity, as well as

turbulent diffusion rates. In §1.3, we describe the equations we solve numerically

with ZEUS, focusing in particular on the CR transport equation. We describe

our initial conditions for the cosmic ray profile, which are tuned to match radio

halo observations for the Perseus and Coma clusters. We also present a test case

of CR heating by a central AGN. In §1.4, we present the results of simulations of

radio halo turnoff due to CR streaming. In §1.5, we show how aspects of these

results can be understood analytically. Finally, we conclude in §1.6.
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1.2 Cosmic Ray Streaming: Quasi-linear The-

ory

In this section, we derive the basic equations we use, in particular the stream-

ing speeds and diffusion coefficients which are used in the cosmic-ray transport

equation. Our treatment is by design semi-quantitive rather than fully rigorous.

1.2.1 Cosmic Ray Streaming

Resonant Scattering and Wave Growth

We begin by reviewing the classical cyclotron resonance streaming instability3

[58, 115]. Consider a cosmic ray proton with Lorentz factor γ propagating along

a magnetic field line of strength B0 with cyclotron frequency Ω0 = eB0/(mpc),

gyroradius rL = γc/Ω0, and pitch angle cosine µ. Since vA � c, Alfvén waves are

perceived by the CR as a spatially varying but time-stationary B-field. An Alfvén

wave is resonant with this cosmic ray if the resonance condition

k‖ =
1

µrL

(1.1)

3Another instability which arises in the context of streaming cosmic rays is the Bell instability
[8, 92]; it amplifies the magnetic field and transfers CR energy and momentum to the plasma
on scales much less than the CR gyroradius. It only arises in weak-field regimes and thus is
not relevant for the ICM. In particular, the criterion for the Bell instability can be written as
[124]: UCR/UB > c/vD (where UCR, UB are the energy densities in CRs and B-field respectively),
whereas in our models UCR/UB < 1, and c/vD � 1. Note that even in the weak field, low Alfvén
speed regime where the Bell instability applies, its maximum growth rate is of order that of the
classical resonant streaming instability.
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is satisfied. This resonance is a requirement both for the wave to scatter the

CR and for the CR to excite the wave. This condition can be easily understood:

if the magnetic field changes on a length scale much longer than the projected

gyroradius, the CR will simply follow the field line adiabatically, with no change

in pitch angle. If the field varies on much smaller scales, the CR will see a rapidly

oscillating Lorentz force during its orbit and remain unaffected, essentially only

seeing the background field. At resonance, the CR sees a constant field due to the

wave, and hence a steady force. The k‖ portion of the wave is the relevant one,

since it has a transverse magnetic field δB⊥ which can exert a Lorentz force on

the v‖ component of a streaming cosmic-ray.

If the distribution of cosmic rays in the frame of the Alfvén waves is completely

isotropic, then the effect of a cosmic ray traveling along the magnetic field line

in one direction is cancelled by an equivalent cosmic ray traveling in the opposite

direction, and there is no wave growth. However, [58] showed that even a slight

anisotropy in the cosmic rays–which naturally arises in the presence of sources

and sinks–will cause unstable growth in the waves, caused by momentum transfer

from the CRs to the waves in the course of pitch-angle scattering. The resulting

wave growth rate is [58]:

ΓCR(k‖) ∼ Ω0
nCR(> γ)

ni

(
vD

vA

− 1

)
(1.2)
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In the above, nCR(> γ) is the number density of cosmic ray protons with energies

large enough to be resonant with the Alfvén wave for some pitch angle µ, namely

rL > 1/k‖ (though since the CR spectrum falls off rapidly with energy, generally

k‖ ∼ 1/rL), ni is the ion density in the plasma, and vD and vA are the cosmic

ray streaming and Alfvén speeds respectively. This expression is derived from

balancing CR momentum loss with wave momentum gain, but we can understand

its main features qualitatively. The rate of wave growth scales with that for

momentum loss for a single CR, ṗ ∝ pΩrel = (γmc2)(Ωo/γ) ∝ Ωo, i.e. the non-

relativistic, rather than the relativistic gyro-frequency. This has to be multiplied

by the fraction of ions which can drive wave growth, nCR(> γ)/ni (non-resonant

ions simply provide inertia, slowing down wave growth), and the anisotropy which

seeds the wave growth (vD/vA − 1).

The streaming instability causes the waves to grow until pitch-angle scattering

renders the CR distribution isotropic in the frame of the waves, i.e. vD ∼ vA. If

we assume (vD/vA− 1) ∼ O(1), we can estimate the growth time of the waves. If

we assume that the energy density is CRs is ∼ 10% of the thermal energy density,

εCR ∼ 0.1εtherm, then nCR〈ECR〉 ∼ 0.1ni〈Ei〉 where 〈ECR〉 ∼ GeV (as is true for

most reasonable power-law momentum distributions–e.g., see Fig. 1 of [38]), and

〈Ei〉 ∼ keV are the typical energies of CRs and thermal ions respectively, and so

nCR/ni ∼ 10−7. A similar ratio holds in the coronal regions of our Galaxy. For
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∼ µG fields, Ωo = eB/mc ∼ 10−2 s−1, implying from equation (1.2) a wave growth

time of Γ−1
CR ∼ 30 yr, i.e. extremely short.

The above arguments suggest that self-confinement of cosmic-rays is very ef-

ficient, and should always reduce the streaming velocities vD ∼ vA. The general

success of the self-confinement picture for our Galaxy means that this has been

uncritically assumed in other environments such as the ICM, and/or CR diffusion

coefficients scaled to the measured Galactic values. In fact, vD, and the associated

diffusion coefficient Dθ depend on the amplitude of the wave field δB/B, which can

be calculated by assuming equilibrium between growth and damping. If damp-

ing processes are sufficiently strong, then δB/B will be insufficient to efficiently

confine the CRs, and super-Alfvénic streaming is possible. We now examine this

possibility.

Non-linear Landau Damping

Parallel propagating MHD waves do not suffer any linear damping. However,

they can undergo non-linear Landau damping when two waves A & B of slightly

different frequency interact to form a beat wave. This beat wave can resonantly

interact with thermal particles with parallel velocity identical to the wave’s phase

speed, v‖ = (ωA − ωB)/(kA − kB) (for parallel propagating waves, v‖ = vA).

Particles moving more slowly than the beat wave will extract energy from the
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wave (thus damping it), while particles moving faster than the wave will add

energy to it. For a Maxwellian plasma, typically (∂f/∂v)v‖=vA < 0, and damping

dominates.4 The high frequency wave gives up energy to a combination of the low

frequency wave and resonant particles.

To aid in physical insight, we present a simplified derivation of streaming

speeds to be expected if non-linear Landau damping dominates, before employing

the formulae from more detailed derivations [63, 59, 43]. The damping rate in a

high-β plasma is [60]:

ΓNL ≈
1

2

√
π

2

(
vi

vA

)(
δB

B

)2

ω ≈ 0.3
Ω

µ

vi

c

(
δB

B

)2

(1.3)

How can we qualitatively understand the first relation? The wave frequency

ω = k‖vA sets the fundamental frequency, while interactions involving the beat

wave arise to second-order in perturbed field strength (δB/B)2. Since the reso-

nant condition v‖ = µvi = vA implies that thermal particles with µ = vA/vi are

resonant, it is clear that the damping rate should depend on this ratio. However,

the exact dependence only emerges from a detailed calculation–either by calcu-

lating the slope (∂f/∂v)v‖=vA , or from the plasma dispersion relation [48]. Note

that since vi/vA = β1/2/2, we have ΓNL ∝ β1/2. In the second relation, we use the

dispersion relation ω = k‖vA and the resonance condition, equation (1.1).

4In a high β plasma, (∂f/∂v)v‖=vA is relatively flat for electrons, while still steep for ions;

hence, ions dominate the damping rate [72].
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In steady state, the Vlasov equation for CRs is [58]:

vz
∂f

∂z
=

∂

∂µ

[
1− µ2

2
ν(µ)

∂f

∂µ

]
(1.4)

where B = Bz ẑ, ν(µ) ≈ Ω(δB/B)2 and vz = µc. This expresses the condition

that the net streaming along field lines is set by diffusion in pitch-angle. In the

limit of strong scattering, we can expand f = f0 + f1 + f2 + ... where f0(p, z, t) is

isotropic and f1(p, z, t, µ) � f0, f2 � f1. Let us also define F = f1/f0 and the

scale height Lz(p, z) = f0/(∂f/∂z). Integrating both sides of equation (1.4) with

respect to µ and dividing by f0, we obtain:

∂F
∂µ

= − c

νLz
. (1.5)

If we set

F = 1 +
3(vD − vA)

c
µ (1.6)

so that 〈µcF(µ)〉 = (vD−vA) (i.e., the leading order anisotropy in the distribution

function yields the net drift relative to the frame of the waves), this yields:

(vD − vA) ≈ rL

3Lz

(
δB

B

)−2

c ≈ λ

3Lz

c (1.7)

where λ ∼ rL(δB/B)−2 is the mean free path. In steady state, the wave growth

rate (equation (1.2)) equals the wave damping rate (equation (1.3)). Together with

equation (1.7), this gives us two equations which we can solve for two unknowns,

vD and (δB/B)2. The result is:

16



(
δB

B

)2

=

(
c

vA

c

vi

r0

3Lz

nCR(> γ)

ni
γ2

)1/2

(1.8)

where f0 ∝ p−n (note that our result differs from [43], who explicitly specialize to

γ ∼ 5 for the ISM from the outset). If we scale to numbers characteristic of the

ICM, we obtain: (
δB

B

)2

= 1.6× 10−6 (nCR
−10)1/2γ

(5−n)/2
100 104.6−n

(ni−3)1/4BµGT
1/4
4 keVL

1/2
z,100

(1.9)

where T4 keV = (T/4 keV), BµG = (B/1µG), Lz,100 = (Lz/100 kpc), ni
−3 =

(ni/10−3 cm−3), nCR
−10 = nCR(γ > 1)/10−10 cm−3), γ100 = γ/100, and we have

scaled to n = 4.6. Note that nCR(> γ) = 10−10γ−1.6 cm−3 roughly corresponds

to a CR energy density in equipartition with a ∼ µG B-field. The fact that

(δB/B)2 � 1 self-consistently implies that quasi-linear theory is applicable. If we

insert this into equation (1.7), we obtain for the drift speed:

vD = vA

(
1 + 0.9

(ni−3)3/4T
1/4
4 keV10n−4.6

BµGL
1/2
z,100(nCR

−10)1/2
γ

(n−3)/2
100

)
(1.10)

Several points should be noted. For these parameters, streaming speeds do not

significantly exceed the Alfvén speed for the ∼100 GeV cosmic-ray protons which

in turn produce the 10 GeV CR electrons which in turn produce ∼GHz radio

emission. For Alfvén speeds of vA ≈ 70 km s−1BµGn
−1/2
i,−3 , this implies radio halo

turnoff times of t ∼ 1.4 GyrL100B
−1
µGn

1/2
i,−3, which may seem too long. However,

note that Lz, n
CR will be time-dependent functions during the streaming process,
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so it is necessary to check how streaming evolves in a time-dependent calculation.

Our results should be contrasted with those of [36], who describe similar estimates

based on [43], but do not give explicit expressions. Unlike them, we find vD � cs

for plasma parameters corresponding to observed clusters; nothing in the problem

singles out the sound speed as a reference speed. Note that all the parameters in

equation (1.10) are observationally constrained, so order of magnitude departures

are unlikely. Also note that even though ΓNL ∝ β1/2, there is no explicit β

dependence in vD.

Turbulent Damping

Another source of wave damping comes from the highly anisotropic nature of

MHD turbulence [42, 118]. We adopt the [50] theory (hereafter ’GS’) for strong,

incompressible MHD turbulence; an excellent summary can be found in [65]. Tur-

bulence in clusters is generally incompressible since it is significantly subsonic

except at the cluster periphery. The strong turbulence regime where GS theory

is applicable sets in at wavenumbers k ∼< koM
−2
A (e.g., see [76]); since MA ∼> 1

in clusters, the theory is clearly applicable, particularly at the small scales rele-

vant for CR scattering. GS theory has support both from numerical simulations
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[29, 69, 28] and solar wind measurements [55, 86, 116, 27]. It is anisotropic, with:

vλ⊥ ∼ vA

(
λ⊥
LMHD

)1/3

∼ (ελ⊥)1/3 (1.11)

Λ‖(λ⊥)

λ⊥
∼

(
LMHD

λ⊥

)1/3

(1.12)

where λ⊥ is the length scale transverse to the local mean magnetic field, vλ⊥ is

the rms velocity fluctuation across λ⊥, Λ‖(λ⊥) is the length scale parallel to the

local mean magnetic field across which the velocity fluctuation is vλ⊥ ,LMHD is the

length scale at which turbulence is excited with velocity perturbations comparable

to the Alfvén speed vA (i.e., with MA ∼ 1), and ε ∼ v3
λ⊥
/λ⊥ ∼ v3

A/LMHD is the

(constant) energy cascade rate per unit mass. Note that LMHD is defined to be the

scale at which MA = 1; if turbulence is already sub-Alfvénic at the outer scale,

then it should be considered an extrapolation. Equation (1.11) describes a stan-

dard Kolmogorov cascade in the transverse direction. Equation (1.12) indicates

that an eddy becomes increasingly elongated along the magnetic field, Λ‖ � λ⊥ as

the cascade proceeds deep into the inertial range λ⊥ � LMHD. It can be derived

from the assumption of “critical balance”, which states that characteristic linear

and non-linear interaction times are approximately equal at all scales (e.g., see

[76]). Thus, the cascade proceeds primarily in the transverse direction, and most

of the power is concentrated in modes with transverse wave vectors. Intuitively,

we can understand this from the fact that in MHD turbulence, non-linear inter-
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actions arise from collisions of oppositely directed Alfvén wave packets travelling

along field lines. A wave packet is distorted when it follows field lines perturbed by

its collision partner; it cascades when the field lines along which it is propagating

have spread by a distance comparable to λ⊥. Since the magnetic and velocity fluc-

tuations associated with Alfvén waves are transverse to the local mean field, the

cascade proceeds primarily in the transverse direction. This anisotropic damping

of waves by turbulence has been demonstrated numerically in [9].

Turbulence therefore suppresses the waves responsible for self-confinement of

cosmic rays, since they cascade to smaller scales before they have an opportunity

to scatter CRs. In particular, the small scale transverse components injected by

the cascade mean that the CR no longer experiences a time-steady force in its

orbit; instead it sees an oscillating force which leads to inefficient scattering. For

these same reasons, MHD turbulence scatters CRs inefficiently [25, 118]. The

damping rate of a wave is simply the eddy turnover rate [42]:

Γturb ∼
vλ⊥
λ⊥
∼ ε1/3

λ
2/3
⊥

(1.13)

where we use equation (1.11). Growth rates are highest, and damping rates low-

est, for the most closely parallel-propagating waves, i.e. those with the largest λ⊥.

Even if a CR-generated wave starts out as parallel-propagating, the turbulent cas-

cade injects transverse components which subsequently cascade. The amplitude
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of magnetic field fluctuations across a scale λ⊥ thus define a minimal aspect ratio5

(k⊥/k‖)min ∼ δB(λ⊥)/B ∼ vλ⊥/vA ∼ (λ⊥/LMHD)1/3 (using equation (1.11) in the

last step). From the resonance condition k−1
‖ ∼ rL, the smallest possible per-

pendicular wavenumber is k⊥,min ∼ ε1/4(rLvA)−3/4. Inserting the largest possible

perpendicular wavelength λ⊥ ∼ k⊥,min into equation (1.13), the minimal damping

rate for a wave with k‖ ∼ r−1
L is [42]:

Γturb,min ∼
(

ε

rLvA

)1/2

. (1.14)

If in steady state we balance the wave growth rate (equation (1.2)) with this

damping rate, we obtain a streaming speed:

vD = vA

(
1 + 1.2

B
1/2
µGn

1/2
i,−3

L
1/2
MHD,100nCR,−10

γn−3.5
100 102(n−4.6)

)
(1.15)

where LMHD,100 = LMHD/100 kpc. We also obtain (δB/B) ∼ 10−3. At first blush,

non-linear Landau damping and turbulent damping both seem to give similarly

slow streaming speeds. However, note that vD − vA ∝ (n
−1/2
CR , n−1

CR) for these

two sources of damping respectively. This difference becomes crucial during non-

linear evolution, enabling CRs in the turbulent damping case to stream much

more effectively.

5This should not be confused with the eddy aspect ratio Λ‖(λ⊥)/λ⊥ � 1, whereas we have
(λ‖/λ⊥)min < 1. Typical eddies in the MHD cascade vary mostly in the transverse direction,
k⊥ � k‖, whereas we seek waves injected by CRs with the least possible transverse variation,
k⊥ � k‖.
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General Remarks on Cosmic-Ray Streaming

We have now derived streaming speeds for two different damping mechanisms,

which depend both on CR energy (vD ∝ γ0.8, γ1.1 for non-linear Landau damping

and turbulent damping respectively) and plasma parameters – most notably the

CR number density. The streaming speed is thus a function of both position

and time, and is best self-consistently solved in a time-dependent calculation, as

we will soon tackle.6 Before we forge ahead and use these expressions, there are

several potential complications worth discussing.

Our streaming speeds for the ICM are characteristically of order the Alfvén

speed, although this can vary spatially and temporally as plasma parameters

vary, particularly the CR number density. [36] argue against the Alfvén speed

as a characteristic CR propagation speed in a high β plasma, arguing that in

the limit where the background magnetic field B → 0, this would imply that

vD ≈ vA → 0, rather than vD → c, as might be expected if there is no magnetic

field to couple the CRs to the plasma. Instead, they advocate the sound speed

cS as a characteristic streaming speed. We have several remarks. The streaming

speeds we have calculated via quasi-linear theory assumes (δB/B) � 1, and we

have checked that this condition is self-consistently fulfilled in the ICM (typically,

(δB/B) ∼ 10−4), an amplitude similar to that inferred for the coronal gas in our

6We have also assume n(> γ) to be a fixed power-law, whereas it steepens with time due to
energy dependent streaming.
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Galaxy. The hypothetical limit B → 0 (which is not realized in the ICM) clearly

violates this assumption, and requires a fully non-linear calculation.7There, we

might expect that instabilities generated by a current of streaming CRs (e.g., [7])

would nonetheless generate a B-field which will confine the CRs. Nothing in our

calculations singles out the sound speed as a reference velocity.

The resonance condition, equation (1.1), shows that CRs of larger pitch angle

(µ→ 0) interact with waves of progressively shorter wavelength. However, growth

rates ΓCR ∝ µ (e.g., [60]), while non-linear Landau damping ΓNL ∝ 1/µ (equation

(1.3)), so there is relatively little energy in such short wavelength waves as µ→ 0.

On the face of it, this would imply that it is impossible for particles to scatter

across the θ = 90◦ point via resonant scattering to reverse direction, the well-

known ‘90◦ problem’ (in fact, the affected region is small; quasi-linear interactions

can effectively scatter CRs down to µc ∼ 10−4. The gap is a little larger, ∼ vi/c ∼

3×10−3, in a high-β plasma when ion-cyclotron damping is effective [54]). The fact

that CRs appear to be efficiently confined and isotropized in our Galaxy implies

that Nature has found a way around it. The leading explanation appears to be

mirror interactions from MHD waves created by the θ ∼ 0◦ CRs, which are able

to trap the particles and turn them around [43]. These mirror interactions can

also be thought of as resonance broadening [1, 120] of the long wavelength waves.

7Note that even in linear calculations, the real part of the dispersion relation is significantly
modified, with the wave speed itself becoming super-Alfvénic [48, 123, 124].
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[43] conduct a detailed boundary layer calculation of the mirror interaction and

find that it introduces a minor logarithmic correction (which we have ignored) to

the standard calculation. We note that if there were indeed a 90◦ problem in the

ICM, the resulting light-speed streaming speeds would imply flat CRp and CRe

profiles, which is inconsistent at least with observations of radio mini-halos such

as Perseus. It would also shut off radio halos extremely rapidly, regardless of how

the relativistic electrons are produced.

The wave damping rate is the sum of all damping processes, and thus in

principle one should always consider the contribution from both turbulent and

non-linear Landau damping. In practice, we consider limiting regimes where one

process dominates. Their ratio is:

Γturb

ΓNL

≈ 1.
B

3/2
µGn

1/4
i,−3L

1/2
z,100

L
1/2
MHD,100T

1/4
4keVn

1/2
CR,−10

γ
n/2−2
100 ∝

(
1

∇f

)1/2

. (1.16)

Turbulent damping thus always dominates at late times as the CR profile falls

(nCR → 0) and flattens (Lz →∞).

We have only considered CR self-confinement, and ignored other possible

mechanisms for scattering CRs. As we have previously discussed, the anisotropic

nature nature of Alfvénic MHD turbulence (which is mostly transverse on small

scales comparable to the gyro-radius, in contrast to the parallel modes required

to scatter CRs) make them inefficient scatterers of CRs [25, 119]. While the dis-

tribution of slow magnetosonic waves follows that of Alfvén waves [65], fast mag-
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netosonic modes can potentially have an independent non-linear cascade which is

isotropic and can efficiently scatter CRs [99, 22]. For now, we eschew this possibil-

ity, in favor of the well-established self-confinement picture, which is the generally

accepted theory in our Galaxy. One failing of the self-confinement picture in our

Galaxy is that both non-linear Landau damping and turbulent damping appear to

damp the waves too efficiently at high energies; the increase of streaming speeds

with energy appear inconsistent with the low observed CR anistropy for E > 100

GeV [42]. [25] has proposed that magnetic mirror interactions in dense molecular

clouds could provide this further confinement, though the possibility remains that

some aspects of the physics are still not well understood. A conservative reading

of these possible complications would take our derived streaming speeds and dif-

fusion coefficients as upper bounds; they could potentially be lower if scattering

is more efficient.
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1.2.2 Cosmic-Ray Transport

Cosmic-Ray Transport Equation

The cosmic ray transport equation in the limit of large wave-particle scattering

is [105]:

∂fp

∂t
+ (u + vA) · ∇fp = ∇ · (κpnn · ∇fp)

+
1

3
p
∂fp

∂p
∇ · (u + vA) +Q

(1.17)

Here, fp(x, p, t) is the cosmic ray distribution function (isotropic in momentum

space), u is the gas velocity, vA is the Alfvén velocity, n is a unit vector pointing

along the magnetic field, and Q is a cosmic ray source function. Throughout this

paper, we shall always use the 3D distribution function fp, which does not include

the differential volume factor 4πp2. All momenta p, unless otherwise specified,

will always be in units of mc throughout this paper. The actual momentum will

be written p̃i = pimic, the subscript denoting the particle type. Any distribution

functions written as functions of particle energy rather than momentum will be

related by

dni = 4πp2fi(pi)dpi = fi(Ei)dEi (1.18)

Ei =
√

1 + p2
imic

2 → dEi =
pimic

2dpi√
1 + p2

i
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Equation (1.17) is derived from the collisionless Vlasov equation, which expresses

conservation of phase space density:

∂f

∂t
+∇ · (fv) +∇p ·

(
f
∂p

∂t

)
= 0 (1.19)

but evaluated in the frame of the Alfvén waves (which has velocity u+vA, the sum

of the local gas and Alfvén velocities). The distribution function is then expanded

in inverse powers of the CR-wave collision frequency ν, f = f0 + f1 + f2 + ...,

where fr = O(ν−r). Equation (1.17) is obtained after averaging over pitch angle

(justified in the limit of frequent scattering), and is accurate to second order,

O(ν−2). The term with κp expresses diffusion relative to the wave frame, and is

discussed in detail below. For the details of this expansion we refer the reader

to [105]. This equation implicitly assumes that f0 � f1, i.e. to leading order

strong wave-particle scattering renders the distribution function isotropic in the

wave frame. As we have seen, for most plasma parameters (vD − vA)/c � 1, so

this assumption is justified.

The physical interpretation of equation (1.17) is easy to understand. The

left-hand side of this equation is a total time derivative, including an advection

term in the frame of the waves. The first two terms on the right-hand side repre-

sent diffusion along magnetic field lines relative to the wave frame and adiabatic

losses/gains respectively. As long as we have a functional form for κp and Q, this

equation completely describes the evolution of the cosmic ray population.
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Note that in the frame of the wave, and considering the isotropic part of the

distribution function f0 (so that there is no diffusion relative to the wave frame,

κp = 0), we have:

Df0

Dt
=

1

3
p
∂f0

∂p
∇ · (u + vA) (1.20)

i.e. the CRs evolve adiabatically in the wave frame, with p ∝ n
1/3
CR [105]. This

makes physical sense: there are no electric fields in the frame of the wave, and

hence the particles conserve energy; they can only scatter in pitch angle. However,

the CRs do not evolve adiabatically in the frame of the gas, where there are electric

fields associated with the hydromagnetic waves. Thus, there is an irreversible

energy transfer from the CRs to the gas, with volumetric heating rate (e.g., [60]):

Γwave = −vA · ∇Pc, (1.21)

which we shall refer to as the “wave heating rate”. This may be thought of

as the rate at which work is done on the gas by CR pressure forces, vA · F.

Importantly, this heating rate is not Γwave = −vD · ∇Pc, as has sometimes been

adopted elsewhere in the literature (e.g., [107]). The latter expression gives rise to

unphysically large heating rates when vD � vA. Super-Alfvénic streaming arises

due to a reduction in coupling between CRs and gas; it is unphysical that this

would give rise to greater heating. Physically, all momentum and energy transfer

between the CRs and gas is mediated by hydromagnetic waves; the rate at which
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work is done by any transmitted forces is therefore set by the velocity of the waves

vA.

To next order in ν−1, slippage with respect to the wave frame is expressed by

the diffusion coefficient κp:

κ(γ) = c2
〈 1− µ2

ν(µ, γ)

〉
(1.22)

where the wave-particle collision frequency ν(µ, γ) is [58]:

ν(µ, γ) =
π

4
Ω0

(
δB

B

)2

(µ, γ) (1.23)

and the average is taken over pitch angle [105]. This expression is obtained from

equation (1.4) as shown by [58], and we assume relativistic CRs such that v ∼ c.

From equation (1.22), the more frequently CRs interact with Alfvén waves, the

more slowly they diffuse relative to the waves— as one might expect, since scat-

tering isotropizes the CR in the wave frame. Equation (1.23) can be understood

from the fact that a single CR-wave encounter in one gyro-period τ leads to a

change in pitch angle ∆θ ≈ (δB/B) [60]; thus N ∼ t/τ encounters leads to a net

random walk in pitch angle of (∆θ)2 ∼ N(δB/B)2 ∼ t/τ(δB/B)2, or a pitch angle

diffusion rate of Dθ ∼ (∆θ)2/t ∼ Ω0(δB/B)28. Equation (1.22) can be evaluated

by equating wave growth and damping rates to obtain the amplitude of the waves,

8The mean free path of a CR is roughly the distance over which the pitch angle diffuses by
order unity (so that the CR reverses direction), λ ∼ cD−1θ ∼ 3× 1012(δB/B)−2 cm, where the
pitch angle diffusion coefficient Dθ ∼ (δB/B)−2Ω0. Thus, even small fields of (δB/B) ∼ 10−3

would lead to mean free paths of λ ∼ 1 pc, implying that the diffusive approximation is excellent.
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(δB/B)2, as for instance in equation (1.9). It can also be intuitively written in

terms of streaming speeds. From equation (1.17), we can write the net streaming

speed (i.e. the frame in which the mean CR flux vanishes), as [12]:

vD =
1

fp(p)

[
−1

3
vAp

∂fp

∂p
− κn · ∇fp

]
(1.24)

where n is a unit vector pointing along the magnetic field, down the CR gradient.

The first term effectively corrects for the Compton-Getting effect, i.e. the dif-

ferential Doppler shifts of particle energies in transforming from the wave to the

inertial frame (depending on whether particles are moving parallel or anti-parallel

to the wave, when we calculate the particle flux in the inertial frame, we must

compare particles of slightly different energy in the wave frame). If we solve this

for the diffusion coefficient, we obtain:

κ(γ) =
fp

n · ∇fp

[
−vD −

1

3
vA
∂ log fp

∂ log p

]
≈ Lz[vD −

3

2
vA] (1.25)

Here we have set ∂ log fp/∂ log p ≈ −4.5; as before, the energy dependent CR

scale length is Lz(γ) = |fp/(n · ∇fp)|. If we insert this into the diffusion term in

equation (1.17), we obtain:

D(r) ≡ ∇ · (κpnn · ∇fp) ≈ ∇ · (fpn(vD − vA)). (1.26)

where we evaluate the drift speed relative to the wave frame, (vD − vA), from

equations (1.10) and (1.15). Note that the gradient of the distribution function
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∇fp (or equivalently, the scale height Lz) does not appear in the diffusion term.

It only appears if (vD − vA), has a functional dependence on Lz. This is true

for non-linear Landau damping, where (vD − vA) ∝ L
−1/2
z (so that the diffusion

term ∝ (∇fp)1/2 rather than (∇fp)), but false for turbulent damping, where the

diffusion term is therefore independent of the magnitude of ∇f .

The latter unusual behavior was first noted by [105] for the case of ambipolar

damping, which shares similarities with turbulent damping in this regard (al-

though he dismissed it as unimportant, since the effects of diffusion were small

for the applications he considered). From equations (1.22) & (1.23), and equat-

ing wave growth and with a generic damping rate ΓD, the diffusion term can be

expressed more transparently as [105]:

D(r) =
1

p3
∇ ·
(

ΓDB
2n

4π3mpΩ0vA

n · ∇fp

|n · ∇fp|

)
(1.27)

≈ 1

4π3p7/2e1/2m
1/2
p

∇ ·

(
B3/2n

L
1/2
MHD

n · ∇fp

|n · ∇fp|

)
(1.28)

where we specialize to the case of turbulent damping in the second equality, and

substitute Γturb ≈ vA/(rLLMHD)1/2. Note that, other than the sign of n · ∇fp, the

term within the divergence is independent of fp. This has important consequences

for us, in that diffusion does not slow down with time as ∇fp decreases. Instead,

it is independent of fp and depends only on plasma properties. If these plasma

properties are roughly constant over the streaming timescale, then ḟp(r, p, t) ≈
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D(r, p) ≈ is roughly constant and tstream ∝ fp/ḟp ∝ fp, with decreases with

time as fp falls. This acceleration is key in our more detailed calculations which

show that large changes in radio halo luminosity are possible despite apparently

long initial diffusion times. It is important to stress, however, that while the

diffusion time with turbulent damping is not sensitive to the magnitude of ∇fp,

it is still sensitive to the sign of ∇fp. The sign of n · ∇fp reflects the fact that

CRs can only stream along B-fields, down their gradient9; diffusion has no further

effect if ∇fp = 0. Failure to carefully treat this can result in spurious numerical

instabilities [103], which we discuss in §1.3.1.

1.2.3 Collisional Losses

Cosmic ray protons can also lose energy from direct collisions with gas par-

ticles, either through Coulomb interactions, or hadronic interactions (pion pro-

duction). While these are generally subdominant to losses from wave-particle

interactions, we include them for completeness. This transfer of energy from CRs

in turn heats the gas.

9CRs can only stream up a gradient if the sign of energy transfer is reversed – i.e., the gas
gives energy to the CRs, rather than vice-versa, as in Fermi acceleration. In this case, the
picture of self-confinement is clearly not applicable.
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The energy loss rate of a CR of speed β = v/c and kinetic energy E due to

Coulomb collisions in ionized gas is: ([68])(
dE

dt

)
C

= −4.96× 10−19erg s−1
( ne

cm−3

) β2

β3 + x3
m

. (1.29)

Here xm = 0.0286[T/(2× 106 K)]1/2, with T and ne the gas electron temperature

and number density. The energy loss rate of a CR due to hadronic collisions is

([68]):

−
(

dE

dt

)
h

≈ 0.5nNσppβcE θ(E − Ethr) (1.30)

where the pp cross section for hadronic interactions is σpp and the target nucleon

density is nN = ne/(1 − 0.5Y ), Y being the helium mass fraction. The above

assumes an inelasticity of K = 1/2 for the collision. The Heaviside step function

enforces the condition that only cosmic rays with kinetic energy above Ethr =

282 MeV undergo pion production. All of the energy loss in Coulomb collisions

goes toward heating the gas, whereas only∼ 1/6 of the inelastic energy in hadronic

collisions goes toward secondary electrons which heat the gas, the rest escaping

as gamma rays and neutrinos.

These loss terms are represented in the CR Vlasov equation as:(
∂fp

∂t

)
C,h

= − ∂

∂p
(ṗC,hfp) (1.31)

ṗC,h =

(
dE(p)

dt

)
C,h

(
dE(p)

dp

)−1

where E = (
√

1 + p2 − 1)mpc
2 and the momentum p is in units of mpc.
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1.2.4 Turbulent Diffusion

As we have seen, turbulent gas motions can damp MHD waves and enhance

CR streaming. However, they can also directly transport CRs advectively. A

proper treatment of the interplay between these effects requires 3D MHD simu-

lations. Here, we will simply treat turbulent motions as a diffusive term in the

CR transport equation. If PCR/Pgas is small and CRs have negligible effect on the

dynamics, they simply act as a passive tracer species. Analogously to the mixing

of metals by turbulent diffusion [90], we can write:

(
∂nCR

∂t

)
turb

= −∇ ·
[
κturbne∇

(
nCR

ne

)]
, (1.32)

where

κturb ≈
vtLt

3
≈ vALMHD

3
(1.33)

i.e., if turbulent mixing is vigorous, the CRs will have uniform relative abundance,

nCR ∝ ne. This has some support from simulations where CR dynamics are taken

into account [102]. There, turbulent convection results in constant CR entropy

P/nγCR

CR (where γCR = 4/3) and PCR/Pg =const. This implies nCR ∝ P
1/γCR
g .

Since stratified gas in a cluster has a polytropic equation of state Pg ∝ ρ
γpt
g

where γpt ≈ 1.2 − 1.3 (e.g., [24]), this implies nCR ∝ (ρg)
γpt/γCR ∝ ρ0.9−0.98

g ,

consistent with our assumptions. Alternatively, [36] suggest a target profile set

by gas entropy, rather than CR entropy: nCR ∝ P
1/γg
g , where γg = 5/3. In this
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case, all occurrences of ne(r) in equation (1.32) will be replaced by η(r) = P
1/γg
g ,

and nCR ∝ ρ
γpt/γg
g ∝ ρ0.72−0.78

g . Given the many uncertainties in the model, this

difference in scalings is of secondary importance.

We also need to take adiabatic heating and cooling into account. The normal-

ization of the distribution function f varies with adiabatic changes as C ∝ n
α/3
CR

(e.g., [38]), where α = 4 − 5 is the spectral slope of the distribution function.

Thus, the overall effect of turbulent diffusion on the distribution function is:

∂f

∂t
= −∇ ·

[
κturbδ

α/3∇
(

f

δα/3

)]
, (1.34)

and δ(r) = P
1/γCR
g ≈ ne(r), or δ(r) = η(r) = P

1/γg
g .

These equations show that turbulent diffusion, acting alone, will lead to a cen-

trally peaked CR profile similar to the gas profile. On the other hand, turbulence

also damps MHD waves, leading to enhanced outward streaming, which flattens

the CR profile. Which effect dominates? While we explore this in detail in our

numerical calculations, it is useful to first get an order of magnitude estimate.

From equations (1.25) and (1.33), we obtain:

κstream

κturb

≈
(
vD

vA

− 1

)(
Lz

LMHD

)
∝ 1

L
3/2
MHD

(1.35)

We expect Lz/LMHD ∼> 1, and (vD/vA − 1) ∼> 1 (from equation (1.15)) for tur-

bulent damping; moreover, these factors increase during the streaming processes

as Lz rises and nCR fall. Thus, κstream ∼> κturb in our fiducial model. Moreover,
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if the strength of turbulence increases such that LMHD falls, κstream/κturb rises.

Stronger turbulence has a larger effect on damping of MHD waves than on inward

advection of CRs, and the CRs stream outward faster. Thus, in this framework,

turbulent diffusion can never establish a centrally peaked profile, regardless of its

strength. In practice, coherent bulk motions (triggered by mergers, or perhaps

by gas ‘sloshing’) can potentially bring CRs to the cluster center, and/or pro-

duce a magnetic topology which is unfavorable for outward streaming. However,

modeling such stochastic events is beyond the scope of this paper.

A few comments about our choice of fiducial parameters for turbulence is in

order. It is customary to define (Lt, vt), where Lt is the outer scale, and vt is the

velocity at this scale. Instead, we work with (LMHD, vA), where LMHD is defined to

be the scale at which the turbulent velocity is vA. In general, vt ∼ vA(Lt/LMHD)1/3,

and more vigorous turbulence can be characterized by smaller values of LMHD.

However, if there is equipartition between UB = B2/8π and Ut = 1/2ρv2
t , then

vt ∼ vA and thus Lt ∼ LMHD. Thus, (LMHD, vA) are sensible fiducial parameters.

Secondly, we have assumed that LMHD (or equivalently, vt at a fixed scale) is

independent of radius. Is this consistent with cosmological simulations, which

show that turbulent pressure support becomes increasingly important with radius?

A fit to low-redshift clusters gives ([104], see also [6]):(
Pturb

Ptherm

)
= α0

(
r

R500

)nnt

(1.36)
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where α0 ≈ 0.18±0.06 and nnt = 0.8±0.25. This implies vt ∝ r0.4−αT /2, where T ∝

r−αT , and αT is generally small (e.g., αT ≈ x2/(1+1.5x) [67], where x ≡ r/rvir, so

αT ≈ 0.2 at r = 0.5rvir). On the other hand, given our assumption that B ∝ ραB

(see §1.3.4), we have vA ∝ r(0.5−αB)αρ , where ρ ∝ r−αρ , and αρ ≈ 2− 3 over most

of the cluster. The radial scalings for vt and vA are thus roughly consistent: for

instance, αB ≈ 0.3 (as assumed for Perseus & Coma) gives vA ∝ r0.4−0.6. Finally,

we note that for our assumed levels of turbulence, heat dissipation is relatively

unimportant. The heating time is:

theat ∼
Utherm

ε
∼ tturb

(
Utherm

Uturb

)
∼ 5 Gyr

ft,5LMHD,100

vA,100

(1.37)

where ft,5 = [(Utherm/Uturb)/5], LMHD,100 = (LMHD/100 kpc), and vA,100 = (vA/100 km s−1).

1.3 Method

Our main task is to solve the CR transport equation, in the form:

∂fp

∂t
+ (u + vA) · ∇fp = ∇ · (κpnn · ∇fp)

+
1

3
p
∂fp

∂p
∇ · (u + vA) +Q− ∂

∂p
(ṗC,hfp)

−∇ ·
[
κturbδ

α/3∇
(

f

δα/3

)] (1.38)

where the last two terms are as in equations (1.31) and (1.34) respectively. To

do so, we have written a new module in a 1D spherically symmetric version of
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ZEUS3D, previously used to solve the CR equations in the fluid approximation

[51].

Our goal in this paper is to determine if CR streaming is a plausible means

of turning off radio halos in the hadronic scenario. We therefore run numerical

simulations where the cluster is assumed to be in strict hydrostatic and thermal

equilibrium, and only solve the CR transport equation (ignoring the fluid equa-

tions for the gas, equations , by setting all time derivatives to zero) to examine

the effects of CR streaming. In the absence of a cooling flow, the only time-

dependent terms in the fluid equations for the gas (equations (1.44),(1.45), and

(1.46)) relate to the CRs, and have negligible effect. We initialize the CR profile

so as to reproduce the observed radio surface brightness profiles in the classical

hadronic model, and follow the time evolution of radio emission as the CRs stream

out. In this methods section, we discuss numerical regularization of CR streaming

(§1.3.1), a test comparison of our CR transport solver in the fluid approximation

(§1.3.2), calculating radio and gamma-ray emission (§1.3.3), and our initial condi-

tions (§1.3.4) for a prototypical radio mini-halo (Perseus) and a prototypical giant

radio halo (Coma). Results are then presented in the following section, §1.4.
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1.3.1 CR streaming: Numerical Stability

Cosmic rays can only stream down their gradient, in a direction:

s = −sgn(B · ∇fp)
B

|B|
. (1.39)

In our 1D simulations, s = −r̂ sgn(dfp/dr). However, if this is enforced in equa-

tion (1.28), it leads to numerical instabilities and unphysical oscillations in the

distribution function. The origin of this difficulty is easy to understand [103]; it

essentially arises at local extrema. If the simulation at any time produces a local

density maximum, diffusion out of the local maximum will cause the density to

drop significantly there. If the time step is not properly restricted, this decrease

will overshoot, causing the density to drop below neighboring regions, creating a

local minimum. The opposite problem will then occur, with inwardly diffusing

CRs causing the CR density to increase too much. The result is an unphysical os-

cillation that eventually spreads out to all space. Because CR streaming results in

a flat profile where (df/dr) vanishes everywhere, this problem can become acute

as time goes on.

[103] show that for an explicit code (such as ZEUS3D), the restriction on the

time-step such that new local extrema are not created is:

∆t ≤ |f ′′|∆x3/f |v| (1.40)
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which is much more onerous than the standard Courant condition (we have ex-

plicitly verified that simulations which satisfy the Courant condition suffer from

spurious oscillations). They suggest regularizing the CR transport equation by

replacing the discontinuous sgn(f ′p) with the smooth function tanh(f ′p/ε) for some

choice of ε. As ε tends to zero, the tanh function approaches the sign function.

This effectively sets ε as a minimum scale value for f ′p: if f ′p � ε, the simula-

tion behaves as if f ′p = 0, and suppresses CR streaming. Alternatively, it can be

viewed as introducing a diffusive term at an extremum, with diffusion coefficient

fp/ε, similar to the use of explicit viscosity to regularize Euler/Burger’s equations.

In this case, the maximum time step allowed to suppress the instability is:

∆t ≤ ∆x2ε/2fp|v|. (1.41)

For us, the relevant speed v is the streaming speed, calculated via equation (1.24),

which we insert into this equation.

We have found that a scale value of:

ε = fp/L ; L = 3 Mpc (1.42)

is sufficiently small that decreasing it any further does not significantly change

the results. In Fig 1.1, we show a convergence test (showing the radio luminosity

of Perseus as a function of time when LMHD = 100 kpc; see Fig 1.3b) where the
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figure converges to the correct solution as ε is decreased; a value of ε half of our

fiducial value (ε = 10−25fp) gives identical results.

In practice, although we use a smoothing scale ε, we use the time constraint

(1.40) rather than (1.41) and we use v = vA rather than v = vs. Additionally, to

prevent the time step from dropping to zero we impose a minimum time step

∆t ≥ 1× 10−7∆x2ε/2fp|v| (1.43)

where the numerical factor out front is arbitrary. We do all of this to regulate

the runtime of the simulation - the less stringent time steps will be less accurate

but will run quicker, and we can adjust the minimum time step (1.43) to the

desired balance of speed and accuracy. As a result, local minima and maxima do

develop at some points of our simulations, however this will always happen as the

CR profile flattens; as long as the local extrema do not grow unstably the results

should be robust.

In addition, we enforce the constraint that ∆fp ≤ 0.05fp in a single time-

step (and similarly for the gas energy and density). Note that while (1.40) is only

applied at local extrema, this condition is held everywhere. Eventually, as fp falls,

this shrinks the time-step to zero. To avoid this, we define a momentum dependent

minimum fp,min(p) = 10−3fp(rmax, p, t0), where rmax is the outer boundary of the

simulation, and t0 is the initial time. The distribution function fp is then never
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Figure 1.1: Convergence test for the smoothing scale parameter ε. We plot the 1.4 GHz radio
luminosity of Perseus, which declines with time due to cosmic-ray streaming (here we assume
LMHD = 400kpc; see §1.4.1 for details). As ε is decreased, our calculations converge. Our

fiducial value is ε = 10−25fp.

allowed to drop below this value. Also, once fp falls below 50fp,min(p) anywhere,

all time step restrictions there are ignored, including (1.40).

1.3.2 Test Case: AGN Feedback

To test our solver for the CR transport equation, it is useful to compare against

previous results where CRs are treated in the fluid approximation. Specifically,

we compare against the results of [51], which simulates the effects of CRs injected

by a central AGN on the thermal state of a cool core cluster. It was found that

a combination of electron thermal conduction (at some fraction f of the Spitzer
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value) and CR mediated wave heating was sufficient to stem a cooling flow. The

following governing equations for the two-fluid ICM (gas and cosmic rays) were

used:

∂ρ

∂t
+∇ · (ρu) = 0 (1.44)

∂S

∂t
+∇ · (Su) = −∇Pg −∇Pc − ρ∇Φ (1.45)

∂Eg

∂t
+∇ · (Egu) = −Pg∇ · u−∇ · F

− n2
eΛ(T ) + ηcneEc − vA · ∇Pc

(1.46)

∂Ec

∂t
= (γc − 1)(u + vA)·∇Ec −∇ · Fc +Qc. (1.47)

Fc = γcEc(u + vA)− nκc(n · ∇Ec), (1.48)

where ρ is the gas density, Pg is the gas pressure, Eg is the gas energy density,

S = ρu is the gas momentum vector, Ec is the cosmic ray energy, Pc = (γc− 1)Ec

is the cosmic-ray pressure, F is the electron conduction heat flux, and Φ is the

gravitational potential. The term ηcneEc, where ηc = 2.63× 10−16 cm3 s−1, takes

Coulomb and hadronic heating of the gas by cosmic rays into account. The initial

conditions, gravitational potential Φ(r), and cooling function Λ(T ) are as spelled

out in [51]; please refer to the paper for details. The source function Q represents

the injection of CRs by an AGN, triggered by gas cooling:

Qc = −νεṀinc
2

4πr3
0

(
r

r0

)−3−ν

[1− e−(r/r0)2 ] (1.49)
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Here, ε = 3× 10−3 is an efficiency parameter, ν = 0.3, and r0 = 20 kpc is a scale

distance.

The code of [51] uses the CR energy density Ec as the fundamental dynamic

variable for CRs. It is:

Ec = 4π

∫ ∞
0

p2Tp(pp)fp(pp)dp (1.50)

where

Tp(p) =

[√
1 + p2 − 1

]
mc2. (1.51)

is the kinetic energy of a CR proton of momentum pp. By using Ec as the main

CR dynamic variable, all momentum dependence has been integrated out. By

contrast, we wish to retain momentum dependence, and instead use f(r, p, t) as

our fundamental variable. We therefore continue to solve equations (1.44)−(1.46),

but replace equations (1.47) & (1.48) with the equation for the distribution func-

tion, equation (1.38), and solve for Ec as required in equations (1.45), (1.46) via

equations (1.50) and (1.51). In calculating the momentum-dependent source func-

tion Q for use in equation (1.38), we suppose that the injected spectra has the

form:

fp(E) =
Acrθ(E − El)

(E/E∗)α̃ + (E/E∗)(α̃−2)/2
(1.52)

which assumes a steady state spectrum at low (high) energies due to Coulomb

(hadronic) losses, and smoothly connects these regimes (see [51] for details). Here,
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E∗ = 706 MeV is a cross-over energy separating the low- and high-energy regimes,

while the assumed spectral index is α̃ = 2.5, and cutoff energy is El = 10 MeV.

We create a source function with the same momentum dependence as equation

(1.52), and then normalize it to the total CR injection rate given by equation

(1.49):

Qc = 4π

∫ ∞
0

p2TpQ dp. (1.53)

To maintain consistency with [51], we use the same momentum-independent dif-

fusion coefficient used there.

The simulation grid has two ghost zones at each end in the radial direction,

and one ghost zone at each end in the momentum direction. The density and

temperature of the ICM are linearly extrapolated into the spatial ghost zones.

For the CR spectrum, constant boundary conditions are enforced in the radial

direction, i.e. fp(p) at the spatial ghost zones are set equal to fp(p) in the adjacent

active zones. In the momentum direction we required that d log fp/d log p be

constant across the boundary. As for time step constraints, for this test case we

do not allow ρg or Eg to change by more than 25% in any time step. We also

enforce the Courant condition for all cells, ∆t < ∆x2/2κp.

We find that our full model reproduces the results of [51] extremely well. A

example is shown in Fig. 1.2, where we show the temperature as a function of time

for several select radii. The cluster is initialized to be isothermal; after an initial
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Figure 1.2: Temperature versus simulation time at some select radii for the new code, where
we solve the CR transport equation (1.38). The results of the old code, which treats CRs in

the fluid limit (equations (1.47), (1.48)), are displayed in the dotted lines.

transient, it is thermally stabilized against a cooling catastrophe by a combination

of CR heating and electron thermal conduction. The dotted lines show the results

from the code of [51], which integrates the fluid equations, while the solid lines

indicate the results of the new code, which computes the distribution function.

Indeed, even when we include the full momentum dependence of the diffusion

coefficient, the results barely change (for this particular example, we have assumed

non-linear Landau damping). This is because most of the energy density of CRs is

dominated by low energy CRs (∼ 1 GeV) for which the diffusion time is negligibly

long. As we shall soon see, diffusion cannot be neglected for the high-energy CRs

which are responsible for observed radio emission.
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1.3.3 Computing Emissivities

Our fundamental simulation variable is the CRp distribution function, fp(r, p, t).

Here, we describe how radio and gamma-ray emission can be inferred from fp(p)

(hereafter, we suppress r, t) in the hadronic model, given an assumed gas density

and magnetic field.

How is radio emission produced? CR protons undergo hadronic interactions

to produce pions, which in turn decay to produce relativistic electrons (CRp +

nucleon → π±, π0; π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ; π0 → 2γ). The

high energy electrons which produce observable synchrotron emission have short

cooling lifetimes and we therefore assume a steady-state between injection and

cooling. A CRp distribution fp(p) gives rise to a pion source function due to the

hadronic pp interaction [84]:

sπ±(pπ) =
2

3

∫ ∞
−∞

dppfp(pp)cnNξ(pp)σπpp

× δ
(
pπ −

mp

4mπ

pp

)
θ(pp − 0.78)

(1.54)

where σπpp = 32(0.96 + e4.4−2.4αp) mbarn 10. The delta function enforces the mean

pion momentum 〈p̃π〉 = p̃p/4 and the Heaviside step function θ incorporates the

threshold proton momentum for the pion production to occur. Approximating

10We follow [83] in absorbing the weak energy dependencies of the pion multiplicity and the
inelastic cross-section in this semi-analytical parametrization of the cross-section, where αp is
the average CR spectral index.
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the pion multiplicity ξ as 2, this gives:

sπ±(pπ) =
16

3

mπ

mp

cnNσ
π
pp4π

(
4mπ

mp

pπ

)2

× fp

(
4mπ

mp

pπ

)
θ

(
4mπ

mp

pπ − 0.78

) (1.55)

Under this approximation, the neutral pion source function sπ0 is the same.

The charged pion population will undergo pion decay, producing electrons (and

other particles). This electron production is described with the electron source

function:

se(pe) = sπ±(pπ(pe))
dpπ
dpe

(1.56)

⇒ se(pe) =
64

3

me

mp

cnNσ
π
pp4π

(
16me

mp

pe

)2

× fp

(
16me

mp

pπ

)
θ

(
16me

mp

pe − 0.78

) (1.57)

In the second equation we have used p̃π = 4p̃e. If we assume an equilibrium

between this source and any losses, i.e. a steady state solution, the electron

spectrum is then determined from

fe(pe) =
1

|ṗe|

∫ ∞
pe

dp′ese(p
′
e) (1.58)

where the losses ṗe are

ṗe(pe) =
Ėe

mec2
=

4

3

σTcp
2
e

mec2
(εB + εcmb) (1.59)

from synchrotron radiation and inverse Compton (IC) scattering. Here, σT is

the Thompson scattering cross section, and εB, εcmb are the energy density of the

B-field and cosmic microwave background.

48



From the electron distribution function we can determine the resulting syn-

chrotron emissivity [96]:

jν(r) = 0.333

√
3

2π

e3B(r)

mec2

∫ ∞
1

dγefe(r, γe)F

(
ν

νc

)
(1.60)

In the above, νc = 3eBγ2
e/4πmec and the function F is an integral of a modified

Bessel function, F (x) = x
∫∞
x
K5/3(x′)dx′. The numerical factor in front comes

from averaging the CRe population over pitch angle, assuming isotropy. The

observed surface brightness is:

Sν(r⊥) =

∫ ∞
−∞

jν′(r(l))dl =
2

(1 + z)3

∫ ∞
r⊥

jν′(r)
r dr√
r2 − r2

⊥
(1.61)

where ν ′ = ν(1 + z). The luminosity is:

Lν =

∫
d3rjν(r) (1.62)

We also make predictions for gamma-ray emission. We only consider gamma-

ray emission from neutral pion decay π0 → 2γ and ignore the subdominant contri-

bution from inverse Compton scattering. The analysis is much the same as above.

Following [68], we derive a photon source function from the pions:

sγ(Eγ) = 2

∫ ∞
Eγ+

(mπc2)2

Eγ

dEπsπ0(Eπ)√
E2
π −m2

πc
4

(1.63)

where the neutral pion source function sπ0(Eπ) is assumed to be the same as for

charged pions, equation (1.55). From this source function, we determine a number
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production rate per unit volume λγ:

λγ(> Eγ) =

∫ ∞
E′γ

dE ′γsγ(E
′
γ) (1.64)

and the flux detected at Earth above an energy Eγ:

Fγ(> Eγ) =
1

4πd2
L

∫
d3rλγ(> Eγ) (1.65)

Given the strong momentum dependence of CR streaming, it is worth clari-

fying which range of CRp momenta are most observationally relevant. For radio

emission, the characteristic synchrotron frequency is ∼ 3γ2νc, where νc is the non-

relativistic synchrotron frequency. For a given observational frequency νs, the

greatest contribution comes from electrons with:

pemit ≈ γemit ≈ 4× 103
( νs

1 GHz

)1/2
(

B

3µG

)−1/2

(1.66)

Thus, ∼ 10 GeV electrons are responsible for ∼GHz emission in µG fields. Typ-

ically, p̃e ∼ (1/16)p̃p, where p̃e is the momentum of a secondary CRe produced

hadronically. The reduction in energy by a factor of ∼ 16 comes from the fact

that the limiting inelasticity is ∼ 1/2 [68], the pion multiplicity is a factor of ∼ 2

due to 2 pion jets leaving the interaction site [75], and 〈E〉 = (1/4)〈Eπ±〉 in the

reaction π± → e± + 3ν. Thus for ∼ GHz emission, ∼ 100 GeV protons are most

relevant, while for LOFAR observations at ∼ 100 MHz, ∼ 10 GeV protons are

most relevant. For γ-ray emission, Eγ ≈ (1/8)Ep (all the factors are as before,
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except Eγ = 1/2Eπ0). Thus, Fermi, which is most sensitive in the Eγ ≈ 0.1 − 3

GeV range (rather than 0.1−300 GeV, due to the pion bump), probes Ep ∼ 1−30

GeV, while imaging air Cerenkov telescopes such as MAGIC, HESS and VERI-

TAS are most sensitive in the Eγ ∼ 0.3 − 1 TeV range (rather than 0.3-10 TeV,

due to the steep CRp spectrum), probes Ep ∼ 3− 10 TeV.

1.3.4 Initial and Boundary Conditions

We choose to simulate a prototypical radio mini-halo, Perseus, and a prototyp-

ical giant radio halo, Coma. We choose initial conditions which reproduce current

observations of their radio surface brightness, and then watch how this evolves

under the influence of streaming. For the Perseus cluster, we adopt empirical fits

to the cluster temperature and electron density profiles ([85]) based on observed

X-ray emission ([30]):

ne

10−3cm−3
= 46

[
1 +

(
r

57 kpc

)2
]−1.8

+ 4.79

[
1 +

(
r

200 kpc

)2
]−0.87

(1.67)

T = 7 keV
1 + (r/71 kpc)3

2.3 + (r/71 kpc)3

[
1 +

(
r

380 kpc

)2
]−0.32

(1.68)

From these we determine an internal energy distribution (via the ideal gas law)

and a gravitational potential (via hydrostatic equilibrium). Similarly, for Coma
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the fits are ([85], based on [17]):

ne

10−3cm−3
= 3.4

[
1 +

(
r

294 kpc

)2
]−1.125

(1.69)

T = 8.25 keV

[
1 +

(
r

460 kpc

)2
]−0.32

(1.70)

The radio surface brightness profiles at 1.4 GHz are fit by a β profile:

S(r) = S0[1 + (r/rc)
2]−3β+0.5 (1.71)

which is reproduced by an initial emissivity of

jν(r) = jν,0[1 + (r/rc)
2]−3β (1.72)

jν,0 =
S0

2πrc
(6β − 1)B

(
1

2
, 3β

)
where B is the beta function. For Perseus, β = 0.55, rc = 30 kpc, and S0 =

2.3 × 10−1 Jy arcmin−2 [79], while for Coma β = 0.78, rc = 450 kpc, and S0 =

1.1× 10−3 Jy arcmin−2 [34].

We assume that the magnetic field scales with gas density:

B = B0

(
ne(r)

ne(0)

)αB
(1.73)

Such a scaling is motivated by simulations [35] and Faraday rotation measurements

[14, 57]; for instance, rotation measurements for Coma are well fit by αB ≈ 0.3−0.7

[14]. In the future it would be interesting to explore other scalings, if for instance

this relationship also has temperature dependence [62]. We find that radio surface
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brightness profiles can be well fit by αB = 0.3 for both clusters, but for Perseus

B0 = 10µG, while for Coma B0 = 5µG. We choose a cosmic ray distribution

function motivated by cosmological hydrodynamic simulations of galaxy clusters

where cosmic rays are accelerated via diffusive shock acceleration [85]:

fp(r, pp) = C(r)
∑
i

∆ip
−αi
p (1.74)

∆ = (0.767, 0.143, 0.0975) α = (2.55, 2.3, 2.15). (1.75)

and the normalization

C(r) =
(Cvir − Ccenter)

1 +
(

r
rtrans

)−βC + Ccenter. (1.76)

Note that these simulations do not take into account the effects of cosmic ray

streaming. The parameters Cvir, Ccenter, rtrans are then chosen such that the model

radio brightness profile agrees with fits to observations (equation (1.3.4)). For

Perseus, if we define C(r) = C̃(r)ne(r), then C̃center = 8.3×10−8, C̃vir = 7.2×10−8,

rtrans = 36 kpc, βC = 1.0. For Coma, Ccenter = 6 × 10−11 cm−3, Cvir = 5.2 ×

10−11 cm−3, rtrans = 55 kpc, βC = 1.09. The initial radio surface brightness

profiles derived from these parameters are shown in Fig 1.3a and 1.5a.

When we solve equation (1.38), the simulation grid has two ghost zones at each

end in the radial direction, and two ghost zones at each end in the momentum

direction. To set values in the ghost zones, we use d log fp/d log p =const in the

momentum direction at both the inner and outer boundary, i.e. a power law
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extrapolation. In the spatial direction, we use d log fp/d log r =const at the inner

boundary. The outer boundary requires a little more care, since it can fall to

extremely low values which result in round-off error; also, if the CR gradient

goes to zero at the outer simulation boundary, this artificially suppresses CR

streaming. For Perseus, we use d log fp/d log r =const at the outer boundary, but

subject to the condition that fmin ≤ fimax+1 ≤ Xfimax , fmin ≤ fimax+2 ≤ Xfimax+1,

where imax is the index of the last active zone, fmin(p) = 10−3fp(rmax, p, t0), and

X = 0.98. For Coma, where the initial profile is already extremely flat, we simply

adopt fimax+1 = Xfimax , fimax+2 = Xfimax+1. To conserve CRs during the process

of turbulent advection, we also enforce the CR turbulent diffusion flux, defined

as Fturb = κturbδ
α/3∇(fpδ

−α/3) (see equation (1.34)), to be zero at both spatial

boundaries.

For both Perseus and Coma, we use 1.4 GHz data. Note that for Coma, which

is the most well-studied giant radio halo, recent 1.4 GHz and 352 MHz data

cannot be reconciled by the classical hadronic model with a power-law spectrum

[19], though this conclusion is subject to systematic uncertainties in the zero-point

of 1.4 GHz data [121]. We shall also see that energy dependence in the streaming

speed alters the CR distribution function, so that it is no longer a power-law in

momentum, potentially solving this problem.
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1.4 Results

We now show results for a canonical radio mini-halo in a cool core cluster

(Perseus), and giant radio halo in a non-cool core cluster (Coma), starting from

the initial conditions given in §1.3.4. We use Perseus to illustrate most of the

relevant physics. Unless otherwise noted, all calculations assume LMHD = 100kpc,

where LMHD is the lengthscale at which vA = vturb (note from ε = v3
A/LMHD that

smaller values of LMHD correspond to more vigorous turbulence).

1.4.1 Perseus Cluster

The initial conditions for Perseus correspond to a CR profile where the ratio

of CR energy to the thermal gas energy is almost constant throughout the clus-

ter, decreasing slightly in the outskirts. In Fig 1.3a we compare radio emission

from our initial conditions to surface brightness observations at 1.4 GHz from

[79]. Note that the observations only span a limited radial range (which produces

∼ 1/2 of the total radio luminosity in our model). The normalization of the

profile falls substantially in several hundred Myr, while its shape does not evolve

significantly11. Fig 1.3b shows the evolution of the 1.4 GHz radio luminosity with

time, and how it depends on the strength and nature of loss processes. The fall in

11This is mostly due to projection effects; note that the CR radial profile does evolve signifi-
cantly; see Fig. 1.3e.
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luminosity is exponential, on a characteristic ∼ 108 yr timescale. For our fiducial

LMHD = 100 kpc simulation, L1.4GHz falls by an order of magnitude in several

hundred Myr; the decrease is faster for smaller values of LMHD, which corresponds

to strong damping. If only non-linear Landau damping operates, the decline in

luminosity is very slow, and insufficient to turn off radio halos. We also show

how L1.4GHz evolves if we ignore diffusion (i.e., the no damping limit) or adiabatic

losses in equation (1.38).

The streaming speeds relative to the wave frame for 100 GeV CRps at a radius

of 100 kpc are shown in figure 1.3c, for different values of LMHD and if only non-

linear Landau damping dominates. We see that even if the streaming speeds start

out slow, they can quickly become super-Alfvénic as the CR density drops. This

non-linear behavior, which is due to the unusual κ ∝ 1/∇f scaling of the diffusion

coefficient for turbulent damping, allows very fast streaming. It is not seen if only

non-linear Landau damping operates; in that case, vD ∼ O(vA) at all times. Note

from equation (1.7) that vD − vA ∼ (λ/3Lz)c. Thus, as vD → c, λ→ Lz, and our

equations break down, as the CRs can no longer be described by a distribution

function. Instead, a fully kinetic approach is needed. This limitation is relatively

unimportant since by this stage CRs are no longer self-confined but stream freely

along field lines; thus, turn-off is extremely rapid.
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The individual contributions to ḟp at 100 GeV are shown in Figure 1.3d in

the LMHD = 100 kpc case. The values are taken at a fixed radius of 100 kpc, and

displayed as a function of time. Interestingly, no one process dominates (and we

have verified that adiabatic and diffusive losses acting in tandem are much more

effective than either process alone). Initially, adiabatic losses dominate, although

they decrease continuously with time. This is to be expected, since the adiabatic

loss term is proportional to fp, and decreases as fp falls. On the other hand, the

diffusion loss term from turbulent damping is independent of fp (equation (1.28)),

and thus independent of time as long as there is a spatial gradient. At t ∼ 190 Myr,

the profile at r ∼ 100 kpc flattens (see Fig. 1.3e), and all terms plummet, although

the adiabatic loss term falls most drastically. In §1.5, we explore the nature of

this change when the profile flattens: inside the flat core, ḟp changes since it is

determined solely by the flux at the outer boundary of the core. From this plot,

we can see why adiabatic and diffusive losses in tandem are much more efficient

that either alone: adiabatic losses are much more effective in the early stages

when the profile is centrally peaked, while diffusive losses are more effective once

the profile flattens. We also see that inward turbulent advection is non-negligible

but subdominant. It also changes once the region becomes incorporated inside

the flat core (since once again only the flux through the core boundary matters

at that point).
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Fig 1.3e shows 4πp3fp (i.e., CR density) for 100 GeV CRs. As previously

discussed, the CR density profile develops a flat core, which expands in size at

roughly the streaming speed. Meanwhile, the normalization of the CR profile falls

continuously, even for the flat portion. The end result is a profile in which the

CR profile has completely flattened and fallen by several orders of magnitude by

the end of the simulation.

Finally, the expected γ-ray flux as calculated from equation (1.65) is shown in

Fig 1.3f. Observed upper limits are also shown; note that our initial conditions are

consistent with these upper limits. Due to the finite momentum grid pp ≤ 5000,

our calculations are only accurate in the range Eγ ∼< 200 GeV, although the high

energy CRs stream so quickly that the CR transport equation quickly breaks down,

in any case. The gamma-ray fluxes decline extremely rapidly with time, with the

decline being much sharper at higher energies, due to the fact that higher energy

CRs stream faster. The upshot is that at the Eγ ∼ 0.3−1 TeV (ECR ∼ 3−10 TeV)

energies probed by imaging air Cherenkov telescopes (MAGIC, HESS, VERITAS),

the decline in gamma-ray luminosity is very rapid. Any detection of gamma-ray

emission at these energies, where a source is not immediately apparent (suggesting

that it is long-lived), would strongly disfavor the model of CR streaming presented

here. However, the Eγ ∼ 0.1 − 3 GeV (ECR ∼ 1 − 30 GeV) energies probed by

Fermi correspond to CRs which stream and turn off gamma-ray emission more
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slowly. The latter is thus a more robust measure of the cluster’s CR injection

history. Note that since 〈Eγ〉 ∼ 1/8〈ECR〉, gamma-ray emission at Eγ ∼ 10 GeV

corresponds to the ECR ∼ 100 GeV CRs relevant for ∼GHz radio emission, and

declines by a similar amount.

By the same token, the energy dependence of CR streaming implies that radio

luminosity turns off more slowly at lower frequencies. We show this in Fig 1.7.

We can also see this in figure 1.4 which plots the distribution function versus

momentum. The higher energy CRps drop in density much faster than lower

energy CRps. The corresponding high energy synchrotron emission then also

drops faster. This behavior could explain radio halos such as Abell 521, which

is detected at 240, 325 and 610 MHz, but not at 1.4 GHz, implying a cutoff or

strong spectral curvature at high frequencies [21]. We therefore predict that at

the low frequencies probed by LOFAR, radio halos should be significantly more

abundant.

1.4.2 Coma Cluster

We now turn to Coma, a prototypical giant radio halo. We focus on the differ-

ences with our previous example, Perseus. Due to the flat and extended observed

surface brightness profile, which extends out to 1 Mpc (Fig 1.5a, observations

from [34]), the inferred CRp distribution is much flatter. Indeed, for the B-field
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Figure 1.3: Simulation results for the Perseus cluster. (a) Radio surface brightness of
Perseus for LMHD = 100 kpc. Observations from [79]. (b) The time evolution of the Perseus

cluster’s radio luminosity for different levels of damping. The solid lines show MHD turbulence
damping at various strengths. The dashed line shows non-linear Landau damping. (c) Cosmic
ray streaming speeds of 100 GeV CRs at a fixed radius of 100 kpc. (d) Different contributions
to ḟp for the LMHD = 100 kpc Perseus simulation. (e) Radial distribution of 100 GeV protons
for LMHD = 100 kpc. (f) Predicted gamma-ray fluxes. Upper limits from observations are at

higher energies than those plotted here.
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Figure 1.4: CR distribution function versus momentum at a fixed radius of 100 kpc. The
dropoff time scales with energy, leading to the spectral steepening discussed above.

we have assumed, B ∝ ραB , αB ≈ 0.3 (which is consistent with rotation mea-

sure observations [14]), the radio profile can be fit by a nearly flat CRp density

(Fig. 1.5e). This large flat inferred profile is suggestive that extensive streaming

has already taken place. Coma thus presents an interesting challenge, to see if a

significant decline in luminosity is possible despite the absence of significant CR

gradients except a small one at the outer boundary. We emphasize once again

that for turbulent wave damping, our solutions are independent of the magnitude

of the CR gradient ∇f . Our solutions depend only on where ∇f is non-zero, and

its sign.
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We show our results in Fig. 1.5. All figures are analogs of those for Perseus in

Fig. 1.3 (except we adopt r=300 kpc as our fiducial radius when displaying time-

varying quantities—due to the much larger extent of the Coma radio halo, this is a

more representative radius), and we again adopt LMHD = 100 kpc for our fiducial

model. In Fig 1.5a, we see that the surface brightness falls in normalization,

but does not significantly change shape, as for Perseus. The decline in L1.4GHz is

slower than for Perseus, although L1.4GHz is still down by an order of magnitude

after ∼ 600 Myr for the fiducial model, and declines more quickly with more

vigorous turbulence as expected. Non-linear Landau damping alone produces a

slow decline. While streaming is super-Alfvénic (Fig 1.5c), it does not ‘run away’

with time as quickly as for Perseus. The acceleration of CR streaming is tied to

the decline of the CR density, which is slower in this case.

Since the flat region encompasses the entire cluster at the outset, there is

no transition in energy loss regimes as for Perseus (where the profile gradually

flattens). Instead, loss rates vary mildly with time (Fig 1.5d), with diffusive losses

always more important than adiabatic losses, which are essentially negligible. This

can be understood from the fact that adiabatic flux at the outer boundary scales

with fp(Rmax), which is small (see §1.5 for more discussion), whereas the diffusive

flux is independent of fp(Rmax). The flat CR density profile simply decreases

in normalization with time (Fig 1.5e). Similar to Perseus, Coma’s gamma-ray
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flux declines quickly with time, particularly at the high energies associated with

imaging air Cherenkov telescopes.

Spectral steepening in Coma’s radio emission has been seen in multi-frequency

observations [20], a feature which occurs naturally in our models due to the energy

dependence of CR streaming. We show this in Fig 1.6; spectral steepening very

similar to that observed arises. Given the flat inferred profile of Coma, which sug-

gests that substantial streaming has already taken place, this raises the possibility

that a power-law population with a slightly higher normalization was transformed

by streaming into the curved population we see today.

We have chosen a rather extreme case of a completely flat profile, to illustrate

that radio halo turn-off is still possible in this case. The observational data also

permit an initial CR profile that is less flat. Using the same B-field, we can still

reproduce the observations very well with a profile that has a mild central peak.

Since we now have a significant density gradient, the radio luminosity can drop

off faster in the beginning, although the overall evolution is qualitatively the same

as before. The streaming speeds ramp up faster than in the flat profile fit.

We have assumed a magnetic field profile B ∝ ραB , with αB = 0.3. This

choice assumes the B-field is in rough equipartition with turbulence, as discussed

in §1.2.4, agrees with Faraday rotation measures, and enables us to reproduce

the observed surface brightness distribution. However, the Faraday rotation mea-
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surements are consistent with a range of values αB ∼ 0.4 − 0.7 at 1σ [14]. A

steeper scaling of B with density implies lower B-fields at the cluster outskirts;

in this case the rate of turn-off and development of spectral steepening will be

slower. While lowering B decreases the Alfvén speed, the dominant effect is a

decrease in the CR flux F due to streaming, which scales as B3/2/L
1/2
MHD (equa-

tion (1.28)). The rate of CR streaming is set by the minimum value of this flux,

which generally occurs at the cluster outskirts. As we shall we shall see in §1.5,

in this regime we can approximate ḟp ≈ 3F (Rf , p)/Rf . Specializing to our model

for Coma (4πp3fp(t = 0) ≈ 10−13 cm−3 for p = 100, ne(0)/ne(1 Mpc) ≈ 17, and

B0 = 5 µG):

toff ∼
fp

ḟp

∣∣∣∣
1 Mpc

∼ 370 MyrL
1/2
MHD,10070αB−0.5 (1.77)

Thus, a steeper scaling αB = 0.7 would not permit turn off on an acceptably short

timescale for a very flat profile (it could still be possible for a less flat profile, as

above, but note that the observations cannot be fit well by a centrally peaked

CR profile with this steep B-field scaling). Note that radio relic measurements

are consistent with strong, ∼ µG fields at the cluster outskirts [44]; in addition,

the very strong turbulence at the cluster outskirts could be consistent with lower

values of LMHD than the constant value we have assumed. As we reiterate in the

Conclusions, complex issues regarding magnetic field topology and strength are

best further explored with 3D MHD simulations.

64



Figure 1.5: Simulation results for the Coma cluster. (a) Radio surface brightness of Coma
for LMHD = 100 kpc. Observations from [34]. (b) The time evolution of the Coma cluster’s

radio luminosity for different levels of damping. The solid lines show MHD turbulence
damping at various strengths. The dashed line shows non-linear Landau damping. (c) Cosmic
ray streaming speeds of 100 GeV CRs at a fixed radius of 300 kpc. (d) Different contributions

to ḟp for the LMHD = 100 kpc simulation. (e) Radial distribution of 100 GeV protons for
LMHD = 100 kpc. (f) Predicted gamma-ray fluxes. Upper limits are taken from [3] with

α = 2.5.
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Figure 1.6: Luminosity as a function of energy for the Coma simulation including
observations from [20]. The momentum dependence of the streaming speed leads to a spectral

steepening very similar to observation.

Figure 1.7: Luminosity dropoff in Coma for different frequencies. High energy CRs stream
more quickly, so the higher frequency signals drop faster.
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1.5 Analytic Expressions

In certain limiting cases, the evolution of the CR population can be derived

analytically. These solutions serve two purposes: they serve as tests of our nu-

merical code, particularly the regularization scheme (§1.3.1), and they also give

physical insight into the behaviour of our solutions, and the circumstances under

which particular processes dominate.

In the absence of sources Q and ignoring the negligible Coulomb and hadronic

losses, we can write the CR transport equation (1.38) as:

Dfp

Dt
≈ ∂fp

∂t
≈ −∇ · F (1.78)

where the total CR flux F = Fadia + Fstr + Fturb, is made up of the fluxes due to

adiabatic losses in the wave frame, streaming relative to the wave frame, and tur-

bulent advection respectively. We have approximated the Lagrangian derivative

by the Eulerian derivative Dfp/Dt ≈ ∂fp/∂t, since vA · ∇fp is initially small and

becomes increasingly negligible as the profile flattens.

As we have seen, the CR profile generally develops a flat inner core within some

radius Rf , outside of which it declines. The flat core stems from the fact that

while ∇ · F increases inward12, an inverted CR profile cannot develop, since CRs

cannot stream up a gradient. Thus, a flat core develops, while its normalization

12This condition holds as long as F increases more slowly than r. In our case, the dominant
fluxes Fstream ∝ B3/2 ∝ ρ3αB/2 (equation (1.82)) clearly increases inward, and Fadia ∝ fvA is
at most flat or increases inward. Thus, |∇ · F| clearly increases inward.

67



and radius Rf evolves due to the net flux of CRs from its outer boundary. In

particular, if we set F = F r̂ and integrate equation (1.78) over the volume of the

flat region, we obtain:

4

3
πR3

f ḟp(Rf , p) = −4πR2F (Rf , p)

ḟp(Rf , p) = −3F (Rf , p)

R
(1.79)

where we have used the fact that ḟp(r, p, t) is independent of r for r < Rf , and

the divergence theorem. The evolution of the entire profile can then be described

by

ḟp(r, p, t) =


−3F (Rf ,p,t)

Rf (p,t)
, r < Rf (p, t)

−∇ · F(r, p, t), r > Rf (p, t)

(1.80)

where the “flatness front” Rf (p, t) is determined from fp(0, p, t) = fp(Rf , p, t), or:

fp(0, p, 0)−
∫ t

0

3F (Rf(p, t
′), p, t′)

Rf(p, t′)
dt′ = fp(Rf , p, 0)

−
∫ t

0

∇ · F(Rf(p, t
′), p, t′)dt′ (1.81)

As we have seen, Fstream and Fadia are the most important fluxes, while Fturb

is subdominant. Let us now consider the limiting cases when only one is at play.

Cosmic-Ray streaming only. We have:

Fstream =
ΓDB

2r̂

4π3p3mΩ0vA

= Fstreamr̂ (1.82)

68



Since Fstream is independent of fp and depends only on plasma parameters (specif-

ically, the B-field, turbulence and density profiles), in our model where the gas

properties are time-steady (and thus in hydrostatic and thermal equilibrium),

Fstream(r, p) is independent of time. Thus, A(r, p) ≡ ∇ · Fstream(r, p) is also time-

independent, and we have for r > Rf (p, t):

f(r, p, t) = f(r, p, 0)− A(r, p)t; r ≥ Rf (p, t) (1.83)

i.e., the distribution function outside the flatness front falls linearly with time.

More generally, we can solve for the flatness front Rf and the overall solution both

inside and outside Rf via equations (1.80) and (1.81).

To compare this analytic solution with our simulation we ran a simulation

for Perseus and for Coma where only the diffusion term was used in (1.38), and

all other terms ignored. The resulting CR densities for Perseus can be seen in

figure 1.8. In this plot we show the CR density versus time at 100 GeV at a

few select radii. The solid curves are the simulation, and the dotted lines are

the analytic solution for a non-flat profile. The match is essentially perfect -

the densities decrease at a constant rate (equation (1.83)) until the flatness front

catches up to each radius. After this point the densities follow the same single

curve corresponding to the evolution of the flat region. The same results for Coma

show the agreement in the regime when the profile is already flat. In figure 1.9,

the CR profile in Coma is nearly flat to begin with. Before very long the profile
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Figure 1.8: CR densities at 100 GeV for Perseus if only the flux from CR streaming Fstream

(equation (1.82)) is important. The dotted lines (bold curve) show the analytic solution for
outside (inside) the flat front respectively; the solution initially follows the dotted curves until
it intersects the green curve, when it follows the flat front solution. The solid lines show the

simulation results, which match the analytic solution almost perfectly.

is flat across the entire simulated space and the ḟp = −3Fcr(Rf)/Rf regime kicks

in. Again, the agreement between simulation and analytic solution is very good.

This implies that our regularization of the CR streaming term (which is needed

to prevent unphysical oscillations with such flat profiles) is not so strong that it

artificially changes the rate of diffusion.

Adiabatic expansion only. We have:

Fadia =
1

3
p
∂fp

∂p
vA (1.84)

Thus, unlike the preceding case, the flux depends on the distribution function fp

and hence is time-dependent. We can readily solve this in the approximation that

vA ∝ ραB−0.5 ∼ const (since it varies very weakly with radius), and fp ∝ p−α,
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Figure 1.9: The same as for Fig 1.8 but for Coma. Since the profile is already almost flat,
this is a test of the ḟp = −3Fcr(Rf)/Rf = constant regime.

Figure 1.10: CR densities for Perseus in the absence of any diffusion, i.e. only adiabatic
losses are used. The dotted line represents the analytic solution (1.85) and should be compared

to the blue line.

71



approximately independent of radius. Then, for r ≥ Rf, we have ḟ = ∇ · Fadia ≈

−2αvAfp/3r, or:

fp(r, p, t) ≈ fp(r, p, 0)exp

(
−2αvAt

3r

)
; r ≥ Rf (1.85)

Thus, outside the flatness front, the distribution function falls exponentially with

time, with e-folding time of order the Alfvén crossing time (which becomes long

at large radii). To solve for the evolution of the flatness front and the entire

profile, we insert equation (1.85) into equation (1.84) and hence equation (1.80)

and (1.81). Note that we are only required to evaluate the flux Fadia for r ≥ Rf ,

where equation (1.85) is valid. We compare this analytic expression with a Perseus

simulation that has no diffusion in Fig 1.10. The dashed line depicts (1.85) for

r = 100 kpc and p = 100. Although the fit isn’t perfect, the simulated values

do fall exponentially with time until the flatness front catches up, with e-folding

time comparable to that determined from (1.85). This is perhaps to be expected,

since (1.85) assumes that the quantity αfp does not vary significantly with radius,

which is not typically the case.

These solutions allow us to understand the nature of the numerical solutions we

previously obtained. Coma, where the initial profile is almost completely flat, is

obviously in the ḟp = −3F (Rmax)/Rf regime; moreover, Fstream(Rf )� Fadia(Rf),

since the latter scales with the (small) value of the distribution function at the

outer boundary. The evolution of the flatness front in Perseus is more interesting.
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Initially, even though vD − vA ∼ O(vA), adiabatic losses dominate, since the

distribution function falls exponentially with time (rather than linearly with time,

for streaming losses). However, Fadia ∝ f also falls exponentially with time, while

Fstream is independent of time. Thus, streaming losses will always dominate at late

times. Equivalently, the velocity associated with adiabatic losses, vA, is constant

with time, while the streaming velocity vD ∝ 1/fp increases with time: as the

number density of cosmic rays fall, the confining wave amplitude δB/B falls, and

cosmic rays can stream progressively faster.

1.6 Conclusions

Shocks generated during hierarchical structure formation are expected to ac-

celerate cosmic rays via diffusive shock acceleration. These cosmic rays in turn

interact hadronically with thermal nucleons to produce pions, which decay to pro-

duce relativistic electrons. Tracking these well-understood processes, and assum-

ing magnetic fields given by Faraday rotation measurements, leads to predictions

for radio halo emission consistent with those observed [81]. However, this model

predicts that every cluster hosts a bright radio halo. This is at odds with the

observed bimodality of cluster radio emission: the majority of clusters are radio-

quiet, and an order of magnitude fainter than the radio-loud population [44, 18].

Radio loudness is strongly associated with merger activity. For this reason, the
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turbulent re-acceleration model [23, 80], where this association occurs naturally, is

often favored. However, this still begs the question as to why hadronically induced

radio emission is not omnipresent. All of the associated physics is well understood,

and at face value the observations then require that CRp acceleration efficiencies

be reduced by an order of magnitude below canonical values13.

[36] took an important step forward when they suggested that CRp’s could

potentially stream super-Alfvénically, turning off radio halos. However, they as-

sumed streaming speeds of order the sound speed vD ∼ cs instead of calculating

it14, and posited steady-state CR profiles that represent equilibria between out-

ward streaming and inward turbulent advection, despite the long timescales for

equilibration. In this paper, we attempt to place CR streaming in clusters on

a more rigorous footing, by calculating the microphysical streaming speed as a

function of plasma parameters in the self-confinement picture [64, 58, 113, 105].

We then solve the time-dependent CR transport equation (albeit in 1D) to see

how the radio luminosity evolves with time. Our conclusions are as follows:

• CR streaming speeds depend on the source of wave damping. Non-linear

Landau damping (e.g., [43], as assumed in [36]) is too weak to sufficiently

inhibit wave growth, and vD ∼ vA. However, if waves are instead damped

13A bimodality in cluster B-fields, with larger values during the turbulent, radio-loud state,
appears inconsistent with cluster rotation-measure observations ([15], and references therein).

14In fact, given their assumptions, we find that cosmic rays should only stream Alfvénically.
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by turbulent shear [118, 42], they can be sufficiently suppressed that super-

Alfvénic streaming vD � vA is possible. Moreover, vD − vA ∝ γ/nCR(> γ),

(where γ is the CR Lorentz factor) so that: i) higher energy cosmic rays

stream more rapidly; ii) CR streaming speeds continually increase as nCR

declines due to streaming.

• Streaming relative to the Alfvén wave frame can be incorporated into the

CR transport equation via a diffusion term. For turbulent wave damping,

the diffusion coefficient κ ∝ 1/∇fp (where fp is the distribution function), so

that remarkably∇·(κ∇fp) is independent of∇fp. Thus, CRs can continue to

stream unabated in giant radio halos (such as Coma) despite their fairly flat

inferred CR profiles. Streaming is still sensitive to the sign of∇fp (since CRs

can only stream down a gradient), and for flat profiles we must implement

numerical regularization [102] to ensure stable solutions. We test our solver

for the CR distribution function against a code where CR mediated AGN

heating is solved in the fluid approximation [51]. The solutions are identical.

Note that CR heating is unaffected by super-Alfvénic streaming, since it

scales as vA · ∇Pc and Pc is dominated by ∼GeV CRs, where streaming is

Alfvénic.
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• CR transport is thus clearly modified by ICM turbulence. Besides its effects

on wave damping, turbulence can also advect CRs so that they roughly trace

the gas density profile, creating a centrally peaked CR distribution. For

the mildly subsonic vs ∼ vA ∼ 100 km s−1 turbulence we assume, outward

streaming dominates inward advection. Moreover, this trend increases with

the amplitude of turbulence. It is therefore consistent with the flat inferred

CR profiles in non cool-core clusters, which have generally stronger turbulent

motions. Such a trend is hard to understand in scenarios where turbulence

only draws CRs inward [36, 121].

• We then perform numerical time-dependent calculations of CR streaming,

assuming an initial profile consistent with radio observations at 1.4 GHz.

We find that the radio luminosity falls by an order of magnitude in several

hundred Myr, both in a prototypical radio mini-halo (Perseus) and giant

radio halo (Coma). The latter effect is particularly interesting in light of

the flat inferred CR profile, and arises only for turbulent damping of MHD

waves; if only non-linear Landau damping is at play, the turn-off is slow.

Indeed, the inferred flatness of the CR profile suggests that streaming has

already been at play in these systems. We also build an analytic model which

aids in physical understanding. Adiabatic losses dominate until the profile

flattens, when diffusive losses dominate. The turn-off timescale in the later
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stage is set by the lowest value of the CR flux F ∝ B3/2/LMHD, generally

at the cluster outskirts. The energy-dependence of CR streaming means

that spectral curvature develops, and radio halos turn off more slowly at

low frequencies, both consistent with observations [21, 20]. Streaming also

rapidly diminishes the γ-ray luminosities at the Eγ ∼ 0.3− 1 TeV energies

probed by imaging air Cerenkov telescopes (MAGIC, HESS, VERITAS),

but not for the lower energies Eγ ∼ 0.1 − 3 GeV probed by Fermi. The

latter is therefore a more robust probe of the CR injection history.

The primary contribution of this paper is a physical proof of principle for turn-

ing off hadronically induced emission. Our 1D streaming calculations by nature

omit important details best clarified by 3D MHD simulations. Chief amongst these

are the effects of magnetic topology. We have effectively assumed radial magnetic

fields in our 1D calculations. Of course, magnetic topology greatly influences the

true value of macroscopic transport coefficients. There is some evidence both

from observations [82] and cosmological MHD simulations [93] that outside the

core, magnetic fields are largely radial, driven either by cosmological infall, or the

magneto-thermal instability (MTI; [5, 78]). Alternatively, turbulence could fully

tangle magnetic fields [94, 95, 77]. CRs have to follow the same field lines that
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thermal particles do, albeit with a larger gyro radius15. As long as cross-field

diffusivity remains small, transport coefficients should scale similarly; in the limit

of a fully tangled field with a coherence length significantly larger than the gyro

radius, a random walk in 3D rather than 1D will reduce the diffusion coefficient

κp → κp/3, just as it reduces the Spitzer-Braginskii value for thermal conduc-

tivity by a factor of 3. This will effectively increase all quoted timescales in this

paper for pure streaming by a factor of ∼ 3. In the future, it would be interesting

to conduct fully self-consistent 3D MHD simulations which include CR stream-

ing, motivated and guided by the estimates here. We have also incorporated the

advective effects of gas motions only in the diffusive approximation. Coherent

bulk motions due to mergers or sloshing could potentially have stronger effects.

More light on the nature of ICM motions in radio-bright halos from Astro-H (e.g.,

[122, 101, 100]) will surely help. We are also agnostic as to the cause of radio halo

turn-on, which is clearly related to gas motions stimulated by mergers, and could

be due to turbulent reacceleration of seed CRe [23, 80], inward advection of CRs

from the cluster outskirts [36], or perhaps have separate mechanisms for different

classes of radio halos [121]. Such issues await clarification from low frequency

radio observations by LOFAR.

15Interestingly, 100 GeV CRs have a mean free path due to wave-particle interactions λCR ∼
(δB/B)−2rL ∼ 1−10 kpcB−1µGε100GeV([δB/B]/10−4)−2 which is similar to the electron collisional

mean free path λe ∼ 6 kpcT 2
4 keVni,−3.
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Chapter 2

Cosmic Ray Heating in the Warm

Ionized Medium
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2.1 Introduction

Observations of [S II]/Hα and [N II]/Hα line intensity ratios in the WIM

show a spatial variation with distance from the galactic midplane |z| - larger line

ratios are seen further from the disk (see [91], [52]). Such variation might be
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explained by variations in the ionization parameter U , the ratio of photon density

to gas density. However, this would not explain the additional observation that

the [S II]/[N II] ratio remains nearly constant with |z|. Under WIM conditions,

variations in U inevitably produces larger changes in Sulphur (which can be either

in the form of SII or SIII) compared to Nitrogen (which almost always appears as

NII), due to their different ionization potentials.

These observations may be explained by a spatial variation of the electron

temperature Te. An increase in Te with height above the disk could explain the

enhanced [S II]/Hα and [N II]/Hα ratios. Also, because [S II] and [N II] have

nearly the same excitation energy, the [S II]/[N II] ratio is nearly independent of

Te. So the near constant [S II]/[N II] ratio may also be explained this way.

But how can this variation in Te be explained? If only photoionization heat-

ing is important, then this increase in Te can potentially be accommodated by

hardening of the spectrum away from the disk mid-plane. However, a hard spec-

trum is inconsistent with HeI λ5876 observations [87, 88]. On the other hand, if

there were a secondary heating mechanism with a weaker dependence on electron

density than the n2
e dependence of photoionization heating, such heating would

dominate far from the disk, where densities are low, and we would see a variation

in Te that could explain the observed line ratio variations.
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Many such supplementary heating mechanisms have been proposed, such as

photoelectric heating from dust grains ([111]), magnetic reconnection ([89]), and

turbulent dissipation ([74]). We study here the possibility of cosmic ray heating.

The process was outlined by [114], but not applied to the WIM (which had not

been discovered at that time). If a cosmic ray population has a bulk velocity

faster than the local Alfvén speed vAi = B/
√

4πρi, magnetohydrodynamic Alfvén

waves are generated and exhibit unstable growth ([112], [58]). In a steady state,

these waves are damped by some other process(es), transferring energy to the gas.

In this way a cosmic ray density gradient can indirectly heat the plasma. We will

see that the resulting gas heating rate is proportional to n
−1/2
e , and is of the order

required to explain the necessary temperature variations. Note that this process

is quite different from collisional cosmic ray heating ([106]). A strength of this

mechanism is that the heating rate depends on only a few parameters which are

either observable or can be estimated. We first consider the nature of CR trapping

in the WIM in §2.2, before considering the CR heating rate and its local stability

properties in §2.3.

2.2 Alfvén Wave Equilibrium

For cosmic ray heating to be in place we must ensure that Alfvén waves are

present in the WIM with enough energy to scatter the cosmic rays. To do this
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we determine the wave damping, which in the WIM environment is due to ion-

neutral friction and non-linear Landau damping. We then balance this damping

with the cosmic-ray-induced wave growth to obtain an equilibrium condition. This

condition determines the power spectrum in the waves. We can then derive a mean

free path for the cosmic rays and determine if they are well-trapped. We could

also use the equilibrium damping rate to determine the heating of the gas, but as

we will see the heating rate depends only on the characteristics of the cosmic ray

population, provided they are well-trapped.

2.2.1 Ion-Neutral Damping in Nearly Ionized Gas

We follow Appendix C of [58]. These authors assumed the gas is nearly neutral;

we assume it is almost fully ionized. We begin with the force equations for the

neutral and charged components of the gas respectively. Assuming the transverse

velocities of each component are in the form of an oscillator vi = Aie
i(kz−ωt), we

have

ρnω
2vn = −iνniωρn(vn − vi) (2.1)

ρiω
2vi = ρiω

2
k − iνinωρi(vi − vn) (2.2)

These equations are essentially those of two coupled, damped oscillators, one

of which is driven with frequency ωk = kvAi, the natural Alfvén wave frequency.

The neutral-ion collisions are treated as a drag force parameterized by the collision
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frequency νni. The movement of the ions by the Alfvén waves is impeded by the

neutral particle population. This nudges the neutral component to follow behind

the oscillating ions, removing energy from the Alfvén waves to do so.

We can rearrange these equations into convenient matrix form by using νni/νin =

ρi/ρn:

(ω2 − ω2
k + iωνni)vi − iωνnivn = 0 (2.3)

−iωνinvi + (ω2 + iωνin)vn = 0 (2.4)

Setting the determinant of this matrix to zero gives us the dispersion relation

for ω.

ω3 + iνni(1 +
ρn
ρi

)ω2 − ω2
kω − iνniω2

k = 0 (2.5)

We can solve this perturbatively in the two limits ωk � νni, ωk � νni. Let us

further assume we are in the ε = ρn/ρi � 1 limit, to match the WIM1. Let’s first

consider the ωk � νni case. To leading order in ωk/νni we have

iνni(1 + ε)ω2
0 − iνniω2

k = 0 ⇒ ω0 = ωk
√

1 + ε (2.6)

The first order equation is

ω3
0 + 2iνni(1 + ε)ω0ω1 − ω2

kω0 = 0

⇒ ω3
kε
√

1 + ε+ 2iνni(1 + ε)ωk
√

1 + εω1 = 0 ⇒ ω1 = − iω
2
k

2νni

ε

1 + ε
(2.7)

1Note that our ε is the inverse of the one used in [58]
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So in this limit the waves are damped at a rate

Γin =
iω2

k

2νni

ε

1 + ε
(2.8)

In the short wave limit, ωk � νni, which is the relevant limit for CR-generated

waves, we have

ω3
0 − ω2

kω0 = 0⇒ ω0 = ωk (2.9)

3ω2
kω1 + iνni(1 + ε)ω2

k − ω2
kω1 − iνniω2

k = 0

⇒ 2ω2
kω1 + iνniεω

2
k = 0 ⇒ ω1 = −iνni

2
ε = −iνin

2
(2.10)

and so we have damping rate

Γin = −νin
2

(2.11)

Note that this is the same damping rate derived in [58], even though we are in

the opposite limit of a mostly ionized gas rather than a mostly neutral one.

The ion-neutral collision frequency is

νin =
mn

mi +mn

nn〈σv〉 =
1

2
nn〈σv〉 =

1

2
εni〈σv〉 (2.12)

Here nn is the density of the neutral component and 〈σv〉 is the average rate

of exchange of velocity per particle for ion-neutral collisions. For temperatures

around 104 K, we have 〈σv〉 ≈ 10−8 cm3 s−1 (see [61], [33]). We assume here that

hydrogen is the dominant neutral species; up to 10% of the hydrogen in the WIM is

thought to be neutral ([52]); He should be mostly neutral, but has a lower collision
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rate ([33]). So in the short-wave, almost completely ionized limit, the ion-neutral

damping rate is a function of only the density of the neutral component

Γin = −1

4
nn〈σv〉 = −1

4
εni〈σv〉. (2.13)

2.2.2 Non-Linear Landau Damping

In some circumstances, non-linear Landau damping may be comparable to

or dominate over ion-neutral damping. Non-linear Landau damping occurs when

ions ride along the envelope of a beat wave formed by two interfering Alfvén waves.

Ions whose random motions are slightly slower than the speed of this envelope will

take energy from the waves, damping them. Ions that are slightly faster will give

energy to the waves, but for a thermal distribution we expect there to be more of

the slower particles, and so the net effect is a wave damping. The strength of this

damping depends on the strength of the waves as ([59])

ΓNLLD = −
√
π

8
vik

(
δB

B

)2

k

(2.14)

Here, vi =
√
kBT/m is the thermal speed of the ions.

2.2.3 Cosmic Ray Instability

A cosmic ray traveling along a magnetic field line with speed v and pitch angle

cosine µ will interact with an Alfvén wave with parallel wave number kz under
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the resonance condition

kz =

√
1− µ2

µrL
=

Ω0

γvµ
(2.15)

Here, rL is the cosmic ray’s relativistic gyroradius, Ω0 = eB0/mc is its nonrela-

tivistic gyrofrequency, and γ is its Lorentz factor. In other words, a cosmic ray

and an Alfvén wave are resonant if the wave’s wavelength is roughly equal to the

distance the cosmic ray travels along the B-field in one gyration.

[112], [58] showed that a population of cosmic rays whose bulk velocity is faster

than the Alfvén speed will spur unstable growth in the waves. If we have such

a distribution of CRs f(x,p, t), the resulting growth rate can be written, in the

wave frame, ([105]):

Γgrowth(kz) =
π2m2Ω2

0vA
2kzB2

∫
d3p(1− µ2)v

∂f

∂µ

[
δ

(
µp− mΩ0

kz

)
+ δ

(
µp+

mΩ0

kz

)]
(2.16)

The above holds for Alfvén waves propagating nearly parallel to the background

magnetic field Bẑ. From here on we drop the z subscripts. The delta functions

encode the resonance condition for CRs travelling in both directions.

We can rewrite this expression in terms of the cosmic ray gradient along the

background magnetic field ∂f
∂z

. In the absence of any sources or sinks, the cosmic

ray transport equation is

∂f

∂t
+ µv

∂f

∂z
=

∂

∂µ

[
(1− µ2)

2
ν(µ)

∂f

∂µ

]
(2.17)
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The scattering frequency ν is related to the energy density E of resonant Alfvén

waves ([58]:

ν(µ) =
2π2Ω

B2
kE(k) =

π

4
Ω

(
δB

B

)2

, k =
1

|µ|rL
(2.18)

This collision frequency is expected to be very large compared to the cosmic ray

dynamical timescale (a condition we must check later for consistency), so we can

expand f in inverse powers of ν, f = f0 +f1 +f2 + .... To lowest order, eqn. (2.17)

becomes

0 =
∂

∂µ

[
(1− µ2)

2
ν(µ)

∂f0

∂µ

]
⇒ ∂f0

∂µ
= 0 (2.19)

To first order we have

µv
∂f0

∂z
=

∂

∂µ

[
(1− µ2)

2
ν(µ)

∂f1

∂µ

]
(2.20)

If we integrate both sides over µ,

∂f1

∂µ
= −v

ν

∂f0

∂z
(2.21)

We can now eliminate ∂f
∂µ

from eqn 2.16:

Γgrowth(k) = −π
2m2Ω2

0vA
2kB2

∫
d3p(1−µ2)

v2

ν

∂f

∂z

[
δ

(
µp− mΩ0

k

)
+ δ

(
µp+

mΩ0

k

)]
(2.22)

Plugging in equation (2.18) for ν we have

Γgrowth(k) = −2πm2Ω2
0vA

kΩ(δB)2
k

∫
d3p(1−µ2)v2∂f

∂z

[
δ

(
µp− mΩ0

k

)
+ δ

(
µp+

mΩ0

k

)]
= −2πmΩ0vA

k(δB)2
k

∫ ∞
0

2πp2dp

∫ 1

−1

dµ(1−µ2)pv
∂f

∂z

[
δ

(
µp− mΩ0

k

)
+ δ

(
µp+

mΩ0

k

)]
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Integrating the delta function over µ gives

Γgrowth(k) = −8π2mΩ0vA
k(δB)2

k

∫ ∞
pk

dpv
∂f

∂z
(p2 − p2

k) (2.23)

where we have denoted pk = mΩ0/k.

To make eqn. (2.23) look a bit simpler, let us rewrite the integral in terms of

a unitless factor of order unity A(k):

∫ ∞
pk

dpvf(p)(p2 − p2
k) ≡

1

4π
cnCRA(k)

A(k) =
1

nCR

∫ ∞
pk

dpβf(p)4π(p2 − p2
k), 0 ≤ A(k) ≤ 1 (2.24)

and let’s define a CR length scale by

−∂nCR

∂z
≡ nCR

LCR

(2.25)

The growth rate is then2

Γgrowth(k) =
2πmΩ0vAc

k(δB)2

nCR

LCR
A(k) (2.26)

Without specifying a cosmic ray distribution f we cannot say anything about

A(k). As an example, consider a power law in momentum, f(x, p, t) = C(x, t)p−α,

with some lower momentum cutoff pc and normalization:

nCR(x, t) =

∫ ∞
pc

4πp2f(x, p, t)dp =
4π

α− 3
Cp3−α

c

2In principle the quantity A(k) could vary in space, but we ignore this possibility here.
Alternatively we could adjust our definition of LCR to include this effect.
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⇒ f(x, p, t) = nCR(x, t)
α− 3

4πp3
c

(
p

pc

)−α
Θ(p− pc) (2.27)

Then by definition (2.24) we get

A(k) =
α− 3

4πp3
c

∫ ∞
pk

dpβ4π(p2 − p2
k)

(
p

pc

)−α
Θ(p− pc)

= (α− 3)

∫ ∞
max(xk,1)

dxβ(x2−α − x2
kx
−α), x ≡ p

pc
xk ≡

pk
pc

If we take the relativistic limit β ≈ 1 and denote max(xk, 1) = yk this becomes

A(k) = (α− 3)

[
− y3−α

k

3− α
+
x2
ky

1−α
k

1− α

]
= y1−α

k

[
y2
k −

α− 3

α− 1
x2
k

]
or

A(k) =


2

α−1

(
k
kc

)α−3

k < kc[
1− α−3

α−1

(
kc
k

)2
]

k > kc

(2.28)

where kc = mΩ0/pc is determined from the lower momentum cutoff of the spec-

trum.

2.2.4 Equilibrium Power Spectrum

Now that we have the total damping and growth rates of the Alfvén waves we

can enforce an equilibrium condition

Γgrowth + Γin + ΓNLLD = 0 (2.29)

Inserting our expressions (2.14), and (2.26) into eqn. (2.29),

2πmΩ0vAc

k(δB)2

nCR

LCR
A(k)− Γin −

√
π

8
vik

(
δB

B

)2

k

= 0
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or, rearranging terms,

√
π

8
vik

2X 2 + ΓinkX −
2πmΩ0vAc

B2

nCR

LCR
A(k) = 0, X ≡

(
δB

B

)2

k

We solve analytically for X

(
δB

B

)2

k

=

√
2

π

Γin
kvi

[−1 +
√

1 +R], R ≡
√
π

2

c

vA

ri
LCR

nCR
ni

Ω2
0

Γ2
in

A(k), (2.30)

where ri ≡ vi/Ω0 is the thermal ion gyroradius.

It is informative to determine the relative importance of each damping mecha-

nism. We can do this by looking at the quantity R. If R is small, the linear term

(ion-neutral damping) dominates and

(
δB

B

)2

k

≈ 1

2

c

vA

nCR
ni

Ω0A(k)

kLCRΓin
, R � 1. (2.31)

while if R is large, non-linear Landau damping dominates, and

(
δB

B

)2

k

≈

(√
2

π

c

vA

nCR
ni

A(k)

k2riLCR

)1/2

, R � 1. (2.32)

The transition between these two limiting cases occurs at R = 1, or

A(k) ≈ 2.8× 10−4

(
vi

106 cm/s

)−1 ( ni
.01 cm−3

)5/2 ( nCR

10−9 cm−3

)−1
(
LCR

kpc

)( ε

.05

)2

(2.33)

where we have used eqn. (2.13) and taken 〈σv〉 = 10−8 cm3 s−1. We introduce

here a set of convenient fiducial values that we will use throughout this paper.

For the power law spectrum with α = 4.7 this gives us a transition wave number
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k∗ of

k∗ ≈ .012kc = .012
eB

pcc
= 3.6× 10−15 cm−1

(
B

µG

)( pcc

GeV

)−1

(2.34)

at the fiducial values in (2.33)3. For k � k∗, ion-neutral damping dominates and

the wave power is given by (2.31). For k � k∗, non-linear Landau damping is

dominant and the wave power is (2.32).

We are now in a position to check whether the cosmic rays are self-trapped,

i.e. whether their mean free path to scattering by self generated turbulence is

small compared to their scale height. This is a necessary condition for applying

the heating theory derived in §§2.2.5 and 2.3. The mean free path λ is related to

the scattering frequency given in eqn. (2.18) by

λ =
v

ν
. (2.35)

Using eqns. (2.18) and (2.30) in eqn. (2.35) yields a relatively compact expression

for λ

λ =

√
8

π

vi
Γin

(
−1 +

√
1 +R

)−1

. (2.36)

The mean free path in pc given by eqn. (2.36) is plotted as a function of p in units

of the cutoff momentum pc in Figure 2.1. The figure spans the transition from

Landau damping dominated at low momentum to ion-neutral friction dominated

3We note here that the value of k∗ depends heavily on these quantities, particularly the
gas density ni. In fact, for some values there is no region of k-space where non-linear Landau
damping dominates.
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Figure 2.1: Cosmic ray mean free path to scattering by self generated turbulence, calculated
from eqn. (2.36) with the parameters set equal to the fiducial values. The mean free path is

given in pc and the cosmic ray momentum is given in terms of the cutoff momentum pc.

at high momentum. It appears from Figure 2.1 that cosmic rays of energy even

several hundred times the cutoff energy are quite well trapped (λ ∼ several pc).

Most of the cosmic ray energy lies in the trans-relativistic ∼GeV regime. In the

ISM, the spectra turns over at pc ∼ 10 MeV due to Coulomb cooling. Thus, the

regime of interest is p/pc ∼ 100. At the upper end of the trapped range, where

eqn. (2.31) holds, eqn. (2.36) can be written in the form

λ

LCR
≈ 8

π

Γin
Ω0

vA
c

ni
nCRA(k)

→ 4.0× 10−7

(
p

pc

)1.7

, (2.37)

where in the last expression we have used eqn. (2.28) and set all parameters to

their fiducial values.

Figure 2.1 can also be used to check that the waves are small amplitude and

well described by linear theory. From eqns. (2.18) and (2.35) was can see that

93



(δB/B)2
k ∼ rL/λ. Cosmic rays of energy a few hundred GeV and less have gyro-

radii of order 10s of AU or less, showing that δB/B � 1 even at low momenta

where the mean free path is short.

2.2.5 Heating Rate

We can now determine the heating rate of the WIM due to the dissipation of

Alfvén waves created by cosmic ray streaming. To do this we want to integrate

the time-derivative of E(k) = δB2
k/8πk over all wave numbers k. We know that

the time-dependence of δB in an Alfvén wave is

δB ∝ e−iωt (2.38)

ω = ωR + iΓdamp

and so

E(k) =
δB2

k

8πk
∝ e2Γdampt ⇒ ∂E(k)

∂t
= 2ΓdampE(k) (2.39)

(note that Γdamp < 0).

Let us remove the assumption of a power law spectrum and a relativistic

limit and go back to any general distribution f(x, p, t). Let us also remove any

assumptions about damping mechanisms, and only assume we have equilibrium

for the Alfvén waves. Then from equation (2.26) and Γgrowth = Γdamp,

H =

∫ ∞
0

dk2Γdamp(k)
δB2

k

8πk
=

∫ ∞
0

dkΓdamp(k)
mΩ0vAc

2Γdamp(k)k2

nCR

LCR
A(k) (2.40)
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H = −
∫ ∞

0

dk
mΩ0vAc

2k2

∂

∂z

[∫ ∞
pk

dpβf(p)4π(p2 − p2
k)

]
(2.41)

In the last step we have rewritten A(k) and LCR in terms of their original defi-

nitions (2.24) and (2.25). We reformulate this double integral with a change of

variable from k to pk, dpk = −mΩ0/k
2dk. Let us also write vA = vAn such that

H = −1

2
vA · ∇

[∫ ∞
0

dpk

∫ ∞
pk

dp4πf(p)v(p)(p2 − p2
k)

]
(2.42)

Finally, let’s exchange the order of the integrals by recognizing that the double

integral is over all (p, pk) under the constraint 0 ≤ pk ≤ p.

H = −1

2
vA · ∇

[∫ ∞
0

dp

∫ p

0

dpk4πf(p)v(p)(p2 − p2
k)

]

H = −1

2
vA · ∇

[∫ ∞
0

dp4πp3f(p)v(p)− 1

3

∫ ∞
0

dp4πp3f(p)v(p)

]
(2.43)

These integrals are now very simple - they correspond to the total cosmic ray

pressure

PCR =
1

3

∫ ∞
0

dp4πp2f(p)v(p) (2.44)

We therefore obtain the very simple expression for the cosmic ray heating:

H = −vA · ∇PCR (2.45)

in agreement with [114].

The heating rate is simply the cosmic ray pressure gradient times the Alfvén

speed. Even without the above calculation we know this must be the solution,
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since we require an equilibrium for the waves and (2.45) is always the rate at which

cosmic rays give energy to the Alfvén waves regardless of damping ([70]). So, as

hinted at in section 2.2, we require only that the Alfvén waves are in equilibrium

and the cosmic rays are well-trapped to know that the cosmic ray heating is (2.45).

2.3 Application to our Galaxy

2.3.1 Observations

Let us carry through the dependence of vA on the magnetic field and ion

density, and pick some representative values. To write the cosmic ray pressure

in terms of the energy density, we use PCR = 0.45ECR from [47]. Then we can

estimate the heating rate in the WIM:

H ≈ 5.2× 10−28 erg

cm3 s

ECR

eVcm−3

B

µG

(
L

kpc

)−1 ( ni
10−2 cm−3

)−1/2

(2.46)

If we assume the cosmic ray energy density and magnetic energy density fall off

with the same scale height L, we can determine the dependence of this heating

rate on height z from the galactic plane

B(z) = B0e
−|z|/2L, ECR(z) = ECR,0e

−|z|/L (2.47)

H(z) ≈ 5.2×10−28 erg

cm3 s

ECR,0

eVcm−3

B0

µG

(
L

kpc

)−1 ( ni
10−2 cm−3

)−1/2

e−3|z|/2L (2.48)
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Let’s compare this to the heating that would be necessary to explain the

inferred temperature profile T (z). Following the prescription in [91] we find T (z)

in our model by solving a heating-cooling balance equation

G0n
2
e +G3n

−1/2
e = Λn2

e (2.49)

where each term represents, from left to right, photoionization heating, cosmic

ray heating, and the cooling rate. The temperature dependence of the electron

density ne, the cooling function Λ, and the photoionization heating G0 are

ne(|z|) = 0.125T 0.45
4 f−0.5e−|z|/1kpc cm−3 (2.50)

Λ = 3.0× 10−24T 1.9
4 erg cm3 s−1 (2.51)

G0 = 1.2× 10−24T−0.8
4 erg cm3 s−1 (2.52)

T4 denotes the temperature in units of 104 K, and f is a filling fraction describing

the amount of ionized Hydrogen, which we will set to f(z) = Min[0.1e|z|/750pc, 1].

Note that our assumptions imply that ∇Pc < ρg at all z, and is consistent with

hydrostatic balance.

We then solve eqn 2.49 to obtain the model profile T (z) and compare it to the

profile infered from line ratio observations. We adjust G3 to fit the model curve

to the data, and we find, for L = 2 kpc:

G3,fit ≈ 1.2× 10−27 erg

cm9/2 s
e−3|z|/4000 pc (2.53)
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Figure 2.2: Temperature versus height for the WIM. The black line is derived from
observations of line ratios in the Perseus spiral arm. The blue points show the fit solution using
the above parameters. The red points show the profile using parameters based on observations.

⇒ Hfit = G3,fitn
−1/2
e = 1.2× 10−26 erg

cm3 s

( ni
10−2 cm−3

)−1/2

e−3|z|/4000 pc (2.54)

See figure 2.2 (blue points) for this fit.

Comparing this to equation (2.48) with LCR = 2 kpc, we see that cosmic ray

heating is sufficient to explain the observed line ratios if the magnetic field and

CR energy density normalizations are high enough:

ECR,0

eVcm−3

B0

µG
≈ 46 (2.55)

Is this the case? The magnetic field and CR energy density in the solar neigh-

borhood are about B0 = 5 µG and ECR,0 = 1.8 ev cm−3 ([47]). [11] showed that

synchrotron emissivity in the galactic spiral arms is about 4 times greater than in

the interarm regions. Synchrotron emissivity depends on the field and CR density
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as ([83])

jν ∝ ECRB
α/2+1 ∝ Bα/2+3 (2.56)

for a power law CR density. We utilize our equipartition assumption in the last

step. A spiral-arm enhancement of jν by a factor of 4 therefore implies the B-field

increases by a factor of about 1.4 and the CR density increases by about 1.9 (for

α = 4.7). We might then expect the product of the B-field and the CR density

in the Perseus arm to be about

ECR,0B0 ≈ (1.8 eV cm−3)(5 µG) ∗ 1.4 ∗ 1.9 ≈ 24 µG eV cm−3 (2.57)

This falls short of the requirement from equation (2.55) but still comes close to

reproducing the inferred temperature profile, as shown in the red points in figure

2.2. We also have not incorporated the orientation of the magnetic field. We

have assumed a vertical field, but the actual field in the WIM may be much more

random. This might be accounted for with an effective efficiency parameter.

One complication these estimates do not fully take into account is the multi-

phase nature of the ISM: the WIM has a low (∼ 20%) filling factor, and above the

disk is interspersed with hot diffuse coronal gas. This can cause local variations in

Alfven speed, and thus cosmic ray pressure. As long as B increases more slowly

than n
1/2
e (note that in the cooler diffuse ISM sampled by HI lines, B as measured

by Zeeman splitting does not scale with density [32]), vA will be reduced in the

WIM relative to coronal gas, and thus Pc is higher. Thus, the relevant length scale
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for cosmic ray pressure gradients could be the cloud size, rather than the global

scale height we have adopted; this leads to larger heating rates4. On the other

hand, if clouds are sufficiently small (Lcloud ∼< λ ∼ 10pc), then the CRs smooth

over these inhomogeneities and the global gradients are appropriate. Hα observa-

tions and photoionization modeling indicate that the WIM is likely to have both

a smooth and a clumpy component which fluctuates on a wide range of length

scales, but there is no consensus picture [52]. We regard these issues as beyond the

scope of this paper, but such considerations are illustrative of possible variations

in the cosmic rate heating rate.

2.3.2 Stability

We must check that the heating from the cosmic ray pressure gradient is stable

under perturbations. If the heating increases compared to the cooling for a small

element of gas perturbed to a higher temperature, the heating is unstable and we

would get thermal runaway. To determine if this is the case, we need the change

in the heating rate for a given perturbation.

δ(Λn2 −H) = δ(L0n
2T 1.9 −H0n

2T−0.8 −H3BECRn
−1/2) (2.58)

4It also implies most heating occurs when the cosmic rays exit the cloud, when vA ·∇Pc < 0.
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In terms of perturbed quantities this becomes

= L0n
2T 2

(
2
δn

n
+ 1.9

δT

T

)
−H0n

2T−0.8

(
2
δn

n
− 0.8

δT

T

)
−H3BECRn

−1/2

(
δB

B
+
δECR

ECR

− 1

2

δn

n

)
(2.59)

Making use of the fact that the initial state was in thermal equilibrium, L0n
2T 2 =

H0n
2T−0.8 +H3BECRn

−1/2, we can write this most generally as

δ(Λn2 −H) =
δT

T

[
1.9L0n

2T 1.9 + 0.8H0n
2T−0.8

]
+
δn

n

[
2L0n

2T 1.9 − 2H0n
2T−0.8 − 1

2
H3BECRn

−1/2

]
−H3BECRn

−1/2

(
δB

B
+
δECR

ECR

)
=
δT

T

[
1.9L0n

2T 1.9 + 0.8H0n
2T−0.8

]
−H3BECRn

−1/2

(
3

2

δn

n
+
δB

B
+
δECR

ECR

)
(2.60)

Without specifying the perturbation this is as far as we can go. Once we relate

the perturbed quantities with δT , we can determine whether the heating is stable

or unstable.

Let us consider an isobaric perturbation perpendicular to the magnetic field

lines. The total pressure remains constant

Ptot = Pg + PB + PCR = const. (2.61)

The above terms represent the gas pressure, magnetic pressure, and CR pressure

respectively. The field lines are compressed along with the gas, so

δB

B
=
δn

n
(2.62)
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Let us further assume that the cosmic rays respond adiabatically:

δECR

ECR

=
δPCR

PCR

= γCR
δn

n
(2.63)

Then we can use the constant pressure condition to relate δn and δT . From

Pg ∝ nT and PB ∝ B2 we get

δPtot = δPg + δPB + δPCR = 0

Pg

(
δn

n
+
δT

T

)
+ 2PB

δB

B
+ γCRPCR

δn

n
= 0

δn

n
= − Pg

Pg + 2PB + γCRPCR

δT

T
(2.64)

Putting this all together into equation (2.60) gives

δ(Λn2 −H) =
δT

T

[
1.9L0n

2T 1.9 + 0.8H0n
2T−0.8−

H3BECRn
−1/2

(
3

2
− γCR

)(
Pg

Pg + 2PB + γCRPCR

)]
(2.65)

If the term in the brackets is positive, a small increase in temperature causes

the change in cooling to outweigh the change in heating and the perturbation is

stable. If the term in brackets is negative, it is unstable. But note that both

parenthesised factors in the third term must each be less than one. Also, by the

thermal equilibrium condition, H3BECRn
−1/2 must be less than L0n

2T 1.9. The

first term must therefore be of higher magnitude than the third term, and so the

expression in the brackets is positive and the heating is stable.
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This is perhaps easier seen if we denote the total cooling by C, and the fraction

of the total heating due to photoelectric heating by 0 ≤ x ≤ 1. Then,

δ(Λn2 −H) = C
δT

T

[
1.9 + 0.8x− (1− x)

(
3

2
− γCR

)(
Pg

Pg + 2PB + γCRPCR

)]
(2.66)

Now let us consider an acoustic perturbation. Equations (2.60),(2.62),and

(2.63) still hold. Pressure is no longer fixed, but the gas responds almost adiabat-

ically. As such

Pg
ργg

= const.→ δ

(
Pg
ργg

)
= 0 (2.67)

⇒ Pg
ργg

(
δPg
Pg
− γg

δρ

ρ

)
=
Pg
ργg

(
δT

T
+ (1− γg)

δn

n

)
= 0⇒ δn

n
=

1

γg − 1

δT

T

(2.68)

We therefore have

δ(Λn2 −H) =
δT

T

[
1.9L0n

2T 1.9 + 0.8H0n
2T−0.8 −H3BECRn

−1/2 3/2− γCR

γg − 1

]
(2.69)

or, in terms of C and x,

δ(Λn2 −H) = C
δT

T

[
1.9 + 0.8x− (1− x)

3/2− γCR

γg − 1

]
(2.70)

By a similar argument as before, this is also stable.
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2.4 Summary and Conclusions

The gaseous disk of the Milky Way has a warm ionized component (WIM)

with scale height several times that of the predominantly neutral component. The

magnetic field and cosmic ray components have similar thickness. Thick layers of

warm ionized gas, and extended nonthermal emission, are seen in other galaxies

as well [52].

It is widely accepted that starlight photoionizes and heats the WIM. Neverthe-

less, there is evidence for a supplemental heating mechanism. Detailed reconstruc-

tion of the WIM vertical temperature profile in the region of the Perseus spiral

arm shows an increase in temperature with height that cannot be explained by ra-

diative heating alone ([91]). These authors showed that these observations can be

explained by an additional heating mechanism with a weaker density dependence

than the n2 dependence of radiative heating. Heating by magnetic reconnection

([89]), dissipation of turbulence ([74]), and photoelectric heating by dust ([111])

have all been invoked. All three are feasible on energetic grounds, but the rates

of the first two, in particular, depend on many unknown factors and are quite

uncertain.

In this paper, we estimated the heating rate due to dissipation of waves excited

by streaming cosmic rays. When the cosmic rays are well scattered by this self-

generated turbulence, the heating rate depends only on the cosmic ray pressure
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gradient projected along the local magnetic field direction and the magnitude of

the Alfvén speed (eqn. 2.45). Cosmic ray heating of the interstellar medium

was discussed in general in [114] and is included in models of supernova driven

shock waves ([108]), cosmic ray driven galactic winds ([16], [41]), and diffuse

interstellar clouds ([40]) but up to now does not appear to have been considered

for the WIM. In §2 we showed that when wave excitation by streaming is balanced

against nonlinear Landau damping and ion-neutral friction, the resulting wave

amplitude, while small enough to allow treating the waves in the small amplitude

approximation, is large enough to scatter the majority of cosmic rays many times

over one pressure scale height (Figure 1). This justifies the frequent scattering

limit we used in §2.3.1 to estimate the cosmic ray heating rate for the WIM

(eqns 2.46 and 2.48) and show that adding it to the thermal equilibrium model

of the WIM for Perseus Arm conditions produces a reasonably good fit to the

observations (Figure 2). Although the heating rate coefficient is about a factor

of 2 too small (eqn. 2.57), the height dependence - which follows from the height

dependence of the magnetic field, gas density, and cosmic ray pressure - leads to a

temperature vs height relation of the correct shape. We regard this, and matching

the inferred size of the supplemental heating rate to within a factor of two - as

confirmation that cosmic ray heating is a viable supplementary heat source for the
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WIM. Cosmic ray heating also seems to be a thermally stable mechanism (2.3.2),

at least under the assumptions we considered.

The results in this paper should be generally applicable to warm ionized gas in

other galaxies. In cases where synchrotron emission is detected or other estimates

of the cosmic ray and magnetic field energy densities are available, it should be

possible to estimate the magnitude of cosmic ray heating. It is important that the

gas be diffuse and that the ionization fraction be high; in weakly ionized clouds,

for example, ion-neutral friction is so strong that the cosmic rays are not well

coupled to the medium ([40]). And, as long as the cosmic rays are well scattered,

their pressure gradient along the ambient magnetic field exerts a force which may

be important in determining the scale height of the gas and in driving an outflow

even when the thermal speed of the gas is well below what is needed for escape.
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Chapter 3

Interaction of Cosmic Rays

Incident on Cold Clouds in

Galactic Halos

3.1 Introduction

The interaction of CRs with ionized plasma has long been studied ([58]; [105]).

CRs scatter off of magnetohydrodynamic (MHD) waves traveling in the plasma,

and can indirectly heat or push on the plasma via these waves. A CR population

with a strong enough density gradient can serve as a substantial source of thermal

heating [117]. This may occur if there is a spatially-varying MHD wave speed,
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such as may occur at the interface of a cold cloud in the plasma. In some cases the

resulting CR wave heating can alter this interface, possibly affecting observable

ionic abundances. The CR pressure gradient may also impart significant momen-

tum to cold clouds, accelerating them to escape speeds. Our goal in this paper is

to quantify these effects.

First, we present here a qualitative explanation of CR-plasma interaction.

Consider a gas with density ρg threaded with a magnetic field of strength B.

CRs travel through the gas in helical paths along magnetic field lines. The angle

between an individual CR and the background magnetic field is called the pitch

angle. A well-known instability called the streaming instability will give rise to

MHD Alfvén waves if the bulk CR streaming velocity is greater than the local

Alfvén wave speed vA = B/
√

4πρg. These waves then scatter the CRs in pitch

angle until they are isotropic in the wave frame and the instability is shut off.

Therefore in the absence of significant wave damping, CRs cannot stream faster

than vA. The CRs are said to be locked to the wave frame.

However, in the absence of an external source of waves, the CRs can stream

slower than vA, and in fact they will if the right conditions are met. Namely, if

we have a region of plasma with a spatially-varying Alfvén speed, and there is

a point where the Alfvén speed is a minimum, then in the steady-state all CRs

upstream of this point will be forced to stream at this minimum vA. If they were
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to stream any faster, this would result in CRs streaming up their density gradient.

This cannot happen without external waves to impart energy to the CRs. This

bottleneck effect has important implications for CRs in galaxies that have cool

clouds.

This paper examines the dynamic effects of CRs on cold clouds on two separate

length scales - the large scale pushing of the cloud by the CR pressure gradient,

and the much smaller scale thickening of the thermally conducting interface by

CR wave heating. We use simple 1D simulations to study the first effect, and

derive simple 1D steady-state models to study the second.

In §3.4.1 we introduce the evolution equations for CRs and for the thermal gas

that will be relevant in our models. §3.3 describes the time-dependent simulations

that simulate the pushing action, while §3.4 explains the steady-state models for

the cloud interface thickened by CR heating.

3.2 Evolution Equations

3.2.1 CR Dynamics

In the fluid approximation, the bulk properties of the CR population are gov-

erned by the CR transport equation

∂Pc
∂t

= (γc − 1)(u + vA) · ∇Pc −∇ · Fc +Q, (3.1)
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Fc = γcPc(u + vA)− nκc(n · ∇Pc).

Here, Pc is the CR pressure, γc = 4/3 is the adiabatic index of the CRs (assumed

to be relativistic), u and vA are the local gas and Alfvén velocities respectively,

and Q contains any CR sources and sinks. Fc represents a kind of CR energy flux,

and the CR diffusion coefficient κc quantifies the movement of the CRs relative

to the wave frame.

Consider a simple case where we have no sources or sinks, and no CR diffusion.

That is, the CRs are locked to the wave frame everywhere. Let’s also assume the

bulk gas motion is negligible, so u = 0. Then (3.1) reduces to

∂Pc
∂t

= −vA · ∇Pc − γcPc∇ · vA. (3.2)

If we further consider a one-dimensional, plane-symmetric system, this becomes

∂Pc
∂t

= −vA
dPc
dz
− γcPc

dvA
dz

. (3.3)

This has a steady-state solution:

0 = −vA
dPc
dz
− γcPc

dvA
dz

dPc
Pc

= −γc
dvA
vA

Pcv
γc
A = constant. (3.4)

We caution that this solution assumes that waves are present regardless of the

spatial variation of Pc. If there is some external source of Alfvén waves that is
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driving the CR population in one coherent direction through the plasma, then

(3.4) is valid as written. Note that you can have CRs streaming up their own

gradient in this case, but this is okay since the CRs are being driven by the

external wave source.

If no such source exists, and only CR gradients produce Alfvén waves, then

we must take care when using (3.4). This is because the direction of vA must

now always point down the CR gradient. As such Pc and vA are not entirely

independent. Note that (3.4) is perfectly fine so long as the solution is monotonic.

Problems arise when there is a minimum in |vA| = B/
√

4πρg. Then the solution

to (3.4) may have vA pointing up the CR gradient, which is a contradiction.

What happens in this case? Suppose CRs are all moving together in one

direction, say to the right, at a speed |vA| which varies in space. At some critical

point in this flow there is a local minimum in |vA|. As the CRs approach this

minimum, their flow speed is decreasing, and so Pc is increasing as we move to

the right. But this means the gradient of Pc now points to the left – the CR

flow changes direction. Now there is an increasing flow speed to the left, so Pc

at the critical point begins to fall. The equilibrium state is one where all of the

CRs to the left of the critical point are moving to the right with equal speed, and

equal Pc. Their speed is that of |vA| at the critical point and no Alfvén waves are

present. To the right of the critical point, where |vA| is increasing towards the
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right, there is a gradient in Pc, Alfvén waves are generated, and (3.4) holds. The

situation is analogous to a traffic jam – drivers are stuck moving slower than they

normally would because there are other cars ahead of it that are in the way.

Why exactly does (3.4) fail? The reason is that (3.4) assumes there are Alfvén

waves present everywhere. For any monotonic solution this assumption holds.

But for any solution where the gradient of Pc vanishes anywhere, this assumption

is contradicted. The true solution is as described above. In the region upstream of

the critical point, where Pc is flat, there simply are no Alfvén waves since there is

no CR gradient to drive them. Note that although the CRs aren’t flowing at the

local value of |vA| = B/
√

4πρg, there is no diffusion. Diffusion describes drift of

the CR population relative to the local wave frame. In the absence of any waves,

“diffusion” has no real meaning.

3.2.2 Gas Dynamics

The typical evolution equations for a thermal gas are determined from mass,

momentum, and energy conservation. In one dimension they are:

∂ρ

∂t
+
∂(ρu)

∂z
= 0 (3.5)

∂(ρu)

∂t
+

∂

∂z
(ρu2 + Pg + Pc) = 0 (3.6)

∂Eg
∂t

+
∂

∂z

[
(Eg + Pg)u− κg

∂T

∂z

]
= −ρL − vA

∂Pc
∂z

(3.7)
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In the above, ρ and u are the gas density and velocity, Pg and Eg are the gas

thermal pressure and gas total energy density Eg = Pg/(γg − 1) + 1/2ρv2, and

κg is the thermal conduction coefficient. Pc represents the CR pressure, and ρL

represents the net cooling function. Note that the effect of CRs is contained in

a pressure gradient term in the momentum equation and a heating term in the

energy equation. The heating rate due to CR pressure gradients is derived in

[117].

Our time-dependent simulations use various simplifications of the above set of

equations. Our simplest test cases do not evolve the gas at all. For computational

reasons we ignore thermal conduction and radiative losses in our other simulations,

κg = 0, ρL = 0 (see §3.3.4 for further details).

3.3 Hydrodynamic Simulation

We use a 1D version of the MHD simulation code ZEUS3D, adapted to include

cosmic ray dynamics. Equation (3.1) is integrated in time using a finite-difference

method on a fixed spatial grid. In this simulation we do not keep track of any

momentum-dependent quantities – only Pc is evolved.

To account for the bottleneck effect discussed in §3.2.1, we must account for

direction when calculating Alfvén velocities. The most straightforward way to do
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this is to define the wave velocity in each grid cell to be

vA = − B√
4πρg

sgn

(
dPc
dz

)
. (3.8)

But this lends itself to numerical instability – spatial oscillations will develop as

CRs slosh back and forth between adjacent grid cells. We use a graceful solution

introduced by [103], where we use a hyberbolic tangent as a smooth version of the

sign function. That is, we define the wave velocity as

vA = − B√
4πρg

Tanh

(
dPc/dz

ε

)
. (3.9)

for some scale value ε. The simulation is then stable to numerical oscillations

provided we use the accompanying time-step restriction

∆t ≤ ∆x2ε/2Pc|v| (3.10)

at every local extremum of Pc. For |v| we use a fixed value of 4.0 × 107 cm/s,

which we expect to be greater than |vA| anywhere in the simulated region at any

time.

3.3.1 Simple Case 1

We first test to see if the code will reach an equilibrium in the presence of a

localized CR source. To do this we set up a slightly sloped gas density profile and

a CR source one end. Reflecting boundary conditions are used at the location
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Figure 3.1: A simple test case. A CR source is placed at the far left. Left: CR energy density
Ucr. Right: The quantity Ucrv

γc
A . In equilibrium, this quantity is nearly constant, as expected

from the solution (3.4).

of the CR source, and outflow conditions are used at the other boundary. We

set a magnetic field of 3 µG throughout. There is no gravitational field and no

wave damping. The gas temperature is set such that the initial configuration is

in pressure equilibrium. The properties of the gas are held fixed – CR pressure

feedback and wave heating are turned off. The only purpose of this simulation is

ensure that we obtain an equilibrium in a region of strictly increasing |vA|. This

simulation very quickly reaches an equilibrium CR profile (see figure 3.1, left plot).

We can also see that in this case, which has no local minima in |vA| and hence

no bottleneck effect, the solution (3.4) is correct. The right plot of figure 3.1 shows

how, away from the CR source, Pcv
γc
A is constant to within 2% once equilibrium

is reached.
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3.3.2 Simple Case 2

Let us now set up a system with a warm cloud, but not yet allow the gas

to evolve. This will test if the code handles the bottleneck effect correctly. The

density of the cloud edge is described by a Tanh function, as in [40], with a

smoothing scale of 25 pc. The scale is chosen to be large to avoid a need for high

spatial resolution for this test. The hot medium outside the cloud has temperature

106 K and density 10−3 cm−3. The inside of the cloud is at 105 K with 10−2 cm−3.

We again have a 3 µG field throughout.

As before we use reflecting boundary conditions at the location of the CR

source and outflow conditions at the other end. There is also a slight gradient

in the gas density (with corresponding gradient in temperature to ensure equal

gas pressure everywhere) so that the Alfvén speed is not spatially uniform at the

boundary. We find that when the Alfvén speed is uniform, the CR profile becomes

flat, and when the CR profile is flat at the boundary, the smoothing scheme (3.9)

prevents CRs from leaving the domain.

This effect can be seen in figures 3.2 and 3.3. Figure 3.2 shows the CR profile

for the simulation with the slight gas density gradient plus cloud. The Alfvén

speed is a minimum at the center of the cloud, so there is a bottleneck there. The

CR profile quickly reaches an equilibrium. Figure 3.3 shows the CR profile for the

same simulation without the slight gas density gradient. The CR profile reaches
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Figure 3.2: A simple test case. A CR source is placed at the far left, with a warm cloud a
short distance away.

a state similar to that in 3.2, but since CRs cannot exit through the boundary

they slowly build up in the region behind the cloud.

3.3.3 Simple Case 3

For the next simple test we use the same cloud setup as in test 2, but with a

“cool” cloud temperature and density of 104 K and 10−1 cm−3. Additionally, we

turn on the effects of CR pressure and wave heating on the gas. Other effects such

as thermal conduction and cooling mechanisms are not considered here. The result

is a rapid (∼ 100 Myr) destruction of the cloud followed by a slow deterioration

of what remains afterward. This is shown in the two density plots in figure 3.4.

This simulation also exhibits some interesting properties. Figure 3.5 shows

the different pressures at different times. The dotted lines at the bottom display
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Figure 3.3: A simple test case. The setup is the same as figure 3.2, but the gas density is flat
at the boundary.

the CR pressure, the dashed lines above them are the gas pressure, and the solid

lines are the total (CR + gas) pressure. We can see a sound wave propagating

outward – this is created by the impact of the first source-produced CRs on the

rear edge of the cloud. This wave initially caused some issues since, despite the

outflow conditions at the outer boundary, it would bounce back and interfere with

the simulation. To avoid this we simply place the outer boundary far away from

the cloud, using a non-uniform spatial grid. The test case shown here uses a grid

that spans about 40 kpc, with 200 cells. The width of each cell is larger than

the one preceding it by a constant factor, in this case 1.022. This results in grid

widths of about 12 pc on the left end, increasing to 900 pc at the right end.

There is also a small feature leading the sound wave. This is a “streaming

front,” which traces the position of the first source-emitted CRs as they stream
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Figure 3.4: Evolution of the gas density from an initial cool cloud due to the presence of a
CR source.

outward. Whether this feature is resolved well or not depends on the smoothing

scale ε in equation (3.9). We note that for this simple test we use very modest

resolutions to reduce computation time. Because of this, neither the streaming

front nor the sound wave front are well-resolved, but these are not the focus of

this test.

We can investigate the relative effects of CR pressure and wave heating by

turning each off selectively. What we find is pretty straightforward – if we turn

off wave heating but leave in the effect of CR pressure on the gas, the cloud is

slowly pushed on, but not significantly distorted beyond a slight stretching. If we

turn on wave heating but remove the effect of CR pressure on the gas, the cloud

is destroyed, but doesn’t move from its initial position (see figure 3.6).
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Figure 3.5: Evolution of the CR pressure (dotted lines), gas pressure (dashed lines), and
total pressure (solid lines). A sound wave propagates outward, led by the streaming CRs.

Figure 3.6: Evolution of the gas density with different components turned off. The left plot
has no wave heating, whereas the right plot has no CR pressure.
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3.3.4 Imparting Momentum to Cool Clouds

Ideally we would incorporate radiative cooling and thermal conduction into

these 1D simulations. But the spatial resolution required to resolve relevant length

scales such as the Field length is computationally very expensive. We therefore

continue our analysis under the assumption that radiative cooling removes nearly

all the thermal energy the gas may gain from CR heating. The effect of the CRs

can then be broken down into two separate arenas: the CR pressure gradient

imparts momentum to the cool cloud as a whole, while wave heating heats and

thickens the cloud interface. The former effect can be studied with our simula-

tions above so long as we turn off CR heating (the energy loss of CRs from this

effect of course remains active). The latter effect can be studied in steady-state

approximations, as we describe in section 3.4.

To consider again the time-dependent simulation without CR heating, see

figure 3.7. This is the same setup as above in figure 3.6 but with the cloud

positioned further away from the source. This is to minimize the effect of our 1D

plane symmetry which we discuss shortly.

The overall effect of the CR pressure gradient is best seen in the right plot

of figure 3.7, which shows the total pressure (solid lines), gas pressure (dashed

lines), and CR pressure (dotted lines) at different times in the simulation. As the

CRs first build up at the rear edge of the cold cloud, the resulting total pressure
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gradient pushes the cloud to the right. The cloud (as well as the hot material to its

left) is stretched as it moves, gradually lowering the density and thermal pressure

to the left of the CR bottleneck until total pressure equilibrium is re-established1.

The large-scale picture we get is this: CRs build up at the rear edge of the

cloud, inducing a total pressure gradient, and filling up the region of space from

the CR source to the cloud with CRs. The column of gas extending from the CR

source to the cloud is then momentarily over-pressurized. The cloud is pushed

away from the CR source, with the material inside the column dropping in density

and pressure as the volume it occupies increases. We can then describe the large

scale effect of the CRs on the cloud in two parts. The CRs have stretched the

cloud, reducing the density inside. They have also imparted momentum to the

cloud, accelerating it to some maximum velocity (figure 3.8).

We note that the maximum velocity achieved here (∼ 10 km/s) is small com-

pared to observed velocities of clouds in the Milky Way. But the CR source in

this simulation is also weak - PCR in the hot region to the right of the cloud is

much less than Pth, whereas in the Milky Way halo they are observed to be in

rough equipartition. Future simulations will determine of CRs can accelerate cold

clouds to the high velocities that are observed.

1In 1D, this rarefaction continues as the cloud progresses, eventually inverting the total
pressure gradient and pulling back on the cloud like a spring. We do not expect this behavior
in higher dimensions, as hot gas is available to flow in from directions perpendicular to the CR
flow, preventing the pressure leftward of the cloud from dropping further. We therefore do not
do not consider the results of these simulations to be robust at late times.
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Figure 3.7: Evolution of the gas density and different pressure components in the efficient
cooling limit (the CR heating term in the gas energy equation is turned off). The cloud reacts

to the sudden push from the CRs by stretching out and lowering its density and thermal
pressure.

Figure 3.8: Evolution of the gas velocity in the efficient cooling limit (the CR heating term in
the gas energy equation is turned off). The cloud reaches a maximum speed of about 10 km/s

in this simulation.
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3.4 Steady State 1D Thermal Fronts

Having examined the large-scale effects of a CR pressure gradient, we now

zoom in on the interface between the cold and hot gas phases to describe the

small-scale effect of CR wave heating. We derive a 1D analytic model of such an

interface in the steady state, where radiative losses are balanced by CR heating

and thermal conduction.

Our main goal in this section is to understand the effect of CRs on the interfaces

of cold molecular clouds embedded in the hot medium of a galaxy. Inside these

clouds we expect CRs to be uncoupled from the gas, either because of strong ion-

neutral wave damping or, in the bottleneck situation we are considering, because

CRs stream slowly and the streaming instability is not activated. We can therefore

focus on the temperature profile at the rear edge of the cloud only, where the CRs

exit and recouple to the gas.

Our simple model then consists of a 1D plane parallel symmetric profile of gas.

The cold region, representing the inside of the cloud, is on the left, and the hot

region outside of the cloud is on the right. A thermally conducting interface lies

between these two regions, and we imagine a CR source on the far left. As long as

the gradient in gas density is monotonic, we can use equation (3.1) to determine

CR pressure (again, in the limit of negligible CR diffusion).
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3.4.1 CR and Gas Equations

Since we are only considering the structure of the cloud interface our vA profile

will be monotonic. We can therefore use equation (3.1) for our analysis here,

although we remove the assumption that u is negligible compared to vA.

Pc(u+ vA)γc = constant. (3.11)

To model the gas we use equations (3.5) - (3.7) with the partial time derivatives

set to zero to emulate a steady state.

∂(ρu)

∂z
= 0 (3.12)

∂

∂z
(ρu2 + Pg + Pc) = 0 (3.13)

∂

∂z

[
(Eg + Pg)u− κg

∂T

∂z

]
= −ρL − vA

∂Pc
∂z

(3.14)

In the steady state we can quickly identify some useful constants of integration:

J = ρu = constant (3.15)

M = Pg + Pc + ρu2 = constant (3.16)

The mass flux J and total pressure M will be used to characterize the simple 1D

front solutions discussed in this paper.

Unlike our time-dependent ZEUS simulations, we now include the thermal

conduction and radiative loss terms that appear in equation (3.14). We use a com-

bination of standard Spitzer conductivity and conductivity of a neutral medium
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for the thermal conduction coefficient κg. In cgs units,

κg(T ) = 5.6× 10−7T 2.5 + 2.5× 103
√
T . (3.17)

To calculate the net cooling ρL we assume a heating rate proportional to the

gas density Γn with Γ = 1.2×10−24 erg s−1 and a radiative cooling rate of the form

Λ(T )n2. We use an artificially modified version of the radiative cooling function

Λ(T ) determined from assuming collisional ionization equilibrium (CIE) and solar

metallicity. We modify this cooling function above T ∼ 7 × 105 K such that the

high temperature equilibrium at T ∼ 1 × 106 K (for M = 10000 kB and J = 0)

is formally stable instead of unstable (see figure 3.9). We describe the motivation

and justification for this choice in §3.4.3.

3.4.2 Efficient Cooling Limit

Consider the limiting case where cooling is extremely efficient. In this limit the

conduction front is infinitesimally thin, the mass flux J vanishes, and CR heating

can be neglected. The solution consists of just the two stable cooling equilibria

side by side, separated by the infinitesimally thin conduction front. Examining

such a regime allows us to isolate the dynamic effect of a CR source, ignoring any

possible contributions from heating. This does not give us any information about

the structure of the front itself, but serves as a useful check of the time-dependent

results in §3.3.
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Figure 3.9: Modification of the CIE cooling function Λ(T ). This modified cooling function
artificially makes the hot phase of the gas formally stable to radiative cooling. The heating

rate for M = 10000 kb and J = 0 is also plotted to show the location of the equilibria.

For a given total pressure M , we can then parametrize our solutions by XCR,

defined as the ratio of CR pressure to thermal pressure in the cold region. We

can then find the solutions by simply demanding pressure balance on either side

of the front.

M = Pc,1 + n1kBT1 = Pc,2 + n2kBT2 (3.18)

To solve this we substitute Pc,1 = XCRn1kBT1 and Pc,2 = Pc,1(n2/n1)γc/2 (from

(3.11) with u ≈ 0). We end up with

n1kBT1 =
M

1 +XCR

(3.19)

n2kBT2 = M

[
1− XCR

1 +XCR

(
n2

n1

)γc/2]
(3.20)
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Figure 3.10: Solutions for gas pressure Pg and CR pressure PCR in the simplified, efficient
cooling regime. Equilibrium values in the cold (left) and hot (right) regions are shown. The

main effect of an increased CR source is to reduce the density in the cold region.

These equations relate n and T in each region. We then numerically solve for these

by demanding ρL(n, T ) = 0 in both regions. Example plots of these solutions for

M = 10000kB are shown in figure 3.10.

As we varyXCR in these solutions we find that the equilibrium in the hot region

is nearly unchanged. This is expected since PCR should be very low in the hot

region unless the CR source is unrealistically strong. Similarly the temperature

in the cold region does not change much. We attribute this to the steepness of

the cooling function Λ(T ) in this temperature range. The main effect seen on the

gas due to CRs in these simplified solutions is a reduction in the density of the

cold region with increased CR source strength.
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3.4.3 General 1D Front

To include the effects of conduction and CR heating we must numerically solve

equation (3.14) in the steady state. We do this by recasting everything in terms

of the gas density ρ. We have, from equation (3.11)

Pc = Pc0

(
u0 + vA0

u+ vA

)γc
= Pc(ρ) (3.21)

The gas quantities can then also be rewritten using the integration constants

(3.15) and (3.16)

T (ρ) =
m̄

kB

[
M

ρ
− J2

ρ2
− Pc(ρ)

ρ

]
(3.22)

(Eg + Pg)u =
γg

γg − 1

J(M − Pc(ρ))

ρ
+

(
1

2
− γg
γg − 1

)
J3

ρ3
(3.23)

Here, Pc0 and ρ0 are scale values of the CR pressure and gas density, with u0 =

J/ρ0 and vA0 = B/
√

4πρ0 the gas and Alfvén speeds at this scale density. m̄ is

the mean molecular weight of the gas.

With these replacements, equation (3.14) reduces to a second order ODE in

one variable which can be solved numerically for ρ(x) and subsequently T (x). This

process includes finding the correct value of the mass flux J for which a solution

exists. However, we found that for a fixed total pressure the equations allowed for

a range of solutions with different values of J . There appears to be a degeneracy

in the solutions of T (x) where thermal pressure in the hot phase is traded off

for ram pressure, and solutions exist for a range of values of J . By adopting the

129



modified cooling function alluded to in §3.4.1, which artificially makes the hot

equilibrium thermally stable, the degeneracy is eliminated and unique solutions

with unique eigenvalues J are found.

Note that, since J is consistently determined from the total amount of heating

or cooling throughout the front, this modification in the cooling function impacts

the resulting values of J in our numerical solutions. We therefore caution that

the actual values of J here are not physical and we do not ascribe any importance

to them. However, since all values of J we obtain in the solutions presented here

are small (u is never greater than 30% of the sound speed) we maintain faith that

the front solutions themselves are robust.

Figure 3.11 shows the gas and CR pressure profiles for two such solutions us-

ing a total pressure of M = 10000kb. Comparing with figure 3.10 we see that the

equilibrium states of the gas are very well approximated in the simplified treat-

ment. The full treatment however has the advantage of providing a temperature

profile (figure 3.12) that we can use to calculate theoretical ion abundances and

line ratios to compare with observation.

Using ionization fractions Xi(T ) from [49] and relative abundances AX from

[4] we can calculate the column densities of ions defined by NX = AX
∫
Xi(T )ndx,

where n is the gas density and we integrate across the front. To avoid dependence

on the length of integration we use, we limit our integral to temperatures below
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Figure 3.11: Solutions for gas pressure Pg and CR pressure PCR in the full calculation.
Density and temperature of the left (cold) and right (hot) equilibrium states and mass flux

eigenvalues J are also shown.

some critical temperature Tcrit, for which we choose the temperature where the

OVI ionization fraction drops below ∼0.01, or Tcrit = 7× 105 K.

We calculate column densities for CIV, OVI, and SIV for each solution, cover-

ing a variety of values of M and XCR. The resulting ratios for some of these are

shown in figure 3.13 alongside line ratio data from observations of high velocity

clods (HVCs) in the Milky Way from [110].

3.5 Conclusion

We have discussed the possible consequences of a bottleneck effect that occurs

when a population of CRs undergoing streaming is incident upon a cold cloud

embedded in a hot galactic halo. Although strong wave damping in the interior

of these clouds prevents coupling between the CRs and the cold gas, as CRs exit
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the cloud they will recouple, and at some point there will be a minimum CR drift

speed. This point will serve as a bottleneck for all CRs traveling through the

cloud and cause a CR pressure gradient to build up.

The consequence of this pressure gradient can be split into two effects. On the

largest scale the gradient itself pushes on the cloud material, rarefying the material

inside and accelerating it to potentially high velocities for a strong CR source. We

described this effect with 1D plane symmetric, time-dependent simulations using

the ZEUS hydrodynamic code.

On much smaller scales, CR wave heating thickens the thermal interface be-

tween the cold gas inside the cloud and hot gas outside. This thickening has a

measurable affect on ionic abundances in the interface - our models show that con-

ductive interfaces that receive significant wave heating from a strong CR source

more closely match observed ionic abundance ratios than conductive interfaces

with no CR heating.

We again note that all the simulations and steady state models introduced

here were performed in one dimension only. The magnetic field structure is not

considered, and wave damping is also not accounted for. Full 3D simulations

that include the effects of different magnetic field orientations and wave damping

mechanisms are necessary to verify the claims made here.
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Chapter 4

Cosmic Ray Transport:

Streaming vs. Diffusion

Much effort has been made over the past few years to accurately simulate

individual galaxies with the goal of determining the viability of CR driven winds

[53, 97, 98]. CRs are appealing as drivers of galactic winds, since they do not suffer

radiative losses that a thermally driven wind would have, and so can potentially

accelerate gas over much longer distances. However, CR transport relative to

the background medium is generally treated with a pure diffusion term in these

simulations, often with a constant diffusion coefficient. Such a treatment ignores

much of the physics of CR transport, and may dangerously simplify the dynamics

in a way that alters the simulation results. Our goal here is to qualitatively

134



compare simulations which use pure diffusion with those that instead use pure

streaming, to demonstrate how the differing dynamics affect the ambient medium

in different ways.

4.1 Methodology

4.1.1 Equations

The evolution equations for a plasma plus cosmic rays are basically a modified

set of standard fluid equations, with an extra fluid equation for the cosmic rays.

They are:

∂ρ

∂t
+∇ · (ρu) = 0 (4.1)

∂(ρu)

∂t
+∇ · (ρuu) = −∇Pg −∇Pc − ρ∇Φ (4.2)

∂Eg
∂t

+∇ · (Egu) = −Pg∇ · u− vA · ∇Pc − n2
eΛ(T ) (4.3)

∂Ec
∂t

+∇ · [Ec(u + vs)] = −Pc∇ · (u + vs) + vA · ∇Pc +∇ · (κ∇Pc) (4.4)

Equation (4.1) represents mass conservation as usual. Equation (4.2) is a standard

force equation (including gravity) with an extra term included for the cosmic ray

pressure gradient. Equation (4.3) describes the evolution of the gas thermal en-

ergy, with usual adiabatic loss and radiative cooling terms, but also an additional

wave heating term from the cosmic rays. Equation (4.4) is the evolution equation
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for a population of CRs in the fluid approximation, streaming at velocity vs rela-

tive to the gas, with a possible diffusion coefficient κ included. A more complete

treatment would use an equation for the distribution function of CRs, f(x,p, t),

with a momentum dependent streaming speed vs(p), but this simplified version

will serve for our purposes.

4.1.2 Streaming vs. Diffusion

The basis for the streaming term introduced in (4.4) is derived in [105] and

relies on the existence of the streaming instability. A population of CRs moving

at bulk speed vs with respect to the ambient medium, along the background

magnetic field, will generate magnetohydrodynamic (MHD) Alfvén waves if vs

is greater than the local Alfvén speed vA. CRs will give up energy to these

waves, inducing a wave growth rate that depends explicitly on vs. Equilibrium

is determined by equating this growth rate with whatever wave damping rates

are imposed by the background plasma. Therefore, if these damping mechanisms

are linear, demanding a steady state for the waves uniquely determines the bulk

speed vs of the CRs at every point. This is the self-confinement picture, where

the transport of CRs is governed by scattering off of self-generated Alfvén waves.

We can examine the self-confinement picture in more rigorous detail. Following

[58, 105], we start with a collisionless Vlasov equation for the cosmic ray distri-

136



bution function f . Shifting to the frame of Alfvén waves and using the Lorentz

force for the external forces, the equation can be greatly simplified if we assume

f to be nearly isotropic,

f(x,p, t) ≈ f0(x, p, t) + f1(x, p, µ, t), (4.5)

where µ is the cosine of the particle’s pitch angle, the angle its trajectory makes

with the background magnetic field. This assumption is valid in the limit of

strong pitch angle scattering off of magnetic field fluctuations, which holds in the

self-confinement regime so long as the wave damping is not too effective. The

evolution of f0 is then governed by the rate of this scattering ν.

∂f0

∂t sc
= ∇ ·

(
v2
〈 1− µ2

ν(µ, p)

〉
(n · ∇f0)n

)
(4.6)

The angle brackets above indicate an average over pitch angle and n indicates

a unit vector in the direction of the local magnetic field. For a given wave damping

rate Γdamp, and assuming the streaming instability is the only source of waves,

this average can be computed, and the result is

∂f0

∂t sc
=

1

p3
∇ ·
(

ΓdampB
2
0

4π3mΩ0vA

(n · ∇f0)n

|n · ∇f0|

)
. (4.7)

This term encompasses the deviation of CRs from the wave frame due to external

wave damping. Note that the “flux” of this term is always pointing parallel to the

magnetic field, in the direction opposite the CR gradient.
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We might question now how best to characterize this term in the CR transport

equation. Equation (4.7) resembles a diffusion term – indeed, it comes from the

calculation of a pitch angle diffusion term. However, the “diffusive” flux, the term

inside the parentheses, is independent of |∇f0|1. In this respect it loses nearly all

of the properties that define a diffusion term. We could alternatively classify it as

a streaming term with energy-dependent streaming speed vs(p). But it behaves

unlike simple advection in that the direction of the velocity field vs depends on

the direction of the CR gradient ∇f0. Still, the pitch angle diffusion term is most

accurately described by streaming, and the distinction is important.

A true diffusion term contains two spatial derivatives. This is why any dif-

fusive medium will smooth out in density over time – the shape of any initial

density profiles will become flatter, and it will do this at all points evenly. In

contrast, an advection term only has one spatial derivative, and so profile shapes

are maintained (except for changes due to divergence of the velocity field). What

we have isn’t quite either of these. Because the direction of the velocity field

depends on the direction of the density gradient, the profile will flatten out at

extrema. However, the profile shape will be preserved everywhere else. And even

1Note that this is not generally true even in the self-confinement regime - there are some
damping mechanisms, such as non-linear Landau damping, where the damping rate itself will
have some dependence on |∇f0|. However it is still true that this term will in general not be a
constant diffusion term. The remainder of this discussion is restricted to the case where Γdamp

is independent of f0.
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at the extrema, the nature of the flattening is independent of the magnitude of

the gradient, and cannot be correctly described as diffusive.

4.1.3 Simulation Setups

To carefully demonstrate the dynamical difference between streaming and dif-

fusion, we perform a number of simulations using the SPH code Gadget-2 modified

to include CR streaming (see [107]). We first simulate a very simple environment,

a uniform periodic slab of background gas. As in [107] Appendix B we superimpose

onto this background a plane-parallel gaussian initial CR pressure distribution.

Gravity is turned off, but hydrodynamics are turned on, so the CR pressure will

affect the background gas. With this setup we evolve the system once using CR

diffusion with a constant diffusion coefficient, and once using CR streaming at

the Alfvén speed vA (i.e. the weak wave damping limit). The results of these

simulations are discussed in section 4.2.1.

Second, we simulate a long vertical cut through a gravitationally stratified disk

(also plane-parallel). We steadily inject CRs into the central regions to emulate

stellar feedback. Again we compare results of CRs evolving with constant diffusion

coefficient to those streaming at the Alfvén speed (4.2.2).

Lastly we have a suite of isolated, spherically collapsing galaxy formation

simulations. We simulate galaxies with halo masses of 109 and 1010 M�, with
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and without CR injection from star formation. For simulations with CRs, we run

separately cases with streaming, with diffusion, and with neither (4.2.3).

In all of the simulations described here, the streaming time constraint is the

same is described in [107], with the same parameters. Namely,

∆t < ε
1

λcs

(
m

ρ

)1/3

(4.8)

with ε = 0.004 and λ = 1.

4.2 Simulation Results

4.2.1 Simple Flux Tube Models

We compare the dynamics of CRs undergoing diffusion and streaming for two

different initial CR profiles in the simple flux tubes. The background gas density

in these simulations is set to n = 0.01 cm−3. The temperature and magnetic field

are chosen such that the sound speed cs and the Alfvén speed vA are both 100

km/s at this density. For simulations evolving with diffusion we use a constant

diffusion coefficient of κ = 3 × 1028 cm2 s−1. The domain is a long periodic box

100 kpc long, with a 10kpc by 10 kpc cross section2. The lowest resolution runs

are filled with 104 SPH particles with a roughly even inter-particle spacing of 1

kpc - other runs have resolution increased as necessary.

2An exception is the sharp-peaked initial distribution with streaming. The required resolution
here was very high, so we only simulate a 10 kpc long box.
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The first setup has a plane-parallel “broad” gaussian of width 1 kpc for the

initial CR pressure profile with XCR ≡ PCR/Pth = 1 at the central maximum.

This length scale L is chosen such that the initial diffusive flux κ∇Pc ∼ κPc/L

in the diffusion-only runs is roughly the same as the streaming flux vAPc in the

streaming-only runs.

The results of this profile evolving under diffusion are shown in figure 4.1, top

left. The CR pressure profile essentially just widens with time while remaining

nearly a gaussian distribution. Small density perturbations are excited initially

by the CR pressure gradient - these then travel outward at the sound speed.

In contrast, the CR profile flattens from the center out for the constant stream-

ing speed case (figure 4.1 top right). In this case CR wave heating is dumping

a significant amount of energy into the gas wherever the CR pressure gradient is

strong. The result is a larger density perturbation compared to the diffusive case.

This difference is magnified when we start with a sharper CR profile. A second

setup uses an initial gaussian CR pressure profile of width 0.2 kpc and XCR = 5

at the central maximum, such that the total initial CR energy is the same as the

first setup. The diffusive case is nearly the same as before (figure 4.1 bottom left):

the CR pressure profile evolves almost exactly as a gaussian, so starting with a

sharper peak amounts to merely a slight offset in time. However, because the CR

pressure gradients are much stronger here, the streaming case is vastly different
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(figure 4.1 bottom right). Most of the energy is dumped into the gas on a very

short time scale (note the different time stamps in this plot) resulting in a huge

spike in density.

We can also see differences if we start with no CRs and steadily inject CR

energy in the center. Figure 4.2 shows the density and CR pressure profiles for

this case. Again, the streaming profile is characterized by a flat expanding center,

while the diffusing profile maintains a gradient through most of the volume. This

results in an evacuation of gas from the central regions that is wider than in the

streaming case. Also, as in the other setups, the outgoing density peaks are higher

in the streaming run because of the additional transfer of energy through wave

heating that is absent in the diffusion run.

4.2.2 Gravitationally Stratified Disk

To simulate a stratified disk we use a 10 kpc by 10 kpc periodic box in the

directions parallel to the disk, with the third direction unbounded. We impose a

fixed gravitational potential of the kind described in [31]

∇φ ∝ tanh
(z
b

)
(4.9)
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Figure 4.1: CR pressure and density profiles for the homogeneous background diffusion (left)
and streaming (right) simulations, starting with broad (top) and narrow (bottom) initial CR

peaks.
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Figure 4.2: Steady central injection of CR energy evolving with a constant diffusion
coefficient (left) and constant streaming speed (right).

where the scale height b is a free parameter that we choose to be 1 kpc3. This

potential is intended to mimic that of a stellar disk. The initial background gas

is chosen to be isothermal and in hydrostatic equilibrium

ρ(z) =
Σg

2b
sech2

(z
b

)
. (4.10)

We are free to choose the density at the center of the disk by adjusting the

parameter Σg, and then ensure hydrostatic equilibrium by subsequently adjusting

the normalization of the gravitational potential. We choose a central density of

n0 = 0.01 cm−3 and a temperature T ≈ 5 × 105 K (giving sound speed cs = 100

km/s).

3We use this form since it is the potential of a self-gravitating disk. Although we do not
incorporate self-gravity of the gas in these simple setups, by choosing this potential we could
easily include self-gravity if we so chose.
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We inject CRs into the centers of these distributions, once with a broad 750 pc

width gaussian, and once with a narrow 100 pc gaussian of the same total energy

injection rate. The resulting time evolution for each run is shown in figure 4.3. For

all but the last of these simulations, the central region is largely unaffected, with

CR pressure gradients causing small acceleration of gas in the sparse outskirts.

The narrow-scale CR injection with streaming shows instead a significant effect in

the central disk region, although we note that a higher resolution may be necessary

here.

4.2.3 Isolated Galaxy Formation

We initialize our isolated galaxy simulations with a fixed NFW dark matter

potential, and a sphere of gas in hydrostatic equilibrium with a small amount

of rotation. Radiative cooling and star formation begin with the onset of the

simulation, and the gas collapses into a disk. For each halo mass we perform

four simulations, each with a different method of CR feedback. In the first of

these we include no CR production, and all feedback is thermal. In the second

we include CR injection, but do not include any CR transport other than passive

advection with the background gas (i.e. no streaming and no diffusion). In the

third the CRs diffuse with a constant diffusion coefficient κ = 3 × 1028 cm2 s−1,

and in the fourth they stream out at the Alfvén speed, determined by a constant
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Figure 4.3: CR pressure and density profiles for the stratified tube diffusion (left) and
streaming (right) simulations, with CRs injected on broad (top) and narrow (bottom) length

scales.
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magnitude B-field. B-field orientation is not taken into account here - CRs will

always stream at the Alfvén speed in the direction of their pressure gradient.

Some snapshots of these simulations after 1 Gyr of star formation for a 1010 M�

halo are shown below. Figure 4.4 displays the gas density in vertical slices through

the disk center, and 4.5 displays the vertical velocity. Figure 4.6 shows the total

mass contained within the virial radius Rvir of the halo, as well as how much of

this mass is contained in gas versus stars.

Note that there is an overall mass loss even in simulations without CRs. This

is due to the slight excess of energy in the equator of the initial gas setup due

to the rotation, and is an artifact of the fixed gravitational potential we use -

simulating a live dark matter halo greatly reduces this mass loss. Discussion of

CR driven outflows will therefore be defined relative to this unphysical mass loss.

Consider first the simulation without CRs. By 1 Gyr the gas has formed a

disk, and gas continues to fall into the disk, continually forming stars at a large

rate. Compare this to the case with CRs but no CR transport. In this case,

CRs are injected in the disk, but essentially cannot leave it. They thus act as an

additional source of pressure support for the disk, puffing it up (compare top two

plots of figure 4.4). Gas still falls into the disk (top two plots of figure 4.5), but

because the disk itself is less dense here the star formation rate is much lower (top

two plots of figure 4.6).
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Now consider the case with CR streaming. As CRs are able to leave the disk

they are capable of driving outflow of material (see bottom left of figure 4.5).

However, these winds are launched at large heights above the disk, where the

density is low, and so although the star formation rate is noticeably reduced,

the mass loss out of the virial radius is not significantly greater than in the case

without CRs (left two plots of figure 4.6).

The simulation with CR diffusion, in stark contrast, shows a strong wind

launched much lower in the disk, driving a significant amount of mass loss from

the halo (bottom right of figures 4.5 and 4.6). This effect is so strong that it alters

the shape of the galaxy (bottom right of figure 4.4).

Unfortunately it is difficult to draw conclusions at this stage, as outflow and

star formation will ultimately depend on the diffusion coefficient and magnetic

fields we use. But we can tentatively claim that properties of galactic winds do

change considerably when CRs evolve via streaming instead of diffusion. It is

therefore vital to model the CR transport physics correctly, as well as determine

where the CRs are self-confined and where they are not.

4.3 Conclusions

We have introduced a series of simple simulations of increasing physical com-

plexity which demonstrate the dynamical differences between CR streaming and
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Figure 4.4: Vertical slices through the 1010 M� halo for the four different simulations,
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CRs with advective transport only. Bottom left: CRs streaming at the Alfvén speed. Bottom
right: CRs diffusing with constant diffusion coefficient.
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Alfvén speed. Bottom right: CRs diffusing with constant diffusion coefficient.
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Figure 4.6: Total mass within the virial radius Rvir as a function of time for the 1010 M�
halo for the four different simulations, normalized to the initial mass. Combined gas and

stellar mass is shown as the blue lines. Gas mass is displayed in the green lines, and stellar
mass in the red lines. Top left: No CRs. Top Right: CRs with advective trapnsport only.

Bottom left: CRs streaming at the Alfvén speed. Bottom right: CRs diffusing with constant
diffusion coefficient.
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CR diffusion. In the simplest scenario of a gaussian peak of CR pressure ex-

panding into a homogeneous background, the differences between streaming and

diffusion are evident. The evolution of the CR pressure profile itself is qualitatively

different when CR transport is dictated by streaming versus when it is dictated

by diffusion. In addition, the extra energy coupling from the wave heating term

causes a larger density perturbation in the streaming case.

Simulations of a gravitationally stratified disk with plane-parallel symmetry

show less clear differences that strongly depend on the length scale of CR injection.

More needs to be done for a full understanding of the physics.

Lastly, we simulated an isolated 1010 M� galactic halo that forms under gravi-

tational collapse. We showed that injection of CRs will regulate the star formation

rate regardless of transport mechanism, but the level of regulation may depend

strongly on the kind of transport used. Simulations which use streaming or dif-

fusion both generate outflowing galactic winds, but CRs evolving with diffusion

blew out a much larger amount of mass than CRs evolving with streaming. Al-

though it remains to be seen how these wind properties depend on parameters

such as halo mass, diffusion coefficient, or magnetic field, it is clear that different

treatments give different results. As such we highly emphasize the importance of

incorporating correct CR transport physics in galactic wind simulations.
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4.4 Appendix: Simulations without Hydrody-

namics

To perform the simplest possible tests of the Gadget-2 code, we ran simulations

with no hydrodynamics. These runs test solely the evolution of the CR quantities.

We start with a uniform background gas and a gaussian CR specific energy, with

α = 2.5 and q0 = 10. This setup is then evolved using a) a constant diffusion

coefficient, and b) a constant streaming speed.

For constant diffusion, the solution is analytic. A gaussian profile with initial

width σ0 undergoing constant diffusion with diffusion coefficient κ will simply

spread out in time, according to

Ecr(x, t) = Ecr,max

√
σ2

0

σ2
0 + 2κt

exp

(
−x2

2(σ2
0 + 2κt)

)
. (4.11)

The top plot of figure 4.7 shows the simulation result, compared with the analytic

result above. The match is perfect, with the small deviation in the outermost

regions being attributed to the periodicity of the simulation box - CRs which

would normally leave the domain simply build up near the edges.

The streaming case has no analytic solution, but we can compare it to other

numerical codes. The bottom plot of figure 4.7 shows the streaming result, com-

pared with the same setup evolved in a modified version of the ZEUS code (see
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Figure 4.7: Initial gaussian Ecr distribution evolving with a constant diffusion coefficient
(top) and with constant streaming speed (bottom). In the top plot the simulation result is
compared with the analytic evolution from equation (4.11). In the bottom plot, the results

(dotted line) are compared with those of the ZEUS grid code in 1D (dashed line).

[51]). Again, the results match well, although the GADGET-2 result is more

diffusive. This behavior is expected in an SPH code, and was in fact seen in [107].
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Alfvénic Turbulence. ApJ, 539:273–282, August 2000.

[30] E. Churazov, W. Forman, C. Jones, and H. Böhringer. XMM-Newton Obser-
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