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ABSTRACT 

 

Interconnect Fabric Reconfigurability for Network on Chip 

 

by 

 

Omri Almog 

 

Microprocessor architectures are evolving at a pace greater than ever before. To meet the 

industry’s stringent power, performance and cost demands there is a rising trend towards 

building heterogeneous processors with both CPU cores and off-chip components on the 

same chip. This is known as a System on Chip. These systems show promising solutions 

including chip interconnects consisting of Network on Chips (NoCs). These NoCs are 

composed of routers that control traffic, and channels used to connect different components 

of the chip itself together. Depending on the processor core's type, specifications, and 

technology used, the NoC fabrics may consume anywhere ranging from 28% to 40% of the 

total system power.  

To reduce this significant power consumption, various solutions were proposed targeting 

CMOS technology. In this work we focus on NoC topology improvements and 

reconfigurability using novel VeSFET technology. The work deploys tools used to simulate 

full systems, such as GPGPUSIM, to evaluate the possible performance/power gains of a 

hybrid CMOS-VeSFET system. This hybrid system includes CMOS core and memory 

layers, while the NoC layer is made up of VeSFET transistors. This allows for shorter wire 
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lengths between routers and cores, as well as it permits for extra area to include network 

reconfigurability features.  

The necessary modifications to build this hybrid system are area changes due to VeSFET 

additional layer, routing length changes, pipelining changes, and VeSFET technology 

parameter additions. The tools modifications necessary to include this system are described 

in further details in this thesis. The gathered data indicates great promise for the hybrid 

reconfigurable CMOS-VeSFET system over the conventional non-reconfigurable CMOS 

system. It is demonstrated that the hybrid VeSFET system has both a power decrease of 

approximately 57.0% and a performance increase of approximately 50.2%. 
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CHAPTER 1 - Introduction 

1.1 Overview 

With recent advancements of technology, and rising scale of on chip integration, it is 

possible to integrate a complete electronic system onto one chip. This is known as a System 

on Chip (SoC). The most promising solutions for chip interconnects are the Networks on 

Chip (NoCs). They are composed of routers and channels used to connect different 

components such as Cores, Memory, or other blocks [5]. Depending on the processor core’s 

type, specifications, and technology used, the NoC fabrics may consume 28% to 40% of the 

total system power [4][6][19]. To reduce this significant power various solutions were 

proposed targeting CMOS technology [14][16]. In [15] a hybrid CMOS-VeSFET system 

was proposed. It was studied with emphasis on various features of the architecture. In this 

work we focus on the NoC topology improvements and reconfigurability features of that 

same architecture from [15].  

Our aim is to evaluate the possible advantages in implementing the NoC using a new 

transistor technology called Vertical Slit Field Effect Transistors (VeSFETs). VeSFETs are 

novel twin gate and junctionless devices with terminals accessible from both sides of the 

device. VeSFET technology offers an attractive solution for 3D integration [12][15][17][18].  

This thesis reports cycle by cycle simulation of power and performance performed on 

heterogeneous systems. There are four general system configurations that will be discussed 

in the following sections, each of which is of a different size. This is to show the scalability 

of the proposed improvements. Each of these system configurations is simulated for a 

CMOS NoC and a VeSFETs reconfigurable NoC. The reconfigurability of the VeSFET NoC 
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is implemented using switches in the network, giving the ability to change the topology of 

the network at runtime [14]. All system components are simulated using 65nm technology. 

The data is then extracted for the NoC allowing for the comparison of performance and 

power between the CMOS and VeSFET networks. 

Due to cores and memory having a highly optimized modern design flow, it is a good 

idea to implement the NoC layer as VeSFET. When introducing the VeSFET hybrid system, 

we were able to decrease wire lengths not only between routers but also for router-to-core. 

[15] When creating this extra VeSFET NoC layer, we also observed that there is much extra 

area due to VeSFET routers consuming less area than CMOS routers. With this motivation, 

we were able to add some extra features to our NoC layer, and reconfigurability looked 

promising. Thus we decided to look into improvements of VeSFET NoC with 

reconfigurability included. 

This thesis is organized as follows: 

- In Chapter 2, we establish the basis of VeSFET technology and explain how it is possible 

to stack device layers manufactured in this technology. We then explain the benefits of 

including this technology into a reconfigurable 3D hybrid CMOS-VeSFET system. To 

accomplish this system we then explain the design behind reconfigurability and how by 

adding switches into the NoC layer we are able to create a reconfigurable topology network. 

- In Chapter 3, we go into detail about the effects modeled in the simulators in order to 

establish the hybrid system. These effects include area changes due to the additional 

VeSFET layer as well as routing and pipelining changes. We then explain the systems 

modeled to collect the data necessary for comparison, as well as details about the 

applications run on the simulators. 



 

 3 

- In Chapter 4, we provide the collected data of the experiments run, including tables and 

charts depicting these results. We then present the findings of the study. 

- Chapter 5 concludes the thesis and presents future research directions. 

 

CHAPTER 2 - NoC related improvements due to emerging trends in 

3D stacking VeSFET technology 

2.1 VeSFET Transistor and VeSFET based Circuits 

2.1.1 The vertical slit transistor 

The reconfigurable NoC layer in the studied architecture uses VeSFET transistors [6]. 

VeSFET is a square-shaped, twin gate, junctionless device that can be manufactured with 

silicon-on-insulator (SOI)-like process using conventional CMOS manufacturing steps 

[2].The unique geometry of VeSFET is shown in Figure 1. The diagonally positioned gate 

terminals on the opposite sides of a vertical slit region control the current flowing between 

the other two terminals, the source and the drain. VeSFETs can be of n- and p-type and can 

be used to construct CMOS-like ICs. Compared to a bulk 65nm CMOS transistor, VeSFET 

has a smaller driving current, smaller transistor capacitance, and lower power 

consumption[13].VeSFETs are manufactured as arrays of geometrically identical devices. 
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Figure 1. The VeSFET geometry [13] 

 

 

2.1.2 3D stacking using VeSFET 

For a given throughput, it is beneficial to shorten wires to reduce the number of pipeline 

stages. This can be accomplished with 3D chip architectures where the memory resides on 

top of the microprocessor layers [3][7]. These improvements require dense vertical 

communication at gate or transistor level as opposed to block level. In CMOS technology it 

is only possible to use two-layer face-to-face (F-to-F) 3D integration [10].Stacking more 

layers in a face-to-back (F-to-B) form would require very small pitch, high density and high 

yielding through silicon vias (TSVs) which is unfeasible today as discussed in [15]. Here, 

we study a 3D integrated hybrid circuit composed of two CMOS layers and one VeSFET 

device layer. This VeSFET device layer will include the switches needed for 

reconfigurability. We have a typical CMOS 2D architecture as the base case to compare the 

improvements of the reconfigurability.  
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2.1.3 CMOS - VeSFET hybrid 3D circuit 

Figure 2 (a) shows the floorplan of a 2D CMOS implementation.  Figure 2 (b) shows our 

studied 3D architecture that was proposed by [15]. The CMOS processor and memory nodes 

are on the top and bottom of the VeSFET NoC layer. In this implementation the router-to-

router distance dH is less than d, the router-to-router distance in the 2D_CMOS. In this 

architecture the three active layers are integrated without using TSVs. The intermediate 

VeSFET layer can make F-to-F connections to both the top and bottom layers as shown in 

Figure 2 (c). 

 

Figure 2. (a) CMOS Layout. (b) 3D Hybrid VeSFET Layout top down. (c) 3D Hybrid VeSFET Layout side 

view[15]. 
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2.2 Reconfigurable network on chip 

2.2.1 Switches - VeSFET& CMOS 

Figure 3 shows a schematic and layout of both a simple VeSFET Switch as well as a 

CMOS Switch. Each switch can be configured to connect any two terminals together. This 

allows for the reconfiguration of the flow in the network, giving the ability to have different 

topologies reconfigured. The VeSFET switch is built from AND type transistors. When both 

gate pillars of an AND transistor are high for a p-type and both are low for an n-type the 

current flows between the source and drain. In the switch, only when N1 is high will the 

East node be connected to N5, and only when N3 is low will the South node be connected to 

N5. In this way we can configure the switch with N1-N4 to allow passage between the N, S, 

E, W nodes. In the case of the CMOS, this is achieved in the same manner but using six 

configuration transistors (1-6). As induced by the above design, not only will these switches 

be more compact when using VeSFET, they also only take 4 bits to configure. 

 

Figure 3. VeSFET Switch Layout Vs. CMOS Switch Layout 
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2.2.2 Reconfigurable topologies 

With these switches it is possible to configure the network to have multiple topologies. 

Figures 4, 5, and 6 show the three different configurations we experimented with. Although 

the network topologies are shown for a 4x4 case, they can be extrapolated to a smaller or 

larger network. The added routing length between routers is only affected by the added area 

of the switches, and not by any detour path needed to get to the switches. The routing 

configuration is almost identical to the typical topology configuration without the switches 

added.  

 

Figure 4. Mesh Reconfigurable Layout 

 

 

Figure 5. Torus Reconfigurable Layout 
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Figure 6. Tree Reconfigurable Layout (Levels referring to the tree depth levels) 

 

With an algorithm that chooses the optimal topology for the current application, it is 

possible to reconfigure the network to that optimal topology. Much work has been done on 

choosing the topology for certain application types, and it has been proven that topology of 

the NoC affects the performance, and certain topologies are better for certain 

applications[5][9][14]. 

The objective of our work is to compare a 2DCMOS non-configurable and 3D CMOS-

VeSFET hybrid reconfigurable implementations of the same system. We will assess the 

feasibility of adding reconfigurability to the VeSFET NoC and check if the hybrid 

implementation offers any advantages over the static CMOS network. Multiple NoC 

configurations will be tested with multiple applications. The experiment will also be testing 

scalability and topology advantages over a variety of applications. 
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CHAPTER 3 - Simulation and analysis of reconfigurable VeSFET NoC 

and non-reconfigurable CMOS NoC 

3.1 Simulator changes to account for VeSFET network 

The implementation of this experiment was done using a tool called GPGPUSIM [1]. 

This tool integrates GPUWattch[11], booksim[8], and cuda-sim to simulate applications 

running on a predefined system. GPUWattch is used to estimate the dynamic power of the 

system while it is running cycle by cycle, while booksim is used to do performance 

evaluation on the network aspect of the system. GPUWattch uses McPAT – an early stage 

design exploration tool for large multi-core processors to build the floorplans and estimate 

the power consumption. 

A wrapper was also implemented around the tool to allow the user to choose what type 

of simulation is requested. The user has the option of choosing from an application 

integrated into the tool: topology to simulate, CMOS/VeSFET-Reconfigurable network, and 

system types integrated into the tool. All these configurations can be chosen from and the 

simulation will run and print out the performance/power results to a file. 

3.1.1 Additional layer area changes 

We study a hybrid 3D chip with VeSFET[13] implemented NoC as shown in Figure 8. 

Moving the routers and crossbars onto the VeSFET layer decreases the chip’s footprint and 

reduces the distances between the NoC routers. The core section area of the system is 

reduced by approximately a 28% to 40%, and on the NoC layer, approximately 54% to 73% 

of the area would be unused in case of a static network implementation. In Figure 2 we can 

see that the VeSFET area of the core layer has shrunk with respect to the CMOS 
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configuration. Figure 8 visualizes the extra area we gain from moving the routers onto 

another layer. We can see that the NoC layer is smaller than the overall core and memory 

layers. The extra area around the routers can be utilized for reconfiguration of the NoC. 

Small switches added to the network allow for the connections between routers to be 

reconfigured at runtime[14]. This area is also used for connecting the routers and control 

signals going to the switches. As discussed in [14], it is also necessary to add storage space 

to keep the configuration information of the switches.  

One possible control scheme for the switches can be implemented as depicted in Figure 

7. This shows how the control unit sends out two control lines to the storage space of each 

switch for one of the routers. These signals are stored and decoded into the four control lines 

sent to each switch locally. There are other ways this can be designed, for example it is 

possible to send each of the control lines straight from the control unit to the switches and 

not have the storage distributed amongst the NoC.  

One last note about the control signals is that this is shown for the VeSFET switches that 

require only 4 control signals. Not only does this require less wiring than CMOS, but it also 

requires less storage. In order to control the CMOS switches there will be more control 

signals required since there are six transistors involved with the CMOS switches. 
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Figure 7. Potential Switch Control Scheme 

 

 

 

Figure 8. Rough visualization of extra area provided by VeSFET NoC 
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This VeSFET portion also has an additional overhead introduced to cover the additional 

area/power/length associated with adding the necessities to allow for reconfigurability of the 

network. To allow for a Mesh/Torus/Tree reconfigurable network, a corridor of width 

2switches has been used in the network [14]. This corridor of width 2 can be visualized in 

Figure 9. This means that there are two switches in between every router. In [14], the 

authors analyzed networks including different variants of the reconfigurable network with 

switches. They conclude that reconfigurability with a corridor width of 2 requires 

approximately 68% area overhead [13– Figure 7]. As discussed previously, when a static 

VeSFET NoC is implemented, there is empty space that can be utilized for extra features. 

Since the VeSFET NoC has this extra space, we are able to negate this overhead by filling in 

the void with these required reconfigurability switches and wiring. 

 

Figure 9. Visualization of the 2 corridor width added switches [14]. 
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3.1.2 Routing changes &Pipelining changes 

The following discussion has been taken from [15] and built upon in this thesis. Each of 

our routers in the four configurations has 5 ports. Four of the ports are for the router-to-

router communication channels (North, South, East, West) and one of the ports is for the 

router-to-node communication. Each of these includes a 5x5 crossbar. The specifications of 

the routers are summarized in Table 1. We assume a common flit width of 128 bits. The 

routing wires of the 2D CMOS architecture are all in the horizontal plane, as shown in 

Figure 10 (a). In the 3D VeSFET-CMOS Hybrid system the router-to-node channel is 

vertical as shown in Figure 10 (b)[15]. 

 

Figure 10. Router configurations [15] 

 

The critical components of the router: input buffers, crossbar, router logic and arbiter are 

synthesized using RTL specifications from Stanford’s Booksim group [8]. Synopsys IC 

compiler with 65nm CMOS technology is used to obtain delays of 75ps, 82ps, 65ps and 

92ps for the above components respectively. The maximum target bandwidth is set to be 

1.25Tbits/s for the NoCs that corresponds to a frequency of 10GHz and channel width of 
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128. The number of pipeline stages is determined for the inner router link using HSPICE 

simulations. More details can be found in [15]. 

Interconnect reduction with respect to 2D CMOS obtained by 3D VeSFET-CMOS 

Hybrid is reflected in the experiments. The reduced wire length between routers in 3D 

VeSFET-CMOS Hybrid not only translates to fewer pipeline stages but also reduces wire 

power. In all simulations we use 65nm technology parameters for CMOS and VeSFET 

device with pillar radius of 50 nm technology node. The horizontal router to router distance 

used for the base CMOS system is 3mm. The corresponding 3D VeSFET Hybrid distance 

used is dH – 1mm. The router-to-node distance is also modified from the base CMOS system 

of 0.2mm to the 3D VeSFET Hybrid of 100um.Since dH < d, there are fewer pipeline stages 

in the 3D Hybrid VeSFET NoC compared to our base 2D CMOS system as shown in Figure 

11[15] to achieve a particular target frequency. 

 

Figure 11. Pipeline stage reduction in 3D Hybrid VeSFET NoC[15] 
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3.2 Simulated systems 

The simulated systems include 4 modified Sun Niagara II with additional cores/memory 

to show the scalability aspect of the experiment. Table 1 shows the various configurations of 

the experiment.  

3.2.1 System parameters 

TABLE 1. SYSTEM CONFIGURATIONS 

Processor parameters: 

Case 1/2/3/4 

Type Sun Niagara II 

Cores 2/10/20/34 

Cores 3.16GHz 

L1 cache 32KB dedicated; 4 way 

L2 shared cache 2MB/cache tile 

Memory Tiles 1/3/8/15 

Router parameters: 

Ports 5 

Technology 65nm 

Flit width 128 

Input buffer Type: SRAM: 128x16; delay: 75ps 

Network parameters: 

Type 2D Mesh/ 2D Torus/ 2D Tree 

Size 2x2/4x4/6x6/8x8 

Bandwidth 2.5 Tbits/sec 

 

3.2.2 System configurations 

The studied configurations begin with a 2x2 matrix consisting of 2 cores and 1 memory 

block with 2 memory sub-portions, and go up to an 8x8 matrix including 34 cores with 15 

memory blocks. Each of these configurations also has six different NoC variants. These 

include CMOS -Mesh/Torus/Tree and VeSFET Hybrid -Mesh/Torus/Tree. This is to show 

the performance/power measurements for the reconfigurability. The VeSFET network 
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reconfigurability is included in this network. The CMOS does not provide for 

reconfigurability as it would increase the overall area of the chip. The VeSFET NoC layer 

does not incur an area increase due to reconfigurability. This is so because VeSFET layer 

has an extra area available for such features to be included. 

Our architecture includes four multi-core processors including 2/10/20/34 cores. In all of 

these cases we use identical tiles of Sun Niagara II processors. Each of the cores in the base 

CMOS system includes a dedicated L1 cache. All core tiles share a common L2 cache. The 

architectural specifications of the processors are summarized in Table 1.  

3.2.3 Applications 

We simulated 2D CMOS non-reconfigurable networks for all the applications and 

topologies. These are used to compare to the reconfigurable VeSFET-CMOS hybrid. When 

comparing the two, first the size of the network is chosen. Then there are two options: one is 

to use the average performance/power over CMOS topologies for a group of applications, or 

to choose the best performance/power CMOS topology for each application. Once that 

topology is chosen for CMOS, the numbers for performance/power are extracted from the 

simulations. Once that is selected, an application to be compared is chosen.  

The comparison is then made between the selected CMOS topology performance/power, 

and the best case VeSFET performance/power of the three topologies. The best case of the 

three topologies is chosen since it is possible to reconfigure the topology to any of the three. 

The best case of the three topologies can be chosen for the VeSFET system for each 

application, but once the CMOS topology is chosen, it is used for all the application 

comparisons since it cannot be reconfigured. Table 2 shows the current applications 

implemented into the tool with an explanation of the application and a description included. 
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TABLE 2. APPLICATIONS 

Application Functionality 

Templates 
This sample is a templatized version of the template project. It 
also shows how to correctly templatize dynamically allocated 
shared memory arrays. 

vectorAdd Basic sample that implements element by element vector 
addition 

scalarProd 
Calculates scalar products of a given set of input vector pairs 

AtomicIntrinsics 
A simple demonstration of global memory atomic instructions 

matrixMul 
This sample implements matrix multiplication 

MultiGPU 
Use the new CUDA 4.0 API for CUDA context management and 
multi-threaded access to run CUDA kernels on multiple-GPUs. 

MonteCarloMultiGPU This sample evaluates fair call price for a given set of European 
options using the Monte Carlo approach, taking advantage of all 
CUDA-capable GPUs installed in the system. 

threadFenceReduction 
This sample shows how to perform a reduction operation on an 
array of values using the thread Fence intrinsic to produce a 
single value in a single kernel 

 



 

 18 

CHAPTER 4 - Simulation Results 

4.1 Effects of interconnect reduction 

Interconnect reduction with respect to the 2D CMOS system obtained by the 3D hybrid 

system is significant. The reduced wire length between the routers in the 3D hybrid system 

translates into fewer pipeline stages.  This wire reduction comes from moving the NoC onto 

its own layer in a 3D stack. This horizontal distance between the routers and the nodes turns 

out to be approximately 100µm compared to 0.2mm in the 2D CMOS. The router-to-router 

length also gets compacted since there are no longer cores in between the routers. This 

translates to the 3D hybrid case containing 1mm router-to-router length whereas the CMOS 

case includes 3mm distance [15]. This interconnect reduction is part of the reason for the 

VeSFET power reduction and performance increase. The other main reason for this is the 

reconfigurability of the NoC. 

4.2 Effects of reconfigurability 

With the extra area provided by the NoC layer in the hybrid system, we are able to add 

the reconfigurable features to the system. With traditional non-reconfigurable networks, the 

set topology of the NoC cannot be changed as it is in physical hardware, but when we add 

the proposed solution of the switches, it is possible to reconfigure the topologies. We see the 

gains of this feature as it allows the NoC to reconfigure into the most optimized topology for 

the application that will run. These gains include both power and performance increases for 

the overall system due to the fact that different topologies are more optimized for certain 

applications compared to others.  
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4.3 Result tables 

TABLE 3. MESH PERFORMANCE RESULTS 

CASE1: 2X2 – 2 CORES 1 MEMORY 

CASE 2: 4X4 – 10 CORES 3 MEMORY 

CASE 3: 6X6- 20 CORES 8 MEMORY 

CASE 4: 8X8 – 34 CORES 15 MEMORY 
Mesh Ave # 

of cycles 
Templates 

vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 13.37 28.81 28.72 80.70 40.10 21.76 60.61 26.32 

VeSFET 2x2 10.61 19.08 18.30 58.22 27.89 13.34 54.18 16.00 

CMOS 4x4 20.93 117.92 116.92 305.41 71.07 82.06 79.19 89.14 

VeSFET 4x4 16.32 94.56 84.88 220.90 51.75 56.70 69.19 62.19 

CMOS 6x6 24.68 190.35 173.88 483.52 105.85 51.68 94.88 55.91 

VeSFET 6x6 19.09 152.28 132.65 363.85 77.21 31.64 72.18 34.80 

CMOS 8x8 34.28 237.40 257.62 808.32 113.20 44.05 105.11 42.57 

VeSFET 8x8 26.32 207.64 197.21 650.39 84.44 32.41 84.62 30.61 

TABLE 4. TORUS PERFORMANCE RESULTS 

Torus Ave # 
of cycles 

Templates 
vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 15.13 30.46 31.91 102.71 42.55 23.71 61.86 28.35 

VeSFET 2x2 12.44 20.02 21.71 81.61 31.80 16.19 55.27 18.61 

CMOS 4x4 20.09 128.29 74.85 345.71 69.42 64.14 109.48 72.46 

VeSFET 4x4 16.38 100.40 60.37 288.42 48.12 47.97 67.45 53.44 

CMOS 6x6 26.41 103.64 95.66 593.63 100.40 45.30 77.31 50.06 

VeSFET 6x6 21.46 94.82 68.25 483.92 69.29 31.16 61.81 34.82 

CMOS 8x8 30.16 163.71 141.01 893.88 90.55 38.42 74.09 38.11 

VeSFET 8x8 24.44 115.80 99.19 750.00 69.52 33.56 66.88 31.59 

TABLE 5. TREE PERFORMANCE RESULTS 

Tree Ave # 
of cycles 

Templates 
vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 14.91 35.65 40.40 78.27 42.74 36.34 67.04 40.81 

VeSFET 2x2 11.81 21.73 24.25 61.61 31.35 17.97 62.37 21.44 

CMOS 4x4 14.91 106.14 95.59 324.26 58.25 65.02 72.65 72.89 

VeSFET 4x4 11.81 96.99 62.63 269.66 41.23 39.27 60.62 45.15 

CMOS 6x6 14.91 104.11 107.58 582.28 55.60 22.38 46.48 25.26 

VeSFET 6x6 11.81 71.90 74.41 484.12 41.81 16.40 29.17 19.82 

CMOS 8x8 14.91 104.58 86.20 1000.89 48.73 16.67 35.05 17.14 

VeSFET 8x8 11.81 76.73 58.62 838.96 36.35 12.77 21.72 13.14 

TABLE 6. MESH ENERGY RESULTS 

Mesh 
Energy 
(pJ/bit) 

Templates 
vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 0.35 0.72 0.74 2.02 1.00 0.56 1.52 0.67 

VeSFET 2x2 0.11 0.20 0.19 0.59 0.28 0.14 0.55 0.17 

CMOS 4x4 0.54 2.97 2.93 7.66 1.80 2.06 1.99 2.24 

VeSFET 4x4 0.16 0.95 0.85 3.21 0.52 0.57 0.70 0.62 

CMOS 6x6 0.63 4.78 4.37 10.10 2.66 1.31 2.38 1.41 

VeSFET 6x6 0.20 1.52 1.34 5.65 0.78 0.32 0.73 0.35 

CMOS 8x8 0.87 5.94 6.45 16.23 2.84 1.12 2.64 1.08 

VeSFET 8x8 0.27 3.08 1.98 7.51 0.85 0.33 0.85 0.31 

 

 



 

 20 

TABLE 7. TORUS ENERGY RESULTS 

Torus 
Energy 
(pJ/bit) 

Templates 
vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 0.39 0.77 0.82 2.58 1.07 0.61 1.56 0.71 

VeSFET 2x2 0.13 0.21 0.22 0.82 0.32 0.17 0.56 0.20 

CMOS 4x4 0.51 3.23 1.88 8.65 1.74 1.61 2.76 1.83 

VeSFET 4x4 0.17 1.01 0.60 3.88 0.48 0.49 0.68 0.54 

CMOS 6x6 0.66 2.60 2.39 19.85 2.53 1.13 1.94 1.28 

VeSFET 6x6 0.22 0.96 0.69 5.85 0.70 0.32 0.62 0.35 

CMOS 8x8 0.77 4.10 3.54 25.37 2.28 0.98 1.87 0.96 

VeSFET 8x8 0.25 1.17 1.00 9.50 0.70 0.34 0.68 0.32 

TABLE 8. TREE ENERGY RESULTS 

Tree Energy 
(pJ/bit) 

Templates 
vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 0.38 0.90 1.03 1.96 1.07 0.93 1.69 1.02 

VeSFET 2x2 0.12 0.22 0.24 0.62 0.32 0.19 0.63 0.22 

CMOS 4x4 0.38 2.67 2.41 8.11 1.46 1.64 1.82 1.83 

VeSFET 4x4 0.12 0.98 0.63 2.70 0.42 0.40 0.62 0.46 

CMOS 6x6 0.39 2.62 2.70 14.56 1.41 0.57 1.17 0.65 

VeSFET 6x6 0.13 0.73 0.74 9.85 0.43 0.17 0.30 0.21 

CMOS 8x8 0.39 2.63 2.17 25.04 1.23 0.43 0.89 0.45 

VeSFET 8x8 0.12 0.78 0.59 11.40 0.37 0.13 0.22 0.14 

TABLE 9. MESH POWER RESULTS 

Mesh   Ave 
Power (% 
NoC of full 

Chip) 

Templates 
vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 0.91 7.81 6.29 22.01 1.70 9.76 1.49 11.43 

VeSFET 2x2 0.51 4.43 2.79 15.36 0.84 2.00 0.11 0.87 

CMOS 4x4 0.55 11.12 9.24 19.05 4.76 13.35 2.26 14.42 

VeSFET 4x4 0.29 6.52 4.66 13.30 1.27 3.98 0.36 1.81 

CMOS 6x6 0.35 11.85 9.68 14.78 5.13 14.44 2.42 16.72 

VeSFET 6x6 0.19 7.08 5.06 10.35 1.64 5.10 0.64 2.68 

CMOS 8x8 0.23 11.71 9.93 11.18 6.57 14.85 1.89 16.70 

VeSFET 8x8 0.13 7.16 5.32 7.46 2.20 5.16 0.63 2.77 

TABLE 10. TORUS POWER RESULTS 

Torus   Ave 
Power (% 
NoC of full 

Chip) 

Templates 
vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 0.91 7.81 6.27 18.95 1.70 9.73 1.49 11.47 

VeSFET 2x2 0.51 4.47 2.78 12.30 0.84 1.99 0.11 0.85 

CMOS 4x4 0.55 11.18 9.62 20.11 5.04 13.93 2.29 15.33 

VeSFET 4x4 0.30 6.47 4.72 13.00 1.19 4.03 0.37 1.83 

CMOS 6x6 0.35 12.31 10.11 12.53 5.33 14.80 1.95 17.28 

VeSFET 6x6 0.20 7.20 5.20 8.22 1.73 5.18 0.54 2.72 

CMOS 8x8 0.23 12.09 10.24 12.67 6.15 15.70 1.97 17.73 

VeSFET 8x8 0.13 7.39 5.51 8.25 2.15 5.35 0.65 2.88 
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TABLE 11. TREE POWER RESULTS 

Tree   Ave 
Power (% 
NoC of full 

Chip) 

Templates 
vector
Add 

scalar
Prod 

AtomicI
ntrinsics 

matrix
Mul 

MultiGPU 
MonteCarlo
MultiGPU 

threadFence
Reduction 

CMOS 2x2 0.91 7.81 6.25 23.39 1.68 9.65 1.51 11.30 

VeSFET 2x2 0.51 4.43 2.76 15.36 0.84 1.96 0.11 0.82 

CMOS 4x4 0.51 11.11 9.33 23.63 4.81 13.81 2.30 15.36 

VeSFET 4x4 0.29 6.53 4.78 15.33 1.27 4.31 0.38 2.11 

CMOS 6x6 0.36 12.22 10.04 21.04 4.93 15.30 2.69 16.87 

VeSFET 6x6 0.18 7.23 5.41 13.70 1.67 5.47 0.61 2.92 

CMOS 8x8 0.22 12.35 10.45 19.96 6.04 15.42 2.35 17.07 

VeSFET 8x8 0.12 7.72 5.89 13.17 2.27 5.56 0.83 3.08 
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4.4 Result charts 

Performance 

 

Figure 12.6x6 CMOS Mesh Vs. 6x6 VeSFET Re-Configurable Performance Chart 

 

 

Figure 13.6x6 CMOS Torus Vs. 6x6 VeSFET Re-Configurable Performance Chart 
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Figure 14.6x6 CMOS Tree Vs. 6x6 VeSFET Re-Configurable Performance Chart 

 

Energy 

 

Figure 15.6x6 CMOS Mesh Vs. 6x6 VeSFET Re-Configurable Energy Chart 
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Figure 16.6x6 CMOS Torus Vs. 6x6 VeSFET Re-Configurable Energy Chart 

 

 

Figure 17.6x6 CMOS Tree Vs. 6x6 VeSFET Re-Configurable Energy Chart 
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Power 

 

Figure 18.6x6 CMOS Mesh Vs. 6x6 VeSFET Re-Configurable Power Chart 

 

 

Figure 19.6x6 CMOS Torus Vs. 6x6 VeSFET Re-Configurable Power Chart 
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Figure 20.6x6 CMOS Tree Vs. 6x6 VeSFET Re-Configurable Power Chart 

 

Scaling 

Figure 21. CMOS Mesh Vs. VeSFET Re-Configurable Performance Scalability 

 

 

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

La
te

n
cy

: #
 o

f 
C

yc
le

s

Application

CMOS Mesh Vs. VeSFET Re-Config Performance

CMOS 2x2

VeSFET 2x2

CMOS 4x4

VeSFET 4x4

CMOS 6x6

VeSFET 6x6

CMOS 8x8

VeSFET 8x8



 

 27 

Figure 22. CMOS Mesh Vs. VeSFET Re-Configurable Energy Scalability 

Figure 23. CMOS Mesh Vs. VeSFET Re-Configurable Power Scalability 
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4.5 Discussions 

As demonstrated by the tables 3-5 and graphs 12-14, on average VeSFET has a 50.2% 

performance increase over the non-reconfigurable CMOS network. This performance 

increase is gained due to several factors. The VeSFET-CMOS hybrid is a 3D 

implementation allowing for shorter connections between the routers and shorter 

connections between the routers and nodes. The VeSFET reconfigurable network has the 

ability to match its topology to the application. It is possible to choose the best topology for 

the CMOS, for a certain application, but once the topology is set in the silicon it is not able 

to change. The VeSFET reconfigurability allows for the topology to update itself according 

to the application. This allows VeSFET to choose the topology that best fits the application, 

thus over the range of applications VeSFET has the increased performance. 

These factors can also translate to the better power we are seeing. In the results 

presented, the power is represented as % of total NoC power. This is computed by dividing 

the NoC power by the total power of the system. As demonstrated by tables 6-11 and graphs 

15-20VeSFET-CMOS hybrid has an overall 57.0% power decrease compared to 2D CMOS 

static implementation. This is caused by the system-level factors discussed above and is also 

caused by the VeSFET parameters themselves. 

One interesting fact to note is that the AtomicIntrinsics application behaves in the 

opposite fashion than the other applications when looking at the overall results. A few 

possible factors that could lead to this behavior include the behavior of the application itself 

that is causing the network to be less efficient with smaller networks compared to larger 

networks. When implementing this application into this research, there were problems 

involving deadlock. These were fixed, but there could still be some underlying problems that 
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relate to these that are not visible. These could also be a cause of the different behavior of 

these results in scalability. 

Charts 21-23 show the scalability of these networks. As the networks get bigger, the 

power and energy of the systems slightly increases as it takes more of it to move the packets 

through the network due to the network being larger. The performance also decreases 

slightly for the network due to the packets having to travel larger distances between 

routers/cores. Averaging the scalability of the overall CMOS system, and the overall 

Reconfigurable VeSFET system using result Tables 4-11, we are able to conclude that on 

average CMOS decreases 25.6% in performance when increasing the size of the network by 

2 cores (in the x and y direction, ex: from 2x2 to 4x4). We are also able to conclude that 

VeSFET decreases on average 26.5%. Power on average increases 14.4% when scaling the 

CMOS system, and increases 14.9% when scaling the VeSFET Reconfigurable system. 

Overall CMOS and VeSFET scale in a similar fashion as observed in the data we have 

collected. 

CHAPTER 5 - Conclusions 

5.1 Conclusion 

By analyzing the different topologies and comparing CMOS NoC layouts and3D 

VeSFET-CMOS hybrid with reconfigurable NoC we have demonstrated that reconfigurable 

VeSFET-based NoCs have an advantage over non-reconfigurable CMOS NoCs. It is 

demonstrated that both power and performance are improved in the VeSFET system 

compared to the non-reconfigurable CMOS system. These advantages are possible in the 

hybrid implementation with VeSFET layer allowing for face-to-face integration and 
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implementation of VeSFET-based reconfigurability. This is not feasible with CMOS due to 

large area (about 70%) overhead [14].  

5.2 Future work 

5.2.1 Addition of dynamic power gating 

As described in the thesis, the VeSFET switches use AND-type VeSFET transistors. 

This means that both of the gate pillars need to be on in order for current to flow through 

source and drain. This shows a great promise as it is not necessary to include a power-gating 

transistor in order to shut off portions of the chip. It is possible to convert the NoC logic into 

these AND-type transistors and use one of the gates as a power-gate switch. There will be 

overhead involved in running the control lines to these gates. This is where the evaluation 

comes into place. Is it more power efficient to include large power-gating transistors in the 

circuit or is it more efficient to use one of the VeSFET gates in each of the logic transistors 

as a power-gate? 

5.2.2 Additional 3D VeSFET NoC layers 

In this thesis the 3D hybrid CMOS-VeSFET system included only one NoC VeSFET 

layer. As described in the above text, VeSFET can be stacked to multiple layers, as it is 

accessible via both from the top and bottom. Some current works are being done to simulate 

memory as a VeSFET layer. This idea of the NoC layer can be expanded to stacking 

multiple layers of NoC and memory. The bottom layer can still consist of CMOS, and going 

up from there it can alternate NoC, memory, NoC, memory etc. Each one of the NoC layers 

can also contain a different topology from the other. Modeling this comes to be very 
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difficult but it has the possibility of showing great improvements as the topology between 

L1 cache and L2 cache can vary within the chip itself for each application run. 

5.2.3 Additional applications and topologies 

This study contained a set list of applications and three topologies that were compared. 

This can be extended to comparing many more applications with different traffic loads as 

well as compare additional topologies to allow for greater increase in performance/power as 

the topologies can be tailored specifically to the applications. This allows the reconfigurable 

network to have topologies tailored to the applications whereas the traditional CMOS layer 

will still only be able to choose one optimal topology for the overall application list. 
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