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Abstract

Image Reconstruction for Multistatic Stepped

Frequency-Modulated Continuous Wave (FMCW)

Ultrasound Imaging Systems With Reconfigurable Arrays

Michael Lee

The standard architecture of a medical ultrasound transducer is a linear phased

array of piezoelectric elements in a compact, hand-held form. Acoustic energy not

directly reflected back towards the transducer elements during a transmit-receive

cycle amounts to lost information for image reconstruction. To mitigate this loss,

a large, flexible transducer array which conforms to contours of the subjects body

would result in a greater effective aperture and an increase in received image

data. However, in this reconfigurable array design, element distributions are ir-

regular and an organized arrangement can no longer be assumed. Phased array

architecture also has limited scalability potential for large 2D arrays.

This research work investigates a multistatic, stepped-FMCW modality as an

alternative to array phasing in order to accommodate the flexible and reconfig-

urable nature of an array. A space-time reconstruction algorithm was developed

for the imaging system. We include ultrasound imaging experiments and describe

a simulation method for quickly predicting imaging performance for any given

x



target and array configuration. Lastly, we demonstrate two reconstruction tech-

niques for improving image resolution. The first takes advantage of the statistical

significance of pixel contributions prior to the final summation, and the second

corrects data errors originating from the stepped-FMCW quadrature receiver.
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Chapter 1

Introduction

1.1 Conventional Medical Ultrasound Imaging

An ultrasound imaging transducer interrogates a region of interest by trans-

mitting acoustic pressure waves into the region. As the waves propagate, reflec-

tions occur where there exist changes in acoustic properties, notably at interfaces

between two different materials. In medical ultrasound imaging, the largest re-

flections often occur at the interfaces between organs and between tissue types [7],

[41]. The timing of the reflected wave energy received by the transducer therefore

contains information about the interface distances from the transducer. Process-

ing the received data is then used to form an image that estimates the physical

distributions within the region. The ultrasound transducer consists of an array

of piezoelectric transceiver elements [16]. These individual elements are capable

of transmitting and receiving acoustical energy and are in direct contact with the
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Chapter 1. Introduction

region of interest during data acquisition. The manner in which the elements

operate in concert during this process defines the modality of the imaging system.

With few exceptions, commercial medical ultrasound imaging systems operate

in a phased-array modality, as overviewed in Fig. 1.1. This technique most often

refers to a scanning of the region of interest by transmitting short pulses from each

element [13]. By programming delay times into the transmission of the elements,

the transmitted pulses are directed at a desired focal point in the region. Received

reflected energy is then processed similarly and in reverse fashion. The data for

a full image frame is acquired once this process is repeated for each point in the

scan [7].

Depending on its application, medical ultrasound imaging systems typically

operate with waveforms between 1 and 15 MHz with imaging resolutions between

3 mm and 0.3 mm [58]. Ultrasound has several important advantages over other

forms of imaging: It is much less costly than computed tomography (CT) imaging

and magnetic resonance imaging (MRI), can be done with portable systems, does

not subject the patient to ionizing radiation, and can achieve high frame rates.

Poor penetration depth remains one of its main weaknesses (Table 1.1). Although

using higher waveform frequencies improves the achievable resolution, it also in-

creases the attenuation of acoustic waves in the medium which lowers SNR [7].

2



Chapter 1. Introduction

This tradeoff between penetration depth and resolution is a fundamental consid-

eration in ultrasound system applications.

Table 1.1: Comparison of Common Medical Imaging Forms (Szabo, 2004)

Parameter Ultrasound X-ray CT MRI

Properties
imaged

Mechanical Mean tissue
absorption

Tissue
absorption

Biochemical

Scanner
positioning

Small window Two opposing
sides

Circumferential Circumferential

Spatial
resolution

0.3–3 mm ∼ 1 mm ∼ 1 mm ∼ 1 mm

Penetration 3–25 cm Excellent Excellent Excellent

Safety Very good Ionizing
radiation

Ionizing
radiation

Very good

Speed 100
frames/sec

Minutes 1/2 minute to
minutes

10 frames/sec

Cost Low Low Very high Very high

Portability Excellent Good Poor Poor

1.2 Synthetic Aperture Imaging in Ultrasound

As arrays become larger in effort to imaging performance, the orchestration

of these delays in a phase-array modality becomes a challenge with regard to the

electrical connections and frame rate [29]. For this reason, much of the research

in ultrasound imaging is devoted to alternate methods of transmit-receive.

3



Chapter 1. Introduction

(a) Common medical ultrasound environment for fetal imaging.
(Credit: Siemens Healthcare Inc., ref. [23])

(b) Ultrasound image of a human fetus in the womb. (Credit:
Siemens Healthcare Inc., ref. [24])
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Chapter 1. Introduction

(c) Standard in modern ultrasound, phased-imaging relies on trans-
mitting and receiving wave energy on a point-by-point basis within
the region of interest. This is accomplished with a linear array of
transceiver elements. (Credit: Neau and Hopkins, 2006 [46].)

Figure 1.1: Commercial ultrasound operation.
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One alternative which is gaining attention is known as the synthetic aperture

focusing technique (SAFT) [57]. Instead of using time delays to direct energy at a

particular point, this technique traverses across each element in the array, having

it transmit as the other elements receive. This is known as multistatic operation.

After each element has transmitted, a full set of data will have been acquired to

reconstruct an image frame. Because this modality relies on channel multiplexing,

the electrical connections are simpler than for phased-arrays [10], which suggests

promise for large arrays. On the other hand, synthetic aperture techniques often

suffer from low signal-to-noise ratio (SNR) on receive [29] and imaging artifacts,

making it a prime candidate for modification and further research [59].

Although radar imaging is based on electromagnetic wave propagation, the

wave equation for pressure waves shares the same form, permitting the applica-

tion of radar approaches to ultrasound array processing [26]. A growing imaging

modality in radar and in ground-penetrating radar (GPR) in particular is Stepped-

Frequency Continuous Wave (SFCW), or Stepped Frequency-Modulated Contin-

uous Wave (Stepped-FMCW). This technique involves transmitting a sequence of

tones in lieu of a short pulses. Hence, processing this data can be considered a

frequency-domain data-acquisition method [38]. Its advantages over pulsed tech-

niques in the GPR field include greater measurement accuracy, greater dynamic

6



Chapter 1. Introduction

range, and lower noise [20]. We therefore hypothesize that stepped-FMCW might

bring similar benefits in the ultrasound field.

1.3 Motivation and Project Novelty

At its core, this imaging project is predicated on the assumption that for two

multistatic ultrasound imaging systems with identical computing and bandwidth

resources, the ability to resolve targets within a region of interest will be greater

when imaging with (B) than with (A):

(A) Array with M transceiver elements distributed across a rigid transducer

of area N held against the body.

(B) Array with M transceiver elements distributed across a flexible transducer

of area > N conforming to the contours of the body.

Although there may be operational schemes adapted for particular systems

that may challenge the scope of this statement, the reasoning is less debatable:

Using a larger array to image a region of interest will create more target reflections

from more angles and receive more of those energies back. Additionally, an array

that can conform to contours of the body will further these increases. Such an

array will be more broadly referred to as “reconfigurable,” in that its elements can

be easily changed between imaging cycles. The result is a dataset that contains

7



Chapter 1. Introduction

more information about the target distribution. We will show that with more array

aperture span, image reconstruction of a target distribution will have higher SNR

and resolution.

However, the fabrication of a large, scalable array increases the difficulty of

maintaining the conventional phased-array mode of operation, as discussed pre-

viously. If it is accepted that pushing the limits of array size requires simplifi-

cation of electrical connections and forgoing of complex transmission and receive

schemes, a secondary technical question arises: What simpler transmission and

receive scheme could be used for a large array, and what would be its image re-

construction algorithm? This thesis investigates this question and proposes one

possible solution.

It has been noted that barriers between imaging fields, possibly stemming from

specialized terminology and long-held traditions in methodology, have resulted in

slowed migration of imaging techniques across fields [59].

The novelty of this project lies in the adaptation of the stepped-FMCW imag-

ing modality with multistatic synthetic aperture array operation for application

in a flexible array imaging system. Fig. 1.2 provides a visual overview. The suc-

cess seen with stepped-FMCW in ground-penetrating radar research motivates

investigation in its application ultrasound imaging. With the exploration of both

synthetic aperture techniques and stepped-FMCW for flexible ultrasound arrays,

8



Chapter 1. Introduction

the development of a process by which this imaging sytem can be analyzed for

performance will be a valuable new tool for guiding its realization in medicine and

non-destructive evaluation (NDE).

Literature searches on multistatic ultrasound imaging yield efforts which were

by and large limited to investigation of a single array configuration (such as relat-

ing to intravascular imaging or annular arrays [53],[49],[61]) and pulse-echo data

acquisition instead of stepped-FMCW [12],[27],[28]. Some ultrasound work has

included stepped-FMCW imaging but does not involve multistatic operation [48].

The pairing of the stepped-FMCW modality with multistatic data acquisition

is a novel setting for ultrasound imaging, and when combined with the design

constraint of an arbitrary array configuration, provides new grounds for image

simulation.

1.4 Thesis Organization

Four main chapters form the basis of this dissertation. Chapter 2 of this thesis

provides an overview of coherent imaging in two dimensions, which leads to

the formulations of resolving capability for multistatic stepped-FMCW system.

Next, Chapter 3 focuses on how target ranging is achieved with a stepped-

FMCW system. Since this modality replaces the more traditional pulse echo

9



Chapter 1. Introduction

(a) Probing the neck using a standard phased-array transducer.
(Credit: University of South Carolina, School of Medicine, ref. [2])

(b) A large flexible array used for neck imaging could improve
the performance of needle guidance procedures.(Credit: CASIT at
UCLA)

10
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(c) Imaging through a curved surface would benefit from the reconfigurable array ge-
ometry and maximize energy transmission and reception. (Credit: CASIT at UCLA)

Figure 1.2: A reconfigurable ultrasound array can conform to bodily contours
during the imaging process.

approach, we explain their mathematical equivalence in supplying range infor-

mation. A brief summary about system architecture is given, which includes

laboratory experiment results. This is followed by Chapter 4, which is devoted

to the space-time image reconstruction algorithm of a multistatic, stepped-

FMCW system for reconfigurable arrays. Its counterpart, spatial-frequency re-

construction, is also discussed for completeness. Equivalent reconstructions with

both methods are shown by using a single GPR dataset. We then present the

space-time reconstruction using which a needle was imaged with a multistatic,

reconfigurable ultrasound array. Lastly, a system image simulation method is de-

11
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scribed whose results are aligned with theoretical predictions. Chapter 5 presents

two techniques for improving imaging resolution by additional modules in

the reconstruction algorithm. The first takes advantage of the statistical signifi-

cance of pixel contributions prior to the final summation, and the second corrects

data errors originating from the stepped-FMCW quadrature receiver.

1.5 Perspectives from Related Fields

The direction of this project is heavily influenced by contributions from two

fields outside of what is commonly associated with ultrasound: (1) synthetic aper-

ture radar (SAR) [42],[50], (2) multiple-input and multiple-output (MIMO) radar

arrays [64],[21],[18],[22]. Sensor networks, particularly underwater acoustic sensor

networks (UASNs) [14],[25],[5] share similar localization goals with those of this

ultrasound thesis, however, fundamental differences in their environments limit

more direct association. To better acquaint the reader with the lineage of this

project, some clarifications and comparisons to these research areas are presented.

1.5.1 Synthetic Aperture Radar (SAR)

Synthetic aperture radar forms images, typically of landscapes, by aggregating

the information collected by a single radar device as it moves over an area of

12



Chapter 1. Introduction

interest. Since the lone radar’s physical dimensions constitute its true aperture,

the data acquired through its movement across space mimics that of a system

of many radars in concert. This creates a much larger, ”synthetic” aperture

which increases the resolution of the reconstructed image. Noting the relationship

between image resolution and aperture size, this thesis hypothesizes that similar

gains in image quality can be achieved in ultrasound imaging by designing for a

large, scalable transducer array.

Since both SAR and medical ultrasound systems share the common signaling

modality of pulse echo, insight into alternative SAR signaling modalities also shed

light on possibilities in the ultrasound research domain. Most notably, migration

from pulsing to continuous wave (CW) operation for SAR saw the same advantages

[42] as GPR, including hardware complexity reduction, lower peak power, and

lower cost. These features are especially attractive for ultrasound researchers,

not only to combat the growing complexity of pulse echo arrays but to preserve

medical ultrasound’s crown as the lowest cost and most portable imaging option.

Imaging reconstruction techniques for SAR have also guided the direction

of this thesis. SAR literature describes two chief image formation methods:

frequency-based and time-based. Specifically, time-domain SAR image forma-

tion offers “direct adaptability to non-regular sampling schemes,” and the ability

“to deliver output image on a custom grid” and “focus the SAR data from arbi-
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trary bistatic configurations” [50]. In this thesis where ultrasound elements may

assume arbitrary positions with non-uniform spacing, space-time reconstruction

becomes the clear choice for many of the same reasons seen in SAR research.

1.5.2 Multiple-Input and Multiple-Output (MIMO) Radar

Unlike SAR which captures images by a moving scan, a multistatic system

is defined as a system of multiple, independent radars capable of local signal

processing that are centralized via a communication link [6],[3],[4],[60]. Adoption

of this term by the ultrasound community helps describe the manner in which

individual ultrasound array elements transmit and receive signals independently,

distinguishing the operation from the phased-array modality.

Considered a type of multistatic radar, MIMO radar systems refer to a static

array capable of multiple transmit waveforms, with joint receivers that allow sig-

nals to be processed as a whole. Therefore it can said that the multistatic ul-

trasound array of this project is also MIMO, given its stepped-frequency CW

transmission and that the detection of phase delays and transit-receive timing re-

quires orchestration across the entire array. MIMO radars with widely separated

antennas (as opposed to co-located antennas) most closely represent the nature of

this thesis. Radar performance is improved by their ability to overcome challenges

with radar cross-section (RCS) diversity [17]. This is due to multitude of target
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perspective angles afforded by a large aperture which supports high-resolution

target localization [40],[18]. In contrast to phased-array radars, omnidirectional

beamforming common to MIMO removes the need to scan a target region with

a narrow beam, reducing cost in time for what is lost in processing gain. By-

passing of the scanning process is crucial for the reconfigurable ultrasound array

because it nullifies the need for array-phasing recalculations prior to each imaging

cycle. However, omnidirectionality of the ultrasound acoustic element beam may

not assumed in practice. Thus with the reconfigurability of the array combined

with directional beamspread, this thesis confronts the task of estimating imaging

performance in an environment not common to MIMO radar.

Since phased-array and MIMO radars each have their own set of advantages

and disadvantages, there have been many efforts to hybridize techniques to balance

their strengths. For MIMO systems, antenna arrays can be grouped operationally

into subarrays (a subset of antennas) that perform a specialized function within

the array as a whole. One example is the phased-MIMO system [22] which refers

to multiple phased subarrays working in aggregate in a MIMO structure. Further

adaptations include phased-MIMO systems that feature phased subarrays steered

by tuning frequency increments [64]. Like MIMO radar, research into subarray

operations for multistatic ultrasound arrays have also been conducted. To address

some of the SNR concerns associated with multistatic operation, some schemes
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transmit and receive acoustic energy with various subarray patterns instead of

elementally [27],[28]. This thesis does not explore this avenue and is limited in

scope to single-element multistatic operation.

1.5.3 Underwater Acoustic Sensor Networks (UASNs)

Underwater acoustic sensor networks overlap with ultrasound imaging in two

distinct ways: The acoustical aspect of its operation and the goal of localizing

nodes or targets in the water. A core UASN problem is detection and tracking of

underwater node positions for the purpose of relaying information gathered by the

nodes [14]. By employing underwater transceivers with known positions (anchors),

peripheral nodes in the network can be mapped using a variety of schemes [25],[1].

In some situations, nodes can both transmit and receive signals from the anchors

and other nodes. In others applications, nodes can only passively receive, known

as silent positioning [5].

Drawing an analogy for reconfigurable array ultrasound imaging would have

the ocean correspond to bodily tissue and nodes/anchors to transceiver elements.

Unfortunately, many of the resources and localization strategies available to UASNs

are not available for ultrasound imaging. For example, Global Positioning Systems

(GPS), pressure systems for depth estimation, and accelerometers are all common

tools in UASNs but have no applicability or an analogous form in an ultrasound
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imaging environment. Additionally, because ultrasound imaging is non-invasive,

there is no opportunity to track targets by insertion of a communication anchor

within the body as UASNs do underwater. However, the ultrasound needle guid-

ance scenario presents one possible exception. In that case, it would be conceivable

to fabricate elements onto the shaft of the needle to allow for direct path signaling

to the array on the skin’s surface.

In UASNs, the capability exists for node-to-node or node-to-anchor commu-

nication in 3D space. By tracking time-of-arrival (ToA) and time-difference-of-

arrival (TDoA), ranging can be achieved [15]. Though this has some similarity to

time-domain radar image reconstruction, it is removed from relevant radar and

ultrasound techniques where direct element-to-element path communication is not

an objective. For a multistatic ultrasound array, beamspread limitations would

deny most (if not all) elements a direct path linkage to another.
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Imaging With Coherent Waves

Because a stepped frequency-modulated continuous wave (FMCW) system

transmits and receives continuous waves while tracking phase delays, the propa-

gation of a single coherent wave represents the basic foundation of its operation.

It will be used to describe the image reconstruction process as well as characterize

the system resolution.

This chapter guides the reader from the simplest case of coherent imaging

(single-receiver passive) to multistatic active imaging, the latter of which is fully

relevant to this thesis. Each case includes resolution analysis by examination of

spatial-frequency content.

Traditionally, the resolution analysis techniques in this section mirror those

seen in the field of radar imaging. In radar literature, an aperture is commonly

modelled as a rigid structure or a single point, with the assumption that target

location distances greatly exceed the dimensions of the aperture itself. In our case,
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those assumptions may not be the applicable. So instead of treating an array as

a single entity, we treat the elements within the array as individual imaging com-

ponents. This allows the analysis to hold for an arbitrary set of elements, whose

aggregate forms the basis of the configurable array imaging system. Reference

[33] forms the basis for this chapter.

2.1 Passive Imaging

Passive imaging involves reconstructing a source location by only receiving

and recording the signal energy emanating from that source. One of the simplest

cases of coherent imaging is a single point receiver operating passively in R2

as seen in Fig. 2.1(a). Consider a point source s located at (xs, ys) that emits

(omnidirectionally and in a homogenous medium) a wave of fixed wavelength

λ. A point receiver r located at (xr, yr) will detect the Green’s function h(x, y)

evaluated at its location (xr, yr):

h(xr, yr) =
1

jλr
exp

(
j

2πr

λ

)
, (2.1)

where r =
√

(xs − xr)2 + (ys − yr)2 with r � λ. It is important to note that

although the Green’s function in Eq. (2.1) holds specifically for R2, its counterpart
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in R3 differs only by the amplitude function with its phase function remaining in

the same form [56]:

h(xr, yr, zr) =
1

r
exp

(
j

2πr

λ

)
, (2.2)

where r =
√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2. Because it is the phase function

that plays the operative role in array imaging problems, transitioning from a

two-dimensional imaging model to one of three dimensions does not present a

fundamental change in the theoretical landscape.

Bringing our attention back to the two-dimensional case, formulation of the

local spatial frequency at the receiver position will later allow for the introduction

of resolution.

By definition, the local spatial frequency at (xr, yr) in the x-direction is the

derivative of the phase of h(x, y) with respect to x, evaluated at (xr, yr):

fx,r =

[
∂

∂x

( r
λ

)]∣∣∣∣
x=xr,y=yr

=

[
∂

∂x

(√
(xs − x)2 + (ys − y)2

λ

)]∣∣∣∣
x=xr,y=yr

=
1

λ
cos θo,

(2.3)
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Figure 2.1: Passive Imaging Case
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where θo is the perspective angle formed between the vector from s to r and the

normal axis.

Similarly, the local spatial frequency at (xr, yr) in the y-direction is the deriva-

tive of the phase of h(x, y) with respect to y, evaluated at (xr, yr):

fy,r =

[
∂

∂y

( r
λ

)]∣∣∣∣
x=xr,y=yr

=

[
∂

∂y

(√
(xs − x)2 + (ys − y)2

λ

)]∣∣∣∣
x=xr,y=yr

=
1

λ
sin θo,

(2.4)

where θo is the perspective angle formed between the vector from s to r and the

x-axis.

Because fx,r and fy,r are the orthogonal components in the spatial frequency

domain (fx, fy), they can be represented as a vector fr on the complex plane:

fr =

fx,r
fy,r

 =
1

λ

cos θo

sin θo


=

1

λ
exp(jθo),

(2.5)

where ‖fr‖ = 1
λ
.
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In other words, a single source/receiver pair results in one vector in the spatial

frequency domain, whose endpoint lies on a circle of radius 1
λ
, as depicted in

Fig. 2.1(b). The direction of this vector is dictated by the angle θo, the angular

receiver position as seen by the source.

2.1.1 Effect of Receiver Coverage on Spatial Frequency

Content

Again in the case of a point source, the introduction of more than one point

receiver will further our understanding of how spatial frequency content leads to

the quantification of resolution, particularly cross-range resolution.

Instead of only one receiver, let us now redefine the scenario to include three

receivers r1, r2, and r3 with respective perspective angles θo, 0, and −θo as illus-

trated in Fig. 2.2(a). The three receivers together constitute aperture coverage

in the form of a three-receiver array. Like in the original single-receiver case, the

second and third receivers’ frequency contribution are also vectors in the spatial

frequency domain whose endpoint lies on the circle of radius 1
λ

in accordance with

their perspective angles.

The three spatial frequency vector endpoints along the 1
λ
-radius circle now span

a portion of the circle’s circumference, delineating an arc (Fig. 2.2(b)). Projecting

the arc along the fx and fy directions then gives frequency bandwidths
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∆fx =
1

λ
− 1

λ
cos θo (2.6a)

and

∆fy =
2

λ
sin θo. (2.6b)

Notice that the three receivers need not be colinear in space to result in a

frequency arc which is symmetrical about the fx axis. The operative parameter is

their perspective angle. Had r1 been located at some perspective angle θ1, r2 at 0,

and r3 at some different angle −θ2, an arc would still be established on the same

circumference though not symmetric about the the fx axis. From there, the same

notion applies for projecting this arc onto the frequency axes to find bandwidths

∆fx and ∆fy, though not in the exact form of Eq. (2.6).

What ∆fx and ∆fy signify is the system’s resolution, or the degree to which the

position of the emitting source s can be resolved by the receivers in the spatial

domain (x, y) [56]. The inverses of ∆fx and ∆fy give the resolutions in their

respective directions in the spatial domain:
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Figure 2.2: Passive imaging scenario with receiver aperture.
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∆x =
1

∆fx
=

λ

1− cos θo
(2.7a)

∆y =
1

∆fy
=

λ

2 sin θo
(2.7b)

The three-receiver array in (x, y) is generally oriented such that it spans the y-

direction while imaging a source located some distance away in the x-direction. By

this arrangement, the y-direction is considered to be the cross-range direction and

the x-direction, the range direction. The associated resolutions in these directions

are also termed accordingly: cross-range resolution ∆y and range resolution ∆x.

In our example, both ∆fy and∆fx have non-zero values but ∆fy tends to

dominate for most values of θo. In other words, the cross-range resolution improves

(i.e. ∆fy increases) dramatically as θo increases from 0 to π
2
. Range resolution

also improves but to a lesser extent. As we will see in Chapter 3, the introduction

of additional wavelengths can improve range resolution considerably.

2.2 Active Imaging

In contrast to passive imaging whereby an array aperture images a source only

by receiving the source’s signals, active imaging involves transmission of energy as

well as reception. For example, to image a target located in the region of interest,
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a transceiving element transmits a waveform into the region of interest. Energy is

then reflected off a target back toward the transceiver which receives the energy.

The received waveform is a function of the target distance and allows the imaging

system to reconstruct the target.

Because active imaging does not rely on an emitting source but rather a re-

flective target, this section is concerned with imaging targets instead of sources.

Additionally, we will refer to a single transceiving unit as an element, two or more

of which constitute an imaging array aperture. We will describe how the spatial

frequency content of an active imaging scenario differs fundamentally from that of

a passive scenario. This leads also to changes in range and cross-range resolutions.

2.2.1 Monostatic Mode

Monostatic imaging refers to the mode of data acquisition in which the same

element both transmits illuminating energy and receives the reflected signals. The

effect of this imaging scenario on the spatial frequency content of the data can be

described using a simple example.

Consider the scenario in Fig. 2.3(a) wherein a point element e located at (xe, ye)

emits (omnidirectionally and in a homogenous medium) a wave of fixed wavelength

λ and attempts to image a point target t located at (xt, yt) by receiving the
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waveform reflected off of t. The transmission of the wave results in an illumination

waveform I(x, y), which at the location of t is

I(xt, yt) =
1

jλr
exp

(
j

2πr

λ

)
, (2.8)

where r =
√

(xe − xt)2 + (ye − yt)2. The local spatial frequencies at the target

location are the derivatives of this waveform, evaluated at (xt, yt):

fx,t =

[
∂

∂x

(√
(xe − x)2 + (ye − y)2

λ

)]∣∣∣∣
x=xt,y=yt

= −1

λ
cos θo,

(2.9)

and

fy,t =

[
∂

∂y

(√
(xe − x)2 + (ye − y)2

λ

)]∣∣∣∣
x=xt,y=yt

= −1

λ
sin θo,

(2.10)

where θo is the perspective angle formed between the vector from t to e and the

normal axis.

The process of target illumination can be seen as a modulation of the target

point by the frequencies described by Eqs. (2.9) and (2.10). This modulation

step is what incorporates the illumination process into the analysis, and allows
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Figure 2.3: Monostatic imaging with a single tranceiver element.
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for the reflection step to be treated as a source at the target location emitting a

signal of wavelength λ. By identifying and compensating for this modulation due

to transmission, the latter receiving portion of this example can be reduced to a

passive imaging model in which the target is modeled as a source.

After e’s illumination of t’s location, t assumes the role of a pseudo source

as it emits (in the form of a reflection) a waveform with directional frequencies

matching those governed by Eqs. (2.9) and (2.10). The x and y components of

the resulting waveform over (x, y) can be approximated as:

Rx(x, y) ≈ 1

jλr
exp (j2πfx,tx)

≈ 1

jλr
exp

(
−j2π cos θo

λ
x

) (2.11)

and

Ry(x, y) ≈ 1

jλr
exp (j2πfy,ty)

≈ 1

jλr
exp

(
−j2π sin θo

λ
y

)
,

(2.12)

where r =
√

(x− xt)2 + (y − yt)2. The original Green’s function is modified such

that the local spatial frequencies seen at the target position now act as emitted

frequencies from the target position. Introducing this form reaffirms that the
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frequency content detected at the receiving element is governed by the relative

positions of the element and target.

Recall that a passive receiver and an emitting source give rise to a vector in

the spatial frequency domain as seen in Eq. (2.5). Similarly, the illumination of t

by e results in the vector fillum:

fillum =

fx,t
fy,t

 = −1

λ

cos θo

sin θo


= −1

λ
exp(jθo).

(2.13)

Note that this vector’s endpoint lies on the circle of radius 1
λ

in the spatial

frequency domain, but is located opposite to where it would be in the passive case

due to the flipped direction of wave propagation.

To obtain the net spatial frequency content as a result of the monostatic sys-

tem, we must resist the temptation to simply add fillum to the the vector associated

with passive reception, fr from Eq. (2.5). This is because the vector fr only has

relevance if the illumination vector is cancelled out. Because the illumination

process introduces modulations to the (x, y) space that are not due to the target

range, ensuring that the received reflected data is entirely due to the target range

requires that these modulation effects be first subtracted away [31]. If we define
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the resultant vector fmono in the spatial frequency domain that characterizes our

monostatic system example, we find that

fmono 6= +fillum + fr = 0

fmono = −fillum + fr = 2fr

=
2

λ
exp(jθo),

(2.14)

which is illustrated in Fig. 2.4(a), Fig. 2.4(b), and Fig. 2.3(b). Thus, for a purely

monostatic configuration, the spatial frequency vector lies on a circle of radius 2
λ
,

up by a factor of 2 from the passive case.

But like the passive case, the addition of one or more monostatic transceiver

elements adds to the angular span of the arc delineated by each perspective an-

gle. To illustrate the spatial frequency bandwidths associated with monostatic

imaging, consider the scenario in Fig. 2.5(a) in which a three-element array aper-

ture (resembling the three-receiver example in the passive case, but replacing the

source with a target, and the receivers with transceiver elements). Fig. 2.5(b)

shows that with the same θo, 0, and −θo perspective angles, the established arc

covers the same angular span, but is itself larger due to the increase in the cir-

cle’s radius. Projecting the arc along the fx and fy directions gives the spatial

frequency bandwidths for the monostatic case:
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Figure 2.5: Active monostatic imaging scenario with receiver aperture.
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∆fx =
2

λ
− 2

λ
cos θo (2.15a)

and

∆fy =
4

λ
sin θo. (2.15b)

Their inverses give the range and cross-range resolutions:

∆x =
1

∆fx
=

λ

2(1− cos θo)
(2.16a)

∆y =
1

∆fy
=

λ

4 sin θo
(2.16b)

The change from passive imaging to monostatic imaging improves resolution

by a factor of 2, assuming that the geometries are held constant. This means that

round-trip (monostatic) wave propagation is preferable for locating the target

position to a one-way (passive) propagation for locating a source position.
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2.2.2 Bistatic Mode

Bistatic imaging refers to the mode of data acquisition in which the transmit-

ting element and the receiving element are not the same element. In an array

of elements, this is often the case. As the distance between the transmitting el-

ement and the receiving element approaches zero, the data acquired bistatically

converges with that acquired with monostatic operation.

Differences in spatial frequency content exist between bistatic and monostatic

operation. Consider a basic scenario for bistatic imaging as show in Fig. 2.6(a):

A target t is being imaged by two elements, one which transmits a wave of fixed

wavelength λ (eillum) and one which receives it (er). Let us again define perspective

angles θo (target to eillum) and −θ1 (target to er) where
∣∣θo∣∣ < ∣∣θ1∣∣.

(Although it is true that an element is capable of both transmitting and re-

ceiving wave energy as controlled by a programmed switching routine in an array

system, we bring attention to one bistatic transmit/receive scenario involving the

two elements eillum and er, while bearing in mind that many transmit/receive

combinations exist for an array of elements.)

Much of the same flow of concepts apply for bistatic imaging as they do for

monostatic imaging, namely that the resultant spatial frequency vector is the

sum of a negated illumination vector fillum and a receive vector fr. Recall that

the monostatic case saw the resultant fmono vector equal two times fr due to

36



Chapter 2. Imaging With Coherent Waves

y

x0

t 

e
illum

θo

-θ1

e
r

(a) Target and two elements in space.

0

f
y

f
x

2
λ

radius:

-f illu
m

1
λ

radius:

f
r

(b) Corresponding spatial frequency signature.

Figure 2.6: Active bistatic imaging scenario with a two-element receiver
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the single position of both transmitter and receiver (Eq. (2.14)). The bistatic

resultant vector does not share that same attribute:

fbi = −fillum + fr

=
1

λ
exp(jθo) +

1

λ
exp(j(−θ1)).

(2.17)

The two exponential terms in the sum do not simplify as readily in the bistatic

case as they did in Eq. (2.14), but the sum does converge to a magnitude of 2
λ

as the sum
∣∣θo∣∣+

∣∣θ1∣∣ approaches zero (that is, approaches the monostatic case).

If eillum and er were located symmetrically about the x-axis such that θo = -θ1,

the fbi would lie at an angle of zero in the spatial frequency domain. Incidentally,

a monostatic element imaging a target at a perspective angle θo = 0 would also

give a resultant spatial frequency vector lying in that same direction. However,

the fmono vector would have a magnitude equal to 2
λ

but the fbi vector magnitude

would be less 2
λ
, seen in Fig. 2.6(b).

Notice that despite having two elements participating in the bistatic example,

we still end up with one resultant vector (one point) in the spatial frequency

domain. Even collecting an additional dataset by reversing the two elements’

roles as transmitter and receiver does not (in theory) give any added information

about the target location. This is because for both cases, fbi does not change.
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Nonetheless, as we have seen with passive and monostatic operation, having

more bistatic element pairs operating during data acquisition will create a span

of points in the spatial frequency domain. The greater the bandwidth in the fx

and fy directions, the better the imaging resolution for a given target location.

In order to obtain a large collection of spatial frequency points, more bistatic

transmit/receive pairs must be used. In the following subsection, we will discuss

how this is done in an array of elements using multiple frequencies with both

bistatic and monostatic data.

2.2.3 Multistatic Mode With Multiple Frequencies

By now we accept that improved resolution comes from broadening the spatial

frequency band as greatly as possible in an imaging system. We will now direct

our attention to how that can be achieved using multistatic mode and multiple

coherent frequencies.

The imaging system in this thesis is inherently reliant on active imaging. That

is, our goal is to image targets by transmitting and receiving wave energy using

an array of elements. To increase the number of spatial frequency points during

an data acquisition, we seek to operate in both monostatic and bistatic mode, or

multistatic mode. Given an array with N elements, there are N monostatic tracks,

and N2−N bistatic tracks. The N2−N bistatic tracks includes all permutations
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of pairs of transmit/receive elements, so that every pair of elements is counted

twice (once when one element transmits and other other receives, and twice when

their roles are switched). For a full single-frequency multistatic cycle, a total of

N2 data tracks are acquired by the system in one complete cycle. Although a

pair of elements operating bistatically will give the same spatial frequency vector

signature regardless of which receives and which transmits, a practical system will

still perform both for the purpose of noise reduction.

By operating multistatically with N elements with a single temporal frequency

f1 = v
λ1

(where v is the speed of sound in the medium), the spatial frequency

domain will see N2 points—some directly atop another—clustered about an arc

of radius 2
λ1

. Although using all multistatic tracks in a relatively large array will

widen the spatial frequency band covered, the benefit is predominantly in the fy

(cross-range) direction and not the fx (range) direction.

Fortunately, a system that operates with more than one frequency will increase

the span of points in the fx direction. If the same multistatic data acquisition

process is repeated using a second temporal frequency f2, a new set of N2 points

will be introduced, clustered about an arc of radius 2f2
v

, or 2
λ2

. As this continues

for a set of stepped K temporal frequencies f1, f2, ..., fK , the spatial frequency

domain will see K sets of N2 points spanned across an area generally bounded by

the radii 2
λ1

and 2
λk

. Fig. 2.7 and Fig. 2.8 give visual accounts.
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y
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(a) Target point illuminated by five elements in space.
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f
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y

(b) Spatial frequency signature for a single-frequency, f1 = v
λ1

, with

dots clustered around the radius 2
λ1

.
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f
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y

(c) Spatial frequency signature for three evenly-spaced temporal fre-
quencies ranging from f1 = v

λ1
to f2 = v

λ2
, with dots clustered

between the radii 2
λ1

and 2
λ2

.

Figure 2.7: Multistatic mode. Spatial frequency plots are shown with a darkened
band of inner radius 2

λ1
and outer radius 2

λ2
. Note that bistatic points fall short

of their respective frequency radius.
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y
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(a) Off-center target point illuminated by five elements in space.
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f
x

f
y

(b) Spatial frequency signature for a single temporal frequency, f1 =
v
λ1

, with dots clustered around the radius 2
λ1

.
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f
x

f
y

(c) Spatial frequency signature for three evenly-spaced temporal fre-
quencies ranging from f1 = v

λ1
to f2 = v

λ2
with dots clustered be-

tween the radii 2
λ1

and 2
λ2

.

Figure 2.8: Multistatic mode with off-center target. Note that the shifting of
the spatial frequency signatures are commensurate to the angular change from
Fig. 2.7. Spatial frequency plots are shown with a darkened band of inner radius
2
λ1

and outer radius 2
λ2

.
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To obtain a sense of how the range-direction spatial frequency bandwidth in-

creases with the addition of multiple temporal frequencies, let us refer to Fig. 2.5(a).

Instead of a single frequency monstatic case, we now allow for the use a series of

temporal frequencies lying within a band B:

B = ∆ftemp = f2 − f1, (2.18)

from which we can define λmax = v
f1

and λmin = v
f2

where v is the speed of sound

in the medium.

Along the fx direction, all multistatic spatial frequency points are generally

bounded between two arcs of radii 2
λmin

and 2
λmax

. The span of the coverage in the

fx direction, ∆fx is:

∆fx = fx,max − fx,min

=
2

λmin
− 2

λmax
cos θo

=
2

λmin
− 2

λmax
+

2

λmax
(1− cos θo)

=
2

v
(f2 − f1) +

2

v
f1(1− cos θo)

=
2

v
(B + f1(1− cos θo)).

(2.19)
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From this, we can establish the ∆x, the range resolution in space:

∆x =
1

∆fx

=
v

2(B + f1(1− cos θo))
.

(2.20)

Note that for small values of θo, ∆x ≈ v
2B

, consistent with SAR theory for range

resolution [43].

This forms the basis of stepped-frequency continuous wave operating in multi-

static mode. The use of many temporal continuous waves drives the increase in

range resolution, while multistatic data acquisition maximizes angular aperture

coverage, and therefore cross-range resolution.

2.3 Approximation of Total Imaging System Res-

olution

For an array of N elements imaging a single point target by multistatic op-

eration stepping through K frequencies, the spatial frequency signature of KN2

points will be scattered across a portion of the (fx, fy) domain. Similar analyses

in SAR imaging [63] have shown the same relationship using continuous spatial

frequency coverage instead of discrete points.
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Two remarks are worth emphasizing:

(1) The points spanning (fx, fy) are based on a single target location for one

particular distribution of elements. For this reason, a resolution analysis con-

ducted with one set of multistatic spatial frequency points cannot necessarily give

a generalized estimate for the system as a whole.

(2) The collection of N2 multistatic points per frequency assumes that all mul-

tistatic element pairs are able to illuminate and receive energy from the target

point. In other words, all elements are assumed to have omnidirectional beampat-

tern in the (x, y) plane. In reality, elements have characteristic radiation patterns

that constrain the amount of energy able to be transmitted and received from

angles off from the normal face of the element. See Chapter 3 for more. This

means that in many cases, only a subset of the KN2 points will emerge, due to

only a subset of the multistatic pairs “seeing” the target location.

If the area spanned by the points in the spatial frequency domain extends over

a distance α along the fx direction and β along the fy direction, the associated

point target location in (x, y) would be resolvable to ∆x = 1
α

and ∆y = 1
β
. A

rectangular area would be preferable for quantifying span in (fx, fy); but because

this area generally does not assume any particular shape [55], some approximation

is required.

49



Chapter 2. Imaging With Coherent Waves

For simplicity it may be advantageous to characterize α and β as the dimen-

sions of the smallest rectangle that fully encloses the area. (This has already been

seen in prior subsections for determining the span of an arc.) Indeed, for a target

location far away from the array aperture, the area becomes more rectangular in

shape. Using this convention for approximating α and β implies that overestima-

tion of system performance is preferred over underestimation, which is sensible if

we seek a best-case resolution estimate.

A crucial question in this discussion is how the imaging performance differs

when the same area and span parameters α and β are achieved in two operational

Cases A and B, but with B having fewer spatial frequency points. Visually, Case

B may have a sparser distribution of points across the same region possibly due

to a number of non-operating multistatic element pairs. Because both cases have

identical α and β values, the resolutions in both cases are therefore equal for a

given target location. But what Case B suffers in comparison to Case A is ambigu-

ity in target reconstruction. The low spatial frequency sampling in Case B results

in repetition artifacts across the reconstructed region of interest. The greater the

distances between multistatic points in (fx, fy), the closer together target artifacts

will be in (x, y). By minimizing these distances through the acquisition of many

spatial frequency points, the length between repetitions may be well out of the

specified range of the region of interest.
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An exhaustive estimation of total imaging system resolution for a multistatic

stepped-FMCW system would require every possible array configuration to un-

dergo a pixelwise computation of range and cross-range resolution within the

region of interest. A practical attempt would involve only a limited number of

configurations of interest with a limited number of specified target location re-

gions.

2.4 Conclusion

In this chapter, we have established the technical foundation for imaging res-

olution for a stepped-frequency modulated continuous wave (FMCW) multistatic

system. A passive imaging case was first analyzed in order to provide a basis

for describing monostatic and bistatic imaging modes, which together give rise to

multistatic imaging.

By examining the spatial frequency content in coherent imaging cases, we

describe how monostatic and bistatic imaging provide a factor of 2 improvement

in cross-range resolution over passive imaging, especially when bistatic perspective

angles are small.

The result of this analysis also shows that for a given target location and array

aperture, a larger span of spatial frequency signature points translates to better
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imaging resolution. Achieving this large span is accomplished by (1) using a large

number of frequencies—the basis for stepped-FMCW—which primarily improves

range resolution, and (2) by using a large array aperture that surrounds a target

maximally, which primarily improves cross-range resolution.
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Chapter 3

The Stepped-FMCW Modality

This chapter focuses on the fundamental task of multistatic stepped-FMCW

imaging system to obtain range data within the region of interest. Range data

provides estimates of distances (between the transducer array elements and the

reflective targets) which are processed to reconstruct an image of the targets. The

manner in which the stepped-FMCW probing signals are emitted is described, as

well as its logical basis as a ranging technique along with experiments.

References [38], [45], and [44] form the basis for this chapter.

3.1 Background: Pulse Echo Range Estimation

The most straightforward method of acquiring range data is the pulse echo

technique which remains the foundation of ultrasound imaging. This refers to

the transmission of a short-duration pulse into the region of interest at t = 0.

Upon receiving back the reflected pulse(s) as a function of time, the depth of the
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reflective interface(s) can be found [7]. For a reflector at a distance do away from

the transducer, and a speed of sound in the medium of v, its echoed pulse in the

pulse echo data should appear at τo, where

τo =
2do
v
. (3.1)

The factor of 2 accounts for the round-trip distance of the pulse. The result

of a pulse echo experiment can be displayed visually as an A-mode (or amplitude-

mode) scan, which is a one-dimensional plot of the received reflected energy pulses

as a function of distance; the greater the amplitude, the greater the detected

presence of a reflector at that distance from the transducer. Arriving at the A-

mode image from the pulse echo data requires a simple scaling of the horizontal

axis in accordance with Eq. (3.1).

Because a medical ultrasound system cannot tailor each reconstruction with a

priori knowledge of the speed of sound in all relevant tissues in the region, typically

medical ultrasounds systems reconstruct images by assuming v ≈ 1540 m s−1 which

is about halfway between the speeds in muscle and water.

When A-mode scans are collected across a confined region of interest, a two-

dimensional image can be formed by overlaying processed A-mode scans and dis-

playing the amplitudes as brightness on a screen. This is called a B-mode scan (or
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brightness-mode scan), and is the foundation for conventional ultrasound imag-

ing. The more closely-spaced the A-scans, the more the corresponding B-scan will

appear to represent an appreciable cross-sectional image beneath the transducer.

Prior to B-mode image formation, a series of conditioning steps are often applied

to the A-mode data including:

1. Demodulation, which extracts the envelope of the A-mode peaks and rejects

the carrier frequency;

2. Time-gain control, which boosts the signal peaks from more distant reflectors

which have been more attenuated than peaks from close reflectors;

3. Compression, which modifies the dynamic range of the echoes for display;

and

4. Thresholding, which zeros out amplitudes below a certain value typically to

eliminate noise or extranenous signals.

Although phased-array ultrasound systems can direct wave energy at discrete

points or at a particular angle from the transducer, the principle of forming a

brightness-mode image by sweeping an area for time-delayed reflections still ap-

plies. Hence, phased-array imaging is a subcategory of B-mode imaging. Other

modes exist in modern ultrasound such as C-mode, M-mode and Doppler mode,

but will not be discussed due to the scope of this thesis.
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In this thesis, we will use the term time-delay profile to represent the received

data of a single pulse echo scan. That is, a one-dimensional amplitude plot as

a function of time showing the received signal at a transducer (or transducing

element) with t = 0 representing the time of pulse transmission. We will use the

term range profile to represent an A-scan, that is, a plot of the information as a

function of distance.

An idealized pulse echo system would transmit and receive such narrow pulses

that they can be approximated as delta functions. The time-delay profile can then

be generalized as a function

ptdp(t) =
Z∑
i=1

ai δ(t− τi), (3.2)

for Z targets in the region of interest with respective reflections received at t = τi

and with amplitude ai. The associated target distances would be di = 1
2
vτi.

3.2 Stepped-FMCW Range Estimation

A-mode and B-mode ultrasound imaging rely on estimating range with the

general pulse echo modality. They can be colloquially termed as “time domain

schemes” because the time delay of the reflected pulse echoes directly represents

the information used for image reconstruction. On the other hand, stepped-
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FMCW differs from this convention by extracting phase information from trans-

mitted and received coherent waves. For this reason, stepped-FMCW can be

viewed as a “frequency domain scheme.” Notwithstanding, its application to ul-

trasound implies that range information must still be obtained. This section

describes in phasor notation how this is accomplished.

By the end of one data acquisition cycle of the stepped-FMCW ultrasound

system, each element in the multistatic array will send out a complete set of

K coherent signals, stepping through a defined frequency band with frequency

increment ∆f :

fk = f0 + k∆f (3.3)

where fk is the frequency of the transmitted signal, fo the starting frequency, and

k = 0, 1, 2, ..., K−1. Optimal element operation dictates the frequency band used,

which is assumed to be uniform across all elements. This is reasonable, given that

array elements are typically fabricated together.

Each element in the array sequentially sends K coherent wave signals, upon

which all elements switch to receive mode. Thus, each of the N2 multistatic pair of

elements sees K coherent signals between them (as discussed in Subsection 2.2.3)

and therefore KN2 spatial frequency points in total. In this thesis, the optimal
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order in which these multistatic pairs and coherent signals are sent and received

is not investigated. It is assumed that once a data acquisition cycle is complete,

all have been stored in memory. Further, the following analysis will deal with

one multistatic pair, from which the reader can extrapolate to understand full

multistatic operation.

During a frequency step, the transmitting elements function as a continuous

wave (CW) system. This allows the stepped-FMCW modality to be regarded as

an transmitting and receiving an organized sequence of CW transmissions, which

is in contrast to a short-duration pulse. The transmitted signal with frequency fk

can be written in the form:

etrans,k(t) = E exp (j2πfkt) , (3.4)

where E is an arbitrary amplitude. As the transmitted CW reaches and reflects

back from a target, the signal detected by the receiving element is a modified

form of the transmitted wave. Due to attenuation in the medium and target

reflectivity, an amplitude factor A (with value between 0 and 1) is introduced.

But more importantly, a phase shift τo is present as a result of the round-trip

travel time seen in Eq. (3.1).
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Unlike a monostatic track where a single Euclidean distance do gives the target

range, target ranging with a bistatic element pair involves two distinct distances,

d1 and d2, with which the time-delay can be expressed:

τo =
d1 + d2

v
, (3.5)

where d1 is the distance from the transmitting element to the target, and d2 is

the distance between the target and the receiving element.

However, for simplicity, the analysis will continue with the original time-delay

equation from Eq. (3.1) suggestive of a monostatic setup. The received reflected

signal is then

erec,k(t) = AE exp (j2πfk(t− τo))

= AE exp

(
j2πfk

(
t− 2do

v

))
.

(3.6)
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The kth received signal, erec,k(t), k = 0, ..., K − 1, is then demodulated by

multiplying to the complex conjugate of the transmitted signal:

edemod,k(t) = erec,k(t) e
∗
trans,k(t)

= AE2 exp(−j2πfkτo)

= AE2 exp

(
−j2πfo

2do
v

)
exp

(
−j2πk∆f

2do
v

)
.

(3.7)

For a single multistatic element pair, the result is a series of K complex scalars

edemod. These scalars together can be considered a discrete function edemod in terms

of frequency index k.

edemod[k] = AE2 exp

(
−j2πfo

2do
v

)
exp

(
−j2πk∆f

2do
v

)
= C exp

(
−j2πk∆f

2do
v

)
,

(3.8)

where C = AE2 exp
(
−j2πfo 2do

v

)
, which has no k dependence.

The significance of the k-dependent factor of Eq. (3.8) lies in its connection

to the canonical discrete Fourier transform (DFT) kernel: exp
(
−j2π nk

N

)
. Recall

that k is the discrete frequency domain variable, n is the discrete time domain

variable, and N is the length of the time domain sequence [47]. If the DFT kernel
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is juxtaposed with the k-dependent exponential factor of edemod[k], the exponential

terms can be matched for correspondence, specifically if:

n

N
= ∆f

2do
v

n = 2(N∆f)
do
v
.

(3.9)

Because the DFT implies that the discrete sequences in the time and frequency

domains are equal in length, we can establish that the number of frequencies used

in the stepped-FMCW system, K, is equal to N in the DFT kernel. Hence, if our

system bandwidth is B = K∆f , in accordance with Eq. (2.18), then Eq. (3.9) can

be rewritten as

n = B
2do
v
. (3.10)
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This reveals a linear relationship between the time-domain index n and the target

range, do. From this, the DFT can be used to relate a stepped-FMCW (frequency)

data set acquired by a multistatic element pair to a corresponding range profile:

edemod[k] = C exp

(
−j2πk∆f

2do
v

)
= DFT

{
C δ

(
n− 2B

v
do

)}
.

(3.11)

This means that a time-domain sequence indexed by n will see a delta at

n = 2B
v
do = Bτo, in accordance with Eq. (3.10). If we reorganize the range

distance in terms of the positive index integer n,

do =
( v

2B

)
n, (3.12)

it becomes clear that the factor v
2B

represents the minimum range increment in

the range estimation, or range resolution:

∆x =
v

2B
. (3.13)

The result of the range resolution analysis from Eq. (3.13) is in agreement with

Eq. (2.20).
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Therefore, it is shown that the frequency-based stepped-FMCW data carries

within it the target range information. The range information can be found by

taking the inverse DFT (IDFT) of the demodulated received CW data.

3.2.1 Equivalence of Stepped-FMCW and Pulse Echo

Processing stepped-FMCW data gives a sampled version of the continuous-

time time-delay profile

Proposing stepped-FMCW as a means to estimate target distances requires

that its mathematical formulation lead not only to a single target distance, but

to a generalized time-delay profile seen in Eq. (3.2). The following describes this

migration.

Broadly speaking, the pulse echo time-delay profile is the impulse response of

system (target distribution). Instead of a transmitted pulse at t = 0 as the input

waveform, the stepped-FMCW modality involves transmitting a series of CWs

described in Eq. (3.4). Given this relationship, the received signal erec,k(t) can
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alternatively be written as a convolution of etrans,k(t) and the time-delay profile

ptdp(t):

erec,k(t) = etrans,k(t) ∗ ptdp(t)

= E exp (j2πfkt) ∗
Z∑
i=1

ai δ(t− τi)

=
Z∑
i=1

aiE exp(j2πfk(t− τi)).

(3.14)

After demodulation, K complex scalars result, one from each of the CWs used:

edemod,k(t) = erec,k(t) e
∗
trans,k(t)

=
Z∑
i=1

aiE
2 exp(−j2πfoτi) exp(−j2πk∆fτi)

= E2

Z∑
i=1

ai bi exp(−j2πk∆fτi),

(3.15)
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where bi = exp(−j2πfoτi). Arranging these scalars in a frequency-domain se-

quence forms edemod[k], whose IDFT is in the form of a discrete-time time-delay

profile p̂tdp[n] showing Z reflection peaks:

p̂tdp[n] = IDFT
{
edemod[k]

}
= E2

Z∑
i=1

ai bi δ(n− ni),
(3.16)

where ni = Bτi. The sequence p̂tdp[n] can be regarded as a sampled, scaled (by a

factor B), and amplified (by a factor biE
2) version of ptdp(t).

From this result, it is revealed that the stepped-FMCW data sequence edemod[k]

gives a time-delay profile (albeit sampled) that is equivalent to one collected by

the pulse echo modality. Based on these analyses, the process of arriving at a

time-delay profile in the stepped-FMCW modality can be codified in four general

steps:

1. Demodulate the received CW waveforms erec,k(t) to obtain the sequence

edemod[k].

2. Apply the IDFT to edemod[k] to arrive at p̂tdp[n].

3. Normalize p̂tdp[n] by multiplying it by γ[n] = 1
E2 exp

(
j2π fo

B
n
)
.
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4. Scale the resulting sequence by defining the unit increment in n as 1
B

in

order to give

ptdp[n] =
Z∑
i=1

ai δ(n− ni),

where ni = τi.

The function γ[n] serves to eliminate E2 and bi in Eq. (3.16). The product of

bi and the exponential function in γ[n] results in unity only when n = ni. For the

purposes of avoiding confusion with the meaning of “range” when dealing with

bistatic and monostatic tracks, we forgo the additional step required to find the

range profile from the time-delay profile while bearing in mind that Eqs. (3.5) and

(3.1) apply.

In practice, the DFT and IDFT are implemented with the fast Fourier trans-

form (FFT) and inverse fast Fourier transform (IFFT). Therefore there is no

guarantee that the length of edemod[k] and ptdp[n] will equal the number of CWs

used, K, and will typically exceed it. Incidentally, the multiplicative effect of the

exponential function exp
(
j2π fo

B
n
)

in γ[n] can be achieved instead by zero-padding

in the frequency domain prior to the IFFT operation, representing a frequency

shift. Let us define êdemod[k] as a sequence of length L where L is a power of 2 as

per the FFT algorithm such that êdemod[k] consists of zeros in the interval [1, ko],

the original K-length sequence edemod[k] in the interval [(ko + 1), (ko + 1 + K)],
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and zeros in the interval [(ko + 2 + K), (L)]. Padding êdemod[k] with ko zeros at

the start can be done provided that an integer value for ko can be identified such

that

ko
K

=
fo
B

(3.17)

which leads to

ko =
fo
∆f

. (3.18)

Stepped-FMCW data is a sampled version of the continuous time-delay

profile spectrum

Suppose that instead of using Eq. (3.2) to define the continuous time-delay

profile as consisting only of impulses, a more general continuous time-delay profile,

ptdp,gen(t), can be defined, with nondescript peaks and amplitudes. Its Fourier

transform spectrum is in the form

Ptdp,gen(f) =

∫
ptdp,gen(t) exp(−j2πft) dt. (3.19)
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The received signal then takes the form of

erec,k(t) = ptdp,gen(t) ∗ etrans,k(t)

= ptdp,gen(t) ∗ E exp(j2πfkt)

= E

∫
ptdp,gen(σ) exp (j2πfk(t− σ)) dσ

= E exp(j2πfkt)

∫
ptdp,gen(σ) exp(−j2πfkσ) dσ.

(3.20)

which again is the convolution of the continuous time-delay profile and the trans-

mitted signal. After removal of the carrier frequency fo within fk, Eq. (3.20)

becomes

edemod[k] = erec,k(t) e
∗
trans,k(t)

= E2

∫
ptdp,gen(σ) exp(−j2πfkσ) dσ

= E2 Ptdp,gen(fk).

(3.21)

The result of Eq. (3.21) shows that the sequence of complex scalars edemod[k] is

an amplified collection of samples of the time-delay profile spectrum Ptdp,gen(f),

evaluated at each fk of the K CWs used in the stepped-FMCW data acquisition

process.
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Waveform Synthesis Simulation Experiments, Pt. I:

Pulse Echo Data Acquisition

At this point we have established that the stepped-FMCW ranging modality

is mathematically equivalent to conventional pulse echo. More specifically, the

stepped-FMCW data sequence for a multistatic element pair are the sampled

values of the spectrum for the corresponding continuous pulse echo time-delay

profile. As a result of this relationship, conversion between pulse echo data and

stepped-FMCW data is valid. Prior stepped-FMCW simulation work could then

be merged with pulse echo data to achieve a synthesis between laboratory data

and a structured theoretical framework. We describe how an experimentally-

acquired ultrasound pulse echo waveform was extracted and then incorporated

into a stepped-FMCW imaging simulation. By using a true pulse echo waveform

we are able to add the effects of the physical wave propagation in our simulations.

The data synthesis process first required the collection of a characteristic pulse.

A 16-element (2×8) conformal ultrasound transducer prototype, shown in Fig. 3.1

was fabricated with lead zirconate titanate (PZT) piezoelectric elements, each

bonded to an individual glass substrate. Glass substrates were attached to a

copper-cladded flexible printed circuit. A tungsten-loaded epoxy backing layer for

mechanical damping was applied to each element, and acoustic matching to soft

tissue was optimized by coating the transducer face with a flexible parylene match-
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ing layer. Each element of the the array was a square of side length 1.275 mm,

with a pitch (element spacing) of 3.2 mm. A custom pulse echo transceiver was

designed to transmit pulsed CW waveforms and process received data with a

superheterodyne downconverter.

Figure 3.1: A 16-element conformal ultrasound array prototype of which one
1× 8 row was tested.

A soft-tissue phantom, seen in Fig. 3.2 was constructed to evaluate the trans-

ducer array’s ability to image internal objects of varying shapes. The phantom’s

tissue-mimicking material was formed from a mixture of aragose, evaporated milk,

thimerosal, and glass beads. To provide two distinct scattering surfaces, a stain-

less steel rod (2 mm diameter) and a glass slide (1 mm thickness) served as targets.

The face of the slide was fixed perpendicular to the acoustic beam, and the long

axis of the rod was oriented in the same plane as the slide.

The transducer array was placed atop the phantom and coupled with it using

∼1 mm thick of acoustic scanning gel. Monostatic pulse echo experiments were

performed using a 1×8 portion of the array at a 50 MHz sampling frequency, which

provided reflections from the metal rod. A time-delay profile generated from the
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(a)

(b)

Figure 3.2: (a) Soft-tissue phantom and (b) Cross-sectional view of phantom
with conformal transducer across the top surface.

rod’s reflection, shown in Fig. 3.3, was collected, and I and Q channel data points

corresponding to the direct path reflection were extracted for synthesis with the

stepped-FMCW imaging simulations. The dimensions of the rod suggested that

the pulse is well suited to represent a point target for the imaging setup, and

characterizes the physical attributes of the imaging environment.
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Figure 3.3: Complex-magnitude plot of received pulse echo waveform used for
stepped-FMCW simulations.

Waveform Synthesis Simulation Experiments, Pt. II:

Initial Stepped-FMCW Imaging Simulations

Preliminary stepped-FMCW imaging simulations consisted of five idealized

point targets surrounded by an array of eight equally-spaced point elements, as

illustrated in Fig. 3.4, representing a conformal array imaging inward. Prior to

waveform synthesis, the simulations operated in basic form under unitless terms,

serving to validate initial imaging formation procedures, and visualize relation-

ships between input parameters (including bandwidth) and resolving capabilty.
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Figure 3.4: Target and transducer element arrangement for prior stepped-
FMCW simulations.

For each pair of elements, one acting as a receiver and the other as the trans-

mitter, a theoretical discrete time-delay profile corresponding to the target dis-

tribution was determined using unit impulses as target responses. As expected,

the number of impulses in each profile equaled the number of targets. Because

dimensions and system specifications were not explicitly set, time-delay profiles

lacked true adherence to those from a real system. To simulate a finite stepped-

FMCW bandwidth, FFTs were performed on the theoretical time-delay profiles

in order to remove portions of spectral content. The remaining bandwidth was

referenced by the percentage of the total bandwidth (up to sampling frequency).

Fig. 3.5 shows reconstructed images from these multistatic simulations formed by

mapping the complex band-limited time-delay profiles onto a target area. (For an

in-depth discussion on the image reconstruction, see Chapter 4.)
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Figure 3.5: Output images of preliminary stepped-FMCW simulations recon-
structed using time-delay profiles of varying bandwidths. As a percentage of
sampling frequency (moving clockwise from top), they are 100%, 40%, 20%. Back-
ground clutter is due spectral filtering and the non-specific nature of the recon-
struction algorithm.

Waveform Synthesis Simulation Experiments, Pt. III:

Time-Delay Profile Modification Using Pulse Echo Reflection

Because the extracted pulse echo was a sequence in time with an explicit

sampling frequency, spectral components, and temporal pulse width, importing

it to the stepped-FMCW simulation dimensionalizes the output image according
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to the pulse echo experiment’s environment. The process by which the extracted

pulse echo was used to modify each of the theoretical multistatic time-delay profiles

was accomplished with the following five steps:

1. Find the spectrum of the idealized time-delay profile,

Ptheo[k] = FFT
{

Theoretical time-delay profile
}

.

2. Shift the pulse echo time-delay profile to begin at t = 0. Find its spectrum

Ppulse[k] = FFT
{

Extracted pulse echo
}

.

3. Zero out appropriate spectral samples from Ppulse[k] to give P̂ pulse[k] in order

to achieve desired stepped-FMCW frequency band.

4. Convolve the pulse echo time-delay profile with the theoretical time-delay

profile by finding the product Psynth[k] = Ptheo[k]P̂ pulse[k].

5. Take the IFFT of the Psynth[k] to give the synthesized time-delay profile.

(Fig. 3.6 shows a sample result.)

Waveform Synthesis Simulation Experiments, Pt. IV:

Results of Pulse Echo Synthesis with Stepped-FMCW Simulations

Simulations were performed with the element and target configurations seen

in Fig. 3.4. The circular, eight-element conformal array with a diameter of 3 cm
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Figure 3.6: Sample time-delay profiles for a bistatic element pair in the stepped-
FMCW simulation. The synthesized profile was found by convolving the theoret-
ical profile with a bandlimited version of the extracted pulse echo.

was simulated to image five thin rod cross-sections in a soft-tissue phantom. To

accommodate the dimensions of this setup, a maximum round-trip time of 40 µs

was selected, establishing the stepped-FMCW ∆f = 25 kHz, its inverse. The

upper bound of the FFT spectrum corresponded to the sampling frequency of

the extracted pulse echo time-delay profile, 50 MHz. Two frequency bands were

examined: (1)15.0 MHz to 15.5 MHz and (2) 13.0 MHz to 18.0 MHz. Note that

these frequency ranges do not exceed the Nyquist frequency so that the frequency

samples were confined to the positive sideband. A 2048-point IFFT was performed

on the Psynth[k] of each multistatic pair. The resulting time-delay profiles were then

used to reconstruct an image by mapping them to a 267 × 267 matrix according

to the propagation speed in the phantom, set to 1500 m s−1.
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(a)

(b)

Figure 3.7: (a) Synthesized reconstructed images of a stepped-FMCW simulation
using the experimentally acquired pulse echo waveform. Operating bands are
15.0 MHz to 15.5 MHz (left) and 13.0 MHz to 18.0 MHz (right). (b) Respective
magnitude projections of the images onto the y-axis further reveals bandwidth
effects.
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The five targets in each of the resulting complex-magnitude images seen in

Fig. 3.7 showed clear prominence over background clutter, and the change of

bandwidth from B = 0.5 MHz to B = 5 MHz appreciably improved target clarity.

Because the full circumferential aperture coverage removes distinction between

the range and cross-range directions, the target position resolutions appear to

benefit maximally from both. In terms of the spatial frequency span discussed in

Chapter 2, the resulting coverage from each target position would roughly take

the form of a flat donut with radial thickness 2B
v

. Its total span would be equal to

∆ftotal = ∆fx = ∆fy =
4

λmin

= 4
fK
v

(3.22)

in all directions, or the diameter corresponding to the highest temporal frequency

of the stepped-FMCW band, fK . If we assume that this is the case for all five

target positions, then the resolution is 24.2 µm for the 15.0 MHz to 15.5 MHz

bandwidth case, and 20.8 µm for the 13.0 MHz to 18.0 MHz bandwidth case. As

expected, the reconstruction shown in Fig. 3.7(b) suggests that the target resolu-

tion is well below the pixel spacing, 124.8 µm. Had Eq. (3.13) been naively used

to estimate resolution solely based on stepped-FMCW operating bandwidth, the

15.0 MHz to 15.5 MHz case would predict a 1500 µm target resolution. Therefore

it is clear that the spatial frequency coverage due to the full aperture span domi-
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nates the extent of the span in this case, and the analysis discussed in Chapter 2

is vital for understanding the resolution of novel array configurations.

3.2.2 Stepped-FMCW Ultrasonic Ranging Experiments

Laboratory experiments were conducted to compare the pulse echo and stepped-

FMCW modalities specifically in ultrasonic ranging, and is documented in [44] by

S. Natarjan et al., 2010. Presenting this work here will familiarize the reader with

the physical aspect of stepped-FMCW implementation. Although phasor nota-

tion is a useful analytical tool, system design is concerned with purely real signals

of finite duration. Hence, the stepped-FMCW data acquisition process can be

reframed as follows.

Physical Stepped-FMCW Ranging Experiments, Pt. I: Methods

Beginning with the stepped CW frequencies from Eq. (3.3), we again have

fk = f0 + k∆f,

where fk is the frequency of the transmitted signal, fo the starting frequency, and

k = 0, 1, 2, ..., K − 1.
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The transmitted signal is then

xtrans,k(t) =


E cos(2πfkt), for 0 ≤ t ≤ Γ

0, otherwise

(3.23)

where E is a constant amplitude and Γ is the CW signal duration. The received

reflected signal sees a modified amplitude factor A and a phase shift φ:

xrec,k(t) = AE cos(2πfkt+ φ). (3.24)

For each k, the received waveform is subsequently mixed with the transmitted

CW signal for demodulation. This entails multiplying the received waveform

by both the transmitted in-phase CW, E cos(2πfkt), and a 90°-phase-offset CW,

E sin(2πfkt), yielding

yI(t) = AE cos(2πfkt+ φ)E cos(2πfkt) (3.25a)

yQ(t) = AE cos(2πfkt+ φ)E sin(2πfkt). (3.25b)

Following the demodulation step with a low-pass filter removes intermediate

frequencies, which downconverts the signal to baseband:
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yI,LP(t) =
AE2

2
cos(φ) (3.26a)

yQ,LP(t) =
AE2

2
sin(φ). (3.26b)

Together yI,LP(t) and yQ,LP(t) converge in time to constant values that depend

on φ. These real values are known as I (in-phase) and Q (quadrature). Taking

into account all CW frequencies used, the sequence of complex scalars can be

constructed:

edemod[k] = Ik + jQk = Mk exp(φ), (3.27)

where Mk =
√
I2
k +Q2

k.

The custom transceiver system build for these experiments was designed to

perform both pulse echo and stepped-FMCW signaling. Fig. 3.8 shows a block di-

agram. The transmitter was an arbitrary waveform generator capable of achieving

175 MSamples/s with an SNR of 70 dB at 20 MHz. Samples of the desired trans-

mitted waveforms were designed on a PC and then transferred to a microcontroller.

FIFO (first in, first out) buffers and a digital-to-analog converter (DAC) permit-

ted CW signal operation at up to 166 MHz. Though the experiments called for

only monostatic array operation, the inclusion of a multiplexor (MUX) allows for
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array switching multistatic data acquisition. A transducer consisted of a single

PZT piezoelectric element with a resonant frequency of 14 MHz and a bandwidth

of 2 MHz.

The custom-fabricated transducer was fixed to a high-precision apparatus,

shown in Fig. 3.9, which controlled its position to 0.5 mm resolution relative to

a plastic tank filled with deionized water. Underwater ranging experiments were

conducted by transmitting pulse echo and stepped-FMCW signals and receiving

direct reflections off a face of the tank. Upon receiving the reflected signals,

demodulation was performed to extract the I and Q signals.

Pulse echo ranging was carried out with a pulse width of 1 µm at 14 MHz.

Stepped-FMCW ranging was accomplished within the range 13.50 MHz to 15.48 MHz

and with a ∆f = 60 kHz. However, though this would suggest that K = 85, the

peaks and valleys within the designated bandwidth limited the functional frequen-

cies to 34 in total. The IFFT was then performed in the same fashion, but instead

of a full consecutive sequence of 85 non-zero complex scalars in the frequency do-

main band, the band contained only 34 values in their appropriate frequency bins.

Physical Stepped-FMCW Ranging Experiments, Pt. II: Results

Peaks in the reconstructed stepped-FMCW range profiles closely track those of

the pulse echo profiles at various tested reflector distances, seen in Fig. 3.11. The
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Figure 3.8: Overview of custom transceiver system.

highest peak in the profiles successfully track target distance within the 0.5 mm

resolution of the positioning device. Results suggest that both modalities are

similarly effective for ultrasonic ranging, agreeing with mathematical formulations

described earlier.

Resolution was found to be approximately 500 µm. Using Eq. (3.13) would

give a range resolution estimate of

∆x =
v

2B
≈ 1500 m s−1

2(2 MHz)
= 375 µm.
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Figure 3.9: Transducer positioning mechanism used for water tank ranging
experiments.

The discrepancy between observed range resolution and measured range res-

olution was likely due in large part to the piezoelectric element’s inconsistent

frequency response across its bandwidth. This is not taken into account by the

calculation which assumes that all stepped CWs within the bandwidth provide

equally strong data. But because the frequency response function peaks at the

nominal resonant frequency value, 14 MHz, the stepped-FMCW bandwidth could

not be fully exploited. Fig. 3.10 shows the frequency response. Hence, the stepped-

FMCW modality can be expected to give results even closer to the theoretical

resolution with the use of a commercial-grade transducer.
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Figure 3.10: Frequency components of the stepped-FMCW spectrum prior to
IFFT.

Figure 3.11: Range profile for a reflector distance of 4 mm (left) and 7 mm
(right). Pulse echo results are shown in red and stepped-FMCW in blue.
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3.3 Cramér-Rao Lower Bound for Range Reso-

lution

To show the dependence of range resolution on system bandwidth from an

alternate perspective, the Cramér-Rao Lower Bound (CRLB) can be analyzed in

the context of range estimation [11], [30].

Supposing r̂ to be an unbiased estimator of r, then

Var(r̂) ≥ CRLB(r̂) =
1

I(r, r̂)
, (3.28)

where I(r, r̂) is the Fisher Information. This relationship reveals that the product

between precision and information content is bounded by a constant.

For a range profile s(r− r̂), the range delay r̂ from a transmitted pulse s(r) is

estimated. The associated Fisher Information is

I(r, r̂) =
1

σ2

∫ +∞

−∞

∣∣∣∣ ∂∂ ˆ̂r
s(r − r̂)

∣∣∣∣2 dr, (3.29)

where σ2 is the variance of the Gaussian additive noise probability density function

(PDF).
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Using Parseval’s theorem, we can establish that

∫ +∞

−∞

∣∣∣∣ ∂∂ ˆ̂r
s(r − r̂)

∣∣∣∣2 dr =

∫ +∞

−∞
|j2πfr exp (−j2πfrr̂)S(fr)|2 dfr

= 4π2

∫ +∞

−∞
f 2
r |S(fr)|2 dfr

which can be expressed as

= 4π2

[∫ +∞

−∞
|S(fr)|2 dfr

] ∫ +∞

−∞
f 2
r

|S(fr)|2[∫ +∞
−∞ |S(fr)|2 dfr

]dfr

= 4π2(Energy)

∫ +∞

−∞
f 2
r p(fr) dfr

= 4π2(Energy)B2
RMS,

(3.30)

where BRMS is some root-mean-square bandwidth, and p(fr) is the probability

density function of fr.

Substituting this expression back into Eq. (3.29) gives

I(r, r̂) = 4π2

(
Energy

σ2

)
B2

RMS

= 4π2(SNR)B2
RMS,

(3.31)
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which in turn gives the CRLB:

Var(r̂) ≥ 1

4π2(SNR)B2
RMS

. (3.32)

Taking the square root then gives the standard deviation:

σ(r̂) ≥ 1

2π
√

(SNR)BRMS

. (3.33)

The value of σ(r̂) describes the same notion as range resolution, as their units

are consistent. This inverse relationship with bandwidth agrees with the prior

range resolution expression seen in Eq. (3.13) [19], [54]. Although this result is

based on a 1-D ranging case, a 2-D scenario would involve two spatial directions

represented by functions σx(r̂) and σy(r̂) along with their respective bandwidths

and SNRs. The resolution analysis in Chapter 2 is approached similarly, giving

rise to the range and cross-range resolution conventions.

The limitation on resolution in the CRLB sense can be seen as an analog

to relationships in other fields, including Heisenberg’s uncertainty principle and

Rayleigh criterion.
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3.4 Conclusion

In this chapter, we have established that the spectrum band of a pulse echo

time-delay profile are the frequencies used in the stepped-FMCW band. The pro-

cess of generating time-delay profiles from stepped-FMCW data is also discussed.

From this, we describe a method for using available pulse echo data to dimension-

alize a stepped-FMCW simulation to the same imaging environment. This is of

particular value if stepped-FMCW data acquisition is not an immediate option.

Circular aperture simulations confirm that arrays need not be linear for ultra-

sonic multistatic ranging and imaging. Image reconstruction is briefly explained

although the following chapter offers a more complete picture.

Laboratory ranging experiments were conducted in water to compare the pulse

echo and stepped-FMCW modality. A reflective wall varying between 4 mm and

30 mm away from a monostatic transducer was used as the ranging target. An

overview of the system architecture is provided. Results show that stepped-

FMCW is as successful as pulse echo for giving accurate range profiles in the

ultrasonic environment.
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Image Reconstruction for a
Stepped-FMCW Reconfigurable
Array Imaging System

Because we expect a system user to be dynamically changing the array con-

figuration, a suitable imaging algorithm would see minimal new calculations for

each shift in element positioning, as well as a reconstruction process that is as

independent as possible from the array structure. Current ultrasound imaging

technologies such as phased arrays, capitalize on the rigid form of the element

positions to streamline the probing and reconstruction algorithms. Therefore, a

phased array approach is not suitable for a reconfigurable array system. Instead

we investigate an backward propagation method for estimating a target distribu-

tion, specifically a space-time reconstruction that can readily accommodate an

arbitrary element configuration.
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In this chapter, we assume that the imaging system is capable of multistatic

operation of an array of elements. That is, the programmed operation can syn-

chronize the switching between transmit and receive of each element. Addition-

ally, it is assumed that the system is able to detect the relative positioning of the

elements.

References [39], [37], [52], [9], and [8] form the basis of this chapter.

4.1 Backward Propagation

Backward propagation is the concept of undoing the effect of wave propagation

in the acquired dataset. This allows received data to be transformed into an

estimate of the target or source distribution, in the form of a reconstructed image.

We will first review the passive, continuous case and then establish its extension

to multistatic and stepped-frequency.

For passive coherent wave propagation, consider a source distribution s(x, y)

in R2 that emits with wavelength λ. The result is a wavefield g(x, y, λ) given
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by a convolution over (x, y) of s(x, y) with the Green’s function for coherent

propagation, h(x, y, λ), similar to Eq. (2.1).

g(x, y, λ) = s(x, y) ∗ h(x, y, λ)

=

∫
Y ′

∫
X′

s(x′, y′)
1

jλr
exp

(
j

2πr

λ

)
dx′ dy′,

(4.1)

where r =
√

(x− x′)2 + (y − y′)2.

The backward propagation algorithm reconstructs the source distribution s(x, y)

by convolving the wavefield data with the conjugate of the forward-propagating

Green’s function:

s(x, y) = g(x, y, λ) ∗ h∗(x, y, λ)

=

∫
Λ

∫
Y ′

∫
X′

g(x′, y′, λ)
−1

jλr
exp

(
−j 2πr

λ

)
dx′ dy′ dλ.

(4.2)

It is worth noting that SAR reconstruction exploits a special case of the back-

ward propagation algorithm. Since the basic monostatic SAR system operates in

the far-field, the Fraunhofer approximation applies. Two-dimensional reconstruc-

tion can them be achieved by a direct 2-D FFT of the received wavefield data

(along the temporal frequency and spatial dimensions) due to the Fourier trans-
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form pair of the data and target distribution. In that sense, the reconstruction

is optimal by virtue of the orthogonality of the monostatic data samples. How-

ever, this thesis does not discriminate between near-field and far-field cases and

therefore presents the reconstruction algorithm in the above form.

4.1.1 Passive Backward Propagation with Finite Frequen-

cies and Transceiver Elements

Since stepped-FMCW system specifications are typically in terms of frequency

instead of wavelength, the variable λ can be replaced by v
f
, where v is the speed

of sound in the propagation medium and f is the frequency of the illumination

CW in the medium. Eq. (4.1) can then be rewritten as

g(x, y, f) =

∫
Y ′

∫
X′

s(x′, y′)
f

jvr
exp

(
j

2πfr

v

)
dx′ dy′ (4.3)

Likewise, the backward propagated source distribution becomes:

s(x, y) =

∫
F

∫
Y ′

∫
X′

g(x′, y′, f)
−f
jvr

exp

(
−j 2πfr

v

)
dx′ dy′ df, (4.4)

where r =
√

(x− x′)2 + (y − y′)2.
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The presence of elements at specific locations (xm, ym) means also that the

wavefield is being sampled at those locations. Combining this with a finite number

of frequency steps fk, the detected wavefield ĝ(x, y) can be expressed as

ĝ(x, y, f) = (u1(x, y, f) + g(x, y, f))
∑
m

∑
k

δ(x− xm, y − ym, f − fk)

=
∑
m

∑
k

(u1(xm, ym, fk) + g(xm, ym, fk)) δ(x− xm, y − ym, f − fk)

=
∑
m

∑
k

ĝm[k] δ(x− xm, y − ym, f − fk),

(4.5)

where ĝm[k] is the sampled wavefield, (u1(xm, ym, fk) + g(xm, ym, fk)). The func-

tion u1 serves to account for practical deviations from the ideal wavefield, such as
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wave attenuation and noise. We can then use the result to rewrite the backward

propagated source estimate, or the reconstructed image:

ŝ(x, y) = ĝ(x, y, f) ∗ h∗(x, y, f)

=

∫
F

∫
Y ′

∫
X′

∑
m

∑
k

ĝm[k] δ(x− xm, y − ym, f − fk)
−f
jvr

exp

(
−j 2πfr

v

)
dx′ dy′ df

=
∑
m

∑
k

∫
F

ĝm[k] δ(f − fk)
−f
jvr

exp

(
−j 2πfr

v

)
df

=
∑
m

∑
k

ĝm[k]
−fk
jvr

exp

(
−j 2πfkr

v

)
,

(4.6)

where r =
√

(x− xm)2 + (y − ym)2.
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Because fk = fo + k∆f for 0 ≤ k ≤ (K − 1), a substitution can be done to

directly reveal the dependence on k. The summation over k can then be seen as

a K-point DFT, by virtue of the minus sign in the exponential:

ŝ(x, y) =
∑
m

∑
k

ĝm[k]
−fk
jvr

exp

(
−j 2π(fo + k∆f)r

v

)

=
∑
m

∑
k

{
−fk
jvr

exp

(
−j 2πfor

v

)
ĝm[k]

}
exp

(
−j 2π(k∆f)r

v

)

=
∑
m

DFT

{
−fk
jvr

exp

(
−j 2πfor

v

)
ĝm[k]

}

=
∑
m

p̂tdp,m[n],

(4.7)

where p̂tdp,m[n] is the sampled estimate of the theoretical time-delay profile. This

image formation process is known as space-time reconstruction. A different way

of evaluating the summations in Eq. (4.6) is by spatial-frequency reconstruction,

which will be discussed at a later point.

In a manner similar to Eq. (3.9), it can be shown that the DFT result is a

K-point sequence p̂tdp,m[n] indexed by n when

n = K∆f
r

v
=
Br

v
= Bτo.
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Because r is the range from a passive system (one-way propagation), we may

avoid confusion by simply turning our attention to τo instead, which is the overall

time delay whether for a one-way propagation (passive) or round-trip (monostatic

and bistatic). Due to the linear relationship between n and τo, p̂tdp,m[n] consti-

tutes the time-delay profile, albeit raw without post-processing procedures. The

formation of the time-delay profile is dictated by the exponential function of the

DFT, meaning that scaling factors in the magnitude is only of secondary consid-

eration. Therefore, it is certainly possible to approximate the reconstruction as

the DFT of the received data alone.

p̂tdp,m[n] ≈ DFT
{
ĝm[k]

}
.

We have now described the role of the time-delay profile in the image re-

construction ŝ(x, y) for a passive stepped-FMCW system. Eq. (4.7) concludes

that a final summation over m is necessary to arrive at the image. This entails

a superimposition of the sequence values of p̂tdp,m[n] over the space (x, y), rel-

ative to the element position (xm, ym). If we define this result as the function
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p̂tdp mapped,m(x, y), a modified version of Eq. (4.7) can be expressed that more

closely characterizes the practical aspect of the reconstruction:

ŝ(x, y) =
∑
m

u2,m(x, y) p̂tdp mapped,m(x, y), (4.8)

where the function u2,m(x, y) is a mask over (x, y) that is applied during post-

processing. It accounts for spatial anisotropy of the time-delay profile data, such

as those due to beampatterns. A well-defined acoustic beam from an element

would mean that during reconstruction, its time-delay profile values need not be

superimposed at some set of (x, y) locations because of limitations in angular

illumination. By applying this mask, directionality can be specified as well as the

inclusion of other post-processing algorithms including normalization, time-gain

control, and thresholding.

4.1.2 Maximum Likelihood Estimator

To legitimize the path to the reconstruction result, we first establish a relation-

ship between the true target distribution and a single time-delay profile mapping:

vm(x, y) = p̂tdp mapped,m(x, y)− ŝ(x, y), (4.9)
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where the additive noise term vm(x, y) spans (x, y) and has a Gaussian probability

density function (PDF) with zero mean:

p( vm(x, y) ) = cm(x, y) exp

(
− v2

m(x, y)

2σ2
m(x, y)

)
, (4.10)

where σ2
m(x, y) is the variance of the PDF and cm(x, y) is a real constant. The

joint probability across M subimages is then

pjoint( vm(x, y) ) =
M∏
m=1

cm(x, y) exp

(
− v2

m(x, y)

2σ2
m(x, y)

)
, (4.11)

which leads to the likelihood function of the process:

L( vm(x, y) ) = ln( pjoint( vm(x, y)) )

=
M∑
m=1

ln(cm(x, y))−
M∑
m=1

v2
m(x, y)

2σ2
m(x, y)

=
M∑
m=1

ln(cm(x, y))−
M∑
m=1

(p̂tdp mapped,m(x, y)− ŝ(x, y))2

2σ2
m(x, y)

.

(4.12)
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Notice that maximizing the likelihood function entails minimizing v2
m(x, y),

implying a least-squares-error between p̂tdp mapped,m(x, y) and ŝ(x, y) [51]. To max-

imize the likelihood function, we take its derivative and set it to zero:

∂

∂s
L( vm(x, y)) = −

M∑
m=1

−2
p̂tdp mapped,m(x, y)− ŝ(x, y)

2σ2
m(x, y)

=
M∑
m=1

p̂tdp mapped,m(x, y)− ŝ(x, y)

σ2
m(x, y)

= 0.

(4.13)

Assuming that the variance does not change with m such that σ2
m(x, y) =

σ2(x, y), the resulting expression for the maximum likelihood estimator for ŝ(x, y)

is

ŝML(x, y) =
1

M

M∑
m=1

p̂tdp mapped,m(x, y). (4.14)

If the masking function u2 is ignored, this is precisely a scaled version of the image

reconstruction process from Eq. (4.8).
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4.2 Reconstruction Algorithm for Active Multi-

static Imaging

Given a dataset consisting of received passive coherent frequency data points

(indexed by k) for each element (indexed by m), Eq. (4.6) establishes the mathe-

matical form for arriving at the target reconstruction. However, active multistatic

operation necessitates a broadening of the meaning of m to an index of all multi-

static element pairs, instead of solely the elements themselves.

The order in which the two summations over m and k are carried out splits

the reconstruction process into two distinct methods: (1) Spatial-frequency recon-

struction, and (2) Space-time reconstruction. Although both techniques will be

discussed in this section for completeness, space-time reconstruction is emphasized

because it is most logical for a reconfigurable array imaging system.

As we are now discussing images consisting of discrete pixels over (x, y), we

can refer to the reconstructed image as a matrix ŝ[̂i, ĵ] where 1 ≤ î ≤ I and

1 ≤ ĵ ≤ J . Row position is denoted by î and column position by ĵ, with the

origin at the upper-left corner of the image. A parameter ∆xpix is the true length

represented by a square pixel.
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4.2.1 Spatial-frequency Image Reconstruction (Monostatic)

Reconstructing an image by way of spatial-frequency refers to the generation

of K subimages of the same dimension as ŝ[̂i, ĵ], each representing the contribution

from a single frequency within the stepped-FMCW band. These single-frequency

subimages are then superimposed to form the final reconstructed image.

Borrowing from Eq. (4.6), we can express the monostatic spatial-frequency

reconstruction in R2 as:

ŝ[̂i, ĵ] = ĝ[̂i, ĵ] ∗ h∗ [̂i, ĵ]

=
∑
k

{∑
m

ĝm[k]
−fk
jvr

exp

(
−j 2πfkr

v

)}

=
∑
k

{
ŝk [̂i, ĵ]

}
,

(4.15)

where the total propagation range is r = 2 ∆xpix

√
(̂i− îm)2 + (ĵ − ĵm)2, and

ŝk [̂i, ĵ] is the kth frequency subimage. The mth monostatic element is located at

[̂im, ĵm]. A single-frequency subimage is formed by a convolution between the

received I/Q data with the backpropagation kernel.

Reconstruction of bistatic data using the spatial-frequency approach is beyond

the scope of this thesis.
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Spatial-Frequency Reconstruction of Ground-Penetrating Radar Data

To illustrate this process, data from a ground-penetrating radar (GPR) op-

erating in a monstatic stepped-FMCW modality was used reconstruct a subsur-

face cross-sectional image using the spatial-frequency approach. Reference [36]

describes this experiment. The experiment was conducted to image metal rein-

forcement bars embedded beneath a concrete walkway, shown in Fig. 4.1. Despite

the use of electromagnetic waves instead of ultrasonic compression waves, the

reconstruction process remains the same. Additionally, in lieu of an array of

transceivers, a single-element synthetic aperture scheme was used to acquire data

at M = 200 evenly-spaced positions across a 4.26 m ground length, in a direction

perpendicular to the orientation of the subsurface reinforcement bars. Therefore,

the synthetic aperture acted as a 200-element linear array with element spacing

of ∆xe = 2.13 cm.

For each monostatic position, the data consisted of K = 128 stepped fre-

quencies through an operating band between 0.976 GHz and 2.00 GHz with a

∆k = 800 MHz. The dimensions of the image matrix ŝ[̂i, ĵ] were chosen such that

I = 18 and J = 200. In real terms, this corresponded to an imaging area of length

4.26 m and a depth of 0.2 m with an image pixel length ∆xpix equal to ∆xe.

Fig. 4.2 shows the reconstruction result, which assumes isotropic beampattern

by nature of the procedure. Each coherent subimage ŝk [̂i, ĵ] was constructed row-
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wise. To obtain the îth row of ŝk [̂i, ĵ], a convolution of the following two sequences

was performed:

1. A 200-point sequence αî[k] consisting of the consecutively received data ĝ

for all 200 positions but for only a single fk.

2. A 1024-point sequence

βî[n] =
−fk
jvr

exp

(
−j 2π

fkr

v

)
, (4.16)

where r = 2 ∆xpix

√
î2 + (n− 512).

The convolution was implemented by multiplying their respective 1024-point

FFT results, and then taking a 1024-point IFFT of the result. This results in a

1024-point sequence, and the portion from the 513rd to the 712th indices gives the

îth row of ŝk [̂i, ĵ].

Because efficient spatial-frequency reconstruction relies on the linear and evenly-

spaced element positions, it is not a suitable choice for a reconfigurable array whose

element distribution is arbitrary. The spatial-frequency method can, however, eas-

ily accommodate arbitrary spacing of the frequencies fk because superimposing a

set coherent subimages does not present any particular constraints.
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Figure 4.1: Imaged walkway area and reinforcement bars prior to concrete
overlay.
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(a) The first stepped-FMCW coherent subimage, k = 1.

(b) Superimposed coherent subimages, from k = 1 to k = 42.

(c) Superimposed coherent subimages, from k = 1 to k = 84.

(d) Final reconstruction with 128 superimposed coherent subimages, from k = 1 to k = 128.

Figure 4.2: Spatial-frequency reconstruction of reinforcement bars in concrete.
The images represent a length of 4.36 m and depth of 0.2 m.
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4.2.2 Multistatic Space-Time Image Reconstruction

Where spatial-frequency reconstruction is most applicable in uniform element

spacing, space-time reconstruction is conversely most applicable when there is

a uniform stepped-FMCW frequency spacing, ∆f , independent of element po-

sitioning. Because a reconfigurable array system must reconstruct images from

arbitrary element positions, the space-time method is the focus of this thesis. In

contrast to the coherent subimage summation, the final space-time reconstruction

step involves a summation of mapped time-delay profiles over [̂i, ĵ]:

ŝ[̂i, ĵ] = ĝ[̂i, ĵ] ∗ h∗ [̂i, ĵ]

=
∑
m

∑
k

{
−fk
jvr

exp

(
−j 2πfor

v

)
ĝm[k]

}
exp

(
−j 2π(k∆f)r

v

)

=
∑
m

DFT

{
−fk
jvr

exp

(
−j 2πfor

v

)
ĝm[k]

}

=
∑
m

{ p̂tdp,m[n] } ,

(4.17)
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where r is the round-trip propagation range. A space-time subimage ŝm [̂i, ĵ] can

then be formed by mapping the sequence p̂tdp,m[n] over [̂i, ĵ] relative to the mth

multistatic position(s):

ŝ[̂i, ĵ] =
∑
m

{
µm [̂i, ĵ] ŝm [̂i, ĵ]

}
. (4.18)

Similar to u2,m in Eq. (4.8), a function µm(̂i, ĵ) that accounts for beampattern

may be multiplied to ŝm [̂i, ĵ] prior to summing.

Mapping of Time-Delay Profiles to Form Space-Time Subimage ŝm [̂i, ĵ]

In R2, moving from Eq. (4.17) to Eq. (4.18) requires that the time-delay profile

p̂tdp,m[n] be converted into the subimage ŝm [̂i, ĵ].

For a monostatic data track, each pixel in ŝm [̂i, ĵ] represents a round-trip wave

propagation distance rmono [̂i, ĵ] from the element position [̂imono, ĵmono]:

rmono [̂i, ĵ] = 2 ∆xpix

√
(̂imono − î)2 + (ĵmono − ĵ)2. (4.19)

For a bistatic data track, the round-trip wave propagation distance is the

sum of two distances: one from the transmitting element at [̂itrans, ĵtrans] to the
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pixel location, and the other from the pixel location to the receiving element at

[̂irec, ĵrec]:

rbi [̂i, ĵ] = ∆xpix

(√
(̂itrans − î)2 + (ĵtrans − ĵ)2 +

√
(̂irec − î)2 + (ĵrec − ĵ)2

)
.

(4.20)

The corresponding time delays for either monostatic or bistatic cases are:

τ [̂i, ĵ] =
r[̂i, ĵ]

v
. (4.21)

If in practice there is a known set of reconfigurable element positions, a lookup

table can be computed in advance. This means that all values of τm [̂i, ĵ] can be

determined and stored prior to data acquisition which reduces the processing time

for reconstruction.
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For each pixel in ŝm [̂i, ĵ], the value τi,j then corresponds to some index ni,j in

p̂tdp,m[n], where

nî,ĵ = ceiling
{

(DFT size)
time delay at [̂i, ĵ]

total possible time delay expressed with p̂tdp

}
= ceiling

{
(DFT size)

τî,ĵ
1

∆f

}
= ceiling

{
(DFT size) (∆f) (τî,ĵ)

}
.

(4.22)

Since the smallest value that ni,j can take on is 1, the special case where

τî,ĵ = 0 must be addressed separately. The space-time subimage can then be

formed pixelwise:

ŝm [̂i, ĵ] = p̂tdp,m[nî,ĵ]. (4.23)

For a monostatic time-delay profile with a single visible peak, the resulting

space-time subimage will show a circular arc of high magnitude, centered about

the element location. A similar time-delay profile from a bistatic track will show

an elliptical arc with the transmitting and receiving elements at the foci locations.

(Other forms of target localization, such as for underwater acoustic networks [15]

and bistatic SAR [62], are also described in the same way.) This is evident in

Fig. 4.3, which shows a simulated space-time reconstruction assuming isotropic
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beampatterns. Attenuation compensation was not included. A single reflective

target (in blue) was imaged by two elements (in red) over a 5 mm × 5 mm area.

The operating stepped-FMCW bandwidth was 10 MHz. The reconstruction was

performed with 4 time-delay profiles, one for each multistatic track. The bistatic

contribution is of higher magnitude due to two overlapping contributions (trans-

mit/receive and receive/transmit).

The addition of a simple binary beampattern mask, as described in Eq. (4.18)

was then applied to this simulation. The results are shown in Fig. 4.4. A

60°directed acoustic beamspread was defined for both elements such that pixels

outside its boundaries are ignored by the reconstruction. Bistatic contributions

require that there exists a zone of mutual illumination.

Space-Time Reconstruction of Ground-Penetrating Radar Data

To illustrate space-time reconstruction, the same monostatic GPR data from

[36] was reconstructed with the space-time method. To maintain consistency with

the assumed isotropic beampattern spatial-frequency reconstruction, the space-

time reconstruction was performed with all values in µm(̂i, ĵ) set to ones. For

each of the 200 monostatic element positions, a time-delay profile was generated

by taking a 2048-point FFT. Fig. 4.5 shows the results.
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(a) Target and element arrangement over a 5 mm×
5 mm area.

(b) Reconstruction using two bistatic tracks and two
monostatic tracks.

Figure 4.3: Space-time reconstruction of two multistatic elements (red) imaging
a single target (blue).
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(a) Target and element arrangement showing a
30°beamspread constraint on the elements.

(b) Reconstruction showing a limited applicable
area as a result of binary beamspread.

Figure 4.4: Space-time reconstruction of two multistatic elements with limited
beamspread.
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(a) Subimage generated from the first (left-most) element contribution, m = 1.

(b) Superimposed subimages generated from contributions from 42 elements, m = 1 to m = 42.

(c) Superimposed subimages generated from contributions from 132 elements, m = 1 to m = 132.

(d) Final reconstruction with 200 superimposed element subimages, from m = 1 to m = 200.

Figure 4.5: Space-time reconstruction of reinforcement bars in concrete. The
images represent a length of 4.36 m and depth of 0.2 m.
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GPR Reconstruction Comparison By Structural Similarity (SSIM)

For the same dataset, the space-time reconstruction gives a result nearly iden-

tical to that of the spatial-frequency reconstruction. This confirms that both

image formations methods arrive at the same result. Because the GRP exper-

iment was conducted with both a uniformly-spaced linear synthetic array and

uniformly-space frequency data, this reconstruction comparison was possible.

To analyze the similarity between the two reconstructions, the structural simi-

larity (SSIM) index [66] [65] was used. This was investigated by Wang et. al. as a

way of quantifying the similarity between two images as perceived by the human

visual system. In its default usage, the SSIM algorithm takes as inputs two test

images with a dynamic range of [0,255] and outputs a single value ranging from 0

to 1. This value is known as the mean structural similarity (MSSIM), which is 0

for when the two images are completely dissimilar and 1 when they are identical.

Unlike common image assessment metrics such as mean-squared error (MSE) and

peak signal-to-noise ratio (PSNR), MSSIM takes into account perceived visual

acuity by detecting local patterns and structures [66].

With default SSIM settings, the comparison result for the space-time and

spatial frequency GRP data reconstructions was MSSIM = 0.8774. We would not

expect a result of unity because the two methods have different sources of error in

their implementations. In particular, because the space-time reconstruction uses
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a nearest next integer routine as seen in Eq. (4.22), rounding error may account

for much of the dissimilarity. Using a 2048-point FFT size to interpolate the

time-delay profile and reduce rounding error helped immensely in the quality of

the reconstruction. The space-time reconstruction performed with only a 128-

point FFT resulted in MSSIM = 0.2539. Increasing the FFT size to 4096 gave

MSSIM = 0.9075.

4.2.3 Needle Imaging Experiment with Space-Time Re-

construction

In the case of pulse echo A-scans, time-delay profiles are generated without

conversion from ĝm[k]. This makes it entirely possible to perform space-time

reconstruction with both the stepped-FMCW and pulse echo modalities. The

following experiment was conducted to compare space-time multistatic ultrasound

reconstruction with a commercial phased array ultrasound system [52].

In the space-time reconstruction half of the experiment, a 25-gauge biopsy

needle was placed vertically in a 2.0 cm diameter cylindrical cup filled with acoustic

scanning gel. An 8-element conformal array was wrapped partially around the side

of the cup for a 160°coverage. This orientation allowed the array to image the

needle as if it were a point-reflector owing to its small thickness. A set of 64
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multistatic pulse echo tracks were obtained for reconstruction. Fig. 4.6(a) shows

space-time reconstruction which assumed an isotropic beampattern.

The needle location was clearly visible despite noticeable circular and elliptical

reconstruction artifacts. Had an array with more elements been used with the

addition of a binary beampattern mask, the high signal needle region would be

expected to further diminish the visibility of the background artifacts.

An imaging test was performed on the same needle using a commercial ultra-

sound system, the Acuson 128 XP/10. The transducer used was a rigid 4.0 cm

array with 128 phased elements operating at 7 MHz. Both the face of the trans-

ducer and the needle were placed in a water tank, about 1.0 cm apart. Like the

conformal array setup, the needle was positioned perpendicular to the plane of

the array. The imaging results are shown in Fig. 4.6(b).

Although the needle position was readily identifiable in the Acuson image,

reverberation shadowing of the ultrasound waves resulted in a strip of high signal

extending up to a centimeter from the expected location. These results highlight

the potential for a multistatic space-time scheme to rival the imaging capability

of a commercial system.
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(a) Space-time reconstruction of the needle in acoustic gel.
A conformal, 8-element multistatic array was used to obtain
A-scans.

(b) Phased array imaging of the needle in water. An Acuson
128 XP/10, a commercially available imaging system, was
used.

Figure 4.6: Ultrasound imaging of a 25-gauge needle.
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4.2.4 Space-Time Reconstruction Simulations for Stepped-

FMCW Reconfigurable Array Systems

The design and realization of a physical system is a resource-intensive process

that requires first the establishment of desired imaging capability. This is highly

dependent on the application even within the field of medical ultrasonography. For

example, an abdominal scan requires a higher imaging depth than a thyroid scan.

A major tool for designing new imaging systems is simulation software that can

predict performance based on several known system specifications. Specifically, we

devote our efforts to building a basic simulation technique for a stepped-FMCW

system with reconfigurable arrays.

Up to this point we have established two main processes: (1) Obtaining time-

delay profiles from multistatic stepped-FMCW data, and (2) Reconstructing an

image from the time-delay profiles. From these concepts, a system performance

simulator can be constructed. These simulation techniques serve to give a quick

upper-limit estimate of ŝ[̂i, ĵ] given the following inputs:

1. Dimensions of the reconstruction, I and J , in pixels,

2. True length represented by each pixel, ∆xpix,

3. Single-pixel locations in [̂i, ĵ] of all elements,
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4. The angle of the face of each element, Ψ,

5. The degree of binary beamspread, Θ, on both sides of the element’s normal

direction,

6. Single-pixel locations in [̂i, ĵ] of all targets,

7. Frequency spacing, ∆f ,

8. Starting and ending frequencies (or alternatively, the number of frequency

steps, K)

9. Speed of wave propagation, v.

First, the theoretical time-delay profiles are calculated for all multistatic tracks.

A theoretical time-delay profile is declared as a sequence of zeros with the value 1

at bins corresponding to the round trip time delay of each target position. Each

profile is then simulated as having been acquired from a stepped-FMCW system

by filtering its spectrum according to the specified operating band. A windowing

function may be applied as desired by the user, but has not been in this thesis.

To incorporate beamspread for each element z, its beampattern mask is first

determined by calculating a matrix Âz [̂i, ĵ] that contains the angular offset (rel-

ative to Ψ) of each pixel from the element face. The corresponding beamspread

matrix B̂z [̂i, ĵ] is then defined as containing zeros but having the value 1 at the
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pixel locations where Âz [̂i, ĵ] is at most Θ. In the interest of simplicity, we have

chosen the binary beamspread angle as an approximation of the main beam in

a full beampattern function. This means that we limit the element’s illumina-

tion span to Θ on both sides of the normal direction of its face, Ψ. The same

beamspread likewise dictates the maximum angular span for signal reception.

(An isotropic beamspread reconstruction is accomplished by setting the Θ = π.)

Beampattern customization with additional lobes and attenuation levels may be

specified by programming B̂z [̂i, ĵ] to contain a range of values in the interval [0,1]

for explicit value ranges of Âz,̂i,ĵ.

The beampattern mask for a multistatic pair, µm [̂i, ĵ] is implemented in the

simulation as described by Eq. (4.18) such that

µm,̂i,ĵ = B̂trans,̂i,ĵ B̂rec,̂i,ĵ. (4.24)

The bandlimited profiles are then reconstructed by the space-time method

previously described. It is important to emphasize that in designing a stepped-

FMCW simulation or system, a fundamental relationship exists between the fre-

quency spacing, ∆f , and the extent of time-delay profile axis:

1

∆f
=
{

Total time delay represented on the profile axis
}
. (4.25)
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To take it one step further, a working stepped-FMCW system will expect to

only process time-delay profiles up to half the length of the sequence. (However,

for a simulation, this is inconsequential to the results.) Since we arrive at p̂tdp,m[n]

via a DFT, values of p̂tdp,m[n] beyond the half the DFT length signify “negative

time delays” in the same way as a canonical DFT would signify negative frequency

values. Therefore a stepped-FMCW system design with parameter Γ, defined as

the longest processable round-trip propagation time delay, must satisfy

Γ ≤ 1

2∆f
. (4.26)

Simulation Experiment: Resolving Point Targets at Varying Locations

Within the Region of Interest

To observe the effects on image resolution due to a combination of (1) angular

aperture span, (2) binary beamspread, and (3) operational bandwidth, simulations

were performed. The model consisted of a 13-element non-uniform, curved array

operating multistatically. The beamspread, Θ, was 40°. A region of interest with

dimensions 5 mm× 5 mm was defined for a 250× 250 image matrix.

Three sets of 36 simulated reconstructions were performed. Each set was

identical except for a change in the stepped-FMCW frequency bandwidth. The

three bands used were: (1) 13.0 MHz to 15.0 MHz, (2) 9.0 MHz to 15.0 MHz, and
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(3) 5.0 MHz to 15.0 MHz. The frequency step size, ∆f was held constant at

98.933 kHz.

Each reconstruction resolved a single set of 3 closely-spaced point targets at

one of 36 locations. Relative to the chosen array configuration, these locations

were selected in order to vary the aperture’s span over the targets and the number

of within-view elements. Fig. 4.7 shows the aperture and a complete landscape of

the 36 target cluster test points. The centermost point in the three-target cluster

was the reference point for determining the maximum aperture span angle, ΘA.

This is the angle formed at the target which encompasses the two in-view elements

are that farthest from each other. From the discussion in Chapter 2, we would

expect that increasing ΘA and the number of in-view elements would generally

improve the resolution of the target reconstruction. Fig. 4.8, Fig. 4.9, and Fig. 4.10

show samples of the reconstructions for Test Points #12 and #29.

To quantify the quality of each reconstruction, two images were compared:

1. A magnitude scaled version of the reconstruction such that the dynamic

range was [0, 255].

2. An ideal image consisting of zeros except for at the designated target loca-

tions, where the values were set to 255.
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Figure 4.7: Array element arrangement (in red) with all target locations (in
blue) and respective Test Point reference numbers.
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(a) Test Point #12

(b) Test Point #29

Figure 4.8: Reconstruction at 2 MHz operating bandwidth.
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(a) Test Point #12

(b) Test Point #29

Figure 4.9: Reconstruction at 6 MHz operating bandwidth.
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(a) Test Point #12

(b) Test Point #29

Figure 4.10: Reconstruction at 10 MHz operating bandwidth.
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Two comparison metrics were used: mean-squared error (MSE) and mean

structural similarity (MSSIM). We assume that the MSSIM is proportional to

resolution achieved and the MSE, inversely proportional. The comprehensive

results for each reconstruction is shown in Fig. 4.14 and Fig. 4.15. To visualize

these results, each set of 36 MSE and MSSIM values were plotted on a 3D graph,

as a function of the number of in-view elements and ΘA. Fig. 4.11, Fig. 4.12,

and Fig. 4.13 show the plots for the 3 frequency bandwidths. Each colored line

segments represents one of the 36 target cluster locations.

The MSE decreased as the number of in-view elements increased and when ΘA

is increased. This is expected. On the other hand, the MSSIM results did not as

clearly show the same trend. Some of the MSSIM results were noticeably counter-

intuitive. For example, Test Point #3 had a 10 MSSIM of 0.828, and Test Point

#32, 0.789. This would suggest that Test Point #32 was in less advantageous

location for resolution, though the theory would predict the opposite. (Test Point

#32 has a greater ΘA with the same number of in-view elements.) However, the

MSE showed the expected trend: 44.10 for #3, and 38.30 for #32.

Based on these results, it appears that the MSE metric reflects the theory of

coherent imaging more closely than does MSSIM. One possible explanation for the

mixed results of MSSIM is its emphasis on structure. It is plausible that a partic-

ular distribution of background artifacts could be misinterpreted as structurally
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significant for the image as a whole. Because of the SSIM algorithm’s internal

weighting on structure, minor dissimilarities to the ideal image may give rise to

unexpected cost.

Simulation runtime averaged 11.7 minutes per set of 36 reconstructions using

a Samsung PC with a 2.80 GHz Intel processor and 4 GB of RAM.

4.3 Conclusion

This chapter establishes the forward propagation model for the stepped-FMCW

multistatic system and from there, describes the process of back-propagating re-

ceived data to reconstruct an image.

Based on the backward propagation model, we describe how the reconstructed

image can be estimated by a sum of the space-time subimages by way of maximum

likelihood.

In describing the reconstruction process, we highlight the equivalence of the

space-time and spatial-frequency methods of implementing the theory. This is

supported experimentally by using both methods to reconstruct stepped-FMCW

ground-penetrating radar data and arriving at the same final image (within some

margin of error).
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(a) Mean-squared error (MSE)

(b) Mean structural similarity (MSSIM)

Figure 4.11: Reconstruction performance at 2 MHz operating bandwidth.
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(a) Mean-squared error (MSE)

(b) Mean structural similarity (MSSIM)

Figure 4.12: Reconstruction performance at 6 MHz operating bandwidth.
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(a) Mean-squared error (MSE)

(b) Mean structural similarity (MSSIM)

Figure 4.13: Reconstruction performance at 10 MHz operating bandwidth.
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Figure 4.14: Mean-squared error (MSE) values for image reconstruction analysis.
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Figure 4.15: Mean structural similarity (MSSIM) values for image reconstruction
analysis.
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The focus of the chapter then shifts to space-time reconstruction, which is

most suitable for arbitrary array configurations. We explain how the multistatic

time-delay profiles are mapped to form subimages, and give a visual account of

how monostatic and bistatic subimages differ. The topic of structural similarity is

introduced, with mean structural similarity (MSSIM) as an index for quantifying

how similar two images are to the human visual system.

A laboratory experiment is described in which a space-time reconstruction of

a needle was performed after acquiring pulse echo ultrasound data with an 8-

element conformal array. The needle imaging result was comparable in quality to

a commercial system despite some differences in operation and specifications. This

experiment highlighted the combination of space-time reconstruction, multistatic

operation, and ultrasonic imaging.

The final section of the chapter is devoted to imaging system simulation as a

basic design resource. We describe how stepped-FMCW operation is simulated to

give time-delay profiles which are then reconstructed with the space-time method.

In particular, we show a simulation experiment in which a target cluster is recon-

structed at various locations in order to observe the effect of aperture span angle

and number of in-view elements. The analysis with mean-squared error (MSE)

confirms the theory, but MSSIM is less convincing. Structural emphasis inherent

in the MSSIM calculation may have amplified artifact costs beyond MSE levels.
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For example, any patterned ringing in the reconstructed image arising from Gibbs

phenomenon (introduced by finite FFT sums for the stepped-FMCW frequencies)

may have been assigned structural significance with the MSSIM algorithm while

being treated indiscriminately with MSE.
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Resolution Enhancement
Techniques

The combination of space-time reconstruction and the stepped-FMCW modal-

ity in this project allows for additional ways to improve resolution and suppress

imaging artifacts. Two methods are described in this chapter. They each in-

volve extra steps in the reconstruction algorithm discussed previously and can be

implemented independently of one another. They are: (1) Enhancement by space-

time subimage variance, and (2) Enhancement by the estimation and removal of

quadrature phase errors.

References [34] and [32] form the basis of this chapter.
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5.1 Resolution Enhancement By Subimage Vari-

ance

Recall that the final step in forming the reconstructed space-time image, ŝ[̂i, ĵ],

requires taking the sum of subimages across all multistatic data tracks:

ŝ[̂i, ĵ] =
∑
m

{
µm [̂i, ĵ] ŝm [̂i, ĵ]

}
,

where ŝm [̂i, ĵ] is the mth space-time subimage formed by mapping the mth time-

delay profile p̂tdp,m[n] over [̂i, ĵ]. As before, µm [̂i, ĵ] is a masking function that can

encapsulate a number of post-processing steps.

An important aspect of the backward propagation kernel seen in Eq. (4.2) is

that at a point target location, cancellation will occur completely with that of the

forward-propagating Green’s function. This leaves real and positive scalars at the

target locations which have magnitudes greater than those in neighboring pixels.

Therefore, as we have seen, the reconstructed pixel location of a scatterer tends

to sees a larger mean value for ŝm,̂i,ĵ across m than other pixels.

An added observation is that the variance of ŝm,̂i,ĵ across m will be lower

at target locations than at non-target locations since each subimage contributes

a consistently positive and real value at target locations. In the reconstruction

procedure described so far, the final summing of a pixel’s contributions from each
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multistatic track precludes the exploitation of the contribution variance. Now we

include a step in the procedure to store these values separately, and by doing so,

enable the algorithm to calculate the contribution variance at each pixel:

var[̂i, ĵ] =
1

Mo

Mo∑
mo=1

(
ŝmo [̂i, ĵ]−mean

{
ŝmo [̂i, ĵ]

})2

, (5.1)

where Mo is the number of multistatic contributions for the pixel [̂i, ĵ].

Let us now define a modified variance function with scaled and inverted pixel

values such that the dynamic range is [0, 255]:

v̂ar[0,255] [̂i, ĵ] = co ( 255− var[0,255] [̂i, ĵ] ), (5.2)

where co is an arbitrary, real weighting coefficient. Then, a composite recon-

structed image can be defined that incorporates both the original reconstruction

and variance information:

ŝcomp [̂i, ĵ] = ŝ[0,255] [̂i, ĵ] v̂ar[0,255] [̂i, ĵ], (5.3)

where ŝ[0,255] [̂i, ĵ] is simply the original reconstruction with dynamic range [0, 255].

Low variance and high total signal are expected to be expressed at target

location pixels. By inverting the variance values, a pixelwise multiplication can

be done that places emphasis on these conditions in the composite image.

139



Chapter 5. Resolution Enhancement Techniques

5.1.1 Simulation Experiment: Forming a Composite Im-

age to Include Variance Information

Using the same platform from Chapter 4 for consistency, we again simulate

stepped-FMCW space-time reconstruction in the manner depicted by Fig. 4.7.

This time, we use mean-squared error (MSE) to compare the ideal target distri-

bution to ŝcomp,[0,255] [̂i, ĵ], the composite image with dynamic range [0,255]. The

weighting coefficient co was set to 1.

A comprehensive summary of results is shown in Fig. 5.4. With respect to

the MSE metric, the results were mixed and did not show consistently lower error

values for the composite image set compared to the original reconstruction set in

Chapter 4. Visually however, the composite images consistently showed resolution

improvement near the target cluster. This is expected since the variance plots

confirm sharp changes from low variance at the target locations to high variance

in the neighboring pixels, with generally minimal variance farther away.

Fig. 5.1, Fig. 5.2, and Fig. 5.3 show the reconstructions, composite images, and

associated variance plots for Test Points #18, #32, and #36 at 10 MHz. Note

that for all three cases, the three point targets are each more identifiable in the

composite image. This is despite the higher composite MSE in Test Points #18

and #36.
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Overall, these results suggest that using variance information to construct a

composite image may certainly improve resolution near the target area, but may

do so at the expense of introducing noise farther away from. Because large sample

sizes are preferred for statistical analyses, a larger number of multistatic tracks

can also be expected to improve the value of this technique.

(a) Original reconstruction (MSE = 49.00).

5.2 Resolution Enhancement By Estimation and

Removal of Quadrature Phase Errors

As discussed in Chapter 3, a stepped-FMCW imaging systems uses a quadra-

ture receiver to extract phase information needed for image reconstruction. Theo-
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(b) Composite image (MSE = 51.38).

(c) Inverted variance plot (dark = low variance).

Figure 5.1: Test Point #18 at 10 MHz bandwidth.
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(a) Original reconstruction (MSE = 38.30).

(b) Composite image (MSE = 31.18).
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(c) Inverted variance plot (dark = low variance).

Figure 5.2: Test Point #32 at 10 MHz bandwidth.

(a) Original reconstruction (MSE = 50.61).
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(b) Composite image (MSE = 53.55).

(c) Inverted variance plot (dark = low variance).

Figure 5.3: Test Point #36 at 10 MHz bandwidth.
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Figure 5.4: Mean-squared error (MSE) values for image reconstruction analysis
of composite image with pixel variance information.
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retically, the coherent orthogonal reference waveforms of the quadrature receivers

are maintained at a constant 90°offset during data acquisition. In practice, the

electronic component responsible for creating an orthogonal sine waveform from

a cosine reference waveform is susceptible to phase errors due to clock drift and

synchronization limitations. With the presence of such phase errors, the resulting

time-delay profiles are degraded.

From the commonality of the single-sideband (SSB) contents of the separate

I and Q data sequence channels, a procedure is presented for the estimation and

correction of the phase offset errors which arise from the quadrature receivers.

Successful removal of these errors in time-delay profiles can be expected to sharpen

target reflector peaks and diminish extraneous lobes, thereby improving image

resolution during reconstruction.

Recall that the kth demodulated and low-passed I and Q channels can be

expressed as:

Ik =
AkE

2
k

2
cos(φk) (5.4a)

Qk = −AkE
2
k

2
sin(φk). (5.4b)
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which results in the data sequence

edemod[k] = Ik − jQk =
AkE

2
k

2
exp(jφk). (5.5)

5.2.1 Quadrature Receiver Phase Error

As a result of hardware limitations in maintaining a 90°offset, a phase error

∆φk is introduced to the reference signals used for demodulation:

r̂I,k(t) = Ek cos

(
2πfkt+

∆φk
2

)
(5.6a)

r̂Q,k(t) = Ek sin

(
2πfkt−

∆φk
2

)
. (5.6b)

To analyze the effect of the phase error, ∆φk is assumed to be evenly dis-

tributed between the pair of reference signals. However, this does not imply a

loss of generality because it is the relative angular offset that is the operative

parameter, and it can be shown that uneven phase error distributions does not

effect the estimation and correction process.
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Demodulation by mixing the reference signals with the received waveform,

xrec,k(t) = AkEk cos(2πfkt+ φk), gives:

m̂I,k(t) = xrec,k(t) r̂I,k(t) (5.7a)

= AkEk cos (2πfkt+ φk) Ek cos

(
2πfkt+

∆φk
2

)
=
AkE

2
k

2
cos

(
4πfkt+ φk +

∆φk
2

)
+
AkE

2
k

2
cos

(
φk −

∆φk
2

)
m̂Q,k(t) = xrec,k(t) r̂Q,k(t) (5.7b)

= AkEk cos (2πfkt+ φk) Ek sin

(
2πfkt−

∆φk
2

)
=
AkE

2
k

2
sin

(
4πfkt+ φk −

∆φk
2

)
− AkE

2
k

2
sin

(
φk +

∆φk
2

)
.

After low-passing, the corrupted quadrature outputs become:

Îk =
AkE

2
k

2
cos

(
φk −

∆φk
2

)
(5.8a)

Q̂k = −AkE
2
k

2
sin

(
φk +

∆φk
2

)
. (5.8b)
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The corrupted complex frequency data can then be expressed as:

êdemod[k] = Îk − jQ̂k

=
AkE

2
k

2
cos

(
φk −

∆φk
2

)
+ j

AkE
2
k

2
sin

(
φk +

∆φk
2

)
=
AkE

2
k

4

{
exp

(
j

(
φk −

∆φk
2

))
+ exp

(
−j
(
φk −

∆φk
2

))}
+
AkE

2
k

4

{
exp

(
j

(
φk +

∆φk
2

))
− exp

(
−j
(
φk +

∆φk
2

))}
=
AkE

2
k

4
exp (jφk)

{
exp

(
j

∆φk
2

)
+ exp

(
−j∆φk

2

)}
+
AkE

2
k

4
exp (−jφk)

{
exp

(
j

∆φk
2

)
− exp

(
−j∆φk

2

)}
=
AkE

2
k

2
exp (jφk) cos

(
∆φk

2

)
+ j

AkE
2
k

2
exp (−jφk) sin

(
∆φk

2

)
= cos

(
∆φk

2

)
edemod[k] + j sin

(
∆φk

2

)
e∗demod[k].

(5.9)

Due to the phase error ∆φk, the received stepped-FMCW data now has two

terms instead of one. The first term is the original sequence without error,

edemod[k] modulated by a degradation factor cos
(

∆φk
2

)
. The second term is the

conjugate of edemod[k] modulated by sin
(

∆φk
2

)
.
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5.2.2 Phase Error Estimation

The unwanted modulation factor cos
(

∆φk
2

)
in the first term, cos

(
∆φk

2

)
edemod[k],

degrades the first half of the time-delay profile corresponding to the “positive time”

interval. On the other hand, the added term with e∗demod[k] superimposes onto the

range profile a time-reversed version of the conjugated time-delay profile. So un-

like the first term, the second term, sin
(

∆φk
2

)
e∗demod[k] produces an artifact in the

“negative-time” region of the time-delay profile though for small phase errors, the

magnitude of sin
(

∆φk
2

)
is small. Since a time-delay profile in a practical imaging

system will only see meaningful peaks in the first half of the time-delay profile

(i.e. in the “positive-time” range), the effect of term sin
(

∆φk
2

)
e∗demod[k] may be

readily observable, manifested by mirrored peaks in the latter half.

Recall Eq. (5.8) and note that a simple expansion gives:

Îk =
AkE

2
k

2
cos

(
φk −

∆φk
2

)
(5.10a)

=
AkE

2
k

4
exp ( jφk ) exp

(
−j∆φk

2

)
+
AkE

2
k

4
exp (−jφk ) exp

(
j

∆φk
2

)
Q̂k = −AkE

2
k

2
sin

(
φk +

∆φk
2

)
(5.10b)

= −AkE
2
k

4j
exp ( jφk ) exp

(
j

∆φk
2

)
+
AkE

2
k

4j
exp (−jφk ) exp

(
−j∆φk

2

)
.
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We can now extract the single-sideband components of Îk and Q̂k, correspond-

ing to the positive-time portion of the time-delay profiles:

Îk,SSB =
AkE

2
k

4
exp( jφk ) exp

(
−j∆φk

2

)
(5.11a)

Q̂k,SSB = −AkE
2
k

4j
exp( jφk ) exp

(
j

∆φk
2

)
, (5.11b)

which can both be approximated by half-band filtering the original signals Îk and

Q̂k.

The phase error can then be estimated from the ratio of the the SSB compo-

nents:

−Q̂k,SSB

Îk,SSB

= exp( j∆φk ). (5.12)

5.2.3 Phase Error Correction

Yet another way to rewrite Eq. (5.10) is in the following form:
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Îk =
AkE

2
k

2
cos

(
φk −

∆φk
2

)
(5.13a)

=
AkE

2
k

2
cos(φk) cos

(
∆φk

2

)
+
AkE

2
k

2
sin(φk) sin

(
∆φk

2

)
= Ik cos

(
∆φk

2

)
−Qk sin

(
∆φk

2

)
Q̂k = −AkE

2
k

2
sin

(
φk +

∆φk
2

)
(5.13b)

= −AkE
2
k

2
cos(φk) sin

(
∆φk

2

)
− AkE

2
k

2
sin(φk) cos

(
∆φk

2

)
= −Ik sin

(
∆φk

2

)
+Qk cos

(
∆φk

2

)
.

More succinctly, the relationship can be written in matrix form:

 Îk
Q̂k

 =

 cos
(

∆φk
2

)
− sin

(
∆φk

2

)
− sin

(
∆φk

2

)
cos
(

∆φk
2

)

 Ik
Qk

 . (5.14)

The phase error correction can then be achieved by a 2×2 matrix multiplication

that inverts the effect of ∆φk:

 Ik
Qk

 =
1

cos(∆φk)

cos
(

∆φk
2

)
sin
(

∆φk
2

)
sin
(

∆φk
2

)
cos
(

∆φk
2

)

 Îk
Q̂k

 . (5.15)

153



Chapter 5. Resolution Enhancement Techniques

For each stepped frequency, the process is performed once to estimate the

non-corrupted data values, Ik and Qk. Because of additive noise from the data

acquisition process, the ratio in Eq. (5.12) may not give the desired phase-only

result. In such situations, this error estimation and corrections procedure can

be performed iteratively until values in the negative-time bins of the time-delay

profile are stabilized.

5.2.4 Simulation Experiment I: Removing the Effects of

Additive Receiver Noise in Time-Delay Profiles

A simulation was performed to observe the effects of phase errors as well as

the described correction procedure. A time-delay profile was created to represent

a single multistatic track associated with two point scatterers. The profile was a

bandlimited, 1024-point sequence with two target peaks at n = 200 and n = 300.

Fig 5.5(a) shows the time-delay profile without quadrature phase errors.

Random phase noise was then added to the profile’s spectrum at each frequency

bin within the operating stepped-FMCW band. This simulates the mismatched,

non-orthogonal of the axes of the Ik and Qk channels. The phase errors were

programmed on a normal distribution with a mean of 15° and a standard deviation

of 5° . Note the appearance of mirrored peaks in the negative-time portion of the

time-delay profile in Fig. 5.5(b).
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The phase error estimation process was achieved by first finding the SSB com-

ponents of the noisy I/Q channels across all within-band frequencies. The point-

wise ratio between the channels revealed a noise estimate ∆φk. A 2×2 correction

matrix multiplication was performed at each frequency, and each resulting value

gave the new I/Q channel values used to form the corrected time-delay profile

seen in Fig. 5.5(c). After one iteration, the mirrored peaks have been suppressed

considerably, and the peaks in the positive-time half of the profile increased in

magnitude, as highlighted by Fig. 5.5(d). Since these peaks represent true target

reflections, improving their prominence is critical for image quality during the

space-time mapping process and subimage superimposition.

5.2.5 Simulation Experiment II: Removing the Effects of

Additive Receiver Noise in Reconstructed Images

Expanding on the prior experiment, image reconstructions were performed

to observe the degree to which full images are affected by both the errors and

subsequent correction procedure. Test Point # 17 (in reference to the simulation

environment discussed in Chapter 4) was tested with an operating bandwidth of

10 MHz. Two trials were performed with normally distributed phase errors: (1)

with a mean of 15° and a standard deviation of 5° , and (2) with a mean of 20°

and a standard deviation of 10° .
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For each trial, two images (with error and after correction) were compared

to the ideal three-pixel target image. Visually, the two images from either trial

were not noticeably different from the original reconstructions, as is evident in

Fig. 5.6. However, the MSE and MSSIM values indicate that the addition of phase

errors does, as expected, result in an image that is less similar to the ideal than

the original reconstruction. After applying the correction process, the resulting

values indicate a shift back towards the ideal image. These values are given in

Table 5.1. Despite the relatively minute variations in MSSIM and MSE values in

this simulation, the results agree with the hypothesis that applying quadrature

phase error correction is beneficial to the reconstruction process.

Table 5.1: Comparison of Test Point #17 Image Reconstructions

MSSIM MSE
Original 0.7780 41.3593
Trial 1
With error 0.7753 41.4237
After correction 0.7753 41.3867
Trial 2
With error 0.7703 41.4745
After correction 0.7708 41.4088

5.3 Conclusion

This chapter describes two methods for increasing target resolution. Both can

be included in the reconstruction algorithm as intermediate steps.
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The subimage variance technique exploits assumptions in the backward prop-

agation theory. Simulations showed clear improvements in target resolution over

the reconstruction simulations described in Chapter 4. Although for some test

points the mean-squared error (MSE) was increased in the post-enhancement re-

constructions, visual accounts confirmed improved target visibility. The variance

plots show favorable contrast at the target cluster but since the majority of the

image is low variance, erroneous boosts to pixel values elsewhere can result when

forming the composite image. Depending on the exact target and array config-

uration, this noise may increase the overall image MSE more than the decrease

afforded near the target region. Despite this, the results motivate future system

designers to include this method in the reconstruction algorithm, especially when

a localized target region is under scrutiny. The additional required memory and

computation time is minimal, and it may be well worth the cost to run both the

enhanced reconstruction with the original for comparison. Other statistical mea-

sures such as higher order moments can also be investigated for similar purposes.

The second resolution enhancement technique is used to rectify quadrature

receiver errors which arise in the implementation of the imaging system. To

show the effects of the errors and its correction, we focus on the time-delay profile

itself. We first describe how these errors cause mirroring of the target peaks in the

negative-time portion of the profile. More importantly however, the errors degrade
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the true peaks in the positive-time portion. By simulating these errors and their

subsequent removal, we showed that the mirrored peaks reduced in magnitude

in the corrected time-delay profile while the true target peaks grew. Since the

prevalence of target peaks in a time-delay profile translates to prevalence of the

targets in a space-time reconstructed image, this technique would improve the

resolution of the imaging system. Decreases in overall image MSE were observed

in image simulations after the phase error correction process was applied to each

multistatic track.
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(a) Original time-delay profile without quadrature phase er-
ror. Target peaks are located at bins n = 200 and n = 300.
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(b) Time-delay profile with added receiver phase noise. Mir-
rored peaks are seen at bins n = 823 and n = 723, both in
the negative-time half.
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(c) Corrected time-delay profile.
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(d) Magnitude plot of the corrected profile after subtrac-
tion of noisy profile. Mirrored peaks decreased in magnitude
while target peaks increased in magnitude.

Figure 5.5: Correction of quadrature receiver phase error in time-delay profiles.
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(a) Original reconstruction.

(b) Reconstruction with quadrature phase error.
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(c) Reconstruction after applying phase error correction pro-
cedure.

Figure 5.6: Trial 1 of simulated 10 MHz bandwidth reconstruction of Test Point
#17 showed no noticeable visual differences between the original, with phase error,
and corrected phase error images.
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Conclusion and Outlook

This thesis presents four primary contributions toward the goal of developing

a stepped-FMCW ultrasound system for imaging with reconfigurable arrays:

1. A space-time, multistatic image reconstruction algorithm for the

system that addresses the challenges involved with using a large, reconfigurable

array. Increasing array size and number of elements provides an ultrasound imag-

ing system with more data and improved resolution. The conventional phased

array modality has limited scalability for handling such arrays due to hardware

constraints. Instead, we propose a stepped-FMCW modality which allows for ar-

rays to be controlled through a simple multistatic switching while providing lower

noise and power output than the traditional pulse echo operation. The founda-

tion of the reconstruction algorithm is coherent backward propagation, which can

be formulated into two distinct methods: (1) Space-time reconstruction, and (2)

Spatial-frequency reconstruction. Space-time reconstruction becomes the focus of
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this thesis because of its ability to accommodate the arbitrary relative positioning

of array elements that is characteristic of conformal, reconfigurable ultrasound

arrays. We present laboratory experiments that demonstrate the feasibility of

stepped-FMCW ranging in an ultrasonic environment, as well as experiments

showing the feasibility of space-time image reconstruction using a flexible ultra-

sound array. In doing so, we have successfully tested four key aspects of an

ultrasound imaging system: (1) stepped-FMCW operation, (2) multistatic data

acquisition, and (3) space-time reconstruction, and (4) reconfigurable arrays.

2. A simulation method for predicting imaging system performance.

With the development of the new imaging system comes the challenge of estimat-

ing system performance given a set of basic operating parameters. We present a

quick method of simulating full system operation to obtain a best-case result given

a stepped-FMCW operating band, and target and element distributions. Imaging

results from this simulation method confirmed that (1) large bandwidth, (2) large

aperture span angle, and a (3) large number of in-view elements all contributed

to lower mean-squared error (MSE) from the ideal reconstruction. Quantifying

performance using the mean structural similarity (MSSIM) index instead of MSE

did not express the trends as clearly, which may be insightful for future developers

engaging in similar analyses.
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3. A method for improving image resolution using the variance of

multistatic contributions. In the core reconstruction algorithm, pixel locations

of targets are distinguished from non-target locations by virtue of its greater

magnitude resulting from the sum of multistatic contributions. But implicit in

the backward propagation theory is that target pixel contributions are also more

consistently real and positive than other pixels. In other words, contributions

to target location pixels are expected to vary less than those for neighboring

non-target pixels. This allows the pixelwise variance of all multistatic values to

be used as an additional measure of confidence for target presence. We present

a method for creating a composite image that combines variance information

with the original reconstruction. Simulation results show that clustered point-

targets are more easily identified in the composite image. Increased MSE in some

reconstruction trials imply that increased target region resolution may come at the

expense of added noise elsewhere in the image. The overall visual enhancement

may easily offset the cost, and future researchers may find this method even more

beneficial when handling large numbers of array elements.

4. A method for improving image resolution by quantifying and cor-

recting quadrature receiver phase error in time-delay profiles. Quadra-

ture receiver phase error is introduced to stepped-FMCW data when the data

acquisition hardware is unable to maintain orthogonality between the two sinu-
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soidal signals in the demodulation process. This leads to Ik and Qk values that no

longer correctly give the received signal’s projection onto orthogonal axes. When

the corrupted Ik and Qk data is transformed to a time-delay profile, the true

target peaks are attenuated and mirrored peaks emerge in the negative-time half

of the sequence. We present a method which estimates the phase error for each

frequency and then removes then by a simple 2 × 2 matrix multiplication. Sim-

ulation results with added random Ik and Qk phase noise showed the expected

effects, and corrected data values gave a time-delay profile with increased true

target peak magnitudes and diminished artifact peaks. By mitigating the effects

of an error source arising from the physical implementation of the imaging system,

time-delay profiles better express target peaks, increasing image resolution. This

is in contrast to variance method, which improves resolution by incorporating

previously unused information.

6.1 Future Paths For Research

Although the concept of a large, conformal array provides the motivation for

this imaging thesis, the technical contributions presented can see relevance in

a wide range of applications in medical imaging and beyond. Fig. 6.1 [8] and

Fig. 6.2 [9] show prototyped arrays configurations alongside preliminary imaging
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simulations which demonstrate the versatility of the same signaling modality and

reconstruction techniques. Non-destructive evaluation (NDE) of metal parts in

the manufacturing and transportation sectors also stand to benefit from conformal

array imaging in order to better detect flaws. Since specific imaging tasks require

custom modifications to system parameters, the simulation work in this thesis

may provide a valuable starting point for investigating the capabilities of new

applications.

The following avenues may be of interest to future researchers seeking to extend

the impact of current work and system development:

Volumetric Imaging and Display: The possibility of system integration

with large 2D multistatic arrays lends itself to the investigation of 3D imaging.

Since the theory for the 2D and 3D versions of coherent propagation differ only in

minor ways, the work presented in this thesis can be expanded to 3 dimensions.

Application-specific methods for displaying 3D images can also be investigated.

For example, an outward-scanning cardiac catheter image set may benefit from a

polar unwrapping algorithm that that displays blood vessel walls in 2D.

Periodic Motion Detection: In experiments involving many image recon-

struction cycles for one setting, periodic movements can be detected by analyzing

the FFT along a single pixel axis of a series of reconstructed images. For example,

a blood vessel wall that moves into and out of a pixel may not be readily apparent
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(a) Needle guidance procedure with neck imaging with a reconfigurable ultrasound array.

(b) Space-time stepped-FMCW imaging simulation at 2 MHz bandwidth of a 14-gauge needle
target.

Figure 6.1: Simulation modeling for development of a needle guidance imaging
system.
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(a) Conformal array wrapped around a 9F (3 mm diameter) commercial intracardiac ultra-
sound catheter.

(b) Outward space-time stepped-FMCW imaging simulation at 3 MHz bandwidth of a set of
9 adjacent point targets. Array diameter is 6 mm.

Figure 6.2: Outward radial imaging with circular arrays.
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by visual inspection. But with a set of reconstructed images, that pixel bin value

will vary periodically. A visualization method for overlaying the magnitude of pe-

riodic motion onto an original image may be valuable for distinguishing between

normal and abnormal organ function.

Array Configuration Detection: Knowledge of the relative spatial posi-

tions of array elements is critical for image reconstruction and the physical de-

velopment of a detection scheme may not be trivial. One method could involve

fabricating an array such that the elements are fixed onto a metal or plastic grid of

movable joints. Hinges at these joints have potentiometers whose resistance varies

predictably as a function of hinge angle. By continuously sampling resistances at

all joints, the configuration of the array can be calculated. A more rudimentary

starting point might involve a grid design with joints that hold at only discrete

angles. In addition to relative element positioning, detection of array movement as

a whole is also a desirable system feature. This would permit synthetic aperture

data acquisition by gliding the array over a surface and then registering together

the collected data. Integrating one or more optical sensors (similar to those used

in computer mice) underneath the array facing the imaging surface, would allow

the array elements to be tracked across a given path.

Alternate Signaling Methods: One concern regarding the multistatic op-

eration is whether the acoustic energy generated by a single transmitting element
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is adequate for effective imaging. Wave attenuation in tissue limits depth of pen-

etration which in turn limits imaging depth. For this reason, investigation into

offshoot methods of signaling may offer solutions to these problems should they

arise. For instance, Daher and Yen [10] have experimented with using entire rows

of array elements for simultaneous transmission and reception instead of indi-

vidual elements. Similar techniques present tradeoffs between computation time

reduction and resolution, the acceptable combination of which is largely dictated

by application.
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