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Abstract

Stochastic Modeling of System Function in a Network of

Biological Oscillators

Kirsten R. Meeker

Many living organisms have evolved to anticipate daily circadian cycles and

changing seasons of their environment. In mammals, the suprachiasmatic nucleus

(SCN) of the hypothalamus, a brain region of about 20,000 neurons, serves as the

master circadian clock coordinating timing throughout the body and entraining

to daily external light cycles. The remarkable precision of the SCN clock relies on

intercellular signaling. In its absence, each SCN neuron and the SCN as a whole

have significantly less stable oscillations. Though there are candidate signaling

neuropeptides and anatomical surveys of the SCN, it is still unknown how the

SCN as a whole responds to changes in the environment and regulates function in

the body. We model the unstable oscillations in individual cells by developing a

stochastic model based on the cell clock’s gene regulatory network, then investigate

the intercellular signaling properties of the SCN to understand its behavior as a

whole.

Though many existing deterministic models contain details of the gene regula-

tion in the cell, their output has been compared to the behavior of the SCN as a
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whole, rather than to individual cells. Characterizing properties of individual cells

such as period, phase, and synchronization is challenging due to their non-linear

and unstable oscillations. We developed a wavelet analysis method to characterize

cell behavior in biological experiments and compare with stochastic cell models.

This analysis led to an examination of how period distributions could be influenced

by stochastic fluctuations in a nonlinear cell oscillator model, and a hypothesis

that the poor or strong oscillators observed in biological experiments could be a

stochastic oscillator operating near a bifurcation point, between non-oscillatory

and oscillatory conditions.

It was observed in SCN tissue and in the SCN stochastic model that the oscil-

lator is less likely to shift phase in response to a vasoactive intestinal polypeptide

(VIP) dose at circadian time (CT4) than at other times. A reexamination of the

behavior of the SCN as a whole, when modeled as linked stochastic oscillators,

led to the hypothesis that the cells of the SCN synchronize to each other using

a “phase tumbling” process. Our hypothesis is that the SCN synchronizes by its

cells shifting with a wide phase distribution when they are perturbed at phases

not near CT4. Rather than shifting in a deterministic manner, where all the

cells stay synchronized and shift together to a new light schedule, they instead

temporarily desynchronize then reorganize aligned to the new light/dark cycle.

Within a few cycles the system can rapidly shift to a new light schedule. This
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rapid re-entrainment to both new light/dark and temperature schedules was con-

firmed in mice by first desynchronizing the SCN using a neuropeptide that has

been considered a synchronizing agent, vasoactive intestinal polypeptide, or by a

brief bright light exposure before exposing the animals to a new shifted schedule.

Finally, since the behavior of the SCN as a whole may depend on the net-

work topology of its intercellular connections, we applied an information theoretic

measure to infer pairwise functional connections between neurons in the SCN.

We first validated the method on several model networks. After inferring con-

nection networks of three SCN’s, we modeled those networks in our stochastic

SCN model and confirmed that we could re-infer the bio-inspired networks. We

found that the SCN, at least for these experimental samples, appears to have a

small-world network topology and is scale-free. We hope that our results have

helped to illuminate how stochastic fluctuations in the SCN system contribute to

its behavior.
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Chapter 1

Introduction

The adaptation of organisms to their environment has long been of interest

to biologists. An important adaptation is the ability to anticipate daily circadian

cycles and changing seasons. This improves an organism’s survival by enabling

it to predict food availability, predator activity, and weather conditions. Sea-

sonal changes in day-length provide an environmental cue for seasonal migration,

hibernation, and reproduction.

Internal clocks in both plants and animals, which allow them to keep time

in the absence of environmental cues, were discovered by observing organism be-

havior. In 1729, Jean-Jacques d’Ortous de Mairan, a French chronobiologist,

demonstrated the existence of an endogenous clock in a plant by showing that

the opening and closing of its leaves continued in constant darkness [31]. In 1918,
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Chapter 1. Introduction

Figure 1.1: The multi-cellular master circadian clock in the SCN receives light

input via the retinohypothalamic tract (RHT) allowing it to entrain to the envi-

ronment. The SCN then passes that information on to peripheral oscillators in

other organs [88].

J.S. Szymanski showed that animals can maintain circadian rhythms in behavior

in the absence of light or temperature cues [1]. An endogenous clock is a key

adaptation in both plants and animals that gives them the ability to anticipate

daily and seasonal cycles.

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus, a brain

region of about 20,000 neurons, serves as the master circadian clock coordinating

timing throughout the body and entraining to daily external light cycles (Fig. 1.1)

[88]. Each neuron by itself oscillates with less precision than the SCN as a whole.

Experiments in which cell-to-cell signaling between SCN neurons is disrupted by

2



Chapter 1. Introduction

physical separation of the cells [116, 51] or by blocking neuropeptide mediated

signaling [11] show that the remarkable precision of the circadian clock at the

level of the organism relies on this intercellular signaling. In the absence of cell-

to-cell signaling, each SCN neuron and the SCN as a whole have significantly

less stable oscillations. This has been measured in PER2:LUC bioluminescence

recordings, firing rate recordings, and animal behavioral data.

The loss of synchrony with physical separation of cells was demonstrated by

dispersing them at low densities in vitro. [116, 51] Synchrony is restored in high-

density dispersals. [12] Cutting the SCN into separate regions [123] showed that

the dorsal (upper) third was unable to retain synchrony while the ventral (lower)

third remained synchronized. Both sections had roughly the same number of cells.

Since anatomical projections from the ventral to dorsal sections are more dense

than the reverse [4] this is interpreted to mean that the ventral section drives

synchrony in the dorsal section.

Desynchrony can also be produced by chemically canceling the effect of neu-

rotransmitters between SCN neurons. One method is to use tetrodotoxin (TTX)

to block sodium-dependent action potentials.[12, 54] Two candidates for synchro-

nizing neurotransmitters are gamma-aminobutyric acid (GABA) and vasoactive

intestinal polypeptide (VIP). GABA is produced by most of the cells in the SCN

and its receptors are also found throughout the SCN (Fig. 1.2). In addition, it

3



Chapter 1. Introduction

Figure 1.2: Neuropeptide expression regions within the SCN. Vasoactive intesti-

nal polypeptide (VIP), gastrin releasing peptide (GRP), neurotensin (NT), and

calretinin (CALR) are expressed in the core. Arginine vasopressin (AVP), met-

enkephalin (mENK), and angiotensin II (AII) are expressed in the shell. GABA

and calbindin (CALB) are expressed throughout the mouse SCN [4]. In humans

the areas expressing VIP and AVP overlap more [90].

4



Chapter 1. Introduction

has a circadian expression profile. Together these properties meet the criteria for

a candidate synchronizing neurotransmitter. Application of a GABAA agonist to

SCN slices produced desynchrony similar to cutting the dorsal and ventral regions

apart. Again, the dorsal portion lost synchrony while the ventral portion retained

it.[7]

VIP is produced by only about 15% of SCN cells, which are located in the

ventral SCN and receive input from the retinohypothalamic tract (RHT). The

VIP receptor, VPAC2, (encoded by Vipr2 gene) is expressed by about half of the

ventral cells and almost all of the dorsal cells. VIP−/− and Vipr2−/− (knockout)

mutant SCN lost cell synchrony. Rhythmicity in individual cells decreased from

70% of wild-type to about 30% of mutant neurons. Other neuropeptides such as

gastrin-releasing peptide (GRP), neurotensin (NT), and prokinecton 2 (PK2) also

meet the candidate criteria and warrant further investigation.[82, 72, 76]

In the absence of light input, the endogenous circadian clock will free-run at

its own intrinsic period which can be different from 24 hrs. In the presence of

light-dark cycles, SCN gene expression and neuron firing rates entrain, matching

phase with the external light-dark cycle. Humans experience the symptoms of jet

lag, when this entrainment is temporarily disturbed by rapid travel to a new time

zone. There is evidence that seasonal variations in day length are encoded in the

5



Chapter 1. Introduction

SCN by a distribution of the phase of entrainment across the cells of the SCN,

with some cells matching dawn and others dusk [23].

Circadian oscillators exhibit a phase-dependent resetting property in which

the magnitude and direction of a phase shift response depends on the circadian

time at which a stimulus occurs. This property can be characterized by a phase

response curve. Figure 1.3 shows an example mouse phase response to 15-minute

light pulses. Typically phase response curves have been measured for either animal

behavior or the SCN as a whole, in which case they represent the mean response

of a population of cells. All circadian systems respond with a phase delay in early

subjective night and a phase advance in late subjective night, and some exhibit

a “dead” zone as shown in Figure 1.3. Subjective night is defined as the segment

of a circadian cycle during the free-running state that corresponds to the dark

segment during entrainment by a light-dark cycle. Circadian time is a standard

of time based on the free-running period. By convention, the onset of activity

of diurnal organisms defines circadian time zero (CT 0). The onset of activity of

nocturnal organisms defines circadian time twelve (CT 12).[87]

The PRC for brief light pulses has been a successful model for explaining

the entrainment of organisms exposed to less-than full photo-periods. However,

the magnitude and shape of the PRC changes (in a non-linear manner) with

the duration and strength of the perturbing light pulse. Consequently, the brief

6



Chapter 1. Introduction

Figure 1.3: Mouse phase response curve (PRC). This PRC for 15 minute light

pulses has a phase delay in early subjective night of up to 1 hour and a phase

advance in late subjective night of up to 0.6 hours. It has a dead zone, where

there is no phase shift, during the subjective day from CT2 to CT8. Night and

day are subjective here because the PRC is measured in all dark conditions after

the animal is pre-conditioned by exposure to light/dark cycles. Figure reproduced

with permission from [101].
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Chapter 1. Introduction

light-pulse PRC is not as good at predicting the response of organisms to full

photo-periods.[60] The period (x-axis) and function of the PRC may be changed

by exposure to a complete photo-period. ([26], [83]) VanderLeest et al. [106]

recorded differences in the PRC of mice exposed to long vs. short photo-periods,

observing large phase delays in mice exposed to short photo-periods and small

delays in mice exposed to long photo-periods. These phase shift responses were

measured in terms of wheel running behavior. Examination of SCN rhythms

revealed high amplitudes in slices from short days and low amplitudes in slices

from long days. This led to the proposal that synchronization among SCN neurons

enhances its phase shifting capacity.[106]

1.1 Mathematical Models

The details of how circadian clock oscillations in organisms are produced began

to be revealed in the early 1970s when Ron Konopka and Seymour Benzer isolated

the first clock mutant in Drosophila and mapped the “period” gene.[64] The first

‘clock gene’ (clock) in mammals was discovered in 1994 by Joseph Takahashi.[109]

Since then many more circadian genes have been identified, and many models of

the gene regulatory network: the biochemical reactions within the cell that pro-

duce its circadian rhythm, have been built. In 2004, a PERIOD2::LUCIFERASE

Gene symbols are italicized and protein symbols use all uppercase letters

8



Chapter 1. Introduction

Figure 1.4: 3-state model of the circadian oscillator in a mammalian SCN neu-

ron [44]. Cytosolic clock protein PC enters the nucleus PN where it represses

transcription of its clock gene to mRNA M .

fusion protein was created by Takahashi’s lab and used for the first time as a

real-time reporter of the circadian clock in mice.[124] Since this first demonstra-

tion, PER2:LUC has been used under many different experimental conditions to

measure circadian rhythms in individual cells and the SCN as a whole, providing

the data needed to build a model of the SCN to understand how synchronization

and entrainment work.

A minimal molecular clock model (Fig. 1.4) is described by three equations

(1.1-1.3) governing messenger ribonucleic acid (mRNA), cytosolic and nuclear

clock proteins.[44] This simple model can reproduce sustained oscillations in all

dark (circadian biologists refer to this as dark:dark) conditions by a repressive

9



Chapter 1. Introduction

feedback loop in the gene regulation. Cytosolic clock protein PC enters the nucleus

PN where it represses transcription of its clock gene to mRNA M . With the

addition of light input (by temporarily increasing the mRNA transcription rate

parameter νs, Table 1.1) this model can also reproduce a phase shift in response to

light pulses and entrainment to light-dark cycles. Gonze and Goldbeter [44] also

demonstrated the synchronization of five stochastic oscillators using five unique

nuclei with a shared cytoplasm, a form of global coupling possible in the fungus

Neurospora which can have several nuclei in a single cell.

dM

dt
= νs

Kn
l

Kn
l + P n

N

− νm
M

Km +M
(1.1)

dPC
dt

= ksM − νd
PC

Kd + PC
− k1PC + k2PN (1.2)

dPN
dt

= k1PC − k2PN (1.3)

The transcription rate of mRNA M from the clock gene is governed by two

terms describing production and degradation of mRNA (Eqn. 1.1). The produc-

tion term is a Hill equation for describing cooperative binding of a ligand to a

macromolecule. The cooperative binding is modeled by a rate that scales non-

linearly with the ligand concentration. In this case the Hill coefficient n is positive,

which means that binding of a ligand molecule increases the affinity of the next

ligand molecule for the macromolecule. Gonze and Golbeter [44] point out that

10



Chapter 1. Introduction

Table 1.1: Parameter values for 3 state molecular clock model

Parameter Value

νs 0.82 nMh−1

Kl 1 nM

n 4

νm 0.42 nMh−1

Km 0.50 nM

ks 0.42 h−1

νd 1.2 nMh−1

Kd 0.13 nM

k1 0.42 nMh−1

k2 0.50 nMh−1

11



Chapter 1. Introduction

oscillations will still occur if the cooperativity is reduced to one, but that a larger

value expands the region of parameter space over which the model will sustain

oscillations. The degradation term is assumed to follow Michaelis-Menten enzy-

matic kinetics, where M is the substrate, and Km is the substrate concentration

at which the reaction rate is half of its maximum νm.

The rate of change of cytosolic protein PC (Eqn. 1.2) is governed by the trans-

port of mRNA into the cytoplasm (first term), a Michaelis-Menten degradation

term (second), and terms (third and fourth) describing the transport of protein

balanced between the cytoplasm and nucleus. The rate of change of nucleic pro-

tein PN (Eqn. 1.3) is described by the same terms (third and fourth) in the

cytosolic protein equation, which are just the balance of protein between the two

cell regions.

A stochastic version of the single cell model is produced by converting each

term in the differential equation model into a reaction step (see Table 1.2). Each

reaction step is assigned a probability equal to the deterministic reaction rate

scaled by a volume parameter Ω which determines the number of molecules in

the system. Gonze and Golbeter [44] produced a stochastic version of this simple

molecular clock model by connecting species concentrations in the deterministic

model to species populations in the stochastic model.

12
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Table 1.2: Reaction steps in stochastic version of single cell model. The volume

parameter Ω determines the number of molecules and degree of stochasticity. The

deterministic limit corresponds to Ω→∞.

No. Reaction Transition rate

1 →M w1 = νsΩ
KlΩ

n

KlΩ
n+Pn

N

2 M → w2 = νmΩ M
KmΩ+M

3 → PC w3 = ksM

4 PC → w4 = νdΩ
PC

KdΩ+PC

5 PC → PN w5 = k1PC

6 PN → PC w6 = k2PN

13



Chapter 1. Introduction

Figure 1.5: 16-state model of the circadian oscillator in a mammalian SCN neu-

ron [66]. Oscillations derive from regulatory feedback loops involving period, cryp-

tochrome, Bmal1, and clock gene and protein components. Some proteins, such as

clock, are thought to be constitutively expressed, and are not included as indepen-

dent states of the mathematical ordinary differential equation model. Additional

protein phosphorylation and degradation reactions are not shown in this diagram.

14
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The 16-state molecular clock model (Fig. 1.5) due to Leloup and Goldbeter

[66] adds many details missing from the simple 3-state model. It expands the

number of genes from one generic to five specific: Period (Per), Cryptochrome

(Cry), Bmal1, Clock, and Rev-Erb alpha, adds phosphorylated states for many

of the proteins corresponding to these genes, and adds protein dimer complexes

PER-CRY and CLOCK-BMAL. Tables A.1–A.2 located in Appendix A provide

the reaction probabilities and parameter values of the stochastic version which

was developed as part of this thesis project.

To et al. [104] developed a model of intercellular synchronization using the

16-state clock model by adding equations describing vasoactive intestinal polypep-

tide (VIP) signaling between cells (Fig. 1.6). The effect of a cell’s VIP release

on surrounding cells was assumed to be inversely proportional to the distance

between them on a two-dimensional grid. To et al. [104] simulated a 20 x 20 grid

of VIP-coupled cells, demonstrating their ability to synchronize in constant dark-

ness, entrain to periodic light input through VIP, and desychronize in constant

light/VIP.

The intercellular coupling [104] shown in Figure 1.6 is defined by the following

equations. The extracellular VIP produced by a cell i is given by

ρi(t) = aΩ
MP,i(t)

MP,i(t) + bΩ
, (1.4)

15
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Figure 1.6: Diagram of vasoactive intestinal polypeptide (VIP) intercellular sig-

naling [104]. VIP is shown being released from one cell membrane and traveling

to attach to the G-protein coupled receptor V PAC2 on another cell’s membrane.

This increases the Calcium level in the cell, which activates CREB. At a particular

phase in the circadian cycle, CREB induces Per transcription.
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where Ω is the stochastic volume parameter, Mp is the Per mRNA, a is the

maximum VIP release, and b is the saturation constant. The VIP observed by

cell i due to cell j is given by

γi(t) =
1

ε

N∑
j=1

αijρj(t) (1.5)

ε =
1

N

N∑
i=1

N∑
j=1

αij, (1.6)

where the weighting factor αij is the reciprocal of the distance between cells i

and j, and ε is the mean weight across the population. The extent of receptor

saturation on a scale of 0 to 1 (β = 1 at complete saturation) is modeled as

β =
γ

KDΩ + γ
. (1.7)

The equilibrium dissociation constant is KD. The cytosolic calcium balance is

given by

kΩCa2+
Cytosol = ν0Ω + ν1Ωβ, (1.8)

which equates the cytosolic efflux (left-hand side) to the sum of the influx of

extracellular Ca2+ (ν0), input due to VIP signaling, and light input, where γ

ranges from 0 (dark) to 1 (maximum light). The effect of Ca2+ on CREB is

assumed to follow Michaelis-Menten kinetics

νK = VMKΩ
Ca2+

Cytosol

Ka + Ca2+
Cytosol

, (1.9)
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where Ka is the substrate concentration at which the reaction rate is half of its

maximum VMK . The extent of CREB activation λ is modeled as

λ =
CBTCB

∗

KCΩ + CBTCB
∗ , (1.10)

where CBT is the total amount of CREB, CB∗ is the fraction of CREB in phos-

phorylated form, and KC is the dissociation constant. The maxiumum Per tran-

scription rate νsP is given by

νsP = νsP0Ω + CTλ, (1.11)

where νsP0 is the basal transcription rate and CT is the scaled maximum effect of

the CREB-binding element on the Per gene.

To et al. [104] introduced heterogeneity into the model cell population by

using Gaussian distributions for some of the parameters in the core clock model.

They found a reduction in the precision of synchronization of the population as

the standard deviation of the parameter distribution was increased. This deter-

ministic modeling approach for creating a population distribution is different from

a stochastic model that exhibits a population distribution due to fluctuations (be-

side circadian oscillations) in individual cell biochemistry over time. Both genetic

heterogeneity (as modeled in To et al.) and stochasticity are present in the true

biological system, however the assumption that the two sources of population

distribution can be interchanged (ergodicity) is not necessarily a valid one.[55]
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Deterministic circadian gene regulation models have been used to model synchro-

nization and entrainment in the SCN [104]. However, these models are unable

to reproduce the variability observed in PER2:LUC recordings of individual cells.

The variability observed in cell recordings points to the importance of including

stochastic fluctuations in a model of the SCN.

The objective of this project was to build a stochastic model of the SCN which

reproduces cell and system level behavior observed in PER2:LUC recordings, and

to use it to understand the interplay between intrinsic noise in cell gene regulation,

the intercellular communication required for cell synchronization, and the SCN’s

(cell population) response to environmental signals.

The remainder of this thesis is organized as follows. Chapter 2 reviews classes

of chemical reaction system models and the stochastic simulation algorithm, and

provides background on wavelets and the analysis of nonstationary data using the

Morlet wavelet. Chapter 3 presents a stochastic model of the SCN and its syn-

chronization properties, depending on the level of stochasticity and intercellular

connection networks. In Chapter 4 we compare recordings of circadian neurons

and stochastic models using wavelets to measure instantaneous phase and period

variability, and investigate the model parameter space capable of reproducing the

biological results. In Chapter 5 the phase response distribution of cells in the SCN

and ‘phase tumbling’ as a conceptual model for synchronization and entrainment
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of cells in the SCN is presented. Finally, in Chapter 6 we develop a methodology

for inference of a functional intercellular network in the SCN using an information

theoretic measure, and present and discuss the results.
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Chapter 2

Background

2.1 Stochastic Simulation

Until recently, most models of the SCN have been continuous and determin-

istic. They assume the presence of large numbers of molecules and that the reac-

tions are far from any point of chemical instability. Population distributions have

been created by assigning parameter values over some distribution, so that all

of the cells are not identical. This approach is unable to reproduce fluctuations

in individual cell dynamics. A discrete stochastic model produces fluctuations

in individual cell dynamics and population distributions based on the underly-

ing physics of the chemical reactions, and may predict outcomes different from

continuous deterministic models.
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There are three classes of models of chemical reaction systems: continuous

deterministic, continuous stochastic, and discrete stochastic. Continuous deter-

ministic models are described with rate equations that are ordinary differential

equations. These models assume that the numbers of molecules are large enough

that fluctuations can be ignored. Continuous stochastic models are described by

Langevin or stochastic differential equations, which consist of ordinary differential

equations with an additional Gaussian noise term. They are valid in the regime

where a time step can be found that is small enough that reaction propensities (the

probability for a given reaction to fire during the next infinitesimal time interval

dt) do not change much and are large enough that each reaction in the system

occurs more than once [41]. Discrete stochastic models use an exact description

in which each reaction fires according to the probability given by its propensity.

The Stochastic Simulation Algorithm (SSA) due to Gillespie [40] computes the

trajectory of chemical species in a reaction system from the reaction probability

density function, P (τ, j). P (τ, j) is defined by the expression P (τ, j)dτ , which is

the joint probability that the next reaction will occur in the time interval (t +

τ, t+ τ + dτ), and will be an Rj reaction of M possible reactions R1, ..., RM . The

probability that reaction Rj occurs in the next infinitesimal time interval dt is

P (Rj, dt) = aj(X(t))dt, (2.1)

Paul Langevin (23 January 1872 – 19 December 1946) was a prominent French physicist
who developed an equation in statistical physics to describe Brownian motion.
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where aj is the propensity function of Rj, and X(t) = X1(t), ...XN(t) is the current

state of the system. Given S1, ...SN chemical species, Xi(t) is the number of Si

molecules at time t.

At each update of the algorithm, two random numbers r1 and r2 are drawn

from a uniform distribution U(0, 1) and used to compute the time τ when the

next reaction Rj occurs. The time to the next reaction τ is chosen by sampling

from an exponential distribution

τ =
1

a0(X(t))
ln

(
1

r1

)
. (2.2)

The reactionRj is selected by choosing the smallest integer j satisfying the relation

j∑
j′=1

aj(x) > r2a0(x). (2.3)

The sum of all the reaction propensities

a0(X(t)) =
M∑
i=1

ai(X(t)) (2.4)

is used to normalize the total probability to one. Once the reaction is selected,

the state X(t) is updated by the change in numbers of molecules νj of the reacting

species.

X = X + νj (2.5)

The basic discrete stochastic model assumes that the system is well stirred, i.e.

that a given molecule is just as likely to be in one spatial location as another.
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Other assumptions are that the system is at a constant temperature and the

volume Ω is fixed.

2.2 Wavelets

Measuring the period and phase of a stochastic oscillator can be challenging

due to its non-stationary nature. In this case we need to measure the time-varying

period and phase, a time–frequency tiling [20] of the data. The Fourier transform

is commonly used to convert a signal to the frequency domain and identify peri-

odic components. It does not work well by itself on non-stationary signals. The

windowed Fourier transform uses a fixed sized window which, depending on the

frequencies contained in the signal being analyzed, will give either good time res-

olution or good frequency resolution but not both simultaneously. Wavelet trans-

forms were created in part for multiresolution analysis and provide good time

resolution for high frequencies and good frequency resolution for low frequencies

[27]. Thus they are better suited for measuring signals containing a wide range

of frequencies. Since the stochastic oscillator is driven by molecular events, it

inherently has multiple time scales, and one of our questions was whether it also

has multiple frequencies.
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The Morlet (or Gabor) wavelet function is given by

Ψ(t) = π−1/4eiω0te−t
2/2, (2.6)

which is a Fourier function windowed by a Gaussian. The frequency of the wavelet,

ω0, is rescaled to examine all potential frequencies. Scaled and translated wavelets

are generated using the scale factors a and b and the equation

Ψa,b(t) =
1√
a

Ψ

(
t− b
a

)
. (2.7)

The continuous wavelet transform (CWT) of a signal f in L1 can be defined

by the inner product

Wa,b = 〈f(t),Ψa,b(t)〉 . (2.8)

The continuous wavelet transform (CWT) of a signal generates an array of com-

plex numbers. Taking the magnitude provides a measure of the strength of a

given frequency at a given point in time. If there is a single dominant frequency

present at each point in time it can be extracted from the magnitude heat map

to determine the instantaneous period and phase of the oscillator (Fig. 2.2).

WAVOS (Wavelet Analysis and Visualization of Oscillatory Signals), a MAT-

LAB toolbox developed by Richard Harang, was used for analysis in this thesis

[49]. In addition to computing the period of the oscillator over time, WAVOS

also provides functions which use the CWT to estimate the instantaneous phase,

and the synchronization index of oscillators. Its discrete (Daubechies) wavelet

25



Chapter 2. Background
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Figure 2.1: Morlet wavelet function.

transform functions have better time localization properties than the CWT and

can be used to remove transients in the data.
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Figure 2.2: PER2 expression recorded from three representative SCN cells over

7 days showing examples of cells with unstable (A), stable (B), or absent (C)

circadian periods. The heatmap plots from each cell show the amplitude of the

Continuous Wavelet Transform and the maximum amplitude at each moment

(ridge highlighted in green). Note that this ridge plot changes little in the more

stable circadian cell, gradually drifts between 23 and 38 hours in the unstable cell,

and is consistently infradian (longer than circadian) in the final plot.
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Chapter 3

Modeling Coupled Stochastic

Mammalian Neurons

In mammals, the circadian master clock resides in the suprachiasmatic nucleus

(SCN), located in the hypothalamus [88]. It is a network of multiple autonomous

noisy oscillators, which communicate via neuropeptides to synchronize and form

a coherent oscillator [53] [68]. This coherent oscillator then coordinates the tim-

ing of daily behaviours, such as the sleep/wake cycle. Biological experiments,

however, demonstrate that uncoupled neurons in the SCN are either damped or

sloppy oscillators [12]. Thus, coupling in the SCN causes a collection of stochas-

tic, unreliable oscillators to form a robust oscillator that can be reliably reset.

To unravel the design principles behind this remarkable behaviour, mathemat-
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ical models must incorporate the stochastic properties of the single cell, while

coupling the population of cells through biophysical components. A putative cou-

pling agent is vasoactive intestinal (neuro)peptide (VIP) [53], whose inter-cellular

concentration levels peak during the subjective day. It has been demonstrated

that controlled VIP pulses cause phase shifts similar to those resulting from light

pulses [82], suggesting that the VIP signal and target are similar to those of light

and may be modeled correspondingly. The target of VIP signaling is therefore

assumed to be Per transcription.

Experimental data demonstrate that isolated (uncoupled) neurons exhibit both

a broad distribution of periods and temporal (cycle-to-cycle) variability [53]. Hao

et al. [47] and To et al. [104] postulated mechanisms through which VIP sig-

nals are received by a cell via signal cascades, culminating in the modulation of

parameter associated with Per transcription. Using an ODE model, To et al.

[104] incorporate this coupling mechanism into a population of non-identical cells,

each of which is based on the gene regulatory network model of Leloup & Gold-

beter [66]. They simulate scenarios with no coupling (the cells drift out of phase)

and with coupling (the cells form a coherent oscillator), demonstrating that their

mechanism is capable of creating the spontaneous synchronization seen in exper-

imental data. Likewise, their simulations show a broad distribution of periods

across cells. However, because they use a deterministic model, they do not repro-
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duce cycle-to-cycle variation. We develop a discrete stochastic model based on

that in To et al. [104] incorporating intrinsic noise, and consequently temporal

variability.

We simulate this model in a two-dimensional grid of 25 SCN neurons using

the software package STOCHKIT2 [92] based on the stochastic simulation algo-

rithm (SSA) [40] [42]. Successful synchronization of 25 coupled cells validates the

mechanism in the presence of noise.

The work described in this Chapter was published in Neda Bagheri, Stephanie R.

Taylor, Kirsten Meeker, Linda R. Petzold, and Francis J. Doyle. Synchrony and

entrainment properties of robust circadian oscillators. Journal of The Royal So-

ciety Interface, 5(0):S17–S28, August 2008. Our contribution was the stochastic

simulation results.

3.1 Simulation of a single cell

The introduction of noise alters the behaviour of single cells such that addi-

tional tuning of the model is required to achieve synchrony. In particular, because

Gillespie [41] offers an explanation of the conditions under which Langevin and deterministic
chemical kinetics approximations are valid. This is usually the case when populations of all the
reactant species are sufficiently large. This condition may not hold in the biological system
being modelled, and is not the case in the predictions of the Leloup & Goldbeter deterministic
model (some species concentrations approach zero during low points in the oscillatory cycle);
therefore a deterministic approximation using ODEs may not be completely adequate for our
purposes.

30



Chapter 3. Modeling Coupled Stochastic Mammalian Neurons

VIP signalling ultimately manifests as modulation of the rate of Per transcrip-

tion, special attention must be paid to the levels of Per mRNA and its rate of

transcription, νsP (t). The basal rate νsP0 characterizes the behaviour of an iso-

lated cell: Per mRNA oscillations are damped when νsP0 < 1.2 and sustained

when νsP0 ≥ 1.2 (Fig. 3.1). Figure 6 in Leloup & Goldbeter [67] shows the period

versus νsP0, which peaks at νsP0 = 1.5 with a period of 23.8 hours. The depletion

or accumulation of Per mRNA that occurs when νsP0 is below 1.2 indicates that

the balance is upset between the transcription rate and the combination of the

transport (from nucleus to cytoplasm) and degradation. For the coupled popula-

tion to exhibit synchrony, we have observed that the median value of νsP (t) must

stay within the range that produces oscillations in an individual cell. Thus to

achieve synchrony, the basal transcription rate νsP0 has been set to 1.5 for the

coupling topology and volume used in this work. At this basal transcription rate,

all isolated cells are oscillators.

3.2 Simulation of a population

Simulation of a 5 × 5 grid of cells shows that the VIP coupling mechanism

is capable of achieving synchrony (Fig. 3.2) between stochastic cells exhibiting

temporal variability in period and amplitude. To measure the phase coherence of
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the cells in a simulation, we use the radius r(t) of the complex order parameter

[100], computed according to

r(i) =
1

N

N∑
j=1

ei(θj−Ψ), (3.1)

where N is the number of cells; θj is the phase of the j th oscillator; and Ψ(t) is the

average phase. If the oscillators are in phase, r(t) ≈ 1. Here the mean r(t) across

10 simulations begins at 0.2–0.3 with uniform random initial phase and increases

to 0.8 in 14 cycles when coupled. These data demonstrate the effective response of

intercellular signalling that gives rise to phase synchrony. As in Gonze et al. [45],

proximity to the bifurcation point νsP0 = 1.06 [67] in the deterministic ODE model

predicts oscillatory behaviour in the stochastic simulation based on the same cell

model. Unlike the results in Gonze et al. [43], synchronization of the 5× 5 grid of

cells does not occur when the coupling parameter is below the bifurcation point

where individual cells are damped oscillators. This is due to both the nature

of the individual cell model and the properties of the coupling signal, which are

dependent on the grid connectivity, size and coupling strength. The range of νsP0,

which permits synchronization using mean-field coupling, appears to be bounded

on the low end by the bifurcation point. For this choice of connectivity and

coupling strength, νsP0 has a fairly narrow range that will allow synchronization.

Presumably this is due to the independent νsP0 signals overpowering the common

coupling signals [58]. In Bernard et al. [18], this self-feedback is modeled as an
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autocrine signal that is scaled with the same coupling strength as signals from

other cells. As the coupling strength is increased, the autocrine signal is also

increased. This is analogous to increasing νsP0 in this model to produce rhythmic

cells. Maywood et al. [71] observed that in an intact SCN the loss of VIP coupling

had the effect of suppressing rhythmicity in many cells and loss of synchrony in

the cells that retained rhythmicity.
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Figure 3.1: Per mRNA population as a function of basal transcription rate νsP0 in

uncoupled cells. The solid line represents a simulation where νsP0 = 1, the dashed

line νsP0 = 1.5, and the dotted line νsP0 = 2. For νsP0 below 1.2, Per mRNA

concentrations exhibit damped oscillations for the ten day period simulated.
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Figure 3.2: (a) The time series of Per mRNA concentration is shown for a single

SSA simulation of a 5 × 5 grid of cells. (b) For 9 SSA simulations of the grid,

we show the mean degree of phase coherence with error bars indicating 25% of

the standard deviation. The solid line represents simulations where νsP0 = 1, the

dashed line νsP0 = 1.5, and the dotted line νsP0 = 2.
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Chapter 4

Unraveling the Source of

Period-to-Period Variability in

Cell Behavior

Cells in the suprachiasmatic nucleus (SCN) display remarkable precision, while

either physically or chemically decoupling these cells from each other leads to a

dramatic increase in period-to-period variability. Where previous studies have

classified cells as either arrhythmic or circadian, our wavelet analysis reveals that

individual cells, when removed from network interactions, intermittently express

circadian and/or longer infradian periods.
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We reproduce the characteristic period distribution of uncoupled SCN cells

with a stochastic model of the uncoupled SCN cell near a bifurcation in Bmal1

transcription repression. This suggests that the uncoupled cells may be switching

between two oscillatory mechanisms: the indirect negative feedback of protein

complex PER-CRY on the expression of Per and Cry genes, and the negative

feedback of CLOCK-BMAL1 on the expression of Bmal1 gene. The model is par-

ticularly sensitive near this bifurcation point, with only a small change in Bmal1

transcription repression needed to switch from the stable precision of coupled

SCN cells to the unstable oscillations of decoupled individual cells, making this

rate constant an ideal target for cell signaling in the SCN.

The work described in this Chapter was published in Kirsten Meeker, Richard

Harang, Alexis B. Webb, David K. Welsh, Francis J. Doyle, Guillaume Bonnet,

Erik D. Herzog, and Linda R. Petzold. Wavelet measurement suggests cause of

period instability in mammalian circadian neurons. Journal of Biological Rhythms,

26(4):353–362, 2011. The experimental results were produced in the labs of Prof.

Erik Herzog, Washington University, St. Louis and Prof. David Welsh, University

of California, San Diego. Our contribution was the stochastic simulation results

and their interpretation.
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4.1 Experimental Procedure for Collecting Cir-

cadian SCN Data

Single cell data were previously published in Liu et al. 2007[68], Ko et al.

2010[62], and Webb et al. 2009[114], and were obtained according to methods

described therein. Briefly, SCN neurons with or without various clock gene knock-

outs were dispersed from 1-7 day old PER2::LUC reporter mice [124] and cultured

for up to 5 weeks at a density of 100-300 cells/sq mm in medium containing 5-10%

fetal bovine serum. For comparison to dispersed cultures, neurons were also cul-

tured with relatively intact tissue organization as SCN slices. For imaging, cells

were transferred to serum-free, HEPES-buffered medium containing B27 supple-

ment and luciferin, placed on the stage of an inverted microscope kept at 36-37 ◦C,

and imaged with a low-noise CCD camera. Circadian clock function was measured

as a time series of PER2::LUC bioluminescence intensities for single cells in 30-60

minute intervals over 6-8 days. For additional details on bioluminescence imaging

methods, see Welsh et al. [117, 118]. All animal procedures were approved and

performed in accordance with local institutional guidelines as indicated in Webb

et al. 2009 [114], Liu et al. 2007 [68], and Ko et al. 2010 [62].

These data were collected in two different labs. Although methods used to

collect these data were broadly similar, a number of differences could have affected
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the results. For example, Webb et al. used mice of a pure C57/BL6 genetic

background instead of a mixed background, lower cell density of 100 cells/sq

mm instead of 300 cells/sq mm, and started imaging sooner at 4 days in culture

instead of 2-7 weeks in culture. Accordingly, the wild type datasets from the two

different labs were analyzed separately [68, 114].

4.2 Wavelet Analysis Reveals Non-Stationary Pe-

riods in PER2:LUC SCN Cells

We use CWT analysis as described in Chapter 2 to recover period information

from the bioluminescence recordings of PER2:LUC SCN cells. Figure 2.2 displays

examples of the initial CWT analysis performed on three individual cells; the

traces in the upper panels correspond to the heatmaps in yellow, white, and red in

the lower panels, which are used to generate the ridges highlighted in green. Each

ridge point indicates the dominant oscillatory period for the cell at the indicated

time; this analysis is repeated across all cells in the data set (see Supplement of

[73] for more examples).

For oscillators that exhibit strongly stochastic behavior, distributional infor-

mation about the period of the oscillator is much more relevant than examining

the time-frequency evolution of a single realization – as proposed in [84] and used
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in [13]. We utilize both period variability histograms and period distribution plots

to examine this distributional behavior of SCN oscillators. Period variability his-

tograms (Figure 4.3) display the period variability of various populations of SCN

cells as inferred by CWT analysis; each cell’s instantaneous period over time was

estimated individually using the CWT as described above, and the standard de-

viation of that period over time was calculated to estimate the stability of the

cell’s oscillations. The results using CWT analysis are consistent with those de-

scribed in [53] and [11]: dispersed SCN cells display a significantly broader range

of period standard deviations than coupled SCN cells. Note that the slice data

from both labs (Figure 4.3, A and C) displays a significantly tighter cluster of

variances than the corresponding dispersed data, but that the modal variance is

not zero, indicating that there is some inherent variability in the periods even of

coupled SCN cells. Analysis of cells decoupled by physical dispersion (Figure 4.3,

B and D) illustrate that the range of period variability increases significantly in

the absence of intracellular communication.

The distribution of instantaneous periods across time for a pooled population

of SCN oscillators is displayed in period distribution plots. A simple histogram

of instantaneous periods is created for each cell, and a population histogram is

assembled to visualize the period distribution over a population of cells. Figure

4.4 (A and B) compares the period distribution of coupled and dispersed cells. As
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expected from previously published results, the dispersed cell period distribution

is wider than that of coupled cells in an SCN slice. Dispersed cells spend half of

their time at periods between 23-42 hrs. (data from [114]) or 22-30 hrs. (data

from [68]), while coupled cells spend half of their time at a narrower range of

periods between 24-29 hrs. The period distribution of dispersed cells also has a

long period tail up to 48-53 hours, while at the same time there are few periods

shorter than 18 hours. The long period tail observed here by using wavelet analysis

is a distinguishing characteristic of the underlying stochastic processes driving the

oscillations.

While cellular heterogeneity is one possible explanation for the overall pop-

ulation distribution of periods, both direct examination of individual cell plots

(see Figures 2.2, 4.1, and 4.2) as well as analysis of the frequency distribution of

individual cells reveal that an assumption of heterogeneity does not appear to be

required to explain these data. Most dispersed wild-type SCN cells have circa-

dian periods (20-30 hrs.) most of the time. Across all cells, 79.4% of all recorded

oscillations are in the circadian range. However, the majority of cells (67.6%,

255 out of 377) also exhibit non-circadian behavior: a dominant period outside of

20-30 hrs. There are only a few cells (5.8%, 22 out of 377) that have no dominant

period within the circadian range. We therefore conclude that a heterogeneous

population of cells oscillating with different periods is not needed to reproduce the
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distribution of periods observed in biological cells (Figure 4.4). Meeker et al. [73]

and its supplementary material provide a thorough statistical analysis supporting

this claim.

4.3 Modeling Provides a Possible Mechanism

An increase in period variability can be achieved either by reducing the num-

ber of molecules in the stochastic model, or by adjusting model parameters to be

near a bifurcation point where oscillations are less stable. In this study we con-

sider both techniques and show results from the following variants of a discrete

stochastic version of the Leloup and Goldbeter model [66]: (1) as the number

of molecules is reduced (2) near a non-oscillatory bifurcation point of the mean

Period gene (Per) transcription rate νsP (3) near an unstable range in the Bmal1

gene transcription repression KIB, (4) and near an unstable range in the mean

Bmal1 gene transcription rate νmB.

Surprisingly, by lowering the molecular count alone, we are not able to re-

produce the biological period distribution. As the molecular population is low-

ered the period distribution does widen (Figure 4.4-C), but does not exhibit the

long-periods observed in the biological data. Next we test the model near a

non-oscillatory bifurcation point of mean Per transcription rate νsP . This model
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variation was used in [104] to produce a heterogeneous population of cells with a

desired percentage of oscillatory and non-oscillatory cells. It has the advantage

that increasing Per transcription through inter-cellular coupling restores rhyth-

micity to all the cells, which is a necessary condition for inter-cellular synchrony.

Approaching the νSP bifurcation widens the period distribution (Figure 4.4-D);

however the long periods which we have shown to be significant in our analysis in

the previous section are not reproduced.

To determine how the stochastic model can be made to produce the long pe-

riods, bifurcation analysis of the deterministic Leloup and Goldbeter model is

employed. Our analysis identifies two sets of parameters that are capable of pro-

ducing the longer periods observed in the dispersed cell data. The first set (Figure

4.5 left column) is associated with the PER-CRY feedback loop and requires an

order of magnitude change in value to produce the period range. The second

set (Figure 4.5 right column) is associated with the CLOCK-BMAL1 feedback

loop or global scale factors, and produces the observed period range with less

than an order of magnitude change. Global parameters νsTot and ksTot change

the transcription and protein production rates of all three key genes. Changes in

these global parameters are reflected in the Bmal1 mRNA transcription rate and

BMAL1 protein production rate, and so produce the same 2 branch bifurcation

behavior found in parameters affecting the production of Bmal1 mRNA.
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For the second set of parameters, the period versus parameter functions all

have two oscillatory branches connected by an unstable oscillatory segment. Leloup

and Goldbeter [67] identified each of the two oscillatory branches with one of the

feedback loops present in the circadian clock. [97] demonstrated that a simple

model consisting of interlocked positive and negative feedback loops could behave

as either a bistable switch or an oscillator depending on the relative strengths of

the two feedback loops. Selecting parameter values that allow switching between

the oscillatory branches provides a mechanism by which longer periods may be

generated by the model.

The Bmal1 transcription repression KIB and transcription rate νmB are chosen

from the second group of parameters for their maximum period value and sensi-

tivity. Stochastic simulation results (Figure 4.4-E) show that as KIB is increased

the period distribution of the stochastic model widens, creating a longer tail on

the distribution of infradian periods, and at the same time increasing the mean

period.

To quantify the difference between period distributions, the Kullback-Leibler

(KL) divergence [65] is used. The Kullback-Leibler divergence provides a measure

of “distance” or “divergence” between statistical densities in terms of relative in-

formation gain. Smaller values of the KL divergence indicate two distributions

that are more nearly similar. Increasing the Bmal1 transcription repression KIB
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produces the lowest KL divergence (Table 4.1) while preserving oscillatory behav-

ior and hence produced the best period distribution fit among the models studied

(Figure 4.4).
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Figure 4.1: Magnitude heat maps resulting from Wavelet transform show the

range of circadian behaviors possible in dispersed SCN cells sampled from n=322

cells from Webb et al. 2009 [114].

44



Chapter 4. Unraveling the Source of Period-to-Period Variability in Cell Behavior

Table 4.1: Kullback-Leibler divergence compares period distributions of stochastic

model variants with those observed in both Webb et al. [114] and Liu et al. [68]

for dispersed wild-type cells. Smaller values of the KL divergence indicate two

distributions that are more similar.

Model number of molecules, Ω 12 25 50 100 200

Webb et al. (2009) 1.56 10.8 12.3 12.2 17.2

Liu et al. (2007) 1.29 4.44 5.47 6.08 8.35

Model Per transcription, νsP 1.1 1.2 1.3 1.4 1.5

Webb et al. (2009) 0.38 1.66 2.88 4.93 10.8

Liu et al. (2007) 0.73 1.32 2.02 2.76 4.44

Model Bmal1 repression, kIB 2.2 3.5 4.0 5.5 6.5

Webb et al. (2009) 10.8 5.21 1.34 1.62 4.74

Liu et al. (2007) 4.44 2.97 1.48 2.89 6.19

Model Bmal1 degradation, νmB 0.65 0.7 0.75 0.8

Webb et al. (2009) 1.88 10.9 10.0 10.8

Liu et al. (2007) 1.86 4.68 3.83 4.44
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Figure 4.2: Magnitude heat maps resulting from Wavelet transform show the

range of circadian behaviors possible in dispersed SCN cells sampled from n=310

dispersed cells from Liu et al. 2007 [68].
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Figure 4.3: Histograms showing the period variability (standard deviation) of

coupled and dispersed cells from Webb et al. [114] (C-D) and Liu et al. [68]

(A-B). Coupled cells (slice; A,C) have less period variability than dispersed cells

(B,D).
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Figure 4.4: Period distributions of dispersed and coupled SCN cells and stochastic

model with parameter variations.
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Figure 4.4: (A-B) The period distributions of dispersed cells from both labs are

wider than that of coupled cells (SCN slice) and have a long period tail of up

to 48-53 hours. The KIB = 3.5 & 4.0 model distributions show the presence of

long periods consistent with the biological data. (C) Decreasing the number of

molecules in the stochastic model fails to produce the long period tail observed

in the biological data. (D) Decreasing the Per transcription rate to very close to

the bifurcation point (νsP = 1.1) begins to produce a long period tail, but the

period is less likely to be in the circadian range (24-19 hrs.) than the biological

data. (E) Increasing the Bmal1 transcription repression switches the period from

the circadian range to long periods (40-50 hrs. for KIB = 6.5). (F) Decreasing

the Bmal1 degradation rate also produces a switch, but with less probable long

periods.
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Figure 4.5: PER-CRY and CLOCK-BMAL1 feedback loop parameters and global

scale factors that produce long periods
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Figure 4.5: PER-CRY feedback loop parameters (left) and CLOCK-BMAL1 feed-

back loop parameters and global scale factors (right) that produce long periods.

The plots on the left have one stable oscillatory branch and require an order of

magnitude change to produce long periods. In contrast, the plots on the right

have two stable oscillatory branches (solid line) connected by an unstable oscilla-

tory range (dashed line) and require less than an order of magnitude change to

produce long periods.
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Chapter 5

Phase Tumbling - A Theory of

Entrainment

Shift work or transmeridian travel can desynchronize the body’s circadian

rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus

(SCN) generates and entrains daily rhythms in physiology and behavior. It is

comprised of approximately 20,000 neurons that synchronize to each other, and

entrain to ambient light cycles [52][111]. Vasoactive intestinal polypeptide (VIP),

a neuropeptide released in the SCN as a function of circadian time and light

intensity [95][96][91], plays a critical role in this circadian synchronization.

In the absence of VIP or its receptor, VPAC2R, SCN neurons fail to syn-

chronize to each other and consequently many daily rhythms of the organism are
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lost [50][25][12][22][71]. The addition of VIP to SCN cultures induces the produc-

tion of Period (Per) 1 and 2 [79], two genes implicated in light-induced resetting

[5][102][103], and shifts rhythms in behavior and SCN physiology [82][112][86][75][9].

Notably, daily addition of VIP or an agonist to the VIP receptor, VPAC2R, en-

trains rhythms in SCN explants and V ip−/− SCN neurons [9][12]. Thus, VIP is

thought to play a role in both the synchronization of SCN cells when the organism

is in the dark, and the entrainment of the SCN when the organism is exposed to

a light cycle.

Paradoxically, we found that VIP, implicated in synchrony among SCN cells,

can also desynchronize them. The degree and duration of desynchronization

among SCN neurons depended on both the phase and the dose of VIP. A model

of the SCN consisting of coupled stochastic cells predicted both the phase- and

the dose-dependent response to VIP, and that the transient phase desynchroniza-

tion, or “phase tumbling”, could arise from intrinsic, stochastic noise in small

populations of key molecules.

Exposure to a brief light pulse has been shown to reduce the amplitude of

circadian rhythms in humans [59], insects [119][34] and cell lines expressing trans-

genic melanopsin [85][105]. Lower amplitude oscillations have been associated

with larger shifts in behavioral and physiological rhythms [51][110] and the abil-

ity to entrain to a wider range of periods [3][24]. Our model predicted that
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desynchronization in response to VIP would accelerate entrainment to a shift in

environmental cycles. We tested this experimentally using a pretreatement of VIP

during the day before a shift in either a light cycle in vivo or a temperature cycle

in vitro. The VIP pretreatment approximately halved the time required for mice

to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to

a 10-h shifted temperature cycle. This has the potential to reduce jet lag.

The work described in this Chapter was published in Sungwon An, Rich Ha-

rang, Kirsten Meeker, Daniel Granados-Fuentes, Connie A. Tsai, Cristina Mazuski,

Jihee Kim, Francis J. Doyle, Linda R. Petzold, and Erik D. Herzog. A neuropep-

tide speeds circadian entrainment by reducing intercellular synchrony. Proceedings

of the National Academy of Sciences, 2013. The experimental results were pro-

duced in the lab of Prof. Erik Herzog, Washington University, St. Louis. Our

contribution was the stochastic simulation results and a “phase tumbling” theory

of how the SCN entrains to a light cycle.
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5.1 Experimental Results

5.1.1 VIP reduces the amplitude of circadian rhythms in

the SCN by reducing synchrony

As part of an analysis of VIP-induced phase shifts of the SCN [85], we noted

that the peak-to-trough amplitude of SCN rhythms reliably decreased and then

gradually recovered after application of VIP (Fig. 5.1a). Replacing the medium

with three full exchanges 1 h after VIP application yielded similar results, indicat-

ing that the effects persisted many days after the added VIP was gone Fig. 5.2a).

We found that VIP reduced the peak-to-trough amplitude of PER2 rhythms with

a half-maximal response near 150 nM and saturation above 10 µM (Fig. 5.1b).

Within this range, a 10-fold increase in VIP concentration halved the PER2 am-

plitude (r2 = 0.99, n = 31 explants). VIP reduced the amplitude similarly when

it was applied on the rising or falling phases of the PER2 cycle, but more when

PER2 levels were at their lowest around circadian time (CT) 22 (Fig. 5.1c).

Consistent with prior reports [30][38], PER2 amplitude was unaffected by vehi-

cle, 30 µM glutamate, a major mediator of photic input to the SCN (Fig. 5.2b),

or 1 µM gastrin releasing peptide (GRP), another neuropeptide expressed and

released in the SCN (Fig. 5.1d). Thus, at concentrations above 100 nM, VIP
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sufficed to reduce the amplitude of circadian rhythms in the SCN in a phase- and

dose-dependent manner.

5.1.2 VIP reduces the synchrony of SCN populations

The amplitude reduction recorded from the population of SCN cells could

reflect phase dispersion between rhythmic SCN cells, reduced rhythmicity of indi-

vidual cells, or both. To distinguish between these possibilities, we measured the

effect of VIP on rhythms in individual neurons in SCN slices. Whereas vehicle

had no measurable effect on rhythmicity or synchrony, 150 nM or 10 µM VIP

reduced the synchrony among SCN neurons (Fig. 5.3; Raleigh test r values before

and after vehicle: 0.93 ± 0.01 and 0.91 ± 0.07, n = 2 cultures; before and after

150 nM VIP: 0.84 ± 0.03 and 0.51 ± 0.07, n = 5; before and after 10 µM VIP:

0.77 ± 0.03 and 0.25 ± 0.12, n = 2) and modestly reduced the peak-to-trough

amplitude of individual cells (measured two cycles after treatment; vehicle: 0.94

± 0.04, 150 nM VIP: 0.73 ± 0.03, P > 0.05, Student’s t test; Wilcoxon-Mann-

Whitney rank sum test for differences in phase clustering; vehicle, P > 0.07 in

two cultures ; 150 nM VIP, P > 1 ×10−3 in five cultures; 10 µM VIP, P > 0.01 in

two cultures). The amplitude reduction of individual cells following 150 nM VIP

accounts for less than half of the amplitude reduction seen at the population level.
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Therefore, VIP-induced desynchrony among SCN cells is required to explain the

reduced amplitude of ensemble PER2 rhythms.

5.1.3 Constant light requires VIP to reduce circadian am-

plitude in vivo

These in vitro results led us to test whether VIP plays a role in modulating

circadian amplitude in vivo. Because prolonged constant light (LL) has been

reported to desynchronize rhythms among SCN cells and produce arrhythmic

locomotor behavior [80], we recorded wheel running from wild-type (C57BL/6,

n = 18) and Vip-deficient (V ip−/−, n = 15) mice maintained in LL for 40 days

followed by 10-11 days in constant darkness (DD). Control mice showed a marked

reduction of their daily peak-to-trough amplitude in LL compared to DD (LL/DD

ratio: 0.2 ± 0.04), while amplitude changed little in V ip−/− mice (LL/ DD ratio:

0.94 ± 0.17, P > 0.0005, comparison of fold change in amplitude between wild

type and V ip−/−, Student’s two tailed t-test; Fig. 5.4). Therefore, VIP plays a

critical role in reducing the amplitude of locomotor activity rhythms in response

to light.
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5.2 Theory and Simulation

How can VIP both synchronize and desynchronize circadian cells? Underlying

this apparent contradiction may be a phase tumbling mechanism similar to the

‘run and tumble’ mechanism of bacterial chemotaxis [21] where SCN neurons

receiving VIP stimulation at a phase far from the phase angle of entrainment

would ‘tumble’ their phases. This would result in reduced synchrony among the

circadian cells. In contrast, SCN neurons receiving VIP stimulation near their

phase angle of entrainment would ‘run’ towards it.

5.2.1 A computational model of circadian desynchroniza-

tion predicts faster entrainment

A fundamental consequence of the phase tumbling hypothesis is that a desyn-

chronized SCN should entrain faster than a synchronized SCN to a large shift

in the environmental cycle. To test this, we generated a cell model which is a

stochastic adaptation of Leloup and Goldbeter’s deterministic model of circadian

gene regulation [66] that includes coupling [104] and a mechanism for light input

[14]. In our simulations, cells were initialized with either random or synchronized

phases. The light cycle was simulated with daily release of VIP. The phases of the

cells were tracked by the time of their daily PER protein peak using the Morlet
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continuous wavelet transform [61]. Our stochastic model of the SCN predicted

that cells with random initial phases would entrain, on average, 1-5 days faster

(depending on the size of the scheduled shift) than cells with synchronized phases.

Further, it predicted that VIP exposure would reduce the amplitude of the syn-

chronized population by reducing synchrony (Fig. 5.5). Thus, importantly, the

stochastic model can explain both the desynchronization and rapid entrainment

of the SCN by VIP.

The phase tumbling hypothesis was motivated by the phase response distri-

bution (PRD) (Fig. 5.6) of our stochastic model. A PRD is similar to a phase

response curve (PRC), in that it plots the change of phase as the result of a pulse

of light (represented in our model as a pulse of VIP) at a given time. It differs

from the PRC in that it shows the distribution of the responses, as opposed to

the aggregate response. There are a number of important features of this PRD.

First, note that the region that is roughly between CT 2 and CT 10 is stable, in

the sense that a pulse of light is unlikely to shift the phase outside this region and

is in fact likely to shift the phase towards the phase angle of entrainment near

CT 4. Second, there is greater phase dispersion outside this region, with greatest

phase dispersion occurring near CT 22. In short, given a pulse of light between

CT 2 and CT 10, the circadian cells are ‘running’ towards CT 4 (but occasionally
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tumbling along the way). In contrast, given a pulse of light elsewhere, the cells

are more likely to be ‘tumbling’ their phases.

To see the effects of desynchronization using the PRD, consider starting with

a synchronized system and applying a pulse of light at CT 19.5 and every 24

hours thereafter. The full distribution information available in the PRD is used

to determine the probability that a cell at a given CT will shift to any other

CT. To do this, we bin the CTs and form a histogram, as shown in Fig. 5.7,

then we apply the entrainment signal. The left column of the figure shows the

phase distribution at 24 hour intervals for cells that are completely desynchronized

when they receive the initial entrainment signal. The right column illustrates the

process of entrainment to a large shift in the environmental cycle for cells that

are initially synchronized: it is clear that the cells first desynchronize and then

entrain, hence the total time to entrainment is longer than if they had started out

desynchronized.

Intrinsic stochasticity, due to small populations of key chemical species, nat-

urally results in a PRD that is consistent with phase tumbling. The structure of

the Leloup and Goldbeter [66] model suggests the source of the variability in the

phase dispersion. The rate of change of Per mRNA in the nucleus is defined as

the sum of three terms that characterize: 1) the transcription rate, 2) the trans-

port rate from the nucleus to the cytoplasm, and 3) the Per mRNA degradation
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rate. Augmenting VIP increases the variability of nuclear Per mRNA accumu-

lation when nuclear-cytoplasmic transport rates and degradation rates are low

(near CT22), while the effect of VIP application near CT4, when transport and

degradation rates are high, is much smaller.

5.3 Experimental Validation of Phase Tumbling

Hypothesis

5.3.1 VIP speeds photic entrainment in vivo

Our simulation results predicted that VIP-induced reduction of synchrony

could accelerate entrainment to changes in the light schedule. To test this possi-

bility, we implanted cannulae aimed at the SCN of adult mice. Because VIP has

been shown to shift locomotor rhythms in vivo depending on the time of appli-

cation, we chose to deliver VIP at CT3 when it does not shift circadian rhythms

[82]. This avoids the potential confounds of VIP inducing shifts that could speed

or slow adjustment to a new schedule. We maintained wild-type mice in 12 h:

12 h light: dark cycles (lights on from 7:00 a.m. to 7:00 p.m.), for 7 days before

and 7 days after cannulation of the SCN. After a week, mice received either 20

(n = 4) or 200 pmole (n = 10) VIP or vehicle (artificial cerebral spinal fluid; n
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= 12) at 10:00 a.m. Lights were turned off after the injection and then turned

on from 11:00 p.m. to 11:00 a.m., corresponding to an 8 h-advance in the light

cycle. By using dim lights (1.0×1015photons/s/cm2), we reduced the confound of

light suppression (masking) of locomotor activity. This had the added advantage

of slowing entrainment to a shifted light schedule so that we could accurately

measure the rate of entrainment. The animals injected with VIP rapidly shifted

their onset of activity and required fewer days to entrain than the vehicle-injected

animals (mean of VIP-injected animals: 4.5 ± 0.4 days, n = 14; vehicle-injected

animals: 7.8 ± 1 days, n = 12, P > 0.005, Student’s two tailed t-test; Fig. 5.5a-

c). These results show that VIP sped entrainment to a large advance in the light

schedule.

5.3.2 VIP speeds temperature entrainment of the SCN in

vitro

To determine whether VIP directly accelerates entrainment of the SCN, we

measured the days required for SCN cultures to synchronize their circadian rhythm

to a 10-h advanced temperature cycle. We tracked the time of peak PER2 expres-

sion in SCN explants maintained in a 12h:12h warm: cool cycle (36.5 ◦C starting

at 6 a.m, 35 ◦C starting at 6:00 p.m.) for 8 days followed by a 10-h advanced

warm: cool cycle (8:00 p.m. warm, 8:00 a.m. cool) for 9 days and then 4 days
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at 36.5 ◦C. SCN were treated with either 10 µM VIP or vehicle at 4:00 p.m., 11

h prior to the shift in the temperature cycle. We chose to deliver VIP at the

same relative time as the in vivo experiment (ZT 3), a time when it also produces

minimal shifts in vitro (18-21). SCN were defined as entrained to the new cycle

once the phase relationship between the daily warming and peak PER2 was stable

for at least 48h±0.25 h with a phase of 17.2±1 (VIP-treated cultures) or 15.5±1

(vehicle-treated cultures). VIP-treated SCN cultures entrained within 4.2 ± 0.4

days to a mean phase of 17.2 ± 0.5 (Rayleigh test, P > 0.005, r = 0.8, n = 5),

whereas controls took longer (9.6 ± 2.1 days, P < 0.05, Student’s two tailed t-test;

Fig. 5.5d-f) and had more broadly distributed peak phases (mean phase: 12.6 ±

1.7, P > 0.05, r = 0.3, n = 5). Indeed, two of the vehicle-treated cultures (40%)

did not appear to be fully entrained even 13 days after the start of the shifted

schedule. Thus, VIP pretreatment similarly doubled the speed of the entrainment

to a new environmental cycle of behavior and of the SCN.

We have discovered that treatment with VIP can reduce synchrony among

SCN cells in vitro in a phase- and dose-dependent manner. Our experimental and

modeling data suggest that the phase-dependent desynchrony following treatment

with VIP results from the variable shifts experienced by individual cells in a

process that we call phase tumbling. Phase tumbling is a direct consequence

of stochastic variation in small numbers of key molecules within the circadian
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clock. The phase tumbling model explains faster entrainment without explicitly

weakening cell-cell communication or coupling. A recent model of the circadian

clock in plants also noted that introduction of stochastic molecular noise yielded

less synchrony among oscillators and faster entrainment [46].

These results highlight VIP release within the SCN as a target for potential

therapies aimed at improving circadian synchronization during travel or shift work,

and we posit that appropriate administration of light could mimic these results.

VIP reduces the amplitude of SCN rhythms more at CT22 than at other times, and

when applied daily entrains the SCN to a time of relative phase stability at CT4.

This suggests a strategy for reducing jetlag: arrange to arrive at the destination

at a time when you will receive light exposure near CT22. At that circadian time,

the dependence of the mammalian circadian clock’s period on nuclear-cytoplasmic

shuttling of clock proteins and mRNA degradation [61][29][57][120] provides a

sensitive point for cell-cell variation.
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Figure 5.1: VIP dose-dependently reduces the amplitude of circadian rhythms in

the SCN.
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Figure 5.1: (A) Representative detrended bioluminescence traces fromPER2::LUC

SCN explants were treated with 1 µM VIP (solid line) or vehicle (shaded line) de-

livered near the peak of PER2 expression (CT12, arrow). Note that the amplitude

of the VIP-treated SCN decreased and, then, gradually recovered. Each trace was

normalized to the peak before treatment. (B) The dose-dependent amplitude de-

crease (mean ± SEM; n = 35 cultures at each dose) by VIP application at CT12.

Between 150 nM and 10 µM VIP, the amplitude decreased linearly with loga-

rithmic increases in VIP concentration. Data were fitted with a logistic function

(solid line). Amplitude was measured as the trough-to-peak magnitude 48 h after

VIP application. (C) The amplitude reduction of PER2 cycling (mean ± SEM)

was greater following 10 µM VIP (squares; n = 20) than 150 nM VIP (triangles;

n = 16) at all times (P < 0.00001, F6,66 = 38.53, n = 74; two-way ANOVA with

a Scheffé post hoc). Notably, 10 µM VIP delivery at CT22 had a larger effect on

amplitude than at other times (P < 0.03, F4,14 = 3.87, n = 19; one-way ANOVA

with a Scheffé post hoc). Vehicle (open circles) did not reduce the amplitude at

any time. The shaded line corresponds to a PER2-expression rhythm peaking at

CT12.
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Figure 5.1: (D) Representative bioluminescence traces from SCN explants treated

at the peak of PER2 expression (arrow) showing that another neuropeptide, 1

µM gastrin-releasing peptide (GRP) (solid line), did not reduce amplitude com-

pared with vehicle (shaded line) applied at CT12. (E) VIP application transiently

broadens the waveform of PER2 expression. The fold change (mean ± SEM) in

the duration (α) of PER2 expression is plotted relative to the PER2 duration on

the day before treatment. When applied near the peak of PER2 (E), VIP dose-

dependently increased the width of PER2 expression on the day of treatment and

for the 2 d after (10 µM VIP, squares, n = 3; 150 nM VIP, triangles, n = 8; vehicle,

circles, n = 8; P < 0.000003, F2,18 = 32.5, two-way ANOVA with a Scheffé post

hoc). The peak broadening effect of VIP decreased with days after treatment (P

< 0.05, F2,18 = 2.8, Two-way ANOVA with a Scheffé post hoc). Similarly, when

applied near the trough of PER2 (F), 10 µM VIP (n =12) and 150 nM VIP(n =

7) increased the width of daily PER2 expression compared with vehicle (n = 8;

P < 0.0005, F2,26 = 8.3, two-way ANOVA). This effect on α persisted for the 2 d

after VIP application (P = 0.006, F2,26 = 5.5, two-way ANOVA).
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Figure 5.2: VIP reduces the amplitude of PER2 rhythms after three washes

(A) VIP reduces the amplitude of PER2 rhythms after three washes. A

representative trace from a SCN explant treated with 10 µM VIP at CT11

(arrow), followed by three full medium changes after 1 h, shows that the

amplitude of PER2 rhythms decreased rapidly and slowly recovered similar to

that in cultures treated without removing VIP from the dish.
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Figure 5.2: (B) Compared with VIP, stimulation with 30 µM glutamate (Glu) or

1 µM gastrin-releasing peptide (GRP) at CT22 modestly reduced the amplitude

of PER2 expression on the day after application (*P < 0.05, **P < 0.01; one-way

ANOVA followed by a Scheffé test; n = 47 SCN per treatment).
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Figure 5.3: VIP dose-dependently reduces circadian synchrony among SCN cells.

(A) PER2::LUC bioluminescence traces of five randomly selected cells treated

with vehicle (blue arrow). Note that the cells retained their phase relationships

and amplitudes so that their summed expression (purple trace) shows a circadian

rhythm with sustained amplitude.
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Figure 5.3: (B) A raster plot shows the daily increase (green) and decrease (black)

in PER2 expression from 20 representative cells in the same SCN slice treated with

vehicle (yellow bar). Two Rayleigh plots show distribution of phases among cells

(n = 140) in this SCN on the day before and 1 d after vehicle administration.

Each dot represents the time of daily peak PER2 expression for one cell. Note

that the length of the mean vector (r) did not change following the treatment,

indicating that the cells remained synchronized. In contrast, treatment with VIP

reduced synchrony among SCN cells depending on the concentration of VIP as

illustrated by (C and E) representative PER2::LUC traces from 5 cells and (D and

F) raster plots from 20 representative cells and Rayleigh plots before and after

VIP administration. Note that, compared with vehicle (G), VIP-treated cells in

each of these representative cultures remained rhythmic with modest effects on

their peak-to-trough amplitude (H and I), but with reduced synchrony.
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Figure 5.4: VIP mediates the amplitude reduction of locomotor rhythms by con-

stant light (LL).
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Figure 5.4: (A and B) Representative actograms of a wild-type and a VIP-

knockout (V ip−/−) mouse kept in LL for 39 d and then constant darkness (DD)

for 11 d. Each line shows wheel-running activity in 6-min bins over 48 h with

the last 24 h of data replotted on the line below to illustrate free-running circa-

dian periodicity. Cage changes on days 32, 39, and 45 induced locomotor activity,

showing that the mice were capable of running on their wheel. (C and D) Time

series plots reveal the rapid switch from low-amplitude rhythms in LL to high-

amplitude rhythms in DD of the wild-type mouse from A compared with the weak

circadian rhythms in LL and DD of the V ip−/− mouse from B. The bar at the

bottom of each plot shows the times of lights on (open) and off (shaded). (E)

The fold change in the peak-to-trough amplitude of daily locomotion in wild-type

animals was reduced dramatically in LL compared with DD, but did not change

in V ip−/− mice (mean ± SEM, n indicates the number of mice; ***P < 0.0005,

Student’s two-tailed t test).
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Figure 5.5: VIP accelerates circadian synchronization to an advanced schedule in

vivo and in vitro. (A and B) Representative actograms of two mice exposed to an

8-h advance in their light schedule on recording day 27. Mice received either 20

or 200 pmol VIP (B) or vehicle (A) at ZT3 before the shift (shaded arrow) and

stably entrained (*) after 4 d (B) or 8 d (A) in the new light schedule. (C) The

daily activity onset of all vehicle- or VIP-injected animals (mean ± SEM) and

days required to entrain (mean ± SEM; Inset).
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Figure 5.5: (D and E) Representative actograms of two SCN cultures in a temper-

ature cycle (shaded, 35 ◦C; open, 36.5 ◦C). Points show the daily peaks of PER2

expression before and after application of either vehicle (D) or 10 µM VIP (E)

at CT3 (arrow). Note that the vehicle-treated SCN required 8 d to entrain to

the new temperature cycle (*) whereas VIP-treated SCN synchronized within 5

d. (F) The daily peak of PER2 expression (mean ± SEM) of all vehicle- (n =

5) and VIP-treated SCN (n = 5). Note that the vehicle-treated SCN had greater

variability in their phases at the end of the temperature cycle. Inset shows that

cultures that received VIP entrained significantly faster than controls (mean ±

SEM; *P < 0.05, Student’s two-tailed t test).
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Figure 5.6: A computational model reveals that phase tumbling of circadian os-

cillators explains VIP-induced desynchrony and predicts that phase tumbling can

speed entrainment. (A and B) PER protein levels from stochastic simulations of

49 SCN neurons started with (A) random and (B) synchronized initial phases and

then were subjected to a 10-h phase shift via VIP pulses every 24 h (triangles).
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Figure 5.6: (C) The mean mRNA level of the 49 cells illustrates the loss of am-

plitude in the population signal due to loss of synchrony between cells that were

initially synchronized (green) or desynchronized (blue). Circles mark PER peaks.

(D) Synchronization index and (E) daily peaks of PER (circles, mean ± SEM)

show that desychronized cells (blue) entrain to VIP (triangles) more quickly than

synchronized cells (green).
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Figure 5.7: Model SCN cells display a time-dependent, stochastic response to

VIP stimulation. Consistent with the published phase response curve to VIP,

on average (black line), VIP delayed circadian rhythms of individual cells when

applied during most of the subjective day (CT5-20) and advanced rhythms when

applied during the late subjective night to early morning (CT20-5). The SD of

the phase shifts (gray lines) was greatest around CT22 and smallest around CT4

(vertical gray lines).
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Figure 5.7: Each point represents the shift of a single, simulated cell in a single

VIP application. Each color shows results from five repeated, Monte Carlo trials

simulating VIP treatment of 49 uncoupled cells. CT0 was defined as the mini-

mum in Period gene expression as determined by WAVOS, a MATLAB toolkit

for wavelet analysis (5). Note that the time of least-phase dispersion (CT4) cor-

responds to the published time when daily VIP entrains SCN rhythms, but that

VIP at any time induces phase dispersion (tumbling). These computational mod-

eling results provide a mechanism by which VIP both reduces synchrony among

cells and, when released daily, can entrain SCN rhythms.
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Figure 5.8: A pulse of light was applied to the simulated cells at CT19.5 and every

24 h thereafter. Histograms showing the distribution of cells at 24-h intervals were

computed from the PRD. They show rapid convergence to the stable point near

CT4 when the initial distribution is desynchronized (Left). When the initial dis-

tribution is synchronized (Right), the cells first desynchronize before reentraining

and converging to the stable point near CT4. The red asterisks show the mean

time of maximal PER expression of each distribution of simulated cells.
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Chapter 6

Inference of Functional Network

for Synchronization in the SCN

The Suprachiasmatic Nucleus (SCN), a bilateral speck of some 20,000 cells

located in the hypothalamus of the mammalian brain, has been demonstrated to

control the entrainment of circadian behavior in mammals to light/dark cycles

[88]. SCN network dynamics are contingent upon properties of its single cell-

autonomous oscillators [68, 10] and the underlying physical connectivity of the

network. [12, 62, 108, 8].

Neurons communicate via an electrochemical process, which starts when a neu-

rotransmitter chemical attaches to a neuron’s receptor. Information is transmitted

by an electrical action potential through the cell’s dendrites and axon. When the
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signal reaches the end of the axon a neurotransmitter chemical is released, signal-

ing the next neuron. Connectivity in the brain can refer to anatomical connections

which can be observed directly[4], statistical dependencies (functional connectiv-

ity), or causal interactions (effective connectivity) [98]. Here, we demonstrate a

novel method for the inference of functional cellular connections within the SCN

based on the maximal information coefficient (MIC) [89].

The maximal information coefficient (MIC) chooses optimal binning for a pair

of continuous variables to maximize the mutual information measured between

them. Mutual information is particularly well-suited to measuring dependency

between neurons in the presence of stochasticity and does not assume a particular

function (nonparametric) [17][121]. It has been used to deduce neuron inter-

connections from neuron firing data [39] [121] [122] and gene regulatory networks

from gene-expression microarray data [70].

We inferred functional networks from PER2:LUC recordings of three in vitro

SCN samples. Movies were produced by recording PER2:LUC bioluminescence in

individual cells every hour. Recordings were made during experiments in which

the cells were treated for 5 days with tetrodotoxin (TTX) to inhibit inter-cellular

coupling and desynchronize their phases while preserving cell-autonomous oscil-

lation [123, 94]. TTX was then washed out, restoring inter-cellular coupling and

allowing resynchronization of the cells in the SCN. The information exchanged
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between neurons during this 7-10 day resynchronization is quantified by the MIC

for all possible pairs of cells. Our results show that the mammalian SCN is func-

tionally connected through a network that displays characteristics of a scale-free

small-world topology. The “hubs” of this network are located in the central SCN

(Fig. 6.1).

We validate our method by inferring known networks from the results of

stochastic simulations using two models of the coupled SCN: a three-state cellular

oscillator [44, 93], and an eleven-state cellular oscillator that accounts explicitly

for VIP coupling dynamics [2]. As a control, we show that this method is able

to differentiate between SCN explants taken from different animals. Finally, we

checked that we could re-infer the network from the biological experiment when

we implemented it in our model.

The experimental results in this chapter were produced in the lab of Prof. Erik

Herzog, Washington University, St. Louis. The theoretical results were obtained

in collaboration with John Abel, a UCSB graduate student who is co-advised by

Prof. Frank Doyle and Prof. Linda Petzold. A paper describing this work is in

preparation.
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6.1 Inference Method

While fast electrical connections between neurons may be inferred through

methods such as Granger causality or between-sample analysis of connectivity

(BSAC) [37], the multielectrode arrays (MEAs) used for data collection are lim-

ited in the number of cells that can be monitored and it is difficult to place the

electrodes directly on the cells. Here we are interested in using a bioluminescence

reporter in an oscillatory system to infer the network. Methods such as delayed

mutual information [74] are difficult to use on oscillatory systems due to non-

causal correlation. The maximal information coefficient (MIC) [89] provides an

efficient pairwise binning of bioluminescence data in phase space, finding the grid

that contains the maximum mutual information. Since the selected bins of the two

signals are centered on the same time, it avoids registering delayed correlations

while, like mutual information, it captures nonlinear relationships between noisy

states.

The maximal information coefficient (MIC) [89] is calculated by partitioning

a scatter plot of two variables into a grid that maximizes the mutual information.

This grid is selected by computing the mutual information between a pair of

variables for all grids up to some maximum resolution. The mutual information
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Ig for each grid G is

I(X;Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy (6.1)

where X and Y are two continuous random variables. The probability of a box in

the grid is proportional to the number of points inside it. There are multiple grids

with the same x-by-y number of boxes, but with different box size dimensions. The

maximum mutual information for each x-by-y grid is selected after normalization

to form a matrix m of mutual information values

mx,y =
max(Ig)

log min(x, y)
. (6.2)

The MIC is the maximum of mx,y with the number of boxes limited to xy < B,

where B is a function of sample size, usually B = n0.6.

The pairwise MIC provides a continuous measure (0-1) of mutual information.

A MIC threshold value must be selected to designate connections. In our valida-

tion test, we use the Receiver Operating Characteristic (ROC) curve (Fig. 6.2) to

illustrate the performance of the MIC designation as the threshold is varied. It is

a plot of the true positive rate (sensitivity) versus the false positive rate (speci-

ficity). The area under the ROC curve (AUC) is one measure of performance. An

AUC=1.0 indicates perfect detection while an AUC=0.5 indicates an algorithm

no better than random chance.
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6.2 Validation with Model Circadian Networks

We first validated our network inference method by modeling 100 cells in three

different network topology types: random, linear, and Watts-Strogatz [113] using

two different cell models: 3-state and 11-state. Inter-cellular coupling was modeled

as VIP release from one cell stimulating Period transcription in connected cells.

In the three-state oscillator, coupling is modeled through algebraic manipulation

of Period promotion vs [44, 93]. A cell with index j transcribes mRNA with

maximum rate vs = v0
s + cj, where v0

s = 0.82 is the baseline maximum rate and cj

is the coupling term, which is dependent on the mRNA populations of connected

cells. The coupling term is

cj = a

(
Mj + w

∑
Mi

1 + I × w
−Mj

)
(6.3)

where the coupling strength a = 2, Mi is the mRNA population of the connnected

cell i, I is the total number of connections, and the connection weight w = 0.0050.

The more detailed eleven-state oscillator explicitly captures VIP and CREB-based

Period promotion [2]. VIP input to coupled cells was normalized, and cells with

no connection received no VIP input. In this model, coupling between neuron 1

and neuron 2 is achieved by VIP mRNA from neuron 1 being directly translated

into VIP protein in cell 2, and vice-versa. So that each cell receives the same total

VIP input (to keep the model consistent), the VIP input is weighted by the total
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number of connections I. The weighting parameter wi is therefore equal to 1/I

for each cell (see Table B.1).

We simulated the cells without coupling for five days, allowing them to drift

from their initial identical phases to mimic TTX-induced desynchronizaton. After

five days, coupling was restored according to the chosen model network topology

and the simulation was continued for another ten days. Per mRNA was summed

across each one-hour simulation interval to reflect bioluminescence data, with one

image taken across each hour.The MIC statistic was calculated as in experiment.

The results in Figure 6.3 show the area under the ROC curve (AUC) versus the

average node degree. As the average node degree is increased, the performance of

the inference method degrades. This can be attributed to the detection of more

false-positive indirect connections. The results shown are all better than random

chance (AUC > 0.5).

6.3 Biological Control and Connectivity Thresh-

old

We validated our method with a control using the experimental data: analyzing

separate SCN’s as if they were one to see if our method would infer false-positive

connections between them.
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We applied our inference method to bioluminescence traces from the three

SCNs, and used a receiver operating characteristic (ROC) curve to determine

whether the method can differentiate between biologically distinct SCNs (Fig.

6.4). A “possible positive” was defined to be an inferred connection within the

same SCN (Fig. 6.4A), whereas a false positive was a biologically-impossible

inferred connection between two different SCNs (Fig. 6.4B). As we only know

for certain which connections cannot exist, our pseudo-ROC is a comparison of

possible positives to false positives (Fig. 6.4D).

To infer the network structure within the SCN, we chose a threshold MIC

value, mc, from the negative control result. Our lowest possible mc threshold was

chosen to be 0.85, as this value has a 0.005 false positive rate, while still cap-

turing the 38,600 strongest bidirectional functional connections within the three

SCNs. In order to compare the SCNs and find common structure, we adjusted

this threshold to normalize average node degree for each SCN. Because mc values

were raised to normalize node degree, this results in a more conservative esti-

mate of connectivity. For SCNs A, B, and C we set mc,A = 0.945, mc,B = 0.850,

mc,C = 0.947, respectively, with an average node degree of 5 for each SCN.
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6.4 SCN Network Structure Results

6.4.1 SCN Coupling Displays a Small-World Architecture

The SCN has previously been modeled with a variety of architectures [104,

107, 18, 28]. It is important to characterize the actual functional network struc-

ture, as networks of differing architecture display different synchronization and

entrainment characteristics, and responses to perturbation. In Table 6.1, we show

that networks inferred from our three SCN explants display the characteristics

of small-world networks. Small-world networks are commonly found in biological

systems, and are defined by the average path length L and clustering coefficient

C∆, as defined in [113, 78]. A network G is determined to be small world if:

LG ≈ Lrandom and C∆
G � C∆

random, (6.4)

where the equivalent random graph has an identical number of vertices and edges.

In [56], a “small-world-ness” characteristic is also defined:

S∆ =
(C∆

G /C
∆
random)

(LG/Lrandom)
. (6.5)

A network is considered small-world if S∆ > 1. In Table 6.1, we show that each

SCN meets all of the above criteria for small-world architecture, with S∆ values

much greater than one. Values for the random networks are averaged between

twenty randomly-generated networks.
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Table 6.1: SCN Network Characteristics

SCN ncells LSCN Lrand C∆
SCN C∆

rand S∆

A 649 4.63 2.67 0.422 0.027 15.4

B 191 2.88 2.13 0.497 0.098 5.07

C 308 4.00 2.36 0.400 0.058 6.84

Characteristic path length L and clustering coefficient C [113, 78], and S∆ [56]

compared between the inferred network and equivalent randomly-generated

networks indicate that the SCN has a small-world topology.

A small-world network is, in addition, determined to be scale-free if the node

degree distribution obeys a power law distribution function P (k):

P (k) ∼ k−γ, (6.6)

where k is the node degree, for a sufficiently large node count [6]. These networks

are free of a characteristic scale. In Fig. 6.5, we show a log-log plot of P (k) vs.

k for our three SCN explants, using the above-defined mc threshold. Fitting to

(6.6), we show that for the SCN, on average, γ = 0.89 (R2 = 0.65). Thus, it

appears that the inferred functional SCN networks are approximately scale-free.
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Inference of Simulated Networks with Biological Topology

A final validation of our inferred networks is achieved through applying the

inferred network topologies to our coupled stochastic models of mammalian circa-

dian rhythm, inferring the networks from simulated data, and computing an ROC

curve for the MIC inference method.

In Fig. 6.2, we show that MIC performs moderately well in recapturing sim-

ulated SCN networks, with an average area under the ROC curve (AUC) of 0.89

for the three-state model and 0.78 for the eleven-state model. It is important to

note that our simulated networks likely do not contain all the physical connec-

tions of the SCN explants, as only a two-dimensional layer of cells are observable

in bioluminescence experiments.

We inferred the resynchronization network of the SCN using the maximal in-

formation coefficient, and found that it met the criteria for being both small-world

and scale-free. Previous works have found many neuronal networks to be small-

world, and some of these to also be scale-free [32, 16, 99]. Our method does not

focus on the phase distribution across the SCN ([36][35][28][81][115][77][63][33]),

but instead measures information shared between cells as they resynchronize. We

observed more highly connected “hub” cells in the center of the SCN, which is

consistent with previous observations of a phase cluster in the core. It would be

interesting to examine the functional networks obtained by applying this inference
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method to the variety of biological experiments that have been used to observe

different phase patterns in the SCN [36][35][28][81][115][77][63][33].

From an information transfer perspective, desynchrony is key to maximizing

information transmission in active networks [15]. Baptista et al. [15] investigated

optimum network topologies for maximum information transmission over a broad

range of coupling strengths and found that a perturbed star topology is optimal for

self-excitable channels, while an almost all-to-all connected network is optimal for

non-self-excitable channels. A self-excitable channel is responsive (susceptible) to

input stimulus or coupling. Baptista et al. asserts that periodic channels are non-

self-excitable, but also notes that large amounts of information can be transmitted

when bursts are phase synchronous while neuron firing is highly desynchronous.

Also, it may be that desynchronization of the SCN allows it to be susceptible to

input stimulus such as shifting light schedules [73].

There may be improvements to our analysis that can help eliminate indirect

connections and determine communication direction. Multi-point methods, which

compare pairwise and triplet mutual information, may help to eliminate indirect

connections [19]. A combination of perturbations and temporal resolution could

help to uncover causality by determining the order of communication. The transfer

entropy which measures the information between the past of one cell and the future

of another may be useful in this endeavor [17][39].
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SCN Core-Shell Structure

Shell

Core

SCN A

SCN B SCN C

Figure 6.1: Network inference results for three SCNs. (A) The SCN dis-

plays a core-shell structure. Network inference results (B-D) for three SCNs show

that nodes in the central SCN display a higher node degree. Node size in these

schematics is proportional to node degree, and color is added for emphasis.
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Figure 6.2: MIC network inference captures simulated networks with

topology inferred from experiment. (A) ROC curves for simulation with the

three-state model. Average AUC = 0.89. (B) ROC curves for simulation with

the eleven-state model. Average AUC = 0.78.
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Figure 6.3: Accuracy of MIC inference method depends on both network

topology and average node degree. Area under the curve is plotted as a

function of average node degree for the 3-state model (A) and the 11-state model

(B) for these network structures.
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Figure 6.4: MIC correctly distinguishes between SCN samples. (A) For

this test, we consider connections within the same SCN to be valid, whether

between halves or within a single half. (B) Inter-SCN connections are invalid, as

neurons cannot establish connections between biologically separate SCNs. (C) A

connectivity plot of MIC values. Higher MIC values (red) indicate stronger phase

locking, and synchrony, whereas lower MIC values (blue) indicate little synchrony

between cells. Regions A, B, and C represent connections within SCNs A, B, and

C, respectively. Regions marked X are inter-SCN (invalid) connections.
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Figure 6.4: (D) A pseudo-receiver operating characteristic curve for SCN network

inference. Colored points along the curve correspond to color in (C) above which

connectivity is inferred. As the SCN is not an all-to-all network, we do not expect

that all cells should be connected to all others within a single SCN. The first

38,600 connections between SCN cells are inferred with a false positive rate of

0.005 (mc threshold of 0.85). (E) A schematic of the functional network inferred

from MIC for SCN A, using mc,A = 0.98 for visualization.
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Figure 6.5: SCN node degree distribution is approximately scale-free. A

network is considered scale-free if node degree distribution obeys a power law fit.

Here, we show that this is approximately true for our inferred SCN networks. As

the node count is not very high, we see a low R2 for our fit, as a large number of

nodes in each sample is necessary for a smooth exponential fit. R2 = 0.65.
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Chapter 7

Conclusions and Future Work

Modeling and simulation, tools of the emerging field of systems biology, may

provide answers as to how circadian regulation works and how it can be repaired

when broken or altered to improve health. Our work has focused on building a

stochastic model of the mammalian circadian system, and examining how noisy

stochastic cell oscillators can together form a stable master clock in the SCN.

The oscillations of individual cells and cells in SCN tissue were characterized

with a wavelet analysis method, which was used to measure period and phase

of the oscillations in noisy non-stationary signals. A comparison of experimental

data with stochastic model using wavelet analysis showed a potential explanation

for how individual oscillators could be so unstable, yet synchronize in a group:

proximity to a bifurcation point in the nonlinear cell model. In the 16-state Leloup
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and Goldbeter model this was near a Hopf bifurcation between two oscillation

frequencies, rather than near a stable (damped oscillator) solution [18].

We introduced a new theory of how the SCN synchronizes and entrains by

phase tumbling when exposed to a shift in light schedule. This theory is based on

the probabilistic response of cells with low numbers of molecules, a more faithful

representation of their chemistry than a deterministic differential equation model.

The randomness of the phase response distribution (PRD) allows the SCN to

quickly establish a group of cells at a new light schedule and produce a circadian

clock, gaining strength in amplitude as more cells entrain to the new schedule.

This work suggests several possible strategies for the reduction of jet-lag involving

phase shifts.

Since the response of the SCN system is influenced by the connection topol-

ogy of its cell network, we next used the measured pairwise maximal information

coefficient (MIC) to infer a connection network from experimental data. Several

validation tests were done to develop confidence in this method: control com-

parison of two unconnected SCN samples or modeled SCN networks, as well as

inference of the network in models of circadian cells in different types of networks:

linear, nearest-neighbor, and random. Since the network inferred from the ex-

perimental data was small-world [113], we did a round-trip confirmation that we
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could recover the connections from a simulation of the same small-world network

of circadian cells.

Future work might address how treating the SCN output as a population

distribution may make sense of other observed phenomena such as how exposure

to different seasonal day-lengths causes the SCN to respond differently to stimulus.

Is the circadian clock adapted differently in animals that live closer to the poles,

or in extreme environments such as the bottom of the ocean or in caves where

there is no light? Answering these questions may help separate the function of

the circadian clock in foraging behavior from its function in internal metabolic

processes.
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Appendix A

Leloup and Goldbeter 16-state
Discrete Stochastic Model

This model is the discrete stochastic version of model in [104], which, in turn,
is constructed from Leloup and Goldbeter’s [66] 16-state mammalian model. In
Table A.1 we list the reactions involved in a single cell. To convert molar con-
centrations in the deterministic model to populations (number of each chemical
species) requires converting the concentration to units of molecules per liter then
multiplying by a cell volume V . The scaling constant Ω is given by

Ω = NA[molecules/liter]× V [liters] (A.1)

where Avogadro’s number NA = 6.022× 1023. For Ω = 600 used in this model

1nM× Ω = 1nM× 1M

109nM
× 6.022× 1023molecules/liter× V liters. (A.2)

Solving for V gives a volume of V = 1.7e−15 liters.

Table A.1: Reactions of discrete stochastic model based on 16 state Leloup &
Goldbeter model with added CREB equation

Reaction Probability of reaction Transitions

0 G→G+MP w0 = (νsPΩ)
Bn

N

(KAP Ω)n+Bn
N

MP→MP + 1

1 MP→ w1 = (νmPΩ) MP

(KmP Ω)+MP
MP→MP − 1
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Table A.1 Continued: Reactions of discrete stochastic model based on 16 state
Leloup & Goldbeter model with added CREB equation

Reaction Probability of reaction Transitions

2 MP→ w2 = kdmpMP MP→MP − 1

3 G→G+MC w3 = (νsCΩ)
Bn

N

(KACΩ)n+Bn
N

MC→MC + 1

4 MC→ w4 = (νmCΩ) MC

(KmCΩ)+MC
MC→MC − 1

5 MC→ w5 = kdmcMC MC→MC − 1

6 G→G+MB w6 = (νsBΩ) (KIBΩ)m

(KIBΩ)m+Bm
N

MB→MB + 1

7 MB→ w7 = (νmbΩ) MB

(KmBΩ)+MB
MB→MB − 1

8 MB→ w8 = kdmbMB MB→MB − 1
9 MP → PC w9 = kspMP PC→PC + 1
10 PC → PCP w10 = (V1PΩ) PC

(KpΩ)+PC
PC→PC − 1

PCP→PCP + 1
11 PCP → PC w11 = (V2PΩ) PCP

(KdpΩ)+PCP
PC→PC + 1

PCP→PCP − 1
12 PCC→PC + CC w12 = k4PCC PC→PC + 1

CC→CC + 1
PCC→PCC − 1

13 PC + CC→PCC w13 = (k3
Ω

)PCCC PC→PC − 1
CC→CC − 1
PCC→PCC + 1

14 PC→ w14 = kdnPC PC→PC − 1
15 MC → CC w15 = ksCMC CC→CC + 1
16 CC → CCP w16 = (V1CΩ) CC

(KpΩ)+CC
CC→CC − 1

CCP→CCP + 1
17 CCP → CC w17 = (V2CΩ) CCP

(KdpΩ)+CCP
CC→CC + 1

CCP→CCP − 1
18 CC→ w18 = kdncCC CC→CC − 1
19 PCP → w19 = (νdPCΩ) PCP

(KdΩ)+PCP
PCP→PCP − 1

20 PCP→ w20 = kdnPCP PCP→PCP − 1
21 CCP → w21 = (νdCCΩ) CCP

(KdΩ)+CCP
CCP→CCP − 1

22 CCP→ w22 = kdnCCP CCP→CCP − 1
23 PCC → PCCP w23 = (V1PCΩ) PCC

(KpΩ)+PCC
PCC→PCC − 1,

PCCP→PCCP + 1
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Table A.1 Continued: Reactions of discrete stochastic model based on 16 state
Leloup & Goldbeter model with added CREB equation

Reaction Probability of reaction Transitions

24 PCCP → PCC w24 = (V2PCΩ) PCCP

(KdpΩ)+PCCP
PCC→PCC + 1,

PCCP→PCCP − 1
25 PCN→PCC w25 = k2PCN PCC→PCC + 1,

PCN→PCN − 1
26 PCC→PCN w26 = k1PCC PCC→PCC − 1,

PCN→PCN + 1
27 PCC→ w27 = kdnPCC PCC→PCC − 1
28 PCN → PCNP w28 = (V3PCΩ) PCN

(KpΩ)+PCN
PCN→PCN − 1,

PCNP→PCNP + 1
29 PCNP → PCN w29 = (V4PCΩ) PCNP

(KdpΩ)+PCNP
PCN→PCN + 1,

PCNP→PCNP − 1
30 PCN +BN→IN w30 = (k7

Ω
)PCNBN PCN→PCN − 1,

BN→BN − 1
IN→IN + 1

31 IN→PCN +BN w31 = k8IN PCN→PCN + 1,
BN→BN + 1
IN→IN − 1

32 PCN→ w32 = kdnPCN PCN→PCN − 1
33 PCCP → w33 = (VdPCCΩ) PCCP

(KdΩ)+PCCP
PCCP→PCCP − 1

34 PCCP→ w34 = kdnPCCP PCCP→PCCP − 1
35 PCNP → w35 = (VdPCNΩ) PCNP

(KdΩ)+PCNP
PCNP→PCNP − 1

36 PCNP→ w36 = kdnPCNP PCNP→PCNP − 1
37 MB → BC w37 = ksBMB BC→BC + 1
38 BC → BCP w38 = (V1BΩ) BC

(KpΩ)+BC
BC→BC − 1,

BCP→BCP + 1
39 BCP → BC w39 = (V2BΩ) BCP

(KdpΩ)+BCP
BC→BC + 1,

BCP→BCP − 1
40 BC→BN w40 = k5BC BC→BC − 1

BN→BN + 1
41 BN→BC w41 = k6BN BC→BC + 1

BN→BN − 1
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Table A.1 Continued: Reactions of discrete stochastic model based on 16 state
Leloup & Goldbeter model with added CREB equation

Reaction Probability of reaction Transitions

42 BC→ w42 = kdnBC BC→BC − 1
43 BCP → w43 = (VdBCΩ) BCP

(KdΩ)+BCP
BCP→BCP − 1

44 BCP→ w44 = kdnBCP BCP→BCP − 1
45 BN → BNP w45 = (V3BΩ) BN

(KpΩ)+BN
BN→BN − 1

BNP→BNP + 1
46 BNP → BN w46 = (V4BΩ) BNP

(KdpΩ)+BNP
BN→BN + 1

BNP→BNP − 1
47 BN→ w47 = kdnBN BN→BN − 1
48 BNP → w48 = (VdBNΩ) BNP

(KdΩ)+BNP
BNP→BNP − 1

49 BNP→ w49 = kdnBNP BNP→BNP − 1
50 IN → w50 = (VdINΩ) IN

(KdΩ)+IN
IN→IN − 1

51 IN→ w51 = kdnIN IN→IN − 1
52 CB∗→ w52 = Ω

(
νP
CBT

)[
(νK
νP

) Ω−CB∗
K1+(Ω−CB∗)

]
CB∗→CB∗ + 1

53 CB∗→ w53 = Ω
(
νP
CBT

)
CB∗

K2+CB∗
CB∗→CB∗ − 1

Table A.2: Parameter values for 16 state molecular clock model

Parameter V alue

k1(1/h) 0.4
k2(1/h) 0.2
k3(1/(nM · h)) 0.4
k4(1/h) 0.2
k5(1/h) 0.4
k6(1/h) 0.4
k7(1/(nM · h)) 0.5
k8(1/h) 0.1
kAP (nM) 0.7
kAC(nM) 0.6
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Table A.2 Continued: Parameter values for 16 state molecular clock model

Parameter V alue

kIB(nM) 2.2
kdmb(1/h) 0.01
kdmc(1/h) 0.01
kdmp(1/h) 0.01
kdn(1/h) 0.01
kdnc(1/h) 0.12
Kd(nM) 0.3
Kdp(nM) 0.1
Kp(nM) 0.1
KmB(nM) 0.4
KmC(nM) 0.4
KmP (nM) 0.31
ksB(1/h) 0.12
ksC(1/h) 1.6
ksP (1/h) 0.6
m 2
n 4
V1B(nM/h) 0.5
V1C(nM/h) 0.6
V1P (nM/h) 0.4
V1PC(nM/h) 0.4
V2B(nM/h) 0.1
V2C(nM/h) 0.1
V2P (nM/h) 0.3
V2PC(nM/h) 0.1
V3B(nM/h) 0.5
V3PC(nM/h) 0.4
V4B(nM/h) 0.2
V4PC(nM/h) 0.1
Vphos(nM/h) 0.4
νdBC(nM/h) 0.5
νdBN(nM/h) 0.6
νdCC(nM/h) 0.7
νdIN(nM/h) 0.8

118



Appendix A. Leloup and Goldbeter 16-state Discrete Stochastic Model

Table A.2 Continued: Parameter values for 16 state molecular clock model

Parameter V alue

νdPC(nM/h) 0.7
νdPCC(nM/h) 0.7
νdPCN(nM/h) 0.7
νmB(nM/h) 0.8
νmC(nM/h) 1.0
νmP (nM/h) 1.1
νsB(nM/h) 1.0
νsC(nM/h) 1.1
νsP0(nM/h) 1.1
Ω 90
a 10.0
b 4.0
N 49
KD(nM) 2.0
k(1/h) 10.0
ν0(nM/h) 0.5
ν1(nM/h) 5.0
VMK(nM/h) 8.0
Ka(nM) 2.5
CBT (nM) 1.0
KC(nM) 0.3
CT (nM) 0.4
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Appendix B

11-state Circadian Model

The model described in this Appendix was developed by John Abel and sub-
mitted for publication [2]. For stochastic simulation using this model, Ω = 400
was used to convert biomolecule concentrations to populations.

Table B.1: Ordinary differential equations comprising the 11-state circadian
model.

State Variable Symbol Model Equation

Per mRNA p
dp

dt
=

v1ppCREB + v2pr

K1p + C1P + C2P
− v3pp

K2dp + p

Cry1 mRNA c1
dc1

dt
=

v4c1r

K3c + C1P + C2P
− v5c1c1

K4dc + c1

Cry2 mRNA c2
dc2

dt
=

v6c2r

K3c + C1P + C2P
− v7c2c2

K4dc + c2

VIP mRNA vip
dvip

dt
=

v8vr

K5v + C1P + C2P
− v9vvip

K6dv + vip

PER Protein PER

dP

dt
= k1pp−

v10PP

K8dP + P
− v11aCPP×C1

−v11aCPP×C2 + v12dCPC1P + v12dCPC2P

120



Appendix B. 11-state Circadian Model

Table B.1 Continued: Ordinary differential equations comprising the 11-state cir-
cadian model.

State Variable Symbol Model Equation

CRY1 Protein C1

dC1

dt
= k2cc1− v13C1C1

K9dC + C1
− v11aCPP×C1

+v12dCPC1P

CRY2 Protein C2

dC2

dt
= k2cc2− v14C2C2

K9dC + C2
− v11aCPP×C2

+v12dCPC2P

VIP Protein VIP
dVIPj

dt
= k3v

I∑
i

wivipi − v15V VIPj

CRY1-PER Dimer C1P

dC1P

dt
= v11aCPP×C1− v12dCPC1P

− v16C1PC1P
K10dCn+C1P+C2P

CRY2-PER Dimer C2P

dC2P

dt
= v11aCPP×C2− v12dCPC2P

− v17C2PC2P
K10dCn+C1P+C2P

CREB Protein CREB
dCREB

dt
=

v18V VIP

K11V + VIP
− v19CRCREB

K12dCR + CREB
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Table B.2: Parameter descriptions for the 11-state circadian ODE model.

Parameter Description Value Units
v1pp CREB-induced Per mRNA promotion 0.235 [-]/hr
v2pr Per mRNA transcription 0.415 [-]2/hr
v3p Per mRNA degradation 0.478 [-]/hr
v4c1r Cry1 mRNA transcription 0.350 [-]2/hr
v5c1 Cry1 mRNA degradation 1.44 [-]/hr
v6c2r Cry2 mRNA transcription 0.124 [-]/hr
v7c2 Cry2 mRNA degradation 2.28 [-]/hr
v8vr VIP mRNA transcription 0.291 [-]2/hr
v9v VIP mRNA degradation 1.35 [-]/hr
v10P PER protein degradation 13.0 [-]/hr
v11aCP PER-CRY dimer formation 0.493 ([-]× hr)−1

v12dcp PER-CRY dimer dissociation 0.00380 1/hr
v13C1 CRY1 protein degradation 4.12 [-]/hr
v14C2 CRY2 protein degradation 0.0862 [-]/hr
v15V VIP protein degradation 0.723 1/hr
v16C1P PER-CRY1 dimer degradation 0.0306 [-]/hr
v17C2P PER-CRY2 dimer degradation 0.840 [-]/hr
v18V CREB activation by VIP receptors 0.789 [-]/hr
v19CR CREB deactivation 1.27 [-]/hr
k1p PER translation 7.51 1/hr
k2c CRY translation 0.572 1/hr
k3v VIP translation 5.50 1/hr
K1p Per transcription constant 0.264 [-]
K2dp Per degradation constant 0.00795 [-]
K3c Cry transcription constant 0.156 [-]
K4dc Cry degradation constant 1.94 [-]
K5v VIP transcription constant 0.115 [-]
K6dv VIP degradation constant 0.110 [-]
K7dP PER protein degradation constant 0.0372 [-]
K8dC CRY protein degradation constant 4.23 [-]
K9dCn PER-CRY dimer degradation constant 0.0455 [-]
K10V CREB protein activation constant 1.46 [-]
K11CR CREB protein deactivation constant 1.01 [-]
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