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ABSTRACT 

 

High Active Nitrogen Flux Growth of (Indium) Gallium Nitride by  

Plasma Assisted Molecular Beam Epitaxy 

 

by 

 

Brian Matthew McSkimming 

 

Plasma-assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) has 

evolved over the past two decades due to progress in growth science and in the active nitrogen 

plasma source hardware.  The transition from electron cyclotron resonance (ECR) microwave 

plasma sources to radio frequency (RF) plasma sources has enabled higher growth rates, 

reduced ion damage and improved operation at higher growth chamber pressures.  Even with 

further improvements in RF plasma sources, PAMBE has remained primarily a research tool 

partially due to limitations in material growth rates. 

This dissertation presents results based upon two modifications of a commercially available 

nitrogen plasma source.  These modifications have resulted in record active nitrogen fluxes, 

and therefore record growth rates of more than 7.6 μm/h.  For optimized growth conditions in 
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the standard metal-rich growth regime, the surfaces displayed a clear step-terrace structure 

with an average RMS roughness (3 µm×3 µm) on the order of 1 nm. Secondary ion mass 

spectroscopy (SIMS) impurity analysis demonstrates unintentional oxygen incorporation of 

~1×1016, comparable to the metal organic chemical vapor deposition (MOCVD) grown 

template layer.  Additionally, a revised universal growth diagram is proposed allowing the 

rapid determination of the metal flux needed to grow in a specific growth regime for any and 

all active nitrogen fluxes available. 

High temperature nitrogen rich PAMBE growth of GaN has been previously demonstrated as 

a viable alternative to the challenges presented in maintaining the Ga bilayer required by metal 

rich growth of GaN.  This dissertation also present results demonstrating PAMBE growth of 

GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN 

growth regime and ~100 °C greater than any previously reported PAMBE growth of GaN.  

Finally, a revised growth diagram is proposed highlighting a large growth window available 

at high temperatures.  
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Chapter 1: Introduction 

and Background 

 Plasma-assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) 

has evolved over the past two decades due to progress in growth science and in the active 

nitrogen plasma source hardware.  The transition from electron cyclotron resonance (ECR) 

microwave plasma sources to radio frequency (RF) plasma sources has enabled higher 

growth rates, reduced ion damage [1] and improved operation at higher growth chamber 

pressures [2], [3].  Even with further improvements in RF plasma sources, PAMBE has 

remained primarily a research tool which is in part due to limitations in material growth 

rates and techniques.   

 This thesis explores the growth of GaN and indium gallium nitride (InGaN) thin 

films by PAMBE utilizing a novel modification of a commercially available nitrogen plasma 

source.  This modified plasma source allows for exceptionally high amounts of active 
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nitrogen to be present at the growth surface resulting in record growth rates and growth 

regimes previously unattainable by PAMBE.   

 To begin, a brief discussion of the basic properties of group III-Nitrides will be 

presented to provide an overview of this remarkable material system.  A historical look at 

how GaN has been grown and is grown today then leads into why PAMBE was chosen to be 

the focus of this work.  Finally, a summary of the remaining chapters is presented. 

 

1.1 Basic Properties of III-Nitrides  

 The group III-Nitride system has at its disposal perhaps the largest bandgap range of 

any material system, from ~0.7 eV for InN to more than 6.2 eV for AlN [4].  Figure 1 

demonstrates this wide bandgap range as compared to the in-plane lattice constant for each 

binary compound.  This wide variation in available bandgaps provides the basis for a 

multitude of GaN based devices, from lasers and LEDs to many flavors of transistors. 
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Figure 1 -- Bandgap energy vs in plane lattice constant a, for the binary III-Nitrides.  Note that 

bowing parameters have been neglected. 

 

The most stable crystal structure of GaN and its alloys is the wurtzite crystal 

structure, as shown in Fig. 2.  GaN also exists in other polytypes, for example there have 

been reports of cubic phase (β-GaN) [5] and mixed wurtzite/cubic phase [6].  For this work 

we focused only on wurtzite GaN (α-GaN).     

AlN 

GaN 

InN 
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Figure 2 -- Image of the wurtzite structure of GaN.  The rectangular solid denotes the wurtzite 

crystal structure primitive cell.  The large blue spheres represent gallium atoms, while the 

small green spheres represent nitrogen atoms.   

 

 One of the key features of wurtzite GaN is the lack of centro-symmetry of the 

crystal.  This results in a large spontaneous and pietzoelectric polarization which can be 

manipulated, forming the basis for many electronic and optoelectronic devices.  

Traditionally, most growth has been performed on the c-plane or in the (0001) growth 

direction which is the most polar and thus exhibits the strongest polarization.   

Recently there has been a large amount of interest in growing on semi-polar and non-

polar planes, especially for optoelectronic devices.  Growth of optoelectronic devices on 

(0001) 
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these planes mitigates the quantum confined stark effect (QCSE) which separates the 

electron and hole wavefunctions and results in poor efficiency of optoelectronic devices. 

   

1.2 Growth of III-Nitrides 

1.2.1 Metal Organic Chemical Vapor Deposition (MOCVD) 

 Metal organic chemical vapor deposition (MOCVD) is the industry standard growth 

technique for GaN and GaN devices.  In general, highly pure metal organic precursors are 

flowed over a heated substrate at near atmospheric pressures.  Upon coming into contact 

with a gaseous boundary layer, the metal organic molecules begin to decompose leaving 

behind the metal atoms desired for growth.   

 Early work on MOCVD growth of GaN performed by Profs. Akasaki and Amano 

[7], [8] was hindered by non-uniformities in crystal quality and the lack of observable p-type 

doping.  Through the use of low energy electron beam irradiation [9] p-type conduction was 

observed via Mg doping, although the nature of the technique prevented industrial adoption.   

 Interest in MOCVD of GaN improved dramatically in the early 1990’s with the 

discovery by Nakamura et al. [10], that Mg doping of GaN was compensated by hydrogen 

and this hydrogen could be thermally annealed out of the material providing for high p-type 
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conductivity.  Shortly thereafter Nakamura et al. demonstrated the first candela-class high 

brightness LED [11] and quantum well laser diodes [12].   

 

1.2.2 Molecular Beam Epitaxy (MBE) 

Molecular beam epitaxy (MBE) is the growth technique chosen for this work.  In 

principal, MBE is a relatively simple yet incredibly powerful growth technique.  Elemental 

sources are evaporated in an ultra-high vacuum environment and this evaporated material is 

directed towards a heated substrate.  Upon impinging on the substrate the adsorbed atoms, or 

adatoms, aided with the thermal energy of the substrate diffuse to a native bonding site.  In 

this way, crystal layers are epitaxially grown on the substrate.  

 In practice however, crystal growth by MBE can be a challenging endeavor.  This 

can be especially true for GaN.  The challenge in MBE growth of GaN lies in the group V 

component, specifically nitrogen.  There are two methods of achieving nitrogen: either using 

a nitrogen plasma to provide active nitrogen, or using ammonia (NH3) which pyrolitcally 

decomposes on the substrate surface thus providing the necessary nitrogen for growth.   

MBE of most compound semiconductors (GaAs, InP, etc.) is performed in a group V 

rich environment at temperatures near half of the melting point of the semiconductor [13].  

Contrary to this, PAMBE of GaN is commonly performed at temperatures far lower than 

half of the GaN melting point due to the low decomposition temperature of GaN in vacuum 



Chapter 1: Introduction and Background 

 

 

7 

[14].  N-rich growth at these low temperatures suffers from a faceted rough surface 

morphology [15] which is due to the large kinetic barriers to adatom surface migration [16], 

[17].  To provide sufficient adatom mobility to facilitate high quality material it has been 

demonstrated that Ga-rich growth with a ~2.4 ML laterally contracted bilayer is necessary 

[15], [18], [19].  More specific details regarding PAMBE growth of GaN will be provided in 

the next chapter. 

NH3-MBE traditionally has higher growth temperatures, due to the large 

overpressure of NH3 in the system providing significantly more nitrogen to the sample 

surface.  This overpressure mitigates the crystal decomposition thus allowing for growth 

similar to traditional MBE of III-V compounds.    

 

1.3 Why Molecular Beam Epitaxy of III-Nitrides? 

 Given the fact that MOCVD is the industry standard modern growth technique for 

GaN, then why should we even consider growing III-Nitrides by MBE?  There is no single 

answer to this question, but instead a long list of reasons.   

 First, the ultra-high vacuum environment of MBE minimizes the unintentional 

dopants within the material.  Primarily these include carbon and oxygen, where carbon is a 

known amphoteric dopant and oxygen is the leading culprit of unintentional n-type material.  

Second, MBE throughout multiple material systems has abrupt turn-on/turn-off of 
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intentional dopants.  Most notably in the nitrides is Mg, which has a known memory effect 

in MOCVD reactors.  Combining this abrupt doping ability with the fact that MBE p-type 

material is activated as-grown alone provides a powerful reason for interest in this growth 

technique.  Finally, there have been numerous achievements in MBE grown material 

including record electron mobilities in GaN [20], demonstration of pure AlN interlayers 

[21], [22] and homogeneous InAlN [23]. 

 

1.4 Overview of the Thesis 

 Chapter 2 is devoted to descriptions of the MBE system used throughout our 

research and the experimental techniques involved.  Chapter 3 presents low temperature Ga-

rich growth results across various modifications of the high flux plasma source.  Growth 

rates in excess of 7 µm/h were achieved with smooth surfaces and high crystal quality.  

Chapter 4 describes the exploration of a high temperature growth regime.  GaN was grown 

at temperatures in excess of 850 °C with high crystal quality.  Additionally, a high 

temperature growth window was found and the implications of Ga/N ratio explored.  

Chapter 5 presents work on high nitrogen flux growth of InGaN including the growth of a 

MBE LED.  Finally, in chapter 6 conclusions and future work are presented for the reader.   
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Chapter 2: 

Experimental Details 

and Equipment 

Description 

 The foundation of any research lies both in a strong scientific base and in the 

equipment used.  This chapter describes the growth equipment used throughout our research.  

In addition, some basic experimental details are explained and detailed.   
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2.1 Growth System 

 The molecular beam epitaxy (MBE) system used throughout this work was a 

modified Varian Gen II (referred to as the Nitride Gen II at UCSB and throughout this 

chapter).  The Gen II is traditionally a research and development system, capable of growth 

on a single substrate up to 3” in diameter.   This is in stark contrast to production level MBE 

systems capable of growing on wafers up to 300 mm in diameter, or platens of substrates 

containing 7 x 6” wafers, 14 x 4” wafers, or 23 x 3” wafers [1]. 

 The Nitride Gen II contains 3 distinct vacuum chambers as can be seen in Fig. 1: an 

(a) entry/exit transfer chamber, a (b) buffer chamber and (c) the main growth chamber.   
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Figure 3 – Image of the Nitride Gen II denoting (a) Entry/Exit chamber, (b) Buffer chamber 

and (c) the Growth chamber.   

  

Each chamber is isolated from the other via a VAT gate valve which is rated to leak at less 

than 3 x 10-10 Torr l/s [2]. 

 Samples are transferred between the entry/exit chamber and the buffer chamber via a 

magnetically coupled trolley system.  Currently the system has blocks allowing for sample 

sizes of 1 cm2 x 1 cm2, ¼ of a 2” wafer, a full 2” wafer, and blocks allowing for samples to 

be indium bonded to a Si substrate.   

 

(a) 
(b) 

(c) 
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2.1.1 Entry Exit Chamber 

Ideally, the entry/exit (E/E) transfer chamber, Fig. 2, is the only chamber of the 

system which regularly sees the outside environment.  The E/E chamber is vented to 

atmosphere approximately once per day using house nitrogen gas to allow for loading and 

unloading of samples.   

 

Figure 4 -- Entry exit chamber of the Nitride Gen II 

Pumping on this chamber is accomplished with a Agilant TV301 NAV 

turbomolecular (turbo) pump that is roughed by an Edwards XDS 10 scroll pump.  This 

turbo pump has a pumping capability of 250 l/s for nitrogen, 220 l/s for helium and 200 l/s 
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for hydrogen [3].  The E/E turbo pump is also capable of being opened to the system 

manifold (to be discussed later), allowing for pumping of any chamber by the E/E turbo 

pump.  When the E/E turbo pump is being used for this, it can be isolated from the E/E 

chamber itself via a VAT gate valve. 

Venting of the E/E chamber is accomplished through an in-house developed system, 

containing a baratron pressure gauge, the controller until for the E/E turbo pump and a push 

button to initiate venting of the system.  This in-house system controls the spin-up/spin-

down of the turbo pump as well as has a built-in delay switch for the nitrogen purge to start.   

 

2.1.2 Buffer Chamber   

 The buffer chamber serves as an isolated chamber between the E/E chamber and the 

main growth chamber itself.  It contains a heater station to allow for baking of samples and 

sample holders, capable of temperatures in excess of 800 °C.  Pumping of the buffer 

chamber is accomplished with a 220 l/s ion pump.  In addition, there is a Ti-sublimation 

pump available on the chamber, allowing for rapid pump-down as necessary.  An image of 

the buffer chamber is presented in Fig. 3.   

 This chamber also houses the transfer arms used to load samples into the growth 

chamber and onto the buffer chamber’s heater station.   
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Figure 5 -- The Buffer Chamber on the Nitride Gen II. 

2.1.3 MBE Growth Chamber 

 The heart and soul of the Nitride Gen II is its growth chamber which can be seen in 

Fig. 4.   
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Figure 6 -- The Nitride Gen II growth chamber as seen from the front right of the source 

flanges. 

The growth chamber has 8 source ports, 4 upward facing and 4 downward facing, 

and the way they are used are described below.  There are also numerous in-situ 

characterization tools attached to the growth chamber which will also be described later in 

this chapter.   

 Substrate heating is done with a water-cooled graphite-composite substrate heater, 

capable of temperatures in excess of 1100 °C.  The substrate heater assembly is capable of 

rotation along two azimuths, one for moving the sample from the loading position to the 

growth position and the other for rotation of the sample during growth.   

On the back of the substrate heater is one of the ion gauges, referred to as the beam 

flux monitor.  This ion gauge is used to measure the fluxes of the source material, providing 
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a beam equivalent pressure (BEP).  The second ion gauge in the main chamber is located 

close to the gate valve separating the main chamber from the buffer chamber. 

 Pumping on the main chamber is accomplished with three pumps.  Two CTI-8 cryo 

pumps capable of pumping water at 4000 l/s and nitrogen at 1500 l/s are used during growth.  

To improve the overall background vacuum of the chamber there is a diode ion pump 

capable of pumping nitrogen at 400 l/s.  This pumping provides background pressures in the 

low 10-10 Torr on a nightly basis.     

2.1.3.1 Solid Sources 

 Six of the available source ports on the growth chamber are dedicated to solid 

elemental sources.  Whenever possible, 7N (99.99999%) purity source material is loaded for 

these sources.  The six solid sources are loaded as follows: 

 Gallium – Two source ports are dedicated to Ga.  One source port contains a Titan 

dual-filament high capacity cell (E-Science, Hudson, WI).  This cell is capable of 

being loaded with nearly 450 g of Ga and was instrumental in minimizing 

maintenance during the high growth rate studies.  The other source port contains a 

standard SUMO dual-filament cell (Veeco, St. Paul, MN).  This cell is capable of 

being loaded with approximately 200 g of Ga and serves mainly as a backup in case 

of issues with the main Titan cell.  Also, the second cell can be used for additional 

fluxes, as in the case of having an alloying flux in addition to the main GaN growth 
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flux.  The crucible used in the Titan cell is a graphite crucible, while a standard 

pyrolytic boron nitride (pBN) SUMO crucible is used in the SUMO cell. 

 Aluminum – One source port is dedicated to Al.  This source port contains a standard 

SUMO dual-filament cell (Veeco, St. Paul, MN) although only the base of the cell is 

heated.  Standard loading of the Al cell is approximately 50 g of Al.  The crucible 

used is a wide-lipped pBN SUMO crucible designed for use in Al SUMO cells.  The 

combination of heating on the base of the cell and the wide-lipped crucible increase 

the lifetime of the cell by reducing Al creep at the crucible tip.   

 Indium – One source port is dedicated to In.  This source port contains a standard 

conical dual-filament cell (Applied Epi, St. Paul, MN), loaded with approximately 

150 g of In.   

 Silicon – One source port is dedicated to Si which is a n-type dopant in GaN.  This 

port contains a standard single filament high temperature dopant cell.  While the 

standard metals (Ga, Al, In) are all loaded on upward facing source ports due to the 

molten nature of the material, the Si cell is loaded on a downward facing source port.  

Therefore the Si source material is melted and fused to the crucible at more than 

1600 °C before it is loaded into the chamber.  Standard operating temperatures of the 

cell are below the Si melting point, i.e. the Si doping flux is sublimated from the 

surface of the source material.   
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 Magnesium – The final solid source port is dedicated to Mg which is a p-type dopant 

in GaN.  This port contains a dual gas-source and low temperature dopant cell.  

Unlike Si which is melted into the crucible, the Mg source material remains as a 

solid ingot.  This requires a screen to be put into the pBN crucible to prevent the Mg 

ingot from falling out due to the downward facing nature of the cell.  Similar to Si, 

the standard operating temperatures of the cell are below the Mg melting point and 

the material is sublimated from the surface of the ingot.   

2.1.3.2 Gas Sources 

 The final two available downward facing source ports on the growth chamber are 

used for nitrogen plasma sources.  In addition a dual dopant cell is used allowing for gas 

injection of carbon tetrabromide (CBr4) on the same source port as the solid Mg cell.   

2.1.3.2.1 Riber RFN-50/63Nitrogen Plasma Source 

 All of the work presented in this thesis was performed using the Riber RFN-50/63 

nitrogen plasma source equipped with an auto-tuning attachment.  This is a commercially 

available source which has demonstrated active nitrogen fluxes sufficient for growth rates of 

200-500 nm/h [4].  However, the basis of this thesis was on modifying this plasma source to 

provide active nitrogen fluxes significantly higher than previously used.    

 Three generations of the Riber nitrogen plasma source will be discussed throughout 

this work.  The purpose of the first two generations was increasing the active nitrogen flux, 
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while the third generation was focused on reducing detrimental ion fluxes from the plasma 

source.   

2.1.3.2.2 Veeco Unibulb Nitrogen Plasma Source 

 A second nitrogen plasma source is available on the Nitride Gen II.  This source is a 

standard commercially available Veeco Unibulb source capable of growth rates approaching 

200-500 nm/h.  While this source has been the primary plasma source here at UCSB, it was 

not used for the work presented in this thesis.   

2.1.3.2.3 CBr4 

 Carbon tetrabromide (CBr4) is used to dope films with carbon, thus providing 

capability for the growth of semi-insulating material [5].  While injected into the system as a 

gas source, the actual CBr4 is a white crystal contained in a stainless steel bubbler within a 

commercially available source (Applied Epi, St. Paul, MN).  It is then sublimated from this 

crystal, passing through a gas manifold internal to the source and then through a leak valve 

to drop its effective flux into the 10-8-10-9 Torr beam equivalent pressure (BEP).  

 One of the challenges with the CBr4 setup on the Nitride Gen II is the fact that the 

gas injector is co-located with the Mg source.  This results in a poisoning effect of the Mg 

charge, forming a shell around the pure Mg.  Thus when p-type doping is necessary, the Mg 

cell must be heated to a high temperature for an extended period to decompose this shell, 

allowing the Mg flux to leave the cell. 
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2.1.4 System Manifold 

 In addition to each chamber being attached to each other directly, isolated by VAT 

gate valves, each chamber is also attached to a central system manifold.  Each chamber is 

isolated from the manifold via a metal seal valve.  A portion of the manifold assembly is 

shown in Fig. 5.   

 

Figure 7 -- External portion of the system manifold showing the gas inlets as well as the 

connection to the main chamber's metal seal valve. 

 This manifold allows for venting of any of the three chambers independently as well 

as regeneration of the cryo pumps attached to the main chamber.  On the Nitride Gen II’s 

manifold there is a rather large leak, so purging of the manifold and repumping is necessary 

before any of the isolated chambers (buffer or growth) are exposed.   
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2.1.5 Electronics Cabinet 

 The electronics cabinet of the Nitride Gen II was nearly completely upgraded and 

modernized in 2012.  As can be seen in Fig. 6, the right side of the electronics cabinet 

houses all the systems Eurotherm PID controllers, DC power supplies, MFC controller, 

switches for opening and closing of VAT gate valves attached to one of the cryo pumps and 

the growth chamber’s ion pump, and the growth chamber’s ion gauge controllers. 

 

Figure 8 -- Right side of the Nitride Gen II electronics cabinet. 
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2.1.6 Growth Software 

 The brains of the MBE system (beyond hopefully the growers themselves) is a suite 

of computer software called AMBER (MBE Control, Goleta, CA).  In addition to 

controlling temperature settings and ramp rates of the Eurotherm PID controllers, AMBER 

has built-in recipe writing functionality.  Recipes can be written to control opening and 

closing of shutters, adjustment of temperature settings, starting and stopping substrate 

rotation and much more.  As an example of the interface for AMBER, the temperature 

control screen is presented in Fig. 7. 
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Figure 9 -- Temperature control screen of the Nitride Gen II's operating software, AMBER. 

 

2.2 In-Situ Characterization 

 The ultra-high vacuum nature of MBE allows for a wealth of in-situ characterization 

tools.   
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2.2.1 Reflection High Energy Electron Diffraction (RHEED) 

 One of the most powerful in-situ characterization tools available on the MBE system 

is reflection high energy electron diffraction (RHEED).  In this technique, a RHEED gun 

produces high energy electrons which are directed at the sample surface at a grazing angle.  

These electrons interact with the sample surface and are subsequently reflected and 

diffracted towards a phosphor coated RHEED screen.  The electrons luminescence the 

phosphors in the RHEED screen, allowing for viewing of the diffraction pattern.  On 

modern systems, a computer connected camera is directed at the RHEED screen which can 

then take and save images.   

 The applications of RHEED are vast.  Measuring oscillations of the diffraction 

pattern can provide information of the growth mode of the crystal; if there are oscillations, 

then the crystal is growing in a 2D layer-by-layer growth mode.  No oscillations, but still a 

strong streaky diffraction pattern suggest that the crystal is growing in a 2D step-flow 

growth mode.  When the streaky pattern becomes spotty, it is likely a transition into a 3D 

growth mode.  Chevrons along the spots indicate faceting of the crystal surface, and rings 

through the spots tend to indicate a polycrystalline crystal surface. 

 In PABME growth of GaN, as will be discussed later in this chapter in great detail, 

RHEED plays an important role in monitoring and maintaining the necessary ~2.4 

monolayer (ML) Ga surface coverage during Ga-rich growth.  This is accomplished by 

monitoring the specular spot of the RHEED diffraction pattern along the [112̅0] azimuth.   
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2.2.2 Optical Pyrometry 

 Optical pyrometry allows for measurement of the substrate temperature based upon 

the blackbody emission from the substrate.  Careful calibration of the emissivity of the 

measured surface is required to ensure accurate temperature measurements.  To calibrate the 

emissivity of our Ti-backed substrates, a 5000 Å thick layer of Al is typically deposited on 

the surface.  Then the calibration sample is slowly heated towards 660 °C, i.e. the melting 

point of Al.  When the Al begins to melt and ball up on the surface, then the pyrometer is 

aimed at the surface and the emissivity adjusted as we know what the surface temperature is 

at that point.  For all experiments presented in this thesis, an emissivity of 0.63 was used.  

 

2.2.3 Residual Gas Analyzer 

 A residual gas analyzer (RGA) model RGA 200 (Stanford Research Systems, 

Stanford, CA) resides on a side port of the growth chamber.  The RGA is used to monitor 

the component gases remaining in the growth chamber.  It is effectively a robust quadrupole 

mass spectrometer, measuring mass to charge ratios from 1 to 100+.  This allows early 

detection of issues in the growth chamber, i.e. leaks, by monitoring the ambient atmosphere 

for water, oxygen, argon, etc.  In addition, the RGA is used to helium leak test after any 

maintenance is done on the growth chamber.   
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2.3 Substrates 

 Three different substrates were used throughout the work presented in this thesis.  

Two of them are MOCVD grown templates, one being a conductive substrate of ~3 µm 

GaN:Si on sapphire (STN) with [Si] ~3 x 1018 with threading dislocation density of ~5 x 108 

cm-2.  This template was used for the majority of our work, specifically all growth rate and 

surface morphology characterization.  The other template which was used primarily for Hall 

effect measurement samples was ~3.5 µm of GaN:Fe on sapphire (STINS) with a nominal 

resistance of 10 MΩ and a threading dislocation density of ~ 8 x 108 cm-2. 

 The third and final substrate used is a free-standing GaN wafer (FS-GaN).  These are 

~300 μm thick wafers with a threading dislocation density of ~1-2 x 107 cm-2, and a 

resistivity of < 30 mΩ cm.  All substrates are purchased from St. Gobain (Lumilog). 

 To facilitate heating of the transparent substrate, a 5000 Å layer of Ti is deposited on 

the roughened backside of the single side polished wafers.  This layer of Ti also provides the 

surface to be measured by optical pyrometry as described earlier. 

 Standard pre-loading cleaning of samples is performed in a solvent hood, and 

consists of 3 min in acetone, 3 min in methanol, and 3 min in isopropanol; all sonicated in 

an ultrasonic bath.  Loading of the samples is performed in a clean hood. 

 An example AFM image of the STN substrate is presented in Fig. 8. 
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Figure 10 -- AFM of STN substrate. 

 

2.4 Plasma Assisted Molecular Beam Epitaxy of GaN 

 PAMBE growth of GaN is most commonly performed in a metal rich step flow 

growth mode with a saturated Ga metal wetting layer on the growth surface.  Initial reports 

on homoepitaxially grown PAMBE GaN demonstrated that growth within a metal rich 

regime was necessary to achieve smooth surfaces without severe morphological defects.  

Further, based on reflection high energy electron diffraction (RHEED) patterns Tarsa et al. 

speculated that there was more than one atomic layer of Ga metal present on the growth 

surface [6].  The necessity of a saturated Ga metal wetting layer was confirmed through 

adatom diffusion calculations on the (0001) and (0001̅) surfaces of GaN [7].   These 

calculations demonstrated that there is a significant difference in the Ga adatom diffusion 

barrier, depending whether the surface is Ga saturated or N saturated.  Specifically, the 
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calculated migration barrier for a Ga adatom increases more than fourfold from 0.4 eV on a 

Ga metal saturated (0001) surface to 1.8 eV on a N saturated (0001) surface [7].  An initial 

PAMBE GaN growth diagram was reported demonstrating a transition between an 

intermediate metal rich regime and a droplet regime, with the best surface morphologies 

within the intermediate Ga metal rich regime [8]. 

Additional theory work suggested that the most energetically favorable surface 

coverage for Ga adatom mobility on the (0001) GaN surface would be a laterally contracted 

Ga metal bilayer [9].  This was confirmed through the use of line of sight quadrupole mass 

spectroscopy (LOS-QMS) and reflection high energy electron diffraction (RHEED), the 

border between this intermediate metal rich regime and droplet regime was shown to be ~2.4 

ML of Ga.   Further, a specific RHEED intensity trend of the specular spot along the [112̅0] 

azimuth was reported which allows for determination of the Ga metal surface coverage 

during Ga desorption.  Namely, Brown et al. showed that when desorbing the Ga adlayer, 

the RHEED intensity rises during desorption of the top ~1.4 ML of Ga, followed by a short 

intensity decrease, and finally the RHEED intensity increases during the final desorption of 

the excess Ga on the GaN surface [10] (the studies of RHEED transients follow earlier work 

from Adelmann et al. [11]).  The duration of the change in RHEED depends on both 

substrate temperature and excess Ga coverage.  Subsequently, Koblmüller et al. studied the 

RHEED transient during Ga adsorption.  Again, an initial decay in the RHEED intensity was 

observed, followed by a short recovery in intensity and finally a full decay in RHEED 
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intensity [12].  The initial decay corresponds to the first ~1 ML of Ga adsorbing to the GaN 

surface with the transient intensity rise corresponding to the completion of the first ML of 

Ga.  The continued RHEED intensity decay corresponds to adsorption of the second ~1.4 

ML of Ga, with the decay in the RHEED intensity a result of the complete formation of the 

Ga bilayer, and thus reducing the intensity of the reflected RHEED beam [8], [12].  Similar 

to the desorption trends, while the length in time of the RHEED intensity decay is dependent 

on substrate temperature, the overall trend is dependent only on the actual Ga surface 

coverage. 

PAMBE growth of GaN under metal rich conditions with a saturated Ga wetting 

layer, but without Ga droplets, has produced amongst the high quality GaN by any technique 

as shown by Heying et al. [13].  This was demonstrated with a GaN film having a bulk room 

temperature mobility of 1191 cm2/V • s.  However, slight variations in either substrate 

temperature or Ga/N ratio may result in the formation of Ga droplets.  Growth in the droplet 

growth regime has been demonstrated to affect the surface morphology and electrical 

properties of GaN, as shown by the room temperature mobility dropping to below 800 

cm2/V • s [13]. 

Temperature effects can be mitigated through the use of a modulated growth 

technique [14] in which GaN growth is performed in short periods followed by a prolonged 

Ga desorption at the growth temperature.  The Ga flux used in this technique is fully in the 

droplet growth regime, however because of the frequent interruptions the time average Ga 
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flux is below the droplet growth regime border, leaving a smooth surface which is droplet 

and pit free.  The immediate challenge inherent in this modulated growth technique is both 

the necessity of precise shutter timing to avoid severe droplet formation and the 

technological challenge of increased wear on the shutter mechanism.  Additionally, due to 

growth in what is effectively the droplet growth regime, there may be morphological 

remnants leading to possibly inferior material. 

High temperature nitrogen rich PAMBE growth of GaN [15] is a viable alternative to 

the challenges presented with metal rich growth.  The necessary adatom mobility for 

smooth, reduced defect growth is achieved by growing at temperatures above thermal 

decomposition [16].  Room temperature electron mobilities of more than 1100 cm2/V • s 

were reported.  In addition, conductive atomic force microscopy demonstrated that material 

grown in the high temperature, near stoichiometric regime is free of the vertical leakage 

pathways [17] traditionally associated with metal rich growth.  While these results are 

promising the current generation of RF plasma sources does not provide sufficient active 

nitrogen to push the growth temperatures much above 780 °C before decomposition 

dominates growth, thus limiting this growth technique’s full potential. 
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2.5 Conclusions 

 In this chapter the growth system used throughout this thesis was described in detail.  

In addition, a detailed description of the positives and negatives of PAMBE growth of GaN 

was presented.  Throughout this thesis these ideals will be revisited and it will be 

demonstrated how the high flux nitrogen source modifies and/or improves PAMBE growth 

of GaN.   
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Chapter 3: Low 

Temperature PAMBE 

Growth of GaN 

The main results of low temperature growth experiments are presented in this 

chapter.  As was described in the previous chapter PAMBE GaN growth has been 

traditionally performed in a metal-rich environment.  This is necessary to provide sufficient 

adatom mobility which then results in smooth surfaces and excellent material quality.  Thus 

all samples discussed throughout this chapter were grown in a metal-rich growth 

environment.   

This chapter is broken up into two main sections, correlating with the first two 

generations of the high flux plasma source.  A growth diagram is proposed with the first 

generation results facilitating rapid determination of growth conditions regardless of Ga or 
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N flux.  In addition to determining the dependence of growth rates on the source parameters 

(plasma power and N2 flow), with the second generation of the high flux plasma source 

thick buffers were grown, up to 25 μm thick to demonstrate the source’s capability and to 

explore possible dislocation reduction.  Finally, motivations for the third generation plasma 

source are presented based upon inferior electron mobility samples achieved with the second 

generation of the high flux plasma source.   

 

3.1 First Generation Riber Plasma Source Results 

3.1.1 Growth Rate 

The RF forward plasma source power and nitrogen flow rate were varied for metal 

rich growth conditions to determine the highest GaN growth rate.  All samples were grown 

at a substrate temperature of 730 °C with a saturated Ga wetting layer (~2.4 ML Ga) on the 

sample surface.  Based on previous studies of GaN decomposition [1] it was assumed that 

there would be negligible decomposition at 730 °C.  Growth of GaN with a ~2.4 ML 

saturated Ga wetting layer has previously demonstrated optimal sample surface morphology 

and material quality for growth in the Ga-rich regime [2]–[5].  The saturated Ga wetting 

layer thickness was confirmed by RHEED.  Samples were grown using N2 flow rates of 1, 2, 

3, 5 and 8 sccm.  For each of these N2 flow rates a sample series varying the RF forward 

power supplied to the plasma source was grown and characterized, specifically at 200, 300, 
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400, 500 and 600 Watts.  For each active nitrogen flux, i.e. any specific combination of N2 

flow rate and plasma power, the corresponding Ga flux during growth was determined using 

RHEED to ensure the presence of the 2.4 ML saturated wetting layer.  Each growth rate 

sample consisted of a 45 second AlxGa1-xN layer was grown followed by a timed 5 minute 

layer of GaN growth.  The AlGaN layer provided a sufficiently different lattice constant 

such that Pendellösung thickness fringes were readily apparent from HR-XRD scans as can 

be seen in Fig. 1, and thus the thickness of the GaN layer could be determined from the 

fringe spacing.  In this way the growth rate of GaN, and therefore the active nitrogen flux 

used in growth at the substrate for any given set of plasma conditions was determined with 

high accuracy.   

According to Lebeau et al. [23], the diffracted x-ray intensity for an epitaxial film 

can be calculated as a function of the out-of-plane wavevector 𝑞𝑧 as 𝐼 ∝  |𝐸2|, where 𝑞𝑧 =

4𝜋 sin 𝜃 /𝜆 and the complex amplitude 𝐸 is the sum of terms from the film and substrate as:  

𝐸 = 𝐹𝑓

1 − exp(−𝑖𝑞𝑧𝑐𝑓𝑁)

1 − exp(−𝑖𝑞𝑧𝑐𝑓)
+ 𝐹𝑠

1 − exp (−𝑖𝑞𝑧(𝑐𝑓𝑁 +  𝛿))

1 − exp(−𝑖𝑞𝑧𝑐𝑠)
  

Here 𝑐𝑓 and 𝐹𝑓 (𝑐𝑠 and 𝐹𝑠) are the (001) lattice parameter and unit cell structure factor for the 

film (substrate), 𝑁 is the film thickness in number of unit cells and 𝛿 is the offset between 

the film and substrate.  Considering the fact that diffracted x-ray intensity is proportional to 

|𝐸2|, then the thickness fringing results from a phase mismatch in the above equation. 
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Figure 11 -- HR-XRD ω-2θ scans demonstrating the thickness fringing used to determine 

growth rate.  Plasma source conditions and growth rates for these scans are as follow: (a) 3 

sccm/600 W, 2.52 µm/h; (b) 3 sccm/400 W, 1.77 µm/h; (c) 3 sccm/200 W, 0.59 µm/h. 

The HR-XRD thickness results were confirmed by high-angle angular dark field 

scanning transmission electron microscopy (HAADF-STEM) analysis performed on the 

same sample used for SIMS.  Figure 2 shows the dependence of growth rate on the plasma 

RF forward power and N2 flow rate.  The maximum growth rate was 2.65 µm/h, and this 

was achieved with 600 W forward RF power on the plasma source and a N2 flow rate of 8 

sccm.   
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Figure 12 -- Growth rate map demonstrating the growth rate’s dependence on plasma source 

power and N2 flow rate.  The maximum growth rate achieved was 2.65 µm/h.  The plasma 

source operating parameters used to achieve this growth rate were 600 W RF power and a N2 

flow rate of 8 sccm. 

The steep increase in growth rate with increasing N2 flow rate, and subsequent slow 

decrease in growth rate with increasing N2 flow rate (3 sccm, 200-500 W, 8 sccm 600 W) is 

attributed to variations in the active nitrogen species in the growth flux [6].  It is apparent 

that the flux of whichever species is responsible for the growth of GaN saturates at a 

nitrogen flow rate of approximate 3 sccm, thus the sharp increase in growth rate when the 

nitrogen flow rate is increased from 1 sccm to 3 sccm.  The slow decrease in growth rate at 

nitrogen flow rates greater than 3 sccm likely results from a slight diminishment in the 
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active growth species.  However, the determination of the specific atomic N vs. N2
* active 

nitrogen species ratio at the substrate growth surface is beyond the scope of this work and 

therefore the active nitrogen species responsible for the growth rate variations cannot be 

confirmed at this time.   

 

3.1.2 Surface Morphology 

All GaN thin films grown with the Ga bilayer demonstrate a step flow surface 

morphology across all plasma operating conditions and therefore growth rates.  A matrix of 

AFM images is presented in Fig. 3 that demonstrates this, i.e. regardless of the forward RF 

power or the N2 flow rate a step flow surface morphology was present in all samples.  The 

samples shown in Fig.s 3a, 3b and 3c were grown using 200 W of RF power with N2 flow 

rates of 1, 3 and 8 sccm respectively.  The samples shown in Fig.s 3d, 3e and 3f were grown 

using 600 W of RF power with N2 flow rates of 1, 3 and 8 sccm respectively.  These 

samples demonstrate spiral growth hillocks consistent with PAMBE GaN grown on MOCV 

D template [2].   Individual rms roughness calculations for each of the 3 x 3 µm AFM 

images (Fig. 3, insets) are reported in the caption for Fig. 3; on average they are all on the 

order of 1 nm.  This is consistent with previously reported PAMBE GaN material [7].  Note 

that rms roughness of these locally smooth undulating surfaces resulting from step-flow 
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growth does not guarantee high quality material, just as large rms roughnesses does not 

necessarily suggest poor quality material. 

 

Figure 13 -- 10 x 10 µm and 3 x 3 µm (insets) AFM images of a selection of the growth rate 

calibration samples.  The height scale for all of the 10 x 10 µm images is 15 nm, and the height 

scale for all of the 3 x 3 µm insets is 7.5 nm.   RMS roughness calculations for the 3 µm2 AFM 

images are as follow: (a) 0.56 nm; (b) 0.52 nm; (c) 0.44 nm; (d) 0.72 nm; (e) 1.44 nm; (f) 1.03 

nm.   

Changes of the N2 flow rate or the RF power of the plasma should have little effect 

on the resulting surface morphology as the Ga flux was adjusted in accordance with the 
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plasma source parameters to maintain ~2.4 ML Ga surface coverage.  However, while all 

AFM images demonstrate a surface morphology consistent with step-flow growth as 

expected from PAMBE metal-rich GaN, there are still some morphological differences 

evident in the AFM images.  One possible explanation is that all samples were grown for a 

fixed time to allow and facilitate the measurement of the active nitrogen growth flux.  Thus 

the samples grown with plasma RF forward power of 200 W have a significantly thinner 

AlGaN buffer with a different Al composition and a thinner GaN layer when compared to 

the samples grown with plasma RF forward power of 600 W.  Additionally, the variation in 

surface morphology may be related to the species contained within the active nitrogen flux.  

There have been several reports demonstrating that variations of N2 flow rate into the 

plasma sources can be directly correlated to film quality and surface morphology [6], [8]–

[10].  However, many of these reports rely on optical emission spectroscopy (OES) of the 

plasma from the back of the plasma source as opposed to sampling the plasma at the growth 

surface.  Further, since OES relies on emissions from molecular and atomic electron 

transitions, the proportion of atomic N to N2
* cannot easily be determined.  Thus while there 

is a correlation between the surface morphology and nitrogen plasma source operating 

conditions, the specific growth species responsible for the morphological variations has not 

yet been determined.  For a more detailed discussion on active nitrogen and N vs N2
* please 

see Appendix B.   
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3.1.3 Unintentional Impurity Incorporation 

A GaN SIMS stack was grown at 730 °C and had SIMS analysis performed to 

quantify the unintentional impurity incorporation.  The SIMS stack was grown with 10 

minutes of GaN sandwiched between 60 second AlxGa1-xN marker layers.  The GaN layers 

were grown at 300 W, 400 W and 500 W of RF plasma power at N2 flow rates of 3, 5 and 8 

sccm.  This represents a variation in the active nitrogen flux as determined from the growth 

rate study of more than 300%.  The Al cell temperature was fixed at 1120 °C, therefore 

providing an expected constant flux for each of the marker layers while the Ga flux was 

varied with the active nitrogen flux to maintain the saturated Ga wetting layer.  The sample 

was analyzed for oxygen, boron and hydrogen.  The results of this analysis on oxygen and 

hydrogen are presented in Fig. 4.   
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Figure 14 -- Impurity concentration for oxygen and hydrogen as determined by SIMS.  Only 

the layers grown at nitrogen plasma conditions of 5 & 8 sccm, 500W have any scientific validity 

as interface roughness at the AlGaN marker layers caused smearing of the SIMS data.  SIMS 

analysis performed by Evans Analytical (EAG) Inc, Sunnyvale, CA. 

 

The boron concentration was approximately 7 x 1017 cm-3 throughout the GaN layers 

and approximately 3 x 1018 cm-3 throughout the AlGaN marker layers in the SIMS analysis.  

The only variations in the boron concentration were during the AlGaN marker layers as 

expected due to Al reactions with the pBN crucibles used in standard effusion cells [11].  It 

is believe that the high boron within the GaN layers is a result of etching of the pyrolytic 

Boron Nitride (pBN) crucible within the plamsa source itself.   

Due to interfacial roughness at the AlGaN/GaN interfaces, which was verified by 

HAADF-STEM (HAADF-STEM results curtesy of Dr. Feng Wu), only the data from two of 
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the top three layers can be considered to accurately represent the impurity concentration.  

This corresponds to plasma conditions of 500 W RF forward power and N2 flow rates of 5 

and 8 sccm, with corresponding active nitrogen fluxes of ~34.7 nm/min and ~32.0 nm/min 

respectively.  From the SIMS data in Fig. 4 we can see that the hydrogen concentration is 

approximately 5 x 1016 cm-3 and the oxygen concentration is approximately 1 x 1016 cm-3 in 

these two layers (5 and 8 sccm, 500W), both of which are nearly the same as the hydrogen 

and oxygen levels in the MOCVD grown GaN:Si template.  The detection limits for 

hydrogen and oxygen were 5 x 1016 cm-3 and 9 x 1015 cm-3 respectively.  This demonstrates 

that the GaN grown using these plasma source operating conditions to achieve the high 

active nitrogen flux has effectively the same oxygen and hydrogen impurity concentration as 

commercially available MOCVD material.   

The sample that was grown for SIMS analysis suffered from interface roughening at 

some of the AlxGa1-xN marker layer heterostructure interfaces.  High-angle angular dark 

field scanning transmission electron microscopy (HAADF-STEM) analysis of the SIMS 

stack confirmed that the first two AlxGa1-xN /GaN interfaces from the surface of the sample 

appear abrupt, albeit with minor thickness variations. The third interface from the surface 

had severe faceting effects and all other interfaces below that roughened interface appear to 

be abrupt.  Because of this roughening, the SIMS depth profile was compromised due to 

nonplanar AlGaN interlayers.  We believe that this interfacial roughening is a result of 

unoptimized heterostructure growth and it is not any indication of issues with the nitrogen 
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plasma source.  Further, we believe that the GaN layers between these AlxGa1-xN marker 

layers are of high quality with very low unintentional impurity incorporation.  Each GaN 

layer in the SIMS stack was grown with different active nitrogen fluxes.  For each different 

active nitrogen flux, a different Ga flux was necessary to properly develop the saturated Ga 

wetting layer necessary for high quality growth.  The interfacial roughness is a result of 

prolonged growth interruptions while waiting for the Ga cell temperature to stabilize after 

growth of the AlxGa1-xN.  During this growth interruption for the roughened interface, the 

Ga bilayer was completely desorbed while the sample was still exposed to the active 

nitrogen flux which has been previously demonstrated to produce roughened surfaces in our 

growths.  Therefore it should be noted that the interface roughness was an isolated growth 

issue and is not representative of the high quality material grown using the modified 

nitrogen plasma source.  Further SIMS analysis needs to be performed to properly quantify 

any improvements in unintentional impurity incorporation from the dramatically increased 

growth rates. 

 

3.1.4 Electron Mobility 

To verify that the material grown using the high active nitrogen flux plasma source 

had acceptable material quality, an un-optimized n-type sample was grown to measure 

mobility, electron carrier concentration and sheet resistivity.  The sample was grown at a 

substrate temperature of 730 °C using the previously determined necessary Ga flux 
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corresponding with active nitrogen conditions of 10 sccm N2 gas flow and 400 W RF 

forward power.  The sample structure was a 1 µm thick GaN:Si layer grownwith the Si cell 

temperature of 1135 °C, with an expected Si concentration of approximately 8 x 1016 cm-3.  

To provide an isolation layer, 200 nm of GaN:C was grown using 80 mTorr fore line 

pressure from a commercially available CBr4 source  (Veeco, Inc.).  Carbon doping has been 

previously demonstrated to provide sufficient electrical isolation from the regrowth interface 

[12].  Hall measurements resulted in an average bulk carrier concentration of ~3.1 x 1016 cm-

3, averaged across four measured Van de Pauw patterns.   The average sheet resistivity was 

3692 Ω/□ and the average mobility measured across the sample was 623 cm2/V • s, with a 

peak mobility measured of ~705 cm2/V • s. 

The sample that was grown for mobility measurements had unoptimized growth and 

doping conditions and as a result the sample had an average bulk carrier concentration of ~3 

x 1016 cm-3.  In addition, the sample did not have an n+ doped surface layer to facilitate low 

resistance ohmic contacts.  Minor improvements in the carrier concentration, a thin n+ layer 

to improve sheet resistivity and further optimized growth conditions would be expected to 

markedly improve the values reported. 
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3.1.5 Growth Diagram Modification for High Flux Nitrogen 

Currently available PAMBE GaN growth diagrams [2], [4], [5] are constructed based 

on a fixed active nitrogen flux and thus allow determination of the necessary Ga flux for a 

specific growth regime.  However, any variation in the plasma source’s input N2 flow rate or 

the RF forward power applied results in a change in the active nitrogen flux.  Additionally, 

the active nitrogen flux tends to vary over time due to deposits that clog the holes in the 

plasma source’s endplate aperture.  These changes in active nitrogen flux at the substrate 

surface result in a change in the Ga/N ratio and the growth regime.  Further, the active 

nitrogen flux used in creation of the currently available growth diagrams is of order 5 

nm/min which is significantly lower than the active nitrogen flux available from the 

modified plasma source. 

To improve on the growth diagrams our universal GaN growth diagram is presented 

in Fig 5.  Instead of relying on a fixed nitrogen flux and varying the Ga flux, this growth 

diagram is constructed based upon the difference between the Ga flux (ϕGa) and the active 

nitrogen flux (ϕN*), i.e. ϕGa- ϕN*.  The fluxes are expressed in GaN growth rate units 

(nm/min) as measured on Ga-limited and N*-limited films at temperatures of negligible 

thermal decomposition [2], [4], [13].  In wurtzite GaN, c/2 = 0.259 nm or 1.14 x 1015 

GaN/cm2 areal density correspond to 1 ML. 

Reflection high energy electron diffraction (RHEED) was used to verify this revised 

growth diagram.  As has been previously reported [4], [14], the specific GaN growth regime 
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can be determined by measuring the RHEED intensity transients of the specular spot along 

the [112̅0] azimuth during GaN growth and subsequent Ga desorption. 

The growth diagram has five regions, corresponding to Ga metal surface coverage.  

Regions (1), (2) and (3) have ϕGa- ϕN* > 1, and are therefore in the Ga-rich growth regime.  

Regions (4) and (5) have ϕGa- ϕN* < 1 and are therefore in the N-rich growth regime.   

Region (1) is referred to as the droplet growth regime as there is more than the ~2.4 

ML of Ga metal on the growth surface.  The excess Ga forms metal droplets on the sample 

surface.  When growth is interrupted to desorb the Ga bilayer the Ga droplets feed the 

desorbing bilayer, causing a delay in the rise of the RHEED signal after growth, as shown in 

Fig. 6 (RHEED transient 1).  PAMBE growth of GaN in the droplet regime has been found 

to be step-flow growth and have smooth surfaces.  However, growth in the droplet regime 

has been shown to have detrimental effects on the material quality demonstrated by reduced 

electron mobility [2]. 

Region (2) is referred to as the intermediate growth regime, in which the surface 

coverage of Ga metal is between 1 and ~2.4 ML.  The ideal saturated Ga wetting layer of 

~2.4 ML is found on the border between regions (1) and (2).  The RHEED intensity transient 

in this region shows desorption of the top ~1.4 ML of Ga followed by the desorption of the 

final 1 ML of Ga metal as can be seen in Fig. 6 (RHEED transient 2).  Growth in the 
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intermediate regime has been demonstrated to be in the step-flow growth mode and have 

excellent crystal quality [2].   

 

Figure 15 -- Proposed growth diagram with the following regions: (1) Droplet Region;  (2) 

Region with 1ML – 2.4ML Ga surface coverage; (3) Region with 0-1ML Ga Surface coverage 

above stoichiometric Ga/N fluxes; (4) Region with 0 ML Ga surface coverage, i.e. dry surface 

with Ga/N flux ratios less than one; (5) Region with  some Ga surface coverage below 

stoichiometric Ga/N fluxes, i.e. wet surface with Ga/N flux ratios less than one.  The fluxes are 

expressed in GaN growth rate units (nm/min) as measured at temperatures of negligible 

thermal decomposition.   
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The Ga metal surface coverage in region (3) is between 0 and 1 ML.  Growth of GaN 

in this regime is expected to be a layer-by-layer growth mode, as has been previously shown 

[4].  While the RHEED transient did not have intensity oscillations which would confirm the 

layer-by-layer growth mode, the intensity was not reduced as significantly as during growth 

in either regions (1) or (2) as can be seen in Fig. 6 (RHEED transient 3).   

Regions (4) and (5) are both nitrogen rich growth regimes.  Region (4) is assumed to 

have a dry surface, free from liquid Ga metal.  Samples grown in region (4) have shown 

rough surfaces with 3-dimensional growth and very poor crystal quality [2], [4].  The 

RHEED intensity transient in region (4) shows an immediate degradation of the sample 

surface as can be seen in Fig. 6 (RHEED transient 4).  If growth in this region is continued 

the RHEED signal will not recover and the overall RHEED pattern will become spotty. 

The boundary between regions (4) and (5) is found from the decomposition of GaN 

in vacuum [1], therefore region (5) is assumed to have some liquid Ga metal on its growth 

surface even though it is a nitrogen rich growth regime.  Growth in region (5) has been 

shown to have a layer-by-layer growth mode at temperatures up to 780 °C, smooth surfaces 

and excellent crystal quality as demonstrated through electron mobility measurements [15].  

The RHEED intensity transient increases in intensity during growth in this region, as shown 

in Fig. 6 (RHEED transient 5). 
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Figure 16 -- RHEED intensity transients measured during 40 sec GaN growth pulses 

corresponding directly with each of the 5 regions described in the growth diagram (Region 1 in 

Figure 5 corresponds with RHEED intensity transient (1) and so on).  These transients were 

recorded at a substrate temperature of ~730 °C with an active nitrogen flux of ~2.65 µm/h.  

 

In Fig. 7 we verify the universal growth diagram through the use of RHEED 

intensity transients for two different active nitrogen fluxes.  The active nitrogen fluxes used 

were ~1.3 μm/h and ~2.65 μm/h.  These active nitrogen fluxes correspond to plasma 

operating conditions of 600 W RF forward power and N2 flow rates of 1 sccm and 8 sccm 

respectively.  When comparing the RHEED intensity transients during GaN growth with 

these two fluxes at three different temperatures, we see that the intensity transients 

correspond well with the growth regimes described above.  This demonstrates the 

applicability of this growth diagram regardless of the active nitrogen flux used. 
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Figure 17 -- Ga flux dependent RHEED intensity transients measured during short 40 sec GaN 

growth pulses demonstrating the evolution of the regions described within the proposed 

growth diagram (Fig. 5).  Left images are with plasma conditions of 1 sccm/600 W and the 

right images are with plasma conditions of 8 sccm/600 W, corresponding to active nitrogen 

fluxes of ~1.3 µm/h (~22.1 nm/min) and ~2.65 µm/h (~44.2 nm/min) respectively.  The substrate 

temperatures used during the growths were (a) 720 °C, (b) 760 °C and (c) 800 °C.   

 

3.2 Second Generation Riber Plasma Source 

3.2.1 Growth Rate 

RF forward power and nitrogen flow rate were varied for metal rich growth 

conditions to determine the highest GaN growth rate.  All samples were grown at 730 °C in 

a metal-rich step-flow growth mode verified and controlled through the use of in situ 

reflection high energy electron diffraction (RHEED).  Specifically, the intensity of the 

RHEED specular spot along the [112̅0] azimuth was monitored during growth to allow an 

intensity decay time of approximately 8 seconds and an intensity rise time of 11 seconds.  

Note that these reported RHEED decay and rise times should only depend on temperature 

and excess Ga coverage.  However, the RF plasma N source with the shutter in the closed 
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position still has some surviving active nitrogen flux that can reach the substrate and hence 

affect net growth, desorption and decomposition rates.  While the RHEED intensity decay 

did not consistently show the expected evolution of the ~2.4 ML Ga metal wetting layer, the 

intensity rise did demonstrate the full desorption of the wetting layer as described 

previously, thus providing evidence of near optimal growth conditions [2], [3], [13], [16].  

Based on previous studies of GaN decomposition [1] it was assumed that there would be 

negligible decomposition at 730 °C.  Growth of GaN with a ~2.4 ML saturated Ga wetting 

layer has previously demonstrated optimal sample surface morphology and material quality 

for growth in the Ga-rich regime [2], [3], [13]. 

Samples were grown using N2 flow rates of 5, 10, 15, 20 and 25 sccm.  For each of 

these N2 flow rates a sample series varying the RF forward power supplied to the plasma 

source was grown and characterized, specifically at 200, 300, 400, 500 and 600 Watts.  For 

each active nitrogen flux, i.e. any specific combination of N2 flow rate and plasma power, 

the corresponding Ga flux during growth was determined using RHEED to ensure the 

presence of the 2.4 ML saturated wetting layer.  Each growth rate sample consisted of a thin 

AlxGa1-xN layer was grown followed by a timed layer of GaN growth.  The AlGaN layer 

provided an interface layer such that Pendellösung thickness fringes corresponding to the 

top GaN layer were readily apparent from HR-XRD scans, and thus the thickness of the 

GaN layer could be determined from the fringe spacing.  In this way the growth rate of GaN, 

and therefore the active nitrogen flux used in growth at the substrate for any given set of 
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plasma conditions was determined with high accuracy.  Figure 8 shows the dependence of 

growth rate on the plasma RF forward power and N2 flow rate.  The maximum growth rate 

was ~7.6 µm/h, and this was achieved with 600 W forward RF power on the plasma source 

and a N2 flow rate of 25 sccm. 

 

Figure 18 -- Growth rate map demonstrating the growth rate’s dependence on plasma source 

power and N2 flow rate.  The maximum growth rate achieved was ~7.6 µm/h.  The plasma 

source operating parameters used to achieve this growth rate were 600 W RF forward power 

and a N2 flow rate of 25 sccm. 

 

The steep increase in growth rate with increasing N2 flow rate, and subsequent slow 

decrease in growth rate with increasing N2 flow rate is attributed to variations in the active 
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nitrogen species in the growth flux [6].  For 200 W-400 W of RF forward plasma power the 

peak growth rate can be identified, although it is not at a consistent N2 flow rate as was 

found with earlier modifications of the RF plasma source [17].  For 500 W and 600 W of RF 

forward plasma power this peak growth rate has not yet been reached at a N2 flow rate of 25 

sccm.  Higher flow rates were not explored due to pumping limitations of the MBE growth 

system.   

The active nitrogen species from RF plasma sources which are responsible for the 

growth of GaN remains controversial, with the commonly accepted candidates being atomic 

nitrogen (N) [9] or a meta-stable excited nitrogen molecule (N2
*) [8], [18].  While both N 

and N2
* have sufficient potential energy to overcome the kinetic barrier of GaN growth [19], 

there is still no consensus as to which is the dominant growth species.  For a detailed 

discussion on active nitrogen and N vs N2
* see Appendix B. 

It is apparent that the flux of whichever species is responsible for the growth of GaN 

saturates at a given nitrogen flow rate for each plasma power, representing the maximum 

active nitrogen species available for a given RF forward plasma power.  The slow decrease 

in growth rate at nitrogen flow rates greater than these maximum likely results from a slight 

diminishment in the active growth species.  However, the determination of the specific 

atomic N vs. N2* active nitrogen species ratio at the substrate growth surface is beyond the 

scope of this report and therefore the active nitrogen species responsible for the growth rate 

variations cannot be determined at this time.   
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3.2.2 Surface Morphology 

 All GaN thin films grown with the Ga bilayer demonstrate a step flow surface 

morphology across all plasma operating conditions and therefore growth rates.  A matrix of 

AFM images is presented in Fig. 9 that demonstrates this, i.e. regardless of the forward RF 

power or the N2 flow rate, a step flow surface morphology was present in all samples.  The 

samples shown in Fig. 9a, 9b, 9c and 9d were grown using a N2 flow rate of 5 sccm with RF 

forward powers of 300 W, 400 W, 500W and 600 W respectively.  The samples shown in 

Fig. 9e, 9f, 9g and 9h were grown using a N2 flow rate of 20 sccm with RF forward powers 

of 300 W, 400 W, 500 W and 600 W respectively.  This variation in N2 flow rates and RF 

forward plasma powers correlate to a change in the GaN growth rate from ~29 nm/min to 

~94 nm/min; a variation of the active nitrogen flux of more than 300%.  All samples are 

approximately 75-150 nm in thickness.  These samples demonstrate spiral growth hillocks 

consistent with typical PAMBE GaN grown on MOCVD template [2].  Individual RMS 

roughness calculations for each of the 3 x 3 µm AFM images (Fig. 9, insets) are all on the 

order of 1 nm.  This is consistent with previously reported PAMBE GaN material [7].  As 

discussed previously, the rms roughness of these locally smooth undulating surfaces 

resulting from step-flow growth does not guarantee high quality material, just as large rms 

roughnesses does not necessarily suggest poor quality material. 
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Figure 19 -- 3 µm x 3 µm AFM images of a selection of the Ga-rich high flux growth rate 

calibration samples.  Δz is the height scale from z=0 (black) to z=Δz (white).   

 

Changes of the N2 flow rate or the RF power of the plasma should have little effect 

on the resulting surface morphology as the Ga flux was adjusted in accordance with the 

plasma source parameters to maintain ~2.4 ML Ga surface coverage.  However, while all 

AFM images demonstrate a surface morphology consistent with step-flow growth as 

expected from PAMBE metal-rich GaN, there are still some morphological differences 

evident in the AFM images.  One possible explanation is that the Ga surface bilayer 

accumulated sufficient Ga such that the growth strayed slightly into the droplet growth 

regime away from the optimal Ga-rich growth regime [13].  Typical Ga beam equivalent 

pressures (BEPs) are of the order 2-6 x 10-6 Torr or higher, thus for a fixed growth 
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temperature the exact ideal growth flux may not have been achievable.  This could account 

for some of the slight pitting and damage on the GaN step edges visible in Figs. 9b and 9h.   

A second explanation is that the variation in surface morphology may be related to 

the species contained within the active nitrogen flux.  There have been several reports 

demonstrating that variations of N2 flow rate into the plasma sources can be directly 

correlated to film quality and surface morphology [8], [9], [18], [20].  However, many of 

these reports rely on optical emission spectroscopy (OES) of the plasma from the back of the 

plasma source as opposed to sampling the active nitrogen species at the growth surface.  

Further, since OES relies on emissions from molecular and atomic electron transitions, the 

proportion of atomic N to N2
* cannot actually be determined solely by OES.  Thus while 

there is a correlation between the surface morphology and nitrogen plasma source operating 

conditions, the specific growth species responsible for the morphological variations has not 

yet been determined.  Again, for a detailed discussion on N vs N2
* see Appendix B. 

 

3.2.3 SIMS Doping/Impurity Analysis 

Two SIMS stack were grown at 730 °C and were analyzed to quantify the 

unintentional impurity incorporation as well as to demonstrate the doping capability of 

material grown at high growth rate.  Each SIMS stack was grown first with 200 W and then 

with 500 W of RF plasma power, both at a N2 flow rates of 20 sccm.  This represents a 

variation in the active nitrogen flux as determined from the growth rate study of more than 
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300%.  The Ga flux was varied with the active nitrogen flux to maintain the saturated Ga 

wetting layer.   

The first SIMS stack was grown with ~200 nm layers of GaN:(Si, C) between ~100 

nm UID GaN layers.  The silicon cell temperature was varied from 1225 °C to 1350 °C in 

25 °C increments.  The carbon was introduced via a commercially available CBr4 delivery 

system operated at foreline pressures of 40 and 80 mTorr.  The second SIMS stack was 

grown with ~200 nm layers of GaN:Mg in between ~100 nm UID GaN layers.  The 

magnesium cell was varied from 2.0-2.6% power in 0.2% increments for the 200 W region, 

and from 2.1-2.7% power in 0.2% increments for the 500W region.  The samples were 

analyzed for oxygen and hydrogen unintentional impurities.   
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Figure 20 -- SIMS impurity and doping analysis performed demonstrating the doping 

capabilities of the high growth rate GaN.  The dopants used were Si & C. The top portion of 

the SIMS stack (~2.5 µm) was grown with plasma conditions of 500 W RF forward power and 

N2 flow rate of 20 sccm corresponding to a growth rate of ~85 nm/min (~5.1 µm/h).  The bottom 

portion of the SIMS stack was grown with plasma conditions of 200 W RF forward power and 

N2 flow rate of 20 sccm corresponding to a growth rate of ~26 nm/min (~1.6 µm/h).  SIMS 

analysis performed by Evans Analytical (EAG) Inc, East Windsor, NJ. 

 

The results of Si/C SIMS sample’s analysis are presented in Fig. 10, and the results of the 

Mg SIMS sample’s analysis are presented in Fig. 11.    

 From the SIMS data in Fig. 10 we can see that the silicon and carbon 

intentional dopants demonstrate a top hat profile.  The average turn on/turn off for Si within 

the 500 W region was 12.1 and 11.4 nm/decade respectively.  The average turn on/turn off 
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for Si within the 200 W region was 18.3 and 20.3 nm/decade respectively.  The relatively 

slow turn on/turn off for the 200 W region may be a result of the depth of the SIMS crater 

and other crater effects.  The hydrogen concentration was at detection limit throughout the 

sample, approximately 5 x 1017 cm-3.  The oxygen concentration was approximately 3 x 1016 

cm-3 in the 500 W region, and 1 x 1016 cm-3 in the 200 W region.   

 

Figure 21 -- SIMS impurity and doping analysis performed demonstrating the doping 

capabilities of the high growth rate GaN.  The dopant used was Mg.  The top portion of the 

SIMS stack (~1.5 µm) was grown with plasma conditions of 500 W RF forward power and N2 

flow rate of 20 sccm corresponding to a growth rate of ~85 nm/min (~5.1 µm/h).  The bottom 

portion of the SIMS stack was grown with plasma conditions of 200 W RF forward power and 

N2 flow rate of 20 sccm corresponding to a growth rate of ~26 nm/min (~1.6 µm/h).  SIMS 

analysis performed by Evans Analytical (EAG) Inc, East Windsor, NJ. 
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While all of the doping profiles for magnesium in Fig. 11 are not sharp top hat 

profiles, the initial doping profile for each power does demonstrate a clear top hat.  The 

other profiles’ lack of clear top hats is a result of operating the Mg cell at constant power 

and not allowing sufficient time for the flux to stabilize.  The average turn on/turn off for 

Mg within the 500 W region was 9.8 and 10.7 nm/decade respectively.  The average turn 

on/turn off for Mg within the 200 W region was 17.3 and 16.3 nm/decade respectively.  The 

relatively slow turn on/turn off for the 200 W region may be a result of the depth of the 

SIMS crater and other crater effects.  Further, note that while MOCVD has sharp turn on of 

Mg dopants, there is a significant memory effect within the reactor which causes a very slow 

turn off [24], [25].  The hydrogen concentration was at detection limit throughout the 

sample, approximately 6 x 1017 cm-3.  The oxygen concentration in the 500 W region was 

approximately 9 x 1016 cm-3 and 2 x 1016 cm-3 in the 200 W region. 

The detection limits for hydrogen and oxygen were 4-7 x 1017 cm-3 and 5-6 x 1015 

cm-3 respectively.   

 

3.2.4 Thick Buffer Growth 

 To provide an initial demonstration of the growth capabilities of the modified plasma 

source, 5 μm thick UID, conductive, and resistive buffers layers were grown.  These samples 

were grown with a plasma source forward RF power of 500 W and a N2 flow rate of 15 

sccm corresponding to a growth rate of ~5.5 µm/h.  AFM images of the UID GaN, GaN:Si 
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and GaN:C are presented in Fig. 12a, 12b and 12c respectively.  The conductive buffer was 

grown with a [Si] concentration of ~3 x 1018 cm-3 and the resistive buffer was grown with a 

[C] concentration of ~4 x 1018 cm-3 as determined from the previous SIMS analysis.  From 

Hall Effect measurements, the UID buffer had a carrier concentration of ~2.6 x 1016 cm-3 

and a mobility of 112.8 cm2/V•s corresponding to an electrical resistivity of 2.13 Ω•cm.  The 

conductive buffer had a carrier concentration of ~2.95 x 1018 cm-3 and a mobility of 234.5 

cm2/V•s corresponding to an electrical resistivity of 9.04 x 10-3 Ω•cm.  The carbon doped 

buffer was too resistive to be measured.   

 

Figure 22 -- 3 µm x 3 µm AFM images of the 5 µm thick UID, conductive and resistive buffer 

layers from left to right.  Δz is the height scale from z=0 (black) to z=Δz (white).   

 

Finally, a very thick 25 µm sample was grown to demonstrate the possibility of 

dislocation reduction in thick buffers grown by PAMBE.  X-ray diffraction rocking curves 
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were used as the FWHM of the (202̅1) peak as measured in a skew-symmetric geometry has 

been previously demonstrated to correlate with the edge dislocation density [21].  Before 

growth, the FWHM of the (202̅1) peak was found to be 401.8 arcsec, and after growth it was 

344.5 arcsec.  From rough estimates, this corresponds to a reduction in edge dislocation 

density from ~5 x 108 cm-2 to ~3 x 108 cm-2.  These estimates were based on calibration 

curves developed from plan-view transmission electron microscopy (PV-TEM) data [18], 

[22]. 

 

3.2.5 Electron Mobility 

To verify that the material grown using the second generation high active nitrogen 

flux plasma source had acceptable material quality, un-optimized n-type samples were 

grown at selected growth conditions to measure mobility and carrier concentration.  Samples 

was grown at a substrate temperature of 730 °C using the previously determined necessary 

Ga flux corresponding with active nitrogen conditions of 15 sccm N2 gas flow and 200, 400 

and 500 W RF forward power.  These plasma operating conditions correspond to growth 

rates of 1.58 μm/h, 4.86 μm/h, and 5.51 μm/h respectively.  The sample structure used was 2 

µm GaN:Si, with an expected Si concentration of approximately 8 x 1016 cm-3.  To provide 

an electrical isolation layer, ~1 μm of GaN:C was grown using 80 mTorr fore line pressure 

from a commercially available CBr4 source (Veeco, Inc.).  Carbon doping has been 

previously demonstrated to provide sufficient electrical isolation from the regrowth interface 
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[12].  From these samples, Greek cross Van der Pauw patterns were photolithographically 

defined and mesa isolated to accurately measure the carrier concentration and Hall electron 

mobility.  Prior to processing all samples demonstrated smooth surfaces with step-flow 

spiral growth around dislocations as is expected from PAMBE growth on MOCVD 

templates. 

The results from the Hall effect measurements are presented in Fig 13.  While the 

carrier concentration for these samples do not align well, nor are they all ideal for optimum 

electron mobility there appears to be a definitive trend.  As the plasma power increases, the 

carrier mobility decreases.  This could be an effect of increasing growth rate, however 

another possible explanation is provided in the next section. 

 

Figure 23 -- Mobility and carrier concentration results from selected samples. 
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3.2.6 Detrimental Ion Flux 

 One possible explanation for the poor mobilities despite acceptable carrier 

concentrations described in the previous section could be a large energetic ion flux 

impinging on the sample surface.  Energetic ions have been previously suggested to cause 

knock-on damage resulting in point defects [9].  This was one of the benefits resulting from 

the transition of ECR plasma sources to RF plasma sources, namely a strong reduction in the 

concentration of energetic ions.  The details of the ion measurement process is presented in 

Appendix C.   

 As a result of the uncertainty in the ionic species involved in producing the measured 

ion current (N+ or N2
+) and the uncertainty in the exact dimensions of the probe, it is not 

possible to report the exact energetic ion flux resulting from the Riber high flux nitrogen 

plasma source.  In addition, the energetic electron flux could not be determined as the 

voltage source used was limited to 200 V, and the electron current never reached full 

saturation.   

 

3.3 Conclusions 

 In conclusion, using the first generation Riber nitrogen plasma source we have 

demonstrated growth rates for PAMBE GaN in excess of 2.6 µm/h.  AFM images verify that 

the films were grown in a metal-rich regime near the Ga droplet border, as the films 
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demonstrate a step-flow growth surface morphology.  SIMS analysis demonstrates the low 

unintentional impurity concentration within the grown GaN, specifically a hydrogen 

concentration below the SIMS baseline and an oxygen concentration of 1 x 1016 cm-3.  A 

revised universal growth diagram is proposed allowing the rapid determination of the metal 

flux needed to grow in a specific growth regime for any and all active nitrogen fluxes 

available.  In addition, an emphasis was placed on the high temperature growth regime 

within the growth diagram taking into consideration growth of material deep into the GaN 

decomposition region. 

 Using the second generation of the Riber nitrogen plasma source we have 

demonstrated growth rates for PAMBE GaN in excess of 7.6 µm/h.  AFM images verify that 

the films were grown in a metal-rich regime near the Ga droplet border, as the films 

demonstrate a step-flow growth surface morphology.  SIMS analysis demonstrates the low 

unintentional impurity concentration within the grown GaN, specifically a hydrogen 

concentration below the SIMS baseline and an oxygen concentration of 1 x 1016 cm-3.  The 

SIMS analysis also demonstrates the doping capability of the high growth rate material, with 

top hat doping profiles and sharp dopant turn-on/turn-off even at growth rates of several 

µm/h.  Finally, electron mobility measurements were performed which demonstrated a 

decrease in mobility as plasma power increased and an energetic ion flux was suggested as 

one possible reason for this mobility degradation. 
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Chapter 4: High 

Temperature PAMBE 

Growth of GaN 

Low temperature PAMBE growth of GaN presents many challenges to the grower.  

The necessity of tight control over both the Ga-flux and the substrate temperature to ensure 

the sample remains at the border between the droplet regime and the intermediate regime is 

perhaps the largest of these challenges.   

High temperature PAMBE growth of GaN lifts this tight control on flux and 

temperature by growing at temperatures above GaN decomposition.  Early demonstrations 

[1], [2] of high temperature nitrogen-rich PAMBE growth were most promising.  Record 

electron mobilities were achieved [1] and this high temperature growth environment 

demonstrated low vertical leakage through the sample [3].  However, these early attempts at 
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high temperature growth were in fact limited to temperatures of ~770 °C due to the low 

active nitrogen flux available at the substrate.   

In this chapter we explore this high temperature regime.  With the high active 

nitrogen flux plasma source we are able to achieve growth at temperatures ~150 °C above 

our standard Ga-rich growth conditions, and ~100 °C greater than was previously attainable.  

In addition, a growth diagram is proposed demonstrating the large growth window available 

at these growth temperatures. 

 

4.1 Decomposition Analysis 

Substrate temperature and Ga/N ratio were varied to determine the relative growth 

rates for samples grown at high temperature within the GaN decomposition regime.  All 

samples were grown with plasma conditions of 400 W RF forward power and a N2 flow rate 

of 20 sccm.  To prevent unwanted decomposition and surface roughening, samples were 

heated to the growth temperature and quenched after growth under a N2 flow rate of 20 sccm 

and the plasma was only on during the growth itself.  Based on our study of Ga-rich GaN 

growth rate these plasma conditions correlate to an active nitrogen flux of ~70 nm/min.  The 

Ga-rich GaN growth rate study was performed at low temperature with no evidence of 

decomposition, thus this provides a good estimate of the active nitrogen flux.   
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Each sample consisted of a thin AlxGa1-xN layer followed by a timed layer of GaN 

growth.  Pendellösung thickness fringes were readily apparent from HR-XRD scans, and 

thus the thickness of the GaN layer could be determined from the fringe spacing.  In this 

way the growth rate of GaN was determined with high accuracy.  Subtracting the expected 

growth rate from the measured growth rate provides an accurate decomposition rate for each 

set of growth conditions.  Figure 1 shows the dependence of decomposition rate on growth 

conditions as compared with GaN decomposition in vacuum  [4].  For samples with a Ga/N 

ratio of ~1 and greater, we see an increase in the decomposition rate due to catalytic 

decomposition from the excess Ga.  Conversely, for samples with a Ga/N ratio of <1 we see 

a suppression in decomposition due to recapture of Ga adatoms by the excess active nitrogen 

impinging on the substrate.  These trends in decomposition rate are consistent with those 

reported by Fernández-Garrido et al.[4]. 
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Figure 24 --  Decomposition rates of various Ga/N ratios versus temperature.  For Ga/N ratios 

≥ 1, the decomposition rates are greater than that of GaN in vacuum.  For Ga/N ratios < 1, the 

decomposition rates are less than that of GaN in vacuum.  The solid line is the decomposition 

rate of GaN in vacuum after [4]. 

Decomposition of GaN in vacuum has been reported to have Arrhenius behavior 

with an apparent 3.1 eV activation energy [4].   An Arrhenius plot of select decomposition 

trends is presented in Fig 2.  From this analysis it was found that samples grown with a 

Ga/N ratio ≥ 1 have a smaller decomposition activation energy than Ga/N in vacuum, 

specifically ~2.8 eV.  The activation energy for decomposition of GaN from samples with 

Ga/N < 1 is ~7.9 eV which is much larger than that of Ga/N in vacuum.  Thus the change in 

decomposition rate is not simply a prefactor effect in the Arrhenius equation but rather an 

actual variation in the apparent decomposition activation energy. 
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Figure 25 -- Arrhenius analysis of the natural log of decomposition rates of various Ga/N ratios 

versus 1/kT.  The activation energies for decomposition of samples with Ga/N ratios ≥ 1 are less 

than that of Ga/N in vacuum.  The activation energy for decomposition of GaN from samples 

with Ga/N < 1 is much greater than that of Ga/N in vacuum.  The GaN in vacuum 

decomposition curve is after [4]. 

 

Fernández-Garrido et al.[4] provide a detailed description of the mechanisms 

involved in decomposition of GaN both in vacuum and when growth fluxes are involved.  

Specifically they explain the decreased decomposition under nitrogen-rich growth 

conditions as a result of excess active nitrogen on the growth surface capturing and 

reincorporating Ga adatoms resulting from decomposition.  Under Ga-rich growth 

conditions there is no excess active nitrogen available to recapture decomposing Ga adatoms 
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as they are all expected to be incorporated and used by the incoming Ga flux.  Additionally 

it has been reported that the excess Ga on the sample surface in Ga-rich growth conditions 

may catalytically aid decomposition [5].  This model thus explains the trend we see in 

decomposition, with samples grown under Ga/N ratios ≥ 1having increased decomposition 

with respect to GaN in vacuum and samples grown with Ga/N ratios < 1 having reduced 

decomposition. 

 

4.2 Surface Morphology 

The surface morphology of samples grown at high temperatures was also studied as a 

function of temperature and Ga/N ratio.  Initially we investigated Ga/N ratios of ~0.5, ~1, 

and ~1.5 and temperatures of 825 °C, 850 °C and 875 °C.  The resulting AFM image matrix 

of 3 µm x 3 µm scans is shown in Fig. 3.   

For samples grown with a Ga/N ratio of ~0.5, there was no temperature at which a 

smooth surface could be achieved.  These samples showed surface morphologies consistent 

with earlier reports of lower temperature growth of  GaN in a N-rich environment [6].   

Samples grown with a Ga/N ratio of ~1 demonstrate three distinct regions of varying 

surface morphologies.  First, at 825 °C while the surface had some smooth areas, there were  
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Figure 26 -- 3 µm x 3 µm AFM images of a selection of the high temperature growth rate 

calibration samples.  Δz is the height scale from z=0 (black) to z=Δz (white). 
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large pits across the sample.  This appears to be a result of insufficient Ga adatom mobility 

necessary to have smooth growth across the sample when combating decomposition 

resulting from the lower substrate temperature.  At 850 °C the sample surface was smooth 

with shallow pits resulting from increased decomposition around dislocations.  This 

smoothness was reflected in the 0.51 nm RMS roughness of the AFM image.  At 875 °C the 

sample began to roughen as small GaN clusters start to appear on the surface, suggesting a 

transition into a decomposition related roughening growth mode.   

Samples grown with a Ga/N flux ratio of ~1.5 similarly had different surface 

morphologies across the three growth temperatures.  At 825 °C the sample had a distinctive 

intermediate regime surface morphology [8].  This suggests that the Ga surface coverage at 

this temperature and Ga/N ratio is approaching a full monolayer.  At 875 °C we saw a 

similar smooth surface morphology as was found for samples grown with a Ga/N ratio of ~1 

at 850 °C.  The increased number of shallow pits is likely a result of the increased 

temperature and higher Ga surface coverage.  The sample grown at 850 °C and a Ga/N ratio 

of ~1.5 appears to be a mixture of the intermediate growth found at 825 °C, and the smooth 

growth found at 875 °C. 

Figure 4 explores in finer detail the growth regime around a Ga/N ratio of ~1, and 

temperatures between 830 °C and 860 °C.  As before, the optimum growth regime was 

found at a Ga/N ratio of ~1 at temperatures of approximately 840-850 °C.  Samples grown at 

a Ga/N ratio of ~1.25 showed increasing decomposition pitting as the temperature increases.  
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These shallow pits are likely due to catalyzed decomposition resulting from the excess Ga 

on the surface.  Samples grown at a Ga/N ratio of ~0.75 demonstrate significant surface 

roughness except for the sample grown at 850 °C.  This sample shows a smooth surface 

without the shallow pitting found in the samples with Ga/N ratios ≥ 1. 

 

Figure 27 -- 3 µm x 3 µm AFM images of a selection of the high temperature growth rate 

calibration samples.  Δz is the height scale from z=0 (black) to z=Δz (white). 
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 The trends observed in the surface morphologies of high temperature growth of 

PAMBE GaN can be understood if we consider three different growth regimes.  First at 

lower temperatures (≤ 830 °C) the morphology is dominated by the high potential barrier for 

adatom diffusion.  This explains the intermediate growth regime seen for a Ga/N ratio of 

~1.5 at 825 °C and the rough surface morphology for all other samples at 825-830 °C.  

Second, at intermediate temperatures (840-850 °C) we see a transition to a 2D 

nucleation/layer by layer growth mode.  For samples with a Ga/N ratio of ~1, these surfaces 

are smooth with a number of shallow decomposition pits.  As the Ga/N ratio was increased, 

these surfaces showed an increasing amount of shallow decomposition pits.  Samples with a 

Ga/N ratio of > 1 did not show decomposition pitting, although the growth window appears 

to be much smaller, with the best surface morphology only for the sample with a Ga/N ratio 

of ~0.75 grown at 850 °C.  Finally, the third regime appeared initially for a Ga/N ratio of ~1 

at 860°C.  Starting with this temperature the growth appeared to change into a 

decomposition related roughening regime. This roughening regime is readily apparent in 

Fig. 3 for a Ga/N ratio of ~1.  Samples with lower Ga/N ratios enter into this roughening 

regime at lower temperatures due to their lower growth rate and reduced Ga surface 

coverage.  Samples with higher Ga/N ratios enter the roughening regime at higher 

temperature due to increased Ga adatom surface diffusion corresponding with increased Ga 

surface coverage. 
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4.3 Growth Diagram 

From the decomposition analysis and surface morphology analysis a growth diagram 

depicting the large growth window at high temperatures was produced.  This growth 

diagram is presented in Fig. 5.  Initially this diagram was developed by taking the universal 

growth diagram which was previously developed in chapter 3, which is closely based on 

previously reported growth diagrams [2], [7], and extrapolating the intermediate growth 

regime and N-rich regimes for the significantly higher temperatures and Ga fluxes.  The 

closed circles on the growth diagram represent a selection of the samples grown in the high 

flux regime. 
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Figure 28 -- Growth diagram with the intermediate and N-Rich 3D growth regimes labeled.  

The closed circles represent a selection of the samples referenced throughout this report.  The 

apparent “window” fork high quality growth is between the two solid black lines. 

 

4.4 Electron Mobility 

To verify that the material grown using the second generation high active nitrogen 

flux plasma source had acceptable material quality, an un-optimized n-type sample was 

grown to measure mobility and carrier concentration.  The sample was grown with substrate 

temperature of 840 °C, Ga/N ratio of ~ 1.2,  rf forward plasma power of 600 W and N2 flow 

rate of 13 sccm correlating to an active nitrogen flux of approximately 2.4 µm/h.  Due to 
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decomposition effects, the actual growth rate of the sample was calibrated and determined to 

be ~1.44 µm/h.  The sample structure used was 2 µm GaN:Si, with an expected Si 

concentration of approximately 6 x 1016 cm-3.  To provide an electrical isolation layer, ~1 

μm of GaN:C was grown using 80 mTorr fore line pressure from a commercially available 

CBr4 source  (Veeco, Inc.).  Carbon doping has been previously demonstrated to provide 

sufficient electrical isolation from the regrowth interface [8].  From these samples, Greek 

cross Van der Pauw patterns were fabricated using a photolithographically defined and mesa 

isolated process to accurately measure the carrier concentration and Hall electron mobility.   

The unoptimized mobility sample was grown at a Ga/N ratio of ~1.2, at a substrate 

temperature of 840 °C.  The expected active nitrogen flux was ~2.4 µm/h, and the calibrated 

growth rate for these conditions was ~1.44 µm/h.  A 3 µm x 3 µm AFM image of the sample 

surface before processing is presented in Fig. 6.   

 

Figure 29 -- AFM image of the high temperature mobility sample. 
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 From an average of five Hall effect measurements across the sample, the average 

electron concentration was found to be ~1.82 x 1016 cm-3.  The average electron mobility 

across the sample was 718.05 cm2/V s, with a maximum mobility found to be 733.15 cm2/V 

s.   

 

4.5 Conclusions 

 In conclusion, the high temperature growth regime enabled by this high active 

nitrogen flux was explored.  GaN thin films were grown at various Ga/N ratios and substrate 

temperatures, enabling us to outline a PAMBE high temperature growth window.  AFM 

images verify that optimum growth conditions exist near a Ga/N ratio of ~1, however there 

exists a large window in which samples with smooth surfaces and < 1 nm RMS roughness 

can be grown.  Finally, samples were grown, processed and tested to measure the electron 

mobility achievable within this high temperature growth regime, and a maximum mobility 

of more than 730 cm2/V s was found. 
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Chapter 5: High 

Nitrogen Flux Growth 

of InGaN 

 In industry, InGaN growth is dominated by the MOCVD growth technique.  In 

general, for low indium concentrations, MOCVD growth tends to produce superior 

optoelectronic material.  However when MOCVD attempts to grow at the low temperature 

necessary for higher indium concentration, structural “V-defects” begin to form when the 

material is grown on c-plane [1]. 

 Over the past 10 years, PAMBE growth of InGaN has been a focus of numerous 

researchers around the world.  In 2006, Iliopoulos et al. demonstrated the capabilities of 

PAMBE to grow virtually any composition of InGaN [2].  Building on this work, 

Skierbiszewski and his group have demonstrated lasers which emit light from blue through 
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green [3], as well as demonstrating the industrial capability of this technology [4].  In 2013, 

Gačević et al. proposed a growth diagram for PAMBE growth of InGaN [5].  This growth 

diagram demonstrated that ideal growth of InGaN would be with > 1 monolayer (ML) of 

indium on the surface.  Having < 1 ML of indium on the surface resulted in incomplete 

coalescence of the layers and severe pitting.  Further, Turski et al. performed significant 

work on the material science aspect of PAMBE InGaN growth [6], among which was  

demonstrating the advantages of PAMBE growth with high active nitrogen fluxes.  Most 

notably among these advantages is the ability to grow InGaN at higher substrate 

temperatures while maintaining high indium composition [6]. 

In this chapter we explore the implications of high active nitrogen flux on the growth 

of Indium Gallium Nitride (InGaN).   

 

5.1 Initial InGaN Growth  

 Four series of samples were grown to determine the temperature dependence on 

indium incorporation when growing under the influence of high active nitrogen flux.  All 

samples were grown with rf plasma conditions of 400 W forward rf power and N2 flow rate 

of 20 sccm.  This corresponds to ~70 nm/min of active nitrogen as determined from the 

growth rate study presented in chapter 3.  Of the four series grown, two series were slightly 

nitrogen-rich with III/V flux ratios of ~0.9, and the other two series were slightly metal-rich 
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with III/V flux ratios of 1.1.  For both the nitrogen-rich and metal-rich series, one set of 

samples was grown with an In/Ga ratio of ~1 and the other set of samples was grown with 

an In/Ga ratio of ~5.  All samples were grown for five minutes. 

 The AFM results from the first sample series are presented in Fig. 1.  The 

corresponding XRD results are presented in Fig. 2.  This first series was grown slightly 

nitrogen-rich, with a III/V ratio of ~0.9 and an In/Ga ratio of ~1.   

 

Figure 30-- AFM results from the first InGaN sample series with III/V ratio of ~0.9 and an In/Ga ratio 

of ~1. 
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From the 3 μm x 3 μm AFM images presented in Fig. 1 we see that for a In/Ga ratio of ~1 

there is incomplete coalescence of the layer for samples grown at 680 °C, 660 °C and 640 

°C.  This is consistent with the growth diagram proposed by Gačević et al. for growth in the 

intermediate metal-rich regime with < 1 monolayer (ML) of indium on the surface [5].  For 

samples grown colder than 640 °C we see 3D growth and surface roughening suggesting 

relaxation of the films.  

 

Figure 31-- XRD Omega/2Theta scans of the first InGaN sample series with III/V ratio of ~0.9 and In/Ga 

ratio of ~1. 
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As can be seen from the HR-XRD scans in Fig. 2, the indium composition of the 

InGaN layers varies from 4% at 680 °C to 47% at 580 °C.  Paired off-axis open detector 

rocking curve measurements were performed on the sample grown at 640 °C, which was 

found to be ~93% relaxed.   

 

Figure 32 -- AFM results from the second InGaN sample series with III/V ratio of ~0.9 and an In/Ga 

ratio of ~5. 
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From the 3 μm x 3 μm AFM images presented in Fig. 3 we see that for a In/Ga ratio 

of ~5 there is complete coalescence of the layer for samples grown at 680 °C, 660 °C and 

640 °C.  This is consistent with the growth diagram proposed by Gačević et al. for growth in 

the intermediate metal-rich regime with > 1 monolayer (ML) of indium on the surface [5].  

For samples grown colder than 640 °C we see 3D growth and significant surface roughening 

suggesting relaxation of the films. 

 

Figure 33 -- XRD Omega/2Theta scans of the second InGaN sample series with III/V ratio of ~0.9 and 

In/Ga ratio of ~5. 
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As can be seen from the HR-XRD scans in Fig. 4, the indium composition of the 

InGaN layers varies from 17% at 680 °C to 47% at 600 °C.  For the sample grown at 580 °C 

there appears to be some phase separation with two peaks in the XRD scan corresponding to 

indium compositions of 93% and 77%.  Paired off-axis open detector rocking curve 

measurements were performed on the sample grown at 660 °C, which was found to be ~4% 

relaxed.   

 

Figure 34 -- AFM results from the third InGaN sample series with III/V ratio of ~1.1 and an In/Ga ratio 

of ~1. 
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From the 3 μm x 3 μm AFM images presented in Fig. 5 we see that for a In/Ga ratio 

of ~1 there is incomplete coalescence of the layer for samples grown at 680 °C and 660 °C.  

This is consistent with the growth diagram proposed by Gačević et al. for growth in the 

intermediate metal-rich regime with < 1 monolayer (ML) of indium on the surface [5].  For 

samples grown colder than 660 °C we see 3D growth and surface roughening suggesting 

relaxation of the films. 

 

Figure 35 -- XRD Omega/2Theta scans of the third InGaN sample series with III/V ratio of ~1.1 and 

In/Ga ratio of ~1. 
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As can be seen from the HR-XRD scans in Fig. 6, the indium composition of the 

InGaN layers varies from 6% at 680 °C to 44% at 580 °C.  Paired off-axis open detector 

rocking curve measurements were performed on the sample grown at 640 °C, which was 

found to be ~96% relaxed.   

 

Figure 36 -- AFM results from the fourth InGaN sample series with III/V ratio of ~1.1 and an In/Ga 

ratio of ~5. 
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From the 3 μm x 3 μm AFM images presented in Fig. 7 we see that for a In/Ga ratio 

of ~5 there is complete coalescence of the layer for samples grown at 680 °C, 660 °C and 

640 °C.  This is consistent with the growth diagram proposed by Gačević et al. for growth in 

the intermediate metal-rich regime with > 1 monolayer (ML) of indium on the surface [5].  

Indium droplets are observed for the samplse grown at 640 °C and colder suggesting a 

transition into a droplet growth regime.  For samples grown colder than 640 °C we see 3D 

growth and significant surface roughening suggesting relaxation of the films. 

 

Figure 37 -- XRD Omega/2Theta scans of the fourth InGaN sample series with III/V ratio of ~1.1 and 

In/Ga ratio of ~5. 
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As can be seen from the HR-XRD scans in Fig. 8, the indium composition of the 

InGaN layers varies from 16% at 680 °C to 49% at 600 °C.  For the sample grown at 580 °C 

there appears to be some phase separation with multiple peaks in the XRD scan with the 

largest peak providing an indium composition of 89%.  Paired off-axis open detector 

rocking curve measurements were performed on the sample grown at 660 °C, which was 

found to be ~4% relaxed.   

 

5.2 Growth of a PAMBE LED 

 Using the information gained from the InGaN growth calibrations performed, two 

LED samples were grown.  Both samples were grown with In/Ga ratios of ~5, one sample 

having the InGaN grown slightly nitrogen-rich (III/V ~0.9) and the other sample having the 

InGaN active region grown slightly metal-rich (III/V ~1.1).  A schematic of the LED 

structure is presented in Fig. 9.   
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Figure 38-- Schematic of LED structure grown. 

  

 The entire sample was grown at a substrate temperature of 660 °C, so there was no 

growth interrupt at the active region to decrease temperature for the InGaN growth.  The 

only growth interrupt in the sample was for adjustment of the Mg cell, allowing for the p++ 

layer to be grown. 

 A 3 μm x 3 µm AFM image of the sample surface after growth is presented in Fig. 

10.  Note that while there appears to be some areas of incomplete coalescence of the sample 

surface, overall the surface appears to be smooth and of high quality.    



Chapter 5: High Nitrogen Flux Growth of InGaN 

 

 

101 

 

Figure 39 -- 3 μm x 3 µm AFM image of the LED sample surface. 

 

 While the growth of the LED samples appeared to be performed will and with ample 

calibrations, under indium-dot contacts to the p- and n-type regions neither sample produced 

any electroluminescence (EL).  Both samples were biased up to 20 V, and while there 

appeared to be turn on of the pn-junctions within the sample, they emitted no light.  Further, 

the active regions emitted no photoluminescence (PL) when excited either with a 405 nm 

laser or a 325 nm HeCd laser.   

 However, when the sample was excited in using cathodoluminescence (CL), there 

does appear to be a weak emission centered at ~430 nm.  The CL spectrum is presented in 

Fig 11.   
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Figure 40 -- Cathodoluminescence spectrum of the LED structure. 

 

 From the CL spectrum we see not only the weak InGaN emission centered at ~430 

nm, but also a strong yellow band emission suggesting that there may be a significant 

concentration of point defects in the material.   
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Figure 41 -- SEM image of the active region of the LED sample. 

 

 Finally, in an attempt to determine the cause of the lack of EL or PL emission of the 

LED the sample was cleaved and the active region was imaged using scanning electron 

microscopy (SEM).  The resulting SEM image is presented in Fig. 12.  While the quantum 

wells (QWs) are visible in the SEM image, note that the thickness of the active region 

appears to be > 100 nm.  The n- and p-type regions when imaged had thicknesses as 

expected from growth rate calibrations, however the InGaN active region was nearly twice 

the expected thickness.  Thus instead of ~3 nm InGaN QWs, it is believed that the QWs are 

nearly 10 nm, providing one possible explanation for the lack of EL and PL emission. 
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5.3 Conclusions 

 In conclusion, InGaN samples were grown using the Riber high active nitrogen flux 

plasma source.  While the samples were grown to a thickness such that high indium 

composition material entered a 3D growth regime and had rough surfaces, samples with 

indium compositions from ~4% through more than 80%.  It is important to note that the 

growth temperatures used throughout the composition study are more than 100 °C above 

standard InGaN growth temperatures.  The high indium incorporation at greatly increased 

temperatures is a result of the ~70 nm/min active nitrogen flux.   

 Finally, LED structures were grown and tested.  While there was no EL or PL and 

only weak CL emission, the samples appeared to be of high quality.  Inaccuracies in the 

InGaN growth rates resulted in much thicker than expected QWs, thus providing a viable 

reason for the lack of light emission.  
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Chapter 6: Conclusions 

and Future Work 

 In this thesis, we explored the capabilities of a high flux nitrogen plasma source, and the 

implications of a high active nitrogen flux on the growth of GaN and InGaN.  Specifically, the 

work presented in this thesis should serve as a guideline towards making PAMBE an industrially 

relevant growth technique.  While MBE may never surpass MOCVD’s optoelectronic 

capabilities and market saturation, there does exist a vast amount of opportunities within 

electronic devices. 

 The detailed mapping of growth rates possible with the high flux nitrogen plasma source 

was presented in chapter 3.  Here we demonstrated capabilities of more than 2.6 µm/h with the 

first generation Riber plasma source, and growth rates of more than 7.5 µm/h with the second 

generation of the Riber plasma source.  Both generations of plasma sources bring PAMBE 

metal-rich growth rates in line with traditional MOCVD growth rates of GaN, and demonstrate 

the capability of growth rate scaling for active regions as necessary.  A revised universal growth 
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diagram was proposed allowing for rapid determination of growth conditions regardless of the 

available active nitrogen flux.   

 In chapter 4 high temperature growth of GaN was explored using the full capabilities of 

the high active nitrogen flux source.  Not only was it shown that high quality surfaces could be 

achieved, but in addition a growth map was proposed suggesting a high temperature growth 

window.  It is here that the true power of the high flux source was demonstrated, and it is in this 

high temperature growth regime that the most potential for PAMBE lies.   

 In chapter 5 an alloy, InGaN, was explored using the high active nitrogen flux source.  

Here, growth temperatures far exceeded what was previously achievable for any appreciable 

indium composition.  Both nitrogen-rich and metal-rich growth conditions were explored, with 

neither one necessarily being better than the other at this time. 

 This thesis lays the groundwork for a vast amount of future work.  Truly the possibilities 

are only limited by the imagination of the reader.  However, some immediate suggestions 

include: 

 High-temperature p-GaN – In this work we only scratched the surface on possible high 

temperature PAMBE growth of GaN.  We presented some results on high temperature 

electron mobility, but if both n-GaN and p-GaN could be achieved at high temperature 

then truly there is no limit to the devices which could be achieved in this exciting growth 

regime. 
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 AlGaN/AlN – Pure AlN is an area in which MBE has a capability which MOCVD does 

not possess.  It has been shown (and discussed in the introduction) that through proper 

control of surface adlayers pure AlN is achievable in MBE.  This is in stark contrast to 

MOCVD where even attempts to grown pure AlN are met with an AlGaN alloy.  

However, these capabilities were not able to be explored in this thesis and deserve 

attention. 

 InGaN – While some preliminary work was performed on InGaN growth using high 

active nitrogen fluxes, there remains significant room for improvement.  A universal 

InGaN growth diagram independent of absolute active nitrogen flux is one example.  

Also work could be performed on understanding the lack of photoluminescence (PL) 

from PAMBE InGaN, for example a quantum well series.  Looking at the PL spectrum 

from this material could also provide information on the randomness of the alloy, and 

would be a good companion to atom probe tomography work. 

 Devices – While we attempted to grow an LED, there are vast numbers of devices which 

could prove to be only able to be grown with the high active nitrogen flux source.  A 

good example of this would be the quantum well HET in which the AlN layer is grown 

directly on top of the InGaN layer.  The high growth temperatures demonstrated for high 

composition InGaN would allow for growth without interrupt before the AlN layer, and 

no fear of InGaN decomposition.   
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In conclusion, this thesis has presented results on the growth of GaN and InGaN by PAMBE 

utilizing the Riber high active nitrogen flux plasma source.  The capabilities of the source have 

only begun to be realized.  High growth rates bring PAMBE in line with MOCVD; high active 

nitrogen fluxes however provide amazing growth opportunities not previously accessible and 

growth regimes previously unattainable.  
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Appendix A: Processing 

Methods 

 In this appendix the basic processing methods used throughout the thesis on samples 

are described.  The acronyms ACE, ISO and DI refer to acetone, isopropanol and di-ionized 

water respectively.   

A.1 n-type Hall Effect Samples 

 HF:HNO3 dip to remove the Ti backside metal. 

 3 min ACE, 3 min ISO and 3 min DI sample cleaning in the ultrasonic bath. 

 Dehydrate bake at 115 °C for 5 min. 

 Spin negative photoresist AZnLOF 2020 for 30 sec at 3 krpm. 

 Soft bake at 110 °C for 90 sec. 

 Expose resist for 10 seconds with an i-Line filter.  An image of one die on the mask 

is presented in Fig. 1. 

 Post exposure bake at 110 °C for 60 sec. 
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 Develop the exposed resist pattern for 60 seconds in AZ300MIF developer. 

 

 

Figure 42 -- A single die showing the Van der Pauw patterns used for Hall Effect 

measurements. 

 

 30 sec O2 plasma descum at 300 mTorr O2 flow rate, 100 W plasma power. 

 30 sec HCl dip followed by DI rinse 

 Metal deposition using standard electron beam evaporation 

o Metal stack: 50 ÅTi/500 Å Al/50 Å Ni/2000 Å Au 

 Lift-off of metal in 1165 on a hotplate at 80 °C for 3-4 hours. 

 Anneal contact stack in Rapid Thermal Annealer, N2 ambient at 730 °C for 30 sec. 
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 3 min ACE, 3 min ISO and 3 min DI sample cleaning in the ultrasonic bath. 

 Dehydrate bake at 115 °C for 5 min. 

 Spin positive photoresist SPR-220 7.0 for 45 sec at 3.5 krpm. 

 Soft bake at 115 °C for 120 sec. 

 Expose resist for 60 seconds without a filter (7.5 mW/cm2 using 405-nm detector).  

An image of one die on the mask is presented in Fig. 1. 

 Wait for 5 minutes to let the resist finish the reaction. 

 Develop the exposed resist pattern for 70 seconds in AZ300MIF developer. 

 Mesa etch using Reactive Ion Etcher 

o 30 sec BCl3 oxide removal, 100 W plasma power, 10 sccm BCl3 

o Cl2 GaN etch, 150 W plasma power, 10 sccm Cl2 

 Etch rate ~ 1-2 nm/sec 
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Appendix B: Active 

Nitrogen – N vs. N2
* 

 The true nature of the components of active nitrogen emitted from a nitrogen plasma 

source is still a point of debate in the GaN growth community.  This appendix is devoted to 

providing a concise review of the topic from the available literature.  It is not intended to 

provide a definitive answer as to what are the specific growth species as that is beyond the 

scope of this thesis.  Rather this appendix is intended to be a reference for future users of 

nitrogen plasma sources so that they can appreciate and ponder the influences of active 

nitrogen on the growth of their thin films.   

 

B.1 Active Nitrogen 

 “Active nitrogen” is a term used to refer to any excited form of nitrogen, molecular 

or atomic, or a combination of these, of sufficient lifetime that it may be removed from the 

region in which it is formed” [1].  This is the basic definition provided by Wright and 
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Winkler in the preface to their seminal tome Active Nitrogen from 1968.  From the 

perspective of the PAMBE growth scientist, we consider not all excited forms of nitrogen 

such that it can be removed, but a much smaller subset of these forms.  Specifically, we are 

only concerned with the excited forms of nitrogen which have sufficient lifetimes such that 

they can impinge on the substrate and participate in the growth of GaN.  An attempt to 

completely classify and understand all species generated by the plasma is outside the scope 

of this thesis.  

 First, it is useful to determine what species within the activated nitrogen could be 

responsible for the growth of GaN.  Figure 1 compares the potential energy of a variety of 

species contained within active nitrogen with the Gibbs free energy necessary for the 

reaction: 

2 Ga (l) + N2 (g) → 2 GaN (s)  (1) 

Growth of GaN is an example of meta-stable growth [2] in which the reverse reaction has a 

large kinetic barrier to decomposition, thus allowing positive net growth.   From Fig. 1 it is 

apparent that there are a wide variety of species which have sufficient potential energy to 

drive the reaction to form GaN, including the excited neutral metastable states of molecular 

nitrogen (A3Σu
+, B3Πg, a1Πg and C3Πu), the ionized molecular nitrogen (X2Σg

+) and atomic 

nitrogen (4S, 2P and 2D).   

As summarized by Newman [2] these reactions are: 
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Ga (l) + ½ N2
* (g) → GaN (s)   (2) 

where N2
* = A3Σu

+, B3Πg, a1Πg or C3Πu 

 

Ga (l) + ½ N2
+ (g) → GaN (s)   (3) 

where N2
+ = X2Σg

+ 

 

Ga (l) + N (g) → GaN (s)   (4) 

where N = 4S 

 

Ga (l) + N (g) → GaN (s)   (5) 

where N = 2P or 2D 
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Figure 43 -- A comparison of the potential energy of activated nitrogen with the Gibbs free energy for 

the forward reaction of GaN growth.  After Newman [2]. 

 

While all these species have sufficient potential energy to drive the forward growth 

reaction, not all species have sufficient lifetime to traverse the necessary 20 cm from the 

plasma source to the substrate.  Assuming that the temperature of the gas in the plasma 

source is approximately 720 °C [3] with an average thermal velocity of 8.66 x 104 cm/s [3], 

then the length of time necessary for the active nitrogen to travel from the source to the 

substrate is approximately 230 μs.   
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Considering first the metastable molecular nitrogen species, only the A3Σu
+ specie 

with its lifetime of 2-3 s [4] can survive long enough before a radiative transition to reach 

the sample surface.  The lifetime of the B3Πg state is approximately 4-13 µs [5] before it 

decays into A3Σu
+.  The lifetime of the C3Πu state is a mere 36-39 ns [5] before it relaxes to 

the B3Πg state.  Thus we can consider only the A3Σu
+ state of excited molecular nitrogen to 

be of any possible relevance to the growth of GaN. 

The formation mechanisms for the A3Σu
+ metastable state and the B3Πg state are as 

follow: 

e- + N2 (X1Σg
+) → N2

*
 (A3Σu

+) + e-  (6) 

e- + N2 (X1Σg
+) → N2

*
 (B3Πg) + e-  (7) 

The energy necessary to excite a ground state nitrogen molecule to the A3Σu
+ 

metastable state is ~6.2 eV, and the energy necessary to excite a ground state nitrogen 

molecule to the B3Πg state is ~7.4 eV [1].  The B3Πg metastable state is listed above as it 

rapidly decays to the A3Σu
+ metastable state which was previously demonstrated has having 

sufficient lifetime to participate in the growth of GaN. 

Relaxation of atomic nitrogen is a 3 body problem, often involving two nitrogen 

atoms and the wall of the plasma source.  Thus the radiative recombination efficiency is 
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very low, and the radiative lifetime of the nitrogen atom can be greater than 2 s [6].   

Therefore atomic nitrogen has sufficient lifetime to participate in the growth of GaN.   

Note that the potential energy diagram in Fig. 1 suggests that metastable states of N2 

may also dissociate into atomic N without having to undergo dissociative ionization, for 

example: 

e- + N2 (X1Σg
+) → N(4S) + N(4S) + e-   (8) 

e- + N2 (A3Σu
+) → N(4S) + N(4S) + e-   (9) 

 e- + N2  (B3Πg) → N(4S) + N(4S) + e-   (10) 

These reactions occur at 9.76 eV (eq. 8), 3.6 eV (eq. 9) and 2.4 eV (eq. 10) as 

determined from the potential energy diagram.   

Therefore, from the perspective of the PAMBE growth scientist we can safely 

assume that the predominant growth species from the nitrogen plasma source are either 

atomic nitrogen or excited molecular nitrogen in the A3Σu
+ metastable state. 

 

B.2 Measurement Techniques 

 There exist multiple techniques for determining the composition of a plasma.  Three 

of the more frequently used techniques are described below. 
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B.2.1 Optical Emission Spectroscopy (OES) 

 Optical emission spectroscopy (OES) is a technique which measures the relaxation 

emission spectrum of the excited species within the plasma.  This is most commonly 

performed through a quartz window on the back of the plasma source itself.  An optical fiber 

is attached to the quartz window and the emission spectrum of the plasma is measured using 

a spectrometer.  An example of the emission spectrum of the second generation Riber high 

flux plasma source is presented in Fig. 2.   

 There are several important regions labelled in Fig. 2.  From ~500 nm- ~750 nm is 

the first positive system of N2.  This corresponds to the relaxation from the B3Πg metastable 

state of molecular nitrogen to the A3Σu
+ metastable state.  It is this emission which is most 

frequently referred to and used to quantify N2
* (recall that only the A3Σu

+ metastable state 

has sufficient lifetime to reach the substrate surface from the plasma source).  Next there are 

three peaks labelled atomic nitrogen, however if the spectrometer measuring the emission 

spectrum is sensitive enough it would detect a triplet centered at ~744 nm, a 7-plet centered 

at ~821 nm, and a 12-plet centered at ~865 nm.  These correspond to the (4P-4S0) relaxation, 

the (4P-4P0) relaxation and the (4P-4D0) relaxation respectively.  Finally the second positive 

system of N2 corresponds to the relaxation from the C3Πu metastable state of molecular 

nitrogen to the B3Πg metastable state [1].   
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Figure 44 -- OES Spectrum of the second generation Riber high flux nitrogen plasma source.  Source 

operating conditions were 600 W rf forward power and N2 flow rate of 25 sccm.   

 

 While being a very simple way of attempting to understand the components of the 

plasma, there are several issues with OES.  First, it relies on the relaxation emission of the 

plasma constituents.  Therefore certain plasma species with exceptionally long lifetimes, for 

example atomic N which requires a three-body interaction to relax, can be underrepresented 
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in the emission spectrum.  Thus the intensity of the peaks representing various species 

within the plasma do not necessarily provide information about the concentration of those 

species within the plasma.  Second, from a growth perspective, the distance between the 

optical viewport on the back of the plasma source is not necessarily the same distance as the 

source to the substrate.  Thus short lived species may have be present in the optical emission 

spectrum which do not have sufficient lifetimes to reach the substrate and participate in the 

growth of GaN.  

 

B.2.2 Line of Sight Quadrupole Mass Spectroscopy (LOS-QMS) 

 Line of sight quadrupole mass spectroscopy (LOS-QMS) is a technique where a 

QMS is placed at some distance from the vacuum end of the plasma source, directly facing 

the output.  Then a measurement is made, and this is where the technique varies from group 

to group.  Most often the measurement is one in which the ionizer energy of the QMS is set 

to some point high enough to ionize both molecular and atomic nitrogen (> 15 eV) but 

below the dissociation threshold of molecular nitrogen (< 28 eV).  Then m/e = 14 and m/e = 

28 are measured, and from this information is gathered about the density of atomic nitrogen 

and metastable nitrogen molecules respectively.  A second measurement in which the 

ionization energy is set to ~13-14 eV (slightly below the 15.6 eV direct ionization energy of 

the nitrogen molecule) should be able to better detect the metastable A3Σu
+ state of molecular 

nitrogen.   
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B.2.3 Line of Sight Threshold Ionization Mass Spectroscopy (LOS-TIMS) 

 Line of sight threshold ionization mass spectroscopy (LOS-TIMS) is a variation of 

LOS-QMS where the ionization energy is swept and then measurements made at each 

varying ionization energy.  This allows for the distinction between direct and dissociative 

ionization of atomic N (direct ionization occurs at ~14.5 eV, while dissociative ionization 

occurs at ~24.3 eV).  Further this technique allows for the distinction between ionization of 

a metastable excited nitrogen molecule, N2
*, from the ground state N2 as the threshold 

ionization energies for these two species are different.   

 The challenge in this technique (and LOS-QMS as well) results from the need for an 

independent calibration of the ion flux beams in order to obtain absolute densities.  

Specifically, the absolute density of the experimental gas needs to be calibrated with the 

signal from a known ionization of a reference gas with known partial pressure and with a 

m/e value close to the species of interest [7].    

 

B.3 Literature Results from OES 

 In 1994, Vaudo et al. reported on the atomic nitrogen production from an ASTeX 

compact ECR plasma source [8].  Based upon their OES results they concluded that their 

ECR plasma source produces an appreciable flux of neutral nitrogen atoms.  Further, they 

noted that as the input power to the plasma increases the emission lines in the OES spectrum 
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grew more quickly than the molecular bands corresponding to N2
*.  Thus they surmised that 

a larger input power results in a larger fraction of nitrogen molecules dissociating, and 

therefore a greater atomic nitrogen flux.  Further, by decreasing the N2 gas flow and 

therefore the pressure within the plasma bulb the overall intensity of the emission is reduced.  

However the atomic lines decreased at a slower rate than the molecular bands.  Therefore 

Vaudo et al. concluded that atomic nitrogen is the dominant species from their ECR plasma 

source [8].   

 Contrary to this result, in late 1994 Molnar et al. [9] performed both OES on the 

plasma and a Langmuir-like probe analysis to determine the effect of charged species on the 

growth of GaN.  They were unable to discern the active nitrogen species resulting in growth 

of GaN, however the authors note that there were no atomic nitrogen lines able to be 

measured in their OES spectrum [9].   

 By 1995 we begin to see reports in the literature of radio frequency (RF) plasma 

sources and their characterization.  Van Hove et al. [10] characterized a SVTA Model RF 

4.5 plasma source and demonstrated, as had been previously shown for ECR plasma 

sources, that low plasma power results in low levels of atomic nitrogen while higher plasma 

powers result in much higher levels of atomic nitrogen.  However unlike the ECR results, 

Van Hove et al. show that the highest levels of atomic nitrogen are for low N2 flow rates 

(and high plasma power) while higher N2 flow rates resulted in reduced atomic nitrogen 

signals.  So while both atomic nitrogen and molecular nitrogen are present in the OES 
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emission spectrum, Van Hove et al. compared the different growth regimes to GaN material 

quality via Schottky diodes and ultra-violet photo-response.  Based upon these studies they 

propose that the optimum GaN is grown under high atomic nitrogen flux [10].   

 Later in 1995 Hughes et al. [11] directly compared an ASTeX compact ECR plasma 

source and an Oxford MPD21 RF plasma source.  They found that the RF plasma source 

emitted a much larger fraction of atomic nitrogen and the 1st-positive series of excited 

molecular nitrogen in contrast to the ECR source which produced mainly 2nd-positive series 

of excited molecular nitrogen and nitrogen ions when operated under the same conditions.  

Hughes et al. determined that the RF plasma source produced much better material, however 

they were unwilling to specify which specie from the nitrogen plasma they felt was the 

result of this.  Only that the “active” nitrogen from the source is most likely a mixture of the 

1st-positive series of excited molecular nitrogen and atomic nitrogen.  However it was noted 

that as plasma forward rf power was increased the atomic nitrogen signature increased more 

rapidly than that of excited molecular nitrogen, and that this increase in power led to 

increased growth rate [11].   

 In 1997 Johnson et al. [12] compared the OES spectrum of three different rf plasma 

sources, specifically the SVTA rf source, an Oxford MPD21 rf source, and an EPI rf plasma 

source.  When operated at the same plasma conditions of 400 W rf forward power and 5 x 

10-5 Torr of N2 pressure the three OES spectrums were very different.  Most notable is the 

strong 2nd-positive series of excited molecular nitrogen emitted by the SVTA source, and the 
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complete absence of the 2nd-positive series of excited molecular nitrogen from the EPI 

sourced.  While the authors compare these sources based upon the material grown, all that 

they are willing to say with regard to the “active” nitrogen from the source is that both 

atomic nitrogen and the 1st-positive series of excited molecular nitrogen are responsible for 

growth of high quality GaN [12]. 

 Blant et al. [13] in 2000 compared two commercially available Oxford RF plasma 

sources, the CARS25 and a newer HD25 source.  For both sources they found strong 

emissions corresponding to atomic nitrogen, and only weak emission from the 1st-positive 

series of excited molecular nitrogen.  Further with the newer HD25 source these emissions 

from atomic nitrogen were much stronger when compared to the CARS25 source, with no 

increase in the 1st-positive series of excited molecular nitrogen.  In addition they report that 

regardless of plasma operating conditions there was no increase in the emission from the 1st-

positive series of excited molecular nitrogen.  Thus Blant et al. report that RF plasmas are 

rich in atomic nitrogen and therefore are suitable for high quality growth of GaN [13]. 

 Between 2005 and 2007 there was a flurry of work on determining the optimum 

plasma operating conditions with regard to both dilute nitride growth and standard III-nitride 

growth.  Wistey et al. [14] performed OES analysis of their SVTA rf nitrogen plasma source 

and reported emissions from both the 1st-positive series of excited molecular nitrogen and 

from atomic nitrogen, however they neglect to suggest a preference for one specie or the 

other.    Iliopoulos et al. [15] performed OES on their Oxford HD25 RF plasma source, and 
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as opposed to trying to simply look at the variation in the OES in different growth regimes 

they compared the relative intensities of the atomic nitrogen emission and the 1st-positive 

metastable molecular nitrogen (A3Σu
+) emission.  They found that any increase in the growth 

rate at higher plasma powers/N2 flow rate is a result of increase in the A3Σu
+ metastable 

molecular nitrogen emission spectrum as opposed to the atomic nitrogen spectrum.  

Specifically, they say that the concentration of excited molecular nitrogen increases with 

monotonically with RF power and nitrogen flow, while the atomic nitrogen concentration 

appears to be insensitive to the gas flow and only depends on the RF power.  Thus the 

plasma source can be tuned to emit either a significant amount of atomic nitrogen or mainly 

excited nitrogen molecules, and that the excited metastable nitrogen molecules were 

predominantly responsible for the growth of the III-Nitrides [15].   

 Performing OES on an Arios IRFS RF plasma source, Kikuchi et al. [16]suggest that 

N2
* (A3Σu

+) contributes to the growth mechanism in PAMBE of III-Nitrides.  Specifically, 

they propose a method to look at the integrated OES intensity (IOI) from the OES spectrum 

as a way of quantifying the relative components of the nitrogen plasma from the OES 

spectrum.  Considering this IOI, they determined that the production of atomic N reaches a 

maximum as opposed to N2
*.  Thus while both may contribute to growth, as the plasma 

pressure and rf forward power increase, there is an increase in the N2
* component as 

opposed to the atomic nitrogen component of the OES spectrum [16].   
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 In 2006, two reports from Anderson et al. [17], [18] suggest that through their OES 

spectrum measurements that the Oxford HD25 nitrogen plasma source supplied both atomic 

nitrogen and N2*.  As has been previously demonstrated, when the RF power is increased 

the relative amount of atomic nitrogen produced increases approximately linearly, while 

operating the plasma source at lower flow rates (i.e. lower internal plasma pressures) the 

amount of N2
* increased.  While Anderson et al. in these reports are unwilling to claim one 

specie over the other as being responsible for growth, they do note that growth in a regime 

dominated by N2
* produced improved InN when grown on GaN/sapphire templates, 

resulting in improved electrical properties [17], [18].   

 Once again considering the impact of N vs N2
* on dilute nitrides, Oye et al. [19] 

considered three different growth regimes, one where atomic nitrogen appeared to dominate, 

one where the relative integrated OES intensity for atomic nitrogen and N2
* appeared to be 

the same, and one where the metastable N2
* dominated.  These measurements were 

performed for an Applied-Epi Unibulb rf plasma source, and they found that they had 

optimum results for their dilute nitride material when it was grown in a regime that the 

atomic nitrogen was dominant.  These results were based upon the global maximum in there 

photoluminescence peak intensity after annealing of the material [19].     

 Finally, in 2013 Klosek et al. [20] performed an OES analysis of an Addon (Riber) 

nitrogen RF plasma source and compared it with the growth rate of GaN material.  They 

found that while the growth rate of GaN was well correlated with the integrated intensity of 
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the 1st-positive metastable molecular nitrogen emission, there was no dependence on the 

integrated intensity of the atomic nitrogen related lines observed.  Thus Klosek et al. 

conclude that metastable excited nitrogen molecules, i.e. N2
*, are responsible for the growth 

of GaN as opposed to atomic nitrogen [20].   

 

B.4 Literature Results from LOS-QMS & LOS-TIMS 

 In 1998/1999, Voulot et al. [21], [22] reported on LOS-QMS characterization of the 

SVTA RF 4.5 nitrogen plasma source.  Specifically they focused on the dissociation fraction 

of N2, thus providing evidence for a large concentration of atomic nitrogen emitted from the 

plasma source.  Similar trends to many of the OES studies were found, as the dissociation 

fraction increased with increasing plasma source rf forward power.  However they found 

that the dissociation fraction decreased with increasing plasma source pressure, i.e. 

increasing N2 flow rate.  Regardless of the plasma conditions, there was still evidence of the 

1st-positive molecular nitrogen series, i.e. N2
*.  Even still they found that at optimum 

operating conditions, up to 40% of the N2 which was flowed into the plasma source was 

dissociated.  Unfortunately, there was no correlation to growth in their studies [21], [22]. 

 From 1999-2004, five reports were published from T.H. Myers’ group at West 

Virginia University which compared the “active” nitrogen output from two rf nitrogen 

plasma sources, the Oxford CARS-25 source and the Applied-EPI Unibulb source [23]–[27].  
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It was reported that these were basic LOS-QMS measurements in which the ionizer energy 

was set high enough to ionize both molecular and atomic nitrogen (typically > 15 eV), but 

below the dissociation threshold of molecular nitrogen (< 28 eV).    During the 

characterization of the Applied-EPI source, considerable molecular nitrogen ions were 

produced with ionization energies ~ 6 eV below that normally required to ionize molecular 

nitrogen, and thus these were considered to be the A3Σu
+ metastable state of molecular 

nitrogen.  Further the measured atomic nitrogen flux was less than the measured growth rate, 

so for this source it was reported that the “active” nitrogen species responsible for growth is 

the A3Σu
+ metastable state of molecular nitrogen.  However, the Oxford source under their 

operating conditions produced primarily atomic nitrogen, specifically at a rate of nearly 10x 

their measured growth rates [23]–[27].  

 Cho et al. [28] compared an ECR nitrogen plasma source and a RF nitrogen plasma 

source from Irie and Eiko Co. respectively.  They found that for the ECR plasma source the 

intensity of molecular nitrogen was stronger than that of atomic nitrogen, and that both 

intensities increased with increasing plasma power.  However, for the RF nitrogen plasma 

source they found the opposite, in that the signal from atomic nitrogen was always stronger 

than that of molecular nitrogen.  In addition, the signal for atomic nitrogen increased 

significantly with increasing plasma power, while the signal for molecular nitrogen only 

showed modest increase with increasing plasma power.  From these measurements, they 
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conclude that atomic nitrogen is the species responsible for growth of GaN from the RF 

nitrogen plasma source [28]. 

 In 2007 Osaka et al. [29] reported on the atomic nitrogen role during the growth of 

GaN using a SVTA rf nitrogen plasma source.  As with previous reports, they set the LOS-

QMS to detect atomic nitrogen by keeping the ionization energy of the QMS at 21 eV, 

above the ionization threshold of atomic nitrogen but below the dissociation threshold of N2 

molecules.  They attempted to measure the metastable N2
* (A3Σu

+) by setting the ionization 

energy of the QMS to 13-14 eV, however there was no detectible signal at the QMS even 

though the OES spectrum demonstrated the 1st-positive series of molecular nitrogen.  Thus 

from this measurement and the correlating growth study they deduced that the growth 

species responsible for GaN growth is atomic nitrogen [29].   

 Finally, in 2003 Argawal et al. [7], [30] performed proper LOS-TIMS on an 

inductively coupled plasma (ICP) used for semiconductor processing.  The plasma was 

operated at 750 W forward rf power and 50 sccm flow rate while the internal plasma 

pressure was varied from 10-200 mTorr.  By varying the ionization energy while measuring 

m/e = 14 for N+ and m/e = 28 for N2
+, and then comparing the counts with a reference gas 

they were able to perform absolute measurements of the respective atomic nitrogen and 

metastable nitrogen molecular densities.  They found that at low plasma pressures, 

specifically ~50 mTorr that the N2
* and atomic nitrogen densities were equal.  However for 

higher plasma pressures atomic nitrogen increases linearly while N2
* decreases rapidly [7], 
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[30].   

 

B.5 Conclusions 

 In conclusion, this appendix has provided a concise review of the available literature 

which attempts to correlate the growth of GaN with the “active” nitrogen species involved.  

Unfortunately, there is little consensus across the literature as to which species within 

“active” nitrogen are responsible for growth, be it N2
* (A3Σu

+) or atomic nitrogen.  It appears 

that the relative concentrations of atomic nitrogen and N2
* vary depending on which 

manufacturer’s plasma source is being used.  However, regardless of which plasma source is 

being used there are some similarities.  First, with increasing plasma power and/or plasma 

pressure there is an increase in atomic nitrogen available from the source.  Second, OES 

analysis of nitrogen plasma sources is insufficient to give qualitative data as to which is the 

dominant growth species.   

 In order to answer the question of what “active” nitrogen species is optimal for the 

growth of GaN detailed LOS-TIMS analysis of modern rf nitrogen plasma sources is 

necessary.  This analysis needs to be performed at the proper source to substrate distance, 

across all possible rf forward plasma powers and N2 flow rates, and correlated with the 

growth of GaN.   
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Appendix C: Ion 

Measurement 

Technique  

 Nearly 100 years ago Mott-Smith and Langmuir [1] developed the theory of 

collectors in gaseous discharges.  Today, Langmuir probes are considered to be one of the 

easiest ways to measure some basic properties of a plasma [2] including ion density and 

electron temperature (i.e. kinetic energy).  The traditional Langmuir probe is a wire inserted 

into the plasma, however the geometries of the MBE growth system prevent us from 

utilizing this traditional probe.  In 1995, Molnar et al. [3] described a method for using the 

nude Bayard-Alpert ion gauge on the back of the substrate heater as an effective Langmuir 

probe for analysis of the ion flux emitted by an ECR plasma source.  This technique was 

later used by Wistey et al. [4] to analyze a rf nitrogen plasma source.   
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C.1 Ion Measurement Technique – Langmuir-like Probe 

 As described by Molnar et al. [3] and Wistey et al. [4], the experimental setup is 

rather simple.  A schematic of this setup is shown in Fig. 1.  The nude Bayard-Alpert 

ionization gauge, in Fig. 1 referred to as the BFM, is rotated such that it is in line of sight of 

the emission from the plasma source.  Then a voltage source and ammeter are connected to 

the grid of the ion gauge.  Note that Molnar et al. [3] used the collector filament of the ion 

gauge while Wistey et al. [4] compared all three parts of the ion gauge, i.e. collector, grid 

and filament and demonstrated that they all provided equivalent data.   

 

Figure 45 -- Experimental setup of Langmuir-like probe measurement technique. 

 Once attached, the plasma source is ignited with the desired plasma parameters (rf 

forward power, N2 flow rate) and voltage is swept across the grid while measuring the 
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associated current.  Figure 2 shows representative curves acquired using the Riber high flux 

plasma source. 

 

Figure 46 -- Representative Langmuir-like probe I-V curves acquired using the Riber 

high nitrogen flux plasma source. 

 

 Langmuir-like probe I-V curves may be characterized by three distinct regimes.  

First, when the bias applied to the grid (Vp) is greater than the space potential (Vs), then 

electrons from the plasma are attracted to the probe and collected, and ions are repelled.  

This is described as the electron saturation current regime.  The space potential is an 

important parameter in that ions are accelerated across a potential equal to the difference 

between the space potential and the electrical potential of the impact surface prior to 
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collision, thus their kinetic energy is directly related to the space potential [5].  When a large 

negative bias is placed across the grid then electrons from the plasma are repelled and only 

ions are attracted to the probe and collected.  This is the ion saturation current regime.  

Finally, there is an intermediate regime where the grid potential Vp is less that Vs so both 

ions and electrons reach the probe.   
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