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Abstract

Reverse first principles:

Weber’s law and optimality in different senses

by

Jason T. Wilkes

The relationship between optimality and evolvability is analyzed through a case study

of Weber’s law, a common property of many sensory systems across a wide array of

species. After demonstrating a variety of senses in which Weber’s law is mathematically

optimal, we ask whether principled methods exist for evaluating such optimality analy-

ses. We argue that at least one such method exists: examining the evolvability of a trait

with respect to each of the different metrics that it happens to optimize. Through evolv-

ability analyses of Weber’s law, it is demonstrated that optimality-equivalent measures

of phenotypic quality need not be selectively equivalent: a trait that is optimal by two

measures may have very different behavior under selection for each. This non-equivalence

allows different optimality analyses of the same phenomenon to be assessed by a stan-

dard other than intuition, and in a manner requiring fewer degrees of freedom than are

needed to model selection from scratch. Two qualitatively different models of selection

are explored: phenotypic selection, a basic form in which mutations directly affect the

model phenotype, and embryological selection, a more exotic form in which mutations

affect the algorithm by which the phenotype is built.
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Chapter 1

Introduction

Not long after the founding of experimental psychology came one of its strangest dis-

coveries: though sensory systems are not “perfect,” their imperfections often take a

predictable form. The simplest such form was also the first to be discovered, and its

precise description has come to be known as Weber’s law. Though it is not a “law” in

any strict sense, it is phrased in a manner that potentially applies to any sensory system,

in any species, at any life stage, and it has been observed in a wide variety of each (see

(Akre & Johnsen, 2014) for an extensive review). However, the mathematical statement

of Weber’s law is so concise that its rather bizarre content is easy to miss. The law is

simply written:

∆X = εX

What does this mean? By necessity, the above symbols refer to rather abstract quantities

– quantities not tied to any single sensory system or zoological niche. The symbol X rep-

resents the magnitude of a sensory stimulus, measured in whatever units are appropriate

to the sensory system in question. The symbol ∆X represents imperfections, measured

by the so-called “just noticeable difference” (jnd) between two stimuli. Having presented

the sensory system with a stimulus of magnitude X (say, a weight of X grams) sup-
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pose we then present it with stimuli extremely close to X in magnitude. For sufficiently

small differences, we can trick the system into believing the magnitudes are the same.

The smallest difference that does not trick the system in this way is known as the “just

noticeable difference,” and is represented by the symbol ∆X.

Weber’s law is often described as the proportionality of the jnd to the magnitude of

the stimulus. Pause for a moment and reconsider the content of this result. One could

be forgiven for expecting the “errors” or “imperfections” in a sensory system to be in

some sense random. In practice, not only are they non-random, but they often appear

to take a specific functional form. Stranger still, that functional form is shared between

a large number of different sensory systems in a wide variety of species. Weber’s law is

simply the statement that the imperfections form a line: it states that ∆X is a linear

function of the magnitude of the stimulus X, and ε is the slope of that line.

Without exception, the systems we study in psychology are the downstream effect

of cumulative mutation and natural selection. This process “prefers” the most effective

solution to an adaptive problem that it finds in the pool of available genetic variation.

But selection is more engineer than physicist, and has no obvious concern with ensuring

that the organisms thus constructed will obey a set of elegant, general laws that are easily

describable in mathematical form. As such, whenever such a general law appears to be

present, there is good reason to divert our attention and exert every effort to understand

its origins, since the opportunity does not often arise in biological fields of inquiry.

However, we have just seen that one of the earliest discoveries of experimental psy-

chology was a mathematical description of the shape of imperfections in an arbitrary

sensory system, and this abstract description has somehow managed – in a surprisingly

large number of cases over the last century and a half – to describe the real world. As

fruitless as the search for general principles in biology often appears to be, it seems that

selection has thrown us a crumb. To say the least, this is a crumb worth exploring.
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1.1 A formidable literature

Historically, Weber’s law has been studied primarily as a candidate property of sen-

sory systems. In recent decades, however, Weber’s law has been observed in systems more

usefully described as “cognitive,” rather than strictly “sensory.” Examples include the

representation of temporal duration in humans (Wearden & McShane, 1988; Grondin,

Ouellet, & Roussel, 2001) rats (Gibbon & Church, 1981), and pigeons (Dews, 1970; Gib-

bon & Church, 1981), and the cognitive representation of number in humans (Dehaene,

Dehaene-Lambertz, & Cohen, 1998) and rhesus macaques (Jordan & Brannon, 2006).

The literature on this topic has grown sufficiently large over the past century and a

half that no brief literature review can do it justice. The following list is adapted from

a table presented by Akre and Johnsen (2014) in an extensive review of this literature.

The original (rather large) table summarizes a subset of the domains and species in

which Weber’s law has been observed, supplemented with known deviations from it when

necessary.1 These domains include:

• Auditory amplitude: in humans, birds, insects, anurans, misc mammals.

• Auditory frequency: in humans, parakeets (∼300-2000 Hz).

• Visual area: in humans, coyotes, seals.

• Visual intensity: in humans, misc species.

• Visual wavelength: in humans, goldfish, honeybees, butterflies.

• Numerical cognition: in humans, monkeys, fish, chimps, crows.

• Temporal duration in parasites, humans, pigeons, starlings.

1In such a large literature, the claim that Weber’s law is “observed” in a given domain can only mean:
observed to some reasonable degree of approximation, for some significant range of stimuli, though this
range of stimuli is not always the entire dynamic range of a sensory system.

3



Introduction Chapter 1

• Chemoreception: in bats, bees, ants, misc bacteria.

• Tactile pressure: in humans.

• Vibrational frequency: in humans, misc primates.

• Edge sharpness: in humans.

• Electroreception: in weakly electric fish.

There are many contexts in which Weber’s law is not observed, including certain tasks

within the same domains and species listed above (Bizo, Chu, Sanabria, & Killeen, 2006;

Masin, 2009; Akre & Johnsen, 2014). For instance, Weber’s law is often not observed

in audition. One such example is discussed by Rabinowitz, Lim, Braida, and Durlach

(1976): for pulsed tones of constant frequency (1000 Hz) and varying amplitude, Weber’s

law holds only for amplitudes in the range ∼10-40 dB, while sensitivity increases with

amplitude outside that range. This is a genuine deviation from Weber’s law, but how

large a deviation is it? The Weber-range of ∼10-40 dB seems quite small. However, the

decibel is a logarithmic unit, so this range is considerably larger than it appears at first

glance. As such, while many genuine deviations from Weber’s law are known, the units

in which a physical quantity is expressed can have a significant effect on how large (or

small) such deviations appear to our intuition. However far it may be from a universal

principle, the zoological and sensory/cognitive breadth of Weber’s law is striking, given

the rarity of such general phenomena in biology.

1.2 Questions about “why” questions

Why is Weber’s law such a widespread property of sensory systems? In biology,

one way of addressing “why” questions is the optimality analysis. If a trait observed in
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organisms appears to be optimal by some measure independent of biology – principles

of engineering, probabilistic inference, algorithm design, etc. – then our confidence that

the trait is a naturally selected adaptation is increased, and increased to the extent that

the optimized measure is potentially relevant to fitness, and thus a potential target of

selection.2 However, suppose we are confronted with two or more optimality analyses of

the same trait. This is a common occurrence, given the expanse of the modern scientific

literature, but there is little discussion of precisely how different optimality analyses

might be evaluated, so the task is generally left to our intuition, and to the elegance

with which the result is expressed. Can we do better? Are there principled methods of

comparing their relative strength, and assessing their individual weaknesses? Or are we

simply forced to arrange them on a shelf and stare at them, like a collection of novelty

nutcrackers?

In what follows, we begin with the question of how to model an arbitrary sensory sys-

tem, a seemingly impossible task that any mathematical analysis or computer simulation

of Weber’s law appears to require. We then discuss various standards by which Weber’s

law is (and is not) optimal. Having done so, we find ourselves with a disorganized bag

of different optimality analyses. This raises the question of how to evaluate such results.

We argue that at least one such method exists: examining the evolvability of the trait in

question with respect to each of the different metrics that it happens to optimize. The

logic is as follows: A trait may be optimal with respect to some measure M , but if it is

not evolvable under selection for M , then its optimality under M is of little relevance to

our understanding of evolved organisms. Through evolvability analyses of Weber’s law,

we find that optimality-equivalent metrics of phenotypic quality need not be selectively

2The trait need not be strictly optimal, of course, and exact optimality is unlikely to be found in
real organisms. Our use of the term “optimality” is analogous to the concept of a circle in Euclidean
geometry. Both are nonexistent limiting abstractions, but each is useful in conversation – verbal or
mathematical – whatever degree of approximation one happens to encounter in reality.
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equivalent: a phenotype that is optimal with respect to two metrics may be evolvable

with respect to one, neither, or both at different rates and with different tolerances for

random drift. Further, this requires fewer degrees of freedom than a typical model of

selection: many difficult decisions (such as how to model the phenotype, or what is an

appropriate choice of “first principles”) need not be made, since such decisions have al-

ready been made by the optimality analyses themselves, and those decisions should be

taken at face value in assessing them relative to one another. We end by examining an

existing debate in the literature on Weber’s law, and arguing that the disputants may

not in fact be in disagreement after all.

1.3 How to model an arbitrary sensory system?

Given the rarity of phenomena as general as Weber’s law, we want to explore it in some

depth. Unfortunately, this very generality presents a significant problem: how on earth

are we supposed to model an arbitrary sensory system? Any model that is sufficiently

general to represent an arbitrary sensory system will surely be impoverished to the point

of uselessness. Or will it? Faced with a problem for which no good solution is possible,

the best thing to do is: build a bad solution. We don’t need to model every detail of a

sensory system; what we want is to explore Weber’s law. From this point of view, we

only need a minimal, skeletal model of exactly those features about which Weber’s law

speaks: the magnitude of an input stimulus, and the just-noticeable difference between

two input stimuli. Indeed, any mathematical analysis or computer simulation of Weber’s

law as such – as opposed to its appearance in a particular sensory system – must be

of this skeletal nature, given its appearance across such a wide variety of species and

sensory domains.

Now we have two problems. How should we represent these two features of a sensory
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system? At this point, a researcher hoping to explore Weber’s law (whether by math-

ematical analyses or computer simulations) is faced with a choice between a “discrete”

model on the one hand, and a “continuous” model on the other. Their apparent (and

actual) differences are a common source of confusion, so it is worth a brief examination

of each.

1.4 Models that feel discrete

The simplest way of capturing both the magnitude of an input stimulus and the just

noticeable differences between two stimuli is in terms of a finite number of points within

a continuous interval. Each point has both a magnitude and a set of neighbors, so we

have a toy language in which both absolute magnitudes and just-noticeable differences

can be discussed. For example, consider an imaginary robot visual system that represents

brightness within the range [0, 12] by allocating one point per unit intensity, except within

the range from 5 to 8, where it allocates points twice as densely, giving something like

[0, 1, 2, 3, 4, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12]. There are 16 total “symbols” in this

set, so each member could be encoded as a 4-bit binary number. The important point

for our purposes is not the encoding, but the sense in which this toy model of a sensory

system allows one to discuss both magnitude (each point has a size), and just-noticeable

differences (each point has neighbors).

Despite the extreme minimalism of this representation – a set of N points in some

interval [a, b] – there are already N dimensions along which the representation can vary,

since each point can vary independently of all the others along the continuous interval

between its left and right neighbor. Further, the size of each of those N dimensions is

not fixed from the start, but varies as a point’s left and right neighbor changes position:

your left neighbor moves to the right, and suddenly you have less wiggle room. Avoiding
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this complication by allowing each point to move completely independently of the others

within the interval [a, b] would seem to simplify the overall geometry of the space, but this

apparent simplification comes at a cost: any given set of N points would then correspond

to N ! different locations in this larger rectangular space, and we no longer have the

benefit of a one-to-one relationship between toy sensory systems and locations in the

simpler space of possibilities. Despite the almost childish simplicity of the model above,

we have already got a non-trivial space of possibilities (essentially an N dimensional

tetrahedron). We mention this to illustrate the first issues that a modeler faces when

attempting to model Weber’s law, and the reason for the existence of such models in

the literature (Portugal & Svaiter, 2010). Choosing such a model is both imperfect and

entirely understandable.

Further, it is not as limited as it seems as first glance. We can think of such models

in two ways, which can be informally described as “dots” and “slots.” In the “dots”

model, our toy robot might map the stimulus 4.6 to the “dot” 5, its nearest neighbor.

Or perhaps, since our robot can’t tell the difference between 4.4 and 4.6 (by definition),

it might just have to always map downward (mapping 4.6 to 4), or upward (mapping 4.4

to 5), or choose randomly between the left and right neighbors of a stimulus. These are

different variants of what we can call “the dots model.” In the “slots” model however,

we can instead think of our robot as mapping the stimulus 4.6 to the “slot” [4, 5], and

essentially saying “the stimulus was somewhere in here.” The slots model appears more

“continuous,” though its toy sensory systems are specified in the same way as the “dots”

model: by a discrete set of points. This terminology offers a concise way of describ-

ing certain models in the existing literature. For instance, Portugal and Svaiter (2010)

examine a discrete model with the “dots” interpretation.

To compare different toy sensory systems, we first need to decide which subsets can

be fairly compared with one another. Fortunately, there is a natural choice: only com-
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pare toy sensory systems with equal numbers of “dots.” A model of how to best spend

one’s income (for any meaning of “best”) should hold constant the total income when

comparing strategies, so as not to come to the unhelpful conclusion that it is better to

spend frivolously as a billionaire than it is to save for retirement on minimum wage. Sim-

ilarly, the only way to meaningfully ask how Weber’s law relates to various alternatives

is to hold constant a toy sensory system’s overall “wealth,” and examine how different

methods of allocating that wealth vary with respect to a given measure of fitness.

1.5 Models that feel continuous

Can we improve on the above by using a genuinely continuous model (i.e., one not

specified by a discrete set of values)? Perhaps. For example, we could model a minimal

sensory system not in terms of N points within some interval [a, b], but in terms of a

continuous function whose height in different locations represents the relative density of

those (imaginary) points at different locations within [a, b], without needing to “commit”

to a particular set. Returning to our toy robot sensory system above, the “density”

would be a step function whose height between 5 and 8 is twice as large as it is elsewhere

in [0, 12]. This conveys the robot’s emphasis on the middle of the represented range,

without specifying any particular numbers. Further, it allows us to discuss jnds, at

least in a relative sense: since the density function’s height between 5 and 8 is twice as

large as it is elsewhere, the jnds in that region are half as large as those outside. This

faithfully reflects the properties of the set of numbers above, without having to decide on

a particular set. However, we can recover specific numbers by imposing a constraint on

the density function’s integral. For example, by adding the assumption “the total area

beneath the function is 15,” we can translate the “continuous” model into a “discrete”

one by solving for the locations xk where the function’s integral from 0 to xk is an integer.
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1.6 Think of these as dialects

The conceptual background above should be enough to allow the reader to understand

a large part of the literature on optimality analyses of Weber’s law, and why it looks the

way it does. Some authors use models that appear “discrete” (Portugal & Svaiter, 2010),

while others use models that appear “continuous” (Piantadosi, in press).

These are not so much different models as they are different dialects in which the

same concepts can be discussed. The “discrete” models are not inherently discrete, since

we had no trouble translating our original example into a density function. Nor are

the “continuous” models inherently continuous, since we can easily recover a discrete

representation by partitioning the density function’s integral into N equal chunks, for

any N . This is a common source of confusion, but it cannot be avoided by simply choosing

a different model. Any paper attempting to examine Weber’s law mathematically needs

some toy model of an arbitrary sensory system, in order to discuss those features of

sensory systems about which Weber’s law speaks: the magnitude of a stimulus, and the

system’s jnd at that magnitude. The “continuous” and “discrete” models one finds in

the existing literature do not necessarily differ in their assumptions about the underlying

sensory systems. They are simply accents in a domain-specific vocabulary for discussing

the pieces of an arbitrary sensory system that are relevant to Weber’s law: the magnitude

of a sensory stimulus, and the “noise” in the sensory system at that magnitude.

The benefit of models in the continuous dialect is their elegance, while the benefit of

models in the discrete dialect is that they make the space of toy sensory systems finite-

dimensional. A finite-dimensional model space is not at all necessary, but it both (a)

facilitates computer simulations, and (b) makes the mathematics more accessible, since

it allows us to use standard multivariable calculus, rather than calculus of variations.

Calculus of variations is perhaps a more elegant and powerful framework for discussing
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optimality when the candidate optima are entire functions rather than discrete sets of

points, but explaining the necessary background would at least double the length of this

paper, as well as making the evolvability analyses that follow much more opaque than

is necessary. For an attempt at an intuitive exposition of calculus of variations using a

minimal amount of mathematical formalism, see the final chapter of Wilkes (in press).

1.7 Scale invariance

In what follows, the term “scale invariance” will be used synonymously with the term

“Weber’s law,” while we will avoid the terms “Fechner’s law” and “logarithmic mapping”

in order to avoid implicitly taking sides in an ongoing debate, which we discuss explicitly

in the final section. It is commonly recognized that Weber’s law is scale invariant,

but to justify using the terms synonymously, it should be the case that scale invariance

implies Weber’s law. This simple fact can be demonstrated quickly, while also illustrating

how one can move back and forth between the continuous and discrete dialects. This

is not so much a result as an attempt to convey to the reader both the conceptual

origins of the model on which the following evolvability analyses are based, and a detailed

understanding of the assumptions on which such models do and do not rest.

Toward that end, suppose f is a density function with the meaning discussed above,

and assume that f is “scale invariant.” What does this mean? Well, the area under f

within any small interval represents the number of imaginary dots in that interval (or

equivalently, the number of actual dots placed there by any of f ’s partner models in the

discrete dialect, as in our robot example above). So what would it mean to assume that f

is “scale invariant”? This only means that the area (number of imaginary dots) under f

within any interval should not change when we change scale. What is “changing scale”?

Changing units, like switching from feet to meters, while still describing the same thing.
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Indeed, if there happened to be any general “laws” that applied to multiple sensory

systems, then at very least they should be phrased in a manner that is independent of

any particular system of units. Otherwise, it is not entirely clear what it would mean to

say that an empirical observation about the visual system is “the same” as an empirical

observation about the auditory system. Philosophy aside, if f is scale invariant, then

changing units from x to X = ax for any a > 0 should not change the area (number of

imaginary dots) in any small sub-interval. That is, the quantity (height of f)·(tiny width)

in one system of units should be the same as in another. To say this in abbreviated form:

f(x)dx = f(X)dX = f(ax)d(ax)

for all x, or equivalently, f(x) = af(ax). Our goal is to solve this equation, not for an

unknown variable as in elementary algebra, but for the unknown function f . Following

the standard method,3 this functional equation can be reduced to a differential equation

by differentiating both sides with respect to a and setting a = 1. Doing so gives 0 =

xf ′(x) + f(x), which can be rearranged to give df
f

= −dx
x

. Integrating both sides, we

3In mathematical fields, the closest thing to publishing one’s raw data is the act of explaining the
thought processes behind a derivation, rather than simply presenting the derivation itself. This footnote
is an attempt to provide the “raw data” of the derivation that follows. We have just encountered a
“functional equation” – an equation involving an unknown function. Functional equations are tricky
to deal with in general, and their solutions often appear to involve a series of clever but unmotivated
tricks. The mathematically inclined reader will recognize this phenomenon from basic calculus, where
one finds that derivatives can generally be computed by applying a small set of methods in a relatively
automatic fashion, while integrals seem to demand a bit more artful cleverness. In this respect, generic
functional equations are more like integrals than derivatives. Naturally, a common inclination when
faced with a functional equation is to simply differentiate it, in the hopes that it might be reduced to a
differential equation, since such equations are more well studied, and generally more susceptible to simple
algorithmic methods. This vague mathematical inclination turns out to work a surprising amount of the
time, but even when it leads to a solution, it can leave the reader with the feeling that some magical
sleight of hand occurred in the derivation they just read. In the derivation that follows, the trick of
differentiating with respect to a and setting it equal to 1 is not some fancy advanced method; it is simply
the tried and true mathematical practice of following the vague intuition above, in the hopes of finding
any legal sequence of steps that reduces an unfamiliar problem to a more familiar one. Such methods
can be found in the majority of academic papers involving any degree of mathematics, but there seems
to be an unwritten rule that they should never be discussed explicitly, though failing to do so serves no
function other than making one’s results more difficult to understand for readers not formally trained
in mathematics.
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obtain f(x) = c/x, for some unknown constant c.

In the example of our imaginary robot above, we mentioned that the “continuous”

and “discrete” models found in the existing literature do not necessarily imply different

hypotheses about the underlying sensory systems, but are rather two equally valid math-

ematical dialects in which the same Weber-relevant concepts can be discussed. We can

now demonstrate how translating from one dialect to another can often make non-obvious

properties more intuitively apparent. Above, we started from a qualitative requirement

of “scale invariance,” and after a bit of mathematics we obtained a particular density

function c/x. Weber’s law is implicit in this density function, but it may not be obvious

how. The unknown constant c is the mathematics telling us that we did not yet decide

how many “dots” the toy sensory system should have. Let’s make such a decision, but

leave it as an unspecified number so as not to lose any generality. While remaining ag-

nostic about the total number of dots, we can build a discrete model from our density

function, analogous to a histogram whose bins all contain an equal number of dots. Let’s

do that. The symbols xk for 1 ≤ k ≤ n will stand for the locations where one histogram

bin stops and another begins. Each contains the same number of dots, say N . This gives:

∫ xk+1

xk

( c
x

)
dx = N

for all 1 ≤ k ≤ n. This means that ln
(

xk+1

xk

)
= N

c
, which is constant for all k. Equiv-

alently, this tells us that xk+1 ∝ xk, with the same constant of proportionality for all

k. Since xk+1 is larger than xk by assumption, the constant of proportionality must be

greater than 1, so we can write xk+1 = (1 + ε)xk with no loss of generality. This gives us

a discrete (though arbitrarily precise) representation of our continuous density function,

and more readily reveals to our intuition one of its particularly interesting properties.

Since each point is just (1+ε) times the previous point, an arbitrary point can be written

13
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xk = x0(1 + ε)k. It is now trivial to compute the jnd between two such points in this toy

sensory system, as follows:

∆xk ≡ xk+1− xk = x0(1 + ε)k+1− x0(1 + ε)k = x0(1 + ε)k(1 + ε− 1) = εx0(1 + ε)k = εxk

So ∆xk = εxk for all k, and the resulting toy sensory system obeys Weber’s law. The

purpose of the above discussion is not to present a result, (though the reader is welcome

to interpret it as one) but rather to lubricate the substantive results that follow by killing

three conceptual birds with one stone. First, it is commonly said that Weber’s law is

scale invariant, and the above discussion shows the converse: scale invariance implies

Weber’s law. Second, the apparent differences between discrete and continuous models

may cause apparent disagreement between individuals who may not in fact disagree. Any

model in this literature faces the problem of representing an arbitrary sensory system,

and any such model can only hope to represent the subset of features that are relevant to

a discussion of Weber’s law. Such models are necessarily skeletal. Whether the discussion

takes place in a dialect that feels “discrete” or “continuous” is not particularly important.

Both are simply quantitative ways of discussing the relationship between the magnitude

of a stimulus, and the “noise” in a sensory system at that magnitude. Neither dialect

makes stronger or weaker assumptions about the internal architecture of those sensory

systems, since both styles of model are bleached of all details that a sensory system might

possess, except the two relevant to Weber’s law. Further, we can easily translate between

the two dialects, and sometimes a result can be seen more clearly in one dialect than in

the other, as we saw above.

Finally, the discussion above was an attempt to familiarize the reader with the con-

ceptual “raw data” of Weber’s law, by demonstrating some of the paths of reasoning by

which authors in this literature might arrive at their different models in the first place,

rather than simply presenting a particular model ex nihilo, and discussing the results
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that follow from it. This has the unfortunate effect of adding a bit more verbosity (and

a bit less formality) to the surrounding discussion, but it is the closest thing one has in

mathematical work to the scientifically desirable practice of publishing one’s raw data.
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Optimality

In the section that follows, we will examine various standards with respect to which

Weber’s law is “optimal.” An earlier version of this manuscript consisted primarily of

such optimality analyses. In what follows, we will examine existing analyses in this vein,

and offer some new ones. However, we do not to present them as new results, but rather

as pedagogical demonstrations to frame and clarify the more substantive results of the

evolvability analyses that follow. The exploration of evolvability is both an attempt to

further understand Weber’s law, as well as a broader attempt to provide more substance

to the ways in which optimality analyses can be evaluated. Before doing so, however, we

need some optimality analyses to use as raw material. This is the task to which we now

turn.

2.1 Optimizing worst-case relative error

Portugal and Svaiter (2010) demonstrated that Weber’s law is optimal by the stan-

dard of minimax relative error. In the terminology discussed above, they began from

a discrete model with the “dots” interpretation. They then demonstrated that model
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sensory systems obeying Weber’s law achieve a minimum value of the maximum relative

error, compared to other sensory systems with the same number of “dots.” Portugal and

Svaiter’s result offers a simple and intuitive way to understand Weber’s law, but unfor-

tunately, the result is demonstrated along the lines of a formal proof, with considerably

more technical machinery than is needed to arrive at the conclusion. However, this result

and its model will play an important role in the evolvability analyses that follow, so it is

worth quickly demonstrating the same result with less technical machinery. This is not

Portugal and Svaiter’s derivation, but the result belongs to them. The maximum relative

error of a model sensory system M over the interval [a, b] is

EM = max
a≤x≤b

RE(x), where RE(x) = min
xk∈M

|xk − x|
x

(2.1)

Since Portugal and Svaiter’s model is what we have called a “discrete model in the dots

interpretation,” any stimulus x is represented by its nearest “dot” in the set M . The

above minimum over all the xk in M is simply a way of telling the mathematics that

the model is making this assumption. How can we find the set of sensory systems that

minimize the measure EM? It helps to first express the measure in an equivalent but

simpler way. Toward that end, note that any discrete dots model M divides [a, b] into

smaller subintervals Ik = [xk, xk+1], the subintervals between successive dots. For any

such subinterval:

max
x∈Ik

RE(x) = max
x∈Ik

(
min

{
x− xk
x

,
xk+1 − x

x

})
(2.2)

The meaning of this is simple: Any interval Ik between two dots will contain some

“stimuli” that are mapped to its left dot, and others that are mapped to its right dot.

The relative error in representing a given stimulus depends on which of these dots the

stimulus is mapped to, and the above equation simply expresses this fact explicitly. More

simply, it says: What is the worst-case stimulus in any subinterval between two dots? It

17



Optimality Chapter 2

is whichever stimulus has the worst representation, where “worst representation” simply

means “largest relative error between that stimulus and whichever dot is nearest to it.”

In each interval between two dots, this “worst-case” occurs at the arithmetic mean of

those two dots, i.e., when x = x̄k ≡ (1/2)(xk+xk+1). Expressing this fact mathematically

and simplifying the result, we obtain:

max
x∈Ik

RE(x) =
x̄k − xk
x̄k

=
xk+1 − xk
xk+1 + xk

(2.3)

Now, using the facts above, it is simple to determine which toy sensory systems minimize

the global maximum relative error over all such subintervals Ik. For any fixed number of

dots, any perturbation of the set of dots M that decreases the max relative error within

one subinterval must increase the max relative error for another. So the toy sensory

systems with the smallest overall value of this measure must be the ones for which the

maximum relative error is constant in each subinterval Ik. That is:

Var

(
max
x∈Ik

RE(x)

)
= 0 (2.4)

where the variance is taken over the set of subintervals Ik. To put it more simply, each

subinterval has a “peak” (the worst case relative error between its left and right dot), and

we can minimize the highest peak by pushing all the peaks down to a constant height.

With foresight, we will call this constant ε/2. Summarizing the above paragraph, the toy

sensory systems that minimize the max relative error satisfy:

max
x∈Ik

RE(x) = constant ≡ ε

2
(2.5)

for all k, so by equation (2.3):

xk+1 − xk
xk+1 + xk

=
ε

2
(2.6)

Finally, defining ∆xk ≡ xk+1 − xk as in the above discussion of scale invariance, we find

that ∆xk = εx̄k. This is a different sense of Weber’s law than we found earlier. The
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arithmetic mean on the right side of this equation was the result of mapping model-

stimuli to the nearest dot. Similarly, carrying out the same derivation as above, but

instead choosing to always map stimuli to the next highest or next lowest dot, the results

one finds are (respectively) ∆xk = εxk and ∆xk = εxk+1. Each of these expresses a linear

scaling of jnds with stimulus magnitudes, but in ways that each differ from one another

by less than one jnd. We remain agnostic about which is the “best” representation of

Weber’s law, since skeletal models of this form should only be taken as a more precise

form of verbal argument – a form in which we have the hope of revealing properties that

may not have been obvious from verbal argument alone. However, any model should be

aware of its limits, and the toy models above should not be taken literally in the fine-

grained details of how they differ at sub-jnd scale, since the accidental details of their

implementation become visible at the scale of a single jnd.

2.2 Optimizing variance of relative error

Toward the goal of developing principled methods by which optimality analyses can

be evaluated, let’s create an optimality analysis that is “bad,” on purpose. It will still

pick out Weber’s law as the optimum of something, but by design, that something will

not appear especially well-motivated. Above we found that minimizing the maximum

relative error leads to Weber’s law. In this model, each subinterval had a “peak,” and

Weber’s law minimized the highest peak (max relative error) by pushing all the peaks

down to the same height.

We want to construct an optimality analysis that is bad on purpose, and we can do

so simply by jumping into the above derivation starting at equation (2.4). Generally

speaking, optimality analyses begin from “first principles,” or at least principles asserted

to be more fundamental than the results one ends up demonstrating. We know that
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equation (2.4) will get us to Weber’s law, so we can construct our bad optimality analysis

by simply asserting that the variance of relative error (as defined in equation 2.4) is a

fundamentally important quantity that a well-designed sensory system should minimize,

and arguing this point in eloquent language and elegant mathematics.

We have therefore picked-out the same sensory systems – the ones obeying Weber’s

law – by describing them in a different way: they minimize the variance of relative error in

the sense defined above. In what follows, we will describe the (non-)result of this section

as the minivar derivation, and the previous section’s result as the minimax derivation.

These two standards of phenotypic quality pick out the same set of sensory systems. As

far as optimality analyses are concerned, the two metrics are analytically identical, and

one is forced to rely on intuition and the eloquence with which each result is expressed

in order to judge them. We explicitly constructed the minivar metric post-hoc, as an

example of an unconvincing measure of quality, so intuition is considerably less kind to

this new derivation than it is to the original. We now have two optimality analyses with

differing intuitive appeal, to be used as raw materials in the evolvability analyses that

follow.

2.3 Optimizing integrals of relative error

In the dots model, stimuli are represented as points, so arithmetic is straightforward

to perform on the represented values. In the slots model, stimuli are represented as

intervals. This model is specified by giving the boundaries between the slots. By varying

the locations of those boundaries, we obtain different toy sensory systems. In this section,

we will present an optimality analysis in the slots model.

Suppose we want to examine the total relative error of a toy sensory system under

the “slots” interpretation. There are two general strategies, and we will give a brief
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summary of each before proceeding to the mathematics. First, we could penalize each

“node” (location where two slots meet) by the integral of relative error from itself to its

left neighbor, plus the integral from itself to its right neighbor. This measure includes

each subinterval twice, but not redundantly: given any subinterval S (i.e., any “slot”),

it includes one term that is the integral (over S) of the relative error relative to the

left boundary of S, while the other integral is the same quantity relative to the right

boundary of S. These are different quantities, and neither is more important a priori.

Further, this is a genuine slots-model, since neither the toy sensory systems nor the

metric for evaluating them requires any mapping of stimuli to a particular dot. As we

will demonstrate shortly, this measure of total relative error gives Weber’s law as its

optimum.

However, we should also discuss a metric for which the optimum is not Weber’s

law. We can obtain such a metric by modifying the one above as follows. Suppose that

we penalize each “node” (location where two slots meet) by two integrals, as above,

but this time we integrate only to the arithmetic means of the node and its left and

right neighbors. In some ways this appears more motivated than the previous measure.

However, the motivation for using the arithmetic mean came from the dots model, where

it arose from the idea of mapping a stimulus to whichever dot was closest. That is, the

point where a stimulus’ closest dot stopped being xk and started being xk+1 was the

arithmetic mean of those two dots. In the slots model however, the arithmetic mean is a

bit of a kludgey addition, since stimuli are represented by intervals, not numbers. Still,

we are free to examine the resulting metric anyway, for purposes of illustration. The

optimum of this measure is not Weber’s law, but a kind of Weber-like hybrid. As we

will see shortly, Weber’s law is expressible as xk =
√
xk−1xk+1, and this is the optimum

of the first of the two metrics in this section: the one that did not involve the arithmetic

mean. This hybrid metric has the optimum xk =
√
x̄Lk x̄

R
k , where x̄Lk is the “left mean,”
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(i.e., the mean of xk and xk−1) while x̄Rk is the “right mean” (i.e., the mean of xk and

xk+1).

Which of these is the “true” measure of total relative error? We leave that for

the reader to decide. Each has its deficits. Leaving that aside, the former specifies

exactly the toy sensory systems obeying Weber’s law, while the latter gives a visually

similar but structurally different set. Toward the goal of developing methods by which

different optimality analyses of the same phenomenon might be compared, only the

former qualifies as a contender in the evolvability competition that follows. We mention

the latter only to emphasize that not every reasonable-sounding function of relative error

gives Weber’s law as its optimum. By any measure, the majority do not.

Having provided the necessary conceptual background, we can back-up the assertions

above. The degrees of freedom of a sensory system in the slots model are the locations of

the boundaries between its n slots. Given any (smooth) measure of phenotypic quality,

the toy sensory systems optimizing that measure will occur when each of its partial

derivatives are zero: one partial derivative for each degree of freedom.1 Translating our

verbose English description of the first metric above into abbreviated form, its dependence

on the kth boundary is:

Ek =

∫ xk+1

xk−1

|xk − x|
x

dx

This can be broken into two integrals and simplified as follows:

Ek =

∫ xk

xk−1

xk − x
x

dx+

∫ xk+1

xk

x− xk
x

dx

1For readers unfamiliar with the concept: the max and min height of a curve occur at locations where
the curve is flat or horizontal (picture a sine wave or a bell curve). Similarly, the top and bottom of
an n-dimensional mountain will occur at locations where the mountain is “horizontal” in each of the
n directions one can walk on it. The mathematically-inclined reader who can see the exceptions to
these general claims can verify that no such corner cases occur in the derivation that follows, so the
explanation is sufficient for the limited purpose of this footnote.
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=

∫ xk

xk−1

(xk
x
− 1
)
dx+

∫ xk+1

xk

(
1− xk

x

)
dx

= [xk ln(x)− x]xk

xk−1
+ [x− xk ln(x)]xk+1

xk

= 2xk ln(xk)− 2xk + (xk−1 + xk+1)− xk ln(xk−1xk+1)

Now, the optimal sensory systems for this metric can be found by differentiating Ek with

respect to xk (for each k) and setting all the results equal to zero. This gives:

0 =
∂Ek

∂xk
= 2 ln(xk)− ln(xk−1xk+1)

Isolating xk, we obtain:

xk =
√
xk−1xk+1

This is Weber’s law in disguise. To see this more clearly, square the above condition and

rearrange it to obtain:

xk
xk−1

=
xk+1

xk

for all k. This tells us that the optimal sensory systems by this metric satisfy xk ∝ xk+1,

with the same constant of proportionality for all k. But this is exactly the condition we

arrived at in the earlier discussion of scale invariance. Following the same steps outlined

there, we find ∆xk = εxk, so the optimal sensory systems by this metric are exactly the

ones obeying Weber’s law. Having already given nicknames to our other two metrics,

minimax and minivar, it is only fair to give a similar 7 character nickname to this new

contender as well. In the evolvability analyses that follow (and their supporting code in

the supplementary materials), we will call this metric “totalre,” for “total relative error.”

Three is a crowd, as the saying goes, so having collected a small crowd of optimality

analyses, we now turn to the question of how they might be compared.
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Evolvability

3.1 Reverse First Principles

An earlier version of this manuscript was titled “Weber’s law from first principles”

and it consisted entirely of optimality analyses: mathematical demonstrations that We-

ber’s law is optimal with respect to various measures of quality. Such results are simply

a mathematical demonstration of the logical relationship between two statements: be-

ginning from some assumption X (for a variety of X), one arrives at the conclusion of

Weber’s law (or more generally, the target trait of the optimality analysis). Since then,

the author has had the opportunity to participate as both reviewer and reviewee in eval-

uating results of this form, and has experienced the difficulty of this task from both sides.

Whatever one’s opinion on the value of optimality analyses, the interdisciplinary nature

of mathematical/cognitive psychology leads to a social problem in presenting them. The

problem is illustrated by the following common pattern:

Researcher A has an optimality analysis of some phenomenon P, showing

that P arises from optimizing measure M. S/he says that previous work by

researcher B optimized measure N, but by optimizing N, the conclusion P
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was implicit in the premises. Then researcher A proceeds to optimize M,

and shows that P emerges as a result. Was the conclusion P implicit in A’s

premises, or wasn’t it?

What is never discussed is exactly what it means to say that a conclusion is implicit in

a set of premises. Any mathematical result has to be equivalent to or strictly weaker

than the assumptions on which it is based; deductive reasoning can only move downhill

or sideways, not up. This fact applies equally to both of our hypothetical researchers

above. If either finds that their conclusion is not implicit in their premises, then the

result is wrong. What we learn from the whole exercise is the fact that the conclusion

is implicit in those premises – a fact that would not have been obvious to someone who

had not studied the issue in detail. To the extent that Researcher C is interested in

phenomenon P, and does not see the implication immediately, C has the potential to

learn something of value from either result. Both A’s conclusions and B’s were implicit

in the premises from which they began, and both results are potentially valuable to C, or

to one another. The fact that all mathematical results are “trivial” in this fundamental

sense does not mean that they appear trivial to our primate brains, or that nothing

can be learned from them. Mathematics pervades the sciences, not because it has a

magical ability to demonstrate conclusions from nothing, but because it has the ability

to clarify the relationships between different claims, however similar or different those

claims intuitively appear.1

Optimality analyses provide a valuable clarification of the relationships between ideas,

but in interdisciplinary fields such as ours, they suffer from a brutal catch-22: (a) op-

timality analyses are inherently mathematical; (b) mathematical results are inherently

1The mathematician Jerry Bona is quoted as saying “The Axiom of Choice is obviously true, the
well-ordering principle is obviously false, and who can tell about Zorn’s lemma?” The quote is a joke;
he knew the three statements had been proved equivalent, but their content appears so different that
the equivalence is not obvious. Until one has studied the issue in detail.
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“trivial,” in the fundamental (but unimportant) sense above; (c) the perceived trivial-

ity of any mathematical result increases in proportion to the clarity with which it is

expressed; (d) as the perceived triviality of a result increases, its likelihood of being pub-

lished decreases; (e) the relationships described in (c) and (d) are unbounded, as a result

of item (b).

In short, our lack of any principled methods of evaluating optimality analyses other

than their perceived non-triviality has tipped the incentives toward obfuscation rather

than clarification. Through the best of intentions, we have been penalizing our colleagues

in proportion to the clarity with which their results are expressed. No one is to blame

for this, but it is important that we recognize it openly and honestly as an incentive that

has influenced mathematical work in our field. Only by doing so can we hope to align

our field’s incentives with the proper use of mathematics: as a tool of clarification, rather

than obfuscation.

So, are there any principled standards by which different optimality analyses might

be evaluated? Can we develop methods that usefully supplement intuition, without

requiring us to discard intuition entirely? How on earth are we supposed to decide what

constitutes an appropriate choice of “first principles”? This is an impossible problem,

but it need not be solved completely. Any constraints would be better than nothing.

The field of logic known as “reverse mathematics” has faced a similar problem. What

are the proper axioms for the foundations of mathematics? This too is an impossi-

ble problem, seemingly solvable only by vague intuition and verbal argument between

university-dwelling primates. The field’s solution is delightfully tricky. Rather than

asking which first principles (axioms) are the most self-evident (a recipe for unending

arguments) simply leave aside the issue of self-evidence, and study first principles in re-

verse. At a sufficiently low level of abstraction, the distinction between “axioms” and

“theorems” disappears: they are all just well-formed sentences in a formal language.
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First principles (axioms) can therefore be studied and categorized just like any other

mathematical object: by studying which “second principles” (theorems) they imply, and

much more strangely, which second principles imply them – the clever trick from which

the field derives its name. Reverse mathematics evaluates first principles, not a priori,

but by using second principles as fuel.2

In experimental psychology, our objects of study are evolved organisms. Optimality

analyses are one way of addressing “why” questions about such organisms. An optimality

analysis consists of:

1. Some feature of a phenotype.

2. A proposed metric of quality.

3. A demonstration that 1 is optimal with respect to 2.

The 1st item is a choice of research topic, the 2nd is a choice of “first principles,” and the

3rd is the result. Science is large, and there’s no point constraining item 1. The dictates

of correct mathematics constrain item 3. Item 2, however, is large source of wiggle-room

for the researcher, but optimality analyses are valuable nonetheless. How can different

choices of this metric be judged? Rather than debate over the most self-evident choice

of 2 (a recipe for unending arguments), suppose we simply take such choices at face

value, and examine their strength “empirically,” by some independent standard. Since

our objects of study are evolved organisms, one natural standard suggests itself: a trait

(e.g., Weber’s law) may be optimal by some measure M , but if that trait does not or

2This is a painfully incomplete description of one of the most fascinating (and undeservedly obscure)
areas of mathematical logic. I will resist the temptation to ride off on a digression unrelated to the topic
of this paper, but one detail is too interesting to omit. Perhaps the field’s most startling lesson is that,
of the well-known theorems of mathematics thus far examined, the majority are provably equivalent to
one of five statements, while most theorems one learns below the graduate level are equivalent to one of
the weakest three. This is startling, to say the least. The interested reader can refer to Simpson (2009)
for the gory details.
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cannot evolve under selection for M , then its optimality with respect to M is of little

relevance to our understanding of evolved organisms.

This is not a silver bullet, and it does not tell us what the “right” choice is. How-

ever, it allows optimality analyses and the “first principles” on which they are based to

be evaluated in reverse: not by their a priori appeal, but by independent standards –

standards treated as logically prior to the first principles themselves, not in some objec-

tive sense, but within the limited context of evaluating those principles relative to one

another. However imperfect such standards may be, it is worth searching for them, given

the central importance of optimality analyses (and engineering analyses more generally)

as a means of addressing “why” questions in biology. Further, the goal is constructive,

not destructive: it is an attempt to improve our methods of evaluating these results, not

an argument that existing results are wrong.

So, we have multiple optimality analyses. Can we meaningfully assess their strength

relative to one another? What, if anything, would we learn from such an exercise? Who

knows? Let’s see.

3.2 Selection for phenotypes

Modeling selection from scratch presents a researcher with many degrees of freedom.

How should the phenotype be modeled? What is the space of possible phenotypes? For

which metric should the simulation select? Fortunately, none of these degrees of freedom

arise when evolvability is used as a method of assessing optimality analyses themselves.

Each optimality analysis has made the majority of such decisions individually. This

is a general property of assessing different candidate solutions by a common standard.

In building a car, there are similarly many degrees of freedom. However, in assessing

the speed of cars relative to one another, one only needs to provide a race track, and

28



Evolvability Chapter 3

assure that the same race track is used for the assessment of each. To be fair, a car

manufacturer might argue that a particular choice of race track biased the results against

his particular model, so a fair test should involve multiple competitions on as many

different courses as possible, in rain or shine, under both quantitative and qualitative

variations in unimportant details.

This is the strategy we have pursued in the evolvability analyses of this section.

The simulations are written in Python, and their full source code is available in the

supplementary materials, accompanied by instructions for running them oneself. An

attempt was made to adhere to the following design principle: faced with an unclear

decision of how to implement some detail of mutation or selection, do not choose either.

Rather, implement both alternatives, and provide a configurable option to the user. A

full list of these options can be produced by running ./selection --help from the

source directory.

This strategy leads to a rather large set of options. Varying each individually would

lead to an unhelpfully large set of figures, so we will pursue the strategy of examining each

of our three metrics under two sets of parameters, which we will call the “most flexible”

and “least flexible” set. The meaning of these terms is as follows. Many configuration

options arose from unclear choices of how to implement mutation. Faced with any such

choice, at least two alternatives were implemented. For example: suppose each individual

phenotype is specified by 20 dots, the “litter size” in each generation is 32, and the

probability of a mutation (in a given dot, of a given offspring, in a given generation) is

1/10. Each of these numbers is a configurable parameter, but even having made these

choices, there are a number of ways in which mutations could affect the phenotype. Four

such choices are listed below, under the names given to their corresponding command-line

options:
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1. allow-crossing: Our phenotypes are specified by a set of “dots” in a continuous

interval. Suppose some phenotype contains 20 dots, two of which are located at

41.6 and 42.0. A mutation then occurs in the latter, and the magnitude of that

mutation is drawn from a normal distribution. Suppose the value we draw is −0.5.

Should the dots be allowed to cross? That is, should the new locations of these

two dots be 41.5 and 41.6, or should they be 41.6 and 41.6 + tiny, for some fixed

value of tiny that represents the minimum distance between any two dots? The

former possibility belongs to what we will call the “most flexible” option set, while

the latter belongs to the “least flexible.” If the user does not specify this option, it

defaults to the most flexible.3

2. allow-drift: This parameter determines how to compare phenotypes with equal

fitness. In selecting for (say) the minimax metric, mutations that effect the phe-

notype without affecting its worst case relative error will have the same fitness

as measured by the minimax metric. In case of a tie, this parameter determines

whether to prefer the status quo, or instead select randomly among the tied phe-

notypes. The latter option belongs to the “most flexible” option set, since it makes

a larger number of unpredictable choices than the alternative.

3. allow-jitter: This parameter specifies whether small mutation-independent jitter

should be injected into phenotypes. In a phenotype with 20 dots and a mutation

probability of 1/10 per dot per generation, suppose 2 dots receive mutations in a

given generation. If this option is set to “no,” then the phenotype will differ from

3Though these option sets are varied in the results presented below, we face the additional goal of
helping the user by providing sensible defaults. As such, if the user fails to specify an option, it will
generally default to the “most flexible” value, if such a determination makes sense for the option in
question. This choice was made so that however variable the results appear when running with all of
the defaults, the results will generally be more predictable when specifying a larger number of options.
The goal is that the simulations should appear in their most vulnerable state when a user runs our code
without changing the defaults. The question of which parameter values are more “flexible” is ultimately
a judgment call, but this principle should help the reader to understand why various choices were made.
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its parent only in those 2 dots. If this option is set to “yes,” then in addition to

those 2 mutations, each dot in the child will receive a small amount of jitter, whose

value is either −tiny, 0, or +tiny, for a value of tiny that is small relative to the

mean effect of a mutation. The value of “yes” for this option belongs to the “more

flexible” option set. In a sense, this parameter can be thought of as determining

the phenotypic similarity of identical twins.

4. init: Specifies whether the initial (1st generation) phenotype should be chosen by

randomly allocating dots, or by placing them in a fixed, uniform spacing. Since

each region within the continuous interval is treated the same by either rule, either

rule leads to an initial phenotype that is very far from Weber’s law. This can be

seen most clearly in the time-lapse videos included in the supplementary materials.

This option can be set to either uniform or random, and the latter belongs to the

“most flexible” option set.

In each generation we choose one winner from which to breed. Doing otherwise would

not change the fitness assigned to any given phenotype by any given metric, so it is not

likely to change the performance of different metrics relative to one another. However,

it would slow down the overall process of selection.4 This is a helpful choice for our

purposes, since the goal is not to simulate every detail of natural selection in the wild,

but to examine the evolvability of Weber’s law relative to different metrics, each of which

it optimizes individually. The following graphs demonstrate the dynamics of selection

for each of these metrics, under both option sets described above.

4Also on the topic of speed, an interesting note: The code has an option called parallelism, which
can be set to either of two parallelism implementations, or serial, a third option that only uses one CPU.
Generating and scoring multiple children in parallel dramatically sped-up selection in early versions of
the code. However, after seeking out and optimizing various performance bottlenecks, the code now runs
quickest without parallelism. This is not an uncommon phenomenon in programming, but it is rather
surprising when one first encounters it. To say the least, the circumstances under which parallelism
improves an algorithm are somewhat more limited than we often realize.
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Figure 3.1: The behavior of our three metrics under selection, relative to the “most flexible”

option set. Each plot shows the Euclidean distance from Weber’s law over 20,000 generations.

Weber’s law is the optimum of each of these metrics, but it does not evolve equally with

respect to each.
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Figure 3.2: The behavior of our three Weber-metrics under selection, relative to the “least

flexible” option set. As in the most flexible option set, the minivar metric is considerably

more capable of approaching its own optimum. Notice that the sudden drop in minivar is not

a macromutation; minivar shows the same pattern of behavior in figure 3.1.
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Figure 3.3: Final phenotypes for each metric, under the “most flexible” option set, for the

runs pictured in figure 3.1. Each metric’s deviations from exact Weber’s law take a different

form. (1) Minimax focuses only on the highest peak, so as it approaches Weber’s law, one

observes large deviations in unpredictable locations throughout the sensory system’s dynamic

range. (2) Minivar’s deviations from Weber’s law are minimal. (3) Totalre consistently shows

extreme deviations from Weber’s law for small stimuli, but remains approximately Weber-like

for larger stimuli.
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Figure 3.4: Final phenotypes for each metric, under the “least flexible” option set, for the

runs pictured in figure 3.2. The final phenotypes for each metric are similar to figure 3.3, but

the deviations observed in minimax are more pronounced. While the optimum of each metric

is Weber’s law, the direction in which each metric approaches “exact Weber” shows deviations

from it that are qualitatively consistent between the most and least flexible option sets.
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Figure 3.5: Even when comparing identical initial phenotypes, there is the appearance of an

unequal (thus, unfair) starting point between the three metrics, (e.g., in figures 3.1 and 3.2).

This is caused by the different behavior of each metric in the first few generations. These

images show the first 20 generations of the runs from figure 3.2. Note (a) the equal starting

points and (b) the different initial behavior. The phenotypic changes that cause this behavior

for each metric can be seen more readily in the time-lapse videos available in the supplemental

materials.
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In each case, we observe behavior that may not have been obvious from the optimality

analysis alone, but which makes perfect sense after the fact, and serves to illuminate each

optimality analysis individually. First, consider the minimax metric. The minimax metric

evolves erratically and slowly at one extreme, and fails to approach its own optimum at

the other. In both cases, this results from its focus on a single dimension of phenotypic

variation: the worst-case relative error. Any mutation that would push minimax closer to

its own optimum is entirely invisible to it, unless that variation also happens to improve

the worst-case performance of the sensory system.

In figure 3.2, minimax shows a kind of downward-staircase behavior. The reason

is as follows: almost immediately, the minimax metric finds a series of mutations that

split its tallest peak into two or more shorter peaks. This improves the phenotype by

its own standard, while leading it further away from any phenotypes obeying Weber’s

law (shown in figure 3.5). Having gone slightly down hill, the phenotype then promptly

gets stuck in a local minimum, like a clumsily-tossed bowling ball, and never reaches its

own global minimum: Weber’s law. It can only jump out of these local minima through

a “macromutation.” This is the downward staircase phenomenon shown by minimax in

figure 3.2. The minimax metric can only improve by a long-jump from the local minimum

in which it is stuck, to another far away location that happens to be lower. As figure 3.2

shows, this occurs rather infrequently, and with minimal effects. The minimax metric

thus performs fairly poorly under selection, and its behavior is not particularly robust to

changes in the parameters of selection.5

The totalre metric (our integrated relative error measure from earlier) performs poorly

as well, but in a different way. Though the ability of totalre to reach its own optimum

5To be clear, this is not intended as a criticism of Portugal and Svaiter’s (2010) result, or their
strategy of model-building. In fact, our own derivation of the same result above was presented in the
original version of this manuscript, before learning of Portugal and Svaiter’s paper. As such, the clumsy
performance of the minimax metric under selection is just as much a criticism of myself as it is of them.
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is incredibly poor (by the standard of figures 3.1 and 3.2), it carries out its failure in

a more smooth manner than minimax (visible in figures 3.3 and 3.4). This is because

totalre focuses its attention on all dimensions of phenotypic variation, while minimax

focuses only on a single dimension. Minimax therefore fails to capture many of the

mutations that would have led it toward its own optimum. In contrast, totalre generally

captures all such mutations, but it suffers from a deficit of its own. As a phenotype

approaches Weber’s law under selection for totalre, selection becomes much weaker in

the lower part of the sensory system’s dynamic range. Why? It is a simple property of

the N -dimensional “mountain” defined by totalre, though an analysis of the mountain’s

peak in our discussion of optimality failed to reveal this simple property to our intuition.

Totalre is based on area, and as one approaches Weber’s law, the areas at the low end

of the dynamic range become thinner and thinner. But as they become thinner, they

contribute less to the totalre metric, so the selection pressure acting on those thin peaks

becomes weaker, causing them to become taller, not by selection for taller peaks, but

because selection increasingly begins to neglect them. Nonetheless, totalre arrives at a

phenotype that is somewhat Weber-like in the higher parts of its dynamic range. Of

our three metrics, totalre is least competent at evolving Weber-like behavior for lower

stimulus magnitudes, while minimax is least competent at evolving Weber-like behavior

over any consistent subset of its dynamic range. This can be observed most clearly in

the time-lapse videos available in the supplemental materials.

So, having examined our three metrics at these two extremes, what have we learned?

Each of our combatants behaved differently, but the clear winner at both extremes was

the uncultured underdog: minivar – the one explicitly constructed as an example of a

bad optimality analysis. The minivar derivation was far too short to deserve its own

paper, and it derived Weber’s law from a metric that appeared entirely ad-hoc and

unmotivated to our intuition. However, as we have just seen, the unmotivated metric of
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this unconvincing optimality analysis is miles ahead of the minimax and totalre metrics

when it comes to selection, both in its ability to reach its own optimum (the sensory

systems obeying Weber’s law), and in its ability to smoothly take advantage of any

variation in the phenotype that happens to push it closer to that optimum.

The point is not to suggest that the minivar optimality analysis is somehow “better”

than the minimax optimality analysis, or any other. To the contrary, the author finds

the minivar derivation extremely unsatisfying and inelegant. But “unsatisfying” and

“inelegant” are the vocabulary of the primate brain; concepts natural selection does not

understand. However, leaving aside the minivar derivation – the unsophisticated clothing

in which the minivar metric was dressed – the metric itself has an elegance of its own.

We may not have expected it to win, but hindsight is 20-20, and it is not difficult to see

why it did. It is a detail we already mentioned above.

None of our metrics can predict which mutations will occur, but the minivar metric

is superior to the competition in that it can smoothly and efficiently take advantage of

any mutation that happens to push it closer to its own optimum. The other two metrics

can be given a lengthier and more elegant mathematical spin, but unlike minivar – the

less cultivated underdog – they are far less capable of reaching their own optima under

selection. Why does this matter?

A “metric” is simply a concise description of a possible selection pressure. Natural

selection does not select for relative error minimization, or inference under uncertainty, or

even vision, but for a single metric: gene replication. Mathematically described metrics

or verbally described selection pressures are simply helpful ways of summarizing engi-

neering problems that sometimes overlap with selection’s single overarching goal of gene

replication. But because this process does not literally select for the specific metrics

we use to describe it, the metrics that do best describe it (among those with a fixed

optimum) are arguably the ones capable of capturing any existing variation that pushes
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them closer to their own optimum. This is at least one intuition-independent standard by

which an optimality analysis may be judged. Though its accompanying derivation is least

impressive academically, the minivar metric is superior to the others in this respect. The

lesson is simple and unprofound after the fact, but easy to forget in our everyday thinking

about selection, whether mathematics or verbal argument is our preferred language for

doing so.

3.3 Selection for embryology

In scientific explorations of any phenomenon – empirical or theoretical – one must

face the constant fact that one’s conclusions (and the premises from which they were

derived) were at every moment subject to all the ugly laws of primatology. This cannot

help but make one doubt one’s own results. However convincing or unconvincing the

reader finds the results and arguments above, s/he should worry that they were simply

the result of one such primate – the author – attempting to make a convincing point to

his colleagues. Were that the case, the author would be the least qualified individual to

make this judgment. As such, having found ourselves in the previous section attempting

to make a convincing argument, we feel obligated thereafter to undercut that argument

as much as possible, exploring more exotic ways of thinking about selection until we

find one that breaks every intuition we built-up from exploring the models above, and

presenting the results of this exploratory process whether they appear to reinforce the

above conclusions, or refute them, or teach us an entirely unrelated but equally interesting

lesson.

Toward that end, we will briefly build and examine an entirely different and rather

exotic model of selection – one unlike the above in as many ways as possible. As scientists,

we cannot step outside the matrix of the primate brain, but we can do our best, by
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purposefully breaking our own arguments and results as soon as this matrix generates

them. The shattered pieces of such arguments are of greater scientific value than the

original intact edifice, since those pieces come slightly closer, however imperfectly, to a

manner of scientific exploration unencumbered by our own inevitable status-striving and

self-deception. In the interest of honest exploration, let’s do that.

The model of selection above was a model of selection for phenotypes, allowing each

phenotype to vary along each of its degrees of freedom. Pause for a moment and recon-

sider the previous sentence. In calling something a “degree of freedom,” we have (silently

and implicitly) made a rather strong claim about embryology. Any such implicit claim

is unavoidable in mathematical models or in verbal argument, since either discussion

makes implicit assumptions about the set of possible phenotypes. Yet skeletal models

of a phenomenon remain a valuable way of illuminating the relationships between ideas.

Still, explicit is better than implicit, so rather than make bad assumptions about embry-

ology implicitly, let us make such bad assumptions explicitly. As we saw above, a toy

sensory system obeying Weber’s law can be represented (in the discrete dialect) as a set

of points of the form xk = x0(1 + ε)k, where ε is the Weber fraction. In the discussion

above, we have entirely failed to address what is perhaps the most striking feature of

a representation of this form: its structural simplicity. All of our toy sensory systems

are “simple” as models, but the subset obeying Weber’s law is simple in a different way:

they are simple to build. Such toy sensory systems can be generated by a single oper-

ation: repeated multiplication by a constant. In studying Weber’s law, empirically or

mathematically, one cannot help but feel that sensory systems with this property possess

a kind of self-similarity, vaguely hinting at some simple regularity in the underlying em-

bryological process that builds them. These intuitions are difficult to express formally,

so (to the author’s knowledge) no attempt has been made to formally examine Weber’s

law through this sideways lens: its structural simplicity.
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As before, we need not solve the impossible problem of modeling the embryological

development of an arbitrary sensory system in perfect detail. We only need a skeletal

language for making the above intuitions precise. Whatever the details of its embryolog-

ical development, Weber’s law simply is structurally simple in this way: it is massively

simpler to describe than we have any reason to expect a relationship between sensory

magnitudes and jnds should be. So let us revisit the principle from the beginning of the

paper: when a good model is impossible, a bad model is perfect. Here is a (carefully

crafted) bad model.

By “an embryology,” we will mean an ordered list of composable functions, serving

as a simple representation of the algorithm by which a phenotype is built. This list

of functions can be thought of as an assembly line. Our model phenotypes will be the

same as in the discussion above: a finite set of dots in a continuous interval. This time,

however, we will not examine the set of possible phenotypes directly, but rather the set of

possible embryologies. We will build each candidate embryology – each list of functions –

from a set of simple primitives. Our model phenotypes are sets of numbers, so a sensible

choice of primitives would be functions that map numbers to numbers. We will choose

the simplest such functions as our primitives: add, mul, and pow. We want to allow both

quaLitative and quaNTitative mutations, and the simplest way of doing so is as follows.

Each primitive will be treated as a function of one argument, with a continuous

“knob” attached. That is, in selection for embryologies, the primitives add(x,c) = x+c,

mul(x,c) = x*c, and pow(x,c) = x^c are each thought of, not as two-parameter func-

tions, but as continuous families of one-parameter functions, one for each c. An embryol-

ogy will be an ordered list of such functions, and each primitive in that embryology will

have its own binding of c to some value. Small changes to the value of c in a particular

slot of a particular embryology will allow us to discuss “quaNTitative” mutations, while

changes to an embryology’s list of primitives will allow us to discuss “quaLitative” mu-
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tations. Both types of mutations will modify the algorithm by which the phenotype is

built. For example, a possible embryology would be:

[add(x, -0.35), mul(x, 2.14), add(x, 1.20)]

Given this embryology, the phenotype is constructed as follows: first, reduce the em-

bryology to a single function by recursively composing all the functions in the list. It

is useful to refer to both the list of functions and the single function it reduces to as

“an embryology,” and we will do so in what follows when the meaning is clear from the

context. An embryology thus acts like a pipeline, starting at the right side of the list and

moving left:

embryology: add( • ,1.20) −→ mul( • ,2.14) −→ add( • ,-0.35)

A phenotype is then constructed by recursively applying the embryology n times to

a “zygote” value x0, in order to generate the set of “dots” xk that specify a particular

phenotype. The value x0 is fed to the pipeline to produce x1, which is fed to the pipeline to

produce x2, and so on. Note that the resulting phenotypes need not be at all “simple” in

the same sense as Weber’s law, since the resulting pipelines can essentially be arbitrarily

complex polynomials (decreasing in some places, increasing in others, with arbitrary

slopes along the way). That said, this is not simply a model in which the embryologies are

polynomials, and their parameters are mutated directly, since such a model involves only

“quantitative” mutations. The list representation in terms of simpler primitives allows

us to represent an embryology as a “computation,” and to mutate that computation

in both quaNTitative and quaLitative ways. The choice of primitives determines how

mutations walk us through the larger space of functions – the space whose points are

different algorithms for building a toy phenotype.

What types of mutations should we allow? Having decided on our primitives, the

choice is fairly straightforward. A quaLitative mutation is simply one of the natural
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operations on a list-like data structure: insertions, deletions, swaps, replacements, etc.

A quaNTitative mutation is simply a mutation in the parameter c of some function in

the list. To illustrate, reconsider our example embryology above.

A quaNTitative mutation might turn the item mul(x,2.14) into mul(x,2.32), by

adding the quantity 0.18 to the “knob” parameter c. Suppose the value of 0.18 is deter-

mined by drawing it from a normal distribution. Which normal distribution? A sensible

choice for the mean is zero, since the smallest mutation is no mutation at all. The stan-

dard deviation is a less clear choice, but two reasonable alternatives suggest themselves:

it could be either (a) a fixed number independent of c, such as 1
10

, or (b) a fixed proportion

of c, such as c · 1
10

. Since the best choice is unclear, both possibilities were implemented,

following the same principle as before. In the code, these types of mutation are called

uniform and scaled, respectively. They are both quaNTitative mutations. The value

given as 1
10

above is configurable using the option sd-ish.

A quaLitative mutation, however, might turn the list [..., mul(x,2.14), ...] into

the list [..., mul(x,2.14), mul(x,2.14), ...]. More generally, instead of inserting

a clone, a randomly selected primitive with a random parameter may be inserted. Fur-

ther, we allow for the list items to be deleted by mutations, which might turn [f,g,h]

into [f,h]. Mutations can also swap adjacent elements, turning (say) [f,g,h] into

[f,h,g]. Finally, we allow for the possibility of changing a primitive without changing

its parameter, so a list item mul(x,2.14) may mutate into add(x,2.14) or pow(x,2.14),

etc.

The toy language above is the result of a few simple ideas: (a) an “embryology” is a

computation that builds a phenotype, (b) computation is the composition of functions,

and (c) by item b, different computations can be represented as different compositions of

different functions. The set of possible toy embryologies is large, but extremely simple to

understand. Once we decided on a set of primitives, the set of possible mutations (both
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quantitative and qualitative) turned out to be a fairly straightforward decision, requiring

fewer choices along the way than we might have expected.

So, what now? There are two overlapping goals. The narrow goal is to examine

whether Weber’s law evolves under selection for any of our metrics from earlier. The

more broad goal is to explore this oddball model of selection, and its competence in

climbing hills and finding optima. What on earth happens under selection for different

embryologies? Can we learn anything of value? Let’s see.

The first thing one notices is that selection for embryologies is both much faster and

much slower than selection for phenotypes. There are typically significant stretches of

time in which nothing seems to happen. These periods of stasis are punctuated by what

appear to be massive instantaneous changes – macromutations – at least when viewed

from the “geological time scale” of the graphs in the previous section. At first, this

seemed to suggest that the algorithm was deeply broken, or at least deeply uninteresting,

and therefore unlikely to be worth even a brief discussion. However, a more fine-grained,

generation-by-generation examination reveals more interesting dynamics. As the code

runs, it prints out a log summarizing the winner in each generation, with respect to

whichever metric we are examining. This log was written primarily for debugging, and

for anyone else who might be running the code. However, the raw log output itself often

turns out to be a more effective way to convey the dynamics of embryology selection than

a graph showing how some scalar quantity varies with respect to another. The following

is an excerpt from the middle of a run, examining embryology selection for our old friend

the minivar metric. The numbers on the left are just the values of that metric over time;

the specific values are not important, but lower is better.6 In light of the discussion

above, this excerpt from the raw log output gives one a surprisingly good understanding

6Note: each line represents the overall “winner” among all the offspring in a generation, which makes
beneficial mutations appear rather common. However, this is simply selection in action. That is, each
line represents a single round of mutation and selection, not simply mutation.
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of the dynamics one sees under selection for embryologies.

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [pow(x, c = 3.68)] none:none

0.138620661563 [mul(x, c = 0.73), pow(x, c = 3.68)] qualitative:insert

0.138620661563 [mul(x, c = 0.73), pow(x, c = 3.68)] none:none

0.138620661563 [mul(x, c = 0.81), pow(x, c = 3.68)] quantitative:relative

0.136983156340 [mul(x, c = 1.02)] quantitative:uniform,qualitative:delete

0.136983156340 [mul(x, c = 1.02)] none:none

0.136983156340 [mul(x, c = 1.02)] none:none

0.094783182253 [mul(x, c = 1.44), mul(x, c = 1.02)] qualitative:insert

0.089452371115 [mul(x, c = 1.44)] qualitative:delete

0.089452371115 [mul(x, c = 1.44)] none:none

0.084289995949 [mul(x, c = 1.41)] quantitative:relative

0.084289995949 [mul(x, c = 1.41)] none:none

0.069470091540 [mul(x, c = 1.34)] quantitative:relative

0.069470091540 [mul(x, c = 1.34)] none:none

0.045299720100 [mul(x, c = 1.26)] quantitative:uniform

0.036167891853 [mul(x, c = 1.23)] quantitative:uniform

0.036167891853 [mul(x, c = 1.23)] none:none

0.036167891853 [mul(x, c = 1.23)] qualitative:swap

0.021305009638 [mul(x, c = 1.19)] quantitative:relative

0.021305009638 [mul(x, c = 1.19)] none:none

0.021305009638 [mul(x, c = 1.19)] none:none

This raw data-dump of a rather exotic selection model contains a surprising number of

familiar lessons about selection. First, at the beginning of the run, we see the status quo

winning every generation; the vast majority of mutations are not beneficial. Then, the

status quo is interrupted, not by a macromutation or even by a minor improvement, but
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by drift. The first insertion above happened to have an identical fitness by the minivar

metric – at least within the precision of the log output above – and it happened to have

been selected as the winner by pure chance. However, that small amount of variation

gave selection more to work with, and things start to get interesting. The first visible

improvement is small, but it resulted from two simultaneous mutations: a deletion and a

minor quantitative change. We then see a succession of small changes. First, the pheno-

type transitions from [mul(x, c = 1.02)] to [mul(x, c = 1.44)], but it does so in a

funny way: neither by many small quantitative mutations, nor by a massively improbable

“macromutation,” but by two small qualitative mutations in different generations, each

of which had fairly minor effects on the overall structure of the phenotype, but observable

effects on fitness. We then see the gradual accumulation of small, quantitative changes

in each generation, with an occasional none:none representing a generation in which all

available mutations happened to be harmful. Those quantitative changes push the num-

bers on the left toward their theoretical optimum, without any changes to the phenotype’s

qualitative structure. In the end, we have a simple embryology: [mul(x, c = 1.19)]

representing an algorithm that recursively multiplies its toy zygote x0 by a fixed number

(1 + ε), for some ε slightly greater than 0. In the end, the toy embryology has built a toy

phenotype obeying Weber’s law, using a model of selection seemingly different in every

way from our original model of selection for phenotypes.

Compared to selection in the real world, the excerpt above has clearly got the speed all

wrong; selection in real organisms is surely much slower, by any measure. But despite its

wildly unrealistic speed, we observed a number of interesting phenomena – more than we

expected to observe from this simple toy model of embryology selection. The earlier model

of phenotype selection was instructive, but it had a rather limited imagination: selection

could only move dots left and right, by relatively small amounts. In this more exotic

model, selection was equally constrained by the dictates of fitness. However, by examining
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not the phenotypes themselves, but the algorithms that build them, our model gained an

interesting ability: the ability of small quaNTitative changes to be supplemented, not by

miraculously restructuring macromutations, but by equally small quaLitative changes:

insertions and deletions of primitives in the embryological “computation.”
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Discussion

So, do the above results teach us anything of value about real-world phenotypes, or

real world embryologies? Maybe, but we would not argue the point with any confidence.

However, they do teach us something about Weber’s law. The optimality and evolvability

analyses above offer an imperfect but unambiguous proof-of-concept that this widespread

structure is likely to be an adaptation by natural selection: a feature, not a bug. We

began by demonstrating that this structure is “optimal” by three different measures of

quality: minimax, minivar, and totalre. These are three different mountains with a

shared peak: the toy sensory systems obeying Weber’s law. Such optimality analyses are

a helpful illustration of the relationships between ideas, but the differences between them

are difficult to interpret by any means other than intuition. We then compared these

metrics under a simple model of selection, examining the ability of each to reach its own

optimum. In doing so, we found that the clear winner under selection was the unsophis-

ticated underdog, minivar, and argued that its success lied in its ability to efficiently take

advantage of any mutations that happened to push it closer to its own optimum. Having

developed a supplement to intuition by studying phenotype selection, we attempted to

break those new intuitions by building a model of selection that was different in almost
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every way. This final analysis focused on selection between embryologies – the algorithms

by which phenotypes are built. This analysis offered a new way of understanding the

structural simplicity of Weber’s law, and additionally demonstrated that Weber’s law is

evolvable under this more exotic type of selection as well. In summary, the results of

this paper provide an imperfect but unambiguous demonstration that this widespread

feature of the natural world – observed in multiple sensory systems in a diverse array of

species – is both optimal and evolvable, and achieves each in a variety of senses.
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Epilogue: The kernel of an old

debate

Throughout this paper, we have thus far failed to address an important debate in the

surrounding literature: the issue of logarithmic vs linear representation. When Weber’s

law is observed in a sensory or cognitive system, it is often argued that the system in

question maps objective quantities to their logarithms. The issue dates back to Fechner

(1860), who first argued that Weber’s law implies a logarithmic representation of sensory

magnitude. This view is common in the modern literature (Dehaene, 2003; Portugal &

Svaiter, 2010; Sun, Goyal, & Varshney, 2012), while others have argued that a linear

representation is more likely (Gallistel, 2011; Gibbon & Church, 1981), or that the im-

plication need not hold (Laming, 2010). A question of this age is unlikely to be resolved

any time soon. Faced with such a difficult question about the brain, it is often instruc-

tive to examine a real world analogue in more well-understood, human-made computing

systems. However different the two may be, doing so can help to sharpen our thinking

by teaching us what is possible in computing, and by giving us a simplified sandbox in

which to determine whether there is, in fact, any genuine disagreement. Can we find
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a real world example in which Weber’s law – the linear scaling of jnds – is found, but

Fechner’s law – the mapping of quantities to their logarithms – is not?

The “kernel” of an operating system is a piece of low-level software that deals directly

with the underlying hardware of the machine. It does so in order to provide an abstraction

layer between the hardware and the rest of the code above it, so that everyday programs

can simply issue high-level requests like “create a file,” “give me a pointer to 1024 bytes

of free memory,” or “execute this code,” without worrying about the low-level details of

how this plumbing is implemented.

One of the many plumbing tasks a kernel has to perform is memory management –

allocating different subsets of the system’s available memory to different tasks, so that

tasks running concurrently or in parallel do not step on each other’s toes, writing to

memory that another task is already using to store execution state or data. Allocating

free memory is such a fundamental task in a multitasking computing system that the

algorithms for carrying it out have been heavily optimized over time. Perhaps the most

heavily optimized such system is found in the Linux kernel.1

The heart of the Linux kernel’s memory management subsystem is a function called

kmalloc. The kernel allocates memory in “pages”: chunks of a fixed size, usually 4

kilobytes (Rusling, 1999). To simplify and speed-up the process of memory allocation,

kmalloc will only allocate pages in blocks that are a power of two in size (see Rusling,

1999, chapter 3). When the kernel receives a “stimulus” in the form of request for (say)

60 pages of memory, that stimulus is mapped to an “internal representation” in the form

1In 2014, Linux ran 95.2% of the world’s top 500 supercomputers (Prometeus GmbH, 2014), up
from 87.8% in 2007 (Vaughan-Nichols, 2007). Linux powers 76.6% of smartphones worldwide as of 2014
(International Data Corporation, 2015); Android is a derivative of Linux, as is Chrome OS (Vaughan-
Nichols, 2012). Linux runs 60% of web servers, as estimated by a competitor (Niccolai, 2008), and is
found on a wide variety of routers, televisions, refrigerators, traffic lights, security cameras, humanoid
robots, and lightbulbs, as well as many of the embedded hardware devices inside consumer PCs (Linux
Devices Archive, 2012). We mention this only to emphasize that the following example was not cherry-
picked from an obscure computing system. In spite of its lack of a visible presence in consumer markets,
Linux is arguably the most widespread general purpose operating system in the history of computing.
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of a request for 64 pages, since 64 is the next highest power of two. As a result, the

Linux kernel’s memory allocation subsystem exactly obeys Weber’s law with respect to

the quantity “number of memory pages requested.” The jnd between two such quantities

is not constant, but scales linearly, in proportion to the absolute magnitude of those

requests.

This concrete example can help to clarify our thoughts surrounding the “linear vs log”

debate in the psychophysical literature. At first, the example appears to align with only

one side of this old debate: While the representation has linearly increasing jnds, it is

not the case that the requested number of pages is transformed into its base 2 logarithm.

On the contrary, the representation is as close to the identity as a map obeying Weber’s

law can be. So clearly, the mapping is linear, not logarithmic. Or is it? What does it

mean to say that a quantity is “mapped to its logarithm”?

To illustrate: a request for 2000 pages of free memory is made, and the kernel maps

this number to 2048, which in a 16-bit binary representation is 0000100000000000. Was

this number “mapped to its logarithm,” or wasn’t it? In one sense, clearly not: log2(2000)

is approximately 11, which is nowhere near 2048. In another sense, yes. The logarithm

of 0000100000000000 is available immediately. This number has a 1 in its 11th slot, with

zeros elsewhere, and log2(2048) is exactly 11. Is the number “mapped to its logarithm”

or is it not? In a precise sense: it is both.

In the same set of bits, we have a linear representation in a binary code, and a

logarithmic representation in a unary code. The unary code is simply the number of

binary digits one must cross to find the one and only 1. Both quantities are represented

simultaneously, in different bases, in the same set of bits. In our field, proponents of

the linear theory emphasize the need for arithmetic operations (Gallistel, 2011). We

agree wholeheartedly. However, in this simple example from the Linux kernel, perform-

ing such operations is trivial in either interpretation: the successor operation in the
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log-interpretation consists of shifting a single bit one position to the left: transforming

0000100000000000 into 0001000000000000, for instance. This is a single machine instruc-

tion in every modern CPU architecture: in x86 assembly it is written sal, for “shift

arithmetic left.” When used on a set of quantities obeying Weber’s law, any such opera-

tion will have two equally valid interpretations: one involving the number itself, another

involving its logarithm.

More detailed examination blurs the distinction even further. The kernel uses the ease

with which the log can be extracted from the representation to optimize page allocation.

Since 2048 is the 11th power of two, it is also the 11th item on the list of page-block sizes

that the kernel is willing to hand out. Exploiting this fact, the kernel keeps an array

called free area whose kth element contains a memory map describing all of the free

and used blocks of 2k contiguous pages of memory (see Rusling, 1999, section 3.4.1, Page

Allocation). Both interpretations are used explicitly, and with zero overhead in switching

between them: the computation of the log is not “computation,” but reinterpretation.

These two elegantly superimposed representations – linear in binary, log in unary –

arise simply from the fact that the quantities involved were powers of n, represented in

base n, where (for the kernel) n happens to be 2. However, as we have seen repeatedly

throughout this paper, Weber’s law can be described in the discrete dialect as a represen-

tation built from successive powers of a different number: (1 + ε), where ε is the Weber

fraction.

Against this background, it is worth questioning whether the disputants on either

side of the “linear vs log” debate are, in fact, in a state of disagreement. Weber’s law

has somehow managed to give sufficient simultaneous evidence of both logarithmic and

linear mappings as to fuel many years of debate over which form the representation really

takes. Is one side crazy? Or are both sides describing the same elephant?

In summary, however Weber’s law works in the nervous system, Weber’s law in the
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Linux kernel works in a way that may shed light on the linear vs log debate in our field.

It is not known at present how something as simple as a phone number is physically

represented in the nervous system, so the issue of lines and logs is unlikely to be resolved

any time soon. However, in what is perhaps the most heavily optimized and performance-

tuned code-base in the world, there exists a principled reason to allocate resources with an

exponential spacing. The resources thus represented are not mapped to their logarithms

in the usual sense. But they absolutely are mapped to their logarithms in an unusual

sense: as a unary representation overlaid on a binary one. No debate over lines and logs

has ever arisen over this detail of the Linux kernel’s memory allocation. But were any

such debate ever to arise, we can confidently say that the valuable time of disputants on

either side might be better spent burying the hatchet, and perhaps sharing a drink over

what is – after all – a shared research interest. Without any need to compromise, it is

possible that both sides are right.
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