
University of California
Santa Barbara

Learning from Production Test Data: From

Statistical Characterization to Modeling for

Anomaly Detection

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Fan Lin

Committee in charge:

Professor Kwang-Ting Tim Cheng, Chair
Professor Malgorzata Marek-Sadowska
Professor Alberto Giovanni Busetto
Professor XiFeng Yan

June 2016

The Dissertation of Fan Lin is approved.

Professor Malgorzata Marek-Sadowska

Professor Alberto Giovanni Busetto

Professor XiFeng Yan

Professor Kwang-Ting Tim Cheng, Committee Chair

June 2016

Learning from Production Test Data: From Statistical Characterization to

Modeling for Anomaly Detection

Copyright © 2016

by

Fan Lin

iii

Acknowledgements

I deeply appreciate the guidance of Prof. Tim Cheng through the years. I

have been lucky to have learned and changed so much during the PhD study. I

would also like to acknowledge my committee, Prof. Malgorzata Marek-Sadowska,

Prof. Alberto Giovanni Busetto, and Prof. XiFeng Yan for their input. Thanks

to Chun-Kai Hsu for the collaborative work on the project, and all my labmates

and friends for simply being there. I appreciate the inspiring discussions with

Chieh-Chi Kao, Kuo-Chin Lien, and the other members of our image processing

study group. Finally, thanks for the support from my parents and my girl friend

Stephanie.

iv

Curriculum Vitæ
Fan Lin

Education

2016 Ph.D. in Electrical and Computer Engineering,

University of California, Santa Barbara, United States.

2014 M.S. in Electrical and Computer Engineering,

University of California, Santa Barbara, United States.

2010 B.S. in Electrical Engineering,

National Taiwan University, Taipei, Taiwan.

Experience

2011 – 2016 Graduate Research Assistant, University of California, Santa

Barbara, United States.

2015 Test Engineer Intern, Oracle, Santa Clara CA, United States.

2013 Test Engineer Intern, Broadcom, Irvine CA, United states.

2012 Test Engineer Inter, Taiwan Semiconductor Manufacturing

Company (TSMC), Taiwan.

2012 – 2014 Teaching Assistant, University of California, Santa Barbara,

United States.

Honors and Awards

2016 Dissertation Fellowship, University of California, Santa Bar-

bara.

v

2015 Studying Abroad Scholarship, Ministry of Education, Tai-

wan.

2010 Research Award, Lam Research Corp., Taiwan.

2010 Valedictorian Speech, National Taiwan University, Taiwan.

2010 Presidential Award, National Taiwan University, Taiwan.

2010 Innovation Award, National Taiwan University, Taiwan.

2010 Special Project Award, National Taiwan University, Taiwan.

Publications

F. Lin and K.-T. Cheng, “An Artificial Neural Network Approach for Screening

Test Escapes,” submitted to International Test Conference (ITC), 2016.

F. Lin, C.-K. Hsu, and K.-T. Cheng, “Pairwise Proximity-Based Features for

Test Escape Screening,” in International Conference on Computer-Aided Design

(ICCAD), 2015.

F. Lin, C.-K. Hsu, and K.-T. Cheng, “AdaTest: an Efficient Statistical Test

Framework for Test Escape Screening,” in International Test Conference (ITC),

2015.

F. Lin, C.-K. Hsu, and K.-T. Cheng, “Learning from Production Test Data: Cor-

relation Exploration and Feature Engineering,” in Asian Test Symposium (ATS),

2014.

F. Lin, C.-K. Hsu, and K.-T. Cheng, “Feature Engineering with Canonical Anal-

ysis for Effective Statistical Tests Screening Test Escapes,” in International Test

Conference (ITC), 2014.

vi

S. Zhang, F. Lin, C.-K. Hsu, K.-T. Cheng, and H. Wang, “Feature Engineering

with Canonical Analysis for Effective Statistical Tests Screening Test Escapes,”

in International Test Conference (ITC), 2014.

C.-K. Hsu, F. Lin, K.-T. Cheng, W. Zhang, X. Li, J. M. Carulli, and K. M.

Butler, “Test Data Analytics: Exploring Spatial and Test-Item Correlations in

Production Test Data,” in International Test Conference (ITC), 2013.

vii

Abstract

Learning from Production Test Data: From Statistical Characterization to

Modeling for Anomaly Detection

by

Fan Lin

Modern test programs for post-silicon testing include a large number of test

measurements applied in multiple settings such as different temperatures, supply

voltages, and operation modes to meet the demanding quality requirements of the

products. In addition to the pass/fail results of each test item, there exist multiple

types of correlations in the huge amount of production test data. Identifying and

modeling the hidden correlations in the test data could help screen test escapes,

which are chips that pass all test items but fail in system-level application.

This thesis focuses on developing revealing features and machine learning al-

gorithms for classifying test escapes based on production test data. In terms of

feature engineering, three types of feature sets that represent different aspects of

how a chip deviates from the normal population are proposed. In addition, a

linear transformation that compacts the critical information for feature reduction

and a collection of nonlinear transformations that reveal additional abnormalities

of the test escapes are proposed to effectively expose the test escapes as outliers

in certain perspectives. We have also developed frameworks exploiting state-of-

the-art machine learning algorithms including a support vector machine (SVM),

a cascade of AdaBoost classifiers, and an artificial neural network.

viii

Contents

Curriculum Vitae v

Abstract viii

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Correlations in Production Test Data 1
1.2 Machine Learning for Detecting Test Escapes 3
1.3 Proposed Methods . 5

2 Canonical Analysis and SVM 8

2.1 Introduction . 8
2.2 Feature Development . 11

2.2.1 Measurement Mean . 12
2.2.2 Spatial Pattern . 12

2.3 Feature Transformation . 15
2.4 Test Methodology . 21

2.4.1 Classifier . 23
2.4.2 Pre-test Analysis . 23
2.4.3 Test Application . 24

2.5 Experimental Result . 26
2.5.1 Data Setup . 26
2.5.2 Sequential Rejectors . 27
2.5.3 Comprehensive Test . 32
2.5.4 Test Application . 34
2.5.5 Another Experimental Scenario 37

ix

2.6 Summary . 39

3 AdaTest 41

3.1 Introduction . 41
3.2 AdaTest . 44

3.2.1 AdaBoost . 44
3.2.2 Cascaded AdaBoost Classifiers 46

3.3 Data Preparation and Feature
Generation . 48
3.3.1 Data Standardization . 48
3.3.2 Features for Classification 50

3.4 Experimental Result . 52
3.4.1 Emulating Test Escapes 53
3.4.2 Classification Accuracy . 53
3.4.3 Application Runtime and Memory Usage 59
3.4.4 Feature Selection . 62

3.5 Summary . 63

4 Proximity-Based Features 65

4.1 Introduction . 65
4.2 Pairwise Proximity . 67
4.3 Constant Shift Embedding . 70

4.3.1 Concepts and Properties 70
4.3.2 Distribution in the Embedded Space 73

4.4 Data Preparation and Feature
Processing . 77
4.4.1 Data Standardization . 77
4.4.2 Feature Generation . 78
4.4.3 Feature Standardization and Outlying Wafer Detection . . 80
4.4.4 Feature Transformation and Classification 81

4.5 Experimental Results . 83
4.5.1 Classification Accuracy . 85
4.5.2 Performance Overhead . 86

4.6 Summary . 88

5 An Artificial Neural Network Approach 90

5.1 Introduction . 90
5.2 Artificial Neural Networks . 92
5.3 The Proposed Structure . 93
5.4 Feature Processing . 98

x

5.4.1 Data Standardization . 98
5.4.2 Feature Generation . 99
5.4.3 Proposed Test Flow . 99

5.5 Experimental Results . 100
5.5.1 Impact of Structure Design 101
5.5.2 Classification Accuracy . 104
5.5.3 Trained Parameters in the Model 107
5.5.4 Performance Comparison 109

5.6 Summary . 110

6 Conclusion 113

Bibliography 115

xi

List of Figures

2.1 Examples of test escapes which are considered abnormal with re-
spect to different estimated values. 13

2.2 An example of residuals with respect to different estimated values
of one test item. 16

2.3 Test flow with sequential statistical tests 22
2.4 Test flow with a comprehensive statistical test 24
2.5 The distributions of good chips/test escapes in different feature

spaces of Fm. 29
2.6 The distributions of good chips/test escapes in different feature

spaces of Fs. 29
2.7 The ROC diagram for C-SVC based on Fm and Fs in three different

spaces. 31
2.8 The distributions of good chips and test escapes detected by the

two sets of features in the canonical space of Fm. 33
2.9 The distributions of good chips/test escapes in the canonical space

derived from Fm ∪ Fs. 34
2.10 The ROC diagram for C-SVC in canonical space with 3 features

derived from different feature sets. 35
2.11 The ROC diagram for C-SVC based on Fm∪Fs in the original space

and in the canonical space. 38
2.12 The ROC diagram for C-SVC in canonical space with 3 features de-

rived from different feature sets, based on a data set with a reduced
number of test escapes described in Section 2.5.5. 39

3.1 The cascade of classifiers for test escape screening which is applied
after the physical test program for all chips in a wafer is completed. 47

3.2 The median among the measurements of eight neighbors is used as
the expected value for the target chip t in the middle. 52

xii

3.3 The accumulated yield loss rate and the amount of remaining un-
detected test escapes versus the number of layers in the cascade of
classifiers. 55

3.4 The ROC curves of classification based on different choices of input
features. 56

3.5 The ROC curves of classifications based on cascaded AdaBoost and
SVM in 3-dimensional canonical space. 58

3.6 The Venn diagram of the populations of identified test escapes and
yield loss for the SVM-based framework and AdaTest. 58

3.7 The runtime for generating and transforming the features before
classification. 62

4.1 The conversion between proximity matrices and Euclidean spaces.
CSE preserves the cluster structure through the conversion from a
proximity matrix Pi to an embedded Euclidean space Ei. 72

4.2 The distributions of the chips on a wafer in the first two dimen-
sions of the CSE embedded spaces based on six different proxim-
ity/distance functions. Blue dots represent the good chips and red
crosses mark the positions of test escapes. The numbers of effective
dimensions are shown above each figure. 75

4.3 The distribution in the first two dimensions of the embedded space
constructed based on kPCA with RBF kernel. 76

4.4 Color-coded distributions of good chips showing the correspondence
of chips in the embedded space and on the wafer. Chips are colored
to show their corresponding positions. 76

4.5 The robust mean and standard deviation of each wafer in the fea-
ture space of three proximity-based features. 82

4.6 The complete flow of generating the proximity-based features for
statistical analysis. 84

4.7 The ROC curves of classification based on the base features with
and without the proximity-based features. 87

4.8 The ROC curves of classification based on the base features plus
different subsets of the proximity-based features. 88

5.1 An artificial neuron with three inputs and one output. The output
of a neuron is the activation result of the weighted sum of the
neuron’s inputs. 93

5.2 A neural network contains an input layer, an output layer, and
some hidden layers in between. 94

5.3 The proposed autoencoder structure. 97

xiii

5.4 The flow of using the proposed autoencoder for test escape screening.100
5.5 The ROC curves demonstrate the classification accuracy for differ-

ent structure designs of the autoencoder. 103
5.6 The ROC curves of three frameworks. 105
5.7 The Venn diagrams of the test escape and yield loss populations

resulted from the SVM on proximity features and residual vectors
(the method in Chapter 4) and from the proposed autoencoder. . 106

5.8 The histogram of the trained weights in the hidden layer. 107
5.9 The absolute values of the weights in the hidden layer as a color-

coded map. 109
5.10 The vertical sum of the absolute values of the weights in the hidden

layer. 110
5.11 The sorted sum of the absolute values of the weights in the hidden

layer. 111
5.12 The correlation between each two columns of absolute values of the

weights. Note that the values are in logarithmic scale. 112

xiv

List of Tables

2.1 Percentage of Test Escapes Detected by C-SVC in Three Different
Spaces Based on the Validation Set 32

2.2 Percentage of Test Escapes Detected by C-SVC in Three Different
Spaces Based on the Testing Set 35

2.3 Runtime of Deriving/Applying Transform Matrix for Canonical
Transform and PCA Based on Training/Testing Set 36

2.4 Runtime of Training/Applying C-SVC Model in Three Different
Spaces Based on Training/Testing Set 37

2.5 Test Escape Identification Rate and Runtime for Applying the
Models with the Yield Loss Rate Limited to 0.001%, based on Fm ∪Fs 39

3.1 Runtime Per Wafer for Generating Each Feature Set From the Test
Data . 60

3.2 Runtime Per Wafer for Each Step in the Statistical Test Frame-
works Given FM ∪ FB ∪ FN as Input Features 61

xv

Chapter 1

Introduction

With the growing complexity and the shrinking size of modern chips, more tests

have been added to the test program to assure the quality of a product, and tests

are often applied multiple times under different environment settings to cover

design corners. The increasing amount of tests has resulted in excessive test time

and massive test data. With the help of effective data analytics, such test data has

been transformed from a by-product of little value to a great source of information

for better understanding the device under test (DUT). This dissertation explores

and develops machine learning techniques for detecting test escapes, which are

chips that pass the entire test program but fail at system-level applications, based

on semiconductor production test data.

1.1 Correlations in Production Test Data

There exist meaningful correlations in the test data. In general, test data

correlations can be classified into three types: spatial correlations, inter-test-item

1

Introduction Chapter 1

correlations, and temporal correlations. Spatial patterns on a wafer have been

commonly observed for various test measurements. The existence of a pattern

implies that the measurement of a die is somehow correlated to the measurements

of the other dies on the same wafer. The cause of spatial patterns could range

from manufacturing processes, equipment settings, to test configurations such as

a multi-site configuration.

There often exist correlations among measurements of multiple test items in

a test program. Examples of strong inter-test-item correlations include the same

test applied multiple times under different electrical and/or environmental settings

and different tests testing the same functionality of the chip. Once inter-test-item

correlations are identified, test items in the test program can be reordered for

more efficient defect screening, some redundant test items can be removed for test

time reduction, and multivariate models can be constructed for outlier detection.

Measurements of the same test item for dies in different wafers intuitively

should exhibit similar patterns if the manufacturing process is stable. Such tempo-

ral correlations, across wafers and lots for measurements at the same die location,

can be used to model the variation over time and manufacture/test equipment.

Monitoring the temporal correlations often reveals the stability, integrity, and

robustness of the manufacturing and test processes and thus is very useful for

debugging.

2

Introduction Chapter 1

1.2 Machine Learning for Detecting Test Escapes

Even with the ever growing number of tests and a test often being applied

multiple times under different electrical/environmental conditions, there still exist

test escapes, because system-level tests are usually not applied to all of the chips

before shipment. Test escapes often have various root causes and therefore are

hard to be detected with a single test. Additionally, the amount of test escapes in

a mature manufacture process are typically within the range of hundreds or tens

of Parts Per Million (PPM), so there are only a limited number of samples to be

learned from for detecting future test escapes.

In a machine learning process, the sample data set is first split into three

sets: a training set, a testing set, and an optional validation set. A training

set is used for the machine learning to build a model based on, and therefore,

must be statistically representative of the entire sample space, i.e. the statistical

characteristics the training set possesses should accurately reflect the statistical

characteristics of the entire sample set. If the training set possesses some unique

characteristics that do not generalize to the rest of the samples, the learned model

will not apply to the rest of the model accurately. After the learning phase, the

learned model is applied to the testing set for evaluation of the performance such

as prediction accuracy in a regression task or the true positive rate and the false

positive rate in a classification task. In some algorithms, e.g. a support vector

machine (SVM), multiple models are built based on a search of optimal values

for some parameters, and a validation set is used for evaluating the models for

selecting the best one.

There are, however, some challenges when applying the abovementioned ma-

3

Introduction Chapter 1

chine learning framework in semiconductor production test data. First, process

variation exists and could accumulate over time. That is, the training dataset

created based on a certain collection of existing samples may not represent sam-

ples that are manufactured later because the manufacturing process has induced

variation in the product characteristics over time. Therefore, a model learned

based on the early training dataset could not be applied to the later query prod-

ucts. To address this problem, we need to carefully remove the wafer-to-wafer and

lot-to-lot variations and have the machine learning algorithm learn only the char-

acteristics of the chips that are immune from process variations. The developed

machine learning framework must also constantly monitor how the learned model

fit the newly manufactured data, and if there is a significant difference in the

performance, e.g. a sudden drop of prediction accuracy, the newly manufactured

samples should be checked if they are anomalies. If not, a new training set should

be created to represent the new characteristics of the manufactured samples and

a new model should be built based on the new training set.

When using machine learning algorithms to detect test escapes, another prob-

lem is that there are typically only a very small amount of test escapes in millions

of chips. Additionally, test escapes could result from very different root causes.

Therefore, it is difficult to find a universal test for detecting all test escapes. In-

stead, a general strategy in this dissertation is to explore multiple perspectives

which could potentially reveal some abnormalities of the test escapes, and let the

machine learning algorithm automatically extract the most critical information

from the many perspectives to expose test escapes as anomalies.

4

Introduction Chapter 1

1.3 Proposed Methods

It has been demonstrated that statistical analysis based on production test

data, also known as statistical tests [1], could detect test escapes as anomalies.

This dissertation further explores various state-of-the-art machine learning tech-

niques and develops effective statistical tests.

In Chapter 2, we propose using a residual vector, which is the difference be-

tween the measured test values and some expected values, as the features for

classification. Different expected values would result in different types of residual

vectors, and potentially reveal different aspects of the chips under test. Therefore,

our strategy is to include as many potentially useful residual vectors as possible.

However, having too many features may not only increase the runtime but also

deteriorate the accuracy for a machine learning classifier. To address this problem,

a linear transformation called canonical analysis is proposed. Canonical analysis

could compact the separation between classes of samples in a high-dimensional

feature space into the first few dimensions in a transformed feature space, there-

fore it is used for feature reduction, followed by a classic SVM classification. The

experimental results show that canonical analysis could significantly reduce the

runtime of SVM and in some cases, improve the accuracy of SVM for classifying

test escapes.

The framework incorporating canonical analysis and SVM, however, requires

all potentially useful features (multiple types of residual vectors) to be gener-

ated first before canonical analysis can be applied during test application, which

results in significant runtime and memory usage. Chapter 3 proposes using a pop-

ular framework in real-time face recognition called the Viola-Jones framework for

5

Introduction Chapter 1

detecting test escapes. Named AdaTest, this framework is composed of a cascade

of adaptive boosting (AdaBoost) classifiers. AdaBoost is an algorithm that com-

bines multiple classifiers, referred to as the weak classifiers, into a final classifier,

referred to as the strong classifier. In this framework, each weak classifier is a

decision stump, which is simply a threshold set on a single feature. As a result,

AdaTest would select only the most critical features without any transformation

in the training phase for classification, and only these selected features need to be

produced during test application. Therefore, AdaTest is significantly faster than

the previous framework utilizing canonical analysis and SVM, and since there is

no feature transformation in the process of learning a model, the selected features

could be directly interpreted for the diagnosis of the test escapes.

In addition to canonical analysis, a collection of nonlinear transformations are

introduced in Chapter 4 to reveal more abnormalities of test escapes. We calculate

the pairwise proximity between each pair of samples on a wafer and include this

information as the features for our analysis. To include as much potentially useful

information as possible, we included seven proximity/distance functions as the

nonlinear transformations that characterize the relation between of samples. For

a wafer with N chips, each nonlinear transformation would result in one N by N

symmetrical proximity matrix, whose elements represent the proximity of two cor-

responding samples. A technique called constant shift embedding is then applied

to transform this proximity matrix back into a Euclidean vector representation so

that traditional machine learning algorithms could be applied.

Chapter 5 introduces an artificial neural network (ANN) approach for detect-

ing test escapes. Artificial neural networks have demonstrated great potential

6

Introduction Chapter 1

recently in many applications such as image processing and voice recognition. For

detecting test escapes, we design an autoencoder structure that is trained using

only the good chip population in the training set, which is referred to as unsuper-

vised learning. An autoencoder is an artificial neural network with the input and

output layers both representing the original input features, and a bottleneck layer

in which the number of neurons is smaller than that of the input/output layer.

The bottleneck layer therefore contains information that is critical for representing

the dataset. With the unsupervised learning process, the autoencoder fits only

the good chip population and any query chip that the autoencoder model does

not fit could be identified as an anomaly, which is likely a test escape.

7

Chapter 2

Canonical Analysis and SVM

2.1 Introduction

For many applications, the requirements of the defective parts per million

(DPPM) of integrated circuits have to be extremely close to zero. Each field

return found at the customer side incurs significant cost and requires thorough

analysis of the cause. It has been shown that a good fraction of field returns are

test escapes that pass the complete test program, but fail at system level due

to their intrinsic defects [2, 3]. Applying system level tests to each chip prior to

shipment, however, is undesired because it often results in high test time and cost.

This dissertation addresses the problem of identifying as many test escapes as

possible by statistical analysis of the test data produced by a given test program,

without taking any additional physical measurements. Such an approach can be

viewed as adding statistical tests to the original test program [1]. Our main fo-

cus is on engineering novel features for statistical tests and demonstrating the

8

Canonical Analysis and SVM Chapter 2

importance of feature engineering for effectively capturing test escapes by statis-

tical tests. Specifically, we develop features based on how a chip’s measurements

deviate from the means of a set of normal chips and how a chip’s measurements

deviate from the spatial patterns on a wafer. We then transform the features to

a canonical space in which the separation between normal chips and test escapes

of the projected data is maximized. The multivariate statistical approach based

on these features incorporates both the inter-test-item correlations and the spa-

tial correlations, and applying statistical tests based on the transformed features

achieves significant runtime reduction based on standard classification algorithms.

The proposed flow can be easily extended to include more sets of features and ap-

plied to a wide range of products.

To screen potential test escapes, one technique proposed by the Automotive

Electronics Council is the part average testing (PAT) [4]. For some suggested

electrical tests, PAT compares the measurement of a query chip with the mean

of a set of normal chips and discard the query chip if it is more than 6-σ away

from the mean. To address PAT’s limitation of evaluating individual test item

only and ignoring the multivariate relation among test items, several other studies

proposed multivariate screening approaches that incorporate the inter-test-item

correlations.

O’Neill [5] applied outlier analysis with principal component analysis (PCA)

on sets of correlated test items. Sumikawa et al. [2] extended O’Neill’s work

with sophisticated model and test selection schemes and developed a preemptive

and a reactive approach, depending on whether known field returns were given.

Butler et al. [6] successfully demonstrated burn-in minimization by a collection of

9

Canonical Analysis and SVM Chapter 2

multivariate analysis. Chen et al. [3] showed various data mining techniques on

final test data to predict system level test (SLT) failures.

In addition to inter-test-item correlations, there exist spatial correlations among

dies on the same wafer. Stine et al. [7] modeled and decomposed spatial variations

into four components: wafer-level variation, die-level variation, wafer-die interac-

tions, and residuals. In capturing the spatial patterns with only a small amount

of samples, Li et al. [8] proposed a virtual probe (VP) technique and Kupp et

al. [9] proposed an estimation with a Gaussian process model. Nahar et al. [10]

and Riordan et al. [11] used the spatial correlation of neighboring dies for defect

prediction. Sumikawa et al. [12] identified abnormal wafers based on the spatial

patterns of tests.

Taking into account the multiple correlations in test data, we also investi-

gate a data transformation technique based on multivariate analysis of variance

(MANOVA). MANOVA has been used in various fields to analyze the differ-

ence in the means of features between populations of samples [13, 14]. Based

on MANOVA, a canonical analysis can be applied on the samples to form a set

of canonical variables which are linear combinations of the original test measure-

ments. The linear combinations are chosen such that the first canonical vari-

able achieves the maximum separation between populations, the second canonical

variable achieves the maximum separation between populations subject to it be-

ing orthogonal to the first canonical variable, and so on. Essentially MANOVA

shows if there is a significant difference in the means between populations, and the

canonical analysis could identify combinations of the variables to maximize the

separation between populations. In this chapter we utilize the canonical analysis

10

Canonical Analysis and SVM Chapter 2

to project the features into a canonical space for further statistical tests, which

can more easily screen out test escapes with standard classification methods.

The rest of the chapter is organized as the following: Section 2.2 illustrates

how we develop features that represent different characteristics of a chip. Sec-

tion 2.3 introduces the canonical analysis to further transform the features. The

application of the proposed statistical tests is described in Section 2.4, and Sec-

tion 2.5 shows experimental results on production test data. Section ?? concludes

the chapter.

2.2 Feature Development

In our research, we use the residual vector of each chip as the base of input

features for statistical analysis. In general, each chip with N test measurements

can be characterized by an N × 1 residual vector r:

r = xm − xe (2.1)

where xm is an N × 1 vector of the measured values and xe is an N × 1 vector of

the estimated values.

The residual vector represents how the measurement values of a chip deviate

from its estimated values. There are two aspects we can engineer such feature.

Choosing different estimated values to calculate the residual vector may reveal

different test escapes, and transforming the residual vector to another space may

enhance the performance of the classifier.

We first explore the choices of estimated values for calculating the residual

11

Canonical Analysis and SVM Chapter 2

vector. The transformation of test data to another space will be discussed in

Section 2.3.

2.2.1 Measurement Mean

It has been shown that some test escapes differ from normal chips in their test

measurement values relative to the measurement means [3]. Fig. 2.1 shows two

wafer maps whose measurement values are standardized to the z-score by

z =
x − µ

σ
(2.2)

where x is the measurement value, and µ and σ are the mean and standard devi-

ation of the measurements for chips on the same wafer, respectively. In Fig. 2.1a

the circled chip is a test escape with a relatively abnormal feature value based on

the difference between its measurement value and the measurement mean of the

entire wafer. Note that Fig. 2.1a shows only one test item and thus only one out of

N features of the chips. There are other chips in the same dark blue region, which

are as outlying as the circled chip is for this test item, but in the multivariate

analysis they will not necessarily be classified as escapes.

2.2.2 Spatial Pattern

Spatial patterns have been observed on wafers in many test items [7, 15, 16,

17, 12]. Fig. 2.1b shows a test escape which would be considered abnormal based

on spatial pattern analysis. A wafer’s spatial patterns for some test items are

the results of systematic variations which exist even without any additional man-

12

Canonical Analysis and SVM Chapter 2

5 10 15 20 25 30 35

5

10

15

20

25

30

35

−1.5

−1

−0.5

0

0.5

1

(a) A test escape that is abnormal with respect to measurement mean

5 10 15 20 25 30 35

5

10

15

20

25

30

35

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) A test escape that is abnormal with respect to spatial pattern

Figure 2.1: Examples of test escapes which are considered abnormal with respect
to different estimated values.

13

Canonical Analysis and SVM Chapter 2

ufacturing imperfections. Taking into account a test item’s spatial pattern and

using the unique predicted value at each die location (derived from the test item’s

learned spatial pattern) as the estimated value, we effectively eliminate the sys-

tematic variations and incorporate only the effects of other variations (including

random variations) in the residual vector. In other words, with this revised resid-

ual vector which takes into account test items’ spatial patterns, we more accu-

rately capture the noises in the wafer map images. We employ bilateral filtering,

a well-developed filtering technique in image processing, to denoise a wafer map

and retrieve a systematic spatial pattern of a test item.

Bilateral filtering [18] is a non-linear filtering technique which extends the

concept of Gaussian filtering to weight coefficients based on both relative spatial

distance and pixel intensity difference. Pixels that are spatially close but have

significant difference in intensity will have smaller weights, while pixels that are a

bit farther apart but very similar in intensity will have larger weights. Therefore,

the sharp edges of an image can be preserved and the noises are more likely to

be filtered. There are two kernels for evaluating the weights of the neighboring

pixels. The domain kernel Kd evaluates the weights based on the spatial distance

of pixels. The range kernel Kr evaluates the weights based on the pixel intensity

difference.

Given the original image I, pixel coordinates x, and the filter window Ω, the

filtered image If is defined as

If(x) =
1

Wp

∑

xi∈Ω

I(xi)Kr(‖I(xi) − I(x)‖)Kd(‖xi − x‖) (2.3)

14

Canonical Analysis and SVM Chapter 2

where

Wp =
∑

xi∈Ω

Kr(‖I(xi) − I(x)‖)Kd(‖xi − x‖) (2.4)

For a P × Q wafer map with values ranging from vmin to vmax, we choose

a Gaussian function with σ = min(P, Q)/16 for Kd, a Gaussian function with

σ = (vmax − vmin)/10 for Kr, and the whole wafer map as the filter window Ω.

Fig. 2.2 shows the result of applying bilateral filter to one test item on a wafer

map. Fig. 2.2a shows the original measurement of the test item. The residual

of the measurement with respect to the wafer mean is shown in Fig. 2.2b, in

which the spatial pattern is preserved. The residual of the measurement with

respect to the bilateral filtered wafer map is shown in Fig. 2.2c, in which the

spatial pattern in the original measurement is eliminated and the residuals better

represent abnormality with respect to the spatial pattern.

Note that the circled test escape in Fig. 2.1a is abnormal considering its rela-

tively large measurement value, but it is perfectly normal if we take into account

the overall spatial pattern. The circled test escape in Fig. 2.1b is abnormal in the

spatial pattern, but its measurement value is actually very close to the mean of

the wafer. Therefore, each of the two test escapes shown in Fig. 2.1 can only be

uniquely identified as abnormal, or potential test escape, by one of the two choices

in selecting the estimated values for calculating residual vectors.

2.3 Feature Transformation

Besides exploring two different choices of the estimated values for calculating

the residual vectors to enrich the input features, projecting these features into

15

Canonical Analysis and SVM Chapter 2

5 10 15 20 25 30 35

5

10

15

20

25

30

35

3.5

4

4.5

5

5.5

6

x 10
−4

(a) Original measurement

5 10 15 20 25 30 35

5

10

15

20

25

30

35

−1.5

−1

−0.5

0

0.5

1

x 10
−4

(b) Residual with respect to the mean of the measurement

5 10 15 20 25 30 35

5

10

15

20

25

30

35

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−5

(c) Residual with respect to the bilateral filtered measurement

Figure 2.2: An example of residuals with respect to different estimated values of
one test item.

16

Canonical Analysis and SVM Chapter 2

different spaces before applying statistical tests may help improve the performance

of classifiers. We introduce canonical analysis based on multivariate analysis of

variance (MANOVA) to transform data into a canonical space in which the data of

test escapes and normal chips are maximally separated in the first few dimensions.

Multivariate analysis of variance (MANOVA) [13] is a technique that, given

g populations of samples in an N -dimensional space, compares the mean vectors

of the populations and investigates which mean components differ significantly.

Given the populations of samples:

P opulation 1 : x11, x12, ...x1n1

P opulation 2 : x21, x22, ...x2n2

...

P opulation g : xg1, xg2, ...xgng

(2.5)

where xij is an N × 1 vector of the jth sample in the ith population, and ni is

the number of samples in the ith population.

Each observation xij can be decomposed into three components: overall sam-

ple mean x̄, the population effect (x̄i − x̄), and the residual (xij − x̄i), and

xij = x̄ + (x̄i − x̄) + (xij − x̄i) (2.6)

Subtracting x̄ from both sides of (2.6) and summing the cross products over i and

17

Canonical Analysis and SVM Chapter 2

j yields

g
∑

i=1

ni
∑

j=1

(xij − x̄)(xij − x̄)′

=
g
∑

i=1

ni(x̄i − x̄)(x̄i − x̄)′ +
g
∑

i=1

ni
∑

j=1

(xij − x̄i)(xij − x̄i)
′

(2.7)

or expressing it as:

S = B + W (2.8)

where

S =
g
∑

i=1

ni
∑

j=1

(xij − x̄)(xij − x̄)′

B =
g
∑

i=1

ni(x̄i − x̄)(x̄i − x̄)′

W =
g
∑

i=1

ni
∑

j=1

(xij − x̄i)(xij − x̄i)
′

(2.9)

Eq. (2.8) shows that the total variance S is the sum of the between-population

variance B and the within-population variance W . After such decomposition,

MANOVA investigates if there exists significant difference between the population

mean vectors using metrics based on B and W . For example, if the Wilks’ lambda

Λ =
|W |

|B + W |
(2.10)

is too small, we can conclude that there exists significant difference between the

populations.

18

Canonical Analysis and SVM Chapter 2

After MANOVA, the canonical analysis suggested in [14] could be used to

create a set of canonical variables which are the linear combinations of the origi-

nal variables. The criteria for choosing the linear combinations are that the first

canonical variable should exhibit the maximum separation between the popula-

tions, the second canonical variable should be orthogonal to the first canonical

variable while also exhibit maximum separation between the populations, and so

on.

The process of generating the canonical variables in canonical analysis is simi-

lar to generating the principal components (PCs) in principal component analysis

(PCA) [13]. PCA is a feature reduction technique that generates a set of new

features, named principal components, which are mutually orthogonal and are

ordered by the amount of variability in the data each PC explains. Given a set

of data in matrix X, where rows of X represent observations, and columns of X

represent variables, PCA creates the first PC, the linear combination of variables

that can maximally explain the multivariate variability in X, using the eigen-

vector of the covariance matrix X ′X with the largest eigenvalue. The second

PC is the eigenvector of X ′X with the second largest eigenvalue, which explains

the maximum variability of X subject to it being orthogonal to the first PC. In

canonical analysis, canonical variables are chosen based on the ability of explain-

ing the ratio of the between-population variance B over the within-population

variance W , so that in the first canonical variable the populations are maximally

separated. Therefore, the first canonical variable is derived as the eigenvector of

W −1B with the largest eigenvalue, the second canonical variable is chosen as the

eigenvector of W −1B with the second largest eigenvalue, and so on.

19

Canonical Analysis and SVM Chapter 2

Let E be the matrix whose first column is the first eigenvector of W −1B, the

second column is the second eigenvector, and so on, and each eigenvector is scaled

such that the within-population variance of the canonical variable is 1. A new

data set Y can be projected to the canonical space by

Yp = YcE (2.11)

where Yc is Y with columns centered by subtracting their means and Yp is the

projected data set.

Both PCA and canonical analysis project data to another space by linear trans-

formation, but the objectives of the transformations are quite different. PCA or-

ders the created variables according to the amount of the variability in the data the

variables can explain, while canonical analysis orders the created variables accord-

ing to the amount of the between-population variance over the within-population

variance the variables can explain. Both PCA and canonical analysis can be used

for feature reduction. With a limited number of created variables which is smaller

than the dimension of the original data, PCA preserves the variability of the

data and canonical analysis preserves the separation between the populations of

the data. Because the separation between populations is compacted into a small

number of variables, the populations of data will be maximally separated in the

space formed by the first few canonical variables, and a standard classification

algorithm can much more easily classify the samples.

In multivariate statistical analysis, the canonical analysis can be regarded as

canonical correlation analysis [14, 19, 20] between the dependent variables and

20

Canonical Analysis and SVM Chapter 2

some dummy variables. The description above for the process of deriving the

canonical variables is similar to Fisher’s linear discriminant analysis (LDA) [21], in

which the canonical variables are known as discriminants. Applying the canonical

analysis to our application, we categorize the normal chips as one population and

the test escapes as the second population, and create the canonical variables by

linear combinations of the test items.

2.4 Test Methodology

Based on the feature engineering scheme discussed in Sections 2.2 and 2.3,

we propose to use two distinct sets of features. The first set of features are the

residual vectors with measurement means as the estimated values, followed by

the transformation to the canonical space. The second set of features are the

residual vectors which use predicted values from the learned spatial patterns as

the estimated values, followed by the transformation to the canonical space.

The two sets of features can be utilized in two ways. First, each set of features

is used as the input features for one classifier - determining if the chip under test

belongs to the normal population or test escape population, and the classifiers

together form a series of statistical tests. A second possible way of utilizing the

features is to include all sets of features to form a single comprehensive statistical

test. The exemplar test flows are demonstrated in this section.

21

Canonical Analysis and SVM Chapter 2

Figure 2.3: Test flow with sequential statistical tests

22

Canonical Analysis and SVM Chapter 2

2.4.1 Classifier

We use the C-support vector classification (C-SVC) algorithm provided by the

SVM library LIBSVM [22] as our classifier for separating test escapes and good

chips. Given the fact that the two classes of samples are very imbalanced (i.e.

the number of good chips is much greater than the number of test escapes) in a

practical training set, one can set a much higher weight for the class of test escapes

to force the algorithm to always find a model that correctly identifies escapes [23].

The guideline for our classification, however, is to screen out as many escapes as

possible subject to the constraint of limiting the yield loss to a very small number

(say, less than 0.001%). Based on this guideline, each class in the C-SVC is given

the same weight in our experiment to allow a thorough search for a model with

the maximum number of correctly identified escapes while minimizing the yield

loss to a level very close to 0.

2.4.2 Pre-test Analysis

To start the proposed statistical tests, the canonical variables and the C-SVC

models based on the search for the optimal combination of parameters [22] need to

be generated based on a set of training chips, and the optimal C-SVC model needs

to be selected based on a set of validation chips. The training/validation set of

good chips should be sampled across several lots and wafers, and the distribution

of measurements in each lot should be checked for uniformity to validate that the

training/validation set indeed properly represents a good-chip population. Some

field returns (or known test escapes that pass the test program) are also required

for finding the canonical variables and the classification models. Section 2.5 will

23

Canonical Analysis and SVM Chapter 2

show that only a very small ratio of returns/known test escapes is required in

order to find a canonical space for achieving significant runtime reduction while

preserving the discriminating power between the test escapes and the normal

population.

Figure 2.4: Test flow with a comprehensive statistical test

2.4.3 Test Application

An exemplar test flow of the proposed statistical tests, applied to each wafer/lot,

is shown in Fig. 2.3. These statistical tests are performed after all physical tests

24

Canonical Analysis and SVM Chapter 2

are executed, and serve as additional rejectors which reject some of the bad chips

that escape all physical tests. While in this chapter we suggest two specific sta-

tistical tests only, additional statistical tests can be developed and applied based

on more new features.

A modification from Fig. 2.3 is shown in Fig. 2.4, in which the sequential

statistical tests are replaced with one single comprehensive statistical test. With

the application of canonical transform, the useful information in separating the

test escapes and the normal population in all generated features is incorporated

into the comprehensive test. An experimental comparison on the two exemplar

flows will be made in Section 2.5.

Given any training set, it is possible that the manufacturing process drifts

over time such that the training set is no longer sufficiently representative for the

later data. Therefore, if the proposed statistical tests report an abnormally large

number of test escapes for a wafer/lot under test, it could be due to such temporal

process variation and thus the wafer/lot should be analyzed for the actual cause.

If the wafer/lot is diagnosed as an outlier wafer/lot, we can conclude that the

training set still effectively represents the population of good chips, and the test

flow can continue to the next wafer/lot without a new training set. Otherwise, a

new training set should be established and the corresponding canonical variables

and C-SVC models should in turn be derived.

25

Canonical Analysis and SVM Chapter 2

2.5 Experimental Result

To validate the proposed methods, the continue-on-fail production test data of

a high volume commercial product was first preprocessed to remove confidential

information while accurately preserving the information critical to the evaluation.

The data set contains more than 1200 wafers with more than 200 parametric test

measurements captured by the production test program for each die, and have

more than 700 dies per wafer. In the following discussion we use N to denote the

number of parametric test measurements.

Since there is no actual test escape information in this data set, we first in-

troduce how to emulate test escapes for our evaluation, and then validate our

proposed methodology based on the data set.

2.5.1 Data Setup

In a test program, chips with measurements beyond the test limits are rejected

as faulty chips, and those pass the test program but fail later at the system level or

in the field (field returns) are test escapes. Without actual test escape information,

we identified a set of bad chips as emulated test escapes which meet the following

criterion: among the over 200 measurements, only one measurement did not fall

within its test limits and its violation to the spec was marginal. We therefore hid

this failing measurement which rejected these faulty chips - pretending that each

of these bad chips still passed all physical tests in the test program and is treated

as a test escape. To hide this measurement which failed a chip, we replaced

its value by a normal value well within the test limits such that the resulting

26

Canonical Analysis and SVM Chapter 2

feature value (i.e. an element of the chip’s residual vector) is equal to the median

of all good chips. After such manipulation, these faulty chips now have similar

characteristics as test escapes: passing the complete test program, but with some

intrinsic defects. We can then evaluate if the measurements of all-but-one test

items which did not violate the test limits can expose those emulated test escapes

in the proposed statistical tests.

The goal of our analysis is to screen test escapes based on the subtle differences

in the non-failing measurements, so we only considered those faulty chips with a

very small number of failing measurements and insignificant violations to the test

specs as emulated test escapes. Faulty chips which fail many test items and/or

have significant violations to the test specs are more likely to be catastrophic

failures. Such catastrophic failures should have very revealing and differentiable

features derived from the non-failing measurements, and including those catas-

trophic failures could result in an overly optimistic conclusion of the experiment.

Therefore, we excluded faulty chips with more than one failing measurements or

with only one failing measurement but its violation to the spec is significant from

our analysis.

2.5.2 Sequential Rejectors

In pre-test analysis, test data from 200 wafers were used as the training set for

finding the canonical variables and generating C-SVC models based on the search

for the best combination parameters. Test data from another 300 wafers were

used as the validation set for selecting the best C-SVC model with an acceptable

level of yield loss.

27

Canonical Analysis and SVM Chapter 2

For simplicity and clarity, we use the following notations for the different

residual vectors:

• Feature Set Fm: Residual vectors derived using measurement means as the

estimated values

• Feature Set Fs: Residual vectors derived using predicted values based on

the learned spatial patterns as the estimated values

After the canonical space is found based on the training set, the residual vectors

of the validation set are transformed into the canonical space by Eq. (2.11). For

comparison, we also transform these residual vectors into the PC space by PCA.

Fig. 2.5 illustrates the feature set Fm transformed into the PC space and the

canonical space respectively (with respect to the first three variables created in

each of these two analyses). Fig. 2.6 shows feature set Fs transformed into the PC

space and the canonical space respectively. For better visualization, Fig. 2.5 and

Fig. 2.6 show only a subset of good chips and emulated test escapes (they were

randomly sampled from the validation set while maintaining the original ratio of

good chips vs. test escapes). It is very clear that the test escapes are much more

separable from the normal population in the canonical space than in the PC space

for both Fm and Fs.

Fig. 2.7 shows the relative operating characteristics (ROC) diagram of C-

SVC’s performance based on Fm and Fs in the original space, the PC space, and

the canonical space. The horizontal axis shows the yield loss rate and the vertical

axis shows the test escape identification rate, which are the false positive rate

and the true positive rate respectively in our classification problem. Using all

28

Canonical Analysis and SVM Chapter 2

−20

0

20

−50

0

50
−20

0

20

40

PC1PC2

P
C

3

Good chips

Test escapes

(a) PC space

−50
0

50
100

−20

−10

0

10
−20

−10

0

10

C1C2

C
3

Good chips

Test escapes

(b) Canonical space

Figure 2.5: The distributions of good chips/test escapes in different feature spaces
of Fm.

−10

0

10

−20

0

20
−20

−10

0

10

20

PC1PC2

P
C

3

Good chips

Test escapes

(a) PC space

−20
0

20
40

−10

0

10
−10

−5

0

5

10

C1C2

C
3

Good chips

Test escapes

(b) Canonical space

Figure 2.6: The distributions of good chips/test escapes in different feature spaces
of Fs.

29

Canonical Analysis and SVM Chapter 2

features in the three spaces results in similar classification performances because

the discriminating information is preserved in the linear transformation to a new

space. When only three features are used for the purpose of feature reduction,

using the first three canonical variables as input features results in significantly

greater classification accuracy than using the first three PCs, which explain only

25% and 21% of the variability in Fm and Fs respectively.

Table 2.1 shows the ratio of test escapes identified by C-SVC in the N -

dimensional original feature space, 3-dimensional PC space, and 3-dimensional

canonical space, with a limit of 0.001% yield loss for all three cases. The first

column shows the ratio of test escapes identified only by Fm and not detectable

by Fs. The second column shows the ratio of test escapes identified only by Fs

and not detectable by Fm, and the third column shows the ratio of the union of

the test escapes identified by Fm and Fs. C-SVC in the 3-dimensional PC space

cannot identify any of the test escapes given the very low yield loss rate limit,

while C-SVC in the 3-dimensional canonical space achieves a lower but still sig-

nificant ratio of identified test escapes than C-SVC with all the features in the

original space.

For a fixed yield loss budget (0.001% in this experiment), the learned C-SVC

models based on different sets of features can identify unique sets of escapes. In

the canonical space, there are 11.0% of the escapes that can be identified based

on both Fm and Fs, while the classifications based on Fm and Fs identify unique

sets of 37.2% and 9.1% of the escapes, respectively.

To better visualize a feature set’s ability of uniquely identifying test escapes,

Fig. 2.8 shows the distribution of identified test escapes in the canonical space of

30

Canonical Analysis and SVM Chapter 2

0 0.5 1 1.5 2

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Yield Loss Rate

T
e
s
t
E

s
c
a
p
e
 I
d
e
n
ti
fi
c
a
ti
o
n
 R

a
te

Original space w/ all features

PC space w/ 3 features

PC space w/ all features

Canonical space w/ 3 features

Canonical space w/ all features

(a) ROC of C-SVC based on Fm

0 0.5 1 1.5 2

x 10
−4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Yield Loss Rate

T
e
s
t
E

s
c
a
p
e
 I
d
e
n
ti
fi
c
a
ti
o
n
 R

a
te

Original space w/ all features

PC space w/ 3 features

PC space w/ all features

Canonical space w/ 3 features

Canonical space w/ all features

(b) ROC of C-SVC based on Fs

Figure 2.7: The ROC diagram for C-SVC based on Fm and Fs in three different
spaces.

31

Canonical Analysis and SVM Chapter 2

Table 2.1: Percentage of Test Escapes Detected by C-SVC in Three Different
Spaces Based on the Validation Set

Detected by Feature Set

Fm only Fs only Fm or Fs

C-SVC in N -D original spacea 45.7% 3.2% 71.4%

C-SVC in 3-D PC space 0% 0% 0%

C-SVC in 3-D canonical space 37.2% 9.1% 57.3%

aN : Number of Test Measurements (> 200)

Fm. It is clear that Fs reveals some test escapes that are close to the normal pop-

ulation in the canonical space derived from Fm, which C-SVC in this space cannot

correctly classify without incurring additional yield loss. Therefore, it is important

to incorporate both sets of features to screen test escapes more effectively.

2.5.3 Comprehensive Test

In addition to applying canonical transform to Fm and Fs separately, we can

apply canonical transform to Fm and Fs together, considering them as a single

feature set for the classification problem. In this case, the proposed framework

becomes even more extensible as one can generate many possible features and

input them all into the canonical transform without knowing which sets of features

are more suitable for which product. A general feature set can be developed and

applied to different products efficiently since canonical transform automatically

generates the most discriminating features out of all possible features for each

product. The test flow is shown in Fig. 2.4 in Section 2.4.

Fig. 2.9 shows the distribution of good chips and test escapes in the canonical

space derived from Fm ∪ Fs, i.e. a canonical variable is a linear combination of all

32

Canonical Analysis and SVM Chapter 2

−10
−5

0
5

10

−10

−5

0

5

10
−10

−5

0

5

10

C1C2

C
3

Good chips

Test escapes detected by F
m

Test escapes detected by F
s

Test escapes detected by both

Figure 2.8: The distributions of good chips and test escapes detected by the two
sets of features in the canonical space of Fm.

features in Fm and all features in Fs. There is a clear separation between the good

chips and the test escapes. Fig. 2.10 shows the ROC curves of using 3 canonical

variables derived from Fm, Fs, and Fm∪Fs, as the input features for C-SVC. When

the yield loss rate is very low (< 0.001%), using the canonical variables derived

from Fm ∪ Fs identifies 64.6% of the test escapes, which is higher than using the

canonical variables derived from Fm or Fs alone. Compared with the results in

Table 2.1, using canonical variables derived from Fm ∪ Fs identifies more test

escapes than the union of the test escapes identified using the canonical variables

derived from Fm and the canonical variables derived from Fs. In other words,

using a single comprehensive test derived from all generated features achieves

greater accuracy than using a sequence of rejectors, each of which is derived from

33

Canonical Analysis and SVM Chapter 2

a unique set of features.

−20
0

20
40

60

−20

−10

0

10
−20

−10

0

10

C1C2

C
3

Good chips

Test escapes

Figure 2.9: The distributions of good chips/test escapes in the canonical space
derived from Fm ∪ Fs.

2.5.4 Test Application

The testing set of our data includes more than 700 wafers containing more

than 500K chips. The percentage of detected test escapes based on the testing

set, given a yield loss budget of 0.001%, is shown in Table 2.2. The classification

performance is greatly enhanced in the canonical space than that in the PC space.

Using the canonical variables derived from Fm ∪ Fs also results in much better

accuracy than using the canonical variables derived from Fm or Fs alone. Note

that in the original space there are N dimensions in Fm and Fs, 2N dimensions

in Fm ∪ Fs, where N is the number of test measurements.

The following two tables show the runtimes executed on an Intel Xeon Quad-

34

Canonical Analysis and SVM Chapter 2

0 0.5 1 1.5 2

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Yield Loss Rate

T
e
s
t
E

s
c
a
p
e
 I
d
e
n
ti
fi
c
a
ti
o
n
 R

a
te

3 Features in F
m

3 Features in F
s

3 Features in F
m

 ∪ F
s

Figure 2.10: The ROC diagram for C-SVC in canonical space with 3 features
derived from different feature sets.

Table 2.2: Percentage of Test Escapes Detected by C-SVC in Three Different
Spaces Based on the Testing Set

Feature Set

Fm Fs Fm ∪ Fs

C-SVC in original space 64.4% 23.6% 67.1%

C-SVC in 3-D PC space 0% 0% 0.07%

C-SVC in 3-D canonical space 43.4% 17.1% 61.9%

35

Canonical Analysis and SVM Chapter 2

core 3.6GHz system. The data is based on the comprehensive test, in which the

canonical variables are derived from Fm ∪ Fs.

The runtime for canonical transform and PCA to derive the transform matrix

based on the training set and to apply the transform on the testing set is shown in

Table 2.3. While it takes slightly longer to derive the transform matrix for canon-

ical transform during the training process, the time for applying the transform is

very close for both transforms.

Table 2.3: Runtime of Deriving/Applying Transform Matrix for Canonical Trans-
form and PCA Based on Training/Testing Set

Transform

Canonical Transform PCA

Derivation 5.55 s 3.56 s

Application 0.75 s 0.78 s

Table 2.4 shows the runtime of training the C-SVC model based on the training

set and applying the C-SVC model to the testing set. Training in the canonical

space is much easier because most of the separating power in the data is compacted

into the 3 input features for C-SVC. A runtime reduction of 63X and 29X is

achieved for training and applying the model in the canonical space. In application

of the proposed statistical test to the test flow, it takes 0.75s + 8.41s to transform

the features and apply the model to more than 700 wafers, resulting in less than

0.013s additional test time per wafer.

36

Canonical Analysis and SVM Chapter 2

Table 2.4: Runtime of Training/Applying C-SVC Model in Three Different Spaces
Based on Training/Testing Set

Feature Space

2N -D Original 3-D Canonical 3-D PC

Training 31.27 s 0.50 s 3.42 s

Application 242.16 s 8.41 s 74.87 s

2.5.5 Another Experimental Scenario

The emulated data set based on the previous description contains 3500PPM

of test escapes, a good fraction of which are detected by a very small number of

test items. In order to capture a more realistic scenario for which each test item

detects only a small number of emulated test escapes, we removed some escapes

from the original emulated test escape population (of 3500PPM) so that each

test item only detects a limited number of escapes in the resulting test escape

population. Specifically, we identified those test items that hiding each of them

would result in greater than 50PPM in the original test escape population. We

then removed those emulated escapes detected by these test items, resulting in a

reduced emulated test escape population of 600PPM.

Based on the data set with a reduced number of test escapes, the ROC curves

for C-SVC with Fm ∪ Fs as the input features are shown in Fig. 2.11. Note that

in this case, C-SVC in the canonical space, even with only the first 3 dimensions,

achieves greater classification accuracy than C-SVC in the original space with all

2N features. For a yield loss rate limited to 0.001%, Table 2.5 shows the test

escape identification rate and the corresponding runtime for applying the model.

In this data set, effectively compacting the separation between classes into the

37

Canonical Analysis and SVM Chapter 2

very few dimensions allows more effective and efficient classification for C-SVC

than that in the original space with much more dimensions.

0 0.5 1 1.5 2

x 10
−4

0

0.2

0.4

0.6

0.8

Yield Loss Rate

T
e
s
t
E

s
c
a
p
e
 I
d
e
n
ti
fi
c
a
ti
o
n
 R

a
te

Original space w/ all features

Canonical space w/ 3 features

Canonical space w/ all features

Figure 2.11: The ROC diagram for C-SVC based on Fm ∪ Fs in the original space
and in the canonical space.

Fig. 2.12 shows the ROC diagram of classification based on 3 canonical vari-

ables derived from Fm, Fs, and Fm ∪ Fs. Given the yield loss rate limited to

0.001%, the ratio of identified test escapes are 14.6%, 0.7%, and 16.3%, respec-

tively. While the identification rate drops for the three cases compared with that

in the original data set, classification based on the canonical variables derived from

Fm ∪ Fs still achieves better accuracy than using the canonical variables derived

from Fm or Fs alone, and the identification rate of test escapes is still significant

under the constraint of a close-to-zero limit on yield loss rate.

38

Canonical Analysis and SVM Chapter 2

Table 2.5: Test Escape Identification Rate and Runtime for Applying the Models
with the Yield Loss Rate Limited to 0.001%, based on Fm ∪ Fs

Feature Space

2N -D Original 3-D Canonical 2N -D Canonical

Test Escape

Identification rate
12.5% 19.7% 20.3%

Application

Runtime
176.19 s 4.63 s 19.44 s

0 0.5 1 1.5 2

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

Yield Loss Rate

T
e
s
t
E

s
c
a
p
e
 I
d
e
n
ti
fi
c
a
ti
o
n
 R

a
te

3 Features in F
m

3 Features in F
s

3 Features in F
m

 ∪ F
s

Figure 2.12: The ROC diagram for C-SVC in canonical space with 3 features
derived from different feature sets, based on a data set with a reduced number of
test escapes described in Section 2.5.5.

2.6 Summary

Through feature engineering, we propose two sets of features to characterize

the health of chips. We demonstrate that statistical tests based on each set of

39

Canonical Analysis and SVM Chapter 2

features could uniquely identify some test escapes that the other set of features

cannot reveal. As adding more features may reveal more test escapes, we further

propose to transform these features into a canonical space for feature reduction.

Classification performed by the statistical tests on the reduced dimensions in

canonical space achieves 29X runtime reduction while achieving a significantly

higher accuracy than PCA in our experiment. We can expect further improve-

ment if more types of features are added into the framework, followed by feature

reduction through canonical analysis. Using our data set with emulated test es-

capes, we demonstrated that classification in a 3-dimensional canonical space can

achieve greater accuracy than that in the original space with 200+ dimensions.

While C-SVC is used as the classification engine to evaluate various aspects

of feature engineering proposed in the chapter, other classifiers can also be used.

The scheme to utilize statistical tests containing the proposed features is flexible

and can be easily extended to accommodate more types of statistical tests.

40

Chapter 3

AdaTest

3.1 Introduction

Statistical tests [1], which are statistical analyses following the physical test

program, could help screen test escapes and outliers utilizing the hidden correla-

tions in test data without additional physical measurements. In recent studies for

outlier screening, O’Neill [5] and Sumikawa et al. [2] investigated the distribution

of the population under test using principal component analysis (PCA) on corre-

lated test items, and Krishnan and Kerkhoff [24] explored multiple Mahalanobis

distances as the metric for screening. Chen et al. [3] also demonstrated various

data mining techniques in predicting system-level test (SLT) failures.

Daasch et al. [25] proposed a concept of residual for outlier screening and

demonstrated its applications considering the neighboring chips as the reference

for deriving the residual, called nearest neighbor residual (NNR), in [26, 27, 28, 29].

In Chapter 2, we proposed a feature engineering framework which utilizes two

41

AdaTest Chapter 3

types of distinct feature sets and effectively reduces the number of features re-

quired for effective classification of test escapes. Each chip was characterized by

a residual vector, which is a high-dimensional vector consisting of the difference

between the measured value and an expected value of each test item. Selecting

different expected values as the reference for producing the residual vector, which

results in different input features for the classifier, reveals different subsets of the

test escapes. While more types of features could potentially carry more useful

information for classification, the feature dimension however could be too high,

resulting in degradation in both runtime performance and accuracy for classifica-

tion. Therefore, the framework further applies a canonical transform to extract

and compact the most useful information from a large set of candidate features

into a much smaller set for effective and efficient classification.

The above framework, however, requires all potentially useful features to be

first generated from the data captured by the test program before performing the

canonical transform. The runtime and space required for generating and trans-

forming the features, which need to be done during test application, are already

significant for today’s products. They are expected to grow further for future

products whose feature sets will continue to grow in size due to their greater com-

plexity and even more stringent quality requirements. To address this problem,

this chapter proposes a new statistical test framework that adopts some of the

key ideas behind the popular Viola-Jones [30] framework, which was originally

designed for real-time face recognition. Our proposed framework, named AdaT-

est, contains a cascade of AdaBoost [31] classifiers and only a small amount of

features which are actually used in the classification need to be generated during

42

AdaTest Chapter 3

test application. This significantly reduces the runtime and memory space needed

for processing the test data and thus enables real-time application of statistical

tests, e.g. running the statistical tests on the automatic test equipment (ATE)

during wafer probe tests for minimum adjustment of the production test flow and

additional test time for high volume products. Moreover, we demonstrate that

AdaTest and the method proposed in Chapter 2, which employs a support vector

machine (SVM) as the classifier, could each identify some unique test escapes that

cannot be identified by the other method. Therefore, a hybrid method combining

the results of the two distinct classifiers could further improve the accuracy of test

escape detection.

We introduce a new residual vector in addition to the two residual vectors used

in Chapter 2 in this chapter. We demonstrate that including the proposed third

type of residual vector as an input feature set could improve the detection rate

for test escapes. The usefulness of each type of residual vectors for test escape

detection is data-dependent (this will be demonstrated later in the experimental

results section). Thus it should be a winning strategy to develop more sets of

residual vectors that are potentially useful, and for each dataset/product, apply

AdaTest to automatically select only the relevant features for classification of the

target product.

The rest of the chapter is organized as the following. Section 3.2 illustrates

the AdaTest framework, Section 3.3 discusses the data preparation and feature

generation for the framework, and Section 3.4 demonstrates experimental results.

Section ?? concludes the chapter.

43

AdaTest Chapter 3

3.2 AdaTest

In this section we illustrate the proposed statistical test framework, AdaTest,

which consists of a cascade of AdaBoost classifiers. We first introduce the Ad-

aBoost algorithm, followed by the algorithm for training the cascade of AdaBoost

classifiers given a yield loss budget.

3.2.1 AdaBoost

Adaptive boosting, or AdaBoost [31], is a technique for combining multiple

base classifiers to form one final classifier which can significantly outperform any

of the base classifiers. The base classifiers are often referred to as weak classifiers

and the final classifier is referred to as a strong classifier. The weak classifiers

can be very simple and only need to be at least better than random classification,

e.g., a classifier with an accuracy of 51% is acceptable as a weak classifier. The

key idea is to train the weak classifiers iteratively, and in each iteration increase

the weight of the misclassified samples in the cost function. Later weak classifiers

will therefore focus more on the misclassified samples, and the final classification

result is the weighted sum of the weak classifiers’ classification results.

In Viola and Jones’s framework for real-time face recognition [30], each weak

classifier is simply a binary classifier based on one feature, referred to as a decision

stump. Multiple decision stumps form a strong classifier, and multiple strong

classifiers are iteratively trained and added to a cascade until a pre-set accuracy

is reached. Given a set of samples xi, i ∈ 1...N , whose class labels yi are 1

for positives and −1 for negatives respectively, Algorithm 1 [32] trains a strong

44

AdaTest Chapter 3

classifier with T weak classifiers. For a statistical test whose objective is to screen

test escapes, we define test escapes as positive samples and good chips as negative

samples. Since in production test, the number of test escapes is significantly

smaller than that of the good chips, we set the initial weighting coefficient of

the positive samples rw times of that of the negative samples for more effective

classification. In our experiment, rw is set to 2 empirically.

Algorithm 1 AdaBoost

1 Initialize weighting coefficients wt,i = rw

N
, 1

N
for yi = 1, −1 respectively.

2 for t = 1, ..., T do

3 Select a weak classifier yt(x) which minimizes the weighted error function.

Et =
N
∑

i

wt,iI(yt(xi) 6= yi)

where I(yt(xi) 6= yi) = 1 when yt(xi) 6= yi, and I(yt(xi) 6= yi) = 0 otherwise.

4 Evaluate the quantity

ǫt =

∑N
i wt,iI(yt(xi) 6= yi)

∑N
i wt,i

and

αt = ln(
1 − ǫt

ǫt

)

5 Update the weighting coefficients

wt+1,i = wt,i exp{αtI(yt(xi) 6= yi)}

6 The final strong classifier is given by

YT (x) = sign

(

T
∑

t=1

αtyt(x)

)

In each of the T iterations, a feature and its corresponding threshold which

45

AdaTest Chapter 3

minimizes the cost function are selected as a weak classifier in step 3. In step 4

the normalized classification error ǫt of the current weak classifier is calculated

and a coefficient αt, which is a function of ǫt, is derived for updating the weights

of the misclassified samples in step 5. αt is also used as the weight for the tth

weak classifier’s classification result in deriving the final classification result in

step 6. When ǫt = 0.5, αt equals to 0, which leads to no contribution from the tth

classifier for the final decision, since the classifier’s accuracy is the same as random

guessing. The value of αt increases as ǫt decreases, so that the classification results

of the more accurate weak classifiers contribute more to the final decision, and as

long as the prediction of the tth weak classifier is better than random guessing,

its weight αt will stay positive.

Using decision stumps as the weak classifiers, step 3 selects one feature and a

threshold in each iteration, which provides comprehensible diagnostic information

about the test escapes. By investigating the features selected in the classifier and

the their corresponding weighting coefficients in the final strong classifier, one can

learn the features based on which the test escapes are distinguishable and the

relative significance of the features in separating the test escapes from the good

chips.

3.2.2 Cascaded AdaBoost Classifiers

To screen test escapes, we build a cascade of AdaBoost classifiers using decision

stumps as the weak classifiers. The chips that pass the physical test program go

through this cascade of statistical tests for further screening for test escapes, as

shown Fig. 3.1.

46

AdaTest Chapter 3

Figure 3.1: The cascade of classifiers for test escape screening which is applied
after the physical test program for all chips in a wafer is completed.

47

AdaTest Chapter 3

Algorithm 2 illustrates the training process for designing the cascade to maxi-

mize the detection rate within a user-specified yield loss budget Ybudget. The input

to the algorithm is a set of training samples consisting of known positives (test

escapes) and negatives (good chips). The cascade contains multiple AdaBoost

classifiers, each considered as a layer of the cascade. Given a yield loss limit per

layer ylayer, the algorithm trains one AdaBoost classifier with a yield loss rate

y lower than ylayer per iteration. The iterative process continues until Ybudget is

reached or when a new layer of the cascade could not identify any new test escape

within jmax weak classifiers, i.e., when the detection rate of test escapes d of the

layer reaches zero. During the training phase, correctly identified test escapes in

one layer will be excluded from the training set for training the next layer, so that

the next AdaBoost classifier can focus only on the unidentified test escapes. All

good chips, either correctly classified or misclassified at each layer, will remain in

the training set for all layers of the cascade.

3.3 Data Preparation and Feature

Generation

3.3.1 Data Standardization

There exist wafer-to-wafer and lot-to-lot variations in production test data,

which deteriorate the robustness of applying a learned model based on a set of

training wafers to query wafers. To address this problem, we standardize the test

data of each wafer before further analysis. For each test item in every wafer,

we first identify chips with outlying measurements, and derive the robust mean

48

AdaTest Chapter 3

Algorithm 2 Training the Cascaded AdaBoost Classifiers

1 Sp = set of positive training samples (i.e. test escapes)

2 Sn = set of negative training samples (i.e. good chips)

3 i = 0

4 while Yi < Ybudget do

5 i = i + 1

6 j = 0

7 while y > ylayer do

8 j = j + 1

9 Train an AdaBoost classifier with j weak classifiers based on Sp and Sn

10 Evaluate the yield loss rate y and the detection rate d for the current
layer

11 if d == 0 and j > jmax then break

12 Evaluate the overall yield loss rate Yi based on the current cascade of
classifiers

13 Exclude correctly identified test escapes from Sp

14 if d == 0 then break

49

AdaTest Chapter 3

and robust standard deviation which are the mean and standard deviation of the

population excluding the outliers. Then the measurements in each wafer are

standardized to z-score, with the robust mean and standard deviation by:

z =
x − µ

σ
(3.1)

where x is the measurement value, and µ and σ are the robust mean and standard

deviation of the measurements for chips on the same wafer, respectively.

For identifying the outliers in each wafer, we use the general Extreme Studen-

tized Deviate (ESD) test [33]. Given an upper bound for the number of outliers

h, the general ESD test essentially performs h hypothesis tests: a test for one

outlier, a test for two outliers, and so on up to h outliers to conclude the number

of outliers and identify them. Details on the general ESD test is out of the scope

of this chapter and can be found in [34]. Since the outliers in each wafer are

likely to be caused by various random effects, the bias in the mean and standard

deviation of each wafer is unpredictable and should be viewed as noise. Therefore

it is necessary to exclude the outliers before deriving the statistics for standardiz-

ing the measurements on each wafer. After such standardization, the bias in the

measurement data caused by wafer-to-wafer variations is reduced.

3.3.2 Features for Classification

In this study we characterize the chips using the residual vectors proposed in

Chapter 2. Each chip with M test measurements is characterized by an M × 1

50

AdaTest Chapter 3

residual vector r:

r = xm − xe (3.2)

where xm is an M × 1 vector of the measured values and xe is an M × 1 vector

of the expected values.

A residual vector represents how the measurement values of a chip deviate

from its expected values, and is used as the set of input features for classification.

In Chapter 2, the mean of measurements in the wafer and the spatial pattern

learned through bilateral filtering [18] were used as two possible expected values

for generating the residual vectors and thus produced two distinct feature sets for

identifying test escapes. Note that other techniques such as virtual probe [8, 15]

and Gaussian process model [9] could also be used for deriving the spatial patterns,

but we apply bilateral filters in this study for its simplicity and speed. The

residual vectors represent each chip’s multi-dimensional deviation to the mean of

the population in the wafer and to the systematic spatial variation of the wafer.

It was reported that each of these two feature sets could reveal a unique subset

of the test escapes.

There have been studies showing that comparing a chip’s measurements with

that of its neighbors could be used to reveal abnormalities of the query chip [10,

25, 35]. For test escapes that are defective chips, it is likely that there exists some

difference between the test escapes and their neighbors. Therefore, in this study

we propose a third feature set, for which the expected value used for producing

the residual vector is the median of the target chip’s eight surrounding neighbors’

measurement values. Fig. 3.2 illustrates the location of the neighboring chips for

a target chip marked t in the middle. This new feature set can be considered as

51

AdaTest Chapter 3

a special case of NNR [25]. Section 3.4 will show experimental results illustrating

that the third feature set does provide additional information beyond the first two

feature sets and improves the classification accuracy for the dataset analyzed in

this study. Note that in this study, the selection of the eight nearest neighbors

for reference is a general strategy that is likely to work on multiple products.

The optimal selection of the most informative neighbors is product-specific and

discussions on finding the optimal set of neighbors can be found in [26].

Figure 3.2: The median among the measurements of eight neighbors is used as
the expected value for the target chip t in the middle.

3.4 Experimental Result

In this section we present the results of applying the proposed framework on

a continue-on-fail production test data of an industrial product. The test data

was preprocessed to remove confidential information while accurately preserving

all information relevant to the analysis. The dataset consists of more than 700

wafers and we partitioned them into two groups: 200+ wafers as the training set

and 500+ wafers as the testing set. Each wafer consists of 1000+ chips and the

test program has more than 200 parametric test items.

52

AdaTest Chapter 3

Since the actual test escape information is not available in this dataset, we first

introduce how we emulated test escapes and then demonstrate the experimental

setup and results.

3.4.1 Emulating Test Escapes

Similar to the setup proposed in Chapter 2, the idea is to emulate test es-

capes using intrinsically defective chips which have subtle syndromes in their test

measurements. To create a scenario in which the emulated test escape population

has sufficient diversity and the test escape rate falls in a range of practical inter-

est, after generating an initial pool of emulated test escapes based on the process

described above, we further removed a fraction of them to form the final pool.

The goal is to produce an emulated test escape pool such that the corresponding

test items of those hidden failing measurements are widely spread among a large

number of test items and no single test item is responsible for too many escapes

(otherwise the pool would not be sufficiently diverse). Therefore, in the initial

pool, we identified those test items that hiding each of them would contribute

greater than 50PPM to test escapes, and removed those test escapes created by

hiding these test items from the pool. The resulting test escape pool after this

post-process corresponds to approximately 560PPM for the testing set.

3.4.2 Classification Accuracy

For simplicity and clarity, we use the following notations for the three feature

sets we derived in Section 3.3.2:

53

AdaTest Chapter 3

• Feature Set FM : Residual vectors derived using the mean of the measure-

ments in the wafer as the expected values

• Feature Set FB: Residual vectors derived using the learned spatial patterns

via Bilateral Filtering as the expected values

• Feature Set FN : Residual vectors derived using the median of the eight

neighboring chips’ measurements as the expected values

Fig. 3.3 demonstrates the classification accuracy of the cascaded classifiers on

the testing set, with ylayer set to 0.01%, based on three choices of the input features

for classification. Let M be the number of test items, the three choices are:

• FM : Use the M features in FM alone as the input features

• FM ∪ FB: Use the 2M features in FM and FB jointly as the input features

• FM ∪ FB ∪ FN : Use the 3M features in all three feature sets as the input

features

Fig. 3.3a shows that the accumulated yield loss rate increases as more layers

of AdaBoost classifiers are added to the cascade, and Fig. 3.3b shows that the test

escape rate drops from 560PPM to 360PPM when all three feature sets are used

as the input features. Although in Chapter 2, using FM ∪ FB as the input fea-

tures resulted in significantly higher classification accuracy than using FM alone,

including FB as the input features does not help detect more test escapes for the

dataset in this study. However, it is clear from Fig. 3.3b that including the third

feature set FN as input to the classifiers could reveal more test escapes. Since

AdaTest could automatically select the most useful features, we can still keep FB

54

AdaTest Chapter 3

(a) The accumulated yield loss rate versus the number of layers

(b) The remaining amount of undetected test escapes versus the number of layers

Figure 3.3: The accumulated yield loss rate and the amount of remaining unde-
tected test escapes versus the number of layers in the cascade of classifiers.

55

AdaTest Chapter 3

in a general collection of potentially useful feature sets as long as the feature set

reveals some test escapes in some datasets. We can then apply such collection of

feature sets to all new datasets/products and let AdaTest select the most useful

features for each dataset/product.

Figure 3.4: The ROC curves of classification based on different choices of input
features.

Fig. 3.4 plots the relative operating characteristics (ROC) curves of classifi-

cation, i.e. the test escape identification rate vs. the yield loss rate, based on

different choices of input features. Given a yield loss rate budget, say 0.01%, clas-

sification based on FM ∪ FB ∪ FN identifies additional 4% out of the test escape

pool, in comparison with those based on FM and FM ∪ FB. The results based on

FM and FM ∪FB are similar for this dataset, and because the data characteristics

of the training and the testing sets may exist slight differences, the classification

56

AdaTest Chapter 3

performance for the testing set based on FM could sometimes slightly surpass that

based on FM ∪ FB at certain yield loss rates.

The experimental results in Chapter 2 demonstrated significant classification

accuracy improvement compared with PCA. Fig. 3.5 shows the accuracy compar-

ison between AdaTest and the SVM-based framework in Chapter 2, in which the

first three dimensions in the canonical space were used as the input features for

SVM. To make a fair comparison, we use FM ∪ FB ∪ FN as the input features for

both frameworks. The ROC curves of the SVM-based framework and AdaTest

show that the former achieves a higher test escape detection rate at a given yield

loss rate. However, further investigation of the specific test escapes identified

by each of the two frameworks shows that the two approaches identify different

subsets of the test escapes.

Fig. 3.6 shows the Venn diagrams of the identified test escapes among the entire

test escape population and the yield loss populations for the two frameworks, at

a yield loss rate of 0.01%. In Fig. 3.6a, while the SVM-based framework and

AdaTest identify 30% and 27.9% of the test escapes respectively, there are only

18.6% out of all the test escapes that are identified by both frameworks. Each of

the two frameworks uniquely identifies 11.4% and 9.3% test escapes. In Fig. 3.6b,

out of the 0.01% yield loss, each framework causes 0.0084% unique yield loss.

Based on these results, a hybrid framework incorporating both AdaTest and the

SVM-based method could likely achieve better performance than each individual

method alone. Just using the most naive idea which takes the union of the results

based on these two methods could result in a yield loss rate of 0.0184% and

a test escape detection rate of 39.3%, which outperforms the two methods by

57

AdaTest Chapter 3

at least 3.3% at the corresponding yield loss rate, as shown in Fig. 3.5. The

implementation of a tightly integrated hybrid framework which could optimally

incorporate AdaTest and the SVM-based method is currently under development.

Figure 3.5: The ROC curves of classifications based on cascaded AdaBoost and
SVM in 3-dimensional canonical space.

(a) Identified test escapes (b) Yield loss

Figure 3.6: The Venn diagram of the populations of identified test escapes and
yield loss for the SVM-based framework and AdaTest.

Another observation from our experiment is that with the yield loss limit per

layer ylayer set at 0.01%, all layers of AdaBoost classifiers contain only one weak

classifier per layer. That is, the entire framework is composed of a cascade of

58

AdaTest Chapter 3

decision stumps, each of which selects one feature and a corresponding threshold

for binary classification. During the training process, we have explored various

settings which might enable the AdaBoost classifiers to train multiple weak classi-

fiers per layer. While some of the resulting classifiers did improve the test escape

detection rate for the training set, the improvement in training was not necessarily

observed in the testing set. This result implies that the training of incorporating

more weak classifiers causes overfitting in the training set and fails to generalize

to other sample sets.

While the above observation may be a unique result of the specific dataset or

a more general phenomenon for test data, we can learn the following from the

results of this data: To use the AdaBoost algorithm with decision stumps for our

application, training a more complicated strong classifier consisting of multiple

weak classifiers in one layer is less effective than training more layers of very

simple strong classifiers, each of which consists of only one or few weak classifiers.

Each of these strong classifiers targets a unique and small subset of test escapes

in one layer. As the characteristics of the test escapes could be very diverse, each

small cluster of the escapes could be identified by a simple classifier. Combining

multiple simple classifiers into a single, more complex classifier may lose their

unique individual strengths for detecting small clusters in a diverse population.

3.4.3 Application Runtime and Memory Usage

While more distinct features may potentially improve classification accuracy

for test escapes, developing a large, generic collection of potentially useful feature

sets across products increases the runtime and memory usage during test applica-

59

AdaTest Chapter 3

tion and could limit the real-time application of statistical tests. Table 3.1 shows

the runtime for generating each of the three feature sets in this study for each

wafer which has 200+ parametric test items and 1000+ chips, in an Intel Xeon

Quad-core 3.6GHz system. In the SVM-based framework, all feature sets need to

be generated from the test data, which takes 1.339 seconds per wafer. At a yield

loss rate of 0.01% and a test escape detection rate of 27.9%, AdaTest selects 7

features from FM , no feature from FB, and 7 features from FN , which takes 0.016

seconds per wafer for generating the feature sets. The runtime of each step in the

two frameworks is listed in Table 3.2. Since AdaTest generates only the useful

features from test data, it does not require a feature transformation phase. On

average, AdaTest achieves 83X runtime reduction during test application. In the

naive hybrid framework mentioned in Section 3.4.2, at a yield loss rate of 0.0184%,

we could increase the runtime from 1.489 seconds to 1.507 seconds (a 1.2% run-

time increase) for an additional 3% test escape detection beyond the SVM-based

method.

Table 3.1: Runtime Per Wafer for Generating Each Feature Set From the Test
Data

Feature Set

FM FB FN

Runtime (s) 0.027 0.768 0.544

The runtime for generating and transforming the features for FM , FM ∪ FB,

and FM ∪ FB ∪ FN is shown in Fig. 3.7. The runtime for preparing the features

in the SVM-based framework, in which all potentially useful features need to be

generated, becomes significantly greater than that of AdaTest as the size of the

60

AdaTest Chapter 3

Table 3.2: Runtime Per Wafer for Each Step in the Statistical Test Frameworks
Given FM ∪ FB ∪ FN as Input Features

Feature Set

SVM-based framework AdaTest

Feature Generation (s) 1.339 0.016

Feature Transformation (s) 0.037 -

Classifier Application (s) 0.113 0.002

Total (s) 1.489 0.018

input feature sets grows. Note that AdaTest selects exactly the same features

from FM when given FM and FM ∪ FB as the input features to reach a yield loss

rate of 0.01%, which is shown in Fig. 3.4. Therefore the runtime for preparing the

features does not change when including FB in addition to FM as input features.

During test application, the memory space needed for storing the 3 types of

features, FM , FB, and FN , before the canonical transform is at least 3X of the orig-

inal test data. In a naive implementation of the transform, a huge N by 3Mmatrix

containing all the feature information is multiplied by another transform matrix

of size 3M by 3M , where N is the number of samples and M is the number

of test items where in our experiment M > 200. On the other hand, AdaTest

identifies 14 features in the training phase and uses them directly, without any

further transformation, for classification in the test application phase. Therefore,

AdaTest consumes significantly less memory for processing the features than the

SVM-based method.

61

AdaTest Chapter 3

Figure 3.7: The runtime for generating and transforming the features before clas-
sification.

3.4.4 Feature Selection

As mentioned in Section 3.2.1, another advantage of AdaTest is that it selects

features directly without transformation, which provides comprehensible diagnos-

tic information about the test escapes. In this study, the first three layers of the

cascade selected a feature in FN calculated based on a standby current measure-

ment, a feature in FN based on a digital-to-analog converter (DAC) performance

measurement, and a feature in FM based on a standby current measurement. Out

of the 14 selected features given a yield loss rate of 0.01%, no feature from FB

was selected. The majority of the selected features include features in FM and FN

based on standby current measurements, DAC performance measurements, and

analog-to-digital converter (ADC) performance measurements. Although the de-

62

AdaTest Chapter 3

tails of the test items could not be revealed, the above example demonstrates the

information this framework provides for better understanding the characteristics

of the test escape population.

3.5 Summary

In this study, we propose a framework, AdaTest, for designing statistical tests

which consists of a cascade of AdaBoost classifiers using decision stumps as the

weak classifiers. Given a collection of potentially useful feature sets, AdaTest can

identify a small number of features in the training phase that are most useful

for classification. In contrast, an SVM-based method, which can also achieve

high classification accuracy, needs to produce the entire collection of feature sets,

followed by a canonical transform for feature reduction before performing classifi-

cation. Therefore, AdaTest significantly reduces the runtime by 83X and memory

usage by at least 3X compared with an SVM-based framework. Such improve-

ment enables real-time application that can be carried out on the ATEs for high

volume products, which minimizes the adjustment of the production test flow in

test phases such as the wafer probe test.

We also demonstrate that a new feature set FN , defined as the residual vector

with respect to the median of eight neighbors’ measurement values of the sample

chip, could reveal more test escapes. Since AdaTest could automatically select

the most relevant features, we can apply a general collection of potentially useful

feature sets to a new dataset, and the unhelpful features for the specific dataset

will be automatically excluded, such as FB in this study.

63

AdaTest Chapter 3

As AdaTest and the SVM-based method each identifies a unique subset of test

escapes, a hybrid framework integrating these two methods and combining their

strengths could further improve the detection rate of test escapes without taking

any additional physical test measurements.

64

Chapter 4

Proximity-Based Features

4.1 Introduction

In this chapter, we propose new features that are based on the pairwise prox-

imities calculated from the abovementioned three feature sets, which are referred

to as the base feature sets in the rest of the paper. Given a test data with T

test items and D chips, we calculate a D × D proximity matrix based on a se-

lected proximity/distance function in the 3T feature space constructed from the

base feature sets. Different distance functions could potentially provide unique

information that reveals the abnormalities of some test escapes. We investigate

six different distance functions including cosine distance, correlation distance, and

Minkowski distance with p = 1, 2, 3, ∞ for deriving the proximities.

The proximity representation of a dataset (represented by a D × D proximity

matrix), however, could not be analyzed with the traditional machine learning

algorithms that are designed for a Euclidean space, or a vector representation

65

Proximity-Based Features Chapter 4

(represented by a D × T matrix containing all the feature values for all samples).

Therefore, we apply a technique named constant shift embedding (CSE) [36] to con-

vert the proximity information back into a Euclidean space. The most prominent

property of CSE is the complete preservation of cluster structure in the embedded

Euclidean space. The six distance functions would lead to six unique proximity

matrices, and therefore results in six unique embedded spaces. In addition, we

further investigate a traditional kernel PCA (kPCA) embedding method [37] with

radial basis function (RBF) kernel and generate a seventh Euclidean space to

provide even more information that could potentially separate test escapes.

In each of the seven unique embedded spaces constructed based on the pairwise

proximities calculated from the base feature sets, we apply a density-based outlier

analysis called local outlier factor (LOF) [38]. LOF compares a sample’s local

density with its neighbors’ densities in a feature space and produces a single

value. A sample with a relatively higher LOF value than that of the majority

of the samples is more likely to be an outlier. We also observed that in the

first dimension of each embedded space, some test escapes are away from the

good chip population, which makes them easily separable. Therefore, we use

the LOF value and the first dimension of each of the embedded spaces jointly

as the new proximity-based features. Given the seven proximity definitions, 14

new features are generated. Based on these new features plus the 3T features

from the base feature sets, we then perform feature reduction using the canonical

analysis proposed in Chapter 2. Canonical analysis is a linear transformation that

maximizes the separation between the two populations of samples (good chips

and test escapes) in the first few dimensions of the transformed feature space,

66

Proximity-Based Features Chapter 4

called a canonical space. A classical classifier such as the support vector machine

(SVM) [39, 22] can then be applied in the canonical space for more efficient and

in some cases, more effective classification. With these proximity-based features

which provide additional revealing information about test escapes, the test escape

detection rate based on an industrial production test dataset is improved to 31%,

compared with 27% for similar analysis using the base feature sets only.

The rest of the chapter is organized as the following: Section 4.2 introduces the

distance functions used for generating the pairwise proximities between samples.

Section 4.3 illustrates the concepts and properties of constant shift embedding,

followed by a discussion about the distribution of the chips in the embedded

space. Section 4.4 discusses data standardization, feature generation, outlying

wafer detection, and feature transformation using canonical analysis. Additional

experimental results are presented in Section 4.5, and Section ?? concludes the

chapter.

4.2 Pairwise Proximity

In this chapter we extract more information to reveal the abnormalities of the

test escapes by comparing each chip with all the other chips on the same wafer.

The comparison is made in a feature space composed of the three base feature

sets developed in Chapter 3, in which each chip with T test measurements is

characterized by a T × 1 residual vector r:

r = xm − xe (4.1)

67

Proximity-Based Features Chapter 4

where xm is a T × 1 vector of the measured values and xe is a T × 1 vector

of the expected values. Three expected values were used to produce three base

feature sets: the mean of the measurements on the same wafer, a value based on

the bilateral filtered [18] spatial pattern of the wafer, and the median of the eight

nearest neighbors of the query chip. The third feature set can be considered as a

special case of NNR [25]. We denote the three generated feature sets as FM , FB,

and FN respectively. Throughout the analysis in this chapter, we will be using

the three feature sets jointly, denoted FM ∪ FB ∪ FN , as our base feature space for

deriving the proximities.

Given a wafer with D chips, the pairwise comparisons between each pair of

chips result in a D × D symmetric proximity matrix, each of whose elements

represents the pairwise proximity between two chips. Our strategy is to generate

all potentially useful features, followed by a feature reduction technique such as

canonical analysis to automatically extract the most useful information out of

the large set of generated features for classification. Therefore, we apply multiple

different distance functions for calculating the pairwise proximity between each

two chips to potentially reveal more aspects of the abnormalities of test escapes

with the conjecture that each of these distance functions might uniquely separate

some of the test escapes from the normal populations. Let xa be a T × 1 vector

consisting of sample a’s feature values xa1, xa2, ..., xaT , the distance functions we

investigated are:

• Cosine distance:

dab = 1 −
x′

axb
√

(x′

axa)(x′

bxb)
(4.2)

68

Proximity-Based Features Chapter 4

• Correlation distance:

dab = 1 −
(xa − xa)′(xb − xb)

√

(xa − xa)′(xa − xa)(xb − xb)′(xb − xb)
(4.3)

where xa is the mean of vector xa.

The following four distances are derived from Minkowski distance with different

values for parameter p:

dab =
p

√

√

√

√

√

T
∑

j=1

|xaj − xbj|
p (4.4)

• p = 1 (Manhattan distance):

dab =
T
∑

j=1

|xaj − xbj| (4.5)

• p = 2 (Euclidean distance):

dab =
√

(xa − xb)′(xa − xb) (4.6)

• p = 3:

dab =
3

√

√

√

√

√

T
∑

j=1

|xaj − xbj|
3 (4.7)

• p = ∞ (Chebyshev distance):

dab = max
j

|xaj − xbj| (4.8)

In addition to the above six distance functions, we also include a traditional

69

Proximity-Based Features Chapter 4

kernel PCA method [37] with a radial basis function (RBF) kernel:

• RBF/Gaussian kernel :

kab = exp

(

−
(xa − xb)

′(xa − xb)

2σ2

)

(4.9)

Each of the first six distance functions would lead to a unique proximity matrix,

which will be further converted to a Euclidean space by CSE. For the proximity

matrix generated using the RBF kernel, we apply the traditional kernel PCA

algorithm for producing an embedded space without CSE to validate if the existing

kPCA technique could also provide additional information.

4.3 Constant Shift Embedding

4.3.1 Concepts and Properties

After generating the proximity matrices based on multiple distance functions,

we need to convert the proximity representation back into a vector representation

before applying traditional outlier detection algorithms that are designed for a

Euclidean vector space. Constant shift embedding (CSE) [36] is a technique to

embed pairwise proximity data into the equivalent Euclidean embedding with no

distortions. Specifically, CSE finds a Euclidean space in which the cost function of

a Euclidean distance-based clustering algorithm such as k-means could be equiva-

lent to the cost function of pairwise clustering on the proximity matrix. Detailed

computations of CSE can be found in [36].

Fig. 4.1 shows the process of producing new embedded feature spaces based

70

Proximity-Based Features Chapter 4

on proximity matrices. From the original space O1, which is composed of the

base feature sets FM ∪ FB ∪ FN , we generate multiple proximity matrices based

on different distance functions, followed by CSE for each proximity matrix to

convert them into embedded Euclidean spaces. While CSE preserves the cluster

structure through the conversion from a proximity representation to a Euclidean

vector representation (e.g., the cluster structure is preserved between E1 and P1,

between E2 and P2, and so on), the k-means cost function in the original feature

space O1 would also be identical to the cost function of pairwise clustering in the

proximity matrix derived using Euclidean distance P1 [40]. Therefore, applying

k-means clustering in E1 is equivalent to applying k-means clustering in O1. In

this special case, in fact, the original space is already Euclidean. The added value

of CSE in our analysis comes from the ability to assimilate also other arbitrary

measures of proximity into more informative Euclidean spaces.

For a proximity matrix derived from O1 with distance functions other than

Euclidean distance, e.g. P2 using cosine distance, we can also consider it is derived

from a virtually equivalent original feature space O2 using Euclidean distance. In

such case, applying k-means in E2 would be identical to applying k-means in O2.

However, with the use of nonlinear distance functions to derive the proximities, a

direct transformation from O1 to Oi, where i 6= 1, is often not feasible. Analyzing

Ei through the calculation of Pi followed by CSE, achieves the same goal without

the need of finding Oi.

CSE involves eigendecomposition of the proximity matrix [36]. That is, the

embedded space is composed of the eigenvectors of the proximity matrix. In

our application, we analyze only the first few dimensions, which have relatively

71

Proximity-Based Features Chapter 4

Figure 4.1: The conversion between proximity matrices and Euclidean spaces.
CSE preserves the cluster structure through the conversion from a proximity ma-
trix Pi to an embedded Euclidean space Ei.

72

Proximity-Based Features Chapter 4

significant eigenvalues, for feature reduction. Let u be the number of eigenvectors

found from the eigendecomposition, and ev1, ev2, ..., evu be the sorted eigenvalues

such that ev1 ≥ ev2 ≥ ... ≥ evu, we estimate the number of effective dimensions

of the embedded space by:

Deff(i) =

∑u
j=1 evj

ev1

(4.10)

For each embedded space Ei, we apply the outlier analysis algorithm in its corre-

sponding dimensionality of ceil(Deff (i)).

Note that for the seventh Euclidean space, we apply the traditional kernel

PCA approach with an RBF kernel for generating the proximity and deriving an

embedded space, without applying CSE. Our overall strategy is to generate as

many potentially useful features as possible. Since kPCA is known to be one of

the potentially useful transformations, it is worthwhile to include it to enrich our

analysis. In the experimental results demonstrated later, we validate that features

based on Ei’s and the kPCA space are both useful for further improvement of

classification accuracy.

4.3.2 Distribution in the Embedded Space

For one exemplar wafer with two test escapes, Fig. 4.2 shows the distributions

of good chips (blue dots) and the test escapes (red crosses) in the embedded spaces

constructed based on the six types of proximities, with the number of effective

dimensions marked above each distribution. The distribution in the embedded

space constructed using kPCA is shown in Fig. 4.3.

73

Proximity-Based Features Chapter 4

It is clear that, in all the distributions, the good chip population exhibits a

bimodal distribution - the good chips on a wafer are separated into two clusters

through the proximity calculation and the CSE transformation. Fig. 4.4 shows the

mapping of the distribution of good chips on the exemplar wafer in the embedded

space constructed based on cosine distance to a wafer map. In Fig. 4.4a, chips

are colored based on their locations, and the same colors are marked on the wafer

map in Fig. 4.4b to indicate the corresponding locations of the chips on wafer.

From the high-dimensional base feature space FM ∪ FB ∪ FN , the proximities

are able to reveal the underlying horizontal stripe pattern on the wafer even

though in most test items this pattern are not directly observable and shadowed

by some other more dominant types of spatial patterns. In other words, such

stripe spatial variation may be subtle but consistently exists in most of the test

items. Finding such hidden spatial patterns, which is feasible using the proposed

analysis with proximities based on different nonlinear distance functions, could

help the diagnosis of manufacturing/testing process and equipment such as multi-

site probing.

Defined in (4.10), the number of effective dimensions in embedded spaces

based on cosine, correlation, Manhattan (Minkowski with p = 1), and Euclidean

(Minkowski with p = 2) distances are typically no greater than 3. In general,

Minkowski distance with greater p leads to a greater number of effective dimen-

sions, and Minkowski distance with a very small p, say 1, generates little infor-

mation and is insufficient to expose the test escapes as outliers. Details of how

to analyze the distributions for screening test escapes will be discussed in Sec-

tion 4.4.2.

74

Proximity-Based Features Chapter 4

Figure 4.2: The distributions of the chips on a wafer in the first two dimensions
of the CSE embedded spaces based on six different proximity/distance functions.
Blue dots represent the good chips and red crosses mark the positions of test
escapes. The numbers of effective dimensions are shown above each figure.

75

Proximity-Based Features Chapter 4

Figure 4.3: The distribution in the first two dimensions of the embedded space
constructed based on kPCA with RBF kernel.

(a) Distribution of good chips in an embed-
ded space

(b) Corresponding positions on wafer

Figure 4.4: Color-coded distributions of good chips showing the correspondence
of chips in the embedded space and on the wafer. Chips are colored to show their
corresponding positions.

76

Proximity-Based Features Chapter 4

4.4 Data Preparation and Feature

Processing

In this section we discuss how we preprocess the production test data, generate

new features from the embedded spaces, and transform the features for feature

reduction. We also demonstrate a process to identify and remove some abnormal

wafers from our analysis.

4.4.1 Data Standardization

As proposed in Chapter 3, to minimize the wafer-to-wafer variation in pro-

duction test data, we first standardize the measurement values of each wafer

before further analysis. For each test item in each wafer, we identify outlying

measurements using the general Extreme Studentized Deviate (ESD) test [33],

and calculate the robust mean µ and robust standard deviation σ excluding the

outlying measurements. We then standardize the measurements x in each wafer

individually to z-score by:

z =
x − µ

σ
(4.11)

Given an upper bound for the number of outliers h, the general ESD test

performs h hypothesis tests: a test for one outlier, a test for two outliers, and so

on up to h outliers to conclude the number of outliers and identify them. Detailed

implementation of the general ESD test can be found in [34].

77

Proximity-Based Features Chapter 4

4.4.2 Feature Generation

As observed in Fig. 4.2, in all embedded spaces except one constructed based

on Manhattan distance, which takes into account only the first order difference

between chips, one of the two test escapes is exposed as abnormal and far from

the bimodal distribution of the good chips, while the other test escape is indis-

tinguishable from the good chips. Since our goal is to maximize the test escape

detection rate while minimizing the amount of induced yield loss (good chips

misclassified as test escapes), the classification accuracy would be higher if test

escapes could be outlying in as many embedded spaces as possible, and the good

chips that happen to be outlying in one embedded space to be closer to the normal

population in other embedded spaces. Therefore, although one embedded space

seems sufficient to expose the test escape as an outlier in Fig. 4.2, it improves the

robustness of the method to include the distribution information in all embedded

spaces for further analysis.

To analyze the distributions in multiple embedded spaces jointly, we convert

the outlying level of each chip in each embedded space to a score, defined by local

outlier factor (LOF) [38]. LOF is an outlier analysis algorithm that compares the

local density of the sample with the densities of its neighbors. Let k-distance(p)

be the distance between sample p and its k-th nearest neighbor, a reachability

distance is defined by:

reach-distk(p, q) = max{k-distance(q), d(p, q)} (4.12)

where d(p, q) denotes the distance from p to q. Including k-distance(p) in the

78

Proximity-Based Features Chapter 4

reachability distance could produce a more stable result than using d(p, q) directly.

Using a parameter MinP ts for k, the local reachability density of p is defined

as:

lrdMinP ts(p) = 1/

∑

q∈NMinP ts(p)
reach-distMinP ts(p, q)

|NMinP ts(p)|

 (4.13)

where NMinP ts(p) is the set of MinP ts nearest samples of p. Discussions about

choosing the upper and lower bounds for MinP ts can be found in [38]. In our

analysis, the range is set to 5 ≤ MinP ts ≤ 10.

The local outlier factor is then defined as:

LOFMinP ts(p) =

∑

q∈NMinP ts(p)

lrdMinP ts(q)

lrdMinP ts(p)

|NMinP ts(p)|
(4.14)

The LOF value is a relative value indicating the outlying level of a sample

compared with its neighbors. Typically, an LOF value close to (greater than) 1

tends to indicate an inlier (outlier), but the actual threshold is data dependent.

With the local density approach, a sample with some distance to a dense cluster

could have a much greater LOF value than another sample with the same distance

to a sparse cluster, and thus be exposed as an outlier.

Now that we can express the outlying level of each chip by a single LOF

value, we use these LOF values as our new pairwise proximity-based features.

Instead of setting a threshold directly on the LOF values, we use the LOF values

jointly with other base features for machine learning algorithms such as SVM

for classification. Another simple observation from the distributions is that the

detectable test escapes, away from the bimodal distribution, are typically closer

79

Proximity-Based Features Chapter 4

to the origin in the first dimension of the embedded space. Therefore, we also

include the first dimension of the embedded spaces as input features for further

analysis. In total, 14 new features are generated from the 7 embedded spaces

based on pairwise proximities.

4.4.3 Feature Standardization and Outlying Wafer Detec-

tion

There exist wafer-to-wafer variations in production test data, and we stan-

dardize each wafer individually with respect to the robust mean and standard

deviation before any analysis to remove the shifting and scaling variations. How-

ever, although all the wafers we analyzed exhibit the bimodal distributions as in

Fig. 4.2, we have observed noticeable variations in the 14 new features, especially

the LOF values since they are relative values depending on the local distribu-

tion. Thus, we further standardize the new features generated from each wafer

to z-scores using the robust mean and standard deviation calculated from each

wafer, as mentioned in Section 4.4.1, to remove some higher order wafer-to-wafer

variations that were not eliminated in the first standardization.

Fig. 4.5 demonstrates the robust mean and standard deviation of three of

the new features: the first dimension in the embedded spaces constructed using

Minkowski distance with p = 1, 2, 3 as the proximity measure. Each dot in the

figure represents the statistics of one wafer. In Fig. 4.5a, most of the wafers

have their robust means very close to zero in all three features, and in Fig. 4.5b,

the robust standard deviation in the first dimension of the embedded space from

Minkowski distance with p = 1 and that with p = 3 are highly correlated, while

80

Proximity-Based Features Chapter 4

the variation in the dimension of Minkowski p = 2 is relatively negligible. More

importantly, both Figs. 4.5a and 4.5b show some outliers away from the normal

distribution. The wafers with these outlying values have very different character-

istics in the new features from the majority of the wafers and should be excluded

from statistical analysis.

While Fig. 4.5 provides an example to visualize these outliers in three selected

features, we can also apply LOF or some simpler outlier analyses such as Maha-

lanobis distance [41] to quantitatively expose these outlying wafers. Mahalanobis

distance is defined as:

dab =
√

(xa − xb)′C−1(xa − xb) (4.15)

where C is the covariance matrix of the dataset. Intuitively, equation (4.15) com-

putes the distance between two samples in a Euclidean space that is normalized

with respect to the covariance matrix of the original Euclidean space, and there-

fore reveals outliers that has a smaller Euclidean distance to the major population

but lies out of the shape of the major population’s distribution.

4.4.4 Feature Transformation and Classification

After the generation and standardization of the proximity-based features, we

analyze them jointly with the base features for test escape screening. Our objective

has been generating potentially revealing features without custom investigation for

each dataset of which features are really more informative for test escape screening.

Our framework creates a general collection of potentially useful features that can

81

Proximity-Based Features Chapter 4

(a) Robust mean

(b) Robust standard deviation

Figure 4.5: The robust mean and standard deviation of each wafer in the feature
space of three proximity-based features.

82

Proximity-Based Features Chapter 4

be applied to any dataset/product, which are suitable for known feature reduction

and classification algorithms to automatically extract the most useful information

out of them for high accuracy classification. In our experiments, we employ canon-

ical analysis, proposed in Chapter 2, to the joint feature sets, consisting of the

base features and the proximity-based features, for feature reduction. Canonical

analysis is a linear transformation which compacts the multi-dimensional sepa-

ration between classes of samples into the first few dimensions in a transformed

canonical space. In our analysis for test escape screening, there are two classes

of samples: test escapes (positive samples) and good chips (negative samples),

and compacting the separation in the high-dimensional feature space into a small

number of features has been demonstrated to achieve significant runtime reduction

and in some cases, greater classification accuracy, based on a conventional classi-

fier such as SVM. Specifically, we apply C-support vector classification (C-SVC)

provided by LIBSVM [22] as the final classifier. The complete flow of generating

the proximity-based features for statistical analysis is illustrated in Fig. 4.6.

4.5 Experimental Results

In this section we present the results of analyzing the proposed proximity-based

features jointly with the base features derived in Chapter 3 on a continue-on-fail

production test data of an industrial product. We preprocessed the test data to

remove confidential information while preserving all information that is relevant

to the analysis. The dataset includes more than 700 wafers with 1000+ chips per

wafer. We use 200+ wafers as the training set, 200+ wafers as the validation set

83

Proximity-Based Features Chapter 4

Figure 4.6: The complete flow of generating the proximity-based features for
statistical analysis.

84

Proximity-Based Features Chapter 4

for selecting SVM parameters, and the rest 200+ wafers as the testing set. The

test program contains more than 200 parametric test items. For our analysis, we

emulated the test escape population using the process described in Chapter 3 and

derived an emulated test escape population of 560PPM for the testing set.

4.5.1 Classification Accuracy

Fig. 4.7 demonstrates the relative operating characteristics (ROC) curves, i.e.

the test escape detection (true positive) rate vs. the yield loss (false positive)

rate, of the classification based on the base features with and without the new

proximity-based features. The two ROC curves exhibit different trends and cross

each other at a yield loss rate of approximately 0.01%. This indicates that in-

cluding the proximity-based features does provide more information, otherwise

the classification accuracy would not be affected. The additional information pro-

vided, however, does not generalize from the training set to the testing set and

becomes counter-productive at a very low yield loss rate. Given sufficient yield

loss rate (> 0.01%), the additional information from the proximity-based features

starts to help classify more test escapes and improves the test escape detection

rate to 31%, compared with 27% for using the base features alone at a yield loss

rate of 0.027%. Therefore, even after the standardizations on the production test

data and on the proximity-based features for each wafer, there still exist some

significant discrepancies between the training set and the testing set. The cause

of such discrepancies requires further investigation and should be removed to im-

prove the consistency between the training set and the testing set.

Fig. 4.8 shows the ROC curves of classification based on the base features plus

85

Proximity-Based Features Chapter 4

different subsets of the proximity-based features. We investigated the results using

the features based on the two embedding methods (CSE and kPCA) individually.

Similar to Fig. 4.7, the test escape detection rates for using the base features plus

the features based on each of the two embedding methods are lower than that using

only the base features at a lower yield loss rate. In fact, the classification accuracy

based on the base features plus the two kPCA-based features (LOF value and the

first dimension of the embedded space) never surpasses the classification accuracy

based on the base features only, in the range we searched for an optimal pair

of SVM parameters [22]. However, including both subsets of the proximity-based

features for classification could lead to a significantly greater test escape detection

rate than including either of the subsets alone. In this case, incorporating both

subsets of the proximity-based features allows the classification to focus on the

additional information that can be effectively generalized to the testing set and

be free from the discrepancies between datasets.

4.5.2 Performance Overhead

On average, for one wafer with 1000+ chips and 700+ base features, deriving

the pairwise proximity and applying CSE takes 2.4 seconds, while applying LOF

takes another 2.2 seconds on an Intel Xeon Quad-core 3.6GHz system. Compared

with the runtime for the canonical transform followed by SVM classification, which

involves simple linear operations and takes 0.02 second per wafer, the runtime for

the nonlinear proximity/distance functions and the LOF algorithm is relatively

significant. Moreover, the memory usage and runtime for processing the pairwise

proximity grows quadratically with respect to the number of chips per wafer.

86

Proximity-Based Features Chapter 4

Figure 4.7: The ROC curves of classification based on the base features with and
without the proximity-based features.

Therefore, a future direction would be to optimize the algorithms and the flow for

generating the proposed features for better efficiency.

In principle, whether it makes sense or not to apply the proximity-based fea-

tures for statistical tests in addition to the existing base features depends on the

cost and quality requirement of the products. For example, including proximity-

based features in the analysis may not be cost effective for a high-volume product

that requires real-time application of the analysis, e.g. chips for mobile devices.

On the other hand, for an extremely quality demanding product that does not re-

quire real-time analysis, e.g. processors for centralized servers and chips for safety

critical systems, applying the proximity-based features for offline statistical tests

could help screen more test escapes without incurring unacceptable extra cost.

87

Proximity-Based Features Chapter 4

Figure 4.8: The ROC curves of classification based on the base features plus
different subsets of the proximity-based features.

4.6 Summary

This chapter proposes a new set of proximity-based features based on a col-

lection of base features: residual vectors with respect to three different expected

values of test measurements. We demonstrate a complete flow of generating ad-

ditional informative features and the reasoning for each step. To expose the

abnormalities of test escapes, the proposed method first compares each chip with

all other chips on the same wafer in the feature space composed of the base fea-

tures, followed by constant shift embedding to embed the proximity matrix into

an equivalent Euclidean embedding with no distortions. The outlying level of

each chip in the embedded space is then converted into a single score using lo-

cal outlier factor, and the LOF values, jointly with the first dimension of each

88

Proximity-Based Features Chapter 4

embedded space, are used as the new features for test escape screening. The

experimental results based on an industrial production test dataset demonstrate

that the proximity-based features provide additional information revealing the ab-

normalities of some test escapes, which further improves the test escape detection

rate beyond the state-of-the-art methods that are already comprehensive for test

escape detection.

89

Chapter 5

An Artificial Neural Network

Approach

5.1 Introduction

Artificial neural networks (ANNs) have demonstrated great potential and out-

performed many other machine learning algorithms in applications such as image

and voice recognition. An artificial neural network is composed of an input layer,

an output layer, and some hidden layers. Each of the layers contains neurons,

which simulate the biological neurons by summing the weighted values from the

input connections and output an activation result based on a selected activa-

tion function. Artificial neural networks have potential to learn complex concepts

given nonlinear activation functions and multi-layer structures; however, the many

choices for designing the structure and the huge number of parameters for training

the model are also a challenge for developing an ANN solution.

90

An Artificial Neural Network Approach Chapter 5

In this chapter, we propose using a simplified autoencoder [42] structure for

classifying test escapes. In an autoencoder, the input data layer represents the

original features of the sample and the output layer represents the recovered fea-

tures of the sample. The hidden layers usually contain a bottleneck layer, whose

number of neurons is smaller than the number of original features. The network

from the input layer to the bottleneck layer represents a feature compaction pro-

cess. Using unsupervised learning, we train the autoencoder with good chips only

and set the cost function to be the Euclidean distance between the values in the

input and output data layers, so that the autoencoder would derive a smaller

number of features that could best represent the features of the good chip pop-

ulation. Based on the trained autoencoder fitting the good chip population, we

could then classify a query chip based on its Euclidean distance between the cor-

responding values in the input and output layers. A test escape is likely to have

an abnormally large Euclidean distance.

In our proposed structure, we use only one single hidden layer between the

input and output layers and for each neuron, the weighted sum of the input values

is directly bypassed to the neuron’s output connections without using an activation

function. Therefore, the output values are essentially linear combinations of the

input values in the proposed structure. We use an industrial production test

data to demonstrate that with such a configuration and the chosen cost function,

the proposed ANN could achieve higher classification accuracy for test escapes

compared with canonical analysis followed by a support vector machine (SVM)

classification. It was demonstrated in Chapter 2 that canonical analysis could

significantly improve the runtime and, in some cases, the accuracy of a classic SVM

91

An Artificial Neural Network Approach Chapter 5

classifier. In Chapter 4, a collection of nonlinear transformations was proposed to

generate additional information that further improves the test escape detection

rate compared with the framework in Chapter 2. We will demonstrate that the

proposed linear ANN also outperforms this framework that incorporates nonlinear

information, and significantly reduces the runtime and memory usage required

during test application.

In the rest of the chapter, the basic concept of artificial neural networks and

the proposed structure will be discussed in Section 5.2 and Section 5.3. Section 5.4

illustrates data processing techniques for generating features that characterize the

chips under test. Section 5.5 presents the experimental results, and Section ??

concludes the chapter.

5.2 Artificial Neural Networks

An artificial neural network is composed of multiple neurons. Fig. 5.1 demon-

strates an example of an artificial neuron with three input connections and one

output connection. The inputs and outputs of the artificial neuron represent the

dendrites and axons of an actual neuron. To simulate the excitation reaction

of a biological neuron, the weighted sum of the inputs w0x0 + w1x1 + w2x2 goes

through an activation function f() and the activation result f(w0x0 +w1x1 +w2x2)

is passed to the following neurons. An example of common activation functions

is the sigmoid function:

f(x) =
1

1 + e−x
(5.1)

92

An Artificial Neural Network Approach Chapter 5

Figure 5.1: An artificial neuron with three inputs and one output. The output of
a neuron is the activation result of the weighted sum of the neuron’s inputs.

There are three types of layers in an artificial neural network: an input layer,

an output layer, and some hidden layers in between, as shown in Fig. 5.2. The

structure in Fig. 5.2 is a feedforward neural network because no connections be-

tween the neurons could form a cycle, otherwise the structure is called a recurrent

neural network. During the training phase, the input values at each layer are

passed to the neurons for calculating the activation results that are passed to the

next layer of neurons. The error calculated at the output layer is then used to

iteratively update the weights of the neuron connections in each layer backward

until the input layer is reached. This process for updating the weights is called

backpropagation. Through the training phase, a backpropagation algorithm finds

a set of weights as the parameters for the model that minimizes the cost function.

5.3 The Proposed Structure

In this study, we use a specific neural network structure, an autoencoder [42],

for classifying test escapes. In an autoencoder, the input layer and the output

layer both represent the original features of the samples. Typically, the number of

93

An Artificial Neural Network Approach Chapter 5

Figure 5.2: A neural network contains an input layer, an output layer, and some
hidden layers in between.

94

An Artificial Neural Network Approach Chapter 5

neurons in the hidden layers would decrease monotonically from the first hidden

layer until reaching a bottleneck layer, in which the number of neurons is smaller

than the number of original features. The number of neurons in the hidden layers

after the bottleneck layer would then increase monotonically until the last hidden

layer is reached, which is a process of recovering the original features. The first

half of the autoencoder (for feature compaction) and the second half of the au-

toencoder (for feature recovering) are usually symmetrical in terms of the number

of neurons per layer. During training, a distance between the values in the input

and output layers is used as the cost function. Such an autoencoder structure can

derive a small number of features that compact the most critical information into

the neurons in the bottleneck layer. Recovering the original features from these

bottleneck layer features and representing them in the neurons of the output layer

helps define a simple cost function for training - the Euclidean distance between

the original and recovered features.

In our experiments, we trained multiple autoencoder models with different

structures (i.e. the number of neurons in hidden layers and the number of hid-

den layers). We did not apply activation functions on the neurons because there

is no intuitive guideline on what type of information the neural network should

focus on. Therefore, the trained autoencoders were essentially linear transforma-

tions derived with a unique cost function. The exploration of proper activation

functions is part of our future work. The classification accuracy of different au-

toencoder structures is demonstrated in Section 5.5.1, based on which we selected

one structure that achieves the best test escape detection rate at a very low yield

loss rate as the classification model. Fig. 5.3 shows the selected structure, whose

95

An Artificial Neural Network Approach Chapter 5

structure is given below:

• Each neuron directly passes the weighted sum of its input values to the

output without employing an activation function.

• We implement only one hidden layer in the ANN. Let nin and nout be the

number of neurons in the input and output layers respectively, and nh be the

number of neurons of the hidden layer, the structure satisfies the following

two conditions:

nin = nout (5.2)

nh < nin (5.3)

For the dataset we analyzed in this chapter, nin = nout > 700, and we set

nh = 500 empirically.

• The hidden layer and the output layers are both fully-connected layers. In

a fully-connected layer, a neuron is connected to all neurons in its previous

layer.

• The cost function used for training is the Euclidean distance between the

corresponding values in the input and output layers.

We use the Caffe package from UC Berkeley [43] for handling and solving

for the neural network model, and use Adam solver [44] as the backpropagation

algorithm. In our experiment, the Adam solver could fit the training data much

better and converges faster than the traditional stochastic gradient descent (SGD)

method [45]. Details of the Adam solver can be found in [44].

96

An Artificial Neural Network Approach Chapter 5

Figure 5.3: The proposed autoencoder structure.

In our analysis, we describe test escape screening as a two-class classification

problem - to accurately classify the class of test escapes (positive class) and the

class of good chips (negative class). Since test escapes usually have a wide spec-

trum of root causes and good chips typically have similar performances, it’s logical

to develop a framework that would expose test escapes as outliers in some aspects

so that we can screen them. Therefore we chose to train the autoencoder using

good chips only in the training set. In other words, we derive an autoencoder

model that only fits the good chips. If a query chip has different characteristics

from the good chip population captured in the autoencoder model, the feature

values could not be accurately compacted and recovered by the process that was

trained using the good chips, and the Euclidean distance between input and out-

put values should be larger than that of a good chip. We therefore use the resulting

Euclidean distance of each query chip for determining if it is a test escape.

Without the nonlinear activation function, the feature compaction process in

97

An Artificial Neural Network Approach Chapter 5

this structure is effectively a linear transformation. Section 5.5 will demonstrate

that this specific structure and cost function could achieve higher classification

accuracy than a canonical analysis followed by SVM classification and a collection

of nonlinear transformations based on proximity information between each pair of

chips on the wafer.

5.4 Feature Processing

In this section we discuss how we standardize the test data and generate fea-

tures before training the autoencoder.

5.4.1 Data Standardization

Before the test data is used for training or classification, we first standardize

the test data for each item on each wafer to the same scale using a method

proposed in Chapter 3. This standardization reduces the wafer-to-wafer variation

in production test data and therefore is critical for the training and classification

accuracy. The test data of each test item for dies on each wafer is standardized

to a z-score by:

z =
x − µ

σ
(5.4)

where x is the original test measurement, µ is the robust mean, and σ is the robust

standard deviation of the test item. The robust statistics µ and σ are calculated

based on the chips on the wafer excluding the outliers, which are found using a

general Extreme Studentized Deviate (ESD) test [34].

98

An Artificial Neural Network Approach Chapter 5

5.4.2 Feature Generation

In this analysis, we use the residual vectors proposed in Chapter 2 as the

features to characterize the chips under test. Let M be the number of test mea-

surements in the test program, a chip is characterized by an M × 1 vector r:

r = xm − xe (5.5)

where xm is an M × 1 vector of the measurement values for all test items and xe

is the expected values for the test items.

Defined as the difference between the measurement values and expected values,

a residual vector represents how a chip’s measurements deviate from those of the

normal population. Therefore, residual vectors as the features for analysis capture

random variations but remove the effects of systematic variations. Using different

expected values, the corresponding residual vectors will reveal unique aspects of

the chips under test. We use three expected values proposed in Chapter 3 to

generate three distinct types of residual vectors. The three expected values for

each test item are: 1) the mean of the measurements for dies on the same wafer, 2)

the value predicted based on a bilateral-filtered [18] spatial pattern of the wafer,

and 3) the median of the eight closest neighbors’ measurements of the query chip.

5.4.3 Proposed Test Flow

Fig. 5.4 shows the proposed flow of using the autoencoder to generate the

features and classify test escapes. For each query chip, the Euclidean distance

between the values in the input and output layers in the trained autoencoder is

99

An Artificial Neural Network Approach Chapter 5

calculated, and a threshold is set on the Euclidean distance for the classification.

Figure 5.4: The flow of using the proposed autoencoder for test escape screening.

5.5 Experimental Results

In this section we demonstrate the results of analyzing a continue-on-fail in-

dustrial production test data. The test data was preprocessed to remove the

confidential information while preserving all information that is relevant to the

analysis. The dataset includes more than 700 wafers with 1000+ chips per wafer,

and there are more than 200 parametric test items in the test program. Based on

the 200+ parametric test items, the three residual vectors result in 700+ features

for the analysis. We use 200+ wafers as the training set, 200+ wafers as the val-

idation set for selecting parameters of an SVM classifier [22] (for the comparison

described in Section 5.5.2), and the rest 200+ wafers as the testing set. For our

analysis, we emulated the test escape population using the process described in

Chapter 3 and created an emulated test escape population of 560PPM for the

100

An Artificial Neural Network Approach Chapter 5

testing set.

5.5.1 Impact of Structure Design

We have tried multiple structure designs for building the autoencoder model.

Based on the constraint that the number of neurons in the bottleneck layer should

be smaller than that in the input and output layers, we started building the

autoencoder with only one hidden layer and empirically set the number of neurons

in the hidden layer to be 500, based on the classification accuracy. We then built

models with more hidden layers, adding one additional layer at a time while

keeping the trained parameters in the existing layers as the initialization for the

weights. This iteratively procedure is called pretraining [42], which allows the

training process to converge to a good solution faster without searching slowly

around some local optima.

Fig. 5.5 shows the relative operating characteristics (ROC) curves, which plot

the true positive rate (test escape detection rate) versus the false positive rate

(yield loss rate), for autoencoder structures with 1) a single hidden layer with

500 neurons, 2) a hidden layer with 500 neurons followed by another hidden layer

with 250 neurons, 3) three hidden layers with the numbers of neurons in each

being 500, 250, 500, respectively, and 4) three hidden layers with the numbers of

neurons in each being 500, 250, 125, respectively.

In Fig. 5.5a, the two-layer structure could detect more test escapes than the

single-layer structure at a yield loss rate between 5% and 45%. Having three layers

in the structure, however, decreases the test escape detection rate at any given

yield loss rate compared with the structure with only one or two layers. Although

101

An Artificial Neural Network Approach Chapter 5

we did not apply activation functions for the neurons, which means each layer

of the autoencoder is essentially a linear transformation and therefore each au-

toencoder with multiple hidden layers has an equivalent structure with only one

hidden layer (imagine multiplying all the transform matrices representing each

hidden layers to obtain a single transform matrix), the structures with different

numbers of layers still result in very different ROC curves because the backprop-

agation algorithm for updating the weights is impacted by the structure of the

autoencoder.

Fig. 5.5b plots the same ROC curves in the region with very low yield loss

rate, which is usually required for the application of test escape screening. Given

the very low yield loss rate, the structure with a single hidden layer significantly

outperforms the other structures. Although a structure with more hidden lay-

ers and neurons have the potential to learn more complicated characteristics, the

learned characteristics of the good chip population based on the unsupervised

learning does not necessarily help detecting the test escapes. In other words, the

additional learned characteristics of the good chips, if any, may not be unique to

the good chips and therefore does not help expose test escapes as anomalies be-

cause we did not specify any characteristics of the test escapes during the training

phase. In this dataset, the simplest structure with only one hidden layer have

modeled the most critical characteristics of the good chips that could be used to

identify test escapes in the target region of the yield loss rate.

102

An Artificial Neural Network Approach Chapter 5

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Yield Loss Rate (%)

T
e
s
t
E

s
c
a
p
e
 D

e
te

c
ti
o
n
 R

a
te

 (
%

)

1 hidden layer (500 neurons)

2 hidden layers (500−>250 neurons)

3 hidden layers (500−>250−>500 neurons)

3 hidden layers (500−>250−>125 neurons)

(a) The ROC curves of different structure designs of the autoencoder.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

5

10

15

20

25

30

35

Yield Loss Rate (%)

T
e
s
t
E

s
c
a
p
e
 D

e
te

c
ti
o
n
 R

a
te

 (
%

)

1 hidden layer (500 neurons)

2 hidden layers (500−>250 neurons)

3 hidden layers (500−>250−>500 neurons)

3 hidden layers (500−>250−>125 neurons)

(b) The ROC curves in the target yield loss rate region.

Figure 5.5: The ROC curves demonstrate the classification accuracy for different
structure designs of the autoencoder.

103

An Artificial Neural Network Approach Chapter 5

5.5.2 Classification Accuracy

Fig. 5.6 shows the ROC curves of three frameworks for comparison. In the

first framework (proposed in Chapter 2), shown in green triangles, the three types

of residual vectors were used jointly as the input features for a canonical analysis

followed by a support vector machine (SVM). Canonical analysis is a linear trans-

formation that compact the separation between classes in the high-dimensional

feature space into the first few dimensions in the transformed feature space. It

has been demonstrated in Chapter 2 that applying canonical analysis before SVM

for feature reduction can significantly improve the runtime and in some cases

the accuracy for classifying test escapes. In the second framework (proposed in

Chapter 4), shown in blue circles, pairwise proximity features were calculated in

the feature space composed of the three types of residual vectors, and then used

jointly with the three types of residual vectors for canonical analysis followed

by SVM. The proximity features were generated by applying multiple nonlinear

distance/proximity functions on each pair of chips on the same wafer, and the

generated nonlinear information could reveal additional test escapes compared

with existing linear transformation methods at a cost of excessive computation

time and memory usage. The classification accuracy of the proposed autoencoder

framework is marked by the red dots.

As discussed in Chapter 4, including the proximity features for the method

combining canonical analysis and SVM could improve the test escape detection

rate for a yield loss rate being greater than 0.016%, but could degrade the test

escape detection rate at a lower yield loss rate, compared with the same method

without using these non-linear features. The difference between their ROC curves

104

An Artificial Neural Network Approach Chapter 5

0 0.005 0.01 0.015 0.02 0.025 0.03
10

12

14

16

18

20

22

24

26

28

30

32

Yield Loss Rate (%)

T
e
s
t
E

s
c
a
p
e
 D

e
te

c
ti
o
n
 R

a
te

 (
%

)

CA+SVM on original features

CA+SVM on original and proximity features

classification using autoencoder

union of proximity features and autoencoder

Figure 5.6: The ROC curves of three frameworks.

indicates that including the proximity features does provide more relevant infor-

mation for classification in the training set; otherwise the trained model would

not be different. However, the additional information for detecting test escapes

in the training set could not be generalized to the testing set when the yield loss

rate is low, say, below 0.016%. On the other hand, the classification using au-

toencoder could detect more test escapes than the first framework when the yield

loss rate is greater than 0.005%. Compared with the second framework in which

the proximity features are included for analysis, classification using autoencoder

consistently detects more test escapes when the yield loss rate is below 0.018%

and the detection rates of the two classifications become similar at a greater yield

loss rate.

Analysis for the sets of the detected test escapes at a yield loss rate of 0.01% by

105

An Artificial Neural Network Approach Chapter 5

the second framework and the autoencoder is summarized in Fig. 5.7. The autoen-

coder could reveal similar amount of test escapes compared with the framework

that incorporates a collection of nonlinear transformations at this yield loss rate.

Each of these linear and nonlinear frameworks, however, detects a unique subset

of the test escapes - the autoencoder could uniquely detect 5.40% of the test es-

cape population while the framework utilizing the nonlinear transformations could

uniquely detect 4.86% of the test escapes. Out of the 0.01% yield loss population,

0.003% was caused by both methods. Taking the union of the two methods’ re-

sults, we could achieve a test escape detection rate of 30.8% at a yield loss rate of

0.017%, which is better than either of the two methods alone, as marked by the

black square in Fig. 5.6.

(a) The test ecsape detection rate by the two methods.

(b) The yield loss rate by the two methods.

Figure 5.7: The Venn diagrams of the test escape and yield loss populations
resulted from the SVM on proximity features and residual vectors (the method in
Chapter 4) and from the proposed autoencoder.

106

An Artificial Neural Network Approach Chapter 5

5.5.3 Trained Parameters in the Model

We conducted further analysis of the autoencoder structure to gain useful

insights for better understanding of the classification process and for diagnosis of

the test escapes.

Fig. 5.8 shows the distribution of the values of the trained weights in the

hidden layer (i.e. weights on the connections from the input layer to the hidden

layer). Recall that there are more than 700 original features in the input layer and

500 neurons in the hidden layer, and that the hidden layer is a fully-connected

layer, so there are more than 350000 weights in this layer and more than 700000

weights to be optimized during training in the entire structure. In Fig. 5.8, most

of the weights are smaller than 0.5 and centered at 0.

−4 −3 −2 −1 0 1 2 3 4
0

200

400

600

800

1000

1200

Weight Value

N
u
m

b
e
r

o
f
W

e
ig

h
ts

Figure 5.8: The histogram of the trained weights in the hidden layer.

The absolute values of the trained weights in the hidden layer are demonstrated

107

An Artificial Neural Network Approach Chapter 5

in Fig. 5.9 as a color-coded map, in which the horizontal axis corresponds to the

neuron index in the source of the connections (the input layer) and the vertical

axis corresponds to the neuron index in the destination of the connections (the

hidden layer). There are clearly some vertical and horizontal stripe patterns in

the weights, e.g. a bright vertical stripe around source neuron index 200. This

means that these neurons in the first layer, which represents the original features,

are more critical in the derived linear system. A dark horizontal stripe around

neuron index 175, for example, means that these neurons in the hidden layers

are relatively less important than the others. Fig. 5.10, showing the sums of

the absolute values of the weights for each column in Fig. 5.9, demonstrates the

relative importance of the input neurons (original features). Fig. 5.11 sorts the

values in Fig. 5.10, and it shows that most of the original features have similar

significance with a sum of absolute weights between 40 to 60. Those original

features with a value larger than 60 in Fig. 5.11 are more important in the trained

linear system. Such information could indicate which features (test items) are

more important for feature compaction and recovering, and if a test escape is

screened, what features of the test escape are more likely to be different from the

good chip population.

Another aspect of the trained model is shown in Fig. 5.12, in which the pairwise

correlations between columns of weights in Fig. 5.9 are plotted in a logarithmic

scale. Fig. 5.12 is symmetric, i.e. values at location (i, j) and location (j, i) are

identical. A larger value in Fig. 5.12 means that the corresponding two neurons

in the input layer, which represent the original features, have similar patterns in

the trained weights on the connections to the hidden layer. The cross pattern in

108

An Artificial Neural Network Approach Chapter 5

Figure 5.9: The absolute values of the weights in the hidden layer as a color-coded
map.

the middle of Fig. 5.12 could also be analyzed with domain-specific knowledge to

better understand the underlying relations among the test items.

5.5.4 Performance Comparison

On an Intel Xeon Quad-core 3.6GHz system, the classification in the first

framework using canonical analysis and SVM takes 0.02 seconds per wafer, the

second framework takes 4.6 seconds per wafer for generating the proximity features

and classification, and the autoencoder takes 0.1 seconds for the classification per

wafer. Compared with the second framework in which a collection of nonlinear

transformation are applied, which incurs a significant amount of runtime and

memory usage, the linear classification using the autoencoder could reduce the

109

An Artificial Neural Network Approach Chapter 5

100 200 300 400 500 600 700
10

20

30

40

50

60

70

80

Connection Source Index

S
u
m

 o
f
W

e
ig

h
ts

Figure 5.10: The vertical sum of the absolute values of the weights in the hidden
layer.

runtime by 46X and achieve a higher classification accuracy.

5.6 Summary

In this chapter, we propose an autoencoder structure that could classify test

escapes more accurately than the state-of-the-art statistical and machine learning

approaches proposed in Chapter 2 and 4. The specific structure and the cost

function of the autoencoder, though only a linear transformation, could reveal

even more test escapes compared with a framework incorporating a collection of

nonlinear transformations in Chapter 4.

One constraint in this structure is that the number of neurons in the hidden

layer must be smaller than the number of original features in the input/output

110

An Artificial Neural Network Approach Chapter 5

100 200 300 400 500 600 700
10

20

30

40

50

60

70

80

Sorted Connection Source Index

S
u
m

 o
f
W

e
ig

h
ts

Figure 5.11: The sorted sum of the absolute values of the weights in the hidden
layer.

layer. If the number of neurons in the hidden layer is greater than the number of

original features, the autoencoder could fit the training data better (i.e. resulting

in smaller Euclidean distance between the input and output layers for the training

set). However, such a structure would converge to a model that directly bypasses

the values from the input to the output, therefore loses its ability to distinguish

test escapes from the good chips because the model trained this way could fit any

query chip, including test escapes, well.

We tried multiple structure designs for the autoencoder and selected one that

could identify the most test escapes in the target region of the yield loss rate.

The autoencoder can be viewed as a noise removal process, which keeps only the

essential, unique characteristics of the good chip population through the feature

111

An Artificial Neural Network Approach Chapter 5

Figure 5.12: The correlation between each two columns of absolute values of the
weights. Note that the values are in logarithmic scale.

compaction and recovery process. However, since the training process is unsuper-

vised, the model does not necessarily learn characteristics that could distinguish

test escapes from the good chips. Therefore, after building the models it is impor-

tant to select the one with highest classification accuracy based on some validation

dataset.

In addition to the current configuration of the autoencoder, there are still

many possible structures, e.g. the choice of the activation functions, the cost

function, and the solver for updating the weights. An optimal configuration of

the structure for maximizing the test escape detection rate remains part of our

future work.

112

Chapter 6

Conclusion

This research explores machine learning techniques for test escape screening based

on semiconductor production test data. Since in machine learning applications,

having revealing features often has greater impact on the performance than the

selection of classification algorithms, we focus more on feature engineering for

extracting more information from the given test data. Our general guideline for

the research is to include as many potentially useful features as possible and

apply machine learning algorithms that automatically extract the most useful

information for classification. The set of potentially useful feature sets could

therefore be applied to multiple products or datasets without domain-specific

knowledge and the machine learning algorithm would identify the most critical

information for the specific dataset that is being analyzed.

For creating the collection of potentially useful feature sets, we propose using

the residual vectors with three different expected values: the mean of the mea-

surements on the wafer, the bilateral filtered spatial pattern of the wafer, and

113

the median of the eight closest neighbors’ measurements, which results in three

unique feature sets. Pairwise proximity is also proposed as nonlinear transforma-

tions based on the three potentially useful feature sets as a post processing for

generating additional features that reveal more abnormalities of the test escapes.

A linear transformation, canonical analysis, is proposed for effective feature

reduction for the collection of potentially useful features. AdaTest, in which only

the most critical features need to be produced during test application, is pro-

posed to significantly reduce the runtime and memory usage compared with the

framework of canonical analysis followed by SVM. In addition, an autoencoder

classification is developed, which demonstrates the potential of artificial neural

networks for test escape screening.

While we have introduced and developed multiple machine learning frame-

works for screening test escapes and demonstrated their effectiveness, there are

still issues in the machine learning frameworks that could be improved. For ex-

ample, there still exist discrepancy between the training set and the testing set

even after carefully removing the wafer-to-wafer variation and trying to use only

the characteristics that are free from temporal variations as the features for anal-

ysis. There could be potentially more powerful machine learning solutions such

as different ANN structures other than the autoencoder structure we propose.

The research could really benefit from more shared industrial data with real test

escape information, for exploring additional features and evaluating different ma-

chine learning techniques.

114

Bibliography

[1] P. M. O’Neill, Statistical test: A new paradigm to improve test effectiveness
& efficiency, in Proc. Int’l Test Conf. (ITC), Oct., 2007.

[2] N. Sumikawa, J. Tikkanen, L.-C. Wang, L. Winemberg, and M. S. Abadir,
Screening customer returns with multivariate test analysis, in Proc. Int’l
Test Conf. (ITC), Nov., 2012.

[3] H. H. Chen, R. Hsu, P. Yang, and J. J. Shyr, Predicting system level test
and in field customer failures using data mining, in Proc. Int’l Test Conf.
(ITC), Sept., 2013.

[4] Automotive Electronics Council, Guidelines for part average testing, .

[5] P. M. O’Neill, Production multivariate outlier detection using principal
components, in Proc. Int’l Test Conf. (ITC), Oct., 2008.

[6] K. M. Butler, S. Subramaniam, A. Nahar, J. M. C. Jr., and T. J. Anderson,
Successful development and implementation of statistical outlier techniques
on 90nm and 65nm process driver devices, in Proc. Int’l Reliability Physics
Symp., Mar., 2006.

[7] B. E. Stine, D. S. Boning, and J. E. Chung, Analysis and decomposition of
spatial variation in integrated circuit processes and devices, IEEE Trans. on
Semiconductor Manufacturing 10 (1997), no. 1 24–41.

[8] X. Li, R. Rutenbar, and R. Blanton, Virtual probe: A statistically optimal
framework for minimum-cost silicon characterization of nanoscale integrated
circuits, in Proc. IEEE/ACM Int’l Conf. on Computer-Aided Design
(ICCAD), Oct., 2009.

[9] N. Kupp, K. Huang, J. Carulli, and Y. Makris, Spatial estimation of wafer
measurement parameters using gaussian process models, in Proc. Int’l Test
Conf. (ITC), Nov., 2012.

115

[10] A. Nahar, K. Butler, J. Carulli, and C. Weinberger, Quality improvement
and cost reduction using statistical outlier methods, in Proc. IEEE Int’l
Conf. on Computer Design (ICCD), Sept., 2009.

[11] W. C. Riordan, R. Miller, and E. R. S. Pierre, Reliability improvement and
burn in optimization through the use of die level predictive modeling, in
Proc. IEEE Int’l Reliability Phys. Symp., Apr., 2005.

[12] N. Sumikawa, L.-C. Wang, and M. S. Abadir, A pattern mining framework
for inter-wafer abnormality analysis, in Proc. Int’l Test Conf. (ITC), Sept.,
2013.

[13] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical
Analysis. Prentice Hall, fifth ed., 2002.

[14] S. M. Scheiner, Multiple response variables and multispecies interactions, in
Design and Analysis of Ecological Experiments, ch. 6. Oxford Univ. Press,
second ed., 2001.

[15] H.-M. Chang, K.-T. Cheng, W. Zhang, X. Li, and K. Butler, Test cost
reduction through performance prediction using virtual probe, in Proc. Int’l
Test Conf. (ITC), Sept., 2011.

[16] C.-K. Hsu, F. Lin, K.-T. Cheng, W. Zhang, X. Li, J. M. Carulli Jr., and
K. M. Butler, Test data analytics - exploring spatial and test-item
correlations in production test data, in Proc. Int’l Test Conf. (ITC), Sept.,
2013.

[17] S. Zhang, F. Lin, C.-K. Hsu, K.-T. Cheng, and H. Wang, Joint virtual
probe: Joint exploration of multiple test items’ spatial patterns for efficient
silicon characterization and test prediction, in Proc. Conf. Design,
Automation, and Test in Europe (DATE), Mar., 2014.

[18] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in
Proc. IEEE Int’l Conf. Computer Vision, Jan., 1998.

[19] H. Hotelling, Relations between two sets of variates, Biometrika 28 (1936)
321–377.

[20] L. Ning, A. Nahar, W. R. Daasch, K. M. Butler, J. M. C. Jr., and
S. Subramaniam, Burn-in reduction using robust canonical correlation
analysis, in Proc. SRC TECHCON, Oct., 2005.

116

[21] R. A. Fisher, The use of multiple measurements in taxonomic problems,
Annals of Eugenics 7 (1936) 179–188.

[22] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines,
ACM Trans. on Intelligent System and Technology 2 (2011) 27:1–27:27.
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[23] N. Sumikawa, D. Drmanac, L.-C. Wang, L. Winemberg, and M. Abadir,
Forward prediction based on wafer sort data - a case study, in Proc. Int’l
Test Conf. (ITC), Sept., 2011.

[24] S. Krishnan and H. G. Kerkhoff, Exploiting multiple mahalanobis distance
metrics to screen outliers from analog product manufacturing test responses,
IEEE Design & Test 30 (2013), no. 3 18–24.

[25] W. R. Daasch, J. McNames, D. Bockelman, and K. Cota, Variance
reduction using wafer patterns in IddQ data, in Proc. Int’l Test Conf.
(ITC), Oct., 2000.

[26] W. R. Daasch, K. Cota, and J. McNames, Neighbor selection for variance
reduction in IDDQ and other parametric data, in Proc. Int’l Test Conf.
(ITC), Oct., 2001.

[27] R. Madge, B. H. Goh, V. Rajagopalan, C. Macchietto, W. R. Daasch,
C. Schuermyer, C. Taylor, and D. Turner, Screening minVDD outliers using
feed-forward voltage testing, in Proc. Int’l Test Conf. (ITC), Oct., 2002.

[28] R. Madge, M. Rehani, K. Cota, and W. R. Daasch, Statistical
post-processing at wafersort-an alternative to burn-in and a manufacturable
solution to test limit setting for sub-micron technologies, in Proc. IEEE
VLSI Test Symp. (VTS), May, 2002.

[29] W. R. Daasch and R. Madge, Variance reduction and outliers: Statistical
analysis of semiconductor test data, in Proc. Int’l Test Conf. (ITC), Nov.,
2005.

[30] P. Viola and M. J. Jones, Robust real-time face detection, Int’l Jour.
Computer Vision 57 (May, 2004) 137–154.

[31] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line
learning and an application to boosting, Jour. Computer and System
Sciences 55 (Aug., 1997) 119–139.

[32] C. Bishop, Pattern Recognition and Machine Learning. Prentice Hall, 2007.

117

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[33] B. Rosner, Percentage points for a generalized esd many-outlier procedure,
Technometrics 25 (May, 1983) 165–172.

[34] NIST/SEMATECH, e-handbook of statistical methods,
http://www.itl.nist.gov/div898/handbook/ (2003).

[35] S. Sabade and D. M. H. Walker, Improved wafer-level spatial analysis for
IDDQ limit setting, in Proc. Int’l Test Conf. (ITC), Oct., 2001.

[36] V. Roth, J. Laub, M. Kawanabe, and J. Buhmann, Optimal cluster
preserving embedding of nonmetric proximity data, IEEE Trans. on Pattern
Analysis and Machine Intelligence 25 (Dec, 2003) 1540–1551.

[37] B. Schölkopf, A. J. Smola, and K.-R. Müller, Advances in Kernel Methods,
ch. Kernel Principal Component Analysis, pp. 327–352. MIT Press, 1999.

[38] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, LOF: Identifying
density-based local outliers, in Proc. ACM SIGMOD Int’l Conf. on
Management of Data, pp. 93–104, 2000.

[39] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning 20

(Sept., 1995) 273–297.

[40] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[41] P. C. Mahalanobis, On the generalised distance in statistics, in Proc. Nat.
Inst. Sci. India, pp. 49–55, 1936.

[42] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data
with neural networks, Science 313 (2006), no. 5786 504–507.

[43] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, Caffe: Convolutional architecture for fast
feature embedding, arXiv preprint arXiv:1408.5093 (2014).

[44] D. Kingma and J. Ba, Adam: A method for stochastic optimization, in
International Conference for Learning Representations, July, 2015.

[45] L. Bottou, Stochastic gradient descent tricks, Neural Networks: Tricks of the
Trade (2012).

118

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Correlations in Production Test Data
	Machine Learning for Detecting Test Escapes
	Proposed Methods

	Canonical Analysis and SVM
	Introduction
	Feature Development
	Measurement Mean
	Spatial Pattern

	Feature Transformation
	Test Methodology
	Classifier
	Pre-test Analysis
	Test Application

	Experimental Result
	Data Setup
	Sequential Rejectors
	Comprehensive Test
	Test Application
	Another Experimental Scenario

	Summary

	AdaTest
	Introduction
	AdaTest
	AdaBoost
	Cascaded AdaBoost Classifiers

	Data Preparation and Feature Generation
	Data Standardization
	Features for Classification

	Experimental Result
	Emulating Test Escapes
	Classification Accuracy
	Application Runtime and Memory Usage
	Feature Selection

	Summary

	Proximity-Based Features
	Introduction
	Pairwise Proximity
	Constant Shift Embedding
	Concepts and Properties
	Distribution in the Embedded Space

	Data Preparation and Feature Processing
	Data Standardization
	Feature Generation
	Feature Standardization and Outlying Wafer Detection
	Feature Transformation and Classification

	Experimental Results
	Classification Accuracy
	Performance Overhead

	Summary

	An Artificial Neural Network Approach
	Introduction
	Artificial Neural Networks
	The Proposed Structure
	Feature Processing
	Data Standardization
	Feature Generation
	Proposed Test Flow

	Experimental Results
	Impact of Structure Design
	Classification Accuracy
	Trained Parameters in the Model
	Performance Comparison

	Summary

	Conclusion
	Bibliography

