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Abstract

Realization and ground state properties of topological superconductors in one dimension

by

Younghyun Kim

Topological superconductors with and without time-reversal symmetry are new phases

of matters which host Majorana zero modes at their ends. The possibility of realizing such

phases in various kinds of materials that are experimentally accessible, in addition to their

unique signatures in simple transport measurements, has brought significant amount of

attention from both theorists and experimentalists in condensed matter physics. In this

thesis, we extend the previous studies on the realization of topological superconductors

and try to answer some of the open questions regarding their transport signatures.

First, we study extensions of the realization scheme based on semiconducting nanowires

proximity coupled to s−wave superconductors [54, 69] by replacing the s-wave supercon-

ductor with high temperature superconductors. We show that significant amount of

induced superconducting gap in a nanowire can be achieve for a special interface geome-

try. The existence of gapless nodal excitations in the cuprate superconductors lead to a

finite lifetime of Majorana zero modes when they are coupled to fermionic bath. We also

consider the topological superconductivity in the Yu-Shiba-Rusinov states in chains of

magnetic atoms at the surface of two dimensional s−wave superconductors with strong

spin-orbit coupling. We study the generalization of the single Shiba state problem into

a multiple Shiba states problem in the presence of spin-orbit coupling. We show that

spin-orbit coupling induces the mixing of Shiba states correspond to different angular

momentum channels and leads to interesting effects such as angular dependence of Shiba

spectrum on the direction of magnetic moment. Based on these newly discovered effects,

viii



we propose new experimental methods to analyze and tune the physical parameters of

the magnetic atom chains which can be applied to the ongoing experiments [62, 70, 79].

Using the formalism developed for a single impurity, we study the magnetic atom chains

with multiple Shiba state bands and present the topological phase diagram.

Next, we study the transport signatures of time-reversal invariant topological super-

conductors which support Kramers pair of Majorana modes. Especially, we explore the

effects of interactions on the transport signatures in tunnel junctions involving Majo-

rana Kramers pairs by considering two types of junction geometries. We first consider

a junction between Majorana Kramers pair and Luttinger liquid. Using renormalization

group (RG) analysis, we study the boundary conditions of the infrared fixed points where

system flows to as a function of interaction strength. In the presence of weak repulsive

interactions in the Luttinger liquid, two channel Andreev reflection is stable in contrast

to the junction between an interacting lead and a conventional s−wave superconductor.

Second, we study the ground state properties of Majorana Kramers pair-quantum dot-

normal lead junction using weak coupling RG and slave-boson mean-field theory. We

find that the Kodno interaction between the lead electrons and the quantum dot and

the Majorana-quantum dot interaction compete each other. We find a new strong cou-

pling fixed point characterized by strong correlation between impurity spin and Majorana

Kramers pair, and we study its signatures in differential tunneling conductance.
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Chapter 1

Introduction

In superconductors where charge conservation symmetry is broken, fermionic quasipar-

ticles, Bogoliubov quasiparticles, are mixtures of electrons and holes. For spinless super-

conductors, a Bogoliubov quasiparticle operator can be written as

γi =
∑
j

ui(j)c
†
j + vi(j)cj (1.1)

where cj/c
†
j is the annihilation/creation operator for an electron at position j. When ui

and vi satisfy the condition ui(j)
∗ = vi(j), γi is equal to γ†i which makes it a Majorana

fermion operator. A superconductor that hosts Majorana quasiparticles at its defects

is called a topological superconductor. In one dimension, topological superconductors

support localized zero energy Majorana quasiparticles, Majorana zero modes (MZMs) at

their ends. There has been a great interest in realizing and detecting MZMs since they

obey the non-Abelian braiding statistics which is a key element for topological quantum

computation [43, 65].

In this chapter, we will review the previous works on topological superconductivity

in one dimension, and establish the background for the later chapters. For more details

1



Introduction Chapter 1

on the subject, please refer to the review by Alicea [4].

1.1 Toy model: Kitaev’s chains

We begin with a toy model [45] for one dimensional topological superconductor which

hosts one localized MZM at each end of it. The model consists of spinless fermions cj

with nearest neighbor hopping and pairing (p-wave) terms. The Hamiltonian is given by

H = −
L∑
j=1

µc†jcj −
L−1∑
j=1

[
tc†jcj+1 + ∆eiθcjcj+1 + h.c.

]
(1.2)

where L is the length of the chain, t is the hopping energy, ∆ is the pairing amplitude and

θ is the superconducting phase. We set t and ∆ to be real. For ∆ = 0, the normal state

spectrum of the above Hamiltonian in momentum space follows cos ka band structure

with bandwidth 4|t|. Here a is the lattice constant used for Fourier transformation.

When µ > |2t|, the ground state of this Hamiltonian corresponds to the vacuum state.

For |µ| < |2t|, once we introduce a small p−wave pairing gap ∆, the spectrum opens

up a gap ∝ ∆ sin kFa at the Fermi momenta ±kF . It turns out that there is a crucial

difference between the above two gapped states that when we put them together, a MZM

arises at the boundary. To see this in more explicit way, we transform a complex fermion

operator cj into two Majorana fermion operators as

cj =
e−

iθ
2 (γ2j−1 + iγ2j)

2
(1.3)

with

γk = γ†k and {γk, γl} = 2δkl. (1.4)

2



Introduction Chapter 1

𝑐𝑗 𝑐𝑗+1

𝛾2𝑗−1 𝛾2𝑗

(a)

(b)
𝛾1 𝛾2𝐿

Figure 1.1: Illustration of the two different phases of Kitaev chain model. (a) Trivial
phase. (b) Topological phase.

In terms of these new Majorana fermion operators, our Hamiltonian read

H = −µ
2

L∑
j=1

[1 + iγ2j−1γ2j] +
i

2

L−1∑
j=1

[(t−∆)γ2j−1γ2j+2 − (t+ ∆)γ2jγ2j+1] (1.5)

Note that the eigenvalue of iγ2jγ2j+1 = 1 or −1 corresponds to filled or empty state for

j’s site, nj = c†jcj = 1 or 0. Now let us consider two special points in the parameter

sapce. First, when ∆ = t = 0 and µ < 0 the ground state can be characterized by

iγ2j−1γ2j = −1 (1.6)

for all j which is a vacuum state for cjs. In this case, two Majorana fermions in the same

site form a pair as illustrated in Fig. 1.1 (a). Next, we consider the case when t = ∆ > 0

and µ = 0. In this limit, the Hamiltonian simplifies to

H = −i∆
L−1∑
j=1

γ2jγ2j+1 (1.7)

3



Introduction Chapter 1

where the ground state corresponds to iγ2jγ2j+1 = −1 for j = 1 to L − 1, see Fig.

1.1 (b). Now one can immediately find that γ1 and γ2L do not appear in the effective

Hamiltonian (1.7), as a result, there are two degenerate ground states corresponding to

two eigenstates of MZMs, iγ1γ2L = ±1. Then, the two ground states can be connected

to occupied/unoccupied zero energy single-particle orbital

d =
γ1 + iγ2L

2
. (1.8)

In principle, the above Hamiltonian is the simplest case for a fined-tuned point in the

parameter space, and one can, in general, have a splitting term iδγ1γ2L analogous to the

wavefunction overlap between two MZMs. However, in the topological phase with finite

gap, this splitting energy will be exponentially suppressed as δ ∝ e−L/ξ for a coherence

length ξ of the system.

We can naturally extend the Kitaev’s toy model into a spin-1/2 case with time-reversal

symmetry: two decoupled chains with p−wave intra-channel pairings. Those two chains

could be time-reversal partners of each other. In this case, the system can support two

MZMs (i.e. γ↑ and γ↓) at each ends. In the presence of time-reversal symmetry, the

splitting term iγ↑γ↓ is not allowed, and the pair of MZMs are protected. These two

MZMs are called Majorana Kramers pair. The realization of this spin-1/2 system with

Majorana Kramers pair requires strong intra-channel pairing while conventional s-wave

pairing is between two different spin channels. We introduce the previous works on the

realization of Majorana Kramers pairs in Chapter 4.

Going back to the original discussion on the single Kitaev’s chain, we have seen

how MZMs can arise in spinless p−wave superconductors. However, in experiment, we

are dealing with spin-1
2

electrons, and it requires clever engineering to realize effectively

spinless topological superconductivity in electronic materials. There has been lots of

4
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efforts to realize the Kitaev’s model based on various materials including topological

insulators [29, 30, 17], semiconducting wires [54, 69], half metallic wires [22, 13, 89],

magnetic atoms at the surface of superconductors and more. In the following section, we

review the proposals based on semiconducting wires. For discussion on proposals based

on magnetic atoms, see Sec. 3.1.

1.2 Realization of topological superconductivity in

nanowires

In this section we review the realization schemes of one dimensional topological super-

conductor using semiconducting nanowires [54, 69]. There have been a lot of successful

experimental efforts [60, 18, 19, 27, 14, 20, 36, 3, 97] on realizing the topological super-

conductivity and detecting the signal of MZMs using semiconducting nanowires due to

the ability to control the carriers easily by applying gate voltages. Devices based on the

nanowires allow us to naturally build a tunnel junction. By covering a part of the wire,

the system becomes normal-topological superconductor junction. Using a gate at the

junction as a tunneling barrier, one can easily tune the transparency of the junction. We

discuss the signatures of MZMs in such tunnel junction setups in the next section.

In the nanowire proposal there are three key ingredients for realizing the effective

Hamiltonian for Kitaev’s spinless p-wave superconductor: 1) one dimensional electrons

with spin-orbit coupling. 2) proximity induced gap from a bulk s-wave superconductor.

3) Zeeman splitting by applied magnetic field. These ingredients can be combined as

illustrated in Fig. 1.2 (a). The model Hamiltonian can be written as

H =

∫
dk

[
ψ†k

(
k2

2m∗
− µ+ ασyk + hσx

)
ψk + ∆ψ↑kψ↓−k + h.c.

]
. (1.9)
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S-wave Superconductor

Nanowire with SOC

B

𝑘

𝐸(a) (b)

Figure 1.2: Schematic set up for realizing topological superconductivity in a
nanowire(a) and its normal state band structure (b).

Here ψ is the annihilation operator for an electron in the nanowire with effective mass

m∗. α is the size of the spin-orbit coupling and h is the Zeeman splitting energy. When

a nanowire is coupled to a bulk s−wave superconductor with finite tunneling strength,

effective pairing gap ∆ is induced by the proximity effect. We will study the proximity

effect for more general cases in Chapter 2. Let us consider the normal state ∆ = 0 first.

In the presence of both spin-orbit coupling and Zeeman term, the band structure can be

described as in Fig. 1.2 (b). The gap at k = 0 opens when the direction of spin-orbit

coupling (y) and Zeeman term (x) are not aligned. When the chemical potential µ locates

within the gap, only the bottom band are partially filled and we are in the effectively

spinless limit. Introducing the induced pairing ∆ in this limit leads to gap opening at

the Fermi momenta. In the limit of large Zeeman energy h� ∆, αkF one can prject the

pairing term to the bottom band and the effective intra-band pairing looks like a p−wave

pairing [5], therefore, the nanowire is in the topological phase and supports MZMs at its

ends. The transition between trivial phase and topological phase accompany the closing

of the bulk gap. The gap at k = 0 closes when h =
√

∆2 + µ2 at which the topological

phases transition happens. Therefore, the condition for the wire to be in topological

6
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phase can be given as

h >
√

∆2 + µ2. (1.10)

The above condition for the topological phase can be reproduced by solving Bogoliubov-

de Gennes (BdG) equation for MZMs. We discuss the method to find zero energy solution

in Sec. 2.2.5.

1.3 Transport signatures of Majorana zero modes in

tunneling geometries

Here we review the properties of MZMs coupled to one dimensional lead through a

tunneling barrier. For non-interacting systems, a MZM coupled to a normal electrons

through tunnel junction leads to the 2e2/h differential conductance at zero bias voltage

due to the perfect Andreev reflection at the junction [48]. For example, let us consider

a spinless lead, or helical lead (HL), coupled to a MZM at x = 0. The model can be

described by

H = HHL + tγ(ψ(0)− ψ†(0)) (1.11)

where HHL describes the bulk theory of the helical lead, t is the tunneling amplitude

for the junction, γ is the MZM and ψ†(x) is the creation operator for the electron in

HL at position x. Here we assume a semi-infinite nanowire where the coupling between

two MZMs at opposite ends can be ignored. Then, the scattering matrix for incident

electrons with energy E at the junction can be described as [66]

S(E) = Î + 2πiŴ †
(
−E − iπŴŴ †

)−1

Ŵ , (1.12)

7
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where

Ŵ = (t,−t) (1.13)

describes the coupling between the MZM and electrons in the HL. At zero bias, E = 0,

we get

S(0) =

 0 1

1 0

 (1.14)

Here the diagonal elements correspond to normal reflection amplitudes for electron to

electron channel and hole to hole channel, while the offdiagonal components correspond

to the amplitudes for Andreev reflections. Note that the reason for the perfect Andreev

reflection with amplitude one is the fact that γ is coupled to ψ(0) and ψ†(0) with equal

tunneling strength. This fact follows from the hermicity and the definition of Majorana

fermion, γ = γ†. The differential conductance at the tunnel junction is given by

G(E) =
2e2

h
|S12(E)|2 (1.15)

which leads to G(0) = 2e2/h.

In the case of spinful lead coupled to a MZM, one can diagonalize the tunneling

terms such that the MZM is now coupled to only one spin channel. In this case, the same

scattering matrix analysis leads to a perfect Andreev reflection for the MZM coupled spin

channel and a perfect Normal reflection for the other channel, which yields G(0) = 2e2/h

again.

In the presence of electron-electron interactions in the lead, the above conclusion on

zero bias differential conductance could be modified. The effects of interactions have been

considered using the Luttinger liquid formalism [26, 2, 55]. For example, the Hamiltonian

8
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corresponds to (1.11) becomes

H = HLL + tγ(ψ(0)− ψ†(0)) (1.16)

by replacing the HL part with the interacting spinless Luttinger liquid Hamiltonian with

Luttinger parameter K. Then, we can analyze the stability of the normal reflection fixed

point by looking at the tree level renormalization group (RG) flow of the coupling t:

dt

dl
=

(
1− 1

2K

)
t (1.17)

where l = ln b denotes the change in ultraviolet cutoff scales from Λ to Λ/b. One can

immediately see that coupling to MZM, t is relevant for K > 1/2, therefore, the normal

reflection is unstable in this limit, and the system flows to the perfect Andreev reflection

fixed point. This result agrees with the scattering matrix analysis for the non-interacting

HL (K = 1). In the case of spinful Luttinger liquid coupled to a MZM, similar analysis

leads to the RG equation

dt

dl
=

(
1− 1

4Kσ

− 1

4Kρ

)
t (1.18)

where Kσ/ρ is the Luttinger parameter for spin/density channel. Therefore, we find that

with Majorana the system will generically flow to Andreev fixed point.

On the contrary, normal reflection fixed point is quite stable for the case of a Lut-

tinger liquid coupled to a conventional s-wave superconductor. Without MZMs, the most

relevant perturbation we can add at the normal reflection fixed point is a local pairing:

H∆ = ∆ψ†↑(0)ψ†↓(0). (1.19)

For Kσ = 1, this term is relevant only when there is attractive interaction in the lead,

9
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Kρ > 1. Therefore, for attractive interaction in the lead, the Andreev reflection fixed

point is stable whereas for repulsive interaction it is unstable. The non-interacting limit

with K = 1 is a special case where the outcome depends on the ratio between the

amplitudes of cooper pair tunneling and back scattering. In constrast to this, we have

seen that, in the case of MZMs coupled to spinless/spinful leads, Andreev reflection fixed

point is stable against moderate repulsive interactions Kρ > 1/2 or Kρ > 1/3. Therefore,

the quantized zero bias differential conductance of 2e2/h is a universal signature of the

tunnel junction between an interacting lead and a topological superconductor.

In the case of a junction between a spinful normal lead and a time-reversal invariant

topological superconudctor with Majorana Kramers pair, we have 4e2/h zero bias differ-

ential conductance due to the presence of MZM in each spin channel. In Chapter 4, we

discuss the effect of various interactions on the differential conductance.

1.4 Outline

We conclude this introduction with an outline of the remainder of the thesis. In

Chapter 2, we present the new realization scheme based on a semiconducting nanowire

in contact with d−wave high temperature superconductors. We study the condition for

being in the topological phase, ideal geometry that optimizes the induced gap, and stabil-

ity of MZM in such system. In Chapter 3, we study a system consists of a ferromagnetic

chain of atoms at the surface of superconductor. By developing a formalism for studying

multiple bound states for magnetic impurities in two dimensional superconductor, we

extend the previous works on realizing MZM based on single impurity band into multi-

ple impurity bands model. In Chapter 4, transport signatures of time-reversal invariant

topological superconductors are studied in the presence of interactions. We consider two

geometries: 1) Tunnel junction between Luttinger liquid-Majorana Kramers pair. 2)

10
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Majorana Kramers pair-quantum dot-normal lead junction. For the first case, we study

the effects of interactions in the lead on the differential conductance at zero bias. For

the second case, the competition between the Kondo interaction between the quantum

dot and the normal lead and the Majorana induced interaction between the quantum dot

and the Majorana Kramers pair is discussed. We conclude in Chapter 5 with possible

future direction of the field of topological superconductivity.

11



Chapter 2

Majorana zero modes in nanowires

in contact with d−wave

superconductors

In this chapter, we investigate the possibility of realizing Majorana zero mode using high

temperature superconductors with d−wave pairing symmetry such as cuprate supercon-

ductors. We show that, by using clever geometry such as step edge surface, one can

induce pairing gap in the nanowire and realize Majorana zero mode in the presence of

Zeeman coupling. We also study the stability of the Majorana modes in the presence of

a coupling to the nodal gapless excitations in cuprates.

The content of this chapter is reprinted with permission from Phys. Rev. B 86,

235429 (2012) available online at http://dx.doi.org/10.1103/PhysRevB.86.235429

with Copyright (2012) by the American Physical Society (APS).

12

http://dx.doi.org/10.1103/PhysRevB.86.235429


Majorana zero modes in nanowires in contact with d−wave superconductors Chapter 2

2.1 Introduction

For a finite length nanowire, the stability of MZM at its ends is determined by the

size of the topological gap. Deep inside the topological phase where Zeeman energy is

greater than the induced gap, the topological gap of the wire is mainly determined by

the quasi-particle gap at the Fermi momenta. In a realistic situation, this quasi-particle

gap is proportional to the induced pairing gap in the nanowire. Therefore, choosing

superconductors with larger pairing gap and higher critical field can increase the induced

gap and the stability of MZM. Therefore, there were several studies on the realization of

MZM using high temperature superconductors such as pnictides and cuprates.[40, 94, 88,

64, 96, 24] In the following we will study the case for d−wave superconductors. One of the

interesting aspects of the cuprate superconductors is their non-trivial pairing symmetry.

Due to the sign structure and gapless nodal lines in the pairing potential, it is far from

clear that the cuprate superconductors can induce a proximity effect in the nanowire. In

what follows, we will show that d−wave superconductors can induce a large pairing gap

when their steplike structure is used to form an interface with nanowires. MZM in this

system can be coupled to gapless nodes and gains finite lifetime. We will study the decay

rate of MZM in the presence of such couplings.

2.2 Proximity effect and existence of Majorana zero

modes

2.2.1 Model

We consider a quasi-1D semiconductor nanowire of length Lx aligned along the x-

axis, with width w in the y-axis and width wz in the z-direction. We will assume that

13
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the x−axis and y−axis are pointing in the (100) and (010) crystallographic directions

of the underlying superconductor. As a result, in momentum space, (110) direction is

aligned with the gapless nodes of the d−wave superconductor. We will assume that

wz � w � Lx and consider only the lowest energy quantization along the z-axis. We

will allow multiple sub-bands in the y-direction. The nanowire is described by the action

SNW while the superconductor is described by the action SSC as shown below. The

coupling between the electrons in the nanowire and quasi-particles in the superconductor

is described by ST .

SNW =
2π

β

∑
m

∑
i

∫
dkxΨ̄m,i,kx

{
−iωm + αkxσyτz +

(
εkx + ~2(πi)2

2m∗w2 − µ
)
τz + Vxσx

}
Ψm,i,kx

SSC =
2π

β

∑
m

∫
q

c̄m,q(−iωm + ξqτz + ∆qτx)cm,q (2.1)

ST =
2π

β

∑
m,i

∫
dkx

∫
q

ti(kx,q)ψ̄m,i,kxcm,q + h.c.

Here ωm is Matsubara frequency, and i is a sub-band index in the nanowire. Ψ

and c are the vectors in the Nambu space where σ’s and τ ’s correspond to Pauli ma-

trices in the spin sector and the particle-hole sector for each. For example, Ψm,i,kx =

(ψm,i,kx↑, ψm,i,kx↓, ψ̄−m,i,−kx↓,−ψ̄−m,i,−kx↑)T . The functions ti(kx,q) are the tunneling am-

plitudes between the superconductor and the ith sub-band of the semiconductor nanowire.

We assume for simplicity that the electron wavefunction in the ith sub-band of the

nanowire takes the form ψ(x, y) =
√

1
w

sin(πyi
w

)ψ(x). We assume a parabolic disper-

sion along the x−axis εkx ≡
~2k2

x

2m∗
, and m∗, Vx = gµBBx/2, µ and α are, respectively, the

effective mass, Zeeman splitting, chemical potential, and stength of spin-orbit coupling

in the nanowire. In the absence of superconductivity, the chemical potential is related to

14
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the Fermi momentum kF,i in the ith sub-band according to

~2k2
F,i

2m∗
+

~2(πi)2

2m∗w2
− µ =

√
V 2
x + α2k2

F,i (2.2)

We will take the following form [68] for the band structure in a cuprate superconductor:

ξq(eV ) =t0 + t1(cos qxa+ cos qya)/2 + t2 cos qx cos qy + t3(cos 2qxa+ cos 2qya)/2

+ t5 cos 2qxa cos 2qya+ t4(cos 2qxa cos qya+ cos qxa cos 2qya)/2 (2.3)

where t0 = 0.1305, t1 = −0.5951, t2 = 0.1636, t3 = −0.0519, t4 = −0.1117, t5 = 0.051 (all

in units of electron volts) and a ≈ 4 Å. We will take a superconducting gap of the form

∆q = ∆0(cos qxa− cos qya)/2 and the representative value ∆0 = 30 meV.

2.2.2 Tunneling between the nanowire and the superconductor

Using the assumed form ψ(x, y) =
√

1
w

sin(πyi
w

)ψ(x) for the electron wavefunction in

the ith sub-band in the nanowire, we can write ti(kx,q) using the real space tunneling

amplitude t(r, r′) as follows:

ti(kx,q) =

∫
dx

∫ w

0

dy

∫
d2r′ t(r, r′) eikxx−iqxx

′ e−iqyy
′
sin(πyi

w
)

√
w

. (2.4)

Due to the quantization along the y-axis we will encounter with the following expression:

gj(qy) =

∫ w

0

dy
e−iqyy sin(πyj

w
)

√
w

= −ij+1 e
−iqyw/2
√
w

[
sin((qyw − πj)/2)

qy − πj/w
− (−1)j

sin((qyw + πj)/2)

qy + πj/w

]
(2.5)
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where j is the sub-band index. As one can expect, this function becomes more sharply

peaked around qy = ±πj/w as w is increased.

In the next section, we will consider three different kinds of tunneling matrix elements

t(r, r′) between a cuprate superconductor and a semiconducting nanowire:

1. Momentum conserving tunneling due to a clean interface where t(r, r′) = tδ(2)(r−

r′). Then ti(kx,q) = tui (kx,q) with

tui (kx, q) ≡ tδ(kx − qx)gi(qy). (2.6)

2. Momentum independent tunneling for the dirty or rough interface. For illustrative

purposes, we consider the extreme case of t(k,q) = λ(q), independent of k. Elec-

trons in the nanowire are now coupled uniformly to entire Brillouin zone, where

the gap can have different signs.

3. A nanowire on top of a step edge of a cuprate, as shown in Figure 2.1. We assume

that the terraces are evenly spaced, with the terrace edges at xn = nl. We take l ≈

7nm, which corresponds to an angle θ ≈ 10◦. We assume the tunneling amplitude

is dominated by the terrace edges xn. We assume the steps are wide so that

tunneling only occurs around x = xn. There is no such restriction for y−axis. Then

t(r, r′) = t
∑

n dδ(x− xn)δ(x cos θ− x′)δ(y− y′), where d is the length scale for the

region in which tunneling happens for each step. This yields ti(kx,q) = tsi(kx,q)

with

tsi(kx,q) ≡ td
∑
j

δ(kx − qx cos θ + jQ)gi(qy) (2.7)

where Q = 2π/l.
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Figure 2.1: Schemetic diagram of an interface between a nanowire and a steplike
surface of a cuprate superconductor.

2.2.3 Induced Superconductivity

Integrating out the superconductor’s degrees of freedom generates an effective action

for the nanowire Seff = SNW + S ′ where

S ′ =− 2π

β

∑
m,i,j

∫
kx,k′x,q

ψ̄m,i,kx

[
ti(kx,q)tj(k

′
x,q)∗

−iωm + ξqτz + ∆qτx

]
ψm,j,k′x (2.8)

=−
∑
m,i,j

∫
kx,k′x

ψ̄m,i,kx
[
irkx,k′x,i,j,mωm + ε′kx,k′x,i,j,mτz + ∆′kx,k′x,i,j,mτx

]
ψm,j,k′x (2.9)

with

rkx,k′x,i,j,m =

∫
d2q

(2π)2

ti(kx,q)tj(k
′
x,q)∗

ω2
m + ξ2

q + |∆q|2
, (2.10)

ε′kx,k′x,i,j,m =

∫
d2q

(2π)2

ti(kx,q)tj(k
′
x,q)∗ ξq

ω2
m + ξ2

q + |∆q|2
, (2.11)

∆′kx,k′x,i,j,m =

∫
d2q

(2π)2

ti(kx,q)tj(k
′
x,q)∗∆q

ω2
m + ξ2

q + |∆q|2
. (2.12)

The main difference between s-wave and d-wave superconductors comes from the struc-

ture of ∆q. Especially, ∆q vanishes for qx = ±qy, and at the nodal points on the Fermi

surface of a dx2−y2 superconductor, the denominators in Eqs. 2.10-2.12 vanish quadrat-
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ically at ωm = 0. Therefore, these integrals will diverge logarithmically unless the nu-

merators also vanish. For an infinitely-long nanowire, momentum conservation along the

wire (or momentum conservation up to a multiple of Q) prevents any coupling between

low-energy electrons and the nodal points of the superconductor. Consequently, the nu-

merators in Eqs. 2.10-2.12 are zero at the nodal points, and we do not have to deal with

the divergence. However, for localized MZM, there will be a coupling to the nodal points.

We will study this coupling perturbatively in Section 2.4.

From the total action Seff = SNW + S ′, we obtain the spectrum from the poles of the

Green function:

G−1 =
(
δijδkxk′x + rkx,k′x,i,j(ω)

)
ω −

([
εkx + ~2(πi)2

2m∗w2 − µ
]
δijδkxk′x − ε

′
kx,k′x,i,j

(ω)
)
τz

− αkxσyτz − Vxσx + ∆′kx,k′x,i,j(ω)τx (2.13)

Here, we have analytically continued iωm → ω and written, e.g. rkx,k′x,i,j,m → rkxk′xij(ω).

The smallest positive pole of this equation is the gap.

For simplicity, let us make the approximation that momentum is conserved in the

x-direction. Now r, ε′,∆′ are all diagonal in kx and we can drop the subscript k′x. If we

neglect the dependence in ω in r, ε′ and ∆′, finding poles of Eq. (2.13) reduces to finding

the eigenvalues of the matrix M :

M = (δij + rkx,i,j))
−1
(
αkxσyτz + Vxσx + ∆′kx,i,jτx +

([
εkx + ~2(πi)2

2m∗w2 − µ
]
δij + ε′kx,i,j

)
τz

)
(2.14)

We now take a limit w � a where momentum non-conservation in the y-direction is

small on the scale of the Fermi momentum of the superconductor. In this case, we can
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make replace g(qy) with a sum of two delta functions.

gj(qy) ≈ −
πij+1e−iqyw/2

2i
√
w

[δ(qy − πj/w)− (−1)jδ(qy + πj/w)]. (2.15)

(We will use the full expressions when we cite quantitative results.) In this limit, the

expressions in the previous subsection for tu and tn are diagonal in sub-band indicies.

Dropping the redundant subscript j, the effective action Seff can be written as

Seff =
2π

β

∑
m,i

∫
dkxΨ̄kx,i,m

[
−i(1 + rkx,i,m)ωm + αkxσyτz + (εkx + ~2(πi)2

2m∗w2 − µ− ε′kx,i,m)τz

+ Vxσx −∆′kx,i,mτx
]
Ψkx,i,m (2.16)

with

rkx,i,m =
|ti,kx|

2

ω2
m + ξ2

kx,πi/w
+
∣∣∆kx,πi/w

∣∣2 , (2.17)

ε′kx,i,m =
|ti,kx|

2 ξkx,πi/w

ω2
m + ξ2

kx,πi/w
+
∣∣∆kx,πi/w

∣∣2 , (2.18)

∆′kx,i,m =
|ti,kx|

2 ∆kx,πi/w

ω2
m + ξ2

kx,πi/w
+
∣∣∆kx,πi/w

∣∣2 . (2.19)

We now see that, in the limit in which we replace gj(qy) by a sum of δ-functions, there is

no coupling between the nanowire and the nodal points in the superconductor for generic

values of kx. For the momentum conserving tunneling, ti,kx is given by

|ti,kx|
2 =

∫
k′x

∫
d2q

(2π)2
ti(kx,q)ti(k

′
x,q)∗ ∼ |t|2 (2.20)
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The induced superconducting gap function is:

∆ind
kx,i,m =

∆′kx,i,m
1 + rkx,i,m

=
|ti,kx|

2∆kx,πi/w

ω2
m + ξ2

kx,πi/w
+
∣∣∆kx,πi/w

∣∣2 + |ti,kx|
2

(2.21)

At the Fermi surface, in the static limit, this is

∆ind
kF ,i
≡ ∆ind

kF ,i,0
=

|ti,kx|
2∆kF ,πi/w

|ti,kF |
2 + ξ2

kF ,πi/w
+
∣∣∆kF ,πi/w

∣∣2 (2.22)

Note that ξkF,i usually does not vanish due to the mismatch between the Fermi momentum

of the nanowire and that of the superconductor. This mismatch is one of the limiting

factors for induced superconductivity. From the single-particle spectrum obtained from

Eq. (2.14), we see that the single-particle gap at kF in the ith sub-band is:[83]

∆qp
kF ,i

=
ESO√

V 2
x + E2

SO

∆ind
kF ,i

(2.23)

where ESO = αkF,x and kF,x is the Fermi momentum in the x-direction.

2.2.4 Renormalized Parameters

The parameters µ, α, ε, Vx are renormalized by a factor of (1+r)−1 compared to those

of an isolated nanowire as a result of the coupling to the superconductor. Rescaling the

fermion fields by Ψ̄kx,i,m → Ψ̄kx,i,m(1 + rkx,i,m)−1/2, Ψkx,i,m → Ψkx,i,m(1 + rkx,i,m)−1/2 leads

to

Seff =
2π

β

∑
m,i

∫
dkxΨ̄kx,i,m

[
−iωm + α̃kx,i,mkxσyτz

+ (ε̃kx − µ̃kx,i,m) τz + Ṽkx,i,mσx −∆ind
kx,i,mτx

]
Ψkx,i,m (2.24)
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where

Ṽkx,i,m =
Vx

1 + rkx,i,m
, α̃kx,i,m =

α

1 + rkx,i,m
, µ̃kx,i,m =

µ− ~2(πi)2

2m∗w2

1 + rkx,i,m
. (2.25)

It is important to note that both spin-orbit coupling and Zeeman energy are renormalized.

As we will see in subsequent sections, the condition to be in a topological phase sets a

lower bound Ṽ > ∆ind. The optimum value of r which maximize the quasi-particle gap

will depend on various microscopic parameters. From now on, we will assume that the

moderate tunneling strength with r ∼ 1 is the optimum value.

Reduced Zeeman energy would require a larger magnetic field to reach the topological

regime. One possible concern is that the larger required magnetic field would destroy

superconductivity, but for cuprate superconductors, the critical field is much larger than

the field we require for the topological phase transition. As we will see, the induced

superconducting gap is typically a few meV which corresponds to the magnetic field of a

few Tesla, which will have negligible effect on a high-Tc superconductor.

2.2.5 Majorana Zero Modes

We now discuss the condition for having Majorana zero modes at the end of the

wire. For simplicity, we will restrict our analysis to the lowest energy sub-band i = 1

and suppress the sub-band index and write ψ ≡ ψi=1. The Hamiltonian of the nanowire

can be written in the following form in real space, where all parameters now correspond

to their induced values after coupling to the superconductor, described in the previous
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section

H =

∫
dxψ†σ(x)

(
−~2∂2

x

2m∗
− µ(x) + iασy∂x + Vxσx

)
ψσ′(x)

+

∫
dx dx′[(∆(x, x′)ψ†↑(x)ψ†↓(x

′) + h.c.]. (2.26)

We assume that the nanowire lies along the x-axis for x < 0. This condition can be

realized by setting µ(x < 0) = µ0, and µ(x ≥ 0) = −∞.

Now our Hamiltonian in the Nambu basis Ψ†(x) = (ψ†↑(x), ψ†↓(x), ψ↓(x), ψ↑(x)) can

be written as,

H =

∫
dx′Ψ†(x′)HBdGΨ(x)

where,

HBdG =

∫
dx
[
δ(x− x′)

(
−~2∂2

x

2m∗
− µ(x) + Vxσx

)
τz

+ δ(x− x′)iασy∂x + ∆(x, x′)σzτx

]
(2.27)

which gives the following BdG equation for zero energy solution:

HBdG · (u↑(x), u↓(x), v↓(x), v↑(x))T = 0 (2.28)

Since the BdG Hamiltonian is real, we can have real solutions for Majorana zero modes.

After imposing particle-hole symmetry for a real solution, we can set v↑/↓(x) = λu↑/↓(x)

with λ = ±1. The BdG equation for E = 0 can be written as,

∫
dx′

−δ(x−x′)
(
~2∂2

x

2m∗
+µ0

)
V+(x, x′)

V−(x, x′) −δ(x−x′)
(
~2∂2

x

2m∗
+µ0

)
 ×

u↑(x′)
u↓(x

′)

 = 0 (2.29)
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where

V±(x, x′) ≡ Vxδ(x− x′)± λ∆(x, x′)± αδ(x− x′)∂x (2.30)

with 3 constraints: [u↑/↓(x = 0)] = 0 and normalization. Assuming u↑/↓(x < 0) ∝ ezx,

the existence of a zero mode requires at least three roots zi with positive real part, so

that it is normalized and localized at the end x = 0.

2.3 Induced gap and topological phase transition

In this section, we will analyze the proximity induced gap for three kinds of tunneling

amplitudes we discussed in the previous section. We will also study the condition for

having MZM at the end of the nanowire.

2.3.1 Clean interface with momentum conserving tunneling

First, let us assume that the interface between the superconductor and the nanowire

is uniform, therefore, momentum conserving. For the simplest possible form, ti(kx,q) =

tui (kx,q), we get

rkx,i,j,m =

∫
dqy
2π

|t|2 gi(qy)g∗j (qy)
ω2
m + ξ2

kx,qy
+
∣∣∆kx,qy

∣∣2 (2.31)

and

∆′kx,i,j,m =

∫
dqy
2π
|t|2 gi(qy)g∗j (qy)×

∆0

2
(cos qxa− cos qya)

ω2
m + ξ2

kx,qy
+
∣∣∆kx,qy

∣∣2 (2.32)

Since gi(qy) is peaked at ±πi/w, the momentum vector (kx, qy) in ξ will be far from

the Fermi surface of the superconductor for the first few nanowire sub-bands. There-

fore, ∆′kx,i,j,m will be suppressed by ξ2
kx,qy

. Another interesting aspects of Eq. (2.32)

is that the induced gap takes the form of d−wave pairing. If we make the approx-

imation g(qy) ≈ δ
(
qy − πa

w

)
+ δ

(
qy + πa

w

)
following Eq. (2.19), we can approximate
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∆(x, x′) ≈ W0

(
a2∂2

x −
(
πa
w

)2
)

. The BdG equation can then be written as in Eq. (2.29)

with:

V± ≡ Vx ± λW0

(
a2∂2

x +
(
πa
w

)2
)
± α∂x (2.33)

Then the BdG equation for zero modes leads to a quartic equation for z with real coef-

ficients.

(
1

4
+ ∆̃2

)
z4 + 2∆̃λz3 +

(
1 + µ̃+

2π2∆̃2

w̃2

)
z2 +

2π2λ∆̃

w̃2
z+ µ̃2− Ṽ 2

x +
∆̃2π4

w̃4
= 0, (2.34)

where x̃ = m∗αx
~2 , µ̃ = ~2µ0

m∗α2 , Ṽx = ~2Vx
m∗α2 , ∆̃ = m∗a2

~2 W0 and w̃ = m∗α
~2 w. Note that when

zis are the roots for λ = 1 channel, −zis are the solutions for λ = −1 channel. Since the

coefficients are real, if zi is solution, z∗i is also a solution for same channel.

1. When µ̃2 − Ṽ 2
x + ∆̃2π4

w̃4 < 0, there is at least one negative real root and one positive

real root. Also, the product of the four roots zi is
4(µ̃2−Ṽ 2

x + ∆̃2π4

w̃4 )

1+4∆̃2 < 0. When all

roots are real, we have three positive roots for either λ = 1 or λ = −1. When

two of the roots are complex, then the four roots can be written z1 > 0, z2 < 0,

z3 = a + bi and z4 = a− bi, and we again have three roots with positive real part

for either λ = 1 or λ = −1. Therefore, we have a Majorana zero mode in this case.

2. When µ̃2 − Ṽ 2
x + ∆̃2π4

w̃4 > 0 and all four roots are real, there are two different

cases. When two of them are positive and two of them are negative, we do not

have localized solution for zero energy. When all four roots have same sign (which

is positive for either λ = 1 or λ = −1), we have two zero modes at the end of

nanowire. However these two localized states are at the same end, and they will

split into two states with E > 0 and E < 0 by interaction.

3. When µ̃2 − Ṽ 2
x + ∆̃2π4

w̃4 > 0, and two roots are complex, the other two roots, if they

24



Majorana zero modes in nanowires in contact with d−wave superconductors Chapter 2

are real, will have same sign since
∏4

i=1 zi > 0. If the other two roots are also

complex, those two also have same real part. Then it is similar to case 2.

We do not consider the situation in which the above equation has a double root or

two purely imaginary solutions in case 1 since those cases are sets of measure zero in

parameter space. Therefore, the condition for having MZM is µ̃2 − Ṽ 2
x + ∆̃2π4

w̃4 < 0. We

can also extend this analysis to the nth sub-band where ky = nπ/w, and the condition

for topological phase is given as µ̃2
n − Ṽ 2

x + ∆̃2n4π4

w̃4 < 0.

2.3.2 Dirty or Rough Interface

We now consider the case of a dirty or rough interface. In the extreme case introduced

in Section 2.2.2, Eq. (2.12) becomes

∆′k,m =

∫
d2q

(2π)2

|λ(q)|2 ∆q

ω2
m + ξ2

q + |∆q|2

The right-hand-side is independent of k. Moreover, since ∆q is odd under rotation by

π/2 while the rest of the integrand is even, the right-hand-side vanishes after integration,

and there will be no induced gap.

2.3.3 Nanowire - Step Edge Interface

From the previous two cases we found the limitations for inducing superconducting

gap using the cuprate superconductors. To overcome the limitations, we have to consider

a scenario in which the tunneling amplitude breaks the rotation symmetry while the

constraint for the momentum conservation is relaxed. For example, one can consider a

situation in which the nanowire is on top of a step edge surface of a cuprate, as shown

in Figure 2.1. For simplicity, we assume that the terraces are evenly spaced so that the
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terrace edges are at xn = nl. In the clean limit, the tunneling amplitude is dominant

at the terrace edges, xn. We assume the tunneling matrix element ti(kx,q) = tsi(kx,q)

discussed in Sec II. For small angle θ ∼ 10◦, we can approximate cos θ ∼ 1, and

∆′kx,k′x,i,j,m =
∑
n1,n2

∫
d2q

(2π)2
|t|2 δ(kx − qx + n1Q)δ(k′x − qx + n2Q)

gi(qy)g
∗
j (qy)∆q

ω2
m + ξ2

q + |∆q|2
(2.35)

For typical semiconducting nanowires, kF << Q, and we can ignore the contributions

from kx = k′x + (n2 − n1)Q with n1 6= n2. Integrating over k′x leads to

∆′kx,i,j,m =
∑
n

∫
dqy
2π
|t|2 gi(qy)g∗j (qy)

∆kx+nQ,qy

ω2
m + ξ2

kx+nQ,qy
+
∣∣∆kx+nQ,qy

∣∣2 (2.36)

and

rkx,i,j,m =
∑
n

∫
dqy
2π

|t|2 gi(qy)g∗j (qy)
ω2
m + ξ2

kx+nQ,qy
+
∣∣∆kx+nQ,qy

∣∣2 (2.37)

with kx + nQ ∈ first B.Z. In the limit of small inter-band coupling, the induced gap for

each sub-band is given by

∆ind
kF ,i

=
∆′kF ,i,0

1 + rkF ,i,0
. (2.38)

It is now possible for (kx +nQ, qy) to be located close to the Fermi surface of the cuprate

superconductor, so the suppression by ξ2 in the denominator is weaker for some ns than

n = 0 as we can see from Fig. 2.2.

To estimate the size of the induced gap in each band, we take µ5 = 10meV and Vx =

30meV for a nanowire of width w = 50nm. We used the typical values α = 200 meV·Å

and m∗ = 0.015me for InSb nanowire. We find rkx,i,j,m is almost constant in kx and

diagonal in sub-band index (i, j) at T = 0. Choosing t = 60meV gives ri ∼ 0.7. We

find the induced gap for each sub-band is very weakly-dependent on kx, therefore, it is

similar to the s−wave pairing. For Vx = 30 meV, which corresponds to the value in the
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− − 

+ 

+ 

Figure 2.2: Fermi surface of an interface between a semiconductor nanowire and a
step-edge of a cuprate. Now induced superconducting gap gets contributions from the
colored area.

topological phase, this gives ∆qp = 0.8meV. In reality, tunneling will not be perfectly

momentum-conserving modulo Q. However, the basic result should still be valid: if

momentum non-conservation is much larger in one direction than the other then a large

gap can be induced.

We now consider Majorana zero modes at the end of the wire. Since the induced gap

is independent of kx, the characteristic equation for z takes the simple form:

1

4
z4 +

(
µ̃i + α̃2

)
z2 − 2λ∆̃iα̃z + µ̃2

i − Ṽ 2
x + ∆̃2

i = 0. (2.39)

The condition for the MZM is µ̃2
i − Ṽ 2

x + ∆̃2
i < 0.[54]
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2.4 Coupling between the Majorana zero mode and

gapless bulk excitations

Cuprate superconductors with d-wave pairing symmetry can have four gapless nodes

in the two-dimensional Brillouin zone. Thus far, we have ignored these low-energy excita-

tions because the tunneling matrix elements t(kx,q) that we used did not couple electrons

in the nanowire to these nodal excitations so long as the tunneling matrix conserves the

momentum in x−direction. For a localized state, however, one can have some coupling

to the nodal excitations in the superconductor. In this section, we add a tunneling term

to the action coupling the Majorana zero mode to the superconductor and calculate the

self-energy of the Majorana mode perturbatively to analyze its stability.

The tunneling between the MZM from the jth sub-band at x = 0 to the fermionic

excitations in the superconductor can be described by

S
γj
T =

∑
m

∫ 0

−∞
dx

∫ w

0

dy

∫
d2r′v(r, r′)γm,j(r)

[
cσ−m(r′)− c̄σ−m(r′)

]
=

∫
k

vγj(k) γj(ωm)
[
cσ−m,−k − c̄σ−m,−k

]
(2.40)

where v(r, r′) is the tunneling amplitude between MZM at position r and fermionic

excitation at r′ in the superconductor. We take v(r, r′) to be real. On the superconductor

operators we have explicitly written the spin superscript σ. In going from the first to the

second equality, we have assumed a simplified form for the real Majorana zero mode:

γj(ωm, r) = 2

√
z

w
sin

(
πjy

w

)
Θ(−x)ezxγj(ωm) (2.41)
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and the Fourier transform vγj(k)

vγj(k) = 2

√
z

w

∫ 0

−∞
dx

∫ w

0

dy

∫
d2r′ v(r, r′) sin

(
πjy

w

)
ezx+ik·r′ (2.42)

Plugging in the tunneling amplitudes for clean interface and step edge interface leads to

vuγj(k) =
t
√
zgj(−ky)
z + ikx

(2.43)

vsγj(k) =
td
√
zgj(−ky)

1− e−(z+ikx cos θ)l
(2.44)

Now the self energy Σγjγj(ωm) of the Majorana modes can be calculated as

Σγjγj(ωm) =

∫
d2k

∣∣vγj(k)
∣∣2 [〈cσω,kcσ′−ω,−k〉+

〈
c̄σω,−kc̄

σ′

−ω,k

〉
−
〈
c̄σω,−kc

σ′

−ω,k

〉
−
〈
cσω,kc̄

σ′

−ω,−k

〉]
=2

∫
d2k

∣∣vγj(k)
∣∣2(∆k + iωm)

ω2
m + ξ2

k + ∆2
k

(2.45)

For simplicity, we take ξk to be of the form ξk = t1(cos kxa+cos kya)/2+t2 cos kxa cos kya

and ∆k = ∆0(cos kxa − cos kya). Then, we obtain the retarded self-energy from the

analytic continuation, iωm → ω + iη. Using the identity limη→0+
1

(x+iη)
= P ( 1

x
)− iπδ(x),

we obtain

ImΣγγ
r (ω) = 2

∫
k∈k0

∣∣vγj(k)
∣∣2 (ω + ∆k)

∣∣∇k(ξ
2
k + ∆2

k)
∣∣−1

(2.46)

where k0 satisfies ω2 = ξ2
k0

+ ∆2
k0

, and

ReΣγγ
r (ω) = lim

η→0
2

∫
d2k

∣∣vγj(k)
∣∣2 (∆k + ω)(ξ2

k + ∆2
k − ω2)

(ω2 − ξ2
k −∆2

k)
2 + η2

(2.47)

From here on, ∆k disappears from the numerator because it is odd under exchange of kx

and ky, while all other terms are even. We now explicitly calculate the real and imaginary

parts.
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2.4.1 Imaginary Part of Self Energy

For small ω, the dominant contribution to Eq. (2.46) comes from momenta near the

nodes, which we denote by overbars: (±k̄x,±k̄y). We expand the momenta around the

nodal point (k̄x, k̄y) as (kx, ky) = (k̄x + p+ q, k̄y + p− q) and expand similarly around the

three other nodal points. Expanding ξk and ∆k about the nodal points yields ξk = c1p

and ∆k = c2q, where c1 = −t1a sin k̄xa− 2t2a sin k̄xa cos k̄ya and c2 = 2∆0a sin k̄xa. Now

the condition k ∈ k0 is given by ω2 = c1p
2 + c2q

2. We also take the average value for the

tunneling strengths:

vuγj(k) =
t
√
zgj(−k̄y)
z + ik̄x

= vu (2.48)

vsγj(k) =
td
√
zgj(−k̄y)

1− e−(z+ik̄x cos θ)l
= vs (2.49)

Note that

|vu|2 ∝ a4z/w , |vs|2 ∝ a2d2z/w (2.50)

are small because 100 < w/a < 250. In addition, d ∼ a and 1/z � a, which further

suppresses these tunneling parameters. The cases of uniform tunneling and a step-edge

interface can be handled together:

ImΣγγ
r (ω) =

|vu,s|2√
2
ω

∫
k∈k0

1√
c4

1p
2 + c4

2q
2

(2.51)

A simple change of variables yields the decay rate Γ(ω) to leading order:

Γu,s(ω) ∝
( s
w

) ω

∆0

|t|2

αt1 + βt2
(2.52)

where α and β are dimensionless numbers, and s = a2z or d2z in the cases of uniform

and step-edge tunneling, respectively. In both cases, the decay rate is suppressed by a
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small coefficient.

2.4.2 Real Part of Self Energy

The real part of the self-energy follows similarly:

ReΣγγ
r (ω) = lim

η→0
2

∫
dpdq |vu,s|2 ω(c2

1p
2 + c2

2q
2 − ω2)

(c2
1p

2 + c2
2q

2 − ω2)2 + η2

= −2 |vu,s|2 ω
|c1c2|

ln(ω/
√

Λ2 − ω2) (2.53)

where we introduced UV cut-off Λ. Hence, in the low frequency limit, the correction is

singular. The weight of the would-be quasiparticle pole Z = (1− ∂ReΣ/∂ω)−1 vanishes

logarithmically as zero energy is approached. This indicates that the zero mode does not

survive the coupling to nodal excitations, and it will leak into the bulk of the cuprate

superconductor. However, the divergence is only logarithmic due to the little phase space

at the nodes, so this leakage occurs very slowly.

2.5 Discussion

In this chapter we have studied the semiconducting nanowire-cuprate superconductor

interface as a platform for topological superconductivity. Due to the d−wave structure of

the pairing potential of the cuprate superconductor, it requires special consideration for

the interface geometry to induce a superconducting gap in the nanowire. Clean interface

with momentum conserving tunneling can give a non-zero induced gap, and it can be

optimized when the direction of the nanowire is aligned to (100) or (010) crystallographic

direction of the underlying cuprate superconductor. However, the proximity effect is

suppressed by the momentum mismatch between the electrons in the nanowire and the

cuprate superconductor. One can overcome this by allowing the momentum mismatched
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tunneling in only one direction. We show that the step-like terrace surface can be used

to create such a scenario.

The coupling between MZM and gapless nodal excitation can cause MZM to decay

into the cuprate superconductor. Especially, the real part of the Majorana propagator

self-energy shows an infrared divergence which leads to the zero spectral weight of the

MZM. However, this divergence has a logarithmic nature due to the vanishing density of

states of the gapless excitations. Therefore, one can still expect to observe the signatures

of MZM in real experiments at finite temperature.
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Chapter 3

Realization of topological

superconductors using magnetic

atom chains

In this chapter, we study the realization of topological superconductivity from the Yu-

Shiba-Rusinov(YSR) states in chains of magnetic adatoms at the surface of s-wave su-

perconductors with strong spin-orbit coupling. We first review the recent development of

the theoretical proposal and current status of the experiment on this system. Then, we

expand the single orbital Shiba state model into multiple orbitals and study the effect of

spin-orbit coupling. Finally, we discuss the multi-channel extension of the YSR chain.

The content of this chapter and Appendix A is reprinted with permission from Phys.

Rev. Lett. 114, 236804 (2015) available online at

http://dx.doi.org/10.1103/PhysRevLett.114.236804 with Copyright (2015) by APS

and from Phys. Rev. B 93, 024507 (2016) available online at http://dx.doi.org/10.

1103/PhysRevB.93.024507 with Copyright (2016) by APS.
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3.1 Introduction

Magnetic impurity in an s-wave superconductor can induce Yu-Shiba-Rusinov (YSR)

states [95, 87, 80] which are locally bounded to the impurity. Recently, one dimensional

arrays of magnetic impurities and their YSR states in the s-wave superconductor have

gained a significant interest because of its possibility to realize topological superconduc-

tivity and Majorana zero modes. [12, 61, 46, 8, 92, 72, 73, 75, 41, 9, 25, 49, 93, 71, 35]

When a one dimensional array of well separated magnetic atoms is placed at the surface

of a superconductor, YSR states of each atoms can be coupled to each other through the

superconductor and form YSR band of electronic states. When the magnetic moments

of the atoms form a helical order [61, 46, 8, 92, 72] or the sub-lying superconductor

has Rashba spin-orbit coupling [41, 9, 35], superconducting gap can be induced to the

band. Since each one of YSR states is spin-polarized, this YSR band with induced gap

can be mapped into a spinless p-wave superconductor and support MZM at the ends of

the chain. For magnetic adatom chains with atomic scale separation between the mag-

netic atoms, the direct hopping between them leads to the formation of a ferromagnetic

half-metal. In this case, the superconductor with strong spin-orbit coupling can also

induce p-wave pairing in the half-metal, and the system can be in the topological phase.

[49, 37, 23] Later, it is shown that these two scenarios are indeed adiabatically connected

from studying single-orbital Anderson model. [71] In recent experiments [62, 70, 79], Fe

atom chains formed at the surface of Pb superconductor have been studied using various

types of scanning tunneling microscopy (STM) which can resolve the local density of

electronic states. It is shown that these Fe atom chains exhibit zero-energy states which

are strongly localized at the ends. Measurement with magnetized STM tip [62] reveals

the ferromagnetic ordering of the magnetic moments of the Fe atoms. More interestingly,

high-resolution study with superconducting tip on the single Fe atom and dipole of Fe
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atoms found multiple YSR states bounded to them. [79] Indeed, previous study on Mn

and Cr atoms on Pb superconductor surface using high resolution STM study [38] have

found such multiple YSR states. This multiplet structure can be understood as eigen-

states of various angular momentum components of the exchange potential [80, 41] or

multiple orbitals of the magnetic atom coupled to the environment [59]. In half-metal

formalism, electronic states from a chain of such atoms can be naturally connected to the

multiple d−orbital bands. However, most of the previous theoretical studies based on

YSR band formalism are assuming single YSR state per atom. Therefore, it is important

to consider an extension to multiple YSR bands system[98] from multiple YSR states per

atom as a dilute limit of the realistic system.

In what follows, we first deveplop a general formalism to understand the properties

of YSR multiplets in two dimensional superconductor with broken inversion symmetry.

We consider a signle atom and a dimer of atoms coupled to either s−wave or p−wave

superconductors in the presence of Rashba SOC. We show that Rahsba SOC qualitatively

modifies the YSR spectrum when higher angular momentum channels of the exchange

potential is included. For YSR states bounded to a single atom, the YSR spectrum has

a non-trivial dependence on the direction of the spin when we include SOC. For a dimer,

level splitting is a function of the relative direction of the two spins, and Rashba SOC also

modifies this relation. We discuss the experimental signatures of those features. Then, we

extend our theory to a chain of magnetic atoms with multiple angular momentum channel

YSR states. We consider the simplest non-trival case with three angular momentum

channels per atom which leads to a theory with three YSR bands. We study the phase

diagram of the system in dilute atom limits where the bandwidth of the YSR bands are

much smaller than the size of the superconducting gap of the host and level splittings

between YSR states. Finally, we discuss the effects of the band mixing due to the spin-

orbit coupling and their implications on experiments.
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3.2 Yu-Shiba-Rusinov multiplets in superconductors

with spin-orbit coupling

In this section, we study the spectrum of YSR states bounded to a magnetic impurity

in two-dimensional superconductors with broken inversion symmetry in which spin-triplet

pairing and Rashba spin-orbit coupling are present. We assume a generic form for the

exchange potential J(r) of a magnetic impurity which is a function of |r| and preserves

rotational symmetry. We develop a formalism to understand the structure of YSR states.

Then, we discuss the effects of Rashba SOC on the YSR spectrum and their experimental

significance.

3.2.1 Model

We consider a superconductor described by the mean-field Hamiltonian

H =
∑
k

ψ†kHSC(k)ψk (3.1)

where ψk = (ck↑, ck↓, c
†
−k↓,−c

†
−k↑)

T , with c†kσ (ckσ) the creation(annihilation) operator for

an electron with momentum k = (kx, ky) and spin σ, and

HSC(k) = τz ⊗ (ξk + αlk · σ) + τx ⊗ (∆s +
∆t

kF
lk · σ). (3.2)

H describes effectively two-dimensional superconducting thin films, and surfaces of 3D

superconductors with strong Rashba SOC. In Eq. (3.2) we set ~ = 1, τj, σi are the Pauli

matrices in Nambu and spin space respectively, ξk = k2/2m − εF which is assumed to

be the normal state dispersion relation with m being the effective mass of the fermionic

quasiparticles. εF and kF =
√

2mεF are the Fermi energy and Fermi momentum, re-
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spectively, lk = (ky,−kx)[28], α is the strength of the Rashba SOC, and ∆s, ∆t are the

singlet, triplet, pairing order parameters respectively, that, without loss of generality, we

take to be real.

The effect of magnetic impurity in the system can be captured by the following

Hamiltonian.

Himp =
∑
j

V̂j(|r−Rj|) =
∑
j

Û(|r−Rj|)τz ⊗ σ0 + Ĵ(|r−Rj|)τ0 ⊗ Sj · σ (3.3)

Ris are the positions of the impurities, and Û and Ĵ are the charge and magnetic potential

respectively. Without loss of generality, we set R = 0 for single impurity and Ri = xi

for dimer. The presence of scalar potential Û does not affect the qualitative nature of

the conclusion. Therefore, we will set Û = 0 from now on. For the details on the effect

of scalar potential, please refer to the supplementary materials for Ref. [42]. Using the

density of states (per spin) NF = m/2π, and the Fermi velocity vF = kF/m, we can define

the dimensionless potential J ≡ ĴπNF |S| and the dimensionless Rashba SOC α̃ ≡ α/vF

which are used for the rest of the discussion.

To find the eigenstate energies {E} of YSR states we have to solve the Schrödinger

equation

(HSC +Himp)ψ(r) = Eψ(r). (3.4)

We define G = [E −HSC]−1, then the Schrödinger equation can be written as

[1−G(E, r)Himp]ψ(r) = 0. (3.5)

The spectrum of the impurity bound states is obtained by finding the values of E such

that det[1− G(E, r)Himp] = 0. In momentum space the Schrödinger equation takes the
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form:

ψ(k)=
∑
j

G(E,k)

∫
dk′eixj(k cos θ−k′cos θ′)V̂j(|k− k′|)ψ(k′). (3.6)

Following the formalism of Ref. [34], the Green’s function G can be written as the sum

(G(E,k) = [G+(E,k) +G−(E,k)]/2) of the two spin helical bands

G±(E,k) =

 E + ξ± ∆̃±

∆̃± E − ξ±

⊗ σ0 ± sin θσx ∓ cos θσy
E2 − ξ2

± −∆2
±

. (3.7)

Here k = |k|, ξ± = k2/2m± αk − εF and ∆± = ∆s ±∆tk/kF . Let us define

ψj,θ ≡
∫
kdk

2π
e−ixjk cos θψ(k), (3.8)

Gij(E, θ) ≡
∫
kdk

2π
e−i(xi−xj)k cos θG(E,k). (3.9)

Assuming that V̂ (k) at the Fermi surface depends weakly on k and integrating Eq. (3.6)

with respect to k, we find

ψi(θ) =
∑
j

Ĝij(E, θ)
1

2π

∫
dθ′V̂j(θ − θ′)ψj(θ′). (3.10)

The above equation can be simplified by decomposing all the functions of angle that

enter Eq. (3.10) into their angular momentum components: f(θ) =
∑

l fle
ilθ. Finally, we

get

ψi,l −
∑
j,n

Gij
n (E)V̂ l−n

j ψj,l−n = 0, (3.11)

where

V̂ l
j =

 Jl
Sj·σ
|Sj|

0

0 J−l
Sj·σ
|Sj|

 . (3.12)

Since Himp is Hermitian and even with respect to θ− θ′, we require Jl(= J−l) to be real.
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From now on we set S = 1 for the simplicity of expression. The angular momentum

components of the local Gorkov-Rashba Green’s function can be easily calculated.

Ĝii
0 (E) = − πN−

2
√

∆2
+ − E2



E 0 ∆+ 0

0 E 0 ∆+

∆+ 0 E 0

0 ∆+ 0 E


− πN+

2
√

∆2
− − E2



E 0 ∆− 0

0 E 0 ∆−

∆− 0 E 0

0 ∆− 0 E


,

Ĝii
1 (E) = − πN−

2
√

∆2
+ − E2



0 0 0 0

−iE 0−i∆+ 0

0 0 0 0

−i∆+ 0 −iE 0


+

πN+

2
√

∆2
− − E2



0 0 0 0

−iE 0−i∆− 0

0 0 0 0

−i∆− 0 −iE 0


,

Ĝii
−1(E) = − πN−

2
√

∆2
+ − E2



0 iE 0 i∆+

0 0 0 0

0 i∆+ 0 iE

0 0 0 0


+

πN+

2
√

∆2
− − E2



0 iE 0 i∆−

0 0 0 0

0 i∆− 0 iE

0 0 0 0


. (3.13)

where

N± =
m

2π

(
1± α̃√

1 + α̃2

)
, ∆± = ∆s ±∆t. (3.14)

Note that Gii
n = (G+

n (E) + G−n (E))/2 = 0 for |n| ≥ 2. For the calculation of non-local

Green’s function Gi 6=j
n , please see Appendix A.1. Henceforth, we assume that the impurity

potential has only large l = 0, 1 components and neglect higher angular momentum

channels.

We consider two different phases of a HSC [81, 91, 82]: s−wave (|∆s| � |∆t|) and

p−wave (|∆s| � |∆t|) pairing dominating regimes. As we show below, the spectra are

qualitatively different in the two regimes. For the simplicity of the analysis, we will set

∆t = 0 for s−wave dominating regime and ∆s = 0 for p−wave dominating regime.
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3.2.2 Single magnetic atom

For a single atom, we can drop the site index i such that ψi,l = ψl. When we assume

that Jl=−1,0,1 are the only non-zero components, Eq. (3.11) can be explicitly written as.

ψ0 = Ĝ0(E)V̂ 0ψ0 + Ĝ1(E)V̂ −1ψ−1 + Ĝ−1(E)V̂ 1ψ1

ψ1 = Ĝ0(E)V̂ 1ψ1 + Ĝ1(E)V̂ 0ψ0

ψ−1 = Ĝ0(E)V̂ −1ψ−1 + Ĝ−1(E)V̂ 0ψ0 (3.15)

ψ2 = Ĝ1(E)V̂ 1ψ1

ψ−2 = Ĝ−1(E)V̂ −1ψ−1

For a bound state solution to exist for the above equation, following condition is required,

det


Ĝ0(E)V̂ −1 − 1 Ĝ−1(E)V̂ 0 0

Ĝ1(E)V̂ −1 Ĝ0(E)V̂ 0 − 1 Ĝ−1(E)V̂ 1

0 Ĝ1(E)V̂ 0 Ĝ0(E)V̂ 1 − 1

 = 0. (3.16)

We solve the above equations in both analytic and numeric ways to get the bound state

spectrum. For an s-wave superconductor, we find that, in the presence of Rashba spin-

orbit coupling, we have three impurity-induced bound states at E > 0. In general, there

are one bound state for Jl=0 and two bound states per each pair of non-zero J±l. For the

case when the magnetic moment of the impurity is perpendicular to the surface of the

superconductor, S ‖ ẑ, the energies of these states are given by

|E1,2|
∆s

=
γ2−J2

0J
2
1±γ

3
2

√
(J2

0−J2
1 )2+(γ−1)(J0−J1)4

γ2(1+(J0−J1)2)+2γJ0J1 + J2
0J

2
1

(3.17)

|E3|
∆s

=
1− J2

1

1 + J2
1

(3.18)
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where γ = 1 + α̃2. For α̃ = 0, two of the states which correspond to l = ±1 levels are

degenerate due to the rotational symmetry of the Hamiltonian. The presence of SOC,

however, causes the l = ±1 levels to split, see Fig. 3.1 (a). Interestingly, we find that

only two of the levels disperse with α and one level remains unchanged.

An important consequence of the presence of the SOC in s-wave SCs is that, by

breaking the SU(2) symmetry of the SC Hamiltonian, it causes the spectrum of the YSR

states to strongly depend on the direction of S = (cosφ sin θ, sinφ sin θ, cos θ). Fig. 3.2

(a) shows an example of the evolution of the spectrum of the YSR states with θ for an

s-wave SC. (Due to the remaining U(1) symmetry the spectrum does not depend on the

in-plane direction, i.e. φ). We see that, the spectrum for the case in which S ‖ ẑ can be

very different from the spectrum for the case in which S lies in the plane. In particular

the results of Fig. 3.2 (a) show that by tuning the direction of S the fermion parity of

the bound states can be changed.

For a chain of magnetic atoms, this feature could be very useful to tune between

topological and non-topological regimes in the YSR-bands. We will revisit this effect in

the next section. In the limit α̃ � min{1, |J0 − J1|} we can obtain analytic expression

for the dependence of the YSR energy levels on the direction of S in an s-wave SC:

|E1|
∆s

≈ 1−J2
0

1+J2
0

+
4α̃2J2

0J1(J0 cos2 θ − J1)

(1 + J2
0 )2(J2

0 − J2
1 )

(3.19)

|E2,3|
∆s

≈ 1−J2
1

1+J2
1

+
2α̃2J0J

2
1 (J0−J1 cos2 θ ± F (θ))

(1 + J2
1 )2(J2

0 − J2
1 )

(3.20)

F1 =
√

(J0 − J1)2 cos2 θ + J2
1 sin4 θ (3.21)

Here we keep only lowest order terms α̃. These expressions are valid as long as the

hybridized states are not degenerate. The above result allows us to identify the effect

of the interplay of SOC, relative strength of the different components of the magnetic
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Figure 3.1: Dependence on SOC strength of the spectrum of YSR states induced by
a purely magnetic impurity with J0 = 3/4, J1 = 1/2 in s−wave (a, c) and p−wave
(b,d) superconductor for S ‖ ẑ (a,b) and S ‖ x̂ (c,d).

impurity potentials (Jl), and direction of S on the YSR spectrum.

We now study YSR states in a p-wave dominating regime. The energies of the YSR

spectrum, in the presence of small SOC (α̃� 1) for S ‖ ẑ are given by

|E1,2|
|∆t|

=
1 + J0J1√

(1 + J2
0 )(1 + J2

1 )
± |α̃| (J0 − J1)2

(1 + J2
0 )(1 + J2

1 )
(3.22)

|E3,4|
|∆t|

=
1√

1 + J2
1

± |α̃| J2
1

1 + J2
1

. (3.23)

Fig. 3.1 show the evolution with α̃ of the energies of the YSR states in a p−wave SC

for S ‖ ẑ (b) and S ‖ x̂ (d). In the absence of SOC α̃ = 0, one can see that the YSR

spectrum is isotropic in s−wave case due to the rotational spin symmetry. In p−wave

case, this is not the case as follows from Fig. 3.1 b) and d). Since the p-wave pairing

term mixes different angular momentum channels, l is not a good quantum number
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Figure 3.2: Bound state spectrum for magnetic impurity in a s−wave(a) and
p−wave(b) SC as a function of the direction of magnetic moment at J0 = 1, J±1 = 1/3.

to label the states even in the absence of SOC. Furthermore, one can notice that the

states are doubly degenerate at α̃ = 0 due to an additional symmetry present in the

p-wave case. Indeed, the p−wave Green’s function is invariant under the transformation

U = τz ⊗ σ0 ⊗ P with P being the momentum inversion operator k → −k. Due to

this symmetry YSR states appear in pairs in p−wave superconductor. In contrast, the

s−wave Green’s function does not have above symmetry and, as a result, there is only

one bound state per angular momentum channel (i.e one state for l = −1, 0, 1 channels).

It leads to the different parities of the number of YSR states in s−wave and p−wave

regimes when the Rashba SOC is added to the Hamiltonian, see Figs. 3.1 and 3.2.

This qualitative result allows one to identify the dominant superconducting pairing of

a superconductor given that the resolution of the experimental probe is better than the

splitting energy due to the Rashba SOC. We now discuss the dependence of the YSR

spectrum on the orientation of magnetic impurity moment in p−wave superconductors.

In contrast to s−wave superconductors, the YSR spectrum in p−wave case depends on

θ even in the absence of SO coupling since p−wave pairing is characterized by the vector
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lp, see Eq.(3.2). In the limit of zero SOC, one can find analytic solutions for the bound

state spectrum.

|E1,2|2

∆2
t

=
2 + 2J0J1 cos2 θ + J2

0 (1 + J2
1 )

2(1 + J2
0 )(1 + J2

1 )
(3.24)

± J0

√
3J2

1−2J0J1(1−J2
1 )+J2

0 (1+J4
1 )+J1 cos 2θ(J1 cos 2θ−2J0(1+J0−J2

1 )))

2(1 + J2
0 )(1 + J2

1 )

Note that these bound states at α = 0 are doubly degenerate. We can see that while the

splitting is quadratic in α̃ in s−wave dominating regimes, the splitting energy is linear

in α̃ in p−wave superconductor. The evolution of the YSR spectrum with θ is plotted

in Fig. 3.2 (b). One can notice that the presence of the SOC enhances the dispersion of

YSR states with θ.

3.2.3 Dimer of magnetic atoms

When we put two magnetic impurities close to each other, the YSR states in those

atoms start to interact through the superconductor. This process which is responsible

for the formation of YSR bands in chains of magnetic atoms, can also lead to dramatic

changes in the spectrum of YSR states even for a dimer. [38, 79] Therefore, studying the

spectrum of a dimer can be taken as a first step toward the understanding of the physics

of chains.

In this section, we have studied the properties of a dimer formed by two magnetic

impurities placed at a distance d from each other on the surface of the SC assuming

∆/εF � 1. Using the Eq. 3.11 we can calculate the bound state spectrum of a dimer,

see Appendix A.2 for the details of calculation. We find that the wavefunction overlap

between the YSR states induced by the two nearby atoms generates level splitting which

strongly depends on the relative direction of the impurity spins, and that such splitting
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depends on the strength of the SOC. This effect is due to the fact that the wavefunction

overlap in spin sector is controlled by the relative direction of two magnetic moments and

the amount of SOC. It is interesting to note that the presence of SOC, even when the

SC is s−wave, has non-trivial effects on the spectrum even in the limit of single bound

state per atom (J±1 = 0). For this reason, to understand the effect of SOC on the YSR

spectrum of a dimer we consider the case for J±1 = 0. For the direction of the spin of the

atoms, we fix one to be perpendicular to the plane, S1 ‖ ẑ and control the direction of

the other one, S2 = (sin θ, 0, cos θ). The dependence of the dimer YSR states spectrum

on the relative angle θ is shown in Fig. 3.3 (a, b). For a s−wave superconductor without

SOC, the two YSR states in dimer becomes degenerate at θ = π when the two states

have opposite spin. The level splitting is at its maximum at θ = 0 when those two YSR

states wavefunction completely overlap in spin space. Once we add a SOC, the angle

for the degeneracy shifts to some angle θ < π and the amount of this shift depends on

the strength of the SOC. This effect can be understood from that the Rashba SOC can

be gauged away by rotating the spinor around the y−axis depending on the position

in x−direction. In other words, the electons’ spins precess around the y−axis as they

move along the x−axis in the presence of Rashba SOC. For a p−wave superconductor,

there are total four states with two states per angular momentum channel per atom. In

the absence of SOC, these four states becomes two doubly degenerate states at θ = π.

Once we turn on the SOC, these two crossing point shift into the opposite directions.

These properties of the dimer spectrum can serve as useful tools in experiment. For

a dimer of “soft” spins which one can tune the direction using applied local magnetic

field or magnetized STM tip, the relation between YSR spectrum and relative angle can

give information such as strength of the Rashba SOC and order parameter symmetry

of the superconductor. Conversely, if the strength of the SOC is known, it allows the

determination of the relative angle θ.
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Figure 3.3: Bound state spectrum of a magnetic atom dimer along the x̂−direction in
a s−wave (a) and p−wave (b) SC. The direction of one spin is fixed along ẑ while the
other one pointing in x − z plane with angle θ from ẑ. Here J0 = 3/4, kFd = 6 and
εF = 1000∆s,t. (c) dependence of a dimer YSR spectrum on the distance d between
the two impurities aligned along ẑ for an s−wave SC; εF = 1000∆s, J0 = 3/4. (d)
Same as (c) but for a p−wave SC.

The properties of the system SC+dimer can be further identified by studying the

dependence of the dimer YSR spectrum on the distance d between the two impurities.

Figures 3.3 (c), (d) show the evolution of the energy levels of the YSR spectrum with d,

for the case of an s−wave and p−wave SC respectively. As one can see, the level splitting

has a oscillatory dependence in kFd. Using the spectrum of several dimers with different

inter atomic distance, one can extract the information on kF and estimate the bandwidth

of the chain with known lattice constant. It can also be used to engineer the chain with
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optimum separation between the atoms, so the system can be in topological phase for

given parameters. In the next section, we will extend our analysis to a chain of magnetic

atoms where each atom supports multiple YSR states.

3.3 Multichannel extension of magnetic atom chain

In this section we consider a chain of magnetic atoms with ferromagnetic ordering

and inter-atom distance a. The chain is placed on top of a two-dimensional s−wave

superconductor with Rashba spin-orbit coupling, see Fig. 3.4 (a). From now on, we will

take ∆ = ∆s, ∆t = 0 and represent the dimensionless SOC strength by α. We assume

that each atom supports three YSR states correspond to l = −1, 0, 1, and the chain forms

three YSR bands. We follow the formalism that we developed in the previous section.

To simplify the analysis and present the important findings clearly, we assume that

the YSR states correspond to l = 0 and |l| = 1 are well separated. Then, we consider

two different limits as shown in Fig. 3.4 (b) and (c). First case is when the single l = 0

band is close to the midgap energy E = 0 which we call “deep s−band” limit, see Fig.

3.4. This limit can be connected to the previous works on the single YSR band system

in the limit J1 goes to zero. We study the effect of adding SOC and |l| = 1 levels as

a perturbation to the system. The second case is when |l| = 1 bands are closer to the

midgap energy E = 0 than l = 0 band, see Fig. 3.4 (c). We call this case “deep p−band”

limit. In this case, the physical properties of the whole system can be captured by two

band effective Hamiltonian. The mixing between different angular momentum bands has

various interesting effects on this Hamiltonian.

It is convenient to rewrite Eq. (3.11) in the following form:

∑
j

Mij(E)Ψj = 0 (3.25)
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Figure 3.4: (a) Schematic diagram of a multichannel Yu-Shiba-Rusinov chain. (b, c)
Schematic band structures for two different limits considered.
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where Ψj = (ψi,−1, ψi,0, ψi,1)T is a 12 dimensional spinor, and the matrix Mij(E) is

defined as Mij
l,l′ = δi,jδl,l′−Gij

l−l′(E)V l′ . Here the local part of the matrix Mii
l,l′ determines

the YSR spectrum of a single magnetic atom whereas the non-local part Mij
l,l′ describes

the hybridization between YSR states induced by the magnetic atoms at i and j sites. For

an equally spaced magnetic atom chain with distance a between the two nearest atoms,

this hybridization leads to the formation of the YSR bands. In the limit of kFa � 1,

which we consider henceforth, the hopping energy scale is proportional to 1/
√
kFa and,

thus, the bandwidth W is small, i.e. W � ∆. In this limit, the bands maintain the

character of the single impurity YSR states and, thus, we refer to them as s or p-bands.

Strictly speaking, SOC mixes different angular momentum states but, since we assume

that α� 1, this terminology is justified.

When s and p bands are well-separated by a gap that is much larger than the temper-

ature, see Fig. 3.4(b) and (c), the problem can be considerably simplified by integrating

out the higher-energy bands. In the following, we consider two limiting cases correspond-

ing to the deep s− and p−band limits and discuss the corresponding topological phase

diagrams. We show that these two cases are qualitatively different since deep p−band

limit consists of two bands originating from the l = ±1 YSR states.

3.3.1 Deep s-band limit

Effective Hamiltonian

We first consider the deep s-band limit such that the energy of the l = 0 state is

close to E = 0, i.e., J0 ∼ 1 with the on-site energy ε0 ≈ ∆(1 − J0) + O(α2) → 0. We

assume J1 � J0 and limit of narrow bandwidth, so l = 0 band is well separated from

the p bands. After integrating out the l = ±1 states, we obtain a tight-binding effective

Hamiltonian for the single s-band with the virtual processes through l = ±1 channels
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taken into account perturbatively. This can be done by rewriting ψi,±1 using Eq. (3.25)

ψi,−1 = −(Mii
−1,−1)−1(Mii

−1,0ψi,0 +
∑
j 6=i,l

Mij
−1,lψj,l),

ψi,1 = −(Mii
1,1)−1(Mii

1,0ψi,0 +
∑
j 6=i,l

Mij
1,lψj,l), (3.26)

and substituting above expressions into the equation for l = 0 component. Keeping terms

up to the linear order in inter-site coupling, we obtain

∑
j

Mij
s (E)ψj,0 = 0, (3.27)

where the exact expression for matrix Mij
s (E) is given in the Appendix A.3. In order

to find the effective Hamiltonian that describes the above equation, we expand the local

on-site matrix to the linear order in E around E = 0, assuming that ε0 → 0,

Mii
s (E) ≈Mii(0)

s −Mii(1)
s · E, (3.28)

and set E = 0 in the inter-site matrix:

lim
E→0

Mi 6=j
s (E) ≡Mi 6=j

s (0). (3.29)

In doing so we ignore terms O (1/kFa)� 1 and O
(

E
∆
√
kF a

)
. With these approximations,

Eq.(3.27) can be written as ∑
j

H ij
s ψj = Eψi, (3.30)

where the local and non-local contributions are given by H ii
s =

(
M

ii(1)
s

)−1

M
ii(0)
s and

H ij
s =

(
M

ii(1)
s

)−1

Mi 6=j
s (0), respectively. The tight-binding Hamiltonian Hs(i, j) is ob-
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tained by projecting Eq. (3.30) onto the local YSR states:

(
ϕ+, ϕ−

)T
where ϕ± are

the particle-hole pair of eigen-spinors of the single-impurity bound states with energy

±ε0. The local basis can be found by solving the single-site equation Mii
s (E)ϕ± = 0

as a special case of Eq. (3.27), where the bound state energies are determined from

Det [Mii
s (E)] = 0.

Here we consider three different cases by assuming that the all the atoms’ moments

are aligned ferromagnetically along a) ẑ- (out-of-plane), b) x̂- (along the chain direction),

and c) ŷ- (in-plane but normal to the chain) axis, and present explicit expressions for

the corresponding effective Hamiltonian. As we have seen in the previous section, due

to the presence of SOC, the effective Hamiltonian is anisotropic which can be readily

seen already at the single-impurity level. For the magnetic-atom with spin in ẑ−axis,

the eigen-spinors for l = 0 state read:

ϕ+ ∼
(

1, 0, 1, 0

)T
and ϕ− ∼

(
0, 1, 0, −1

)T
. (3.31)

When the spin is along x̂-axis, the eigen-spinors are given by

ϕ+ ∼
(

1, 1, 1, 1

)T
and ϕ− ∼

(
−1, 1, 1, −1

)T
. (3.32)

Finally, for a spin along ŷ-axis, the eigen-spinors are

ϕ+ ∼
(

1, i, 1, i

)T
and ϕ− ∼

(
i, 1, −i, −1

)T
. (3.33)

In the a) and b) cases, by transforming the effective tight-binding Hamiltonian Hs(i, j) to

momentum space, we find that the corresponding Bogoliubov-de Gennes (BdG) Hamil-
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tonian becomes

Hẑ(or x̂)
s (k)

∆
=

 hz(x)(k) ∆̃z(x)(k)

∆̃∗z(x)(k) −hz(x)(k)

 . (3.34)

To order α2 and α/
√
kFa, the effective hopping energy is given by

hz(k) = εz +
1

2
[I0,+(k) + I0,−(k)] , (3.35)

hx(k) = εx +
1

2
[I0,+(k) + I0,−(k)] . (3.36)

The functions In,±(k) ≡ In,±(k,E = 0) are defined in the Appendix A.1. The on-site

energy is

εz '
1− J0

J0

+
α2J1(2− J0 + J1)

J0(1 + J1)2
, (3.37)

εx '
1− J0

J0

− α2J2
1 [2(1− J0) + (1− J2

1 )]

J0(1− J2
1 )2

. (3.38)

The effective p-wave pairing take the form

∆̃z(k) = ∆̃x(k) =
i

2
[K1,+(k)−K1,−(k)]− iαJ1

1 + J1

[K1,+(k) +K1,−(k)] . (3.39)

The functions Kn,±(k) ≡ Kn,±(k,E = 0) are defined in the Appendix A.1. To have

a better understanding of the Hamiltonian structure in Eq. (3.34), it is instructive to

perform a perturbative expansion of h(k) and ∆̃(k), for example, around k = 0,

hz(k)
k→0
≈ h(0)

z + h(2)
z k2, (3.40)

hx(k)
k→0
≈ h(0)

x + h(2)
x k2, (3.41)

∆̃z,x(k)
k→0
≈ ∆(1)k. (3.42)
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where the expressions for h
(0,2)
z,x and ∆(1) are given in the Appendix A.4. As we can check

from the above expansion, the functions h(k) and ∆̃(k) have the following properties

h(k) = h(−k) and ∆̃(−k) = −∆̃(k), and the gap is generically vanishing at k = 0, π/a.

Moreover, the coefficient of the pairing term ∆(1) is vanishing for α→ 0. Therefore, the

existence of SOC is crucial for ferromagnetic chain to support MZM as in the semicon-

ductor nanowire proposal [54, 69].

In the limit a/ξ0 → 0, where ξ0 = vF/∆ is the superconducting coherence length, these

functions have singular points for some values of kFa which is a consequence of the long-

range nature of the hopping matrix element in the effective Hamiltonian. The presence

of a finite coherence length ξ0, however, regularizes the singularities. Nevertheless, such a

strong dependence on kFa leads to significant variations of the effective mass and Fermi

velocity. As in the case of YSR states for a single atom, the effective Hamiltonian is

anisotropic due to the SOC (cf. Eq.(3.37)) which might be helpful to drive the topological

transition by changing the direction of the magnetization of the impurities forming the

chain. We note that this effect is absent for J1 = 0, in which case we recover the results

of Ref. [9]. Thus, the dependence of the effective chemical potential on the angle θ, which

is the only tuning parameter in the Hamiltonian (3.34), is a feature of the multichannel

magnetic impurity model.

Finally, in the case c) in which S ‖ ŷ, projection to the on-site spinor eigenstates

leads to zero off-diagonal element in Hŷ, and the system is gapless.

Topological phase diagram

Having derived the effective Hamiltonian, we can now study the topological phase

diagram. The Hamiltonian (3.34) for a generic direction of magnetization is in the sym-

metry class D [6, 84, 44], and, thus, is characterized by the Z2 topological invariant, the
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so-called Majorana number M [45]:

M = sgn [h(0)h(π/a)] . (3.43)

The system is in the topological superconducting phase whenM = −1, whereasM = +1

indicates a non-topological phase. We obtain the topological phase diagram by calculat-

ing M.

(a) Topological phase diagram for the magnetization in ẑ direction, as a function of

J0 and kFa for α = 0.3, J1 = 0.4, and ξ0 = 2a. (b) Topological phase diagram for the

magnetization in ẑ direction as a function of α and kFa for J0 = 1.025, J1 = 0.4, and

ξ0 = 2a. (c) The phase boundary for the magnetization in ẑ direction (blue dashed line)

and for the magnetization in x̂ direction (red solid line) indicates that by changing the

magnetization one can drive the topological phase transition. (d) Calculated quasiparticle

excitation gap for the parameter regime in the phase diagram (a) with the phase boundary

indicated by white line.

Figure 3.5 (a) shows the topological phase diagram in the (kFa, J0) plane for the

deep s-band limit for the case in which the magnetic moments of the impurities forming

the chain are aligned along the z direction and α = 0.3. The dark and light colors

represent topologically phase with MZM and trivial phases, respectively. The range of

values of kFa has been chosen so that the inequality 1/
√
kFa � 1, on which expansion

over 1/
√
kFa is well satisfied. From Fig. 3.5 (a) we see that, for α = 0.3 there is a

large fraction of the (kFa, J0) in which the chain is expected to be in a topological phase

characterized by odd number of Majoranas at its ends. In Fig. 3.5 (b), the phase diagram

as a function of the spin-orbit coupling strength α and kFa for for J0 = 1.025, J1 = 0.4,

and ξ0 = 2a. One can notice the oscillatory behavior of the phase boundary in terms of

α and kFa. The main reason for this is the fact that all the functions in the effective
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Figure 3.5: Topological phase diagram and phase boundary for the deep s band as a
function of physical parameters.

55



Realization of topological superconductors using magnetic atom chains Chapter 3

Hamiltonian have oscillatory dependence on kF,λa which again depends on both kF and

α.

Experimentally it can be challenging to vary in a controlled way parameters such as α,

J0, and kFa and therefore to verify the theoretical predictions shown in Fig. 3.5 (a), (b).

However, our multichannel treatment, contrary to the single YSR band proposals [72, 9,

35], shows that the topological phase boundary of the system also depends on the direc-

tion of the magnetization of the chain. This is illustrated in Fig. 3.5 (c) in which we can

observe that the boundaries of the topological phase in the (kFa, J0) plane are different

depending on the direction, z or x, of the magnetic moment of the impurities forming the

chain. The phase boundary for chain with the magnetization in ẑ direction is described

by blue dashed line, and the boundary for the magnetization in x̂ direction is described

by red solid line. This result follows from the fact that the on-site energy, Eq.(3.37),

depends on the direction of the impurity magnetization. Using this dependence of the

topological index on the direction of the chain’s magnetization, one may drive the topo-

logical phase transition in experiments by tuning the direction with applied magnetic

field for magnetized STM tip for a chain in the dilute limit. Also, one can be able to

observe the suppression of the induced gap when the magnetization direction continu-

ously changes from ẑ or x̂ to ŷ−axis. Such changes in zero bias peak and localization

length scale as a function of the direction of the magnetization would provide compelling

evidence of the Majorana character of the observed zero energy states.

In addition to the topological index (Majorana number), we have also calculated

quasiparticle excitation gap as a function of J0, α, and kFa, see Fig. 3.5 (d) and Fig. 3.6

(a)-(c). One can notice that the closing of the gap is consistent with the phase boundaries

between blue(topological) and white(trivial) colored region. Additionally, Fig. 3.6 (c)

shows that there are gap closing points inside the topological phase which cannot be

detected by just calculating the topological index. It turns out that these gapless points
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Figure 3.6: Quasiparticle excitation gap Eg along different line cuts on the phase
diagrams. (a) Line-cut A in Fig. 3.5 (a). (b) Line-cut B in Fig. 3.5 (a). (c) Line-cut
C in Fig. 3.5 (b) .
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inside the topological phase are related to the change of the winding number by two

which leaves the Z2 invariant unchanged. We will discuss these gap closing points in

more detail in the next section.

3.3.2 Deep p-band limit

Effective Hamiltonian

Now we study the deep p-band limit where the energy of the l = ±1 states is lower

than that of l = 0, i.e., J0 � J1 ∼ 1 and α2J0 � 1 such that the on-site energy

ε ≈ ∆(1 − J1) + O(α2) ∼ 0. Once again, we assume that the l = ±1 states are well

separated from the l = 0 state. After we integrate out l = 0 states, we obtain a tight-

binding description for the p-bands with the s channel taken into account perturbatively

by allowing for the transitions through intermediate virtual l = 0 states. The main

difference with respect to the calculation in Sec. 3.3.1 is that there are now two particle-

hole pairs of p-bands. Following the same procedure as in the previous section, we obtain

the 8 dimensional matrix equation for the deep p-band limit:

∑
j

Mij
p (E)Φj = 0, (3.44)

where Φi =
(
ψi,−1, ψi,1

)T
is the 8 dimensional spinor for the p-channel states. The

derivation of the matrix Mij
p (E) is presented in the Appendix A.3. Assuming that kFa�

1 and ε → 0, the p-bands have narrow bandwidth with the center of the bands being

close to E = 0. One can then linearize Eq.(3.44) with respect to E as we did in the

previous section, and neglect the energy dependence of the inter-site matrix

Mi 6=j
p (E) ∼Mi 6=j

p (0) (3.45)

58



Realization of topological superconductors using magnetic atom chains Chapter 3

by dropping the terms O
(

E
∆
√
kF a

)
and O

(
α2
√
kF a

)
with α � 1. We will keep henceforth

the terms only up to O(α2) and O(α/
√
kFa). After some algebra, Eq. (3.44) can be

written as ∑
j

H ij
p Φj = EΦi, . (3.46)

Then, we project H ij
p onto the local basis of YSR states:

(
φ1,+, φ2,+, φ1,−, φ2,−

)T
where φ1(2),± are the eigenspinors of the single-impurity bound states with energy ±ε1(2)

correspond to l = ±1. The local basis can be found by solving the single-site equa-

tion Mii
p (E)φ = 0 as a special case of Eq. (3.44), where the bound state energies are

determined from

Det
[
Mii

p (E)
]

= 0. (3.47)

For example, when the spin of magnetic atom is along the ẑ−axis, the local spinors are

given by

φ1,+ =

(
1, 0, 1, 0, 0, 0, 0, 0

)T
, (3.48)

φ2,+ =

(
0, 0, 0, 0, 1, 0, 1, 0

)T
, (3.49)

φ1,− =

(
0, 0, 0, 0, 0, 1, 0, −1

)T
, (3.50)

φ2,− =

(
0, 1, 0, −1, 0, 0, 0, 0

)T
. (3.51)

After the projection onto the local basis and Fourier transformation we obtain the ef-

fective Hamiltonian Hp(k) describing the two coupled bands of the YSR chain in the

deep-p band limit.
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Hẑ
p(k)

∆
=



h11(k) h12(k) ∆̃11(k) ∆̃12(k)

h21(k) h22(k) ∆̃21(k) ∆̃22(k)

∆̃∗11(k) ∆̃∗21(k) −h11(k) −h21(k)

∆̃∗12(k) ∆̃∗22(k) −h12(k) −h22(k)


. (3.52)

The coefficients here satisfy the following properties: hij(k) = hij(−k), ∆̃ij(−k) =

−∆̃ij(k) and, therefore, ∆̃ij(k) = 0 at k = 0, π/a. The effective dispersion energies

and inter-band mixing, and their small k expansions can be written as

h11(k) = ε1 +
1

2
[I0,+(k) + I0,−(k)]

k→0
≈ h

(0)
11 + h

(2)
11 k

2, (3.53)

h22(k) = ε2 +
1

2
[I0,+(k) + I0,−(k)]

k→0
≈ h

(0)
22 + h

(2)
22 k

2, (3.54)

h12(k) = h21(k) =
1

2
[I2,+(k) + I2,−(k)]

k→0
≈ h

(0)
12 + h

(2)
12 k

2 (3.55)

with the on-site energies

ε1 =
1− J1

J1

+
α2J0(2− J1 + J0)

J1(1 + J0)2
, (3.56)

ε2 =
1− J1

J1

. (3.57)

The effective p−wave pairing contains both intra-band pairing

∆̃11(k) =
i

2
[K1,+(k)−K1,−(k)]− iαJ0

1 + J0

[K1,+(k) +K1,−(k)]
k→0
≈ ∆

(1)
11 k, (3.58)

∆̃22(k) =
i

2
[K3,+(k)−K3,−(k)]

k→0
≈ ∆

(1)
22 k, (3.59)
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Figure 3.7: The normal-state (∆ij = 0) band structure for J0 = 0.4, J1 = 1.0125,
kFa = 37.5π, ξ0 = 2a, α = 0(a) and α = 0.3(b). The zoom-in figure of panel (b) near
the Fermi level is shown in the inset.

and inter-band pairing

∆̃12(k) = ∆̃21(k)

=
i

2
[K1,+(k)−K1,−(k)]− iαJ0

2 (1 + J0)
[K1,+(k) +K1,−(k)]

k→0
≈ ∆

(1)
12 k. (3.60)

The coefficients of the small k expansions are explained in the Appendix A.4. To under-

stand the physics described by the above Hamiltonian, we first discuss the effect of SOC

on the normal-state band structure (i.e. ∆ij = 0). The spectrum for the two bands reads

EN
± (k)

∆
=

1

2

[
h11(k) + h22(k)±

√
4h2

12(k) + (δε12)2

]
(3.61)

where δε12 = ε1 − ε2. As shown in the Appendix A.1, to leading order in 1/
√
kFa,

I0,λ(k) ≈ I2,λ(k). Hence h12 is approximately the same as h11 and h22.

In the absence of Rashba spin-orbit coupling, δε12 vanishes, and the band structure
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is characterized by a flat(heavy) band EN
1 = (1−J1)/J1 crossing with a dispersive(light)

band EN
2 = (1 − J1)/J1 + [I0,+(k) + I0,−(k)] with the bandwidth doubled compared to

s-band, as shown in Fig. 3.7 (a). The on-site orbital structure of these two bands are

symmetric(light) and anti-symmetric(heavy) combinations of l = ±1 states. The physical

origin of these orbital structures reflects the degeneracy due to the isotropic magnetic

potential and the asymptotically equal hopping amplitudes.

In the presence of SOC and a finite s-channel coupling (i.e. J0 6= 0 and α 6= 0), δε12

is non-zero, and a hybridization gap between the two bands develops which leads to an

avoided level crossing, as shown in Fig. 3.7 (b). The induced hybridization gap gives rise

to an interesting feature in the topological phase diagram that we will discuss below.

Topological Properties

The topological phase diagram for the p−band Hamiltonian (3.52) involves two bands

which are hybridized by the SOC. Therefore, in order to compute the Z2 topological

invariant M, we need to adopt the method developed for the multiband system [56]

M = sgn [PfB(0)PfB(π/a)] = ±1, (3.62)

where the antisymmetric matrix, B(p) = Hẑ
p(p)τx. For the two-band system, the corre-

sponding expression for the Pfaffian is

PfB(p) = h12(p)h21(p)− h11(p)h22(p). (3.63)

The topological phase diagram as a function of J1 and kFa is shown in Fig. 3.8 (a).

One can notice that the overall shape of the phase boundaries are similar to that of

deep s−band limit except for the narrow trivial region in the middle which is enlarged
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Figure 3.8: Topological phase diagram and quasiparticle gap for various parameters
in the p−band limit. (a) Topological phase diagram in the (kFa, J1) plane with S ‖ ẑ,
J0 = 0.4, α = 0.3, and ξ0 = 2a. (b) Enlargement of the topological phase diagram
shown in (a) around the region surrounded by the dashed line rectangle. (c) Calculated
quasiparticle excitation gap for the parameter regime in the phase diagram (b) with
the phase boundary indicated by white line. (d) The quasiparticle excitation gap and
the winding number on the line-cut A in panel (b) and (c) near the re-entrance region
at kFa = 36.4π. (e) The quasiparticle excitation gap and the winding number on the
line-cut B in panel (b) and (c) near the re-entrance region at kFa = 37.6π.
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in Fig. 3.8 (b). The width of this region is controlled by the bandwidth of the heavy

band which depends on the strength of SOC. Therefore, in the limit of small SOC we

consider here, this trivial region is much smaller than the full area of the topological

phase which is determined by kFa. Indeed, the typical bandwidth of the light band is

double the bandwidth of deep s−band limit for same kFa as we have seen above. As

a result, the deep p−band limit support wide parameter space for realizing topological

phase. This is surprising because a two-band system with similar bandwidth and energy

tends to have zero Z2 index due to the even number of Fermi pockets. The origin

of this interesting feature is due to the specific structure of inter-band mixing terms

h12(k) ∼ h11(k) ∼ h22(k) of the YSR states.

In order to examine the stability of the topological phase, we compute the quasipar-

ticle excitation gap Eg, see Fig. 3.8(c). Figure 3.8(d)-(e) plot the value of Eg along the

two line-cuts on the phase diagram near the re-entrance region. One can see that the

quasiparticle gap closing is consistent with the topological phase diagram in Fig. 3.8(b).

The magnitude of the quasiparticle gap is also controlled by SOC since ∆̃ij ∼ α. There-

fore, it is important to note that the SOC is a key ingredient for realizing topological

superconducting phase with ferromagnetic atom chains.

In addition to the quasiparticle gap closing at the phase boundary, there are also

points where the gap closes inside the topological phase, see Fig.3.8(d) at J1 ∼ 1.005 and

Fig.3.8(e) at J1 ∼ 1.017. These gap closings are related to the additional symmetry of the

effective Hamiltonian (3.52). In addition to the particle-hole symmetry P = τxK where K

refers to complex conjugation, our effective spinless Hamiltonian also has a pseudo-time

reversal symmetry T = K. Using these two symmetries, one can construct another sym-

metry - chiral symmetry S = T P = τx which anticommutes with the Hamiltonian (3.52).

Thus, the effective Hamiltonian belongs to the BDI symmetry class [6, 84, 44] which is

characterized by the integer topological invariant, winding numberW and supports mul-
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tiple spatially-overlapping Majorana zero modes [11]. Our Z2 index, then, can be related

to the parity of W . In order to calculate the index W , it is convenient to transform Eq.

(3.52) into a chirality basis using a unitary transformation U = e−i
π
4
τy which converts

the Hamiltonian to the off-diagonal form:

UHẑ
p(k)U † =

 0 A(k)

A†(k) 0

 . (3.64)

Then, the winding number can be calculated by introducing a complex variable z(k) =

det[A(k)]/| det[A(k)]|, and calculating the integral

W = − i
π

∫ k=π

k=0

dz(k)

z(k)
, (3.65)

Using this analysis we find that, for example, the Hamiltonian at J1 = 1.001 and

J1 = 1.007 in Fig. 3.7 (d) have different winding numbers W(J1 = 1.001) = 1 and

W(J1 = 1.007) = −1 with same Z2 index. Thus, gap closing between these two regions

corresponds to the transition betweenW = ±1. The same argument holds for J1 = 1.015.

Thus, the gap closing points inside of the topological or non-topological phases are not

accidental but represent the change of the winding number by an even integer.

The analysis above relies on the chiral symmetry. However, in realistic systems

the chiral symmetry can be easily broken by allowing, for example, for a generic di-

rection of magnetic moment of the chain with finite component along y-axis. The

precise magnitude for the Majorana splitting energy, which is important for tunnel-

ing transport measurements, depends on the details of the chiral-symmetry-breaking

perturbations.[67, 49, 23, 35, 37] As a consequence, the topological phases identified by

the parity of the topological index are expected to be much more robust in realistic

system.
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3.4 Discussion

In Section 3.2, we have developed a formalism which allows us to understand YSR

spectrum of a magnetic impurity atom with generic exchange coupling J(|r|) in two di-

mensional superconductors with s−wave and p−wave pairing symmetries and Rashba

SOC. Using this formalism we have studied the effect of spin-orbit coupling on the mul-

tiple angular momentum channels of YSR states for a single magnetic atom and a dimer

of two atoms.

We have shown that SOC mixes YSR states with different angular momentum and

therefore strongly modifies their spectrum. In particular we have shown that, in the

presence of SOC, the parity of the particle (or hole)-like YSR states is odd for s−wave

superconductor and even for p−wave superconductor. We also have found that the YSR

spectrum depends on the relative angle between the spin of the magnetic atom and the

plane. For a chain, this property allows one to tune the chemical potential of the YSR

band. In the case of a dimer, YSR spectrum oscillates as a function of the relative angle

between the magnetic moments and the distance between the two atoms. These are pre-

dictions that can be tested experimentally using the scanning tunneling microscopy(STM)

and have important implications for STM experiments trying to reveal the nature of the

superconducting pairing in non-centrosymmetric superconductors. Since Pb has large

SO coupling, our results shed some light on the measurements presented in Ref. [38, 79].

In Section 3.3, we have applied our multi-channel model to the ferromagnetic atom

chain in the limit of weak SOC and well separated atoms kFa � 1. The existence of

multiple angular momentum scattering channels per each atoms and Rashba SOC leads

to the multi-band theory with complicated structure for a chain of atoms. To simplify

our analysis we assumed that single s−band mainly composed of l = 0 YSR states and

double p−bands with l = ±1 YSR states are well separated and do not cross each other.
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Figure 3.9: Comparison of the topological phase diagram in (a) the s band system for
α = 0.3, J1 = 0.4, and ξ0 = 2a; and in (b) the p band system for α = 0.3, J0 = 0.4,
and ξ0 = 2a.

Since the topological phase diagram are determined by partially filled band(s), we have

considered two different scenarios where either s−band or p−bands are around E = 0.

In deep s−band limit, the phase diagram qualitatively resembles the results from the

previous single Shiba band proposals. In addition, we have found interesting features

such as the dependence of phase boundaries on the direction of the magnetic moment,

and these features originate from the presence of mixing to higher angular momentum

channels. This feature can be used to control the magnetic atom chains in experiment

to drive a topological phase transition.

We also have studied the deep p−band limit where two l = ±1 bands are partially

filled. In contrast to the conventional wisdom, this two-band limit supports topological

phase for wider region of parameter space than single band case, see Fig. 3.9. As one can

notice from the figure, double bandwidth of the light p−band leads to larger parameter

space for J1 which means less fine tuning. This special property makes multiple YSR
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bands system in two dimensional superconductor a good candidate for the observation of

Majorana zero modes. We have also characterized the stability of the topological states

by computing the quasiparticle excitation gap. We have found that there are gap closing

points inside the topological/trivial phases and these gap closures are related to the

additional symmetry in the effective Hamiltonian. The additional symmetry, however,

can be easily broken by allowing the magnetic moment of the chain to have a finite

component parallel to the plane but perpendicular to the chain.

For future studies, it will be interesting to study the multi-orbital Anderson model

which can connect the half-metallic multiband wire limit to the multiple YSR-bands limit

we have studied in this chapter. The spacing between nearby atoms in Ref. [62] is of the

order of the Fermi wave length (kFa ∼ 1), in which case direct tunneling between iron

atoms needs to be included, whereas our calculation assumes kFa� 1. Therefore, it will

be nice to understand how the band structure of dilute chain such as heavy and light

bands in deep p−band limit transforms to multi-band half-metal as we increase the direct

hopping between magnetic atoms. This can be useful to find the optimum interatomic

spacing for more advanced experiments in the future.
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Chapter 4

Signatures of time-reversal invariant

topological superconductor

In this chapter, we study the ground state properties and transport signatures of one

dimensional time-reversal invariant(TRI) topological superconductors where Majorana

Kramers pair(MKP) at the ends are coupled to two different electronic systems with

repulsive interactions. We first consider a case in which MKP is coupled to an inter-

acting Luttingr liquid(LL). We analyze the ground state phase diagram as a function of

interaction strength and other parameters using the renormalization group(RG) analysis,

and show that Andreev reflection in spin-triplet channel is stable against weak repulsive

interaction. We also study a MKP - quantum dot(QD) - normal lead(NL) junction us-

ing both RG analysis and slave-boson mean-field theory. We show that, for single QD

occupancy limit, the ground state of the system can be described by strong correlation

between MKP and a spin of QD.

The content in this chapter has been submitted to Physical Review B and is currently

under review by APS. While the submitted manuscript was in preparation, we became

aware of related independent work on this subject [74] which has some overlap with
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Sec. 4.2.

4.1 Introduction

Topological superconductors show unique transport signatures due to the presence

of Majorana zero modes (MZMs) at the boundaries. When a single MZM at the end

of one-dimensional topological superconductor is coupled to a non-interacting lead, the

quantized zero bias differential conductance of 2e2/h appears due to the perfect Andreev

reflection process. However, the signature of perfect Andreev reflection can be signifi-

cantly modified in the presence of a strong repulsive interaction in the lead [32, 53, 26, 2].

In a MZM - QD - NL junction, the competition between Kondo correlation and coupling

to the MZM leads to interesting physics such as a crossover between Kondo resonance

and Majorana resonance appearing in the width of zero bias differential conductance

peak [10]. Therefore, it is very important to understand the role of interactions in low

dimensional systems involving MZMs.

Most previous works on the interplay between interactions and MZM has focused on

the topological superconductors belonging to class D [6, 84, 44] with broken time-reversal

(TR) symmetry and only one MZM at each end. However, a pair of MZMs can appear as

a MKP in TRI topological superconductors belonging to class DIII [84, 44, 90]. Recently,

several theoretical proposals were put forward to realize TRI topological superconduc-

tors [94, 21, 96, 64, 39, 31, 47, 85]. Transport signatures of MKPs and their detection

schemes using a quantum point contact were also recently investigated in a quantum

spin Hall system [50]. Most of the previous works on MKPs considered non-interacting

models. For non-interacting systems, the presence of a MKP leads to a quantized con-

ductance of 4e2/h due to perfect Andreev reflection for two spin channels at the junction.

The situation could be different, however, in the presence of interactions, and the fate of
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Figure 4.1: Schematic setup consisting of a) a junction between a LL and a TRI
topological superconductor, and b) a QD coupled to a NL and a TRI topological
superconductor. Here, x = 0 denotes the point in the lead which couples to the MKP
or QD.

the perfect Andreev reflection is unclear. Interactions in a system containing MKP could

also be very different from single MZM case since one can now introduce four fermion

terms that consist of two Majoranas and two complex fermions. In this chapter, we study

the signatures of MKPs in the presence of various kinds of interactions by considering

two generic systems - a) MKP coupled to an interacting spinful LL (see Fig. 4.1 a)); b)

MKP coupled to an interacting QD (see Fig. 4.1 b)).

In Sec. 4.2, we study a spinful LL with SU(2) spin symmetry coupled to a TRI

topological superconductors with a single MKP per end. In the presence of an additional

U(1) spin-rotation symmetry at the boundary, we find that for weak repulsive interac-

tions, 1 > Kρ & 1/3 with Kρ being the Luttinger parameter, the Andreev reflection

fixed point (A× A) is stable and the normal reflection fixed point (N× N) is unsta-

ble. For intermediate interaction strength 1/4 < Kρ . 1/3, the phase diagram depends

on the strength of four-fermion interactions allowed by TR symmetry, which leads to a

Berezinsky-Kosterlitz-Thouless (BKT) type transition between two phases characterized
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by A× A and N× N fixed points. Finally, for sufficiently strong repulsive interactions

Kρ < 1/4, the two electron backscattering term becomes relevant, and drives the system

to a stable normal reflection fixed point.

In the presence of spin-orbit coupling, the corresponding boundary theory may break

U(1) spin-rotation symmetry. In this case, both spin-preserving Andreev reflection

(A× A) and spin-flip Andreev reflection (SFA) are allowed, and they drive the system

to different boundary conditions:

A× A : ψσ(0) = −ψ†σ(0), (4.1)

SFA : ψσ(0) = −iψ†−σ(0). (4.2)

Therefore, the phase diagram depends on the relative strength of the corresponding An-

dreev scattering amplitudes. These boundary conditions, similar to those in a spin-triplet

superconductor - LL junction, are stable with respect to weak repulsive interactions, and

the physics is fundamentally different from an s-wave superconductor - LL junction where

weak repulsive interactions destabilize Andreev reflection fixed point [26].

In Sec. 4.3, we study the effect of local interactions by considering a MKP coupled to

a QD and an non-interacting NL. In the limit of large Coulomb repulsion U and single-

electron occupation in the QD, the system shows competition between Kondo correlation

and Majorana correlation. In the limit of strong Kondo correlation, the spin of the QD

is screened by electrons in NL which leads to a boundary condition ψRσ(0) = −ψLσ(0)

where R/L denote right and left movers. As we increase the coupling between the QD and

the MKP, the QD spin starts to form a correlation with MKP, and the system flows to a

new fixed point where spin in the dot is coupled to the fermion parity of the MKP. This

Majorana dominated fixed point is characterized by A× A boundary condition. We study

the transport properties of this fixed point using a slave-boson mean-field theory [15, 7].
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We show that the crossover between the Kondo dominated and Majorana dominated

regimes can be understood in terms of the solutions of mean-field equations, and we

analyze the stability of this mean-field solution with respect to Gaussian fluctuations

[78, 16] finding that the mean field theory is stable, in the quasi-long range order sense,

and can be used to calculate different observable quantities. We use this approach to

calculate differential conductance at zero temperature as a function bias voltage.

4.2 Majorana Kramers pair coupled to Luttinger liq-

uid

In this section we consider the junction shown in Fig. 4.1 a) consisting of a semi-

infinite spinful LL coupled weakly to a TRI topological superconductor. We assume that

the topological gap of the superconductor is much larger than the other relevant energy

scales such that in the low-energy approximation, the TRI topological superconductor

can be represented by only the MKPs localized at its ends. In this section, we will use

ψσ(0) to describe the operators at the boundary x = 0, and use t(l0) (similarly for t̃, ∆

and ∆̃) as the initial value in RG flow.
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4.2.1 Majorana Kramers pair coupled to SU(2)-invariant Lut-

tinger liquid

Theoretical Model

We first consider an SU(2)-invariant interacting spinful wire coupled to a MKP. The

Hamiltonian for the wire can be written as the spinful LL model

Hlead =
∑
j=ρ,σ

vj
2π

∫ ∞
0

dx

(
Kj(∂xθj)

2 +
(∂xφj)

2

Kj

)
(4.3)

where vρ/σ and Kρ/σ are velocity and Luttinger parameter for charge and spin modes,

respectively. The bosonic fields satisfy the commutation relation

[φα(x), θβ(x′)] = iπKαδαβ sgn(x− x′). (4.4)

Here we follow the convention for the bosonization procedure [33]:

ψR/L,s(x) =
ΓR/L,s√

2πa
e
i 1√

2
{±[φρ(x)+sφσ(x)]+θρ(x)+sθσ(x)}

(4.5)

where R/L represents right/left moving modes, a is an ultraviolet (UV) length scale,

s =↑ / ↓ denotes fermion spin, and ΓR/L,s is the Klein factor.

The Hamiltonian for the whole system is given as

H = Hlead +HB. (4.6)

where HB describes the coupling between the LL and the MKP. We neglect here the

ground-state degeneracy splitting energy. The most general form of the boundary Hamil-

tonian with TR and U(1) spin-rotation symmetry including only two and four-fermion
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operators can be written as

HB = i t↑γ↑

(
ψ↑(0) + ψ†↑(0)

)
− i t↓γ↓

(
ψ↓(0) + ψ†↓(0)

)
(4.7)

−∆iγ↑γ↓

(
−iψ†↑(0)ψ↓(0) + iψ†↓(0)ψ↑(0)

)
−∆ANiγ↑γ↓

(
−iψ†↑(0)ψ†↓(0) + iψ↓(0)ψ↑(0)

)
.

The first two terms represent tunneling between the LL and the MKP with the amplitudes

t↑/↓. TR symmetry requires t↑ = t↓ = t. Assuming the spin-quantization axis is fixed in

the whole system, the overall Hamiltonian H has U(1) spin rotation symmetry, leaving

it invariant under the unitary transformation:

(ψ↑, ψ↓)→ R(θ)(ψ↑, ψ↓) (4.8)

(γ↑, γ↓)→ R(−θ)(γ↑, γ↓). (4.9)

Here R(θ) represents a U(1) rotation matrix by an angle θ. Thus, electron tunneling

between LL and topological superconductor preserves the spin. The last two terms ∆

and ∆AN represent normal, and anomalous backscattering terms, which, in fact, will also

be generated by the tunneling terms in the RG flow in the presence of interactions in the

LL.

Weak coupling RG analysis near normal reflection fixed point

We now study the stability of the normal reflection fixed point using weak coupling

perturbative RG analysis. Around the normal reflection fixed point, the boundary condi-

tions for lead electrons at x = 0 are given by ψRσ(0) = ψLσ(0). In bosonization formalism,

this boundary condition corresponds to ΓL,s = ΓR,s and pinning φρ,σ(0). Once we turn

on the boundary couplings t, ∆ and ∆AN, boundary conditions for lead electrons may

change depending on the strength of interaction in the lead. After integrating out the
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fields away from x = 0, the corresponding imaginary-time partition function becomes

Z =

∫
D[θρ]D[θσ] e−(S0+ST ), (4.10)

with

S0 =
∑
j=ρ,σ

Kj

2π

∫
dω

2π
|ω||θj(ω)|2, (4.11)

and the boundary coupling term reads

ST =

∫
dτ

2πa

[
t
(
iγ↑Γ↑ cos

θρ + θσ√
2
− iγ↓Γ↓ cos

θρ − θσ√
2

)
−∆γ↑γ↓Γ↑Γ↓ cos

√
2θσ −∆ANγ↑γ↓Γ↑Γ↓ cos

√
2θρ

]
. (4.12)

Here we used short-hand notation θj(τ) denoting the fields at x = 0.

We now derive the perturbative RG equations using the frequency shell integration

by separating the bosonic fields θj into slow, and fast modes and integrating out the

fast modes. After the procedure, the new effective action can be written as a cumulant

expansion:

Seff [θ<j ] = S0[θ<j ] + 〈ST 〉 −
1

2

(
〈S2

T 〉 − 〈ST 〉2
)
, (4.13)

where the average 〈· · · 〉 describes an integration over the fast modes. For the details

of this calculation, please refer to the Appendix B.1. Finally, we get the following RG

equations:

dt

dl
=

(
1− 1

4Kρ

− 1

4Kσ

)
t− ∆t

4πvKσ

− ∆ANt

4πvKρ

, (4.14)

d∆

dl
=

(
1− 1

Kσ

)
∆−

(
1

Kρ

− 1

Kσ

)
t2

4πv
, (4.15)

d∆AN

dl
=

(
1− 1

Kρ

)
∆AN +

(
1

Kρ

− 1

Kσ

)
t2

4πv
. (4.16)
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Figure 4.2: RG flow diagram near the normal reflection fixed point N× N for the
MKP-LL junction with U(1) spin-rotation symmetry and Kρ = 1/3.

Here dl = d ln b where b is the ratio of the UV cutoff change from Λ to Λ/b with Λ =

v/a. One can immediately see that t is a relevant perturbation in the non-interacting

limit (Kρ = Kσ = 1) and grows under RG. Therefore, in the non-interacting limit

with ∆,∆AN ∼ 0, the system will flow to the perfect Andreev reflection fixed point

(A× A) corresponding to the boundary condition ψ†L,s(0) = −ψR,s(0) [26] and quantized

differential conductance G = 4e2

h
at zero temperature.

Let us now try to understand the effects of interactions. For SU(2)-invariant lead

(Kσ = 1) and repulsive interactions in the nanowire Kρ < 1, the coupling ∆AN becomes
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irrelevant and can be neglected. Then, the RG equations can be simplified to

dt

dl
=

(
3

4
− 1

4Kρ

)
t− ∆t

4πv
, (4.17)

d∆

dl
= −

(
1

Kρ

− 1

)
t2

4πv
. (4.18)

The coupling t is relevant for not too strong repulsive interactions. It becomes marginal,

however, if initial value of ∆(l0) is equal to the special value ∆∗ = πv(3 − 1
Kρ

). Indeed,

then above RG equations (after a slight redefinition of variables) are identical to the

anisotropic Kondo model [33], the solution of which is well-known. If the initial value of

∆(l0) is zero, and Kρ ≥ 1/3, the system will flow to strong coupling A× A fixed point

whereas for Kρ < 1/3, the N× N fixed point is stable for small t(l0) and flow to strong

coupling A× A for larger t(l0). The perturbative RG flow is summarized in Fig. 4.2.

Weak coupling RG analysis near perfect Andreev reflection fixed point

As we have seen in the previous section, the normal reflection fixed point is unstable

for weak repulsive interactions and the system flows to the A× A Andreev reflection fixed

point corresponding to the boundary conditions, ψ†L,s(0) = −ψR,s(0) which, in bosonic

variables corresponds to pinning θρ and θσ fields at x = 0. Thus, the fluctuating degrees

of freedom are the fields φρ and φσ and the corresponding boundary action reads

S0 =
∑
j=ρ,σ

1

2πKj

∫
dω

2π
|ω||φj(ω)|2. (4.19)

We now consider perturbations near the Andreev fixed point which are consistent with

time-reversal and the spin-SU(2) symmetry of the LL lead. The only fermion bilinear
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boundary perturbation preserving aforementioned symmetries is

H1B = λ1(ψ†R↑(0)ψL↑(0) + ψ†R↓(0)ψL↓(0)) + h.c.

=
λ1

2πa
cos
(√

2φρ

)
cos
(√

2φσ

)
. (4.20)

In addition, one has to also consider the following four-fermion perturbation consistent

with the above symmetries:

H2B =λ2ψ
†
L↑(0)ψR↑(0)ψ†L↓(0)ψR↓(0) + h.c.

=
λ2

(2πa)2
sin(2

√
2φρ), (4.21)

which corresponds to two-electron backscattering. The perturbative RG equations for λ1

and λ2 are given by

dλ1

dl
= (1−Kρ −Kσ)λ1 (4.22)

dλ2

dl
= (1− 4Kρ)λ2 (4.23)

One can see that the first term λ1 is irrelevant since Kσ = 1 whereas the second coupling

becomes relevant for Kρ < 1/4 indicating that A× A fixed point becomes unstable for

strong repulsive interactions. Taking into account the perturbative RG analysis near

both N× N and A× A fixed points, we conjecture the qualitative phase diagrams shown

in Fig. 4.3. For the flow near N× N fixed point, the boundary perturbation ∆ bends the

transition line, i.e. the brown dashed line connecting Kρ = 1/3 at N× N and Kρ = 1/4

at A× A. We also set the initial value ∆(l0) to be zero.
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𝐾𝜌
11/4 1/3

𝔸 × 𝔸 fixed point

ℕ × ℕ fixed point

0

𝐾𝜎 = 1

Figure 4.3: Illustration of the flow between the normal reflection fixed point N× N
and the Andreev reflection fixed point A× A for the junction with U(1) spin-rotation
symmetry.
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Differential tunneling conductance

In this subsection, we discuss the qualitative behavior of the finite temperature cor-

rection on the differential conductance by calculating G = dI/dV at zero voltage bias as

a function of temperature. A similar analysis can be done for the linear conductance G

at V = 0 as a function of temperature T . The RG flow between the normal N× N and

Andreev reflection A× A defines a crossover temperature T ∗, which roughly corresponds

to the width of the zero bias peak. Although the conductance for the whole crossover

regime requires involved calculations, the conductance around N× N and A× A fixed

points can be obtained using a perturbative approach [55]. First of all, we consider the

case ∆(l0) = 0 and 1/3 < Kρ < 1, where A× A fixed point is stable. In the UV limit

near the normal reflection fixed point, the leading relevant perturbation is the coupling

to the MKP, t, which has scaling dimension 3
4
− 1

4Kρ
. Near the infrared (IR) limit near

the Andreev reflection fixed point, the deviation from the quantized value comes from

the leading irrelevant operators which is the normal backscatterings in Eq. (4.20) with

scaling dimension −Kρ.

We can now obtain scaling of the conductance with temperature at zero bias:

G

4e2/h

∣∣∣∣∣
Kρ>

1
3

=


c1(Kρ)

(
T
T ∗

)2( 1
4Kρ
− 3

4
)
, T � T ∗

1− c2(Kρ)
(
T
T ∗

)2Kρ
, T � T ∗

, (4.24)

where c1,2(Kρ) are numerical coefficients of the order one. Similarly, one can obtain

voltage corrections to the conductance at zero temperature [55].

Next, we consider the case for Kρ < 1/4, where N× N is the stable IR fixed point.

In this case, we start near the UV fixed point, A× A, and calculate the conductance by

perturbing with the two-electron backscattering operator which is the leading relevant
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operator in this regime. Thus, we obtain

G

4e2/h

∣∣∣∣∣
Kρ. 1

3

∼


1− c3(Kρ)

(
T
T ∗

)2(4Kρ−1)
, T � T ∗

c4(Kρ)
(
T
T ∗

)2( 1
4Kρ
− 3

4
)
, T � T ∗

, (4.25)

where c3/4(Kρ) are O(1) numerical coefficients. The calculation of the conductance in

the regime 1/4 < Kρ . 1/3 will depend on microscopic details.

4.2.2 The effect of breaking the U(1) symmetry at the boundary

Theoretical Model

In this section, we study the effect of breaking the U(1) spin-rotation symmetry at

the boundary. When we couple LL to MKP, the spin eigenstates of the MKP do not have

to be the same as the spin eigenstates of the LL. Therefore, the tunneling between the

LL and the TRI topological superconductor can have both spin-preserving and spin-flip

components. For example, if we add Rashba spin-orbit coupling (SOC) which has an

angle θ rotation compared to that of the MKP. The corresponding tight binding model

can be written as

H =Hlead +HT (4.26)

Hlead = −t
∑
j

∑
s

(
c†j+1,scj,s + h.c.

)
+ µ

∑
js

c†j,scj,s

+
∑
jss′

(−i)αRc†j+1,s (cos θσz + sin θσy)ss′ cj,s′ + h.c.,

HT =it0

[
γ↑(c0↑ + c†0↑)− γ↓(c0↓ + c†0↓)

]
. (4.27)
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One can see that the above Hamiltonian respects TR symmetry. We apply the following

unitary transformation  ψi↑

ψi↓

 = e−i
θ
2
σx

 ci↑

ci↓

 , (4.28)

and then the bulk and boundary Hamiltonian become

Hlead = µ
∑
js

ψ†j,sψj,s +
∑
j

[
(−t− iαR)ψ†j+1,↑ψj,↑ + (−t+ iαR)ψ†j+1,↓ψj,↓ + h.c.

]
, (4.29)

HT = it
∑
s=↑,↓

sγs(ψ0,s + ψ†0,s) + t̃
∑
s

sγs(ψ
†
0,−s − ψ0,−s), (4.30)

where t = t0 cos θ and t̃ = t0 sin θ, and s = 1(−1) for spin-↑ (↓). Therefore, the spin-flip

tunneling naturally arises in the presence of SOC. In addition, one can also have different

types of interactions such that the new boundary Hamiltonian in continuum limit has

more general form:

HB =it
∑
s=↑,↓

sγs
(
ψs(0) + ψ†s(0)

)
+ t̃
∑
s

sγs

(
ψ†−s(0)− ψ−s(0)

)
(4.31)

−∆iγ↑γ↓

(
−iψ†↑(0)ψ↓(0) + iψ†↓(0)ψ↑(0)

)
+ ∆̃iγ↑γ↓

(
ψ†↑(0)ψ↑(0)− ψ†↓(0)ψ↓(0)

)
.

Note that we did not include the irrelevant terms such as ∆AN. One can simply check

that, for generic values of t, t̃, ∆ and ∆̃ the U(1) symmetry shown in Eq. (4.9) is broken.

In this case, the boundary condition at the Andreev reflection fixed point is determined

by the relative magnitude of t and t̃ as we discuss in the next subsection.
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Scattering matrix analysis for the non-interacting lead

First, we analyze the boundary conditions in the non-interacting case with ∆ = ∆̃ = 0

using the scattering matrix approach. The unitary scattering matrix is defined as [66]

S(ω) = Î + 2πiŴ †
(
HMK − ω − iπŴŴ †

)−1

Ŵ , (4.32)

where HMK is the Hamiltonian for the MKP (2 by 2 matrix) which vanishes in the limit

of zero splitting energy for MKP. Note that the local term iδ0γ↑γ↓ is not allowed by TR

symmetry. The matrix Ŵ describes the coupling between the MKP γ↑, γ↓ and the lead

degrees of freedom in the basis (ψ↑, ψ↓, ψ
†
↑, ψ

†
↓):

Ŵ =

 it t̃ it −t̃

−t̃ −it t̃ −it

 . (4.33)

Note that we assume the lead Hamiltonian is diagonal in this basis. Using Eq. (4.32),

we can represent the scattering matrix at ω = 0 as

S(0) =

See(0) Seh(0)

She(0) Shh(0)

 . (4.34)

The components See(0) and Seh(0) describe normal and Andreev reflection, respectively.

As pointed out in Ref. [50], the normal part See(0) is zero so we focus on the non-diagonal

components:

Seh(0) =

 t̃2−t2
t2+t̃2

− 2it̃t
t2+t̃2

− 2it̃t
t2+t̃2

t̃2−t2
t2+t̃2

 ,

= − cos 2θ − iσx sin 2θ (4.35)
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where the diagonal term is the coefficient of the same-spin Andreev reflection ψ↑ → ψ†↑,

and the off-diagonal term is the coefficient of the spin-flip Andreev reflection ψ↑ → ψ†↓.

As we change the angle of SOC, θ, from 0 (t̃ = 0) to π/4 (t = t̃), the Andreev reflection

boundary condition changes continuously from ψL,s(0) = −ψ†R,s(0) (A× A) to ψL↑(0) =

−iψ†R↓(0) and ψL↓(0) = −iψ†R↑(0). We denote this boundary condition for t = t̃ as

spin flip Andreev reflection (SFA) boundary condition. Upon increasing θ to π/2, the

boundary condition becomes ψL,s(0) = ψ†R,s(0)(Ã× Ã) (i.e. t = 0 and t̃ 6= 0).

Here we would like to emphasize that the SFA boundary condition is different from

the Andreev boundary condition in s-wave spin-singlet superconducting junction where

ψL↑(0) = ∓iψ†R↓(0) and ψL↓(0) = ±iψ†R↑(0) (see, e.g., Ref. [57]). Notice different signs

in this case for spin-up and spin-down components. The SFA boundary condition in

our case corresponds to spin-triplet Andreev reflection which typically is realized at

junctions between a normal lead and a spin-triplet p-wave superconductor. Indeed, if we

denote spin-triplet pair potential as ∆(p) ∝ (
−→
d (p) · −→σ )iσy, then different orientations of

the
−→
d -vector correspond to SFA (

−→
d ∝ (0, 0, 1)) and A× A (

−→
d ∝ (0,±1, 0)) boundary

conditions. This difference between conventional (s-wave) spin-singlet Andreev boundary

conditions and SFA boundary conditions considered here becomes very important later

when we consider allowed boundary perturbations.

Weak coupling RG analysis near normal reflection fixed point

Now we study the effects of interactions in the lead using RG analysis. In the absence

of U(1) spin-rotation symmetry, the boundary Hamiltonian in (4.31) leads to boundary
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action after the bosonization,

ST =

∫
dτ

[
t

2πa

(
iγ↑Γ↑ cos

θρ + θσ√
2
− iγ↓Γ↓ cos

θρ − θσ√
2

)
+

t̃

2πa

(
iγ↓Γ↑ sin

θρ + θσ√
2
− iγ↑Γ↓ sin

θρ − θσ√
2

)
− ∆

2πa
γ↑γ↓Γ↑Γ↓ cos

√
2θσ +

∆̃

2πv
iγ↑γ↓

i∂τθσ√
2

]
. (4.36)

Note the appearance of the new marginal term described by coupling constant ∆̃. We

now perform a perturbative RG analysis up to the second-order in coupling coefficients.

The details of the calculations are presented in Appendix B.2. Here we summarize our

results for Kσ = 1:

dt

dl
=

(
3

4
− 1

4Kρ

− ∆

4πv

)
t− ∆̃t̃

2πv
, (4.37)

dt̃

dl
=

(
3

4
− 1

4Kρ

+
∆

4πv

)
t̃− ∆̃t

2πv
, (4.38)

d∆

dl
= −

(
1

Kρ

− 1

)
t2 − t̃2

4πv
, (4.39)

d∆̃

dl
= −B(Kρ)

tt̃

4πv
. (4.40)

The generation of the ∆ term (proportional to t2 − t̃2) originates from the processes

involving two different spin channels of the lead whereas the generation of the ∆̃ term

(proportional to tt̃ ) comes from the processes within the same spin channel. Both of

these terms can be generated only in the presence of the interaction in the lead. This

fact follows from the definition of the function B(Kρ)

B(Kρ) =
C(1/2Kρ − 1/2)

C(1/2)C(1/2Kρ)

(
1

Kρ

+ 1

)
> 0. (4.41)
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Here the function C(ν) is defined as

C(ν) = lim
δ→0+

∫ ∞
0

e−δz cos(z)

(z + 1)ν
dz, (4.42)

and originates from the integration over relative coordinate, τ − τ ′ during the RG pro-

cedure, see Appendix B.2. In the non-interacting limit, Kρ → 1, C(ν → 0+) ∝ ν, and

thus, the RG equation for ∆̃ becomes

d∆̃

dl
≈ − c5

4πv

(
1

Kρ

− 1

)
tt̃, (4.43)

where numerical constant c5 ≈ 11.5. As mentioned, both ∆ and ∆̃ cannot be generated

in the RG in the absence of interactions in the lead (Kρ = 1).

Using Eq. (4.37) it is instructive to analyze first the flow in the non-interacting limit,

in which case ∆ = ∆̃ = 0. Both t and t̃ are relevant and growing under RG. As follows

from the discussion in the previous section, the exact boundary condition at the IR fixed

point is determined by the initial values of t and t̃ and we can identify the corresponding

limits by looking at the scattering matrix, i.e. t � t̃ corresponds to ψσ(0) = −ψ†σ(0),

t� t̃ corresponds to ψσ(0) = ψ†σ(0) and finally t = t̃ corresponds to ψσ(0) = −iψ†−σ(0).

We now analyze the RG flow for not-too-strong repulsive interactions 1/3 . Kρ <

1. First of all, one can notice that even if we start with initial conditions ∆(l0) = 0,

∆̃(l0) = 0, the corresponding four-fermion terms are going to be generated by the RG

procedure. Here l0 is initial length scale. Since the couplings ∆ and ∆̃ affect the RG

flow differently, we now have 4-parameter phase diagram. Based on the perturbative RG

equations, one can see that both t and t̃(l) will grow under RG, see Fig. 4.4 (a). Thus,

normal reflection fixed point is unstable in this parameter regime.

87



Signatures of time-reversal invariant topological superconductor Chapter 4

𝕊𝔽𝔸

Spin-preserved 
Andreev process

∝ 𝐜𝐨𝐬 𝟐𝜽𝝈

Two-electron 
backscattering

∝ 𝐜𝐨𝐬𝟐 𝟐𝝓𝝆

𝔸 × 𝔸 or
 𝔸 ×  𝔸

Spin-flip 
Andreev process

∝ 𝐬𝐢𝐧 𝟐𝝓𝝈

Two-electron 
backscattering

∝ 𝐬𝐢𝐧𝟐 𝟐𝝓𝝆

Fixed 
points

Time-reversal invariant 
boundary perturbations

(a)

𝑡

 𝑡

ℕ × ℕ 𝔸 × 𝔸

 𝔸 ×  𝔸
𝕊𝔽𝔸

1

4
< 𝐾𝜌 ≲

1

3
, 𝐾𝜎 = 1 (c)

(b)

𝑡

 𝑡

ℕ × ℕ 𝔸 × 𝔸

 𝔸 ×  𝔸
𝕊𝔽𝔸

𝐾𝜌 <
1

4
, 𝐾𝜎 = 1

 𝑡

ℕ × ℕ 𝔸 × 𝔸

 𝔸 ×  𝔸
𝕊𝔽𝔸

1

3
≲ 𝐾𝜌 < 1,𝐾𝜎 = 1

𝑡

Figure 4.4: RG flow diagram for the junction without U(1) symmetry: (a) for
1/3 < Kρ < 1 and Kσ = 1, (b) for Kρ < 1/4 and Kσ = 1, and (c) for 1/4 < Kρ . 1/3
and Kσ = 1, and the green line indicates the conjectured BKT phase transition. The
inset table summarizes the important time-reversal invariant boundary perturbations
near SFA, A× A, and Ã× Ã fixed points. For Kσ = 1, along each line of the RG
flow, the phase diagram as a function of Kρ is similar to the that shown in Fig. 4.2.
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RG analysis near spin-flip Andreev reflection fixed point

We now analyze the stability of the spin-flip Andreev reflection SFA fixed point which

corresponds to the following boundary conditions:

ψL↑(0) = −iψ†R↓(0), (4.44)

ψL↓(0) = −iψ†R↑(0). (4.45)

In terms of the bosonization language, the boson fields φσ(0) = 0 and θρ(0) = −π/(2
√

2)

are pinned, and the Klein factors have the relation Γ↑L = Γ↓R and Γ↓L = Γ↑R. Now we

study all the fermion bilinear perturbations at the boundary allowed by TR symmetry.

First, one can show that the normal backscattering is not allowed in this case, in agree-

ment with the scattering matrix calculation in Sec. 4.2.2. Indeed, using the boundary

condition (4.44) one can show that

ψ†L↑(0)ψ↑,R(0) + ψ†R↓(0)ψL↓(0) + h.c. = −iψ†L↑(0)ψ†L↓(0) + iψL↑(0)ψL↓(0) + h.c.

= 0 (4.46)

Note that for s-wave spin-singlet superconductor the boundary conditions are different:

ψL↑(0) = ∓iψ†R↓(0) and ψL↓(0) = ±iψ†R↑(0), (4.47)

and the backscattering term ∼ sin
√

2φρ does not vanish. Since this term is relevant for

Kρ < 1, the Andreev reflection fixed point is unstable in an s-wave superconductor-LL

junction.

Let us now consider the allowed operators. The only allowed bilinear term is spin-
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conserving Andreev reflection:

HSFA
1B = λSFA1 (ψ†L↑ψ

†
↑,R + ψ†R↓ψ

†
L↓ + h.c.)

= λSFA1 (iψ†L↑ψL↓ + iψ†R↓ψ↑,R + h.c.)

= 2
λSFA1

2πa
(iΓL↑ΓL↓ + iΓR↓ΓR↑) cos

√
2θσ. (4.48)

Additionally, we also consider the following four-fermion term

HSFA
2B =

λSFA2

(2πa)2
(ψ†L↑ψR↑ψ

†
L↓ψR↓ + h.c.)

= 2λSFA2 ΓL↑ΓR↑ΓL↑ΓL↓ΓR↓ cos 2
√

2φρ, (4.49)

which corresponds to two-electron backscattering. The leading order perturbative RG

equations for λSFA1 and λSFA2 are give by

dλSFA1

dl
=

(
1− 1

Kσ

)
λSFA1 , (4.50)

dλSFA1

dl
= (1− 4Kρ)λ

SFA
2 . (4.51)

One can see that the first term λSFA1 is marginal for SU(2) symmetric LL with Kσ = 1

while the second coupling becomes relevant for Kρ < 1/4 indicating that the SFA fixed

point becomes unstable for strong repulsive interactions. If the SU(2) spin symmetry is

broken in the lead, the SFA fixed point becomes unstable for Kσ > 1, and the system will

flow towards the A× A fixed point. On the other hand, the SFA is stable for Kσ < 1.

RG analysis near spin-conserving Andreev fixed point

As shown in Sec. 4.2.2, the boundary conditions near A× A or Ã× Ã fixed point are

ψL,s(0) = eiαψ†R,s(0) with α = π or 0. Thus, the boson fields are θρ = ±π/
√

2 and θσ = 0
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are pinned at the boundary, and the Klein factors satisfy the relations ΓL,s = ΓR,s. In

the U(1)-conserving case, we have seen that the leading perturbations for 1/3 < Kρ < 1

is the two-electron backscattering

HA×A
2B =λA×A2 ψ†L↑(0)ψR↑(0)ψ†L↓(0)ψR↓(0) + h.c.

=
λ2

(2πa)2
sin(2

√
2φρ). (4.52)

In addition, if U(1) symmetry is broken, the spin-flip Andreev reflection is allowed

HA×A
1B = λA×A1 ψ†R,↑(0)ψ†L,↓(0)− ψ†R,↓(0)ψ†L,↑(0) + h.c.

= 4iλA×A1 Γ↑Γ↓ sin
√

2φσ. (4.53)

The leading order perturbative RG equations for λA×A1 and λA×A2 are give by

dλA×A1

dl
= (1−Kσ)λA×A1 , (4.54)

dλA×A2

dl
= (1− 4Kρ)λ

A×A
2 . (4.55)

One can see that the first term λA×A1 is marginal for SU(2) symmetric LL Kσ = 1,

whereas the second coupling becomes relevant for Kρ < 1/4 indicating that A× A fixed

point becomes unstable for strong repulsive interactions. If the SU(2) spin symmetry

is broken in the lead, the A× A fixed point becomes unstable for Kσ < 1, and the

system will flow towards the SFA fixed point. On the other hand, the A× A is stable

for Kσ > 1. Exactly at Kσ = 1, both λA×A1 and λSFA1 terms are marginal and compete

with each other. Thus, generically both spin-conserving and spin-flip Andreev reflection

processes will be present and their relative strength depends on microscopic details. This

conclusion is consistent with the non-interacting results (Kρ = 1) discussed in Sec.4.2.2.
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Our main results are summarized in Fig. 4.4.

4.3 Majorana Kramers pair-quantum dot-normal lead

system

4.3.1 Theoretical model

In this section we study effect of local electron-electron interactions and consider

the system consisting of a QD with a single spin-degenerate level coupled to a MKP

γ↑,↓, localized at the end of a TRI topological superconductor, and a NL. The schematic

plot of the device is shown in Fig. 4.1 b). Assuming that TR symmetry and U(1)-spin

rotation symmetry are preserved and the induced gap in the topological superconductor

is sufficiently larger than other energy scales of the problem, the low-energy effective

Hamiltonian of the system can be written as

H =
∑
σ

εd†σdσ + Un↑n↓ + V +HNL (4.56)

V =
∑
σ

[iλσγσ(dσ + d†σ) + tσ(d†σψσ(0) + h.c.)] (4.57)

where d†σ and dσ are creation and annihilation operators on the QD, nσ = d†σdσ, ε is the

chemical potential of the QD, U is the strength of the electron-electron interaction on

the QD, ψ†σ and ψσ are fermion creation and annihilation operators in the NL, and t(λσ)

is the tunneling coefficient between the NL(MKP) and the QD. For the perturbative RG

analysis, we adopted the same Hamiltonian for NL as Eq. (4.3) with Kρ = Kσ = 1.

For slave-boson mean-field theory analysis, we assumed quadratic dispersion ξk for the

NL. We set tσ and λσ to be real. Time-reversal symmetry requires t↑ = t↓ = t and

λ↑ = −λ↓ = λ. The Hamiltonian HNL represents semi-infinite NL (x ≥ 0) with hopping
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t0. We are interested in the limit where ε < 0, U + ε > 0 such that the QD favors single

occupation, and weak coupling regime |t|, |λ| � min(−ε, U − ε). In this limit, one can

simplify the effective Hamiltonian by projecting it onto single-occupation subspace [86].

The projection operators to the n-occupation subspace Pn are given by

P0 = (1− n↑)(1− n↓), (4.58)

P1 = ((1− n↑)n↓ + (1− n↓)n↑, (4.59)

P2 = n↑n↓. (4.60)

Then, the effective Hamiltonian can be written as

Heff = H11 +
∑
n=0,2

H1n
1

E −Hnn

Hn1, (4.61)

where

Hmn = PmHPn. (4.62)

After some algebra, we find

H11 = HNL (4.63)

H01 =
∑
σ

(tψ†σ + iλσγσ)dσ(1− n−σ), (4.64)

H10 =
∑
σ

(−tψσ + iλσγσ)d†σ(1− n−σ), (4.65)

H12 =
∑
σ

(tψ†σ + iλσγσ)dσn−σ, (4.66)

H21 =
∑
σ

(−tψσ + iλσγσ)d†σn−σ. (4.67)
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Using the Eq. (4.61) with the low energy assumption E � min(−ε, U− ε), we get second

order in t and λ corrections to the Hamiltonian:

H12
1

E −H22

H21 =
1

|ε| − U
∑
σ,σ′

[
t2ψ†σψσ′ + λσλσ′γσγσ′ + iλσtγσψσ′ + iλσ′tγσ′ψ

†
σ

]
× dσn−σd†σ′n−σ′ (4.68)

H10
1

E −H00

H01 = − 1

|ε|
∑
σ,σ′

[
t2ψσψ

†
σ′ + λσλσ′γσγσ′ − iλσtγσψ†σ′ − iλσ′tγσ′ψσ

]
× d†σn̄−σdσ′n̄−σ′ , (4.69)

where n̄σ = 1−nσ. Finally, we obtain the effective Hamiltonian H = HNL +Hb with the

boundary Hamiltonian Hb being

Hb = ξ+

[
t2

2
S · s(0)− λ2

2
SyS

γ
y +

iλt

2

(
γ↑(ψ↑ + ψ†↑)Sz + γ↓(ψ↓ + ψ†↓)Sz

+ γ↑(ψ↓S
− + ψ†↓S

+)− γ↓(ψ↑S+ + ψ†↑S
−)

)]
+ ξ−

[
iλt

2

(
γ↑(ψ↑ + ψ†↑)− γ↓(ψ↓ + ψ†↓)

)]
,

(4.70)

where

S = d†ασαβdβ, s(0) = ψ†α(0)σαβψβ(0), Sγ = γασαβγβ,

S+ = Sx + iSy, S− = Sx − iSy, (4.71)

and the coefficients ξ± are defined as

ξ± =
1

|ε|
± 1

U − |ε|
. (4.72)
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In the limit λ → 0, the first term ∼ t2 drives the system to the Kondo fixed point

where a spin in QD and a spin in the lead form a spin-singlet state. In the presence of

the Majorana coupling λ, the other terms in the Hamiltonian appear. These Majorana-

induced couplings favor the strong-correlation between QD spin and MKP, and, as a

result, compete with Kondo coupling.

The critical difference between the present Hamiltonian (4.70) and that of time-

reversal broken case with single MZM in Ref. [10], is the presence of the four fermion

interaction term proportional to λ2. This time-reversal preserving interaction term be-

tween QD and MKP replaces the Zeeman-like coupling in the single MZM case. While

the Zeeman-like coupling becomes zero at the particle-hole symmetric point in the previ-

ous study [10], this interaction term is proportional to ξ+ and is always non-zero for any

position of the level ε in the dot. Therefore, one cannot apply the same method as in Ref.

[10] to find the exact solution at the particle-hole symmetric point. To understand low-

energy properties of the system, we present below the results from two complementary

calculations: perturbative RG analysis and slave-boson mean field theory in the limit of

infinite U .

4.3.2 Weak coupling RG analysis for quantum dot

In order to understand the effect of Majorana induced interaction on the IR fixed point

the system flows to, we study RG flow of the boundary couplings in the weak-coupling

limit. First, we introduce the following rescaled couplings: M(l0) = ξ+λ
2, T1(l0) = λtξ−,

T2(l0) = λtξ+ and J(l0) = t2ξ+. After the standard bosonization procedure and the
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rescaling of the parameters, we obtain the following effective action at the boundary:

Sb =

∫
dτ

2πa

{
iMγ↑γ↓Sy + iT1

[
γ↑Γ↑ cos

(
θρ + θσ√

2

)
− γ↓Γ↓ cos

(
θρ − θσ√

2

)]
+ iT z2 Sz

[
γ↑Γ↑ cos

(
θρ + θσ√

2

)
+ γ↓Γ↓ cos

(
θρ − θσ√

2

)]
+ iT⊥2

[
γ↑Γ↓

(
Sx cos

(
θρ − θσ√

2

)
+ Sy sin

(
θρ − θσ√

2

))
− γ↓Γ↑

(
Sx cos

(
θρ + θσ√

2

)
− Sy sin

(
θρ + θσ√

2

))]
− iaJzSz√

2v
∂τθσ − iJ⊥Γ↑Γ↓

(
Sx sin

√
2θσ + Sy cos

√
2θσ

)}
(4.73)

Here we have introduced couplings T z,⊥2 and Jz,⊥ for RG procedure. Once we set T z2 (l0) =

T⊥2 (l0) and Jz(l0) = J⊥(l0), we recover the spin-rotation symmetry. We will focus on

the limit of non-interacting lead, but adding small repulsive interaction in NL does not

change our conclusion.

Let us now perform perturbative RG analysis up to the second order in couplings

near normal reflection fixed point. The procedure of the calculations is similar to the one

presented in Appendix B.1 and B.2. The RG equations for the couplings read

dM

dl
= M +

T 2
2

πv
(4.74)

dT1

dl
=

T1

2
(4.75)

dT2

dl
=

T2

2
+
T2J

πv
(4.76)

dJ

dl
=

J2

πv
(4.77)

From these RG equations, we can see that the Majorana interaction, M , is the most rel-

evant coupling while the Kondo coupling, J , is only marginally relevant. Thus, the

system generically flows to the strong Majorana correlation fixed point. If initially
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M(l0) � J(l0), the system can still reach the Kondo strong coupling fixed point. One

can estimate the crossover scale, λc, by solving M(l∗) = J(l∗) ∼ 1 (l∗ is the crossover

length scale) which leads to the following estimate for the critical coupling

λc ∼
1

ξ+

exp

(
− πv

2ξ+t2

)
, (4.78)

which defines a crossover between the two regimes. In deriving this estimate, we have

ignored the second order contributions from T 2
2 term assuming that it is small.

Let us now study the nature of the strong Majorana correlation fixed point defined by

M(l∗) ∼ 1 and J(l∗)� 1. The two degenerate (Kramers) states that minimize iMγ↑γ↓Sy

term are

|ψ1〉 = |iγ↑γ↓ = −1, Sy = 1〉 and |ψ2〉 = |iγ↑γ↓ = 1, Sy = −1〉. (4.79)

Assuming that M(l∗) is large, one can project the rest of the boundary terms on to this

low-energy manifold and simplify the boundary problem. Since the ground state is an

eigenstate of Sy and iγ↑γ↓, the terms that are proportional to γ ⊗ I and γ ⊗ Sy will be

projected to zero. The remaining boundary terms at particle-hole symmetric point (i.e.

T1 = 0) are

HM = iT2(l∗)
[
β↑(ψ↑ + ψ†↑)− β↓(ψ↓ + ψ†↓)

]
+
iJ(l∗)

2
β↑β↓(−iψ†↑ψ↓ + iψ†↓ψ↑), (4.80)

where we have introduced generalized Majorana operators β↑ = (γ↑Sz − γ↓Sx)/2 and

β↓ = −(γ↓Sz + γ↑Sx)/2. Note that these new Majorana operators follow the Majorana

operator algebra only in the degenerate ground states manifold. One can notice that the

above effective Hamiltonian (4.80) is exactly the same as that in Eq. (4.8) with Kρ = 1

and δ = 0. Therefore, using the results from the previous section and the condition
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T2(l∗) � J(l∗), we can immediately conclude that the system will flow to the IR fixed

point governed by the A× A boundary condition ψσ(0) = −ψ†σ(0).

As follows from the RG analysis, the coupling of QD to MKP leads to a non-trivial

many-body ground-state where the spin on the QD gets entangled with the fermion parity

of the MKP. Due to the change in the boundary conditions for lead electrons, the zero-

bias tunneling conductance is G = 4e2/h due to perfect Andreev reflection phenomenon.

Further insight about the physical properties of the system can be obtained using a

complementary approach - slave-boson mean field theory.

4.3.3 Slave-boson mean field theory

In this section, we develop a slave-boson mean field theory for MKP-QD-NL junction

with infinite repulsive interaction in QD, U → ∞. In this limit, one can completely

exclude the double occupancy state from the Hilbert space, and one can represent the

creation and annihilation operators for the QD as d†σ → f †σb and dσ → fσb
† with an

additional constraint [63]

b†b+
∑
σ

f †σfσ = 1 (4.81)

where b is a boson operator representing an empty state. Thus, the effective action of

the system in terms of new fields variables reads

Ssb =

∫
dτ
∑
σ

[∑
k

ψ∗k,σ(∂τ + ξk)ψk,σ + f ∗σ(∂τ + ε)fσ + iλσγ
1
σ(fσb

∗ + f ∗σb)

+
∑
k

t(f ∗σψk,σb+ ψ∗k,σfσb
∗) +

1

2
b∗∂τb+

1

2

∑
i=1,2

γiσ∂τγ
i
σ

+ iδ1σγ
1
σγ

2
σ + iδ2γ

1
σγ

2
−σ + η

(
b∗b− 1

2
+ f ∗σfσ

)]
, (4.82)
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where η is the Lagrange multiplier that we have introduced for the constraint. Here

we consider a realistic situation where the TRI topological superconductor has a finite

length. γ1 and γ2 correspond to the Majorana modes at the end near the QD and at

the opposite end. δ1↑ = −δ1↓ = δ1 and δ2 represent mixing between the MKPs at the

opposite ends.

Mean-field solution

We now develop self-consistent mean-field theory for the problem. We first replace

boson fields in Eq. (4.82) with their mean-field value 〈b〉 = 〈b∗〉 = b and solve for b and

η. Here, without loss of generality, we assumed that b is real since the phase can be

gauged away by fixing the internal U(1) gauge. In the next section, we will study effect

fluctuations around the mean-field saddle point and the meaning of breaking U(1) gauge

symmetry in this low-dimensional system.

The mean-field equations can be obtained by minimizing the action (4.82):

∂S

∂η
= b2 +

∑
σ

〈f ∗σfσ〉 − 1 = 0 (4.83)

∂S

∂b
= 2bη + t

∑
k,σ

(〈f ∗σψk,σ〉+ 〈ψ∗k,σfσ〉) + i
∑
σ

λσ〈γ1
σ(f ∗σ + fσ)〉 = 0 (4.84)

The details of the calculation of the correlation functions are presented in the Appendix

C.1. We first consider the limit T, δ1, δ2 → 0 and assume that |ε| � |λ|, |t| such that the

probability for empty state in QD b2 is small. In this limit, the first equation becomes

ε+ η ≈ π

2
Γb4, (4.85)

where Γ = πνF |t|2. Substituting η ≈ −ε back into Eq.(4.84) and neglecting terms O(b4),
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one finds

η − 2Γ

π
ln

Λ

Γb2
− |λ|√

2b
= 0. (4.86)

For λ→ 0 we recover the solution for the Kondo-dominated regime:

TK ≡ Γb2 = Λe−
π|ε|
2Γ . (4.87)

If Majorana coupling λ� λc, b is determined by the last term in Eq. (4.86):

b ≈ |λ|√
2|ε|

. (4.88)

The crossover between two regimes occurs at

λc ≈
√

2Λ

Γ
|ε|e−

π|ε|
4Γ (4.89)

which qualitatively agrees with the estimate for λc from the RG analysis, see Eq. (4.78).

In the presence of the Majorana splitting δ1 and δ2, we can solve the mean-field

equations numerically. In terms of δ2
1 + δ2

2 ≡ δ2, the second mean-field equation(4.84)

now becomes

|ε|
Γ
− 2

π
ln

Λ

Γb2
− 2I(b, λ̃, δ̃) = 0, (4.90)

where

I(b,λ̃, δ̃) =
b2λ̃2

π
× (4.91)∫ ∞

0

dx
x(x− δ̃2 − b2λ̃2)

(x+ b4)(x(x− δ̃2 − 2b2λ̃2)2 + b4(x− δ̃2)2)

One can numerically solve the Eq. (4.90) for self-consistent solution b as a function of

λ̃ = λ/Γ and δ̃ = δ/Γ, see Fig. 4.5 for results. One can see that if we increase the splitting
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Figure 4.5: The solution b of the mean-field equation as a function of λ̃ and δ̃. We set
ε = −6Γ and Λ = 50Γ.
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for Majoranas δ, the Kondo correlations become more important and eventually start to

dominate. As a result, the magnitude of λc defining the crossover between two different

fixed points is increased.

Gaussian fluctuations around mean-field solution

We now analyze the stability of the mean-field solutions with respect to fluctuations.

This issue is rather subtle, and has been discussed extensively in the context of the

Kondo problems [78, 77, 16]. Indeed, one can check that the action (4.82) is invariant

with respect to local gauge transformations b → beiθ and f → eiθf . The mean-field

solution appears to break this U(1) symmetry. However, as we will show below, the

fluctuations will restore this symmetry.

We now make a transformation to the “radial coordinates” and rewrite b(τ) =

s(τ)eiθ(τ). One can check that the action (4.82) is invariant with respect to local gauge

transformations s → s, f → eiθf and η(τ) → η + i∂τθ. Therefore, we can absorb the

phase into η and expand the action in terms of fluctuations δs(τ) and δη(τ) = i∂τθ(τ)

such that

s(τ) = s̄+ δs(τ), η(τ) = η̄ + i∂τθ(τ), (4.92)

around the corresponding saddle point. Here s̄ is the mean-field solution for b, defined in

the previous section. After integrating out fermions, the effective action can be written

in the following form

Seff = −Tr ln
[
G−1(s, η)

]
+

∫
dτ
[
η(s2 − 1) + s∂τs

]
(4.93)
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After we introduce the Fourier transform

δs(τ) =
1

β

∑
ν

δsνe
−iωντ , θ̇(τ) =

1

β

∑
ν

θ̇νe
−iωντ (4.94)

with bosonic Matsubara frequency ων = 2πν/β, we can expand the Tr ln [G−1(s, η)]

around the mean field solution in Matsubara frequency space up to the second order in

δs and ∂τθ.

S
(2)
eff =− 2

β2

∑
n>0,ν

Tr
[
Gn(s̄, η̄)δG−1

2,n,ν

]
+

1

β2

∑
n>0,ν

Tr
[
Gn(s̄, η̄)δG−1

1,n,−νGn+ν(s̄, η̄)δG−1
1,n,ν

]
+

1

β

∑
ν

[
δs−ν(−iων + η̄)δsν + 2is̄δθ̇−νδsν

]
(4.95)

where the correlation functions are defined as

Gn(s̄, η̄)1,1 = −(G−1
f,nG̃

−1
f,n

∣∣
s̄,η̄
− s̄4G2

γ,n)−1G̃−1
f,n ≡ −G

p
n (4.96)

Gn(s̄, η̄)1,2 = −(G−1
f,nG̃

−1
f,n

∣∣
s̄,η̄
− s̄4G2

γ,n)−1s̄2Gγ,n ≡ −∆σ (4.97)

Gn(s̄, η̄)2,1 = Gn(s̄, η̄)1,2 ≡ −∆n (4.98)

Gn(s̄, η̄)2,2 = −(G−1
f,nG̃

−1
f,n

∣∣
s̄,η̄
− s̄4Gγ,nGγ,n)−1G−1

f,n ≡ −G
h
n, (4.99)
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and

δG−1
1,n,−ν =

 iθ̇−ν+δs−ν(Gψ,n+ν+Gψ,n)s̄ 0

0 −iθ̇−ν+δs−ν(G̃ψ,n+ν+G̃ψ,n)s̄

 (4.100)

+

 δs−ν(Gγ,n+ν +Gγ,n)s̄ δs−ν(Gγ,n+ν +Gγ,n)s̄

δs−ν(Gγ,n+ν +Gγ,n)s̄ δs−ν(Gγ,n+ν +Gγ,n)s̄

 ,

δG−1
1,n,ν =

 iθ̇ν+δsν(Gψ,n+Gψ,n+ν)s̄ 0

0 −iθ̇ν+δsν(G̃ψ,n+G̃ψ,n+ν)s̄

 (4.101)

+

 δsν(Gγ,n+ν +Gγ,n)s̄ δsν(Gγ,n+ν +Gγ,n)s̄

δsν(Gγ,n+ν +Gγ,n)s̄ δsν(Gγ,n+ν +Gγ,n)s̄

 ,

δG−1
2,n,ν =

 δs−ν(Gψ,n+ν +Gγ,n+ν)δsν δs−νGγ,n+νδsν

δs−νGγ,n+νδsν δs−ν(G̃ψ,n+ν +Gγ,n+ν)δsν

 , (4.102)

with

Gf,n =
1

iωn − ε− η − s̄2(Gψ,n +Gγ,n)
, (4.103)

G̃f,n =
1

iωn + ε+ η − s̄2(G̃ψ,n +Gγ,n)
, (4.104)

Gψ,n = G̃ψ,n = −iΓ sgn(n), Gγ,n = − iλ2ωn
ω2
n + δ2

. (4.105)

After some manipulation, we get

S
(2)
eff =

1

2β

∑
ν

(θ̇−ν δs−ν)

 Γθ̇θ̇ν Γθ̇sν

Γθ̇sν Γssν


 θ̇ν

δsν

 (4.106)

The full expressions of the above matrix elements Γij are given in Appendix C.2. We

first note that Γθ̇sν ≈ 2is̄ near the mean-field solution η̄ ≈ −ε. Diagonal element Γssν and
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Figure 4.6: The function Im[Dθ̇θ̇(Ω)] for different values of λ and δ. Here panels a)
and b) correspond to δ = 0.01 and λ = 0.2; we used Γ = 1, ε = −5, Λ = 50 here.

Γθθν can be obtained using the analytic continuation of fermionic Matsubara frequency

iωn → ω and integrating around the two branch cuts Im[ω] = 0 and Im[ω] = −ων . The

correlation function of δs and θ̇ is given by

Dθ̇θ̇(iων) =
Γssν

Γθ̇θ̇ν Γssν + 4s̄2
, (4.107)

Dss(iων) =
Γθ̇θ̇ν

Γθ̇θ̇ν Γssν + 4s̄2
, (4.108)

and govern the dynamics of the fluctuating fields δs(τ) and θ̇(τ). We can now address

the question regarding the restoration of the broken U(1) symmetry.

Let us consider the correlation function 〈b(τ)b∗(0)〉. The mean-field solution assumes

that 〈b(τ)b∗(0)〉 → s̄2 for τ → ∞. It has been shown, however, in Ref. [77, 16] that

the above correlation function for the generalized Anderson model decays as a power-

law 〈b(τ)b∗(0)〉 ∝ |τ |−α with some non-universal exponent. We now perform a similar

analysis for QD-MKP problem at hand. Since 〈s(τ)s(0)〉 ∼ s̄2 in the long time limit, one
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can decouple amplitude and phase fluctuations

〈b(τ)b∗(0)〉 ≈ s̄2〈ei(θ(τ)−θ(0))〉

= s̄2 exp(−1

2
〈[θ(τ)− θ(0)]2〉). (4.109)

We can evaluate the exponent, following Ref.[16], as

1

2
〈[θ(τ)− θ(0)]2〉 =

1

β

∑
ν 6=0

Dθ̇θ̇

ω2
ν

(1− e−iωντ ) (4.110)

= −
∮

dΩ

2πi

1− e−Ωτ

1− e−βΩ

Dθ̇θ̇(Ω)

Ω2
(4.111)

T→0
= −

∫ ∞
0

dΩ

π

1− e−Ωτ

Ω2
Im[ lim

ξ→0+
Dθ̇θ̇(Ω + iξ)]. (4.112)

Here Matsubara sum was evaluated by integrating along the branch cut Im[Ω] = 0 using

the analytic continuation for bosonic Matsubara frequency iων → Ω. See Appendix C.2

for more detail. We find that Im[Dθ̇θ̇(Ω + iε)] ∝ −αΩ in low frequency limit, see Fig.

4.6. Here we eventually take ε→ 0. Thus, the correlation function

〈b(τ)b∗(0)〉 ∝ τ−α (4.113)

decays as a power law in long-time limit, which is a key result of this section. In this

sense, the situation is analogous to the slave-boson theory for the Kondo problem. The

expression for α as a function of λ0 = λ/Γs̄ in the limit of zero splitting for MKP, δ → 0,

is given by

α =
1

2

1

(f(λ0) + s̄2π2/4)
(4.114)
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Figure 4.7: The exponent α as a function of Majorana coupling strength λ.

f(λ)=


− ln[4λ4]

8λ2 − 1−4λ2

8λ2
√

1−8λ2 ln
[

1−4λ2+
√

1−8λ2

1−4λ2−
√

1−8λ2

]
, λ < 1

2

− ln[4λ4]
8λ2 − 1−4λ2

4λ2
√

1−8λ2

(
π
2
−tan−1 1−4λ2

√
1−8λ2

)
, λ ≥ 1

2

(4.115)

Using the corresponding mean-field solution of Eq. (4.84), one can evaluate the exponent

α, see Fig. 4.7. We find that the exponent α moderately increases with λ. When the

Majorana splitting energy δ becomes larger, α decreases and eventually approaches the

value in the Kondo limit α = 1
2

+O(s̄2).

Overall, we find that the correlation function (4.109) decays as a power law in the

long-time limit which is qualitatively similar to phase fluctuations in the Kondo problem.

This is the main result of this section showing that fluctuations ultimately restore U(1)

symmetry, in agreement with the Mermin-Wagner theorem, but the correlation function

decays slowly in comparison with the “disordered” high-temperature limit. The situation
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is reminiscent of quasi-long range order where the fluctuations ultimately restore the

broken symmetry but, at the same time, there is a well-defined mean-field amplitude of

fluctuations (i.e. s̄ 6= 0) which opens up a gap in the spectrum.

4.3.4 Differential tunneling conductance

Using the mean-field theory developed in the previous sections, one can now calculate

transport properties of the NL-QD-TSC junction. To compute the differential conduc-

tance G, one needs to compute scattering matrix of the system within the mean-field

approximation. The slave-boson mean-field Hamiltonian can be written as

Hsb = HNL+
∑
σ

[∑
k

tb(f †σψk,σ+ψ†k,σfσ)+ ε̃f †σfσ+iλσbγ
1
σ(f †σ+fσ)+iδ1σγ

1
σγ

2
σ+iδ2γ

1
σγ

2
−σ

]
.

(4.116)

The scattering matrix for electrons close to the Fermi level is given by

S(E) = 1 + 2πiŴ †(Hlocal − E − πiŴŴ †)−1Ŵ , (4.117)

where Hlocal is the Hamiltonian describing the “local impurity” and Ŵ ∝ tb is the matrix

of coupling constants between local degrees of freedom and lead electrons.

Using the scattering matrix one can compute the probability for Andreev reflection

and ultimately obtain differential conductance G(V ). In agreement with the analysis in

Sec. 4.3.2, we find that zero-bias differential conductance is quantized G(0) = 4e2/h.

In the limit of small bias voltage and zero splitting δ → 0, the differential conductance

G(V ) reads

G(V ) ≈ 4e2

h

Γ2
eff

Γ2
eff + (eV )2

(4.118)

with the width of the zero-bias peak changing from Γeff = min{TK , 2λ2

Γ
} in Kondo-
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dominated to Γeff = Γλ2

2ε2
in the Majorana-dominted regime.

In addition to the differential conductance, the signatures of MKP should be observ-

able in shot noise and full counting statistics measurements as have been discussed in

the context of a quantum dot coupled to a single MZM, see, e.g., Refs. [51, 52].

4.4 Discussion

In this chapter we have studied two systems involving MKPs: LL-MKP and NL-QD-

MKP junctions. At the level of single-particle Hamiltonian, the presence of MKP leads

to a quantized zero bias differential conductance of 4e2/h with perfect Andreev reflection.

We extend the analysis to interacting systems.

For the case of LL-MKP junction, we consider repulsive electron-electron interactions

in the wire. We find that perfect Andreev reflection fixed point is stable with respect to

weak repulsive interactions in the lead. This result should be contrasted with the conven-

tional LL-s-wave superconductor junction where weak repulsive interactions destabilize

Andreev reflection fixed point and drive the system back to the normal reflection fixed

point [26]. The reason for such a difference is that the IR fixed point boundary condi-

tions of LL-MKP junction is similar to LL coupled to spin-triplet p-wave superconductor

rather than spin-singlet s-wave superconductor.

Another interesting feature of the MKP is the possibility of having local four fermion

interaction terms (i.e. terms proportional to ∆ and ∆AN) at the boundary. The existence

of such operators leads to BKT phase transitions for moderate strength of the bulk

electron-electron interaction (1/3 > Kρ > 1/4). We have summarized the results in the

phase diagram in Fig. 4.4.

Next we investigate effect of local interactions in the NL-QD-TRI topological su-

perconductor junction. We show that the system flows to a new fixed point which is
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characterized by a strong entanglement of a QD spin with a MKP. These correlations

ultimately lead to the change of boundary conditions for lead electrons: from Kondo

to perfect Andreev reflection boundary conditions. Using a combination of a perturba-

tive RG analysis and slave-boson mean-field theory we identify the ground-state of the

system and calculate tunneling conductance through the junction, demonstrating that

zero-temperature differential tunneling conductance is 4e2/h. As we increase Majorana

coupling λ, the width of the zero-bias peak exhibits a crossover from the Kondo temper-

ature TK to Γλ2/ε2 in the Majorana-dominated regime. We have also studied effect of

Gaussian fluctuations around the mean-field saddle point and shown that the mean-field

solution is well-defined (in the quasi-long range order sense) and thus can be used to

calculate the spectrum in the QD as well as other observables.
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Future direction

As an extension of the studies in Chapter 2 and 3, it would be interesting to investigate

the possibility of realizing Majorana zero modes in either nanowires or magnetic atom

chains coupled to the FeSe monolayer superconducting film on top of SrTiO3 substrate

[76]. Since the FeSe monolayer deposited on STO has large superconducting gap, one

could induce a large topological gap and stabilize the Majorana zero modes. In addition,

the broken inversion symmetry at the surface could support significant amount of spin-

orbit coupling which makes the system a nice platform to study the various effects of

spin-orbit coupling on Yu-Shiba-Rusinov spectrums.

Another possible extension of the results of 3 is to take the lattice symmetry of the

superconductor into account. In the recent demonstration of the Yu-Shiba-Rusinov states

in two dimensional superconducting film [58], it has been shown that the wavefunction

of such states are strongly affected by the lattices of the underlying superconductors.

Therefore, understanding the effects of those lattices on the Yu-Shiba-Rusinov spectrum

would be an important step toward the experimental realization of topological supercon-

ductivity in Yu-Shiba-Rusinov chains.

For future study on Majorana Kramers pairs, it would be interesting to study the
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trasport phenomena in Josephson junctions made of two time-reversal invariant topolog-

ical superconductors. In addition to the differential conductance that we have studied in

Chapter 4, Josephson currents in such junctions can show unique signatures of Majorana

Kramers pairs.
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Appendix A

Calculation of Yu-Shiba-Rusinov

spectrum for dimers and chains

A.1 Non-local Green’s function

The momentum integral of Green’s functions Ĝij(E, θ) can be derived by splitting

Ĝ(E,p) into two branches Ĝ±(E,p) and changing the integral over the momentum to

an integral over energy dispersion ξ± for each branch:

Ĝij(E, θ) =
1

2
(Ĝ+,ij(E, θ) + Ĝ−,ij(E, θ)) (A.1)

1

2
Ĝλ,ij(E, θ) =

1

2

∫ ∞
0

dp

2π
pe−ixijp cos θ Ĝλ(E,p) (A.2)

≈ νλ
2

∫ Λ

−Λ

dξλ e
−ixijpλ(ξλ) cos θĜλ(E, ξλ, θ) (A.3)
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where xij = xi − xj, λ = ±. One can rewrite the nth angular momentum component

Ĝij
n (E) using the following integrals:

In,λ(x;E) =
Nλ

2π2NF

∫ π

−π
dθk

∫ D

−D
dε
eikλ(ε)x cos θkeinθk∆

E2 − ε2 −∆2
, (A.4)

Kn,λ(x;E) =
Nλ

2π2NF

∫ π

−π
dθk

∫ D

−D
dε
eikλ(ε)x cos θkeinθkε

E2 − ε2 −∆2
, (A.5)

where D is an ultra-violet cut-off, kλ(ε) = kF,λ + εm
√

1 + α̃2/kF with kF =
√

2mµ,

kF,λ = kF
(√

1 + α̃2 + λα̃
)
. Nλ = m

2π

[
1 + λ α̃√

1+α̃2

]
is the density of states of the λ helical

band at the Fermi level in the normal state, and NF = (N+ +N−)/2. The analytic results

for the above integrals in the limit D →∞ is given by

I0,λ(x;E) =
−∆γλ√
∆2 − E2

Re
[
J0
(
(kF,λ + iζ−1λ )|x|

)
+ iH0

(
(kF,λ + iζ−1λ )|x|

)]
(A.6)

K0,λ(x;E) = γλIm
[
J0
(
(kF,λ + iζ−1λ )|x|

)
+ iH0

(
(kF,λ + iζ−1λ )|x|

)]
(A.7)

I1,λ(x;E) = −sgn[x]
i∆γλ√

∆2 − E2
Re
[
J1
(
(kF,λ + iζ−1λ )|x|

)
− iH−1

(
(kF,λ + iζ−1λ )|x|

)]
(A.8)

K1,λ(x;E) = sgn[x]iγλIm
[
J1
(
(kF,λ + iζ−1λ )|x|

)
− iH−1

(
(kF,λ + iζ−1λ )|x|

)]
(A.9)

I2,λ(x;E) =
∆γλ√

∆2 − E2
Re

[
J2
(
(kF,λ + iζ−1λ )|x|

)
+ iH−2

(
(kF,λ + iζ−1λ )|x|

)
+

2i

π
(
kF,λ + iζ−1λ

)
|x|

]
(A.10)

K2,λ(x;E) = −γλIm

[
J2
(
(kF,λ + iζ−1λ )|x|

)
+ iH−2

(
(kF,λ + iζ−1λ )|x|

)
+

2i

π
(
kF,λ + iζ−1λ

)
|x|

]
(A.11)

I3,λ(x;E) =
isgn[x]∆γλ√

∆2 − E2
Re

[
J3
(
(kF,λ + iζ−1λ )|x|

)
− iH−3

(
(kF,λ + iζ−1λ )|x|

)
+

6i

π
[(
kF,λ + iζ−1λ

)
|x|
]2
]

(A.12)

K3,λ(x;E) = −sgn[x]iγλIm

[
J3
(
(kF,λ + iζ−1λ )|x|

)
− iH−3

(
(kF,λ + iζ−1λ )|x|

)
+

6i

π
[(
kF,λ + iζ−1λ

)
|x|
]2
]

(A.13)

Here Jn(z) and Hn(z) are Bessel and Struve functions of order n, respectively; ζ−1
λ ≡

√
∆2−E2

vF,λ
, and γλ ≡ 1 + λ α√

1+α2 . Note that the expressions for Kl,λ(x;E) given above are
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valid for x 6= 0, and the integral Kl,λ(0;E) = 0 for x = 0. Assuming kF |x| � 1 and

ζ−1
λ ≈ ∆

vF,λ
� kF,λ, we can use the asymptotic forms of the Bessel and Struve functions [1].

In the limit kFx� 1, one can find approximate expressions up to the order 1/(kFx)2:

I0,λ(x;E) =
−∆γλ√
∆2 − E2

√
2

πkF,λ|x|
e−ζ

−1
λ |x|

[
cos(kF,λ|x| −

1

4
π) +

1

8kF,λ|x|
sin(kF,λ|x| −

1

4
π)

]
(A.14)

K0,λ(x;E) = γλ

√
2

πkF,λ|x|
e−ζ

−1
λ |x|

[
sin(kF,λ|x| −

1

4
π)− 1

8kF,λ|x|
cos(kF,λ|x| −

1

4
π)

]
+

2γλ
πkF,λ|x|

(A.15)

I1,λ(x;E) = − isgn[x]∆γλ√
∆2 − E2

√
2

πkF,λ|x|
e−ζ

−1
λ |x|

[
cos(kF,λ|x| −

3

4
π)− 3

8kF,λ|x|
sin(kF,λ|x| −

3

4
π)

]
(A.16)

K1,λ(x;E) =
iγλx

|x|

√
2

πkF,λ|x|
e−ζ

−1
λ |x|

[
sin(kF,λ|x| −

3

4
π) +

3

8kF,λ|x|
cos(kF,λ|x| −

3

4
π)

]
+

2isgn[x]γλ

π (kF,λ|x|)2

(A.17)

I2,λ(x;E) =
−∆γλ√
∆2 − E2

√
2

πkF,λ|x|
e−ζ

−1
λ |x|

[
cos(kF,λ|x| −

1

4
π)− 15

8kF,λ|x|
sin(kF,λ|x| −

1

4
π)

]
(A.18)

K2,λ(x;E) = γλ

√
2

πkF,λ|x|
e−ζ

−1
λ |x|

[
sin(kF,λ|x| −

1

4
π) +

15

8kF,λ|x|
cos(kF,λ|x| −

1

4
π)

]
− 2γλ
πkF,λ|x|

(A.19)

I3,λ(x;E) = − isgn[x]∆γλ√
∆2 − E2

√
2

πkF,λ|x|
e−ζ

−1
λ |x|

[
cos(kF,λ|x| −

3

4
π)− 35

8kF,λ|x|
sin(kF,λ|x| −

3

4
π)

]
(A.20)

K3,λ(x;E) =
iγλx

|x|

√
2

πkF,λ|x|
e−ζ

−1
λ |x|

[
sin(kF,λ|x| −

3

4
π) +

35

8kF,λ|x|
cos(kF,λ|x| −

3

4
π)

]
− 6isgn[x]γλ

π (kF,λ|x|)2

(A.21)
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The corresponding Fourier transforms of the above asymptotic forms to the leading order

of 1√
kF a

are given by

I0,λ(k;E) = I2,λ(k;E)

=
−∆γλ√
∆2 − E2

√
1

2πkF,λa

[
e−i

1
4πLi 1

2

(
eikF,λa−ζ

−1
λ a+ika

)
+ ei

1
4πLi 1

2

(
e−ikF,λa−ζ

−1
λ a+ika

)
+ e−i

1
4πLi 1

2

(
eikF,λa−ζ

−1
λ a−ika

)
+ ei

1
4πLi 1

2

(
e−ikF,λa−ζ

−1
λ a−ika

)]
(A.22)

K0,λ(k;E) = K2,λ(k;E)

= −iγλ

√
1

2πkF,λa

[
e−i

1
4πLi 1

2

(
eikF,λa−ζ

−1
λ a+ika

)
− ei 14πLi 1

2

(
e−ikF,λa−ζ

−1
λ a+ika

)
+ e−i

1
4πLi 1

2

(
eikF,λa−ζ

−1
λ a−ika

)
− ei 14πLi 1

2

(
e−ikF,λa−ζ

−1
λ a−ika

)]
(A.23)

I1,λ(k;E) = I3,λ(k;E)

= − i∆γλ√
∆2 − E2

√
1

2πkF,λa

[
e−i

3
4πLi 1

2

(
eikF,λa−ζ

−1
λ a+ika

)
+ ei

3
4πLi 1

2

(
e−ikF,λa−ζ

−1
λ a+ika

)
− e−i 34πLi 1

2

(
eikF,λa−ζ

−1
λ a−ika

)
− ei 34πLi 1

2

(
e−ikF,λa−ζ

−1
λ a−ika

)]
(A.24)

K1,λ(k;E) = K3,λ(k;E)

= γλ

√
1

2πkF,λa

[
e−i

3
4πLi 1

2

(
eikF,λa−ζ

−1
λ a+ika

)
− ei 34πLi 1

2

(
e−ikF,λa−ζ

−1
λ a+ika

)
− e−i 34πLi 1

2

(
eikF,λa−ζ

−1
λ a−ika

)
+ ei

3
4πLi 1

2

(
e−ikF,λa−ζ

−1
λ a−ika

)]
(A.25)

where Lis(z) is the polylogarithm function

Lis(z) =
∞∑
n=1

zn

ns
.
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Finally, expression for Ĝij
n (E) can be written as For i 6= j,

Ĝij
n (E) =

πNF

2

∑
λ=±

{
(−iλ)

[(
E

∆
σ+τ0 + σ+τx

)
I|−1+m|,λ + (σ+τz)K|−1+m|,λ

]
+

[(
E

∆
σ0τ0 + σ0τx

)
I|m|,λ + (σ0τz)K|m|,λ

]
+ (iλ)

[(
E

∆
σ−τ0 + σ−τx

)
I|1+m|,λ + (σ−τz)K|1+m|,λ

]}
(A.26)

with xi − xj for the argument of function Is and Ks.

A.2 Equation of YSR spectrum for a dimer

For dimer Eq. (3.11) of the main article becomes


Ĝ0(E)V̂ −11 −1 Ĝ−1(E)V̂ 0

1 0 Ĝ12
0 (E)V̂ −12 Ĝ12

−1(E)V̂ 0
2 Ĝ12

−2(E)V̂ 1
2

Ĝ1(E)V̂ −11 Ĝ0(E)V̂ 0
1 −1 Ĝ−1(E)V̂ 1

1 Ĝ12
1 (E)V̂ −12 Ĝ12

0 (E)V̂ 0
2 Ĝ12

−1(E)V̂ 1
2

0 Ĝ1(E)V̂ 0
1 Ĝ0(E)V̂ 1

1 −1 Ĝ12
2 (E)V̂ −12 Ĝ12

1 (E)V̂ 0
2 Ĝ12

0 (E)V̂ 1
2





ψ1,−1

ψ1,0

ψ1,1

ψ2,−1

ψ2,0

ψ2,1


=0,

(A.27)


Ĝ21

0 (E)V̂ −11 Ĝ21
−1(E)V̂ 0

1 Ĝ21
−2(E)V̂ 1

1 Ĝ0(E)V̂ −12 −1 Ĝ−1(E)V̂ 0
2 0

Ĝ21
1 (E)V̂ −11 Ĝ21

0 (E)V̂ 0
1 Ĝ21

−1(E)V̂ 1
1 Ĝ1(E)V̂ −12 Ĝ0(E)V̂ 0

2 −1 Ĝ−1(E)V̂ 1
2

Ĝ21
2 (E)V̂ −11 Ĝ21

1 (E)V̂ 0
1 Ĝ21

0 (E)V̂ 1
1 0 Ĝ1(E)V̂ 0

2 Ĝ0(E)V̂ 1
2 −1





ψ1,−1

ψ1,0

ψ1,1

ψ2,−1

ψ2,0

ψ2,1


=0.

(A.28)
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Again bound-state energy is the solution of

det



Ĝ0(E)V̂ −11 −1 Ĝ−1(E)V̂ 0
1 0 Ĝ12

0 (E)V̂ −12 Ĝ12
−1(E)V̂ 0

2 Ĝ12
−2(E)V̂ 1

2

Ĝ1(E)V̂ −11 Ĝ0(E)V̂ 0
1 −1 Ĝ−1(E)V̂ 1

1 Ĝ12
1 (E)V̂ −12 Ĝ12

0 (E)V̂ 0
2 Ĝ12

−1(E)V̂ 1
2

0 Ĝ1(E)V̂ 0
1 Ĝ0(E)V̂ 1

1 −1 Ĝ12
2 (E)V̂ −12 Ĝ12

1 (E)V̂ 0
2 Ĝ12

0 (E)V̂ 1
2

Ĝ21
0 (E)V̂ −11 Ĝ21

−1(E)V̂ 0
1 Ĝ21

−2(E)V̂ 1
1 Ĝ0(E)V̂ −12 −1 Ĝ−1(E)V̂ 0

2 0

Ĝ21
1 (E)V̂ −11 Ĝ21

0 (E)V̂ 0
1 Ĝ21

−1(E)V̂ 1
1 Ĝ1(E)V̂ −12 Ĝ0(E)V̂ 0

2 −1 Ĝ−1(E)V̂ 1
2

Ĝ21
2 (E)V̂ −11 Ĝ21

1 (E)V̂ 0
1 Ĝ21

0 (E)V̂ 1
1 0 Ĝ1(E)V̂ 0

2 Ĝ0(E)V̂ 1
2 −1


= 0.

(A.29)

Due to the inter-site terms the spectrum now depends on the distance between two

impurity as well as their magnetic and scalar potentials.

A.3 Derivation of effective Hamiltonian

In this section, we provide the details of the derivation of effective Hamiltonian in

deep s-band and depp p−band limits.

In the deep s-band limit, equation for l = 0 band reads

∑
j,l

Mij
0,l(E)ψj,l = 0. (A.30)

After substituting Eq. (3.26) back into the above equation, we get

0 =(Mii
0,0 −Mii

0,−1(Mii
−1,−1)−1Mii

−1,0 −Mii
0,1(Mii

1,1)−1Mii
1,0)ψi,0

+
∑
j 6=i

(Mij
0,−1ψj,−1 + Mij

0,0ψj,0 + Mij
0,1ψj,1)

+ Mii
0,−1(Mii

−1,−1)−1
∑
j 6=i

(Mij
−1,−1ψj,−1 + Mij

−1,0ψj,0 + Mij
−1,1ψj,1)

+ Mii
0,1(Mii

1,1)−1
∑
j 6=i

(Mij
1,−1ψj,−1 + Mij

1,0ψj,0 + Mij
1,1ψj,1). (A.31)
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The assumption kFa � 1 allows one to neglect the terms O((Mi 6=j)2). Using the tight-

binding approximation, one finally arrives at

0 =

[
Mii

0,0 −Mii
0,−1(Mii

−1,−1)−1Mii
−1,0 −Mii

0,1(Mii
1,1)−1Mii

1,0

]
ψi,0

−
∑
j 6=i

[
Mij

0,0 −Mij
0,−1(Mii

−1,−1)−1Mii
−1,0 −Mij

0,1(Mii
1,1)−1Mii

1,0 −Mii
0,−1(Mii

−1,−1)−1Mij
−1,0

−Mii
0,1(Mii

1,1)−1Mij
1,0

]
ψj,0

−
∑
j 6=i

[
Mii

0,−1(Mii
−1,−1)−1Mij

−1,−1(Mii
−1,−1)−1Mii

−1,0 + Mii
0,−1(Mii

−1,−1)−1Mij
−1,1(Mii

1,1)−1Mii
1,0

+ Mii
0,1(Mii

1,1)−1Mij
1,−1(Mii

−1,−1)−1Mii
−1,0 + Mii

0,1(Mii
1,1)−1Mij

1,1(Mii
1,1)−1Mii

1,0

]
ψj,0 +O((Mij)2)

≡
∑
j

Mij
s (E)ψj,0 (A.32)

In the deep p-band limit, the equations for p-wave bands are given by

∑
j,l

Mij
−1,l(E)ψj,l = 0 (A.33)∑

j,l

Mij
1,l(E)ψj,l = 0 (A.34)

In order to integrate out s-channel, we have to solve for ψi,0 finding that

ψi,0 = −(Mii
1,0)−1(Mii

0,−1ψi,−1 + Mii
0,1ψi,1 +

∑
j 6=i,l

Mij
0,lψj,l). (A.35)

Substituting Eq. (A.35) into Eq. (A.33, A.34) and following the same procedure as in
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s−band limit, we eventually obtain two coupled equations for the p-wave bands

0 =(Mii
−1,−1 −Mii

−1,0(Mii
0,0)−1Mii

0,−1)ψi,−1 −Mii
−1,0(Mii

0,0)−1Mii
0,1ψi,1

−
∑
j 6=i

[
Mij
−1,−1 −Mij

−1,0(Mii
0,0)−1Mii

0,−1 −Mii
−1,0(Mii

0,0)−1Mij
0,−1

+ Mii
−1,0(Mii

0,0)−1Mij
0,0(Mii

0,0)−1Mii
0,−1

]
ψj,−1 −

∑
j 6=i

[
Mij
−1,1 −Mij

−1,0(Mii
0,0)−1Mii

0,1

−Mii
−1,0(Mii

0,0)−1Mij
0,1 + Mii

−1,0(Mii
0,0)−1Mij

0,0(Mii
0,0)−1Mii

0,1)

]
ψj,1 (A.36)

0 =−Mii
1,0(Mii

0,0)−1Mii
0,−1ψi,−1 + (Mii

1,1 −Mii
1,0(Mii

0,0)−1Mii
0,1)ψi,1

−
∑
j 6=i

[
Mij

1,−1 −Mij
1,0(Mii

0,0)−1Mii
0,−1 −Mii

1,0(Mii
0,0)−1Mij

0,−1

+ Mii
1,0(Mii

0,0)−1Mij
0,0(Mii

0,0)−1Mii
0,−1)

]
ψj,−1 −

∑
j 6=i

[
Mij

1,1 −Mij
1,0(Mii

0,0)−1Mii
0,1

−Mii
1,0(Mii

0,0)−1Mij
0,1 + Mii

1,0(Mii
0,0)−1Mij

0,0(Mii
0,0)−1Mii

0,1

]
ψj,1 (A.37)

After some manipulations, one can write eigenvalue equations in the compact form, see

Eq. (3.44).

A.4 Effective Hamiltonian in the long wavelength

limit

It is instructive to expand the functions I(n, k) and K(n, k) appearing in our effective

Hamiltonian close to k = 0 in order to understand the spectrum qualitatively. After some
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algebra, one finds

I0,λ(k;E = 0) = I2,λ(k;E = 0) (A.38)

= −2γλ

√
1

πkF,λa

[
A0(kF,λa+ iζ−1

λ a) + A2(kF,λa+ iζ−1
λ a)k2

]
+O(k4),

I1,λ(k;E = 0) = I3,λ(k;E = 0)

= −2γλ

√
1

πkF,λa
B1(kF,λa+ iζ−1

λ a)k +O(k3), (A.39)

K1,λ(k;E = 0) = K3,λ(k;E = 0)

= 2γλ

√
1

πkF,λa
C1(kF,λa+ iζ−1

λ a)k +O(k3), (A.40)

where

A0(z) = Re
[
Li 1

2

(
eiz
)]

+ Im
[
Li 1

2

(
eiz
)]
, (A.41)

A2(z) = Im
[
Li− 3

2

(
eiz
)]
, (A.42)

B1(z) = Re
[
Li− 1

2

(
eiz
)]
− Im

[
Li− 1

2

(
eiz
)]
, (A.43)

C1(z) = Re
[
Li− 1

2

(
eiz
)]

+ Im
[
Li− 1

2

(
eiz
)]
. (A.44)

The dependence of the functions A0(z), A2(z), B1(z) and C1(z) on the external pa-

rameters is shown in Fig. A.1. One can notice that when kF,λa = 2πn with n being an

integer, these functions have singularities which follows from the definition of polyloga-

rithm function. These singularities are cutoff by the finite coherence length. In realistic

systems, however, the superconducting coherence length is much larger than the inter-

atomic spacing, and, thus, the parameters such as effective mass and Fermi velocity are

strongly dependent on kFa, see Fig. A.1.
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Figure A.1: The dependence of the functions A0, A2, B1 and C1 on kF,λa. Here we
used ζλ = 10a.
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Finally, the expansion of the coefficients in the deep s-band Hamiltonian at k → 0

becomes

h(0)
z = εz −

∑
λ

γλ

√
1

πkF,λa

(
1 +

2αJ1(α− λ)

1 + J1

)
A0(kF,λa+ iζ−1

λ a), (A.45)

h(2)
z = −

∑
λ

γλ

√
1

πkF,λa

(
1 +

2αJ1(α− λ)

1 + J1

)
A2(kF,λa+ iζ−1

λ a), (A.46)

h(0)
x = εx−

∑
λ

γλ

√
1

πkF,λa

(
1− 2λαJ1

1− J1

)
A0(kF,λa+ iζ−1

λ a), (A.47)

h(2)
x = −

∑
λ

γλ

√
1

πkF,λa

(
1− 2λαJ1

1− J1

)
A2(kF,λa+ iζ−1

λ a), (A.48)

h(0)
y = εx−

∑
λ

γλ

√
1

πkF,λa

(
1+

2λαJ1

1− J1

)
A0(kF,λa+ iζ−1

λ a), (A.49)

h(2)
y = −

∑
λ

γλ

√
1

πkF,λa

(
1+

2λαJ1

1− J1

)
A2(kF,λa+ iζ−1

λ a), (A.50)

∆(1) =
∑
λ

iγλ

√
1

πkF,λa

(
λ− 2αJ1

1 + J1

)
C1(kF,λa+ iζ−1

λ a), (A.51)

d(1)
y = −

∑
λ

γλ

√
1

πkF,λa

(
λ+

2αJ1

1− J1

)
B1(kF,λa+ iζ−1

λ a). (A.52)

The expansion coefficients in the deep p-band Hamiltonian are

h
(0)
11 = ε1 −

∑
λ

γλ

√
1

πkF,λa
A0(kF,λa+ iζ−1

λ a), (A.53)

h
(0)
22 = ε2 −

∑
λ

γλ

√
1

πkF,λa
A0(kF,λa+ iζ−1

λ a), (A.54)

h
(0)
12 = = −

∑
λ

γλ

√
1

πkF,λa
A0(kF,λa+ iζ−1

λ a), (A.55)

h
(2)
11 = h

(2)
22 = h

(2)
12 = −

∑
λ

γλ

√
1

πkF,λa
A2(kF,λa+ iζ−1

λ a), (A.56)
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∆
(1)
11 =

∑
λ

iγλ

√
1

πkF,λa

(
λ− 2αJ0

1 + J0

)
C1(kF,λa+ iζ−1

λ a), (A.57)

∆
(1)
22 =

∑
λ

iλγλ

√
1

πkF,λa
C1(kF,λa+ iζ−1

λ a), (A.58)

∆
(1)
12 =

∑
λ

iγλ

√
1

πkF,λa

(
λ− αJ0

1 + J0

)
C1,(kF,λa+ iζ−1

λ a). (A.59)
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Appendix B

Second order perturbative RG

analysis

B.1 Majorana Kramers pair - Luttinger liquid junc-

tion with U(1) symmetry

Here we provide details for the perturbative RG calculation for the MKP-LL junction

with U(1) spin-rotation symmetry. We will use momentum shell RG procedure and

calculate each term that is generated in the second order of perturbation theory.

In order to obtain the quadratic corrections to the RG flow Eq. (4.15) and Eq. (4.16)

of the main text, let us consider the contribution from the t↑t↓ term:

δS(tt) = −1

2

∫
dτ

∫
dτ ′

t↑t↓
(2πa)2

γ↑(τ)Γ↑(τ) γ↓(τ
′)Γ↓(τ

′) (B.1)

×
(〈

cos
θρ(τ) + θσ(τ)√

2
cos

θρ(τ
′)− θσ(τ ′)√

2

〉
>

−
〈

cos
θρ(τ) + θσ(τ)√

2

〉
>

〈
cos

θρ(τ)− θσ(τ)√
2

〉
>

)
.

Here 〈. . .〉> denotes integrating out the fast modes, Λ/b < |ω| < Λ, where b = el ≈

1 + dl describes the change in UV cutoff under RG procedure. One can evaluate above
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correlation functions using the following identity:

〈e
i√
2
θ>j (τ)〉 = e−

1
4
〈θ>j (τ)2〉. (B.2)

Taking into account that the correlation function 〈(θ<j (τ)− θ<j (τ ′))2〉< decays sufficiently

quickly with τ − τ ′, one can use the short distance expansion:

ei(θ
<
j (τ)−θ<j (τ ′)) = (1 + (τ − τ ′)∂τθj + . . .)e−

1
2
〈(θ<j (τ)−θ<j (τ ′))2〉< (B.3)

where the correlation functions are given by

〈(θj(τ)− θj(τ ′))2〉 = 〈(θ<j (τ)− θ<j (τ ′))2〉< + 〈(θ>j (τ)− θ>j (τ ′))2〉>

=
2

Kj

ln

[
a

v|τ − τ ′|+ a

]
(B.4)

gj(τ − τ ′) ≡ 〈θ>j (τ)θ>j (τ ′)〉> =
1

Kj

∫ Λ

Λ/b

dω

ω
cos(ω|τ − τ ′|). (B.5)

Using the above, one finds that

〈
cos

θρ(τ) + θσ(τ)√
2

cos
θρ(τ

′)− θσ(τ ′)√
2

〉
>

=
1

2

 cos θ<σ (τ)+θ<σ (τ ′)√
2

(Λ|τ − τ ′|+ 1)
1

2Kρ

e−
1
2

(gσ(0)+gσ(τ−τ ′)) +
cos

θ<ρ (τ)+θ<ρ (τ ′)√
2

(Λ|τ − τ ′|+ 1)
1

2Kσ

e−
1
2

(gρ(0)+gρ(τ−τ ′))

 .

(B.6)
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The contribution of disconnected part is given by

〈
cos

θρ(τ) + θσ(τ)√
2

〉
>

〈
cos

θρ(τ)− θσ(τ)√
2

〉
>

(B.7)

=
1

2

 cos θ<σ (τ)+θ<σ (τ ′)√
2

(Λ|τ − τ ′|+ 1)
1

2Kρ

e−
1
2

(gσ(0)+gρ(τ−τ ′)) +
cos

θ<ρ (τ)+θ<ρ (τ ′)√
2

(Λ|τ − τ ′|+ 1)
1

2Kσ

e−
1
2

(gρ(0)+gσ(τ−τ ′))

 .

(B.8)

Before we proceed, it is important to note that

gj(τ − τ ′) ≡ 〈θ>j (τ)θ>j (τ ′)〉 =
1

Kj

∫ Λ

Λ/b

dω

ω
cos[ω(τ − τ ′)] ≈ 1

Kj

cos[Λ(τ − τ ′)]dl (B.9)

for small dl, and thus gj(0) ≈ dl/Kj. Now we introduce new variables: center-of-mass

T = τ+τ ′

2
and relative coordinates s = τ − τ ′. The correction to the action to the linear

order of dl becomes

δS(tt) =
1

4

t↑t↓
(2πa)2

∫ ∞
0

dT

∫ ∞
−∞

dsγ↑γ↓Γ↑Γ↓ cos
θσ(T + s/2) + θσ(T − s/2)√

2

×
(

1

2Kρ

− 1

2Kσ

)(
cos(Λs)

(Λ|s|+ 1)
1

2Kρ

)
dl

+
1

4

t↑t↓
(2πa)2

∫ ∞
0

dT

∫ ∞
−∞

dsγ↑γ↓Γ↑Γ↓ cos
θρ(T + s/2) + θρ(T − s/2)√

2

×
(

1

2Kσ

− 1

2Kρ

)(
cos(Λs)

(Λ|s|+ 1)
1

2Kσ

)
dl (B.10)

Since the above expression has a power law decay in Λ|s|, the contributions to the

integral comes from the short time |s| ∼ 1/Λ. After the simplification, the total contri-
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bution to the effective action reads

δS(tt) ≈ 1

4

t↑t↓
(2πa)2

2dl

Λ

(
1

2Kρ

− 1

2Kσ

)
C

(
1

2Kρ

)∫ β

0

dTγ↑γ↓Γ↑Γ↓ cos
√

2θσ(T )

+
1

4

t↑t↓
(2πa)2

2dl

Λ

(
1

2Kσ

− 1

2Kρ

)
C

(
1

2Kσ

)∫ β

0

dTγ↑γ↓Γ↑Γ↓ cos
√

2θρ(T ) (B.11)

where the dimensionless function C(ν) is defined as

C(ν) = lim
δ→0+

∫ ∞
0

e−δx cosx

(1 + x)ν
dx. (B.12)

Notice that C(ν) is proportional to ν when ν → 0. Away from ν = 0, C(ν) is simply

O(1) constant which can be absorbed into the definition of the coupling constants.

Combining all the terms in Eq. (B.11), we find the following contributions to the RG

equations at quadratic order in t:

d∆(2)

dl
= − t2

4πv

(
1

Kρ

− 1

Kσ

)
(B.13)

d∆
(2)
AN

dl
=

t2

4πv

(
1

Kρ

− 1

Kσ

)
, (B.14)

where v = aΛ. See Eq. (4.15) and Eq. (4.16) of the main text. Note that factor of 2

here originates from the switching time coordinates τ and τ ′.

We now consider the contribution to RG equations from the crossed terms propor-

tional to t∆, see Eq. (4.14) in the main text. The relevant terms in the second order

expansion of ST are

δS(t∆) =− 1

2

∫
dτ

∫
τ ′
−i t↑∆
(2πa)2 γ↑(τ)Γ↑(τ) γ↑(τ

′)γ↓(τ
′)Γ↑(τ

′)Γ↓(τ
′) (B.15)

×
(
〈cos

θρ(τ) + θσ(τ)√
2

cos
√

2θσ(τ ′)〉> − 〈cos
θρ(τ) + θσ(τ)√

2
〉>〈cos

√
2θσ(τ ′)〉>

)
.
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Given that 〈γs(τ)γs(τ
′)〉 = sgn(τ − τ ′) and 〈Γs(τ)Γs(τ

′)〉 = sgn(τ − τ ′), Majoranas and

Klein factors can be simplified as

γ↑(τ)Γ↑(τ) γ↑(τ
′)γ↓(τ

′)Γ↑(τ
′)Γ↓(τ

′) = γ↓(τ
′)Γ↓(τ

′). (B.16)

Next, we evaluate the bosonic part of the correlation function

〈cos
θρ(τ) + θσ(τ)√

2
cos
√

2θσ(τ ′)〉> − 〈cos
θρ(τ) + θσ(τ)√

2
〉>〈cos

√
2θσ(τ ′)〉>

≈ 1

2Kσ

cos
θ<ρ (T )− θ<σ (T )

√
2

cos(Λs)dl

(Λ|s|+ 1)
1

2Kσ

. (B.17)

Here we dropped irrelevant terms generated by the RG procedure such as cos
θ<ρ (τ)+3θ<σ (τ)√

2
.

Using similar steps as for δS(tt), we obtain the correction to the action proportional t∆:

δS(t∆) ≈ 1

4

i t↑∆

(2πa)2

2dl

Λ

1

2Kσ

C

(
1

2Kσ

)∫ β

0

dTγ↓(T )Γ↓(T ) cos
θρ(T )− θσ(T )√

2
. (B.18)

Similarly, we evaluate the contribution to the effective action from t↑∆AN term to

find

δS(t∆AN) = −1

2

∫
dτ

∫
dτ ′
−i t↑∆AN

(2πa)2 γ↑(τ)Γ↑(τ) γ↑(τ
′)γ↓(τ

′)Γ↑(τ
′)Γ↓(τ

′)

×
(
〈cos

θρ(τ) + θσ(τ)√
2

cos
√

2θρ(τ
′)〉 − 〈cos

θρ(τ) + θσ(τ)√
2

〉〈cos
√

2θρ(τ
′)〉
)

≈ 1

4

i t↑∆AN

(2πa)2

2dl

Λ

1

2Kρ

C

(
1

2Kρ

)∫ β

0

dTγ↓(T )Γ↓(T ) cos
θρ(T )− θσ(T )√

2
. (B.19)

Once again here we dropped the irrelevant term cos
3θ<ρ (τ)+3θ(τ)√

2
. Combining all the terms
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in Eq. (B.11), we find the quadratic part of the RG flow Eq. (4.14) in the main text:

dt

dl
= − ∆t

4πvKσ

− ∆ANt

4πvKρ

. (B.20)

B.2 Majorana Kramers pair - Luttinger liquid junc-

tion without U(1) symmetry

In this section we evaluate additional terms contributing to the RG equations when

U(1) symmetry is broken. We first consider the contribution of ∆̃t↓ to the RG flow Eq.

(4.38)in the main text:

δS(∆̃t↓) =
1

2

∫
dτ

∫
dτ ′

∆̃

2πv
(−1)γ↑(τ)γ↓(τ)

it↓
2πa

γ↓(τ
′)Γ↓(τ

′)

× 1

2
√

2

[
〈∂τθσ(τ)e

i√
2

(θσ(τ ′)−θρ(τ ′))〉 − 〈∂τθσ(τ)〉〈e
i√
2

(θσ(τ ′)−θρ(τ ′))〉

+〈∂τθσ(τ)e
− i√

2
(θσ(τ ′)−θρ(τ ′))〉 − 〈∂τθσ(τ)〉〈e−

i√
2

(θσ(τ ′)−θρ(τ ′))〉
]

≈ − b
− 1

4

8πv

i∆̃t↓
2πa

∫
dTγ↑Γ↓ sin

θ<ρ − θ<σ√
2

∫
ds sgn(s)∂sgσ(s)

≈ ∆̃t↓
2πa

dl

4πvKσ

∫
dT iγ↑Γ↓ sin

θ<ρ − θ<σ√
2

. (B.21)
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Here we use the definition gj(τ − τ ′) = 〈θ>j (τ)θ>j (τ ′)〉with gj(0) = ln b/Kj, and the

following relations

〈∂τθσ(τ)e
± i√

2
θσ(τ ′)〉 = ∂τθ

<
σ (τ) e

± i√
2
θ<σ (τ ′)

e−
1
4
〈(θ>σ )2〉

+e
± i√

2
θσ(τ ′)〈∂τθ>σ (τ)e

± i√
2
θ>σ (τ ′)〉, (B.22)

〈∂τθσ(τ)〉〈e±
i√
2
θσ(τ ′)〉 = ∂τθ

<
σ (τ) e

± i√
2
θ<σ (τ ′)

e−
1
4
〈(θ>σ )2〉, (B.23)

〈∂τθ>σ (τ)e
± i√

2
θ>σ (τ ′)〉 =

±i√
2
∂τ 〈θ>σ (τ)θ>σ (τ ′)〉e−

1
4
〈(θ>σ )2〉 (B.24)

lim
δ→0+

∫
ds sgn(s)∂sgσ(s)e−δ|s| = − 2

Kσ

ln b ≈ −2dl

Kσ

. (B.25)

Following the similar procedure as in Sec. B.1, we get the correction to the RG equation,

dt̃↑↓
dl

= − ∆̃t↓
2πvKσ

. (B.26)

Similarly, the contribution of ∆̃t↑ will generate the following contribution:

dt̃↓↑
dl

= − ∆̃t↑
2πvKσ

. (B.27)

The cross term ∆̃t̃ leads to the similar correction to t. It is also straightforward to

compute the contributions from ∆t̃i terms using the same technique.

We now evaluate the contribution of the tt̃ term in the second order expansion of ST ,

see Eq. (4.40) in the main text. During this calculation we will encounter the expressions

such as e
i
θρ(τ)+θσ(τ)√

2 e
−i θρ(τ ′)+θσ(τ ′)√

2 . This term will contribute to the RG flow of ∆̃. In order

to demostrate this, one needs to carefully expand above expression up to the linear order
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in s:

e
i
θρ(τ)+θσ(τ)√

2 e
−i θρ(τ ′)+θσ(τ ′)√

2 = e
i
θρ(τ)−θρ(τ ′)√

2 e
i
θσ(τ)−θσ(τ ′)√

2 (B.28)

=

(
1 + s

i∂T θρ√
2

)
1

(Λ|s|+ 1)
1

2Kρ

(
1 + s

i∂T θσ√
2

)
1

(Λ|s|+ 1)
1

2Kσ

(B.29)

∼
(

1

Λ|s|+ 1
+

sgn(s)

Λ

i∂T (θρ + θσ)√
2

)
1

(Λ|s|+ 1)
1

2Kρ
+ 1

2Kσ
−1

(B.30)

After some algebra, one finds

δStt̃ = −1

2

∫
dτ

∫
dτ ′

{
tt̃

(2πa)2
iγ↑(τ)Γ↑(τ)iγ↓(τ

′)Γ↑(τ
′)

×
[
〈cos

θρ + θσ(τ)√
2

sin
θρ + θσ(τ ′)√

2
〉 − 〈cos

θρ + θσ(τ)√
2

〉〈sin θρ + θσ(τ ′)√
2

〉
]

+
tt̃

(2πa)2
iγ↓(τ)Γ↓(τ)iγ↑(τ

′)Γ↓(τ
′)

×
[
〈cos

θρ − θσ(τ)√
2

sin
θρ − θσ(τ ′)√

2
〉 − 〈cos

θρ − θσ(τ)√
2

〉〈sin θρ − θσ(τ ′)√
2

〉
]}

≈ 1

2

∫
dT

∫
ds

tt̃

(2πa)2Λ
γ↑γ↓

∂τθσ√
2

cos(sΛ)

(Λ|s|+ 1)
1

2Kρ
+ 1

2Kσ
−1

(
1

2Kρ

+
1

2Kσ

)
dl

≈ − 1

8πv

tt̃

2πv

(
1

Kρ

+
1

Kσ

)
dl C

(
1

2Kρ

+
1

2Kσ

− 1

) ∫
dT iγ↑Γ↑

i∂T θσ√
2
. (B.31)

Once again we have to multiply the above expression by 2 due to the symmetry of between

τ and τ ′.

Taking into account above results, one finds the following system of RG equations for
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generic values of Kρ and Kσ:

dt

dl
=

(
1− 1

4Kρ

− 1

4Kσ

− C(1/2Kσ)∆

4πvKσ

)
t− ∆̃t̃

2πvKσ

, (B.32)

dt̃

dl
=

(
1− 1

4Kρ

− 1

4Kσ

+
C(1/2Kσ)∆

4πvKσ

)
t̃− ∆̃t

2πvKσ

, (B.33)

d∆

dl
= −C(1/2Kρ)

4πv

(
1

Kρ

− 1

)
(t2 − t̃2), (B.34)

d∆̃

dl
= −C(1/2Kρ + 1/2Kσ − 1)

4πv

(
1

Kρ

+
1

Kσ

)
tt̃, (B.35)

Compare with Eqs. (4.37) and (4.40) in the main text. Provided the coefficients C(xi) are

non-zero (i.e. Kρ, Kσ 6= 1/2), one can rescale C(1/2Kσ)∆→ ∆,
√
C(1/2Kρ)C(1/2Kσ) t→

t and
√
C(1/2Kρ)C(1/2Kσ) t̃ → t̃ to absorb the C(ν)’s in first three equations. Then

the last equation becomes

d∆̃

dl
= −C(1/2Kρ + 1/2Kσ − 1)

C(1/2Kρ)C(1/2Kσ)

(
1

Kρ

+
1

Kσ

)
tt̃

4πv
, (B.36)

and we recover Eq. (4.43).
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Appendix C

Slave-boson mean field theory and

Gaussian fluctuations

C.1 Green’s functions in the slave-boson mean-field

equations

To evaluate the correlation functions in Eqs. (4.83) and (4.84), we first transform the

action to the Matsubara frequency domain after the mean-field approximation:

Ssb =
∑
n,σ

[∑
k

ψ∗k,n,σ(−iωn + ξk)ψk,n,σ + f ∗n,σ(−iωn + ε̃)fn,σ + iλσbγ
1
−n,σ(fn,σ + f ∗−n,σ)

+
∑
k

tb(f ∗n,σψk,n,σ + ψ∗k,n,σfn,σ)

− 1

2

∑
i=1,2

iωnγ
i
−n,σγ

i
n,σ + iδ1σγ

1
−n,σγ

2
n,σ + iδ2γ

1
−n,σγ

2
n,−σ

]
, (C.1)

134



Slave-boson mean field theory and Gaussian fluctuations Chapter C

where ε̃ = ε + η. Next, we integrate out the NL fermion fields ψ∗ and ψ to find the

following effective action:

Seff(f, γ1, γ2) =
∑
n,σ

[
f ∗n,σ(−iωn + ε̃+

∑
k

t2b2

iωn − ξk
)fn,σ + iλσbγ

1
−n,σ(fn,σ + f ∗−n,σ)

−
∑
i=1,2

iωn
2
γi−n,σγ

i
n,σ + iδ1σγ

1
−n,σγ

2
n,σ + iδ2γ

1
−n,σγ

2
n,−σ

]
, (C.2)

=
∑
n,σ

[
f ∗n,σ(−i(ωn + Γn) + ε̃)fn,σ + iλσbγ

1
−n,σ(fn,σ + f ∗−n,σ)

−
∑
i=1,2

iωn
2
γi−n,σγ

i
n,σ + iδ1σγ

1
−n,σγ

2
n,σ + iδ2γ

1
−n,σγ

2
n,−σ

]
, (C.3)

where Γn = Γb2 sgnωn and Γ = πt2νF and νF is the density of states in NL at the Fermi

energy. To compute the correlation functions in the mean-field equation, we perform a

canonical transformation for the Majorana fields γ1
σ = (c∗σ + cσ)/

√
2, γ2

↑ = i(c∗↑ − c↑)/
√

2

and γ2
↓ = −i(c∗↓ − c↓)/

√
2. Then the effective action can be written as

Seff(f, c)=
∑
n,σ

[
f ∗n,σ(−i(ωn+Γn)+ε̃)fn,σ+

iλσb√
2

(c∗n,σfn,σ+c−n,σf
∗
−n,σ+c−n,σfn,σ+c∗n,σf

∗
−n,σ)

− iωnc∗n,σcn,σ + δ1c
∗
n,σcn,σ + δ2(c∗n,↑c

∗
−n,↓ − cn,↑c−n,↓)

]
(C.4)

We now introduce the Nambu space and rewrite Seff =
∑

n>0 φ
†
nAnφn with

φ†n = (f ∗n,↑, f
∗
n,↓, c

∗
n,↑, c

∗
n,↓, f−n,↑, f−n,↓, c−n,↑, c−n,↓) (C.5)
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and

An =



ε̃−i(ωn+Γn) 0 − ibλ√
2

0 0 0 − ibλ√
2

0

0 ε̃−i(ωn+Γn) 0 ibλ√
2

0 0 0 ibλ√
2

ibλ√
2

0 −iωn+δ1 0 i ibλ√
2

0 0 δ2

0 − ibλ√
2

0 −iωn+δ1 0 −i ibλ√
2

−δ2 0

0 0 −i ibλ√
2

0 −̃ε−i(ωn+Γn) 0 − ibλ√
2

0

0 0 0 i ibλ√
2

0 −̃ε−i(ωn+Γn) 0 ibλ√
2

ibλ√
2

0 0 −δ2 i ibλ√
2

0 −iωn−δ1 0

0 − ibλ√
2

δ2 0 0 −i ibλ√
2

0 −iωn−δ1



.

(C.6)

The correlation functions can be calculated as

G1(ωn) ≡ 〈fn,↑γ1
−n,↑〉 =

1√
2

(〈fn,↑c−n,↑〉+ 〈fn,↑c∗n,↑〉) (C.7)

=
Θ(n)√

2

(
[A−1

n ]17 + [A−1
n ]13

)
− Θ(−n)√

2

(
[A−1
−n]35 + [A−1

−n]75

)
(C.8)

=
ωn

i(ωn + Γn)− ε̃
· λb

ω2
n + δ2

1 + δ2
2 + 2b2λ2ωn(ωn+Γn)

(ωn+Γn)2+ε̃2

(C.9)

= −〈fn,↓γ1
−n,↓〉, (C.10)

Gf (ωn) ≡ 〈fn,↑f ∗n,↑〉 = Θ(n)[A−1
n ]11 −Θ(−n)[A−1

−n]55 =
−1 + iλbG1(ωn)

i(ωn + Γn)− ε̃
(C.11)

= 〈fn,↓f ∗n,↓〉. (C.12)

Notice the following relationship between correlation functions

〈f ∗−n,↑γ1
−n,↑〉 = −〈f ∗−n,↓γ1

−n,↓〉 = −G1(ωn)∗. (C.13)

To compute 〈ψ∗k,n,σfn,σ〉, we have to integrate out NL fermions ψ∗k′,σ and ψk′,σ for all

k′ 6= k from Eq. (C.1). This procedure leaves the terms
∑

n,σ ψ
∗
k,n,σ(−iωn + ξk)ψk,n,σ and

tb(f ∗n,σψk,n,σ + ψ∗k,n,σfn,σ) in the effective action and shifts iΓn → iΓn + t2b2

iωn−ξk
such that
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S ′eff =
∑

n>0 Φ†BnΦ where

Φ† = (ψ∗k,n,↑, ψ
∗
k,n,↓, ψ−n,↑, ψ−n,↓, f

∗
n,↑, f

∗
n,↓, c

∗
n,↑, c

∗
n,↓, f−n,↑, f−n,↓, c−n,↑, c−n,↓) (C.14)

and

Bn =



ξk − iωn 0 0 0 bt 0 0 0 0 0 0 0

0 ξk − iωn 0 0 0 bt 0 0 0 0 0 0

0 0 −ξk − iωn 0 0 0 0 0 −bt 0 0 0

0 0 0 −ξk − iωn 0 0 0 0 0 −bt 0 0

bt 0 0 0

0 bt 0 0

0 0 0 0

0 0 0 0 An(iΓn → iΓn + t2b2

iωn sgn(n)−ξk )

0 0 −bt 0

0 0 0 −bt

0 0 0 0

0 0 0 0



. (C.15)

Then straightforward calculation gives

GT (k, ωn) ≡ 〈fn,↑ψ∗k,n,↑〉 = Θ(n)[B−1
n ]51 −Θ(−n)[B−1

−n]39 =
tbGf (ωn)

iωn − ξk
(C.16)

= 〈fn,↓ψ∗k,n,↓〉 (C.17)

Plugging the above correlation functions back into the mean-field equations (4.83) and

(4.84) leads to

b2 − 2

β

∑
n

Gf (ωn)eiωn0+

= 1 (C.18)

2bη − 4t

β

∑
k,n

Re[GT (k, ωn)eiωn0+

]− 4λ

β

∑
n

Re[iG1(ωn)eiωn0+

] = 0 (C.19)
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Now we evaluate Matsubara sum in Eq. (C.18) using the conventional analytic con-

tinuation method with cut along the real frequency axis due to the non-analyticity of

sgn(ωn) = sgn(Imω).

− 2

β

∑
n

Gf (ωn) =
2

β

∑
n

[
1

iωn − ε̃+ iΓb2 sgn(ωn)
− iλG1(ωn)

iωn − ε̃+ iΓb2 sgn(ωn)

]
=

i

π

∮
dωnF (ω)

[
1

ω − ε̃+ iΓb2 sgn(Imω)
− iλG1(−iω)

ω − ε̃+ iΓb2 sgn(Imω)

]
=

1

π

∫ ∞
−∞

dωnF (ω)

[
2Γb2

(ω − ε̃)2 + (Γb2)2
+ F (b, η)

]
T→0
≈ 1− 2

π
arctan

ε̃

Γb2
+

1

π

∫ 0

−∞
dωF (b, η), (C.20)

where

nF (ω) =
1

eβω + 1
, (C.21)

F (b, η) = 2 Re

[
iωλ2b2

(ω − ε̃+ iΓb2)2
· 1

ω2 − δ2
1 − δ2

2 −
2b2λ2(ω2+iωΓb2)

(ω+iΓb2)2−ε̃2

]
. (C.22)

The last term in Eq.(C.20) is O(λ2b2). Given that b � 1 we will ignore this term for a

moment. Plugging Eq.(C.20) back into Eq.(C.18) yeilds ε̃ ≈ π
2
Γb4 ∼ b4. Therefore, in the

limit of small b, the contribution from ε̃ is O(b4). Including the last term in Eq.(C.20)

does not change this conclusion.

Next, we evaluate the second term in Eq. (C.19).

−4t

β

∑
k,n

GT (k, ωn) =
4t2b

β

∑
k,n

1

iωn − ξk

[
1

iωn − ε̃+ iΓb2 sgn(ωn)
− iλbG1(ωn)

iωn − ε̃+ iΓb2 sgn(ωn)

]
= −4iΓb

β

∑
n

[
sgn(ωn)

iωn − ε̃+ iΓb2 sgn(ωn)
− iλbG1(ωn) sgn(ωn)

iωn − ε̃+ iΓb2 sgn(ωn)

]
(C.23)
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The first term in the above equation can be calculated by introducing a UV cutoff Λ.

−4iΓb

β

∑
n

sgn(ωn)

iωn − ε̃+ iΓb2 sgn(ωn)
=

4Γb

2π

∮
dωnF (ω)

sgn(Imω)

ω − ε̃+ iΓb2 sgn(Imω)

=
4Γb

π

∫ ∞
−∞

dωnF (ω)
ω − ε̃

(ω − ε̃)2 + (Γb2)2

T→0
≈ 4Γb

π

∫ 0

−Λ

dω
ω − ε̃

(ω − ε̃)2 + (Γb2)2

ε̃→0
≈ −4Γb

π
ln

Λ

|Γb2|
(C.24)

Since the second term in Eq. (C.23) are not UV divergent and O(λ2b2), we can ignore

its contribution. Finally, we evaluate the last term in Eq. (C.19).

−4λ

β

∑
n

iG1(ωn) = −4λ2b

β

∑
n

iωn
iωn − ε̃+ iΓb2 sgnωn

1

ω2
n + δ2

1 + δ2
2 + 2b2λ2ωn(ωn+Γb2 sgnωn)

(ωn+Γb2 sgnωn)2+ε̃2

=
4

πb

∫ ∞
−∞

dωnF (ω) Re

[
iωλ2b2

ω − ε̃+ iΓb2

1

ω2 − δ2
1 − δ2

2 −
2b2λ2(ω2+iωΓb2)

(ω+iΓb2)2−ε̃2

]
T→0
≈ 4

πb

∫ 0

−∞
dωRe

[
iωλ2b2

ω − ε̃+ iΓb2

1

ω2 − δ2
1 − δ2

2 −
2b2λ2(ω2+iωΓb2)

(ω+iΓb2)2−ε̃2

]
ε̃,δ1,δ2→0
≈ 4

πb

∫ 0

−∞
dω

ωλ2Γb4

(ω2 − 2b2λ2)2 + ω2Γ2b4

= −2Γb

π

∫ ∞
0

dx
1

x2 + (r − 4)x+ 4
(C.25)

where r = Γ2b2/λ2 is a dimensionless quantity. In the limit of r � 1 we get,

−4λ

β

∑
n

iG1(ωn) ∼ −2|λ|√
2

+O(b) (C.26)

After collecting all the contributions in Eq. (C.19) and expanding them to the lowest
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order in r, one finds the following equation for b:

η − 2Γ

π
ln

Λ

Γb2
− |λ|√

2b
= 0. (C.27)

C.2 Gaussian fluctuations

In this section we present the details of the calculation of the matrix elements in Eq.

(4.106). Once we expand the Tr lns in Eq. (4.95) and collecting the terms, we find Eq.

(4.106) with

Γθ̇θ̇ν = − 2

β

∑
n>0

[
Gp
nG

p
n+ν +Gh

nG
h
n+ν − 2∆n∆n+ν

]
(C.28)

Γθ̇sν = 2is̄+
2is̄

β

∑
n>0

[
Gp
n(GX,n +GX,n+ν)G

p
n+ν +Gp

n(Gγ,n +Gγ,n+ν)∆n+ν

−Gh
n(G̃X,n+G̃X,n+ν)G

h
n+ν−Gh

n(Gγ,n+Gγ,n+ν)∆n+ν+∆nGγ,n(Gp
n+ν−Gh

n+ν)

+∆nGγ,n+ν(G
p
n+ν−Gh

n+ν)+∆n(G̃X,n−GX,n)∆n+ν+∆n(G̃X,n+ν−GX,n+ν)∆n+ν

]
(C.29)

Γssν = Γs(0)
ν + Γs(2)

ν + Γs(4)
ν (C.30)

Γs(0)
ν = 2(η̄ − iων) (C.31)

Γs(2)
ν =

4

β

∑
n>0

[
Gp
nGX,n+ν + 2∆nGγ,n+ν +Gh

nG̃X,n+ν

]
(C.32)
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Γs(4)
ν =

4s̄2

β

∑
n>0

[
Gp
nGX,nG

p
n+νGX,n+ν+GX,nG

p
nGX,nG

p
n+ν+Gh

nG̃X,nG
h
n+νG̃X,n+ν

+G̃X,nG
h
nG̃X,nG

h
n+ν+Gp

nGγ,nGX,n+ν∆n+ν+Gp
nGγ,nGX,n∆n+ν+Gp

nGγ,nGX,n+ν∆n

+Gp
nGγ,n+νGX,n∆n+2Gp

nGγ,n+νGX,n∆n+ν+Gp
n+νGγ,nGX,n∆n+Gp

nGγ,n+νGX,n+ν∆n

+Gh
nGγ,n+νGX,n+ν∆n+Gh

nGγ,nG̃X,n+ν∆n+ν+Gh
nGγ,nG̃X,n∆n+ν+Gh

nGγ,nGX,n+ν∆n

+Gh
nGγ,n+νGX,n∆n+2Gh

nGγ,n+νG̃X,n∆n+ν+Gh
n+νGγ,nG̃X,n∆n+2∆nGγ,n∆n+νGγ,n+ν

+2∆nGγ,n∆n+νGγ,n+2∆nGX,n∆n+νG̃X,n+ν+2∆nGX,n∆n+νG̃X,n

+2Gp
nGγ,nG

h
n+νGγ,n+ν +Gp

nGγ,nG
h
n+νGγ,n +Gp

n+νGγ,nG
h
nGγ,n

]
(C.33)

where

GX,n = Gψ,n +Gγ,n = G̃X,n. (C.34)

Plugging in the mean-field solution η̄ ≈ −ε leads to

Gf,n =
1

iωn − s̄2(Gψ,n +Gγ,n)
= G̃f,n → Gp

n = Gh
n. (C.35)

As a result, we get Γθ̇sν = 2is̄ near the mean field solution.

To evaluate Γθ̇θ̇ν and Γssν , we need to sum over the fermionic Matsubara frequency ωn.

It can be done using analytical continuation ωn = −iω and integration along the contour

shown in Fig. C.1 a). One can see that the summation over Matsubara frequency ωn can

be evaluated by integrating along the branch cuts shown in Fig C.1 a). We note that in

addition to the branch cuts, there are also contributions from the poles. However, one

can show that the contribution from all the residues sums to zero. Thus, for ν > 0 we
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𝜔a)

Im 𝜔 = 0

Im 𝜔 = −𝜔𝜈

Ωb)

Im Ω = 0

Figure C.1: a) Integration contour to evaluate fermionic Matsubara sum in Γssν and

Γθ̇θ̇ν . b) Integration contour for bosonic Matsubara sum in Eq. (4.110).

only have one branch cut Im[ω] = 0. For example,

Γθ̇θ̇ν>0 =

∮
nF (ω)

2πi

[
Gp(ω)Gp(ω + iων) +Gh(ω)Gh(ω + iων)− 2∆(ω)∆(ω + iων)

]
= lim

ξ→0+

∫ Λ

−Λ

nF (ω)

2πi

[
Gp(ω + iξ)Gp(ω + iων) +Gh(ω + iξ)Gh(ω + iων)

−2∆(ω + iξ)∆(ω + iων)
]

(C.36)

where nF (ω) is the Fermi distribution function which we eventually approximate as the

theta function in the zero temperature limit; Λ is a UV cutoff. For ν < 0 we have two

additional integrals above and below branch cut at Im[ω] = ων . Finally, we symmetrize

the Γθ̇θ̇ν and Γssν by averaging the values for ν and −ν. Similar method can be used for

evaluating the boson correlation function Eq. (4.110). In this case the Matsubara sum

can be transformed to an integration over contour shown in Fig. C.1 b).
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