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Abstract

Understanding the Real World through the Analysis of User Behavior and Topics in

Online Social Media

by

Theodore Georgiou

Physical events happening in the real world usually trigger reactions and discussions in

the digital world; a world most often represented by Online Social Media such as Twitter

or Facebook. Mining these reactions through social sensors offers a fast and low cost way

to explain what is happening in the physical world. A thorough understanding of these

discussions and the context behind them has become critical for many applications like

business or political analysis. This context includes the characteristics of the population

participating in a discussion, or when it is being discussed, or why. As an example,

we demonstrate how the time of the day affects the prediction of traffic on highways

through the analysis of social media content. Obtaining an understanding of what is

happening online and the ramifications on the real world can be enabled through the

automatic summarization of Social Media. Trending topics are offered as a high level

content recommendation system where users are suggested to view related content if

they deem the displayed topics interesting. However, identifying the characteristics of

the users focused on each topic can boost the importance even for topics that might not

be popular or bursty. We define a way to characterize groups of users that are focused in

such topics and propose an efficient and accurate algorithm to extract such communities.

Through qualitative and quantitative experimentation we observe that topics with a

strong community focus are interesting and more likely to catch the attention of users.

Consequently, as trending topic extraction algorithms become more sophisticated and
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report additional information like the characteristics of the users that participate in a

trend, significant and novel privacy issues arise. We introduce a statistical attack to in-

fer sensitive attribute values of Online Social Networks users that utilizes such reported

community-aware trending topics. Additionally, we provide an algorithmic methodology

that alters an existing community-aware trending topic algorithm so that it can preserve

the privacy of the involved users while still reporting trending topics with a satisfactory

level of utility. From the users perspective, we explore the idea of a cyborg that can con-

stantly monitor its owners privacy and alert them when necessary. However, apart from

individuals, the notion of privacy can also extend to a group of people (or community).

We study how non-private behavior of individuals can lead to exposure of the identity of

a larger group. This exposure poses certain dangers, like online harassment targeted to

the members of a group, potential physical attacks, group identity shift, etc. We discuss

how this new privacy notion can be modeled and identify a set of core challenges and

potential solutions.
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Chapter 1

Introduction

Since the establishment of online social media, real life events frequently trigger a social

reaction on the web. This has led to an era where Big Data and social media content are

strongly tied together [1]. Utilizing this vast, but publicly available, amount of informa-

tion to mine the correlation between physical events and postings on Twitter or Facebook

has proven to unveil hidden behavioral patterns or validate social and psychological the-

ories that once required extensive and expensive surveys [2]. Additionally, the discovery

of what is happening in the real world is now feasible through purely automated and

algorithmic tools that only require access to the Internet. The study of social patterns in

Online Social Media like Twitter or Facebook can be very helpful in identifying collective

user behavior among specific segments of society. Towards this goal, Trending Topics

have been popularly used in the detection of breaking news, as well as in marketing and

advertising mechanisms.
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1.1 Going Beyond Trending Topics

Currently, users of popular social media services like Twitter and Facebook use the

real-time list of trending topics provided by each service to get a glimpse of what users

outside their social circle are talking about, discover major events happening around

them or far away, monitor breaking news, or get a measure of how popular a social

movement is. Both Twitter and Facebook are putting a significant effort in delivering

topics that are relevant and could lead to high engagement between their users and the

posted content.

Trend analysis has its foundations in the problem of identifying heavy hitters or top-

k in one-pass algorithms on data streams [3, 4]. Existing algorithms to extract trends

from websites like Twitter or Facebook are quite simplistic and hence do not pose any

privacy dangers. The earliest approaches to analyze trends in social media introduced

the so-called trending topics. As the term hints, these topics are keywords, phrases, or

hashtags with bursty and popular behavior. As an example, during the Senate Elections

on November 4, 2014 the topics “ivoted” and “#senate” were trending on Twitter and

were terms that hundreds of thousands of users mentioned in their tweets. We can

consider trending topics as a single-dimensional trend analysis where Topic is the only

dimension.

Usually, the origin of a trending topic is a popular real life event that is being discussed

on social media or a meme that is spreading. Trending topics are used to understand and

explain how information and memes diffuse through vast social networks with hundreds

of millions of nodes. And due to their nature, trending topics are useful when reported

in real time to reflect current events. Because of this requirement, methods that identify

and extract trending topics need to be scalable and process data in a streaming fashion as

efficiently as possible. In Figure 1.1 3 examples of trending topic reports are shown taken

2
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Figure 1.1: 3 examples of different trending topic lists. From left to right: Facebook,
Twitter (Tailored), Twitter (by location)

from real Social Media websites at the same time. By observing that these reports have

no overlap, it is obvious that different algorithmic approaches can result to completely

different results.

The relevance of a topic to the user’s interests, plays an important role in the success

of such engagement. It has been observed that the user population involved in a trend

offers high potential in understanding the trend and how other users might react to it. In

a previous study on Twitter topics even simple social relations between the participants

could greatly enhance the understanding of trending topics [5] or spammer detection [6].

Alternatively, we proposed a space-efficient framework [7], that extracts topics which

are highly focused in specific geographical locations. Human evaluations showed that

topics with a high geographical correlation tend to be more interesting than topics with

a dispersed population.

In this Dissertation we propose a novel community detection algorithm that utilizes

a spectrum of social characteristics rather than just geographic locations. The detection

of community characteristics that are meaningfully correlated with a topic, like gender,

age, location, race, ethnicity, political affiliation, etc., can yield powerful results which

3
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are useful in a variety of domains. Marketers can understand their customers better by

identifying the communities interested in their products. Advertisements, which usually

are linked to a trending topic or event, can become more personalized. And of course,

content recommendation can be improved through the extraction of target groups inter-

ested in specific topics. The framework scales linearly with the number of attributes, and

reports communities that share a set of attribute combinations or sub-dimensions.

However, due to the open-access nature of Online Social Networks like Twitter, where

everyone can see who says what, and depending on how much information a trending

topic contains, novel notions of privacy emerge. As a concrete example, Twitter reports

trending topics by location, even at the city resolution. Their service also offers a search

functionality which enables the discovery of all social postings (tweets) that contain

certain keywords, and those tweets are always associated with a user of the social media

service. When Twitter reports that a topic is trending in Athens, Greece, anyone can

find the users that mentioned this topic through Search and may, therefore, assume

that they live in Athens, Greece. The location of a user could be considered a sensitive

attribute, if for example they post provocative political opinions and are afraid of physical

repercussions. As we will show later, an attacker can easily infer the location of hundred

of thousands of Twitter users through a simple crawling of Location-based trending topics

using the official Twitter API. These users do not geocode their tweets neither publicly

display their location on their profile. Thus, the correlation between trending topics

and attributes like location can lead to privacy leaks. Building smarter trending topic

extraction algorithms, which contain richer demographic information of the involved

users can further increase the privacy risk of any reported topic. It is important that any

algorithm that extracts multiple correlated user attributes takes privacy seriously into

account.

The public nature of Online Social Networks, like Twitter and Facebook, has intro-
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duced a different privacy danger from the more traditional linkage attack (identifying the

real identity of an online user). Attribute inference, the process of inferring an OSN user’s

attributes like age, gender, location, race, political preference, etc., can be extremely use-

ful for the purposes of personalization in content recommendation, advertising, and/or

social media analytics. For example, large Social Media websites like Facebook and Twit-

ter already have proprietary methods for inferring social attributes of their users that

are not explicitly provided by them. Recently, it was discovered that Facebook is able to

learn a user’s political preference between values like “Liberal”, “Moderate”, or “Con-

servative”. However, if a third-party attacker is capable of inferring attributes that are

sensitive or private then it is important to build techniques that can protect OSN users.

For example, if it is reported that people that mentioned topic #BlackLivesMatter are

79% teenagers, 86% African Americans, and 67% live in Chicago, then an attacker can

infer the age, race, and location of any user that mentions this hashtag with some statis-

tical confidence. Thus, In the presence of even more sophisticated trending algorithms

that capture several attributes apart from location, reports of trending topics further en-

able attribute inference attacks. On the other hand, in the presence of such a reporting

system, users must be mindful of which topics they discuss in order to protect themselves

from such inference attacks. This can be particularly tedious and time consuming given

the nature of social media which promotes public and frequent posting, something that

usually seems harmless when considered at the level of a single post. Towards this end,

we built a privacy cyborg, that can undertake the task of monitoring its owner’s posts

in social media and automatically warn them if necessary.

Finally, we study how the context of specific topics, like who is posting on Social

Media or when they are posting can affect the quality of a data mining or machine

learning product that summarizes or predicts real life events through online social media

(social sensors). Specifically, we study the problem of traffic-jam estimation and show

5
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that knowing if a post is coming from a driver or not and which time of the day a post

was made can significantly improve the accuracy of the traffic estimation.

1.2 Research Contributions

Through the studies and experiments performed throughout the duration of this

Dissertation, we have made the following contributions:

• The introduction and definition of focused communities in Social Media. [8]

• Provide a scalable algorithm for the discovery of maximally focused communities

with amortized linear time complexity. [8]

• Demonstrate the effectiveness of recommending topics with focused communities

through human evaluation. [8]

• The introduction of a novel privacy attack model using sensitive attribute inference

in the context of community-aware trending topic reporting.

• Provide an algorithmic methodology that identifies when a user’s privacy is in dan-

ger of compromise, and preserves it by anonymizing the community characteristics

of the reported trending topics. There are many ways to anonymize these charac-

teristics, with different levels of utility loss, but our methodology aims to minimize

this loss in an efficient manner.

• Build a system (cyborg) that can monitor an individual’s privacy in real time

and provide warnings when a sensitive attribute can be successfully inferred by an

attacker that has access to community-aware trending topic reports. [9]

• A novel regression model for traffic-severity estimation based solely on the gener-

ated social volume. The proposed model exploits the fact that people complain in

6
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different levels throughout the day and can be used to estimate traffic congestion

in areas that lack proper traffic monitoring resources. The analysis is applied on a

major Californian freeway (I-405) and spans across 6 months of data. [10]

• A better understanding of human behavior when it comes to drivers and their social

media actions while behind the wheel. [10]

• Offer some initial vision on the concept of Group Privacy which would generalize

the concept of an individual’s privacy in Social Media to a whole community. This

project is funded by NSF grant CNS 1649469.

1.3 Dissertation Organization

In Chapter 2 the definition of a focused community is given. Most of the work pre-

sented in the current Dissertation will be referring to the notion of focused communities.

Specifically, in Chapter 3 the description of a scalable algorithm that can extract focused

communities for topics discussed in Social Media is given. Then, in Chapter 4 we delve

into the privacy concerns that can be raised in the presence of an algorithm that reports

focused communities. This new privacy challenge can be approached by both sides: (a)

The algorithmic perspective where the algorithm itself takes care of privacy issues by

obfuscating results before publishing. (b) The user’s perspective, where each individual

personally undertakes the task of protecting themselves, but still with the assistance of

technology. In Chapter 5 we demonstrate how important the context (who and when) is

important in data mining applications that aim to understand what is happening in the

real world through social media content. Finally, the Dissertation concludes in Chapter

6 with future plans on extending the privacy challenges discussed in Chapter 4 from the

individual’s level to the community (or group) level.

7



Chapter 2

Focused Communities

We start by defining the concept of a focused community. This definition will let us exploit

specific properties in Chapter 3 to propose a novel framework that receives a social stream

as its input and efficiently extracts and reports topics with the corresponding focused

communities. Furthermore, in Chapters 4 and 6 we will refer back to this definition to

identify privacy challenges and solutions.

Communities focused on topics, can sometimes be expected and sometimes unex-

pected. It is easy to anticipate that young boys will be interested in the PlayStation 4

gaming console even without monitoring the widely popular topic #PS4. But we might

not expect that women in the area of Boston, MA, that also support the Democratic

party, showed their solidarity to an arrested female teen named Justina with the not so

popular topic #FreeJustina. It is even more unexpected to observe the hijacking of the

hashtag campaign #ReasonsToVisitEgypt that was originally created to promote tourism

in Egypt, but local citizens used it negatively to raise awareness for the country’s political

situation. The important take away is that using only the popularity or bursty behavior

of a topic is usually not enough; a better understanding of the underlying community

can yield a better ranking for interesting topics that might not be globally popular.

8
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2.1 Definition

Focused communities are groups of social media users that have a focus on a spe-

cific topic and might not be related otherwise. The set of users belonging in a focused

community share two properties: they all mentioned the same topic and they all share

some characteristics. In order to extract and understand the underlying communities

interested in a particular topic, T, two pieces of information are necessary. 1) The topic

population P which includes every social posting that mentions topic T. We will refer to

these social postings using the general term datapoints but in the specific case of Twit-

ter they are called tweets. 2) The corresponding social characteristics (attribute values)

for every datapoint. These attributes can include user demographics like Location, Age,

Gender, Race, or characteristics like political affiliation, supporting soccer team, hobbies,

etc. Each user that mentions a topic can be represented by an attribute vector. For ex-

ample, a hypothetical 5-dimensional attribute vector could be: [Location: Los Angeles,

Age: 18, Gender: Male, Citizenship: USA, Political Affiliation: Republican]. Certain

attributes can be hierarchical, like Location or Age. If a user lives in Los Angeles, then

she also lives in California, or USA, or the World. If a user is 15 years old then she also

belongs in the “teenager” age bracket. Ultimately, given the population of a topic T , we

want to extract a combination of attribute values in order to discover the “maximally

focused community” interested in topic T . Note that the process of identifying a (maxi-

mally) focused community has to be applied individually on each topic’s user population

and not the whole stream of social postings or the whole user base. We will now formally

define focused and maximally focused communities.

Suppose a domain with N total attributes where each attribute ai has a finite set of

values Vai . Categorical attribute values may follow a tree-like hierarchical pattern. As

the most notable example, the Location attribute can be described using a tree hierarchy

9
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of 4 levels: city, region/state/province, country, and “Worldwide”. Values in each level

of the hierarchy are connected to a single ancestor from the previous level and to an

arbitrary number of successors in the next level (which can be zero for the values of the

bottom level). We symbolize the root of the hierarchy with the value “*”. Note that

any attribute can be described at the very least by the trivial hierarchy of 2 levels where

the bottom level contains all the values and the top level contains the root. Numerical

attribute values can be viewed as hierarchical attributes as well. Using a radius r the

hierarchical ancestor of a numerical value v can be dynamically estimated as the range

[v − r, v + r]. Alternatively, the values of a numerical attribute can be discretized so it

becomes categorical. In the current work we focused on categorical attributes but the

proposed algorithm works also with numerical attributes.

Let P be a set of datapoints where each datapoint is represented by a vector of

N attribute values vi ∈ Vai . For simplicity, we will refer to these attribute vectors as

tuples ; therefore, any datapoint is considered a tuple which is practically a combination

of attribute values. The support of a single attribute value is equal to the number of

datapoints in P that contain this value. The support of a tuple is equal to the number

of datapoints with values that match the values of this tuple.

A combination of attribute values (tuple) describes all the users that match these

values and can be visualized as the intersection of the N groups of users that match

each individual attribute value (Figure 2.1a). These users are not necessarily connected

in the social graph but instead connected through the fact that they all mentioned the

same topic T . We refer to such groups of users as topic-based communities, or simply

just communities, and represent them through the described notion of tuples. However,

in any given topic population there is a vast amount or arbitrary attribute intersections

that are mostly meaningless. In order to capture important communities we explore

the notion of focus. The presence of focus dictates that there is at least one attribute

10
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of the community (possibly more) that is not present to anyone else outside the topic

community. This leads to communities that are not random intersections and is captured

by the following definition of focused communities.

Let C be a group of users that all share a combination of common attributes rep-

resented by the tuple Ct. This group C is a focused community if there is at least one

attribute value v in the tuple Ct that represents the community C which no other user in

the complement P −C matches. This attribute value v is practically an exclusive feature

of the community. Again, while there is at least one attribute necessary to form a focused

community there can be multiple exclusive attributes. To capture this difference, we will

further introduce the notion of maximally focused communities.

Figure 2.1 illustrates the difference between an arbitrary community (non focused)

and a focused community with three attributes. As an example, we can assume that

attribute a is Location with value va equal to Los Angeles, attribute b is Age with value

vb equal to 18 years old, and attribute c is Gender with value vc equal to Male. In the

first case, the population corresponding to the intersection of the three attributes defines

a non focused community, ie., 18 year old males who live in Los Angeles. In the second

case, the population corresponding to the attribute vc ≡ 18 years old is almost identical

to the intersection of all three attributes. Therefore, the support of the Los Angeles male

community is almost equal to the number of users in P that are 18 years old, since almost

nobody else in the complement P − C matches this age.

We also establish the mathematical formulation of the focus requirement which will

be used in the proposed algorithm that identifies focused communities within all the

users that mention a particular topic T : Let Pv ⊆ P be the set of all users in the

topic population P that match a single attribute value v. The following must hold for

a community C to be focused : ∃v ∈ Ct so that Pv ≡ C. In order to discover focused

communities in the presence of data noise or missing values this formula needs to be

11
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va vb vc

C

P

(a) Non focused community

va

vb
C

vc P

(b) Focused community (ε > 0)

Figure 2.1: Illustration of a non focused community (a), which is the simple intersection
of three attribute values va, vb, and vc. A focused community (b) has at least one attribute
(vb) that is as close to the intersection of va, vb, and vc.

relaxed by introducing a relaxation threshold ε so that we can measure how close a

community is to being perfectly focused:

∣∣∣∣∣
∣∣C∣∣∣∣Pv

∣∣ − 1

∣∣∣∣∣ ≤ ε (2.1)

When the attribute value v is absolutely exclusive to the community C the left-hand side

of the equation will be exactly equal to 0. When the exclusive attribute “leaks” outside

the community C then the value will become greater than 0. We will refer to this value

as the focus metric of the community. A value of 0 indicates that the community is

perfectly focused. A value above ε indicates that it is not focused.

Because a focused community can have multiple exclusive attribute values, we now

introduce the notion of maximality. A maximally focused community is a focused commu-

nity that cannot become larger by introducing a new or different attribute value without

losing its focus property (Equation (2.1)). Note that a topic population might contain

multiple maximally focused communities which are guaranteed to not overlap, based on

12
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the focus property (or might overlap slightly depending on the relaxation value of ε).

2.2 Attribute Generalization

Since the attributes values are hierarchical, as described above, a value v can be

generalized to a direct ancestor of v in the hierarchy. Though generalization we can

reach focused communities that were not possible as a combination of base values. The

generalization of any value except “*” is possible; the root value “*” cannot be generalized

since it has no ancestors. We denote the case of a missing attribute value using the “⊥”

operator (bottom). A “⊥” value can be directly generalized to “*” through a single

generalization step no matter how high the attribute hierarchy is. In the general case,

an attribute a can be generalized from value va to value vb if vb precedes or is equal to va

in attribute a’s hierarchy. We denote this relation between va and vb using the operators

� (succeeds) and � (precedes): vb � va or va � vb. As an example, for the Location

attribute the following relations are true: Los Angeles � Los Angeles, Los Angeles �

California, Los Angeles � USA, California � *, etc.

The support of a generalized attribute value in P is equal to the number of datapoints

that contain any successor of the value. For example, in a two-dimensional space, the

tuple [Location:California, Gender:*] matches datapoints like [Los Angeles, Male] or [San

Francisco, Female]. The tuple that contains all the hierarchy roots is called HEAD :

HEAD ≡ [∗, ∗, ..., ∗, ..., ∗]. The HEAD tuple matches every datapoint in P :
∣∣HEAD| =∣∣P ∣∣. Figure 2.2 shows an example of the formed lattice given a specific starting tuple with

three attributes: Location, Gender, and Age. Connected nodes are reachable through a

series of attribute value generalizations (climbing).

Since every single tuple with unique attribute values is a potentially self-contained

focused community, we further require a focused community to meet a minimum support
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Figure 2.2: Partial view of the attribute lattice. Two connected nodes (solid arrow) in
the lattice indicate that a tuple can be reached from the other through a single attribute
generalization. A dashed arrow indicates that two nodes have other nodes between which
are omitted due to space restrictions.

requirement, relative to the population P . More specifically, we introduce a support

threshold ξ ≤ 1 so that every maximally focused community has support of at least

ξ
∣∣P ∣∣.

Focused communities are groups of people that share common characteristics without

being necessarily connected through the social graph. The way such communities form

is through the mention of topics on social media and are data-driven and individual

members might not be aware of their membership to the community. Through the notion

of focused communities we are able to identify groups of people that have a focused

interest on potentially unexpected topics. We utilize this focused interest to extract

trending topics that can be interesting to an even larger and more general population

(Chapter 3). Additionally, we explore how this extraction introduces privacy concerns

since it involves the knowledge and exposure of private user attributes (Chapter 4).

14



Chapter 3

Community-Aware Trending Topics

In this chapter, we describe a novel algorithm for the extraction of Focused Communities

in real-time from a stream of Social Media posts.

3.1 Extracting Focused Communities

The proposed algorithm aims to extract the (maximally) focused communities for

any topic: Given a topic T , extract all the maximally focused communities with a focus

metric less or equal to ε and support greater or equal to ξ. The output of the algorithm

is one or more tuples that define maximally focused community through a combination

of attribute values. We first provide a basic overview of the algorithm, then discuss its

two phases (sampling and climbing), show its efficiency and accuracy based on synthetic

data, and finally, offer a way to deal with missing values in real datasets.

3.1.1 Overview of the Sample&Climb Algorithm

The algorithm can be applied on the set of datapoints that mention a topic T (for

example, all the tweets that mention the hashtag #ObamaInThreeWords). This set of
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Figure 3.1: Sampling phase example.

datapoints is referred to as topic population P . To extract focused communities for

other topics the algorithm needs to be applied separately to the corresponding sets of

datapoints. Grouping the whole stream of datapoints into separate topic populations

is a simple pre-processing step which will be discussed later. In this section we will

assume and describe a single instance of the algorithm for a single topic. The extraction

of a maximally focused community is an optimization problem: find a combination of

attribute values (tuple Ct) that maximizes the size of the community defined by Ct, while

minimizing the focus metric (Equation (2.1)). The Sample&Climb algorithm, named

by its two phases, initially selects a random sample of datapoints from P (sampling

phase) and uses each datapoint as a starting point to reach the attribute values of a

focused community through a series of value generalizations (climbing phase). As a

real example, the Twitter hashtag “#ObamaInThreeWords” was found to have a single

maximally focused community that includes supporters of the Republican Party (Political

affiliation), that are Male (Gender), between the ages 19-22 (Age), and that live in the

United States (Location). In the following subsections we describe each phase of the

algorithm in detail.
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Figure 3.2: An example case where the greedy attribute selection policy can fail to select
the best attribute.

3.1.2 Sampling Phase

The sampling phase must efficiently bootstrap the optimization problem of extracting

a tuple that defines a topic’s maximally focused community. The main goal is to avoid

enumerating all possible attribute combination which would be exponentially expensive

and instead seed the process with base combinations that are already observed in single

datapoints. To that end, we uniformly sample k tuples from P (datapoints) and create

a new set S; every tuple t ∈ S is then fed to the climbing phase which will reach a

potential maximally focused community. If the sampled tuple is actually a member of

a maximally focused community (checked by Equation 2.1), the climbing phase should

extract the community. If the sampled tuple is not a member of any focused community

the climbing phase will not extract a community. The intuition behind this approach is to

probabilistically select datapoints that might belong to a maximally focused community.

This intuition is visualized in Figure 3.1 where we assume that in a population P two

focused communities C1 and C2 exist. The sampling of datapoints d1 or d2 can enable

the extraction of community C1. The sampling of datapoint d4 can enable the extraction
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of community C2. The sampling of datapoint d3 does not enable the extraction of any

community and a different datapoint needs to be sampled. If the datapoint is indeed

a member of a community, then a series of attribute generalizations and focus metric

computations can lead us to the actual attribute values of the community. For example,

if the following focused community exists: [Location: USA, Gender: *, Age: 13-18] and

the datapoint: [Santa Barbara, Male, 18] is randomly selected then the location value

can be generalized twice (Santa Barbara → California → USA), the gender value once

(Male → *), and the age value once (18 → 18-23) to reach the community.

When a sampled tuple successfully leads to the extraction of a maximally focused

community, the result is saved. If the next sampled tuple succeeds an already extracted

community, by a previous iteration in the sampling phase, then the tuple is skipped since

it can only lead to a known community and would be a waste of resources to process

it. Pseudocode for the sampling phase is provided in Algorithm 1. Line 5 tests if the

new sampled tuple succeeds an already extracted community c. If the tuple is already a

successor of an extracted community, the climbing phase is skipped since it will yield the

same result given that the climbing process is deterministic. The returned result of the

climbing phase is a maximally focused community if climbing was successful, or NULL

if a focused community could not be extracted (line 8).

Based on the desired success probability of the sampling phase pb, the appropriate

minimum size of the sample S can be determined. Let k be the number of sampled

datapoints and C a unique maximally focused community in P .

The sampling of datapoints can be simulated through a series of Bernoulli trials

where success is defined as the selection of a datapoint tuple t so that t � Ct. The

number of trials is equal to the size of the sample:
∣∣S∣∣ = k. The probability of success

in a single trial is equal to p =
∣∣C∣∣/∣∣P ∣∣. The probability of at least one success out of

k trials (we can assume that P is large enough for the trials to be independent even
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Algorithm 1: Sampling phase

Data: Tuples P , attribute hierarchies H[N ]
Result: Set of maximally focused communities C

1 begin
2 C ← {};
3 S ← sample(P );
4 for t ∈ S do
5 if ∃c ∈ C t � c then
6 continue;

7 c← climb(t, P,H);
8 if c 6= NULL then
9 C ← C ∪ {c};

without replacement) is equal to 1 minus the probability of getting 0 successes. This

probability is defined by the geometric equation that describes the CDF of k Bernoulli

trials: 1− (1− p)k. Therefore, we have:

pb = 1− (1−
∣∣C∣∣/∣∣P ∣∣)k = 1− (1− p)k (3.1)

We want to find the minimum value of k so that the right hand of Equation (3.1) is

greater or equal to pb. Let q = 1− p be the probability of failure in a single trial.

pb ≤ 1− (1− p)k =⇒ qk ≤ 1− pb =⇒
q<1

k ≥ logq(1− pb) =⇒

=⇒ k ≥ log(1− pb)
log(q)

=⇒
argmin

k =

⌈
log(1− pb)

log(q)

⌉

Note that k is not directly dependent to the size of the population P , only on the

probability of success pb. As an example, to find focused communities with at least

30% the size of population P and with success probability pb = .99 we need at least 13

samples. For communities with size 70% or more and the same probability pb we need

only 4 samples.
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3.1.3 Climbing Phase

The climbing phase follows the sampling phase by consuming the sampled datapoint

and producing a maximally focused community. More specifically, a tuple t is received

from the sampling phase and the focus metric from Equation (2.1) is utilized to climb

the lattice (see Figure 2.2) from t to a new tuple t′ � t, so that the support of t′ in P is

maximized and is at least ξ, and t’s focus metric remains below the relaxation threshold ε.

Similar to hill-climbing techniques, in every new iteration a new neighbor of the current

solution is generated until an acceptable solution is reached. A tuple t has N possible

neighbors: each one can be reached by generalizing a different attribute value of t.

Basic Climbing Approach

The pseudocode in Algorithm 2 describes this process. Starting from a tuple t, a new

neighbor is produced in every iteration till a maximally focused community or a HEAD

tuple is reached. HEAD represents the unique tuple that has all of its attribute values

fully generalized: HEAD ≡ [∗, ∗, ..., ∗, ..., ∗]. An accepted solution (focused community)

is reached when both conditions in line 5 in Algorithm 2 are satisfied (focus metric

and support). These two conditions alone do not guarantee maximality therefore the

algorithm will not return at this point but will continue until the HEAD is reached and

at this point will return the most recent accepted value for t′. In line 7 the next attribute

for generalization is selected: ag. Different selection policies will yield different results

and offer different guarantees. Using the selected attribute, a new tuple ttemp is generated,

identical to the previous ttemp on all attributes except ag, which gets generalized (line 8).

Since the climbing process always follows an upward path – a neighbor is created

only by generalizing a single attribute – there is a well defined maximum number of

iterations, equal to:
∑N

i=1(H[i].numLevels − 1), where H[i].numLevels is the number
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of hierarchical levels for the ith attribute. This sum can be approximated by O(N).

However, the selection policy for the next attribute to generalize has a significant impact

on the performance of extracting a tuple t′ that eventually corresponds to a maximally

focused community. We will first discuss the exact selection policy that guarantees the

discovery of a maximally focused community and then propose a greedy policy for a more

efficient selection.

Algorithm 2: Climbing phase

Data: Attribute tuple t, all tuples P , hierarchies H[N ]
Result: Maximally generalized tuple t′

1 begin
2 ttemp ← t;
3 t′ ← NULL;
4 while ttemp 6= HEAD do
5 if focus(ttemp, P ) ≤ ε and support(ttemp, P ) ≥ ξ

∣∣P ∣∣ then
6 t′ ← ttemp;

7 ag ← getNextAttributeToGeneralize(ttemp, P,H);
8 ttemp ← {a ∈ ttemp|ag ← H.parentV alue(ag)};

We start with a policy for selecting the next attribute of a tuple t to generalize (ag)

which guarantees reaching the correct attribute values of a maximally focused community

C, if one exists and t � Ct. This policy involves choosing the attribute with a value that

when generalized to the next hierarchical level results in the largest support for the new

tuple:

argmax
ag∈t

support({a ∈ t|ag.value← H.parent(ag.value)}, P )

where ag.value is the current value of the attribute ag (e.g. if the attribute is Location, it

could be Los Angeles or California). The argmax function returns the attribute value for

which the tuple support attains its maximum value. The main drawback of this approach
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is the need to calculate the support of N different tuples in each iteration. Since a total

of O(N) iterations is required to reach a maximally focused community, the total time

complexity becomes quadratic (O(N2)).

Theorem 1 The generalization policy will lead to a maximally focused community C if

the starting tuple t � Ct.

Proof: Let C be a maximally focused community with size
∣∣C∣∣ ≥ ξP and with a

focus metric less than ε. Let t be a starting tuple with n attribute values so that t � Ct

(Ct can be reached by generalizing attribute values in t). Ct can be correctly reached

from t if after O(n) iterations t′ becomes Ct. The only way that a selection policy can

fail to reach Ct, during the climb from t to HEAD, is if one attribute value of t gets

generalized beyond the corresponding attribute value of Ct. To prove the theorem we

need to show that the selection policy will never select to generalize an attribute of t that

has the same value with the corresponding attribute of Ct.

Let ti and tj be the ith and jth attribute values of t, and ci and cj the ith and jth

attribute values of Ct. Assume that ti has reached the same value with ci, and that tj

has not: tj � cj. C is a maximally focused community so given the maximality property

any further generalization of an attribute in Ct cannot lead to a new focused community.

Therefore, the generalization of ti will not increase the support of t while the selection

of attribute tj (or any other attribute not generalized to the same level with Ct) will

result in a new tuple t′ with an increased support. Thus, as long as there are attribute

values in t that are not generalized to the same level of Ct, their selection will always be

prioritized over attribute values that have reached the correct level of generalization, till

all of them are correctly generalized.
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Greedy Attribute Selection Approach

To improve the efficiency of the focused community extraction algorithm and render

it scalable, we propose a greedy policy to select the attribute ag: choose the attribute

value of the tuple that has the smallest support in P (argmin). The intuition behind this

approach is that in a focused community defined by N characteristics, the characteristic

with the smallest support is the one that likely constrains the size of the community the

most. More specifically, the support of a tuple t is equal to the size of the intersection of

the N attribute values in t and the size of this intersection is bounded by the support of

the attribute value with the smallest support. The only way to increase this bound is by

generalizing the smallest attribute in order to match more datapoints. This observation is

illustrated in Figure 2.1b: if either of va or vc is generalized, the intersection of the three

attributes will still be limited by value vb and remain almost the same size. Instead,

the generalization of vb has the greatest potential to increase the intersection. The

mathematical form of this policy is:

argmin
ag∈t

support(ag.value, P ) (3.2)

The main benefit of the greedy policy over the exact approach, is the improvement

of time complexity. While we need to compute the support of N attribute values in each

iteration, we do not need to actually perform the operation for every attribute value in

every iteration, since only one of the support values changes: the support of attribute ag

which gets generalized. All other attribute values of the tuple remain the same therefore

their support does not change in the next iteration. Storing in memory the support of

the N − 1 attribute values only a single support calculation needs to be performed per

iteration. With an O(1) time complexity per iteration the total climbing time complexity

becomes O(N).
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The downside of the greedy policy is that it does not offer specific guarantees for

reaching a maximally focused community. In fact, there is a specific case where the

greedy approach might choose to generalize an attribute value that is not the correct

one. Figure 3.2 visualizes this scenario where all of the necessary requirements to fail

are met: Assuming that a correct community exists and is [male, California, 13-22], if

the climbing process seeded by the tuple [male,San Francisco,18] has currently reached

tuple [male, California, 18] then the greedy policy will select attribute value California

for generalization since it has the smallest support. However, the correct choice would be

to generalize the value 18 to 13-22 in order to reach the focused community. If California

is generalized, the focused community will not be reached.

3.1.4 Accuracy and Efficiency

To measure the accuracy and efficiency of the proposed algorithm we created a syn-

thetic dataset of artificial topic populations that contain random focused communities.

Using a pseudo-random attribute generation process we were able to inject communities

into populations and then test the algorithm for the expected result, something that is

not realistically feasible in this scale on real data. The synthetic dataset was specifically

constructed to examine the accuracy and recall of the approach and includes a complete

spectrum of scenarios — some that might be rare in a real dataset. The generation pro-

cess for each topic population includes three phases: (1) Choosing a random attribute

space with number of attributes n (between 5 and 20), possible values for each attribute

ai (between 2 and 50000), and the number of levels in each attribute’s hierarchy hi (be-

tween 2 and 5). (2) Choosing the attributes of the focused community C by randomly

selecting a value ci for each attribute ai, given equal selection probability to each level

of the hierarchy hi. The result is a tuple that defines the expected focused community.
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This community is also assigned a randomly selected size ratio pC between 30% and 90%

of the total size of the topic population. (3) The creation of the topic population so that

it includes datapoints for the focused community but also other noisy datapoints that

might or might not be part of the community. The population size was randomly selected

between 10, 000 and 1, 000, 000 datapoints to simulate numbers close to ones observed in

Twitter’s trending topics. A total of 10, 000 population groups were created, each with a

single maximally focused community. The algorithm settings that we used are: selection

policy: greedy, sampling size: 20 datapoints, ε : 0.15, ξ : 0.3

The algorithm was able to find the correct communities in each synthetic population

with an accuracy of 93.1%. A community extraction was labeled as successful when the

exact correct community (combination of attributes) could be identified. In the rest of

the cases that failed, most of the time there would be a community attribute value or two

that were more generalized than they should. Measuring the accuracy on a per-attribute

value basis, instead of the whole tuple, the average accuracy is 97.2%. The running time

for all 10000 cases was a little less than 10 minutes on a 2.6GHz CPU.

3.1.5 Handling Missing Values

As opposed to synthetic data, one of the challenges when dealing with real social

datasets is the sparsity of attribute values. This observed sparsity (missing values) is due

to the low recall of specific inference tasks which usually originates in the general lack of

sufficient information to infer attributes with high confidence (e.g., not enough textual

information to infer the age of a user). In the presence of missing values (symbolized

with ⊥), an attribute tuple will not match every datapoint that it should. For example,

the tuple [California, Male, *] does not match the datapoint [Los Angeles, ⊥, 18] because

⊥ does not succeed Male. Therefore, if there are missing values in each attribute, the
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observed size of the community and the size of the exclusive feature(s) will differ and the

focus metric will not result to a focused community.

To overcome this problem, we allow a tuple to match missing values during counting.

Referring back to the previous example, we allow the tuple [California, Male, *] to match

the datapoint [Los Angeles, ⊥, 18]. This alteration fixes the issue of under-counting

a tuple, but introduces over-counting: additional datapoints are now counted as part

of a community. However, the community size over-estimation is statistically bounded.

Let vf be the attribute value that plays the role of the exclusive feature in the focused

community C and let mf be the ratio of missing values for the attribute af . The focused

community can be divided in two parts: the datapoints that belong in the community

and have a value vf for the attribute af and the datapoints that belong in the community

and have a value ⊥ for the attribute af (missing value). Similarly, the datapoints outside

the focused community can be divided in two parts: the datapoints that have a value

v′f 6= vf for the attribute af and the datapoints that have a value ⊥ for the attribute af

(missing value). Note that there are no datapoints outside the community with value vf

for the attribute af based on the definition of the focused community. The datapoints

that could be mistakenly counted are the ones outside the community, with a missing

value. The expected size of this subset is bounded by: mf (1− ξ)
∣∣P ∣∣. In the presence of

many missing values it is recommended to use a higher support threshold ξ for the correct

detection of focused communities since the above value gets closer to 0 when ξ → 1.

3.2 Experiments with Twitter Data

To understand the effectiveness of the proposed algorithm we performed experiments

on a real dataset from Twitter. We first present the available data and the inference

process of the user attributes like location and gender. We then discuss some interesting
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findings from the extracted topics and the corresponding communities in the results.

3.2.1 The Twitter Dataset

The used Twitter dataset contains a uniform 10% sample of all the tweets and Twitter

users from the following two periods: September 12 to October 26 of 2013 (45 days) and

April 16 to May 24 of 2014 (39 days). The pool of topics contains every mentioned

hashtag or capitalized entity from the tweets’ raw text. The extracted tweet features

include location, the list of external user mentions (@-replies), the device the tweet was

posted from (e.g. iPhone, Android, web browser), and the general sentiment. Location

extraction was done on (1) the tweet level using Twitter’s geo-tagging mechanism, and

to further improve the recall, on (2) the user level using a user-provided raw text field

(similarly to [11, 12]). To infer location based on the user’s field we applied a simple

but precise pattern matching process that could identify location patterns like: “City,

Region, Country”, or “Region, Country”, or just “Country”. To validate the patterns

we used a Location hierarchy provided by the MaxMind database [13]. The user device

was extracted from the available information provided by the Twitter API. To infer the

sentiment of a tweet we used the SentiStrength tool [14]. Note that not all features were

available in every tweet; for example, less than 2% of the tweets had an explicit location

tag or non-neutral sentiment.

Meaningful and interesting community extraction requires a diverse set of user charac-

teristics/demographics. To expand the number of extracted attributes from the Twitter

dataset we additionally infer the users’ age, gender, political affiliation, and sports team

preference. To extract gender and age we applied existing language models extracted

from Schwartz et al. [15] on social media data. To apply the models we gathered all

the tweets of every user for each of the two analyzed periods of data. While this is an
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expensive process, especially space-wise, it can be done offline and does not affect the

complexity of our Sample&Climb algorithm. For political affiliation we gathered the

official Twitter accounts associated with the three most popular US political parties:

Democratics, Republicans, and Libertarians. Then, a user’s political affiliation was de-

termined based on the simple majority of interactions (@-replies) with these accounts

(e.g. if a user mostly interacts with Democrats, their party preference was labeled as

Democrat). Similarly for sports, we collected the Twitter accounts of teams, players,

and coaches for the following four US professional sports: Baseball, Basketball, Foot-

ball, and Hockey. For every sport, a user’s team preference was inferred based on their

interactions with each team’s accounts. For both party and sports team preference we

aimed for high accuracy even if it sacrificed recall. The average accuracy across all the

attribute inference processes is 92.1% without including sentiment analysis which has a

lower accuracy of 68.7%. Accuracy was manually calculated from random samples of 100

users and their tweets for each process. Table 3.1 shows the accuracy of each inference

task. Given that the language models are in English, age and gender inference only works

for English speaking users. Similarly, political affiliation and sports teams are focused on

users within the United States and Canada. For the age and gender inference we list the

calculated precision from Schwartz et al. Note that their models were tested on Facebook

data, so accuracy might differ slightly.

In total, the experimental setup contained 10 attributes: 1) Location (either from

the tweet or the user), 2) Age, 3) Gender, 4) Political affiliation, 5) Baseball team, 6)

Basketball team, 7) Football team, 8) Hockey team, 9) Tweeting device (e.g. iPhone),

and 10) Sentiment. While sentiment is not strictly a user characteristic, it helps with

the interpretation of the results by hinting at the attitude of the community towards the

topic. Apart from Location and Device all hierarchies have only 2 levels (trivial). The

Location hierarchy has 4 levels: city, region, country, and *. The Device hierarchy has 3
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Inferred Attribute Source Accuracy
Location Geo-tagged tweets 100%
Location User specified location 96.1%
Device Twitter API 100%
Gender Schwartz et al. [15] 91.9%
Age Schwartz et al. [15] .84 (R value)
Political Affiliation Interaction with parties 83.4%
Baseball Team Interaction with teams 91.5%
Basketball Team Interaction with teams 93.7%
Football Team Interaction with teams 87.8%
Hockey Team Interaction with teams 95.0%
Sentiment SentiStrength [14] 68.7%

Table 3.1: Inference accuracy of Twitter attributes

levels: specific device, mobile/desktop, and *.

Setup and settings. The execution of the community extraction algorithm was

applied on the stream of tweets using a sliding window of size 500,000. On a typical

day this amount of tweets can be produced within two minutes of real time. For every

new window new topics get introduced, existing topics receive additional mentions, and

old topics get evicted. To reduce noise, candidate topics are required to have at least

50 mentions during the window. The rest of the algorithm settings are: selection policy:

greedy, sampling size (k): 20 datapoints, ε : 0.15, ξ : 0.3. The choice of ε is based

on the fact that Twitter data is noisy and the community extraction should be relaxed

enough to accommodate this noise. The value of the support threshold ξ is based on the

average population of a Trending Topic on Twitter, which is usually between 1K and

200K tweets, therefore we can expect communities of size between 300 and 60K users

(smaller communities would not be interesting).
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Table 3.2: Examples of general Trending Topics.

Topic Size Sentiment Location Age Gender Politics Size

#PS4 114 * * 13-18 Male ⊥ 111

#Bring1DtoGreece 117 * Athens:AT:GR 13-18 Female ⊥ 110
#NavyYardShooting 5427 Negative US 19-22 * * 5218

#OscarTrial 1242 Negative Johannesburg:ZA * Female ⊥ 1133
#ReasonsToVisitEgypt 50 Negative AL:EG, CA:EG * * ⊥ 49

#DisneySide (day 1) 54 Positive
Anaheim:CA:US,
Orlando:FL:US

* Female ⊥ 50

#DisneySide (day 2) 53 * CA:US, FL:US * Female ⊥ 51

Penn State 64 Negative
Bloomington:IN:US,
Indianapolis:IN:US

19-22 Male * 56

#auspol 55 *
Melbourne:VIC:AU,
Sydney:NSW:AU

* Male ⊥ 51

#auspol 461 Negative AU * * ⊥ 457

#FreeJustina 54 Negative Boston:MA:US * Female Democrats 51

#cdnpoli 151 Negative ON:CA 23-29 Male Republicans 139
White House 2989 * US * Male Republicans 2868
#ObamaCare 5090 Negative US * Male Republicans 4818
#ObamaInThreeWords 246 Negative US 19-22 Male Republicans 224

3.2.2 Qualitative Evaluation of Twitter Results

For each window of 500k tweets, tweets were grouped by topics to form the topic

populations and the focused community extraction algorithm was applied on each topic.

The final outcome of this experiment, is a list of topics and the corresponding maximally

focused communities that were extracted, in each window. The extracted community of

a topic might differ between different windows as additional users mention the topic and

the population changes. We highlight some topics to showcase interesting behaviors and

qualitatively argue that the results actually make sense. These topics are listed in Table

3.2 (general interest trends) and Table 3.3 (trends with a sports related focus). A “*”

value indicates that the attribute got generalized to its top level of the hierarchy. A “⊥”

value indicates that there was not enough information to extract a specific attribute value

(due to missing values). Attribute values for Device and Basketball team are omitted

due to lack of space. Topics that appear twice are taken from different days, and are

listed to show the dynamic nature of focused communities as the topic population grows

or just changes.

An interesting topic worth discussing is the hashtag #DisneySide which was a social
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Table 3.3: Examples of Trending Topics in sports.

Topic Size Location Age Gender Baseball Football Hockey Size

#TMLtalk 3437 Toronto:CA 19-22 * ⊥ ⊥
Toronto
Maple
Leafs

3096

#AZvsNO 50 ⊥ 19-22 * ⊥
Arizona

Cardinals, New
Orleans Saints

⊥ 50

#RedSox 528 Boston:US 19-22 Male Boston Red Sox ⊥ ⊥ 411

#Boston 51 ⊥ ⊥ ⊥ Boston Red Sox
New England

Patriots
Boston
Bruins

51

media campaign by US Disney Parks. Disney asked fans to tweet photos of their ‘Disney

Side’ from their visit to a Disney theme park. During the first day, most of the tweets

occurred in the two cities where a Disney park is located: Anaheim, California and

Orlando, Florida. The next day, the campaign audience expanded to include the whole

states of California and Florida.

Other interesting topics and communities identified by our algorithm include: The

hashtag #NavyYardShooting is about the mass shooting that occurred on September 16,

2013 on a US military base at Washington, D.C. and at its early stages it was mostly

discussed by young adults in the United States. The topic #OscarTrial refers to the trial

of the South African Olympian Oscar Pistorius and our algorithm correctly captured

the location of the focused community (South Africa). Of particular interest, is topic

#ReasonsToVisitEgypt which originally started as a touristic campaign for Egypt but

got highjacked with citizens’ complains, hence the extracted negative sentiment. Topic

Penn State is related to a college football match where college Penn State played in

Bloomington, Indiana. Indianapolis is also in the results since it is the capital of the

Indiana state and it is very likely that fans/students might have specified it as their

location. #auspol is a hashtag about police brutality in Australia. In the early stages of

the trend it was mostly mentioned in the two largest cities of Australia but as it became

popular, the whole country became the focused community. The topic #FreeJustina is

about an arrested female teen named Justina from Boston. We observe that women in

31



Community-Aware Trending Topics Chapter 3

the area of Boston, MA, that also support the Democratic party, showed their solidarity

to Justina through this hashtag. #cdnpoli stands for ‘generic canadian political issues’

and this is why the topic’s location is in Canada. #AZvsNO stands for ‘Arizona vs

New Orleans’ and is describes an American Football match. #Boston is an interesting

case with a focused community of users that were fans of local teams in all three sports.

Finally, topics like #PS4, which stands for ‘Play Station 4’, and #BringOneDtoGreece,

which stands for ‘Bring 1Direction (the boy band) to Greece’, further show how our

algorithm identified the correct characteristics of the interested populations in each case.

There are also cases of topics and communities that we could not explain by associat-

ing the topic to a real event or expected behavior. For example, the topic #SundayFunday

was found to have a maximally focused community of young-adult female residents of

Houston, Texas. Or, the topic #DefyExpectations was found to be discussed by a fo-

cused community of teenagers. It is hard to explain why these specific communities

were interested in these generic topics at a particular point in time. There are several

cases like these in our results which proves that the topic-mentioning behavior of users

in Social Media can be unpredictable and will be further studied in future work. How-

ever, uncovering the underlying characteristics of the topic population is a significant

step towards this direction. Finally, an interesting general observation is that for topics

related to activism or politics, usually the male demographic was prevalent (with excep-

tions like #FreeJustina). For topics related to memes or pop culture, mostly the female

demographic was prevalent.

3.3 Application: Community-based Topic Ranking

One potential application for the extracted focused communities is to re-rank trending

topics in order to increase their engagement potential as a social content recommendation
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system. In this section we discuss a ranking formula and then show through experimental

evaluation that with very basic calculations, ranking by focused communities leads to

more engaging topics as compared to two standard baselines. Ideally, the community

attributes can be exploited to deliver a more personalized recommendation experience

to users by showing them topics with similar characteristics. We plan to further explore

increasing the relevance of trending topics through this approach in future work.

3.3.1 Ranking Formula

To obtain an interesting ranking of topics we use a combination of two measures:

Inverse Community Frequency and Relative Community Popularity. Both measures aim

to normalize the raw frequency of a topic in order to boost those topics with interesting

focused communities. Inverse Community Frequency (icf) is inspired by Inverse Docu-

ment Frequency from text document ranking in Information Retrieval. Here we use it in

a similar context: to tune down community characteristics that get associated with many

topics. A community characteristic that appears in few topics only should be more inter-

esting. Inverse Community Frequency, measures how many topics in the whole window

W of datapoints also share a community characteristic. For example, the icf of location

Santa Barbara will depend on how many topics in W have a focused community that

contains Santa Barbara. The icf score of a community C is the product of icf scores for

each attribute value in C. The icf score for a single attribute value a is equal to:

icf(a) = log
Nt

|{T ∈ W |a ∈ C}|

where Nt is the total number of topics in W and the fraction denominator is equal to

the number of topics T in W with a community C that contains the attribute value a.

Relative Popularity takes values between 0 and 1 and practically compares the size of a
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topic’s focused community with the size of the community with the same characteristics

in the window W of datapoints. The relative popularity score is calculated as the

fraction of the support of a community in P over the support of the community in W:

rp(C) =
support(C,P )

support(C,W )

For example, if a topic is being discussed by 100 women and the number of women in

W is also 100, then this community has a relative popularity of 1. The overall scoring

function is based on each topic’s extracted focused community C and uses both notions

of relative popularity and exclusive focus:

score(T ) = |P | × rp(C)× icf(C) (3.3)

where C is a focused community of the topic T, P is the population of the topic. The

overall score of a topic is proportional to the topic’s raw frequency (size of P ), the relative

popularity score of the topic’s community, and the icf score of its community. Using this

score metric we rank the candidate topics and obtain a final list of top-k topics which we

will refer to as community-based topics or c-topics.

3.3.2 Experiments

To evaluate the ranking of community-based topics we used two baselines: (1) the raw-

frequency baseline where topics are ordered by the number of mentions (also referred to as

f-topics) and (2) the burstiness baseline where topics are ordered based on their temporal

trendiness, which is calculated through chi-squared (expected vs. observed frequency of

the topic). The latter baseline is time sensitive and requires the monitoring of each

topic’s historic frequency to capture its average and seasonal changes in frequency. The
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average historic frequency is the expected value and is used in the calculation of the chi-

squared formula to measure how bursty a topic might be, given a new observed frequency:

χ2 = (Expected−Observed)2/Expected. We will also refer to the burstiness-based topics

as b-topics.

Based on the experimental results, we found that raw frequency leads to popular but

not necessarily informative or disparate topics (e.g. #ipad). Burstiness leads to better

topical diversity by eliminating those high frequency topics that are consistently popu-

lar. On the other hand, topics ranked based on their focused-community characteristics

appear to generally be more interesting and are further enhanced with the information

of who is interested in each topic. The average similarity between the community-based

topics and each baseline was measured with the Set Based Measure described in [16].

In general, the goal is to determine the fraction of content overlapping (set intersection)

at different depths of the ranking lists. Between the raw frequency ranking and the

community-based ranking the average set based measure with a depth of 20 is equal

to 0.089 while with a depth of 10 is 0. Between the burstiness based ranking and the

community-based ranking the average set based measure with a depth of 20 is equal to

0.122 while with a depth of 10 is 0.098. These values indicate that the three rankings pro-

duce mostly heterogeneous top-k lists and signifies that highly popular or bursty topics

usually do not contain focused communities.

As with many unsupervised learning tasks, evaluating the produced results is a chal-

lenging task. In content recommendation systems used by real users, one can run A/B

tests to compare the success of the algorithm with a baseline. To evaluate the community-

based topics in terms of potential usefulness and interestingness we (a) measure the en-

tropy of the results as an objective quantitative measure, and (b) asked human evaluators

to choose their favorite topics from a pool.

Using the notions of Self-information and Entropy from Information Theory we pro-
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vide a measure of the information content for community-based trending topics. Self-

information captures how surprising an event is based on the probability of the event. The

entropy of the experiment (extracting community-based trending topics) is the expected

value of every trending topic’s self-information. The self-information of the community

CT for a single topic T is I(CT ) = −log2(Prob(CT )). Intuitively, the less likely a com-

munity is to observed the higher its self-information. The prior probability of CT can be

measured in the sliding window as the percentage of datapoints that contain CT . The

entropy of the results is equal to the expected value of all topic communities: E[I(CT )]

(measured in bits). We also measured in the same way the entropy of communities as-

sociated with trends ranked by raw frequency and burstiness. In the majority of those

cases, topics did not have a focused community but rather were mentioned by users with

dispersed attribute values. However, we can still calculate the probability of the observed

population characteristics for each topic based on the prior probabilities from the sliding

window. The average entropy for the community-based topics was found to be 1.87 bits,

for frequency-based topics it was much lower: 0.27 bits, and for burstiness-based topics

it was similarly lower: 0.35 bits. This indicates that the extracted topics using our

method contain surprising and potentially useful communities that cannot be trivially

anticipated or that are not observed in topics ranked by frequency/burstiness.

Since we aim to use the new ranking to improve the recommended social content, we

need to observe that real humans would be interested in viewing more content related to

an extracted community-based topic. To quantify this property we use the two baselines

described above, raw frequency and burstiness. We offer to each evaluator an unlabeled

selection of 10 topics (pool) and ask them to pick the top 5 (in no particular order) based

on which they find the most interesting. In the experiment description a topic is defined

as interesting to a user if they would like to read more about it: get tweets about it,

read news articles, see related images, etc. In the first experiment each pool of 10 topics
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included 5 frequency-based and 5 community-based topics. In the second experiment,

each pool contained 5 burstiness-based and 5 community-based topics. In both cases we

evaluated how community-based topics compare to each baseline. To reduce any bias

on the reported evaluations results, we performed each experiment with 5 different topic

pools (so a total of 10 pools was created). Each pool was evaluated by an average of 61

Amazon Turk workers located in the United States.

The results are shown in Table 3.4 for the first experiment (f-topics baseline) and

Table 3.5 for the second experiment (b-topics baseline). We counted for each pool how

many times each topic was selected as interesting and sorted them by this number. The

first three rows of each table display the percentage of community-based topics (c-topics)

in the top-1, top-3, and top-5 of the evaluators’ selections respectively. On average,

the 73.3% of the top-3 selected topics was comprised of community-based topics when

compared with raw-frequency topics and 79.96% when compared with burstiness-based

topics. For the top-1 in the majority of the pools the evaluators selected a community-

based topic most of the times. These values indicate that for both baselines, the majority

of selected topics was community-based. The final two rows of each table show the per-

centages of c-topic and baseline-based topic (f-topic and b-topic) selections — how many

times an evaluator clicked a topic of each category as interesting. This value can also

be viewed as the probability of each category/method to produce an interesting topic.

On average, community-based topics have 26.86% better chance to be more interesting

than raw-frequency ranked topics and 49.43% better chance than burstiness ranked top-

ics, which shows that in most cases users found our algorithm’s results more appealing.

Some topics ranked by raw frequency or burtiness are still interesting to users due to

their popularity, but overall our method delivers more appealing results to the average

person as represented by Amazon Turkers.

The histogram in Figure 3.3 shows the results of the first experiment (popularity
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Table 3.4: Evaluation results from Amazon Turk on 5 different pools of topics. Compar-
ison with raw-frequency baseline.

Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Average
% of c-topics in top-1 0% 100% 100% 100% 100% 80%
% of c-topics in top-3 33.3% 100% 66.6% 100% 66.6% 73.3%
% of c-topics in top-5 60% 60% 40% 80% 60% 60%
% of clicks on c-topics 49.75% 54.86% 52.28% 64% 58.75% 55.92%
% of clicks on f-topics 50.25% 45.14% 47.71% 36% 41.25% 44.08%

Table 3.5: Evaluation results from Amazon Turk on 5 different pools of topics. Compar-
ison with burstiness baseline.

Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Average
% of c-topics in top-1 100% 100% 100% 100% 100% 100%
% of c-topics in top-3 66.6% 66.6% 66.6% 100% 100% 79.96%
% of c-topics in top-5 60% 40% 80% 100% 100% 76%
% of clicks on c-topics 54% 52.4% 62.2% 63.6% 66.8% 59.8%
% of clicks on b-topics 46% 47.6% 37.8% 36.4% 33.2% 40.02%

baseline) performed the same way as with Amazon Turk on 12 Computer Science graduate

students from the University of California, Santa Barbara. Topics denoted by (C) are

community-based and topics denoted by (F) are frequency-based. All of the top selections

ended up being community-based topics even though some evaluators were interested in

simply popular topics like #ThrowbackThursday or #NowPlaying.

This difference between Turkers and Computer Science graduate students indicates

that a group of people with a biased interest in news (like graduate students) might find

content based on topics with a community focus more interesting than a random diverse

population (like US based Amazon turkers). In future work we plan to explore person-

alized topic scoring that produces personalized rankings to increase the recommended

content’s relevance.

38



Community-Aware Trending Topics Chapter 3

Figure 3.3: People’s topic preference from a pool of 10 topics.

3.4 Related Work

Existing social content recommendation systems have mainly relied on the similarity

of users in the social network. Walter et al. [17] have proposed a model to use the users

social connections to reach contents and filter the contents by their trust relationship.

Golbeck et al. [18] have considered online social networks as recommendation networks

by exploiting the easiness of information cascades on such platforms. DuBois et al. [19]

have proposed to improve the collaborative filtering recommendations by using the trust

information as the weights between users. Finally, a hybrid approach was introduced by

Wang et al. [20]. In the current work we utilize the notion of trending topics as a plat-

form for content recommendation and identify communities based on common attributes

(demographics) between the users to further boost this notion. Many algorithms have

been proposed for discovering interesting trending topics utilizing techniques from the

areas of Anomaly Detection, Data Streams, and Clustering. In existing studies, trend-

ing topics are mined for specific interest areas like Sport [21], Earthquakes [22], News

reporting [23, 24], general event detection [25, 26], or search support on trending events

[27]. In this paper we research the novel idea of identifying the underlying user commu-
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nities that are interested in social media topics and then utilize this knowledge with the

overall goal of providing more interesting, insightful, and relevant content to the users of

the social network. Such a task can be challenging in terms of complexity when dealing

with a non trivial number of community characteristics. The official Twitter Trending

Topics are personalized to the user by displaying the top topics from categories the user

is interested in. This is a simple approach to serve relevant trends but focuses only on

interests (e.g. Technology, Politics) or location, and does not identify topics where the

underlying population has specific properties, thus, can miss less popular topics with

highly interesting community characteristics.

Our algorithmic work builds on many techniques in areas that share common prop-

erties with this problem, most notably from Subspace Clustering and Frequent Itemset

Extraction/Association Rule Mining. Association Rule Mining using Frequent Itemset

Extraction [28] is a well studied area and poses similarities to the attribute-based com-

munity extraction. Techniques that sample the data to perform fast itemset extraction

are the closest to our proposed approach since probabilistic algorithms are used to re-

duce complexity. Such techniques include Toivonen [29] and Chakaravarthy et al. [30].

Clustering algorithms for data in multiple dimensions, known as subspace clustering algo-

rithms, are usually divided in two categories: density-based methods and k-means-based

methods. A detailed survey on both categories can be found in [31]. Similar algorithmic

principles are used to solve the frequent itemset and association rule mining problems

as well (e.g. a-priori pruning is used in [28] and [32]). Our approach mainly differs from

existing sub-space clustering and association rule mining techniques by combining a sam-

ple phase and then a greedy climbing of the lattice to efficiently (linear time) identify

the combination of user characteristics that form a community for a particular trending

topic. Efficiency is key since vast amounts of data are processed in real time.

Finally, similar to our approach, probabilistic or Monte Carlo based methods for com-
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munity extraction have also been explored in Perozzi et al. [33]. They study extracting

community attributes that form highly connected subgraphs within the social network.

To detect the correct values for each attribute they utilize Monte Carlo sampling to

randomly select values until a connected subgraph is formed. Our approach seeds the

process by sampling k datapoints from a trending topic’s population. This leads to a

much more agile and efficient attribute value selection process.

3.5 Remarks

We study the problem of extracting multi-dimensional communities focused on indi-

vidual topics by introducing the notion of a maximally focused community with properties

that enable the efficient discovery of interested communities defined by a subset of social

attributes. These properties led to the development of an algorithmic framework for the

extraction of maximally focused communities of any topic with proved linear time com-

plexity. Finally, we provide a robust ranking that boosts topics with relatively popular

or exclusively focused communities through metrics adapted from IR.

Extensive experimentation was conducted on two different datasets: one real from

Twitter with data from large periods in 2013/14 and one synthetic. The results highlight

the efficiency, correctness, and stability of our proposed algorithm. As an application, we

demonstrate the power of our approach to identify interesting communities for trending

topics, sometimes expected and sometimes unexpected. It is interesting to observe that

females in Boston, which also support the Democratic party, show their solidarity to an

arrested teen (#FreeJustina). It is unexpected to discover the hijacking of a touristic

hashtag in Egypt from local citizens that try to raise awareness for the country’s political

situation (#ReasonsToVisitEgypt). Such data can be used to better understand a topic’s

population and, essentially, recommend more relevant and interesting social content.
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Chapter 4

Privacy in the Context of

Community-Aware Trending Topics

In this chapter we formally introduce a novel privacy model that captures the notion of

sensitive attribute inference in the presence of community-aware trending topic reports

where an attacker can increase their inference confidence by consuming these reports and

the corresponding community characteristics of the involved users. We discuss a basic

attack and provide an efficient algorithm that preserves the privacy of each individual

user so that sensitive attributes can not be successfully inferred. To the best of our

knowledge we are the first to address this notion of privacy and introduce an algorithm

that uses the idea of attribute generalization in combination with Artificial Intelligence

techniques to efficiently defend against this type of attack.

4.1 Motivation

Due to the public nature of Online Social Networks like Twitter, apart from identifying

the real identity of a user, an attacker will usually try to infer sensitive attribute values
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of certain users utilizing knowledge of the social network (who is a friend with whom, or

who follows who). Furthermore, a sensitive attribute inference attack is also a significant

risk in the context of community-aware trending topic reporting and to the best of our

knowledge has not been studied before. At the same time, large Social Media websites like

Facebook and Twitter already have proprietary methods for inferring social attributes

of their users that are not explicitly provided by them. Recently, it was revealed that

Facebook is able to learn a user’s political preference between values like “Liberal”, “Very

Liberal”, “Moderate”, or “Conservative”. This is a particularly interesting case since

user content on Facebook is usually not accessible to anyone except the user’s immediate

social network. However, if sensitive attribute information, like political preference, is

used in the context of enriching other features which are publicly known, like Facebook’s

Trending section, then this feature could start leaking sensitive information to virtually

anyone.

To demonstrate how sensitive attribute inference could be applied as an attack in

the context of trending topics, we provide a hypothetical example in Figure 4.1 where

users mention certain topics that were reported as trending from a community-aware

algorithm (listed in the table at the top of the figure). The information in the table is

public to everyone, similarly to the lists of Trending Topics that Facebook and Twitter

already publish to their users in general, or even for specific geographic locations. The

main difference is that each topic is also linked with values for specific attributes like

gender, age, location, political preference, etc. The association of an attribute value with

a topic indicates that this specific attribute value is a characteristic for the majority of

the users that mentioned the topic (but not necessarily all of them). For an attacker,

this means that they cannot be 100% confident that every user mentioning topic T1 lives

in Boston. However, when users discuss several topics, the attacker’s confidence may

increase. As shown in Figure 4.1 Alice and Bob each mention some of the topics that
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Figure 4.1: Alice and Bob are two users who have discussed some topics. These topics
were reported as trending and additionally, for each topic certain demographic informa-
tion was extracted for 3 attributes: Location, Political Preference, and Gender. These
values indicate that a significant portion of all the users that mentioned each topic, be-
long to the community defined by those values. An attacker can observe these values
and can also find which topics Alice and Bob have discussed. Based on this knowledge,
the attacker can infer certain attribute values of Alice and Bob with certain confidence.
In case (a), where Bob and Alice have only discussed a single topic, the attacker has
low inference confidence. In case (b), Bob and Alice have also discussed topic T4 which
increases the confidence of the attacker for Alice’s gender and Bob’s political preference
but at the same time decreases the confidence for Bob’s gender because T2 and T4 have
mostly male and female communities correspondingly.
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happen to be listed in the table of trending topics. Since the attacker can obtain a list

of the users that mentioned each topic (e.g., Twitter provides such search functionality),

they can also increase their confidence (note the difference between cases (a) and (b)) in

inferring Alice and Bob’s sensitive attributes like political preference or gender without

even accessing their posted content or network.

In Table 4.1 we list some real examples of topics and their corresponding community

characteristics (attribute values) that we extracted from Twitter data. The communities

are characterized by values for several attributes including Location, Gender, Age, Polit-

ical party (US only), or even Sports teams. Note that these attribute values are temporal

and might change over time, even for the same topics. Each topic has a frequency (how

many unique users mentioned it) and a community defined by the attributes that describe

a significant part of the users that mentioned the topic. In practice, it is impossible to

observe topics where the entirety of their population forms a homogeneous community

on some attribute values, therefore, the reporting algorithm will only guarantee that at

least some percentage of this user population shares the reported attribute values. Note,

that a community is not necessary to have a value for every attribute, as it happens for

“#NFL” where the user population is homogeneous only on Gender and Location and

not in Age or Politics. In the last column of the table we provide the number of privacy

violations for each topic, i.e. the number of social media users that will have at least one

attribute exposed to an attacker if the corresponding trending topic is publicly reported.

An attacker similar to the one in Figure 4.1 can peruse the rows of Table 4.1 and

attempt to infer sensitive attribute values for the involved users. If there is a user that

mentioned both topics #ObamaCare and #ObamaInThreeWords then the attacker can

be very confident that the user supports the Republican party, that they are located in

the United States, and moderately confident that they are male and a young adult. In the

presence of even more sensitive attributes like sexual orientation, religion, or race, such
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Table 4.1: Real examples of community-aware trending topics

Topic Frequency Community characteristics Size Violations

#NavyYardShooting 5427 Location: USA, Age: 19-22 5218 2561

#NFL 1534 Gender: Male, Location: USA 1212 389

GOP Debate 3278 Gender: Male 3004 36

#FreeJustina 54
Location: Boston, Gender:
Female, Political party:

Democrats
51 13

#OscarTrial 1242
Location: Johannesburg:ZA,

Gender: Female
1133 345

#ObamaCare 5090
Location: USA, Politics:

Republicans
4818 1002

#ObamaIn3Words 246
Location: USA, Age: 19-22,

Gender: Male, Politics:
Republicans

224 76

#RedSox 528
Location: Boston, Age: 19-22,
Gender: Male, Team: Boston

Red Sox
411 256

inference attacks need to be understood and prevented. Note that this kind of attack

is different from existing privacy scenarios where the attacker infers sensitive attributes

through the user’s local social graph (e.g., [34]). In the case of community-aware trending

topics, membership to a community is implicit and happens just by mentioning certain

topics. Therefore, even if a user is careful with which groups they subscribe to or become

members of, or with whom they socially connect with, sensitive information can still be

exposed simply through the mention of a topic.

4.2 Related Work in Privacy

Data privacy is a thoroughly studied area and several families of algorithms have

been proposed to deal with different kinds of attacks, mostly on published anonymized

datasets. Most notably, the concepts of k-anonymity [35], l-diversity [36], t-closeness

[37], and Differential Privacy [38] include methodologies to preserve data privacy and

46



Privacy in the Context of Community-Aware Trending Topics Chapter 4

information anonimity. However, privacy in Online Social Networks follows a different

data model where most of the information is publicly available: the Twitter social graph,

the set of online postings by every user in Twitter, user membership in Facebook pages,

etc. What is not accessible though, is information about sensitive characteristics that

users might want to keep hidden from the general public. An attack to discover these

characteristics is known as sensitive or private attribute inference.

There are studies and published algorithms for inferring user demographics based on

the content posted by social media users or their social network. [15] developed language

models to identify the gender and age of Facebook users. [39] describe a method to infer

user demographics by utilizing external knowledge of website user demographics and

correlating it with a social media service. Their approach mainly differs from Schwartz

et al.’s in its ability to infer the user characteristics without analyzing the content of

postings. While these are considered valid sensitive attribute inference methods, they do

not study the privacy and utility implications.

[34] were the first to study the privacy of sensitive attributes in the context of Online

Social Networks. They describe a variety of attack models to infer sensitive user attributes

but the model most related to the current work, is the model that utilizes the membership

of users in Facebook pages. This model is similar to the “membership” of a user to a

trending topic’s community. However, they do not provide any algorithmic solution since

it is the choice of the user to subscribe to a page. In Privometer, [40] measure how much

privacy leaks from certain user actions (or from their friends’ actions) and create a set of

suggestions that could reduce the risk of a sensitive attribute being successfully inferred,

like “tell your friend X to hide their political affiliation”. Similar to Privometer, [41], and

then [42], propose a method for preventing information leakage that introduces noise, by

removing edges or adding fake edges, to the social graph. This idea was then extended

to a finer-grained perturbation in [43] where edges are only added partially. [44] built
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a system called “curso” that identifies when a user’s privacy is violated through the

analysis of their local network. There are also studies that focused on the anonymization

of network data where the attacker tries to statistically infer the relationship between

members of the social network. Most prominent works in this area include [45] and [46].

[47] also studied the same problem but specifically consider distributed social networks.

Dealing with privacy on a virtually infinite stream of data poses its own challenges and

most of the aforementioned techniques and analyses focus on static datasets/databases.

Dwork et al. have studied the problem of creating privacy-preserving algorithms in a

streaming environment and proposed a family of algorithms called Pan-Private Streaming

Algorithms [48]. However, the main focus of these algorithms is to deal with specific kind

of attacks where the attacker might be in control of the machine where the algorithm

is running but does not have access to the stream. This does not apply to our problem

where an attacker has access to every social posting.

4.3 Data and Attack Models

4.3.1 Data Model

The users of a Social Media service are represented as a set U = {u1, u2, ..., un}. Each

user u is associated with a vector v of k sensitive attributes (e.g., location, age, etc.). The

attribute ai of a user u (u.v.ai) can take on one of a set of possible values {ai1, ai2, ..., aimi
},

where mi is the corresponding attribute’s total number of unique values. The values of

an attribute form a hierarchy which for some attributes can have a significant depth (e.g.,

for location: cities, to regions, to countries, to continents, to wordwide) or be trivial (e.g.

for gender: from male and female to any gender). An attribute value can be generalized

by being replaced with an ancestor value from the hierarchy. A user can mark a set of
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attributes as sensitive and keep them private. Or depending on the nature of an attribute,

e.g., race, which the social media service might infer using its own proprietary inference

algorithm, it could be considered as sensitive for everyone.

The content of the Social Media service is represented as an infinite stream P of posts.

Every post p ∈ P has a unique author (user) p.u and contains an arbitrary number of topic

keywords p.T = {t1, t2, ...}. We define a publicly available search function SEARCH that

returns all the users mentioning a given topic keyword t: SEARCH(t) = {p.u|t ∈ p.T}.

The number of users mentioning t is referred to as topic population and its size is equal

to |SEARCH(t)| and referred to as topic frequency (second column in Table 4.1). We

can assume that each user that mentions topic t is counted only once to avoid bias from

spamming. The search function SEARCH is defined for multiple topics as well, and

returns the intersection of the users that mention all the given topics.

We define a homogeneous community as a group of users with identical values in some

of their attributes, but not necessarily connected in the social graph. More formally, a

homogeneous community contains users that share the same values for a combination of

attributes C ∈ ℘{a1, a2, ..., ak} where ℘ is the powerset symbol and ai is a user attribute

(e.g., location, age, etc.). Users that live in San Francisco, are 25 years old, and are male,

form a homogeneous community that contains all the users identified by these values for

the attribute combination {location, age, gender}. Users in New York form another

homogeneous community defined by the singleton attribute combination {location}.

A community-aware trending topic algorithm (referred to as CATT – citation re-

moved for blind review) identifies topic keywords mentioned by a homogeneous commu-

nity that has at least size ξ of the total topic population (0 < ξ ≤ 1). For example, if

ξ = .7, a topic with frequency 1000 will have at least 700 users forming a homogeneous

community. The CATT algorithm reports records in the form of a stream of tuples:

(ti, Ci), where Ci is the set of attribute values that define the homogeneous commu-
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nity CATT identified for topic ti. If a topic t has no homogeneous community of size

ξ|SEARCH(t)| or larger associated with it then it isl not reported by CATT. We will

refer to homogeneous communities simply as communities for the rest of the paper and

to topics extracted via a community-aware algorithm as community-aware topics.

CATT extracts trending topics using a batch-based sliding window on the stream of

social postings of the service. At the end of each window, CATT reports a set of pairs

(ti, Ci) which includes all the extracted topics from the current window. We refer to

the output of CATT for each window of social postings as a batch. Table 4.1 shows an

example of such a batch that contains 8 pairs. Through the definition of community-

aware trending topics, the users of the social media service inherit an implicit membership

to communities just by mentioning certain topics. Using a single reported pair (ti, Ci) one

can infer that at least ξ% of the users in SEARCH(ti) are characterized by the values of

Ci. This constantly increasing knowledge enables an attacker to gradually improve their

inference confidence for a given user’s sensitive attribute(s).

Note that execution of CATT requires the knowledge of community attributes for the

involved users. Realistically, CATT is executed by the Social Media service itself which

has access to private user information or even its own proprietary method to extract at-

tributes. Attackers lack access to the necessary information to execute CATT themselves.

4.3.2 Attack Model

A CATT algorithm reports a stream of batches of pairs (ti, Ci). The attacker knows

CATT’s threshold ξ, as it is public knowledge, has access to the output stream, and to

the search function SEARCH which returns the set of users that have mentioned the

provided topic(s). It is also safe to assume that the attacker has general knowledge of each

attribute’s prior distribution. For example, such knowledge might include the location
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distribution based on a Census, the age distribution based on published statistics from

the social media service, the gender distribution based on users that have this information

public, etc. We can safely assume that the attacker is omnipotent and can indefinitely

store the pairs (ti, Ci) and the corresponding sets of users SEARCH(ti). The goal of

the attacker is to infer a user’s sensitive attribute by exploiting the knowledge of each

topic’s community Ci and the users associated with it. In the presence of an omnipotent

attacker a privacy preserving algorithm must maintain all previous trending topics and

communities to accurately calculate the probability distribution of the sensitive attribute

values, of each user.

In related literature on sensitive attribute inference [34, 40, 42], an attacker would

train a Naive Bayes Classifier to choose the value of a sensitive attribute L that maximizes

the probability distribution P (L|u.T ). However, though Naive Bayes is known to be a

decent classifier, it is also known to be a bad estimator [49]. For the inference process

to be accurate, a high probability bound is necessary, so we consider that attack to be

successful only when the inference probability of an attribute value is greater than a set

threshold θ (e.g., θ = .75 or .85) and not just by simply being the maximum over any

other value. We will be using a global value for θ across all attributes and users, but the

proposed model and algorithm support different values for each combination of attribute

and user, if this is desired.

4.4 Privacy Model

4.4.1 Sensitive Attribute Inference

Having established the models for the data (social stream) and the attacker (inference

of sensitive attributes) we can now formally define the privacy model. For every user in

51



Privacy in the Context of Community-Aware Trending Topics Chapter 4

the social network that discusses several topics in a streaming fashion, we want to protect

against having their sensitive attribute values leaked through the continuous reporting

of community-aware trending topics. Specifically, any attacker that has access to current

and historical reports of community-aware trending topics should not be able to infer

any user’s sensitive attribute with confidence that is higher that a set value θ. At not

point should an attacker be able to infer a lower bound for the distribution P (L|u.T )

(probability distribution of sensitive attribute L of a user u given the topics T that u has

mentioned), that is higher than θ.

Definition: If there is even a single case where a user’s sensitive attribute can be

inferred with confidence larger than θ, this comprises a privacy violation. A community-

aware trending topic algorithm that is capable of maintaining a record of zero privacy

violations while it continuously reports new batches of topics is called θ-private.

Referring back to the example of Figure 4.1, if θ is set to .75 then an algorithm that

reports the topics in the table of the figure is not θ-private in case (b), since the attacker

can infer the gender of Alice and the political preference of Bob with confidence that is

higher than θ. To make the algorithm θ-private we would need to obfuscate the gender

and political preference associated with topics T1, T2, and T4. If Alice and Bob had only

discussed topics T1 and T2, as in case (a), then the algorithm would be θ-private for this

specific instance.

The inference of a sensitive attribute involves estimating the probability of a specific

value given some background knowledge. As already discussed, the attacker has access

to prior attribute probabilities and the output and settings of CATT. The Naive Bayes

classifier is a powerful and simple technique to calculate the probability of a sensitive

attribute value. Arguably, if the attacker has additional information of other sensitive

attributes (e.g., already knows that Alice is a woman because she has her own photo in

her profile) then they can get a better estimation of the probability of another sensitive
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attribute, like her location, than they would from Naive Bayes. In the following subsection

we focus on the calculations necessary to get a lower bound of the probability P (L|u.T )

using Naive Bayes. The end goal is to anticipate what values the attacker can successfully

infer so that they can be kept private. This is typically easy since the attacker’s knowledge

is generally based on publicly available information and the privacy model can incorporate

it if necessary. To keep things simple, for the rest of the paper we assume that the attacker

has no existing knowledge of sensitive attribute values and therefore the Naive Bayes

Classifier can set a precise upper bound. The introduced privacy model is independent of

how P (L|u.T ) is calculated by an attacker and the privacy preserving algorithm proposed

later can be easily adjusted to calculate these distributions differently.

4.4.2 Naive Bayes Inference

Given a collection of topic and community tuples (ti, Ci) (the output of CATT) and

a search function SEARCH, an attacker may attempt to infer the sensitive attributes

of users that mention at least one of the topics ti. Let u be a user that has mentioned k

topics t1, t2, ..., tk and let L be one of the user’s sensitive attributes (e.g., location). The

probability distribution of L, given that the user mentioned some topics t1, t2, ..., tk is:

P (L|t1, t2, ..., tk) =
P (t1, t2, ..., tk|L)P (L)

P (t1, t2, ..., tk)
(4.1)

by applying the Bayes Rule. P (L) is the prior multinomial distribution of the attribute

L and can be assumed to be known to an attacker based on their general knowledge on

such information. The probability distribution of a user mentioning topics t1, t2, ..., tk

given L, P (t1, t2, ..., tk|L), is equal to the number of users u that mention all the k topics

and have a specific value for L, over the total number of users with that value of L. For
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example, for L = a:

P (t1, ..., tk|L = a) =
|{u|u.v.L = a, t1 ∈ u.T, ..., tk ∈ u.T}|

|{u|u.v.L = a}|
(4.2)

where u.v.L is the attribute L in the user’s vector of attributes v. Similarly, the prior

probability of topics P (t1, t2, ..., tk) is equal to the number of users that mentioned these

topics over the total number of users n: |SEARCH(t1, t2, ..., tk)|/n

While an attacker might have knowledge of the attribute’s multinomial distribution

and the ability to calculate the prior probability of any topic combination (using the

search function SEARCH), they cannot compute the set of users that have a specific

attribute value L = a: {u|u.v.L = a}. Instead, they can obtain an approximate value of

the probability distribution P (t1, t2, ..., tk|L) based on the reported tuples from CATT.

The attacker can exploit the guarantees provided by CATT that a reported trending

topic ti has a population of size |SEARCH(ti)| with a homogeneous community Ci with

size at least ξ|SEARCH(ti)|.

More specifically, if the attribute L is not part of Ci, then the topic population of ti

follows the prior distribution of L: P (ti|L) = P (L). If L ∈ Ci and has a value L = a,

then applying the Bayes Rule we get:

Papprox(ti|L = a) =
P (L = a|ti)P (ti)

P (L = a)
=

ξ

P (L = a)
P (ti) (4.3)

Similarly, the probability that a user with attribute value L = b mentions topic ti is equal

to:

Papprox(ti|L = b) =
P (L = b|ti)P (ti)

P (L = b)
=

=
(1− ξ)P (L = b)|SEARCH(ti)|

P (L = b)n
= (1− ξ)P (ti) (4.4)
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The attacker can now approximate the probability distribution (4.2) by assuming

topic independence given L:

Papprox(t1, t2, ..., tk|L) =
k∏

i=1

P (ti|L) (4.5)

where each factor of the product can be computed using the probability formulas from

(4.3) and (4.4). Note that topic independence given L is an assumption that can be

true when the number of topics k is large. It practically means that only one user

mentions all the specific topics. For example, if a user u mentions 2 topics t1, t2 and

SEARCH(t1, t2) = {u} then u is the only common user mentioning both topics so,

assuming that |SEARCH(t1)| and |SEARCH(t2)| are large numbers, t1 and t2 are

statistically independent.

An attacker can use the following formula to approximate the distribution P (L|u.T ):

Papprox(L|u.T ) =
nP (L)

∏ti∈u.T P (ti|L)

|SEARCH(u.T )|
(4.6)

If for any value of L = l, the probability P (L = l|u.T ) becomes larger than the threshold

θ then we assume that the privacy of this user for L is violated.

4.5 Privacy Preservation Methodology

A community-aware trending topic algorithm is also θ-privacy-preserving if its output

does not enable the inference of sensitive user attributes with a confidence greater than a

threshold θ, for any of the users involved. We will refer to this modification of the CATT

algorithm as θ-CATT. At the same time, the goal is to keep reporting trending topics

with maximum utility. Maximizing the utility of the results is a competing goal with

preserving privacy since the algorithm could report an empty result set and the privacy
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leakage would be zero. Issues arise when the algorithm reports at least one trending topic

ti and its community Ci and for all users in SEARCH(ti) some statistical information

is leaked. Especially challenging is the fact that users continuously discuss new topics

which results in a constant stream of information that an attacker can use to increase

their inference confidence of sensitive attribute values (as demonstrated in Figure 4.1

between cases (a) and (b)).

We now introduce a novel approach that utilizes the concept of generalization in

combination with Artificial Intelligence to efficiently solve the exponentially expensive

anonymization problem while preserving significant utility.

4.5.1 Utility of Trending Topics

The goal behind extracting trending topics that certain communities focus on is to

provide additional insight into why certain topics end up trending, understand which user

demographics are interested in an event, product, etc., and generally provide more inter-

esting, surprising and personalized trending topics to the users of the social media service.

Using the notion of Self-information from Information Theory [50] we provide a measure

of the information content for community-aware trending topics. Self-information can

capture how surprising an event is based on the probability of the event. The total

utility of θ-CATT’s results is equal to the self-information sum of every reported topic’s

community. The self-information of a community Ci is I(Ci) = −log2(Pr(Ci)). Intu-

itively, the less likely a community is to be observed, the higher its self-information. Since

we are using the logarithm with base 2, self-information is measured in bits. The prior

probability of Ci can be empirically measured in the sliding window as the percentage of

users that contain attribute values Ci. This metric provides a systematic way to measure

the utility of the reported trending topics and can be used to calculate the informa-
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tion/utility loss when anonymization is applied. We define a utility function util() which

returns the utility over a set of tuples (ti, Ci). Note that other metrics can be used as

well without requiring alterations to θ-CATT.

4.5.2 Community Attribute Anonymization

θ-CATT needs to constantly monitor the maximum confidence of a hypothetical at-

tacker to infer every sensitive attribute of every user in the service. When θ-CATT iden-

tifies a trending topic ti with a homogeneous community that involves |SEARCH(ti)|

users, it has to make sure that none of the users u ∈ SEARCH(ti) will have their sensi-

tive attributes leaked by publishing (ti, Ci). To ensure that, it calculates the probability

of each sensitive attribute for every user u: P (L|u.T ) and checks if the value becomes

greater than θ. If it does not, then the pair (ti, Ci) is published. If it does, θ-CATT

will anonymize the sensitive attribute of the topic’s community before publishing, while

preserving as much utility as possible. At the same time, the algorithm needs to en-

sure that its anonymization policy will not lead to a state where everything needs to be

anonymized completely. which would result in a total loss of utility.

We utilize the method of attribute generalization to achieve anonymization similarly

to k-anonymity [51]: if the city of a user can be inferred, θ-CATT reports location at the

state level instead, which will alter the inference probability since a much larger popu-

lation is described by this value. Generalization of categorical attributes is achieved by

moving up a level in the attribute hierarchy (as described in earlier section). Depend-

ing on the depth of an attribute’s hierarchy, a single generalization (moving up a single

level in the attribute’s value hierarchy) might lead to complete anonymization which also

means zero utility for this attribute. For example, generalizing the value “male” will

result to “any gender” (or “*”) which does not provide any gender information.
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The θ-CATT algorithm practically encapsulates the privacy-agnostic CATT algo-

rithm which just extracts the community-aware trending topics by consuming the social

stream. θ-CATT receives the batch of topics and attributes pairs (ti, Ci) (as described

in earlier section), and combined with the knowledge of every user’s sensitive attributes

and the topics they have previously mentioned (u.T ), calculates if any user’s privacy

would leak with the publication of the specific batch. If at least one user’s sensitive

attribute would be exposed, then some topic communities need to be anonymized before

publishing. Note that the confidence level for inferring an attribute value of a specific

user can fluctuate depending on the topics mentioned by this user. For example, the

attacker might believe that a user u lives in San Francisco with probability .749 (assume

θ = .75), but then the user mentions a topic t that is associated with a community which

lives in New York. This will decrease the probability that user u lives in San Francisco

and enable the algorithm to report a topic t′ in the future, even if the community of t′ is

located in San Francisco. This will push again p(L|u.T ) closer to .75.

4.5.3 Finding the Best Anonymization Strategy

In order to output a list of trending topics that contains no privacy violations, a deci-

sion must be made that involves choosing which topic communities should be anonymized

without sacrificing too much utility. There are many solutions to this problem, each with

a different level of utility loss. To avoid solving this problem in exponential time by

trying all possible combinations and choosing the one that minimizes the utility loss, we

propose an algorithm that efficiently finds the best strategy for identifying a near optimal

combination to anonymize. The θ-CATT algorithm is able to identify the privacy risk

each new topic-community pair poses before publishing it, ideally in real time. To achieve

this computation, θ-CATT needs to store: (1) the history of trending topics previously
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reported by the algorithm, that each user u has mentioned, and (2) the communities that

were reported to be correlated with those topics. This information can be stored and

efficiently accessed through a hash-table data structure. Combined with the knowledge

of the prior probability distributions of the sensitive attributes all the necessary informa-

tion is available to calculate the inference probabilities. This way θ-CATT can simulate

the behavior of an attacker and identify privacy violations early.

Batch-based Anonymization

When a batch of pairs (ti, Ci) is reported by CATT, θ-CATT will iterate through

all pairs, apply necessary anonymizations and publish the altered set of pairs. A naive

approach to identify which pairs require anonymization, is to iterate through them one

by one, and if a pair violates the privacy of at least one user, appropriately anonymize

the community’s sensitive attribute(s) before moving to the next topic. However, the it-

eration order might lead to non-optimal results where more communities get anonymized

than necessary to preserve privacy and utility loss is not minimal. For example, it might

be better to anonymize a single community C3 instead of anonymizing two communities

C1 and C2 and achieve the same privacy gain. Occasionally, the combination of two

topic communities can enable their publication without anonymization while if we each

pair is individually considered, then neither of them would get reported. For this rea-

son, θ-CATT considers the privacy and utility of the whole batch to identify the best

anonymization strategy which minimizes the required attribute generalization and utility

loss.

Assume for simplicity that there is a single sensitive attribute L and let S be a

batch of k pairs (ti, Ci) with communities that have a value for attribute L. Since the

generalization of an attribute in a community Ci lowers the total utility of the batch,

we want to generalize L in the least possible number of communities. An anonymized
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batch S ′ is a modified version of S with an arbitrary number of the communities in S

anonymized (a community is anonymized when its attribute L is generalized at least

once as described earlier). If a community does not contain a value for attribute L, it

is ignored since it will not alter any user’s inference probability for L. Therefore, there

is a total of 2k different anonymized batches S ′ ranging from the case where nothing

is anonymized to the case where all k communities are anonymized and every possible

combination in between. Whether a community in the batch gets anonymized or not, is

encoded in a batch S ′ as a series of 0s and 1s (state).

The goal for θ-CATT is to find the batch S ′ that has greater utility than any other

S ′′: util(S ′) ≥ util(S ′′) while at the same time S ′ preserves the privacy of every user’s

sensitive attribute. For example, in Table 4.1, k = 8 and S contains the eight topic-

community pairs listed in the table. If reporting these 8 pairs violates the privacy of any

of the involved users, then θ-CATT will identify an anonymized version of the batch that

does not leak sensitive attributes.

A* State Encoding

To find the best anonymized batch S ′, a naive approach would be to enumerate all

2k possible batches and keep the batch with the maximum utility, which at the same

time does not leak any sensitive user attributes. However, this approach has exponential

complexity O(2k). Instead, we propose a customized version of the A* algorithm, which

is an Informed Search method [52], to identify a good batch S ′ efficiently. A* is a search

algorithm, hence, it requires a search tree with a starting node and a goal node to reach.

Each node of the tree is called a state and corresponds to a batch S ′. The starting state

would be the non-anynomized batch S while the goal state would be the anonymized

batch S ′ that preserves the privacy of all involved users. There are many acceptable

goal states, so additionally a cost function is needed to indicate the amount of sacrificed

60



Privacy in the Context of Community-Aware Trending Topics Chapter 4

utility to reach a specific state. Finally, A* requires a way to retrieve all the neighboring

states of a given state in order to construct and traverse the search tree.

Each anonymized batch S ′ corresponds to a state and all possible states form the

search tree. We encode S ′ as a k-digit binary number where the i-th digit corresponds

to the pair (ti, Ci) ∈ S ′. A value of 0 as the i-th digit indicates that the sensitive

community attribute L in (ti, Ci) is generalized, while a value of 1 indicates that it is

not. Ideally, we would like to report the batch S ′ that corresponds to the value 111...1

(no anonymization). A batch S ′ is an ancestor of batch S ′′ in the search tree if their

encoding differs in exactly one digit, where this digit is 0 in S ′ and 1 in S ′′. Using this

notion of ancestors a search tree can be defined where the encoding 111...1 is the root

node and a node’s children contain all descendant encodings. For example, for k = 4,

the children of root node 1111 are: 1110, 1101, 1011, and 0111. The children of 1110 are:

1100, 1010, and 0110, etc. A visual example for k = 3 is shown in Figure 4.2. All search

tree branches will have 00...0 as the leaf node which corresponds to a fully anonymized

batch and is the least desirable result since its utility is minimal.

As the starting state of A* θ-CATT selects the batch S (original, non-anonymized

output of the CATT algorithm) which has encoding 111...1. The goal state will be the

first state that has no privacy leaks (all sensitive attribute inference probabilities are

below θ). Given a random state S ′, the neighbors are generated by flipping a single digit

with value 1. If there are no such digits left, the search tree has reached its end. Given

that the algorithm is stable across batches (all probabilities are below θ before a new

batch), there should always exist a node in the search tree that will be acceptable as a

goal state. In the worst case this will be the state with encoding 00...0 at the bottom of

the search tree (Figure 4.2).
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Figure 4.2: Full search tree (with k = 3). The “no anonymization” state is the starting
state of A*.

A* Cost Function

A* requires a cost function that returns the cost of visiting each state. θ-CATT

utilizes the following cost function f(.): f(S ′) = g(S ′) + h(S ′). Function g(S ′) returns

the total utility loss: g(S ′) = util(S)− util(S ′), where S is the original non-anonymized

set of topics and communities. Function h(S ′) is the heuristic that estimates how close

the current state is to the goal state and we use the following measure: h(S ′) = # users

with a privacy violation. The number of users with a privacy violation is obtained by

iterating through all the involved users in the batch and calculating the probability of

inferring their sensitive attribute(s) with confidence higher than θ (equation 4.6). The

function g measures the cumulative cost to reach a node in the search tree (how much

utility has been sacrificed) and function h estimates the remaining distance of the goal

state, where there is no privacy violation for any user. Note that this specific heuristic

is not admissible (it might overestimate the cost to reach the goal state), which means

that A* might not find the optimal path. Not finding the optimal path means that some

additional utility might be sacrificed in order to greedily reach a goal state in less steps.
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Since the two functions g and h measure different units we normalize them with two

weights α and β: f(S ′) = αg(S ′) +βh(S ′) where α+β = 1. The exact values of α and β

depend on the total number of users (for g) and the specific utility function used (for h).

The heuristic h(S ′) for an attribute L is calculated using the following formula:

h(S ′) =
∑

u isLeak(u, u.T ∪ {(ti, Ci)}, L, θ), where isLeak is a binary function that re-

turns 1 if the user u has an inference probability (equation 4.6) more than θ and 0

otherwise. For this probability calculation the previously mentioned topics of the user

(u.T ) are required, in addition to the new topics of the current batch (ti, Ci). Accumu-

lating over every user involved in the current batch (mentioned at least one topic ti),

h(S ′) becomes equal to the number of violations.

Algorithmic Complexity

A* checks recursively if the current node is an acceptable goal state — number of

privacy violations is equal to zero — and if it is not, it expands its children nodes and

adds them in a priority queue to visit them next. Priority is calculated using the f(.)

function. This strategy enables θ-CATT to find a path to a batch S ′ that does not

violate the privacy of any user, while reducing the number of necessary steps. The only

trade-off is that the utility of the reached S ′ might not be optimal. For multiple sensitive

attributes, the same process can be executed in parallel.

Let V be the set of sensitive attributes, k the size of the batch with pairs of topics

and communities, T the set of all topics in the batch, and n the total number of users in

the social network. The time complexity of the algorithm is:

O(|V | · k · |SEARCH(T )|+ |SEARCH(T )| · |u.T |)

The main bottleneck of the algorithm is the calculation of the inference probability
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(Equation 4.6) for a specific attribute and every involved user. First, the whole process

must be repeated for every sensitive attribute. This entails linear complexity to the

number of sensitive attributes. Second, probability calculations must be repeated every

time the cost of a state in the search tree is valuated. While there are 2k states to ex-

plore, the customized A* with the proposed greedy heuristic can reach a local optimum

in logarithmic complexity. log2(2
k) = k, thus, the algorithm scales linearly (amortized)

with the number of topics in the batch. Finally, we need to calculate probabilities for

every involved user, so the time complexity will also be proportional to |SEARCH(T )|.

The inference probability formula (Equation 4.6) contains the product of the empirical

probabilities P (ti|L) where ti is an old topic the user has mentioned and L is a sensitive

attribute. To avoid calculating this product every time the inference probability is mea-

sured, we can instead store in memory the products for all topics the user has mentioned

so far. The prior probability of P (L) needs to be calculated only once per batch and n

is a fixed number (at least in the context of a batch). The only “problematic” term is

the denominator of the fraction, |SEARCH(u.T )|, which requires the calculation of the

intersection of every set of users that mentioned the same topics with user u. However,

this value needs to be calculated only once per user, per batch. Therefore, the time

complexity of the inference probability calculation is constant.

The necessary space complexity to store the probability products for each user and

sensitive attribute is: O(n|V |).

4.6 Experimental Results

For our experiments we used a real Twitter dataset that contains a uniform 10%

sample of the complete Twitter Firehose stream from a 39 day period between April

16 and May 24, 2014. Each tweet also contains the information of its author (user).
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The extracted topics include unigrams, hashtags or capitalized entities from the tweets’

raw text. The four extracted user demographics include location, gender, age, and US

political party preference. Location extraction was done on (1) the tweet level using

Twitter’s geo-tagging mechanism, and to further improve the recall, on (2) the user

level using a user-provided raw text field (similarly to [11] and [12]). To infer location

based on the user’s field we applied a simple but precise pattern matching process that

could identify location patterns like: “City, Region, Country”, or “Region, Country”,

or just “Country”. To validate the patterns we used a Location hierarchy provided

by the MaxMind database. To extract gender and age we applied existing language

models extracted from [15] on social media data. The hierarchy for gender includes the

leaf nodes “male”/”female” and the top level of “all genders” or “*”. Similarly, the

hierarchy for age includes the leaf nodes “13-18”/“19-22”/“23-29”/“30+” and the top

level “*”. Finally, for political party affiliation we gathered the official Twitter accounts

associated with the three most popular US political parties: Democratics, Republicans,

and Libertarians. Then, a user’s political affiliation was determined based on the simple

majority of interactions (@-replies) with these accounts (e.g. if a user mostly interacts

with Democrats, their party preference was labeled as Democrat). To apply the models

we gathered all the tweets of every user in the analyzed data period. While this is an

expensive process it can be executed offline.

We consider all four attributes to be sensitive for every user. Then we ran two

versions of our algorithms (simple CATT and θ-CATT) and compared the results. The

algorithm settings are: θ = .7 (attacker’s inference confidence), ξ = .5 (community size

as a ratio of the topic population), utility util({(ti, Ci)}) =
∑k

i=1 I(Ci) (self-information

sum), α = .999, and β = .001. The selected values were empirically chosen to reflect a

realistic scenario that can generate a plethora of privacy violations. Note that normally,

the batch size k is not set to a specific value but depends on the data.
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The average number of extracted trending topics and community pairs in the dataset

is 112 per window (a window of data corresponds to a single batch of trending topics

as described in earlier section). We focus on the topics that have a specific city-level

location, or age, or gender, or political party preference values, which on average is

k = 21.57 topics per batch. The per-batch average number of unique location values

is 15.2, number of unique gender and political party values is 2, and number of unique

age values is 2.8. The average number of involved users is 8162. The average utility

without any anonymization (simple CATT) is 43.1 bits but also contains an average of

213.2 privacy violations. Privacy violations were counted by identifying users that have

inference probabilities (equation 4.6) for either location, age, gender, or political party

preference, that is higher than θ. To preserve the privacy of the location attribute, θ-

CATT anonymized on average 4.3 communities to bring the number of privacy violations

to 0. The average utility of the anonymized results published by θ-CATT is 38.37 bits,

so there is a total utility loss of 4.73 bits.

Examples that demonstrate cases where a community got anonymized to preserve the

involved users’ privacy are listed in Table 4.2. The 4th column lists how many privacy

violations would occur if the original community was published. The 5th column shows

how the proposed algorithm decided to anonymize the community by generalizing at least

one attribute. After anonymization, θ-CATT managed to bring all privacy violations to 0

so that the reported results are θ-private. For the topic #OscarTrial the location attribute

was generalized to hide the location of 345 users. For the topic #ObamaInThreeWords

both age and party preference are generalized to preserve the privacy of 76 users.

In Figure 4.3 it can be seen how the utility loss scales for different values of θ. As

expected, when θ = 1, an attacker must be 100% confident when inferring a sensitive

attribute which in reality is practically impossible and results in maintaining the full

utility of the results (equal to the utility of CATT’s output). On the other end, for
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Table 4.2: Real examples of communities and the corresponding anonymized versions.

Topic Original Community Size Violations
Anonymized
Community

#OscarTrial
Location:

Johannesburg,ZA,
Gender: Female

1133 345
Location: ZA,
Gender: Female

#FreeJustina
Location: Boston,
Gender: Female,
Politics: Democrat

51 13
Location: Boston,

Gender: *, Politics:
Democrat

Bruins
Location: Boston,
Gender: Male, Age:

19-22
196 58

Location: *, Gender:
Male, Age: 19-22

#ObamaIn3Words
Location: USA, Age:
19-22, Gender: Male,
Politics: Republican

224 76
Location: USA, Age:
*, Gender: Male,

Politics: *

Figure 4.3: Utility loss for different values of theta.
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θ = 0, no information leakage is permitted at all, therefore, full anonymization of the

communities is necessary and utility becomes equal to 0. These two extremes are equally

not practical for a meaningful and realistic combination of trending topics with utility

and preserved privacy. Based on the values in Figure 4.3 we observe that choosing a value

of θ above .6 can maintain at least 73% of CATT’s original utility of community-aware

trending topics. This curve can be a useful guide to choose the best θ value for the

desired privacy and utility trade-off.

Figure 4.4 shows the running time of our privacy preservation algorithm. All running

times are recorded on a personal laptop with a 2.6GHz Intel Core i5 processor and 16Gb

of RAM. There were 70 datapoints each corresponding to randomly sampled batches

of topics. Since the complexity of the algorithm is mainly affected by the number of

involved users (users mentioning one of the topics in the batch) the plots demonstrate

how the running time is affected by this number. The plot in Figure 4.4 shows the

execution time (y-axis) that corresponds to batches with a certain number of involved

users (x-axis). Each data-point corresponds to a single batch. The number of topics

with sensitive attributes (batch size) was quite stable throughout our experiments with

a mean of k = 21.57 and a standard deviation of 3.35. The plot also contains the

corresponding least-square linear trendline and its equation. All reported running times

are within the range of 0 seconds (no anonymizations were necessary for these batches

so A* immediately found the goal state to be the starting state) and 160 seconds. Note

that the time necessary to stream-in the data of a single batch takes around 3-4 minutes

based on the rate of new tweets being created on Twitter, therefore, an average running

time of 39.56 seconds is more than sufficient to produce results before the new batch is

even ready for processing. This means that the algorithm can be used in a real-time

fashion, a strong requirement for any streaming algorithm.

To examine if the running time is affected by the size of a batch k we also performed an

68



Privacy in the Context of Community-Aware Trending Topics Chapter 4

Figure 4.4: Running time as a function of the number users (x-axis), with average number
of topics k = 21.57.

experiment where we forced the number of topics to be always equal to 15—an arbitrarily

selected value that is less than 21.57—by randomly dropping some topics. We observed

that the running time is also increasing linearly with the number of users, as expected.

Altering k had no apparent effect on how the running time scales with the number of

users, similar to the slope of the trendline in Figure 4.4, which proves that the greedy

heuristic of A* has sublinear amortized complexity.

Generally, community-aware trending topics have less mentions than the topics that

can be found on Twitter’s page (curse of dimensionality). Still, based on the trendlines

in Figure 4.4, we estimate that the running time for 100K users, which is a number that

can be observed for trending topics on the Twitter web-page, would be approximately

490 seconds which is again acceptable based on the rate of generated tweets. Therefore,

our algorithm satisfies the efficiency requirement of a practical real-world setting.

Finally, we tested how easily we can attack private attributes in existing Trending

Topics reports. As mentioned earlier, Twitter provides Trending Topics by location (a

total of 401 cities in the world). We crawled these topics through the Twitter API, and

managed to infer the location of approximately 300k users that mentioned topics which

were trending only in a single location just within a single day of crawling. 11.8% of
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these users had their location public and sampling through them we estimated that this

location inference attack was 82.33% successful. This proves how easy it would be for an

attacker to exploit location-aware Trending Topics to infer the location of thousands of

users. Therefore, altering trending topic algorithms to preserve the sensitive attributes

of Social Media users is indeed important.

4.7 Privacy Cyborg

From the individual’s perspective, a Social Media user must be mindful of which topics

they discuss in order to protect themselves from such inference attacks described above.

This can be particularly tedious and time consuming given the nature of social media

which promotes public and frequent posting, something that usually seems harmless when

considered at the level of a single post. Towards this end, we built a privacy cyborg, that

can undertake the task of monitoring its owner’s posts in social media and automatically

warn them if necessary.

The idea of a cyborg fighting our social battles on our behalf was recently introduced

by Anand Rajaraman [53]. The vision involves a local computational software resource

that runs continuously (whether its owner is online or offline) and performs various

tasks like protecting from online attacks, filtering out people that try to connect with

malicious intend, following up on discussions, etc. Different tasks require different levels

of sophistication and technology, but the cyborg in this demonstration mainly constitutes

a proof of concept that targets online privacy. Similar to Privometer [40], the privacy

cyborg can monitor a Twitter user’s profile and what is being posted to identify potential

risks of leaking sensitive information such as the user’s location, race, or age. In contrast

to Privometer which considers structural actions, i.e., connecting with a friend, joining

a group, or liking a page, our focus is on the posted content and its role in revealing
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sensitive attributes.

4.7.1 Privacy Model

The goal of the cyborg is to preserve the privacy of its owner, hence, we need to

understand how sensitive attribute inference works, and implement it locally to simulate

a hypothetical attack. Through this process the cyborg can identify what an attacker

could infer, make a judgment call whether an attack can indeed be successful or not, and

in case of the former warn the user in an appropriate way.

The Bayesian model is often used for inference attacks in the literature. We follow

the same model here, and assume that the attacker can acquire knowledge that involves

the correlation of topics and attributes. Based on this knowledge an attacker can identify

the most probable value of a sensitive attribute by comparing each value’s probability

(e.g., 79% chance a user is a woman versus 21% chance the user is a man). More

specifically, based on the individual prior probabilities of the topics T mentioned by a

user, an attacker can calculate the probability P (A|T ) for each attribute A.

We assume that an attacker can acquire the following knowledge: The general prior

probability distribution of a sensitive attribute A, P (A). The observed conditional prob-

ability distribution of a topic t given the attribute A, P (t|A), which can be derived from

a rich trending topics report (similar to the one described in Chapter 3). With this in-

formation, the attacker can approximate the probability distribution of a user’s sensitive

attribute A, given the user’s set of topics T : P (A|T ). We assume that the attacker can

successfully infer the value of an attribute A if any value of P (A|T ) is greater than a

desired threshold, e.g., 0.75.
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4.7.2 The Cyborg: Supported Operations

The privacy cyborg is implemented as a daemon process that runs constantly on a

local machine. While the cyborg can obviously interact with its owner when they are

using their personal computer, it still needs to monitor the correlations between topics

and attributes even when the owner is offline. Thus, the cyborg can perform the following

two tasks: 1) Inform the user of how the public perceives them, and 2) warn the user if

something they are about to post can put their sensitive attributes in danger.

More specifically, since the cyborg is practically simulating an inference attack in

real time, it is able to derive a description of its owner, as perceived from their publicly

posted content. This description is given as a report with a list of attributes and the

corresponding probabilities for each value (e.g., male 34%, Los Angeles 56%, etc.). Since

we focus on Twitter data for this demo, this task can be performed on any non private

account without additional permissions. Note that these reports can be returned on

demand or triggered when something changes. Due to the nature of the inference process,

probabilities can change without the user posting anything—could be the result of a

population shift for a topic of interest.

However, since the publication of new topics remains the most effective way for these

probabilities (P (A|T )) to change the cyborg can proof-read a new post and inform them

whether any sensitive attributes will be compromised, i.e., an attacker will be able to

successfully infer them following the publication of the post.

4.7.3 The Cyborg: Technical Components

The cyborg needs access to the same knowledge as the attacker it tries to simulate.

Namely, access to the historical tweets of its owner, access to reports of topics and

the correlated attribute values with specific percentages, the prior general probability
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Figure 4.5: Visualization of the cyborg, related actions, and components. Note that each
owner/user has their own cyborg.

distributions of the attributes, and the user-provided settings for the privacy threshold

(the attribute inference probability is high enough to pose a privacy risk).

Figure 4.5 is a visualization of how the cyborg works. The cyborg owners and social

media users (bottom left and right) want to post content online that contains a growing

list of topics (action 2). This list goes through the cyborg for proof-checking. In the

background, the cyborg consumes information from the social media service (action 1)

and monitors the topics of the user (both old and new). With this acquired knowledge

the cyborg can warn its owner when a sensitive attribute is at risk (action 3).

The cyborg itself comprises of a daemon running on a local computer with Internet

access so it can acquire and maintain the necessary data for calculating the attribute

probability distribution P (A|T ). Interactions with the owner are supported though a

graphical UI where the proof checking and warning displaying can be performed. The

prior probability distributions and correlated topics/attributes are provided by an exter-

nal server (the cloud in Figure 4.5) and are assumed to be public knowledge, similar to

how trending topics on Twitter are public. This server constantly collects tweets from the

Twitter Streaming API, and computes in real time the correlation between topics with
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specific attribute values. To identify the attribute values of other users, a periodic job is

executed on the server that infers the attributes of any other user in the social stream

(detailed in Chapter 3). This information is then used to calculate the percentages of

association between attribute values and topics in the stream.

A demonstration of a working cyborg prototype can be found in this video: https:

//youtu.be/PfzC39i9nbg
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Chapter 5

A Social Sensor Application: Mining

Complains for Traffic-Jam

Estimation

5.1 Motivation

In the current chapter’s experiment we focus on the fact that the sentimental state or

mood of the analyzed population (in the context of social sensors and event discovery) is

seldom taken into consideration. Most algorithms measure the levels of a disaster or the

magnitude of an event as a simple function of the corresponding social media discussion

volume. This simple function can be anything from a linear model to an exponential

distribution. But what is often ignored is the state of the people that participate in the

online discussion. For example, an overly enthusiastic crowd might give a false idea of

the size of a political demonstration. A shy demographic might lead to the perception

that a specific music trend is not as popular as it really is. People complaining about

their jobs during a very hot day might give the false sense they are generally unhappy
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with their work environment. To avoid arriving to such false conclusions based on online

social signals, a better understanding is needed of when people publish content on social

media, what emotional state they are in, and which factors might have led them there.

For our experiments, a specific user behavioral pattern was examined: complaining

in social media while stuck in traffic jams. We combined two large publicly available

datasets, one for traffic in California and one for Twitter content, to study how car

drivers react in social media while driving during increased traffic congestion. Driving

a car is already known to be a stressful activity for many and things can be much

worse during traffic jams; frustration and boredom may lead drivers to make irrational

decisions or act irrationally due to anger. Unfortunately, such behavior can increase

traffic congestion, be dangerous, and cause accidents. Social Media have already been

utilized for some time now to help with traffic de-congestion. From specialized social

media apps like Waze [54] - a crowd-sourced community that monitors traffic, accidents

and other events in real time - to regular use of Twitter to automatically or manually

publish reports and alerts of the street conditions [55]. The purpose of such information

tools is for drivers to inform themselves about traffic conditions before getting in their car

and make the necessary choices to optimize their commuting route and time. In reality,

a non trivial amount of smartphone owners are observed to use their handheld devices

while driving, despite laws that render the use of handheld devices by drivers for texting

purposes illegal, for obvious safety reasons [56].

Apart from getting informed about traffic, users resort to social media to also com-

plain or update their Twitter/Facebook status about being stuck in traffic. Most fre-

quently, such status updates include humorous remarks, swearing, frustration, and the

occasional warning about traffic congestion on specific freeways (for others to see). Some

Twitter users state humorously that the best time to tweet is during rush hour traffic, or

that the 405 freeway is the only freeway where there’s enough traffic to stop and tweet
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about traffic (I-405 is a freeway in Los Angeles, California). We use this signal as a social

sensor to model the circumstances and traffic conditions, and how the drivers’ frustration

may have an impact on the observed social discussion volume.

Indeed, we discovered that social reaction fluctuates in a non trivial manner. Different

circumstances lead to different volumes of complaining about the traffic severity instead

of following a strictly linear correlation. And while in many cases correlation is not

equal to causality, for this particular experiment, the observed correlation between the

real world (traffic) and the social reaction (tweets) is actually a causal relationship. The

measured social reaction - tweets made by drivers stuck in traffic - is strictly caused by

traffic congestion and the two variables are strictly dependent.

In Section 5.2 we list the related literature, in Section 5.3 we describe the used

datasets, in Section 5.4 we provide the regression analysis, in Section 5.5 we offer the

correlation findings between sentiment and traffic complaining, and finally, in Section 5.6

we compare the new regression model with baselines.

5.2 Related Work on Social Sensors and Traffic Anal-

ysis

There are two research fields related to the subject of the current work: 1) Studying

and modeling of Traffic Congestion and 2) Social sensors utilized on online social media

to mine information about physical events.

Traffic Analysis: There has been a lot of work and many studies that focus on

the general analysis of traffic. They deal with questions like: How does traffic correlate

with urbanization and economic growth? What causes traffic when there is no apparent

reason? How does human behavior contribute in traffic congestion?
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Traffic is studied in a plethora of areas including: (a) Financial/Political: measuring

urban growth [57], (b) Psychological: measuring human behavior, DUIs etc. [58], [59],

(c) Transportation: improving roadway conditions [60], and (d) Mathematics/Statistics:

modeling traffic using statistical and mathematical frameworks [61].

Online Social Sensors: Social sensors and the discovery of what is happening in the

real world through social media is a well studied area. Kryvasheyeu et al. [62] examine

how social sensors performed during hurricane Sandy (disaster control), Garćıa-Herranz

et al. [63] utilized the social friendship network to quickly detect viral diseases, Zhaoet

al. [64] use social media content to discover physical events in real time with a focus on

sports events, and finally, Aggarwal et al. [65] wrote a book chapter that describes the

current developments and challenges on social sensing in the context of data mining.

Studies that focus on social sensors specifically for the improvement of traffic reporting

are closer to the problem tackled in our work: [66], [67], [68], [69], [70], [71]. To the best

of our knowledge there are only a couple publications that utilize crowd-sourced data to

improve traffic prediction or identify traffic anomalies. In an ongoing Microsoft Research

project [71] researchers try to combine the vast amount of historical data (both social

and traffic) to create a single model for traffic prediction. Both works from Daly et

al. [69] and Ribeiro et al. [70] mine the social sphere to identify and explain traffic

conditions and events. Jingrui He et al. [66] propose a way to improve traffic prediction,

by combining social data from Twitter and historical traffic data. The authors use a raw,

but localized, tweet stream to discover the users’ future destinations and combine it with

historical traffic data to produce a near-term (5 minutes to 1 hour) traffic prediction. The

results show an improvement of the mean absolute percentage rate by almost 2% from

the baseline model that only utilizes historical traffic data. Such approaches can be much

improved with a more fine grained modeling that improves the correlation between social

volume and traffic congestion. We propose such a model and show in Section 5.6 how this
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kind of traffic prediction can be potentially improved. Our work is different in the sense

that we model traffic jams purely through social sensors without any knowledge of the

traffic’s historical distribution. Also, we examine which factors, like mood or sentiment,

may lead to specific patterns of social reaction.

Pan et al. [72] propose a system for monitoring traffic via mobile signals in order to

identify anomalies in the usual traffic flow. This is a more precise approach to discovering

traffic anomalies but is not directly applicable to our setup since the information is

not always publicly available (crowd-sourced) as it is on Twitter or other social media.

Finally, [67] appears to be the only work that studies the correlation between social

volume and traffic, at different hours of the day, but does not offer a model that captures

their observations. To the best of our knowledge, all models in the mentioned publications

ignore latent social factors that could skew the social volume related to traffic.

In [73] we proposed a new regression model for the estimation of traffic congestion

purely using social signals – more specifically complaints that drivers post on Twitter

while stuck in traffic jam. This new model is based on the observation that drivers

complain differently during different hours of the day. In the current work we further

correlate the observed fluctuations of complaints with the general mood of Twitter users.

This correlation explains why people behave differently (complain more or less) for similar

levels of traffic congestion and increases our understanding and trust for the originally

proposed model. Based on this correlation we reach a more concrete conclusion, that

the sentiment of the studied population should always be attributed in social sensor

applications, otherwise a simple approach might sacrifice quality and accuracy of the

results.
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5.3 Data Model

Towards building a regression model for traffic congestion that only utilizes social

signals, two different datasets are required: The social dataset that contains signals of

traffic congestion and the dataset with the ground truth of the traffic congestion volume.

For the social dataset we used Twitter data since drivers like to complain about traffic

there. For the ground truth (traffic jams) we use official sensor data from the California

Department of Transportation.

5.3.1 California Traffic Data

The first step towards a combined traffic and social analysis is to obtain the necessary

traffic congestion information and establish the ground truth. We focused on the area of

California where the Department of Transportation (CALTRANS) collects a wide range

of traffic statistics and publishes them online on the PEMS website [74]. CALTRANS

maintains a plethora of physical stations known as Vehicle Detector Stations (VDS) on

freeways across the state of California. Many sparsely inhabited areas have no stations

but most metropolitan areas like Los Angeles, San Francisco and San Diego are very well

monitored. Each VDS is located next to a freeway and reports data like lane occupancy

(if there are more than one lanes), speed in each lane, and health status, with a frequency

of 5 minutes. For the purposes of this analysis, we did not use the raw data from the

VDS stations since the PEMS website does not provide a programmatic way to download

data for many stations. Instead, PEMS computes and reports all traffic bottlenecks on a

daily basis, so we used these reported stats. Definition: A traffic bottleneck occurs

where the traffic demand exceeds the available capacity of the roadway facility.

More specifically, a bottleneck between two station detectors on the same freeway is

observed under the following conditions:
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• There is a speed drop of at least 20 mph (32 Km/h).

• The overall speed is less than 40 mph (64 Km/h).

• The distance between the two stations (minimum extent of a traffic jam) is at least

3 miles (4.8 km).

• The speed drop is observed for at least 70% of a 35 minute duration.

Note that these conditions have been chosen by CALTRANS. It is beyond the scope of

this work to validate the above numbers, conditions, and semantics of traffic congestion.

Since we are using the same definition across the whole analysis, there is no bias that

could skew our observations.

For each analyzed day, the full list of all reported bottlenecks in California is obtained.

Each bottleneck consists of a location (VDS latitude and longitude), extent, duration,

and delay. Extent is the distance, in miles, of the reported traffic jam. Delay is the

total duration, in minutes, of the congestion. Finally, delay is an artificial composite

metric that describes the total loss of time due to the bottleneck and is measured in

“vehicle-hours”:

TotalDelay = N × extent× duration×
(

1

speed
− 1

35

)
(1)

where N is the total number of cars affected by the congestion and speed is the

reported speed during a bottleneck. Note that this is a simplified version of the total

delay formula [75]; PEMS is actually using the non publicly available knowledge of

each lane’s occupancy and corresponding speeds to increase the accuracy of the delay

computation. In any case, due to the nature of this formula to combine all the other

metrics (extent, speed, duration) as well as the total number of affected drivers, it is
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Day of the Week Number of Bottlenecks
Monday 1948.72
Tuesday 2321.04

Wednesday 2418.96
Thursday 2583.38

Friday 2481.80
Saturday 1069.1
Sunday 642.88

Table 5.1: Average number of traffic bottlenecks in California per day of the week
throughout a period of 6 months in 2014 (May - October). The observed trend is that the
reported number of bottlenecks increases towards the end of the week and is significantly
lower during the weekends when most people do not commute to work. It is interesting
to note that Monday’s traffic appears to be quite lower than the rest of the week even
after removing holidays that could cause a possible bias.

commonly used by traffic analysts [76], [77] as the indicator of how severe a traffic jam

is. We will also be referring to it as “traffic volume” or “bottleneck severity”.

One drawback of the PEMS-generated bottleneck report is that it does not provide

an accurate time for each bottleneck (only the exact location). Instead, CALTRANS

provides a low granularity time attribute named “shift” which takes the values AM, PM,

and NOON. Therefore, bottlenecks can only be studied on a shift basis, which for the

purposes of our paper is enough as shown later on. The AM shift includes the hours

between 5am and 10am, the NOON shift between 10am and 3pm, and the PM shift

between 3pm and 8pm. Bottlenecks that occur during the night or after hours are not

reported and based on the raw traffic data, traffic-jams during those hours are extremely

rare and would not be useful for a statistical analysis. As shown in Section 5.4, very low

traffic periods may occur even during the day, especially during weekend mornings or

national holidays.

Daily traffic data was collected for every day within the period from May 2014 to

October 2014. Table 5.1 shows the average number of reported bottlenecks for each day

of the week. The relatively high number of unique traffic jams can be explained by the
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fact that some bottlenecks might occur in very close locations and due to CALTRAN’s

bottleneck definition get captured as individual traffic jams. For this reason the number

of incidents is not used to measure the severity of traffic on a freeway but instead we

use the total delay formula in Equation (1). In order to match traffic jams with a

physical location, we use the corresponding VDS station that observed each bottleneck, to

identify the county/city and more importantly the exact freeway the station is measuring.

Through the freeway name and number (e.g. US-101) we can then process the social data

and collect tweets that correspond to a specific freeway’s traffic jam.

Figure 5.1: Greater Los Angeles Area and freeway I-405 highlighted red. Due to its
strategic position and size, I-405 is heavily used from Los Angeles residents.

5.3.2 Social Data

We use Twitter as the social sensor platform to study traffic jams. To obtain the

necessary data we used the Streaming API [78]. Another explored alternative was

the use of the Search API [79] which however does not provide any guarantees on the

distribution or the completeness of the search results and therefore introduced statistical

bias.

Using the streaming API, however, while guaranteeing completeness, has two draw-
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Figure 5.2: Traffic severity heatmap for I-405. The heatmap shows the major congestion
points during the evening hours, averaged across all weekdays.

backs when compared to the search API. First, one can only collect new data and there

is no historical data access. Second and most important, the streaming API does not

support geo-enabled queries in a form that would be helpful to the current analysis. One

may query for all tweets from California OR all tweets about traffic, but not their inter-

section. Alternatives exist, like collecting all tweets from Los Angeles and separately all

tweets about traffic and then join them but due to the rate-limiting imposed by Twitter

it would not be feasible to get all tweets from Los Angeles, given the large number of

Twitter users living there. Not having the ability to filter tweets by location led us to

collect any tweet that mentions the keyword “traffic” and then proceed to filter down

the collected tweets using other heuristics. Specifically, only the tweets that mention

the freeway name get under consideration, tweets from automated or traffic reporting

accounts (like police departments and radio stations) are removed, and finally, human

judges manually go through all remaining tweets and keep only those that were made

by people stuck in traffic. The last step is consistently performed using basic rules like:

tweet text contains phrases with temporal hints like “this traffic” or “on my way”, tweet
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contains a picture of other cars in traffic jam taken from inside a car, tweet contains a

self-taken picture of the driver (selfie).

The last filtering step to keep only tweets from people that drive in traffic, is the only

one that needs human assistance to complete. It is still the most error prone step, since

Twitter users will not always be explicit about being behind the wheel while tweeting. It’s

important to note here that interacting with a (smart)phone for purposes like texting,

checking social media, tweeting etc. while driving, even during stand-still traffic, is

considered illegal in California [56]. However, this does not discourage people from

posting selfies (self-portrait photographs) on Instagram, or tweeting about the annoying

traffic. Still, the fact that such actions are deemed illegal makes it an interesting signal

to study.

Due to privacy reasons, the social data used in this study was anonymized, especially

since as stated above, there are legal issues involved when tweeting while driving. It

should be noted here that the processed social postings (publicly available tweets) are

made by Twitter users with non private accounts and are openly provided by Twitter

through the streaming API. However, to satisfy privacy and ethical concerns, we are

not publishing any names, usernames, or content that could lead to the identification of

specific users.

The final product of the social data collection is a set of tweets (including all meta-

data provided by Twitter), grouped by date and shift (AM, NOON, PM), made by people

while stuck in traffic jams. In the rare cases where a user made more than one tweets

during a specific time period we counted only one of them. We will be referring to the

number of tweets as “social volume” in this analysis. Note that the number of tweets is

fairly low (usually less than 20 per shift of the day), these numbers are very consistent

and stable throughout the whole analyzed period which greatly reduces the likelihood of

random bias.

85



A Social Sensor Application: Mining Complains for Traffic-Jam Estimation Chapter 5

5.3.3 I-405 Freeway

Given the mentioned limitations posed by the collection of social data, we focus on

one major freeway, infamous for its devastating traffic jams: San Diego Freeway I-405.

I-405 (Figure 5.1), founded on 1964, has a length of 72 miles, passes through the whole

city of Los Angeles and is used by hundreds of thousands drivers daily and there is

always stand-still traffic reported during rush hours. People even call it the “monster”

[80] as a humoristic acknowledgment of its size and severe traffic. The heatmap in Figure

5.2 shows how traffic is distributed across the freeway; traffic congestion is not evenly

distributed but instead there are some specific points where traffic jams mostly occur,

which makes traffic at these points even more severe during rush hour. We chose I-405

over US-101 (another popular candidate) because it is limited in the area of Los Angeles

while US-101 covers the whole west coast of the United States. However, we made sure

that the traffic patterns observed in I-405 are not unique. The traffic volume between

the two freeways was compared and we found that they follow the exact same patterns

for all days of the week and all shifts of the day. Therefore, it is safe to say that the

choice of I-405 does not introduce any freeway-specific traffic anomalies.

5.3.4 Tweets from Drivers

As explained in subsection 5.3.2 only tweets made by people driving during traffic jams

are counted, instead of every tweet mentioning traffic and the freeway name. Utilizing the

latter as the social volume, would introduce cases where the raw volume of noisy tweets

is misleading for estimating the actual traffic. There are two categories of “noisy” tweets.

First, there are tweets made by automated accounts (e.g. police dispatch, highway patrol)

or news agencies that report traffic on Twitter [55]. Such tweets are published whenever

traffic bottlenecks occur and are usually agnostic of the exact severity of the bottleneck
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or how much it really annoys the drivers. The second category consists of tweets that

are potentially about traffic, posted by normal users, but not during their commute. The

problem posed by both categories is that those tweets are not part of a direct social

reaction to a traffic jam. Any traffic jam estimation that utilizes those tweets would

introduce excessive noise and predictive bias. As an example of a case where the raw

volume of all tweets is misleading, on Friday the 23rd of March 2014 a new carpool lane

opened for freeway I-405 which caused an abnormally high volume of discussion among

Twitter users. Most of this discussion included chatter about the potential usefulness

of this new lane or excitement about it. On another similar case, a celebrity Twitter

user made a tweet about being stuck on traffic which triggered many replies from fans

and followers. In both cases, any conclusions or traffic modeling based on the generated

“social reaction” will be very biased unless the data is correctly processed and filtered.

In Section 5.6 we compare the traffic regression error between a model that uses

tweets only from drivers and a model that uses tweets from every normal Twitter user

that talks about traffic (automated accounts, news stations, and bots are still removed).

We show that focusing purely on tweets from drivers actually increases the accuracy of

the regression.

5.4 Analysis

The purpose of this analysis is to discover hidden features that would more accurately

estimate the magnitude of traffic congestion through social media. Our basic assumption

is that there are cases where the size of a social media event may be different from how

humans perceive it. Perception is a complicated process and there are many factors

that play a role (e.g. mood, enthusiasm, weather, family status, political beliefs, etc).

We assume that complaining about traffic falls under the umbrella of such events and
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study the correlation between traffic and complains to show that indeed there are other

latent factors that contribute in non-trivial fluctuations of the social reaction volume.

Traffic jams are measured with high accuracy by automated traffic monitoring stations

but human perception of a bottleneck may vary under different circumstances. To the

best of our knowledge this is the first work to study how fluctuations, potentially due to

psychological factors like mood or sentiment, can improve the accuracy of a social sensor.

To describe this analysis, first some basic statistics are provided, then a baseline

model for regression is offered that will be used for comparison to our proposed model,

and finally, the analysis of traffic congestion by time of the day will be described, based

on which we build the proposed regression model.

5.4.1 Basic Data Statistics

To begin the analysis, a better understanding of the two datasets (traffic volume and

social volume) is necessary. As mentioned at the end of Subsection 5.3.2 our analysis is

focused on the California freeway I-405. Table 5.2 and Figure 5.3 show the traffic volume

on I-405, by day of the week and shift of the day. Only weekdays are shown since traffic

congestion during weekends is extremely low. Note again that these numbers describe

the total delay and not the amount of cars traveling. Close to zero traffic volume in our

context means that there is no introduced delay since the cars in the freeway are running

at a speed close to the limit and not that there is no traffic at all. Our proposed model

works for weekends as well but they are omitted from the current analysis for simplicity.

The reader can view the actual statistics for weekends in Tables 5.2 and 5.3. These tables

also provide the standard deviation for each average.

The first observation based on the traffic volume data is a clear traffic increase towards

the end of the day (PM). Also, for every weekday, the morning and noon traffic fluctuate
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Figure 5.3: Traffic averages for each day of the week and shift of the day. The general
trend for most of the weekdays (no weekend) is that PM traffic is always worse than AM
and NOON and AM is worse than NOON except on Fridays.

Day AM mean AM stdev NOON mean NOON stdev PM mean PM stdev
Mon 16840.25 2927.09 3462.38 1271.59 21234.75 3234.97
Tue 18747.29 1907.23 5299.43 3212.63 27126.57 3705.78
Wed 19708.20 2741.86 5451.60 2473.53 34484.80 2725.18
Thu 19167.00 3225.76 7585.11 1764.80 40134.67 4830.19
Fri 11997.67 2857.14 13364.78 2270.96 41370.00 3769.05
Sat 200.25 50.77 7038.50 2332.95 9759.00 2767.73
Sun 54.50 91.71 2893.25 1231.31 3020.25 907.63

Table 5.2: Traffic volume (total delay) statistics for I-405 (Los Angeles) by day of the
week. To measure traffic volume we sum up the Total Delay of each reported bottleneck
across I-405 during each day’s shift.

far less than the evening’s. The second observation is that evening traffic gets worse

towards the end of the week (Thursday and Friday) as can be seen in Figure 5.3. There

are many potential explanations of why these patterns occur. Arguably, the reasons why

most people drive during rush hours are work related. Therefore, most patterns could be

explained by how people schedule their work hours. For example, it could be that during

Fridays people tend to leave earlier from their work and cause a more concentrated traffic

congestion around 4pm and 5pm. Regardless of the reason, the fact remains that traffic

volume is higher during evenings and towards the end of the week, and lower at noon

and in the mornings.
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Day AM mean AM stdev NOON mean NOON stdev PM mean PM stdev
Mon 5.00 1.51 2.88 1.64 7.12 2.47
Tue 5.71 2.36 4.71 3.64 8.14 2.41
Wed 6.60 2.51 3.40 2.30 12.40 2.19
Thu 5.78 2.54 4.89 1.69 15.11 3.41
Fri 3.33 2.06 6.78 3.07 15.78 5.63
Sat 1.25 1.04 4.88 2.36 5.38 4.24
Sun 0.25 0.71 2.00 0.93 1.00 1.07

Table 5.3: Social volume (number of tweets) statistics. These only include tweets made
by drivers stuck on I-405 traffic jams.

Similar to the traffic volume, Table 5.3 and Figure 5.4 show statistics about the social

volume (number of tweets), again on a day-of-the-week and shift-of-the-day basis.

Figure 5.4: Social volume averages by day of the week and shift of the day. The general
trend of social reaction appears to be in sync with the traffic volume (if compared with
the plots in Figure 5.3.

The social volume statistics confirm our intuition that social reaction is proportional

to the traffic volume. Same as with the traffic, during morning and noon hours social

volume is generally low across all days of the week but peaks up during the evening hours.

Also, the evening social volume becomes higher towards the end of the week (Thursday

and Friday).
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5.4.2 Naive Approach: Linear Model

From the basic statistics we listed in Subsection 5.4.1 it would be reasonable to expect

a linear relation between traffic volume and social volume. It makes absolute sense that

social reaction becomes stronger when traffic jam conditions worsen. Based on this

hypothesis we can use linear (least squares) regression to compute a linear model that

can estimate traffic based on the number of generated tweets (a typical example of social

sensors). Figure 5.5 depicts the linear model as a straight line:

TrafficV olume = 1850.0× SocialV olume+ 5299.1

Note that the model’s coefficient of determination (R2) is 0.6597 which can be con-

sidered high depending on the application and desired level of regression precision. We

list in Section 5.6 the absolute and relative errors yielded by this model when trying to

estimate (predict) traffic.

Figure 5.5: Plot of traffic volume vs social volume. Each point describes the data of
a single day and shift. The x-axis measures the social volume (number of tweets) and
the y-axis measures the traffic volume as total delay (vehicle-hours). We can fit a linear
model with R2 value of .6597.
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We also tried to fit a second degree polynomial model to the data. The result was

a minor improvement of the R2 value but unfortunately, due to physical limits, greater

traffic volume values that could validate a polynomial model do not exist. Without loss

of generality or introducing any bias for further findings, we assume a linear fit for the

purpose of this study.

While the linear model appears to be relatively accurate, certain underlying patterns

exist, which are ignored. Plotting the same data from Figure 5.5 and grouping datapoints

by shift of the day in Figure 5.6, makes it clear that each group has its own characteristics

and behavior. The conclusion from this observation is that latent features might describe

the connection between traffic and social reaction in a better way. In Section 5.5 we

explore the general sentiment or mood as a possible connecting factor. In any case, this

conclusion lead us to the hypothesis that a different model that exploits such patterns

could fit better than the naive linear model.

Figure 5.6: Same datapoints from Figure 5.5 but grouped by shift of the day. PM
datapoints are mostly located on the upper-right, AM datapoints at the center-left, and
NOON datapoints at the lower-left.
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5.4.3 Analysis by Time of the Day

To evaluate whether traffic is perceived differently under different circumstances we

computed the ratio of Traffic Volume over Social Volume for different times of the day

(averaged across all weekdays). We also tried to explore correlations with the day of

the week or the weather (temperature) but the time of the day proved to be by far the

strongest feature. The ratio of traffic volume over social volume measures how much

drivers complain per traffic delay and lower values indicate higher complaining. Note

that due to the characteristics of the traffic jam dataset, the analysis is performed on a

shift basis (AM shift: 5AM-10AM, NOON shift: 10AM-3PM, PM shift: 3PM-8PM). A

plot of these ratios can be found in Figure 5.7. On the right-most column of the chart,

the average ratios across all weekdays are shown. The lower a value of a ratio is, the

more drivers complained on Twitter about traffic. So it is evident through these ratios

that morning social reaction to traffic appears to be the lightest as if people do not care

as much. On the other hand, noon reaction is the heaviest while NOON traffic is the

lightest as seen in Figure 5.3. This indicates that humans react to traffic congestion

differently based on the hour of the day and just measuring the raw volume of social

complains regardless of what time it is will be misleading.

Through these ratios the conclusion is made that a different time of the day indeed

results in different levels of traffic reaction. In Figure 5.8 the datapoints are plotted based

on the shift (AM, NOON, and PM). We can then fit individual models on each subset

of the data. In Figure 5.8 the linear models are plotted using least squares regression.

As with the naive liner model (subsection 5.4.2), we also tried to fit other models (poly-

nomial, exponential) but the linear yields the best results even if not all individual R2

values are high enough. The 3 individual sub-models for each shift of the day and the

corresponding R2 values are listed in Table 5.4.
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Figure 5.7: Traffic volume / Social volume ratios. Lower values indicate heavier social
reaction. Morning social reaction to traffic appears to be the lightest while noon reaction
is the heaviest. Humans react to traffic congestion differently based on the hour of the
day. Even though NOON traffic is the lightest (Figure 5.3) it causes the most severe
social reaction.

Figure 5.8: Shift-based linear model: A mixture of 3 different linear models, one for each
shift of the day (AM, NOON, PM).

Note that the individual R2 values for each shift are lower than the R2 value of

the linear model (which is 0.66). While this could be interpreted as a bad fit of the

proposed model to the data, we will show in our experimental analysis in Section 5.6

how the proposed model compares to the naive linear model and other baselines, when

used in the context of estimating traffic through social volume. Generally, R2 values are

not always the best indicator of well-fitness and in cases where residuals form specific
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Shift of the Day Social (SV) to Traffic (TV) Model R2

AM TV = 974.79 · SV + 12122 0.2761
NOON TV = 916.09 · SV + 2928.6 0.3990

PM TV = 1211.2 · SV + 17849 0.5941

Table 5.4: Social-to-Traffic Modeling, by shift of the day (shift-based model).

patterns, can be misleading. In any case, the actual superiority of our model will be

shown through its regression accuracy.

5.5 Sentiment Correlation

There is strong evidence that human psychology plays a significant factor in traffic

jams. It has been proven through experiments that in many cases human driving behavior

can be the single cause for traffic congestion since people are unable to keep a steady speed

which causes traffic waves [81]. This tight connection between human behavior and traffic

jams triggered the idea that social reaction might also be affected by psychological factors.

As described in Section 5.3.4 we measure the tweets from actual drivers which mostly

involve complains about the traffic. According to psychologists, the act of complaining

is actually beneficial for humans since it relieves stress and makes them feel better [82].

Also, people tend to complain more when they are less happy which led us to study the

correlation of sentiment and social reaction for traffic.

Golder et al. [83] have published an extended study where they measured the senti-

ment of English speaking Twitter users in many countries with the USA among them.

Their main observation is that positive and negative sentiment fluctuate throughout the

day. The authors also show findings where positive sentiment reaches higher values dur-

ing the summer (more daylight) and the opposite during the winter. Our main takeaway

from Golder’s paper is that sentiment fluctuates throughout the day which could also

translate to different levels of complaints. Figure 5.9 shows how sentiment fluctuates
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during each weekday and hour. The general trend appears to be that people are the

happiest early in the morning, (around 7-8), then become temporarily less happy during

the afternoon, and finally sentiment gets back to higher values during the evening. This

trend correlates with the 8-hour working schedule of most people which would mean that

they are less happy at the middle of their work schedule.

Figure 5.9: Plot of the positive sentiment values by time of the day, for each day of the
week. Measurements describe the english speaking US population and are provided by
Golder et al. [83].

To offer a potential explanation of the observed behavior of drivers (different levels of

complaining during different times of the day) we further analyzed the positive sentiment

index provided by Golder et al. (shown in Figure 5.9). In the bar-chart part of Figure

5.10 the average positive sentiment across all weekdays is plotted (from Figure 5.9). All

timeslots of the same shift are then grouped together and average positive sentiment

across each shift is computed (left chart in Figure 5.11). This grouping shows that

NOON and PM shifts have the same average of positive sentiment. However, there

is an important difference: the rate of change of sentiment. As can be seen from the

derivative of the sentiment (line-chart part of Figure 5.10), during NOON the positive

sentiment decreases while during the PM shift the positive sentiment increases (right
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chart in Figure 5.11). This indicates a different rate of mood change: during NOON

people are in a mood to become less happy while during the evening they are in the

mode of gaining their original positive sentiment.

Therefore, people are in different moods during each shift (NOON: they grow less

happy, PM: they grow happier, AM: they are the happiest) which correlates with our

plotted ratios between traffic and social volume from Figure 5.7: stronger complains

during NOON, weaker complains during PM, and the weakest complains during AM

even though the actual traffic volume is lowest at NOON.

Figure 5.10: Average positive sentiment bar-chart for weekdays, by hour of the day. The
red line shows the derivative of positive sentiment. Positive sentiment has the highest
value in the morning, reaches a local minimum in the afternoon and regains high values
in the evening.

The importance of this finding is two-fold. First, it offers a possible insight on the

driver’s cognitive state when stuck on traffic. While we already expected that people will

get more frustrated with increased traffic congestion we show that less obvious factors

like the time of the day or the day of the week can make things even worse. Second,

we can see that any statistical models that utilize and associate social data with traffic

prediction or analysis need to attribute more factors than just the volume of social
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Figure 5.11: Left: Average positive sentiment bar-chart, grouped by shift (AM, NOON,
PM). Right: Average value of the derivative, by shift. While the average positive senti-
ment is almost the same during NOON and PM, the sentiment derivative has different
signs which indicates a different change rate: during NOON people are in a mood to be-
come less happy while during the evening they are in the mode of gaining their original
positive sentiment.

postings. However, correlation between sentiment and level of complaining does not

necessarily equal causality. The above analysis is only offered as a potential explanation.

Also note, that for each different shift, drivers have different destinations: At AM it is

mostly work, at NOON it should be lunch, and at PM it is mostly getting back home.

But regardless of which factor leads to social-reaction fluctuations, the shift-based model

is able to capture this different behavior and, as will be shown in Section 5.6, improve

the accuracy of traffic regression.

5.6 Traffic Prediction

In this section we describe the details of the shift-based model and provide com-

parisons between the proposed model, the naive linear approach and some additional

baselines. Note that the term prediction is used in the context of statistical regression
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and social sensors and not predicting future traffic.

5.6.1 Models

To measure the regression improvement of the proposed shift-based model we intro-

duce some baseline models. The first baseline model is the naive linear model that was

described in Subsection 5.4.2 (denoted as NAIVE). Since the shift-based model is prac-

tically splitting the datapoints in three categories, we have a second baseline model that

just picks 3 random partitions and fits a linear model on each one (3-random-partitions

model denoted as RAND3). Random partitioning makes sense as a baseline because if

the proposed shift-based model had no statistical significance, then it should yield similar

results with the random partitioning.

Similar to the shift-based model we also tried to fit the data on a daily basis –

one linear fit for each day, from Monday to Friday (baseline denoted as DAY-BASED).

Finally, two more models are introduced that use the naive linear model (NAIVE) to fit

the datapoints of each day of the week (NAIVE-DAY) and the datapoints of each shift

(NAIVE-SHIFT). Practically, for NAIVE-DAY we apply the simple linear model on the

data by day of the week and for NAIVE-SHIFT we apply the simple linear model on the

data by shift of the day. The last two models are not generated by training data (like the

proposed SHIFT-BASED), and do not require cross validation since they do not change;

we measure their fitness purely to demonstrate that there is no statistical bias in this

SHIFT-BASED model.

The shift-based model (denoted as SHIFT-BASED) is a composite model with a

different submodel for each shift of the day (AM, NOON, PM). As described in Section

5.4 the shift-based model is created by applying a least-squares linear model on each shift

of the day (Table 5.4 and Figure 5.8). Since the number of datapoints for each shift is
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Model
Mean Error

R2

Squared Absolute Relative
Naive Linear 5.5856 6062.0 0.6619 0.6596

Random 3 Partitions 5.8604 6209.8 0.6783 0.6611
Day-based 5.9272 6374.8 0.6658 0.6064

Naive by Day 5.406 5983.5 0.6607 0.6064
Naive by Shift 5.3690 5958.2 0.6584 0.4230

Shift-based 2.4245 3739.8 0.3598 0.4230

Table 5.5: Error comparison for each regression model. Squared error values are ×107.

equal (there is one datapoint for each shift for each day of data), the overall precision

of the shift-based model can be defined as the average precision of each submodel. For

example, when measuring the squared error of the model we need to compute the squared

error for each submodel and then get their average.

5.6.2 Model Comparison

To compare the predictive power of each model the following cross validation setup

is used: Repeated random sub-sampling validation. For each model, the data points are

randomly ordered and then the first 80% of the datapoints is picked as training dataset

and the rest 20% as validation dataset. Using least square regression we fit a linear

model to the training data and then calculated the estimation error on the validation

data. This process is repeated 1000 times and the average errors across all 1000 splittings

are calculated. For the relative errors, all cases where the expected traffic volume is close

to 0 were ignored, since it was introducing very large values.

The average squared, absolute, and relative errors for each model are listed in Table

5.5. For completeness of the analysis we also provide the coefficient of determination R2

in each case. The Shift-based model significantly outperforms all the baseline models

which proves that focusing on the different shifts of the day has a statistically significant

effect while other approaches like day-based perform poorly. In terms of absolute error,
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Model
Mean Error

R2

Squared Absolute Relative
Naive Linear 8.5558 7378.3 0.7259 0.4948
Shift-based 3.5027 4527.4 0.3919 0.2571

Table 5.6: Error comparison for the linear and shift-based model with all tweets about
traffic (no driver-based filtering). When tweets are not coming directly from drivers in
traffic jam the error is significantly higher.

we observe a 38% improvement between the Naive Linear approach and the shift-based

model. In terms of relative error we observe more than 45% improvement. Figure 5.12

visually shows how each model compares based on absolute error.

Finally, we calculated the regression error without applying the driver constraint;

now tweets can originate by anyone and not only drivers that are stuck in traffic. Our

hypothesis is that the raw data will contain excessive noise that will reduce the quality

of the regression. In Table 5.6 we list the average errors for the linear and shift-based

models. Basic filtering that removes tweets from spam accounts is still applied but all the

rest of the tweets from normal Twitter users remain. Using this raw dataset for regression,

results in an increased error for both linear and shift-based models. The conclusion from

this comparison is that filtering of social posting based on users directly affected by traffic

congestion results in a better model and accuracy. We show the absolute error of the

shift-based model when all tweets are used (SHIFT-BASED-ALL) in Figure 5.12 and it

is 21% higher.

Note again, that even though the Coefficient of Determination (R2) is lower for the

SHIFT-BASED model compared to most baselines, it achieves a very significant improve-

ment in traffic estimation which shows that R2 is not always a good measure of fitness

when modeling this particular traffic/social dataset.

Therefore, using a regression model that attributes the fluctuation of sentiment

throughout the day by modeling differently the social behavior for each shift of the day,
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we can significantly reduce the traffic estimation error and gain better accuracy. More-

over, filtering the social signal by focusing only on active drivers when estimating traffic

congestion further boosts the results since it eliminates the noise from traffic reporting

tools and services.

Figure 5.12: Model comparison: Absolute Error. The proposed shift-based model
achieves 38% less error than the naive linear model.

5.7 Remarks

Social sensors offer a fast and low cost method to understand the physical world

through online content of social media. Mining the correct correlation between the

crowd’s reaction and an event’s magnitude can be very critical and improves our under-

standing of what is happening and how much it effects our lives. Using the correlation

between traffic congestion and social reaction on Twitter as a showcase we show that

exploring dimensions that have different psychological links, like the time of the day,

can lead to a better grasp of the traffic severity. We propose a novel model to estimate

traffic jams using social sensors, that utilizes three linear submodels, one for each shift
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of the day (AM, NOON, PM) and social posting from car drivers. We show that the

proposed model can be at least 38% better than the naive linear approach and performed

several comparisons with different baselines to prove that these findings are statistically

significant. We also show that without filtering the tweets by drivers only the regression

error of the proposed model would increase by 21% due to the noise. We observe that

humans tend to complain more about traffic when they are less happy and we offer the

exact linear sub-models that describe these relations between complaints and traffic, for

different times of the day. Finally, we offer a potential explanation as to why people com-

plain differently throughout the day, for different levels of traffic congestion, by observing

correlation with the general sentiment (mood).
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Chapter 6

Future Work in Group Privacy

6.1 Motivation

Due to the public nature of online social media services such as Twitter or Instagram,

users typically have a simple goal, to communicate with friend and followers. Many social

media users tend to publish a large amount of information that is both structural (likes,

favorites, retweets, shares) and non-structural (photos, opinions, conversations) in nature.

According to social theory, users “imagine” a specific audience [84] whenever they post

something new, and this audience consists of a set of users that they believe will receive

and consume their posts. However, the imagined audience and the actual audience of

a user’s posts can significantly diverge from one another in two ways: First, it can be

much smaller than anticipated, since not all followers/friends will necessarily read every

post that a given user posts. Second, it can be much larger than expected because the

public nature of social media encourages engagement and provides mechanisms to make

information widely available and visible. In such cases, a Twitter post by a user with a

few followers could grab the attention of a celebrity with millions of followers who might

decide to share it, which suddenly exposes it to a vastly larger audience than anticipated.
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This difference between the perceived audience and the actual audience can lead to

interesting situations, especially when the audience reaction to what is posted is negative.

But even for positive reactions, where the response to a post is widely positive but still

massive and unexpected, some people find it difficult to deal with their sudden fame

or might even face offline repercussions. A real example is when photos of teenagers

become Internet memes and, even if the meme is positively perceived, those teens might

face bullying at school purely because they are in the spotlight. In these ways, it makes

sense to discuss privacy and private behavior in the context of public information because

the networked structure of social media can push public information to audiences beyond

those it was intended to reach, thereby potentially creating a privacy breach []. This is

different from the more traditional notions of data privacy or privacy that argue any

claim to privacy is forfeited as soon as information is posted publicly.

What may be even more interesting from a privacy perspective is when specific char-

acteristics of the person posting on social media is targeted in combination with what

they write. For example, the same opinion posted by a LGBT teenager and a non-LGBT

adult can create widely different reactions. Moreover, users might positively accept a

reaction that challenges solely their opinion versus a reaction that also involves verbal

attacks to their personality, age, gender, race, and other social characteristics. This be-

comes even more important when the opinion is prevalent among people with a specific

set of characteristics, which we refer to as a community (Chapter 2). For the purposes

of our research, we defined a community as a group of social media users who all share

some combination of social characteristics, e.g., all Muslim women who live in New York

between the ages 22 and 25, or all teenagers of Hispanic origin.

Such communities sometimes behave in a collective way, such as when they discuss in

a focused way specific topics or opinions, but due to the inconsistency between imagined

and actual audiences, their words may reach other users outside their friendly community
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circle. This can result in harassment from malicious users (online or offline) towards

members of the community, either collectively or individually. This kind of situation

introduces a novel notion of group privacy or community privacy as opposed to individual

privacy. The general model of group privacy is based on the fact that social media users

feel that their online (and potentially sensitive) opinions are “a needle in the haystack”

where only their imagined audience will read their posts while the vast majority of the

social media user-base will remain oblivious to. In reality, and especially for community-

focused topics, the actual audience might involve unexpected people, and that could

lead to several negative circumstances. For simplicity, we model the online opinions and

discussions with the notion of a topic. A topic can be a simple phrase, a hashtag, an

n-gram, etc. Using topics, the users that have mentioned a specific topic can be clustered

in groups. If the users mentioning a topic also happen to form a community, then there

is a collective focus of the community to this particular topic (as introduced in Chapter

1).

6.2 Group Privacy Definition

A group privacy violation may occur when the combined online actions of individuals,

which are public and potentially visible to anyone, lead to the association of groups

with specific topics and behaviors. Depending on the public reaction to this association

(negative vs. positive), a group privacy violation can be harmful to the group and/or its

individual members. Even with positive reaction, if it is widespread, it can still result in

negative effects for the group.

Definition 1: Collective Behavior The collective behavior of a group includes all

the actions (active component) or common characteristics (passive component) of the

majority of its members.
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Definition 2: Group Privacy Group Privacy describes the state where a group’s

private collective behavior can not be observed.

A group privacy violation involves the exposure of non-obvious collective behavior

through the aggregation and mining of publicly visible actions of individuals. Group pri-

vacy can be violated through the observation of the public actions of its group members

(individual behavior). In Figure 6.1 it is demonstrated how the actions of individu-

als in social media (discussing about certain topics) can be combined with proprietary

knowledge of their characteristics to produce information that an attacker can reverse

engineer to discover latent collective behavior of groups. We discuss the active and pas-

sive components of this collective behavior and how they can be targeted in the following

sections.

6.3 General Attack Model

Attackers in the context of group privacy have access to public information avail-

able on online social media and the necessary computational resources to analyze and

aggregate the behavior of individual users which are implicit members of groups. The

knowledge of whether a user is a member of a group or not is private for an arbitrary

number of users and might not be available to the attacker initially.

The attacker has access to the public portion of a user’s profile and the historical

stream of their posts. Moreover, we can safely assume that they have access to a Search

tool that can perform topic-based search and return the set of users discussing each topic.

Such a Search functionality enables the easy and public association between users and

mentioned topics. The attacker can exploit this functionality to derive the set of all users

that have mentioned a specific topic, for any topic the attacker desires.

Additionally, the existence of trending topics, a feature that summarizes which topics
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Figure 6.1: Group privacy visualization.

/

are popular at a given time, can further be exploited to discover private attributes of

the users. This knowledge can then be utilized to derive group memberships. Usually,

trending topics are clustered by some attribute like Location or Interest (e.g., politics,

technology, pop-culture, etc.). As a very realistic example, Twitter provides trending

topics by location at the city level, therefore the attacker can easily derive the location of

any user who mentions location-focused topics, where a location-focused topic is a topic

that is being discussed in a specific location and nowhere else. Such topics are an easy

give-away for the location of involved users since none outside this location mentions the

topics.

With all this information available, an attacker can aggregate the behavior of indi-

viduals, derive their group membership, and finally, discover latent collective traits of

some groups’ behavior.

6.4 The Dimensions of Group Privacy

In the context of group privacy and its collective behavior there are two components,

the static that includes the characteristics and attributes of a group (passive component)
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and the dynamic which includes the actions of the group (active component). An attacker

can target either component in different ways.

6.4.1 Static Group Privacy

Focused topics are very prone to group privacy attacks since they mostly involve a

specific group of people with common characteristics. In the presence of a tool, owned by

the social media service, that publicly narrates online discussions an attacker can poten-

tially extract the correlation between topics and focused communities, reverse engineer

this information to identify all the individuals that talk about specific topics (i.e., using

the search functionality), and statistically infer their social characteristics (similar to the

example in Figure 6.1. This inference attack introduces two risks: (a) Some community

members might not want to be publicly associated with the community but will get ex-

posed nevertheless (i.e., true categorization threat). (b) Someone that is not part of the

community but happened to discuss a focused topic, could be incorrectly associated with

the community (i.e., false categorization threat).

Regarding the former risk, an inferred group membership can be extremely harmful

to an individual, if for example the group is generally a target of harassment (e.g., LGBT

teenagers). Individuals willing to protect themselves against such attacks are disadvan-

taged since they might not be aware of the groups they are a member of (especially if the

group is ad-hoc, as described later). The latter risk, wrongful association with a group,

can have similar negative effects for the individual.

6.4.2 Dynamic Group Privacy

While static group privacy involves the discovery of latent group characteristics and

group membership, dynamic group privacy is more topic-aware and involves the correla-
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tion of potentially sensitive topics with potentially sensitive communities.

Definition: Sensitive Information Sensitive information is the information that,

when exposed to an audience outside the group’s members, can result to negative effects

for the group (backlash, harassment, etc.).

Public information shared on social media can still be sensitive since people might

not realize that what they post might reach a different audience from the one they have

in mind (difference between perceived and actual audience). Based on this notion of

sensitivity we consider two categories of sensitive information: (a) The topic might be

sensitive, e.g., a feminist hashtag in Pakistan. (b) The community itself is sensitive, e.g.,

it involves generally sensitive attributes like sexual orientation or race. And of course,

there is the case that both the topic and the community are sensitive.

Topic sensitivity leads to an interesting observation: a single user might be comfort-

able discussing a sensitive topic within their online social circle, but when the topic is

associated with the user’s community characteristics and becomes a target in the context

of the general group, then this can become problematic for the whole community and its

members.

On the other hand, community sensitivity is more related to the stability of the group

in the physical world. To better understand this, we will refer to communities that are not

widely recognized in the real world using the terms “implicit” or “ad-hoc” communities.

An implicit or ad-hoc community can be formed by a set of characteristics that has not

been observed before and even its members might not be aware of its existence as a group.

Such groups will be by definition sensitive since they lack the bonding and experience

to collectively handle negative comments. However, even groups with high awareness

and very specific reason for existence (e.g., member of the social movement Black Lives

Matter) can become victims of identity shift when exposed to external friction.

Topic and group sensitivity are often closely correlated since a sensitive community
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that is usually the target of negative comments, discussing a specific topic can render the

topic sensitive as well. For to this reason, the identification of sensitive topics must be a

process aware of correlated communities and their type.

6.4.3 Next Steps

The next steps in this line of research would require validation of the above theories

through experimental surveys. Once this validation is performed and we form a better

understanding of group privacy we will then explore algorithmic solutions to encounter

each dimension of this novel privacy concept.
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Chapter 7

Conclusions

In the current Dissertation we explore and demonstrate how studying the characteris-

tics and behavior of the population behind social media discussions can greatly enhance

the quality of various Data Mining tasks. This is achieved through a series of related

studies that have trending topics and attribute-based communities at the very center.

More specifically, we show how extracting communities that are focused on topics leads

to better engagement between users and trending topic reports. We offer an algorithmic

framework for the efficient identification of topics and their focused communities and

explore ranking equations to produce trending topics that have the potential for high

engagement by a general audience. We then study the privacy implications of such re-

porting algorithms and offer solutions from both the system’s and the user’s perspectives

(privacy cyborg). In both cases we protect the users from having their sensitive attributes

leaked to an attacker that tries to statistically infer them. Such an attacker would utilize

reports of trending topics with focused communities to improve their knowledge about

individual users’ attribute since the focus property guarantees some degree of correlation

between topics and attributes. Shifting further from topics, with the specific application

of estimating highway traffic in mind, we identify that specific features like being a driver
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and the time of the day can greatly increase the accuracy of the regression task. This

demonstrates again the important of understanding the background context behind a

text mining challenge rather than just studying text features. Finally, we make the first

steps towards an understanding of how privacy in social media might extend to whole

communities or groups instead of just individuals.
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