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ABSTRACT 

 

Analysis of Electromigration in Nanofluidics  

 

by 

 

Yu-Wei Liu 

 

Numerical simulation is used to calculate the electrophoretic mobility of a charged 

spherical nanoparticle confined in a nanochannel, under a weakly applied electric field.  

Classic models for electrophoretic mobility are valid only in the linear regime of small 

particle zeta potential, and for an unbounded fluid domain. However, these models fail to 

predict the electrophoretic mobility measured experimentally in bounded nanochannels. We 

adopt asymptotically-expanded formulations and solve the fully-coupled equations on a 3D 

finite element domain. Factors affecting particle mobility include electrolyte concentration, 

channel size, and zeta potentials on both the particle surface and channel walls. Specifically, 

spherical particles are examined with diameters 2a = 10 and 50 nm, in a 100 nm high 

channel. The non-dimensional electric double layers were varied between 0.1 < a < 100. 

The results indicate that the mobility of a particle located at the nanochannel centerline 

agrees to within 1% of the average mobility of a particle distributed transversely throughout 

the nanochannel. Furthermore, confinement by the nanochannel walls was found to affect 

greatly nanoparticle mobility. As a result, it is feasible to use nanochannels to separate two 

different size nanoparticles, even when the particles have equal zeta potentials. Finally, a 



 

 ix 

new method is proposed to estimate accurately particle and wall zeta potentials by 

contrasting the observed differences in mobility in two different height channels. 

Next, two-dimensional nanorods are simulated numerically to study the electromigration 

within nanoscale fluidic channels. We improved on an existing steady-state model to include 

fluid-structure interaction and capture dynamics of moving nanorods. Specifically, we 

investigate the motion of a 2 nm × 3.4 nm two-dimensional rod-like particle (representative 

of 10 bp DNA) in a 100 nm two-dimensional channel under an applied external electric 

field. The results show that due to the interaction between the electric double layers (EDLs) 

of the particle and the channel walls, the particle is confined to the centerline of a channel 

with thick EDLs. In contrast, an oscillatory motion is observed for thin EDLs, which can be 

explained by examining the electrophoretic and hydrodynamic forces and moments on the 

particle. Although thermal fluctuations are not modeled, and could negate the effects of the 

oscillatory motion in practical systems, the effect is still of value to understand. We calculate 

the electrophoretic mobility of these confined nanorods and compare the results with the 

approximated mobility from our steady-state model. Although the thick EDL systems match 

well, the results show an up to 10% difference in mobility of the two models for the 50 mM 

electrolyte concentration, which indicates that the fluid-structure interaction is important for 

mobility of non-spherical particles, in thin double-layer systems. 

Finally, we use our model to estimate particle zeta potential by measured mobility from 

several experiments. The results show that our model is required to capture double layer 

polarization and double layer interaction. In addition, the composition of electrolyte solution 

is important in determining the particle mobility as well as the zeta potential.  
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1. Introduction 

 

1.1. Background and Motivation 

Electrokinetic phenomena in microchannels and nanochannels contribute to many 

practical applications in colloidal and biomedical sciences [1-3]. For example, the 

electrophoretic mobility of a charged particle can be used to characterize its zeta potential 

[4], which is the key parameter for determining the stability of colloid dispersions. In 

addition, the separation of different colloidal and analyte species in a microfluidic device can 

be applied to directly identify biomolecules and particles for a variety of different 

applications, for example, disease diagnosis [5, 6]. A particle behaves differently in a 

channel compared to an unbounded domain, especially when the thickness of electric double 

layer (EDL) is on the order of channel size. The confinement effect not only induces 

additional hydrodynamic drag on the particle, but also affects the electric field near the 

particle, thereby altering the resulting electrophoretic force. Therefore, a comprehensive 

model is required to capture the underlying coupled physics. 

Electrokinetic phenomena in EDL have been studied extensively [7-18], including 

specifically the electrophoretic mobility of particles [19-28]. Smoluchowksi [22] and Huckel 

[23] studied limiting cases of thin and thick EDLs on both particles and surfaces, and 

obtained a simple linear relation between electrophoretic mobility and particle zeta potential. 

Henry [24] derived an expression for electrophoretic mobility of a spherical particle with a 

finite EDL thickness. However, these studies only focused on the linear regime, i.e. using 

small zeta potentials. Wiersema et al. [25] calculated mobility of a particle for high zeta 
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potentials using a Gouy-Chapman model for the EDL. O’Brien and White [26] later directly 

solved the linearized equations for a particle of high zeta potentials from low to high 

electrolyte concentration. They found that the linear relation between mobility and zeta 

potential is only valid for low zeta potential cases. As the zeta potential increases, the 

electrophoretic mobility reaches a maximum and then decreases in a thin double layer 

system. This is because the drag force increases faster with increasing zeta potential than the 

driving electric force. Ohshima et al. [27] derived an analytical expression for the mobility 

of a spherical particle in a symmetric electrolyte solution. This expression agrees well with 

the results of O’Brien and White. Khair and Squires [28] showed the slip enhances particle 

mobility for thick double layers by reducing viscous drag. In the case of thin double layers, 

however, mobility increases from low to moderate values (0 to 50 mV) of zeta potential. 

Further increases in zeta potential leads to decreased mobility, and approach a limiting value 

independent of slip length, due to nonuniform surface conduction.  

In terms of examining the mobility of particles in confined systems, the boundary effects 

for spheres located near walls have been widely studied [29-34]. Keh and Anderson [29] 

studied a non-conducting sphere near a boundary for a very thin EDL on the particle. A 

charged boundary generates electro-osmotic flow, which affects both electrical and velocity 

fields. Keh and Chen [30] derived an analytical expression of electrophoretic mobility of a 

charged spherical particle near a charged plane wall in the thin EDL limit. When the gap 

between the particle and the wall is small, the mobility is enhanced up to 23%, due the 

squeezed electrical field lines. Ennis and Anderson [31] used method of reflections to study 

a spherical particle near a charged wall and in a cylindrical pore. Later Shugai and Carnie 

[32] studied similar problems with different methods. They found that the linear relation 
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between electrophoretic mobility and zeta potential does not hold due to complex EDL 

interactions. Hsu et al. [33] analyzed electrophoretic mobility of a spherical particle in a 

confined cylindrical pore with linearized equations assuming a low particle zeta potential. In 

the case of both charged particle and pore, they found that the magnitude of mobility has a 

local maximum as electrolyte concentration increases, which is due to the interaction of the 

double layer between the particle and the pore. Hsu and Chen [34] then extended their model 

to include the effects of double layer polarization and electro-osmotic flow caused by the 

charged pore. For a positively charged particle in a positively charged pore with low surface 

potential, the mobility has a minimum and the direction of the motion may change twice as 

double layer thickness changes. To summarize, in all cases to date, electrophoresis of a 

particle is only considered under certain restrictions (low zeta potential, very thin or thick 

EDL) in an unbounded or idealized domain (spherical/cylindrical pore). However, these 

studies can never accurately capture nanochannel experimental data, where the zeta potential 

is not low, the EDL is of variable thickness (not limited to thick or thin) and the domain is a 

fixed rectangular system.  

In addition, the geometry of particles may not be perfect spheres in practical cases. 

Electrophoresis of nanoparticles with different shapes in confined channels is important for 

many applications such as particle separation and particle manipulation [35-36], and has 

been widely studied both experimentally [37-40] and theoretically [31-34, 41-45]. 

Nanoparticle mobility is affected by a variety of variables, most importantly zeta potential, 

electrolyte concentration, channel geometry and the inherent nanoparticle geometry. 

Importantly, for cases when the thickness of EDL is on the order of the channel size, the 

interaction of particles and the channel walls alters both the hydrodynamic drag and the 
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electrophoretic force on the particles [45]. Although there have been many models of 

particles in channels with thin EDL approximations [31,32,42], it is important to have a 

model that can include all couple physics required to describe the complicated particle 

dynamics, since in many realistic systems, the EDL is not thin [38-40]. 

Typically, a steady-state assumption is used to formulate electrophoretic models of 

spherical particles. However, the electrophoretic-driven motion of non-spherical particles is 

inherently unsteady. Non-spherical particles can translate and rotate during electrophoretic 

motion, and the hydrodynamic drag depends upon particle geometry and the orientation 

relative to the flow. Davison and Sharp [46] investigated the transient motion of 2D rod-like 

particles in a narrow channel, although, as mentioned above, they assumed thin EDLs. They 

studied different initial particle orientations and observed an oscillatory motion without 

thermal fluctuations. Furthermore, they found that the particle mobility increases when the 

particle is near the walls due to the increased electric field. Ai and Qian [47] investigated the 

electrokinetic translocation of a 2D rod-like particle through a nanopore. However, in this 

case, the EDL of the particle was assumed not to be affected by the external electric field or 

the EDL of the solid boundary. In addition, previous models did not investigate the initial 

orientation of the particle, which can affect both translational velocity and rotation. EDLs 

can align nanorods, which must be accounted for in a numerical model.  

Therefore, we use numerical simulation to investigate the mobility of spherical particles 

in channels under steady-state assumption. Then we improve our steady-state model to 

include fluid-structure interaction to track motion of a non-spherical particle. Finally we use 

our model to estimate particle zeta potential by the measured mobility from experiments. 
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1.2. Outline 

In chapter 2, we introduce the electrokinetic equations and derive the linearized 

equations by using asymptotic expansion. We assume the flow is incompressible and 

Reynolds number and Péclet number are small due to the small length scale of the system. 

The ionic potential is introduced to simplify Nernst-Planck equations. 

In chapter 3, numerical simulation is used to examine the mobility of a charged spherical 

particle of any size EDL driven by a weak electric field in a rectangular channel, where the 

magnitude of the applied electric field is much smaller than the electric field generated 

inside the EDL. We solve the fully-coupled equations on a 3D domain. The results are first 

validated in an unbounded domain with existing theory. Next, the effect of particle location 

in the nanochannel is examined. The results indicate that the mobility of a particle 

distributed transversely throughout the nanochannel agrees to within 1% of a particle located 

at the nanochannel centerline. Using the centerline for particle location, we investigated 

particle mobilities for varying zeta potentials and electrolyte concentrations, which showed a 

large dependence on EDL thickness and channel height. We next investigate the ability to 

improve separation efficacy of particles in a nanochannel. Finally, a new method is proposed 

to characterize accurately particle and wall zeta potentials, by comparing observed particle 

mobilities measured in microchannels to those measured in nanochannels. 

In chapter 4, we improve upon our steady-state model [45] to include fluid-structure 

interactions, in order to investigate the mobility and the confinement effect of a charged 2D 

nanorod driven by an applied electric field in a nanochannel. We adopt the formulations 
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from our previous work for electric potential, flow motion, and electrolyte concentration, 

and add solid mechanics for the particle displacement. The results show that the EDL 

thickness has significant influence on the particle motion within the nanochannel. Confined 

movement of a particle is observed for low electrolyte concentration, and the oscillatory 

behavior for high electrolyte concentration can be explained by examining the force and 

moment on the particle. Although these effects may be small compared to thermal 

fluctuations, it is still insightful to understand and explain these innate deterministic 

behaviors. Finally, we study the particle distribution histograms to understand how the 

distribution of particles within the channel affects particle mobility, and compare these 

results with our steady-state model. The results indicate that the estimated mobility from the 

steady-state model is accurate for 1 mM electrolyte concentration, but overpredicts by 10% 

for the 50 mM case. Therefore, the current time-dependent fluid-structure simulation model 

is required for the accurate mobility of non-spherical particles in thin double-layer systems. 

In chapter 5 we apply our model to estimate particle zeta potential. It shows that the 

effects of electromigration and thermal fluctuations are insignificant for 3D spherical 

particles with diameter greater than 50 nm. Therefore we can use the steady-state model and 

the measured particle mobility to estimate particle zeta potential. The results show that the 

classic models (Smoluchowksi [22], Huckel [23]) cannot be used to calculate particle zeta 

potential because they exclude the effects of double layer polarization and double layer 

interaction. In addition, finite particle zeta potential cannot be obtained for some cases 

because the measured mobility is greater than the maximum value predicted by the model. 

Since buffer solutions were used in experiments, the complexity of the electrolyte could 

affect the particle mobility. The particle mobility in different electrolyte solution is also 
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calculated to show the effect of the composition of electrolyte. Finally we will give some 

conclusions and future directions in chapter 6.   
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2. Theory of Electrokinetics 

When a charged surface is in contact with an electrolyte solution, conterions would be 

attracted near the surface to form electric double layer. If an external electric field is applied, 

the electric force on the ions will induce fluid motion such as electro-osmosis and 

electrophoresis. In this chapter we introduce the equations used to describe electrokinetic 

motion. 

 

2.1. Governing Equations  

Consider a particle in a channel filled with electrolyte with iz  valence of ions under an 

external applied electric field. The electric potential follows Poisson equation: 




 2 ,         (2.1) 

where   is electric potential,  iinze  is charge density,   is permittivity, e is electron 

charge, and in  are ion number concentration of species i. The flow motion is described by 

Navier-Stokes equations, which can be reduced to Stokes equations under the assumptions 

of incompressible flow and small Reynolds number. In addition, the Coulomb body force 

term should be included due to the charged fluid: 

0 u           (2.2) 

02   pu ,        (2.3) 

where u  is flow velocity, p is pressure,   is fluid viscosity. Nernst-Planck equations are 

used to describe the distribution of ion concentrations: 
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0
















 uii

B

i
ii nn

Tk

ez
nD  ,      (2.4) 

where iD , Bk , T, are the diffusion coefficient of species i, Boltzmann constant, temperature, 

respectively. Note that the temporal term is neglected due to small Péclet number. In the next 

section we use proper characteristic length, concentration and potential to scale the 

governing equations. 

 

2.2. Dimensionless Equations 

Here we use eTkBc / , the particle radius a, the ionic strength   2

2

1
ii znI  to scale 

electric potential, length, ion number concentration, respectively. Note that the ionic strength 

I can be reduced to the bulk concentration n  if the electrolyte is monovalent and 

symmetric, that is,   21 nnn  and 121  zz . Then the velocity scale from 

electrophoretic velocity is  / EU cc , where E  is the external electric field. The 

pressure scale is aUp cc / , and the electric and hydrodynamic force scales are 

  23

, / TaIkaaF Bccelec    and aUF chydc , . In addition, we define ion Péclet number 

ici DaU /2  and Debye length as 
Ie

TkB
D 22

1 


  . As a result we have the dimensionless 

equations as follows: 

   ˆ
2

1ˆ 22 a          (2.5) 

0ˆˆ
2

1ˆˆˆ 







 uiiiii nnzn         (2.6) 

0ˆ  u           (2.7) 
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0ˆˆˆˆ2  pu ,        (2.8) 

where flowcelec FF ,, /  represents the ratio of electric force scale to hydrodynamic force 

scale.   

 

2.3. Asymptotic Expansion 

Following the work of Khair and Squires [28], if the applied electric field is weak, a 

regular perturbation expansion can be used to simplify the governing equations. Suppose 

particle zeta potential is a constant value p , the scale of electric field in the electric double 

layer (EDL) is Dp  / . Next, a small parameter δ is defined as the ratio of applied electric 

field to the electrostatic field, that results from surface charge on the nanoparticle, 

 pE / , where E  is the applied electric field. The order of   is about  210O  in 

most cases. The dependent variables are expanded as follows: 

 2

10
ˆˆˆ  O         (2.9) 

 2

10
ˆˆˆ  Onnn iii          (2.10) 

 2

10
ˆˆˆ  O uuu         (2.11) 

 2

10
ˆˆˆ  Oppp  .        (2.12) 

Here, the subscript “0” corresponds to electrostatic condition (no applied electric field), 

while subscript “1” corresponds to perturbed state. After substituting Equations (2.9)-(2.12) 

into Equations (2.5)-(2.8), we obtain zeroth and first order equations as following. 

 

2.4. Electrostatic State 

After collecting zeroth order terms we have the following equations: 
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  0

2

0

2 ˆ
2

1ˆ  a         (2.13) 

0ˆˆ
2

1ˆˆˆ
00000 







 uiiiii nnzn        (2.14) 

0ˆ
0  u           (2.15) 

0ˆˆˆˆ
0000

2  pu  .       (2.16) 

The zeroth order equations describe the electrostatic state, that is, a particle sitting in a static 

fluid domain. Since the velocity field 0u  should be zero, from Nernst-Planck equation (2.14) 

we find that the concentration should obey Boltzmann distribution  

 00
ˆexpˆ ii zn  .         (2.17) 

Substituting the above equation into Poisson equation we obtain Poisson-Boltzmann 

equation  

     0

2

0

2 ˆexp
2

1ˆ  ii zza .       (2.18) 

The above equation can be solved numerically with proper boundary conditions. In addition, 

from Stokes equation (2.16) we find that the hydrostatic pressure field still exists without 

flow motion 

0ˆˆˆ
000  p .        (2.19) 

Note that this hydrostatic pressure results in zero net force on the particle. 

 

2.5. Weakly Applied Electric Field 

The first order equations correspond to perturbation of the system under a weak applied 

electric field:  
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  1

2

1

2 ˆ
2

1ˆ  a          (2.20) 

  0ˆˆ
2

1ˆˆˆˆˆ
1001101 







 uiiiiii nnnzn       (2.21) 

0ˆ
1  u           (2.22) 

  0ˆˆˆˆˆˆ
011011

2  pu .      (2.23) 

Since Nernst-Planck equations are highly coupled (involving 1
ˆ

in , 1̂ , 1û ), we can rewrite the 

equations by defining ionic potential 1

0

1
1

ˆ
ˆ

ˆˆ 
ii

i

nz

n
:  

0ˆˆ
2

1ˆˆˆ
010

2   uiiii z .      (2.24) 

The above equations are greatly simplified compared with the original equations. The ion 

concentration can be obtained by  1101
ˆˆˆˆ  iii nzn  after ionic potentials are obtained. 

Proper boundary conditions for both electrostatic and perturbed states are required to solve 

the complete system. In next chapters we solve the above system of equations to study 

electrophoresis of spherical and rod-like particles in two- or three-dimensional domains.  
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3. Spherical Nanoparticles in Nanochannels 

In this chapter we solve the electrokinetic equations to investigate mobility of spherical 

nanoparticles in nanochannels. The steady-state assumption is adopted and the forces on the 

particle are calculated to obtain the particle velocity. Finally we will show possible 

applications of nanochannels in separation of particles and measurement of zeta potential. 

The work in this chapter is reproduced with permission from [Electrophoretic Mobility of a 

Spherical Nanoparticle in a Nanochannel, Phys. Fluids 26, 112002 (2014)]. Copyright 

[2014], AIP Publishing LLC. (http://dx.doi.org/10.1063/1.4901330) 

 

3.1. Equations and Numerical Simulation 

 

3.1.1. Governing Equations 

Consider a spherical particle in a channel filled with electrolyte with valences of 1z  and 

2z   of cations and anions respectively as shown in Figure 3.1. The flow is assumed to be 

incompressible due to assumed low Reynolds number flow in nanoconfined channels. To 

simplify the system, we further assume that the electrolyte is symmetric and monovalent 

(KCl for example), that is, 121  zz . Thus the bulk ion concentrations and diffusion 

coefficients are simplified as 
  nnn 21

, DDD  21
. Following the work of chapter 2, 

for a weakly applied electric field, a regular perturbation expansion can be used to simplify 

the governing equations. Suppose particle zeta potential is a constant value 
p , the scale of 

electric field in the EDL is 
Dp  / , where   2/122//1 enTkBD    is Debye length. Next, 

a small parameter δ is defined as the ratio of applied electric field to the electrostatic field, 
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resulting from the surface charge on the nanoparticle, or pDE  / , where E  is the 

applied electric field. Here we assume the following constants: V/m 1000~E , 

m 10~ 8

D , V 10~ 2

p , so   is  310O .  

The dimensionless governing equations can then be rewritten as electrostatic and 

perturbed equations as follows: 

  0

2

0

2 ˆsinhˆ  a ,        (3.1) 

  1

2

1

2 ˆ
2

1ˆ  a          (3.2) 

0ˆ
1  u           (3.3) 

    0ˆˆˆˆ
2

1
ˆˆ

0110

2

11

2  apu       (3.4) 

  0ˆˆ
2

1ˆˆˆˆˆ
1001101 







 uiiiii nnnzn  ,     (3.5) 

where dependent variables ̂ , in̂ , û , p̂  are the dimensionless electric potential, ion number 

concentration of species i, flow velocity, and pressure, respectively. The subscript “0” and 

“1” correspond to electrostatic and perturbed states, respectively. The dimensionless charge 

density is defined as 21
ˆˆˆˆ nnnz ii  . Here we use eTkBc / , the particle radius a, and 

the bulk concentration n  to scale electric potential, length, ion number concentration, 

respectively. The velocity is scaled by the electrophoretic velocity aU cc  /2 . The 

pressure is scaled by aUp cc / , and the electric force is scaled 

  23 / TaknaaF Bccc   . In addition, we define the Péclet number as DaU c /2 . The 

parameters  , e, Bk , T,   correspond to permittivity, electron charge, Boltzmann constant, 
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temperature, and viscosity, respectively. Proper boundary conditions for both electrostatic 

and perturbed states are required to solve the complete system. 

 

 

Figure 3.1. Computation domain of our system. The coordinate system is fixed on the particle and the 

origin is at the center of the particle. We show in Figure 3.6 that the effect of particle location away from the 

center of the channel is negligible, and therefore this domain is valid in all cases. 

 

3.1.2. Boundary Conditions 

In our system, the surfaces of the particle and the channel walls are nonconductive and 

impermeable with a no-slip condition. The coordinates are fixed on the particle, with the 

origin at the center as shown in Figure 3.1. Zeta potentials are specified at the surfaces of the 

particle and walls, and we apply constant voltages at both ends of the channel to produce a 

constant applied electric field along the channel. We fix the coordinates to the particle so 

that the channel walls are assigned the negative particle velocity. A no stress condition is 

used at the inlet and outlet far from the particle, where the concentration should reach the 

equilibrium value. Thus we have the following boundary conditions:  
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Tke Bpp /ˆˆ
particle0   , Tke Bww /ˆˆ

wall0   , 0ˆ
outlet inlet,0  n , 

   //ˆ
inlet1 TkeV Bin ,    //ˆ

outlet1 TkeV Bout , 0ˆ
 wallparticle,1  n , 

  //ˆ
wall1 cp UUu  , 0ˆ

particle1 u ,      0ˆˆ
outlet inlet,11 

T
uun , 

0ˆ
 wallparticle,1  inn , 0ˆ

outlet inlet,1 in ,      (3.6) 

where n is the unit normal vector. The applied electric field is specified by 

  xoutin LVVE /
, where 

xL  is the distance between the inlet and the outlet. 

 

3.1.3. Calculation of Electric and Hydrodynamic Forces 

Equations (3.1)-(3.5) are solved along with the appropriate boundary conditions to find 

the electrophoretic velocity of the particle under weak applied electric field. Since the 

unknown nanoparticle velocity is coupled directly to the wall boundary conditions, we vary 

the particle velocity until the drag force on the particle balances the electric force. For a 

nonconductive particle surface with specified zeta potential, we apply the simplified electric 

force expression [48]: 

   AdsE
ˆˆˆˆ

1F , 
  02

ˆ2
ˆ 


  n

a
s ,     (3.7) 

where s̂  is dimensionless surface charge density. In addition, the hydrodynamic force (drag 

force) on the particle can be obtained by  

 
   Ad

a
D

ˆˆ
2ˆ

2
σnF


,        (3.8) 



 

 17 

where σ̂  is the dimensionless fluid stress tensor. Note that a factor  2/2 a  appears in (3.8) 

due to the scales used to make the velocity and force nondimensional. After we obtain the 

equilibrium particle velocity pU , the dimensionless mobility can be calculated by: 




















Tk

e

E

U

E

U

B

pp






ˆ

ˆ
ˆ .       (3.9) 

 

3.1.4. Numerical Simulation 

The equations and associated boundary conditions are solved in a 3D finite element 

domain using COMSOL V4.4a (COMSOL, Inc., Stockholm, Se). Quadratic elements are 

used for electric potential and ionic potential, and linear elements are used for velocity and 

pressure fields. The mesh is refined adaptively in the Debye length near the surfaces of the 

particle and walls. Mesh independence is checked in all cases, and the relative tolerance is 

chosen to be 0.001.   

Our computational domain is a rectangular channel (length 
xL , width 

yL , height 
zL ) 

with a spherical particle as shown in Figure 3.1. Symmetry is used to reduce the 

computational domain to one-half of the channel. To simulate a practical nanochannel, we 

consider the confinement effect only in the channel height direction ( hLz 2 ), while the 

channel width is computationally chosen to be large, zy LL 10 , and has negligible 

influence.  The ratio of the channel half height to particle radius is defined as ˆ /h h a . An 

electric field of 100 V/m is applied along the channel, and KCl is used as the background 

electrolyte. Zeta potentials are specified at the surface of the particle and walls, where zero 
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corresponds to uncharged condition. We use viscosity and permittivity of water at 20°C and 

assume diffusion coefficient of both K  and 
Cl  to be 

9 2 11.96 10  m  s   [49].  

 

3.2. Particles in Unbounded Domain 

Our full 3D simulation has several advantages. It is applicable to a wide range of 

parameters and complex geometries. More importantly, we can provide an improved 

explanation to the nonlinear behavior of mobility by examining directly electric and flow 

fields near the particle. We first validate our model by comparing to classic models for an 

unbounded domain [24, 26, 27]. By investigating forces on the particle, we can explain how 

mobility changes with dimensionless particle zeta potential ( p̂ ) and dimensionless Debye 

length ( aDD /ˆ   ). Once validated, we use the model to investigate the effect of channel 

height for both uncharged and charged walls, and determine the relative importance of 

confinement.  

 

3.2.1. Numerical Model Verification 

Figure 3.2 compares normalized mobility N̂  to the results predicted by Henry and 

Ohshima’s theory for low particle zeta potential in an unbounded system [24, 27]. The 

normalized mobility is defined by: 











 




3

2
//ˆ pp

HuckelN
E

U
.       (3.10) 

Here, wall zeta potential is zero (uncharged) and walls are far from the particle ( 50ˆ h ). 

Therefore the simulation approximates an unbounded system since the influence of the 

channel walls will be minimal. Specifically, we chose a particle zeta potential of 1 mV 
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(dimensionless particle zeta potential 04.0ˆ p ). Bulk concentration of KCl is varied to 

alter the EDL thickness around the particle, using the relation 22//1 enTkBD   . 

The good agreement with Henry’s function shows our model is accurate over a wide range 

of bulk electrolyte concentration. 

 

 

Figure 3.2. Comparison between simulation results and Henry’s function [24], showing normalized 

mobility 
N̂  from Equation (3.10) as a function of the dimensionless Debye length κa. The blue, solid, line is 

calculated from our simulation, and the red, dashed, line is obtained by Ohshima’s expression of Henry’s 

function [27]. The slight deviation (less than 3 %) comes from drag generated by channel walls.  

 

For higher zeta potentials, we compared our results of electrophoretic mobility with 

literature values [26] in an unbounded domain for both low and high particle zeta potentials.  

Figure 3.3 shows the dimensionless mobility ̂  as a function of p̂  for different values of 

κa. Here we use a 50 nm-diameter particle in a 2.5 µm-wide uncharged channel to minimize 
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influence of channel walls and to simulate an unbounded environment. Solid lines represent 

the current simulation, while dashed lines are adopted from O’Brien and White [26].  Note 

that according to the definition in the literature, the mobility of thick EDL approaches 1 

instead of 2/3. Therefore the mobility data from [26] needs to be multiplied by a factor 2/3 to 

be consistent with our definition of dimensionless mobility. The good agreement indicates 

that our model correctly captures interactions between electric and flow fields over a wide 

range of both p̂  and κa.  

 

 

Figure 3.3. Mobility as a function of particle zeta potential with different κa in (a) thin double layer region 

and (b) thick double layer region. Solid lines are from our simulation and dashed lines are Obrien and White 

[26]. Two dashed dotted lines correspond to the two limiting cases of thick and thin EDL. Linearity holds for 

small 
p̂  with the slopes bounded by 2/3 and 1. A maximum can only be observed in thin EDL region (a). 

 

3.2.2. Nonlinear Behavior of Mobility 

In this section, we investigate the behavior of mobility in an unbounded system by 

examining electric field and ion distribution near the particle. Referring back to Figure 3.3(a) 
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(thin EDL), at low particle zeta potential, the mobility shows linear dependence on p̂ , and 

the slopes are bounded by 2/3 and 1, which correspond to Huckel-Onsager and Helmholtz-

Smoluchowski’s models at thick and thin EDL limits, respectively [22, 23]. However, as p̂  

increases, linearity no longer holds and mobility will reach a maximum, as predicted by 

O’Brien and White in [26]. Figure 3.3(b) shows mobility in thick EDL systems. Mobility 

increases linearly only when p̂  is small as thin EDL case. However, no obvious maximum 

can be observed in these cases. O’Brien and White suggested that retarding force grows 

faster with p̂  than driving force, and consequently maximum mobility exists in thin EDL 

systems. For the thick EDL case, no maximum appears because the disturbed charge density 

1̂  is too small to affect retarding force. In our 3D simulation, we can examine in detail the 

ion distributions around the particle to understand how p̂  and κa affect forces on the 

particle as well as the mobility. An example is shown in Figure 3.4. 
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Figure 3.4. The effect of double layer polarization. (a) Distribution of perturbed charge density 
1̂  is 

shown near a negatively charged particle. Red and blue colors correspond to positive and negative values, 

respectively. According to the direction of applied electric field, cations are moved to the front edge of the 

particle, and a counter electric field is generated to reduce net electric field. Thickness of EDL affects 

distribution of accumulated ions, which effectively affects counter electric field. (b) We show a zoom-in plot of 

pressure field at the front edge of the particle. A pressure gradient is formed to balance the electric body force 

in fluid. As a result the net pressure force acting on the particle is in the same direction as electrophoresis. Note 

here the color scales are not the same for the two plots. 

 

Specifically, the disturbed counter-ions in diffuse layer will be displaced by the applied 

electric field. If cations are attracted to a negatively charged particle, for example, the 

applied electric field will move them toward the front edge of the particle. Therefore positive 

disturbed charges ( 0ˆ
1  ) will be found at the front edge and negative ones at the rear as 

shown in Figure 3.4(a). This phenomenon is the so-called double layer polarization [11, 13]. 

Figure 3.4(a) shows a cross sectional plot of distribution of perturbed charge density 1̂  near 

the particle, where the applied electric field is toward right. Red and blue areas correspond to 

positive and negative values of 1̂ , respectively.  
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Double layer polarization induces two major effects. First, the two groups of 

accumulated charges create a counter electric field against the applied field as shown in 

Figure 3.4(a), which reduces net electric field near the particle. The counter electric field is 

affected by charges in the two groups (magnitude of 1̂ ) and the spatial distribution of them 

(particle geometry and EDL thickness). On the other hand, the accumulated positive charges 

at the front edge result in a negative electric body force in fluid. To balance it, a pressure 

gradient toward the particle is built near the front edge, that is, a positive pressure exists at 

the front surface of the particle as shown in Figure 3.4(b). Similarly a negative pressure acts 

on the rear surface of the particle. Therefore, a net pressure force toward left (along the 

direction of electrophoresis) acts on the particle, and it reduces drag force caused by shear 

stress. Note that the color scales of the two plots are not the same. 

Mobility is determined by the magnitude of driving force (electric force) and drag force 

on the particle. Electric force is proportional to surface charge density and electric field, that 

is, EF sE
ˆˆ~ˆ  , where s̂  is surface charge density. Surface charge density increases with bulk 

electrolyte concentration and particle zeta potential, while electric field is reduced by the 

counter electric field. On the other hand, drag force can be decomposed into skin friction 

resulting from shear stress and form drag resulting from pressure. Shear stress dominates at 

high κa cases due to the high velocity gradient. However, at low to moderate κa, pressure 

may act against shear stress (due to double layer polarization) to reduce the net drag force. 

These four terms change with p̂  and κa, and affect mobility in a coupled manner.  

 

3.2.3. Particle Zeta Potential  
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Consider thin EDL systems as shown in Figure 3.3(a). For drag force, shear drag always 

dominates due to the high velocity gradient. As p̂  increases, more ions are attracted near 

the particle and higher electric body force in the fluid causes stronger flow motion. 

Therefore the net drag force increases with p̂ . On the other hand, the electric force consists 

of two competing factors: surface charge density s̂  and electric field. From low to moderate 

p̂ , s̂  increases but electric field decreases due to the counter electric field. As a result, 

electric force still increases with p̂ . However, the reduction of electric field dominates at 

high p̂  and start suppressing electric force. Consequently, drag force grows faster than 

electric force at high p̂ , which leads to an increasing-decreasing trend in mobility. We also 

notice that maximal values occur at higher p̂  as κa increases. A larger value of κa leads to a 

higher bulk electrolyte concentration and a larger s̂ . This indicates that a larger p̂  is 

required to generate a larger counter electric field to suppress electric force and mobility, 

which corresponds to the shift of the maximums. 

For thick EDL systems in Figure 3.3(b), a lower value of κa indicates a lower bulk 

electrolyte concentration and a lower s̂ , and reduction of electric field starts dominating at 

moderate values of p̂ . Therefore, electric force increases first with p̂  and then decreases. 

However, pressure is important in thick EDL cases due to moderate shear stress. The 

magnitude of pressure is comparable to shear stress, but it acts in the opposite direction to 

reduce net drag force. The effect of double layer polarization is stronger at high p̂ , and it 

results in greater pressure difference across the nanoparticle and thereby a lower net drag 
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force. Since the reduction of electric force is compensated by reduction of drag force at high 

p̂ , mobility shows a monotonic increasing trend in Figure 3.3(b) for thick EDL systems. 

Note that in Figure 3.3, mobility also changes with κa. We will discuss it in next section. 

 

3.2.4. Electrolyte Concentration  

To better illustrate the effect of electrolyte concentration, we plot the normalized 

mobility defined in equation (3.10) as a function of κa in Figure 3.5 with different values of 

p̂ . When p̂  is 0.04, magnitude of perturbed charge density 1̂  is too small to distort the 

applied electric field (double layer polarization is negligible). Hence mobility agrees with 

Henry’s function as shown in Figure 3.2. However, as p̂  increases, a minimum normalized 

mobility exists at moderate κa. This can be explained by examining forces on the particle as 

last section.  

Consider a larger value of particle zeta potential ( 2ˆ p ). For low to moderate κa, s̂  

increases, but electric field decreases due to the counter electric field. Hence the electric 

force increases slightly with κa. On the other hand, shear stress increases and the importance 

of pressure decreases due to increasing velocity gradient. Consequently net drag force 

increases more quickly than the electric force, which leads to decreasing mobility at low κa 

region. For moderate to high κa, higher electrolyte concentration indicates higher s̂ . In 

addition, thin EDL confines polarized ions toward the surface of the particle. This reduces 

the magnitude of counter electric field and thus increases net electric field. Hence, electric 

force increases drastically with κa. For drag force, shear drag dominates and also increases 

with κa. Since electric force increases more quickly at high κa, mobility increases for large 
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κa region. Combining the two parts we can see a decreasing-increasing trend in mobility. If 

we further increase particle zeta potential ( 8 ,4ˆ p ), increased perturbed charge density 1̂  

generates higher counter electric field at the same value of electrolyte concentration. This 

results in lower net electric field and lower electric force on the particle. Therefore a stronger 

confinement on the polarized ions (thinner EDL, higher κa) is required to compensate 

increment of counter electric field, and the shift of the minimum mobility to higher value of 

κa can be observed. 

 

 

Figure 3.5. Normalized mobility as a function of κa with different particle zeta potential. When 
p̂  is small 

the result agrees with Henry’s function. For 2ˆ p  minimum mobility occurs at moderate value of κa. The 

location of minimum mobility shifts to higher value of κa as 
p̂  increases. 

 

3.3. Particles in Confined Channels 
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3.3.1. Effect of Particle Location 

In order to obtain useful results from simulations with the particle fixed at the center of 

the channel, it is important to make sure that the effect of the particle being located at 

various positions across the channel is minimal. For low electrolyte concentrations, we show 

that the electric double layers are large and confine the particle to the center of the channel. 

For high electrolyte concentrations, the electric double layers are thinner and the particle 

position is distributed across the channel.  However, even in this case, we can show that the 

mobility of the particle within this distribution of transverse channel positions varies only by 

~1%. 

Specifically, in our case the particle and channel walls are both negatively charged, if a 

particle deviates from the midplane of the channel, it will be repelled due to the electrostatic 

force. However, this force may be screened at least partially by the EDLs, no matter how 

thick or thin. Therefore, we calculated the electric force in the transverse direction for 

different particle locations with different electrolyte concentrations. Figure 3.6 shows the 

relative electric force as a function of particle location pz  for a 50 nm-diameter and a 10 nm-

diameter particle in a 100 nm channel, where 0pz  corresponds to the nanochannel 

midplane. The relative electrostatic repulsive force is defined as xezeze FFF ,,, /
~

 , which is a 

comparison of the cross-channel to the driving electric force. When 1
~

, zeF  the magnitude 

of the repulsive force is the same as the axial driving force, which means the particle has 

strong tendency to move towards the midplane. For low electrolyte concentrations (~1 mM) 

the repulsive force is significant, thereby confining the particle very close to the midplane 

due to the thick EDLs. In contrast, for high electrolyte concentrations (~3 M), the thin EDLs 
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effectively screen the repulsive force until the particle is close to the wall. Therefore for high 

electrolyte concentration (thin EDL) the particle location is distributed across the channel.  

 

 

Figure 3.6. Relative electric force as a function of particle location with different electrolyte concentration 

in a 100 nm channel for (a) a 50 nm-diameter particle and (b) a 10 nm-diameter particle. The repulsive force is 

strong for low concentration cases even the particle slightly deviates from the midplane.  

 

Subsequently, we focused our attention on the highest electrolyte concentration, 3M, as a 

worst case scenario where the widest particle distribution occurs. The electrostatic repulsive 

force distribution is integrated to obtain the energy barrier eU , where 0eU  at the midplane 

due to zero repulsive force. In addition, the mobility of the particle is calculated as a function 

of transverse location. The probability distribution of particle position is related to the 

energy barrier,     TkyUyf BeY /exp~  . The zeta potentials are chosen as mV 1p  and 

mV 2w . The average dimensionless mobility for a 50 nm-diameter and a 10 nm-

diameter particle is 0.0396 and 0.043, respectively. The mobilities of the two particles at the 

centerline are 0.0399 and 0.0431, which indicates the deviation is within 1% for both cases. 
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Since the velocity field generated by electro-osmosis behaves like plug flow, the mobility 

remains relatively unchanged unless the particle is located near the wall. However, the 

repulsive force confines the particle near the centerline, which decreases substantially the 

probability of a particle being located near the wall. Based on these results, we are motivated 

to restrict our attention to analysis of particle mobility at the channel centerline.  

 

3.3.2. Particles in Channels with Uncharged Walls 

Here we consider uncharged channel walls, where w̂ = 0.  We choose channel heights 

ranging from 100 nm ( ĥ = 2, nanochannel) to 2.5 µm ( ĥ = 50, microchannel). Figure 3.7 

shows mobility as a function of particle zeta potential with different channel heights for thin 

(κa = 30) and thick (κa = 2) EDL systems. In both cases the boundary effect seems minor 

when ĥ  > 5, and the results are similar to those already presented in Figure 3.3. For a 

bounded domain, linearity at low p̂  region still holds but confinement effect reduces the 

slopes due to increased drag. In addition, reduction of mobility is greater for thick EDL 

systems, because interaction between EDL and channel walls effectively decreases surface 

charge and electric force on the particle. When ĥ  drops to 2, the confinement effect is 

prominent and reduction of mobility could be up to 18% for a thick EDL system. Note that 

Figure 3.7 can also be interpreted as mobility of particles of different radius in an uncharged 

nanochannel at a fixed height. Therefore, this shows a possibility of exploiting nanochannels 

to separate particles of different sizes.  
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Figure 3.7. Mobility as a function of particle zeta potential with channel heights for (a) κa = 30 and (b) κa 

= 2. Confinement effect is not important when ĥ  > 5. Linearity still holds at low 
p̂  , while the slope reduces 

for narrow channels due to increased drag. Reduction of mobility is prominent for ĥ = 2 especially at low value 

of κa, which is due to interaction between EDL and channel walls. 

 

3.3.3. Particles in Channels with Charged Walls 

In particle mobility experiments, particle total mobility can be divided into 

electrophoretic and electro-osmotic components, which are usually treated independently 

[38, 39]. However, EDLs generated by the particle and by channel walls interact with each 

other, which affects mobility especially when channel height is comparable to thickness of 

EDL. Therefore, particle mobility should in fact deviate from that predicted by superposition 

of electrophoretic and electro-osmotic mobility. Further restricting our attention to a 50 nm-

diameter particle, Figure 3.8 shows particle total mobility from numerical simulation as a 

function of a  for ĥ = 50 and 2. This result is compared to total mobility obtained by 

superimposing electrophoretic and electro-osmotic mobility ( EOFEPtotal  ˆˆˆ   as in 

classical models), using the classic expression wEOF  ˆˆ   to calculate electro-osmotic flow. 



 

 31 

The particle and walls are assumed to be negatively charged to simulate practical conditions, 

and values of zeta potential are chosen as 04.0ˆˆ  wp   to avoid any nonlinear effects 

caused by double layer polarization. For thin EDL systems in a large channel ( ĥ = 50), the 

results from superposition are valid, since no interaction occurs between the EDLs of the 

channel walls and the particle. However, as κa decreases, the EDLs overlap, and lead to a 

moderate deviation at thick EDL region.  

When the channel height further reduces ( ĥ = 2), deviation in mobility exists even for 

thin EDLs. This indicates that charged walls influence the confinement effect by increasing 

hydrodynamic drag. Near the thick EDL limit, on the other hand, a significant deviation can 

be observed. The speed of background flow (electro-osmosis) is strongly suppressed by 

overlapping EDLs, which provides a lower magnitude of EOF̂  compared to the expression 

( wEOF  ˆˆ  ) used in the superposition method. Therefore, the total mobility calculated by 

superposition overpredicts mobility. Given the influence of overlapping EDLs on 

electrophoresis and electro-osmosis, we conclude that incorporating both effects 

simultaneously is required in order to accurately predict the mobility of a particle in a 

nanochannel.  
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Figure 3.8. Particle total mobility as a function of κa with different channel heights from direct simulation 

and superposition of electrophoresis and electro-osmosis. Solid lines and dashed lines correspond to ĥ = 50 

and ĥ = 2, respectively. Good agreement can be found at large κa for ĥ  = 50. As κa decreases, EDL 

overlapping happens and mobility is overpredicted by superposition. In addition, deviation at high value of κa 

can also be observed in ĥ = 2 case, which is due to modification of shear drag generated by walls.  

 

Figure 3.9 shows total mobility verses κa for two different size channels (solid lines for 

ĥ = 50, dashed lines for ĥ = 2). The value of wall zeta potential w̂  is fixed at -0.08, and 

particle zeta potential p̂  is chosen as -0.04, -0.08, and -0.12. First, in the thin EDL regime 

(κa > 100), there is no interaction between EDLs from the particle and walls. The 

Helmholtz-Smoluchowski model is valid and total mobility can be approximated by 

superposition of electrophoretic and electro-osmotic mobility, that is, 

 wpEOFEPtotal  ˆˆˆˆˆ  . Note that both the particle and walls are negatively charged, 
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and consequently electrophoresis is in the opposite direction to electro-osmosis. For 

example, if p̂ = -0.12, electrophoretic mobility dominates and the particle moves against 

direction of the background EOF flow ( total̂ < 0).  

The deviation in mobility between the two channel heights depends on the value of 

 wp  ˆˆ   at the thin EDL limit. In the case of wp  ˆˆ  = -0.04, mobility approaches zero for 

both channel heights, and the confinement effect is not observed. This is due to the charged 

condition at the wall surfaces. Specifically, electro-osmotic flow generated in thin EDL 

systems can be interpreted as a shear flow, which superimposes shear drag on the particle. In 

this case, the velocity near the walls has the same magnitude and direction as velocity near 

the particle. Consequently, no shear stress from the walls can be perceived by the particle, 

which effectively eliminates the confinement effect. Similarly, if flow near the walls is 

faster, for example in the p̂ = -0.04 case, the shear stress acts on the particle along the 

direction of electrophoresis and increases electrophoretic mobility, which results in a lower 

total mobility. Since shear stress depends on the velocity gradient, this effect is predominant 

for small channel heights. The results suggest that particle mobility can be altered by using 

different materials or surface coatings for nanochannels. 

As κa decreases ( D  increases), total̂  increases due to decreased EP̂ . As the EDL 

thickness increases, the wall EDLs will increasingly interact with the particle EDLs. This 

reduces surface charge density on the particle, which reduces 
EP̂ . In addition, the 

magnitude of EOF̂  remains constant, since the EDLs from the top and bottom walls do not 

overlap. Subsequently, total mobility continues to increase with decreasing κa. As κa 

decreases even further, the EDLs from the top and bottom walls start to interact, thereby 
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reducing the electro-osmotic flow, as observed in Figure 3.9. Overlapping can occur for 

large EDL thicknesses, even in relatively large channels. Consequently, the maximum 

mobility appears at lower κa for ĥ = 50. 

As κa approaches zero (thick EDL limit), electro-osmotic mobility approaches zero due 

to extremely low charge density in flow. In this case, particle total mobility is dominated by 

electrophoretic mobility. According to Huckel-Onsager’s model, the drag force on the 

particle can be predicted by Stokes’ law (with modification to include channel walls). In 

addition, since κa approaches zero, the Poisson-Boltzmann equation (3.1) reduces to 

Laplace’s equation. With specified zeta potential at the particle and walls, surface charge 

density of the particle should be proportional to the difference in the zeta potentials. The 

electric force as well as total particle mobility should proportional to ( wp  ˆˆ  ) near the 

thick EDL limit. 

At low κa, the effect of EDL overlapping leads to significant differences in mobility. The 

mobility of a nanoparticle in a nanochannel is greater than that in a microchannel at 

moderate κa. Finally, when magnitude of particle zeta potential is higher ( p̂ = -0.12), 

mobility changes from negative to positive value, and then back to negative again. The 

results indicate that particle motion can be manipulated by changing electrolyte 

concentration in a nanochannel.    
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Figure 3.9. Total mobility as a function of κa with different values of 
p̂  and channel height. At the region 

of high κa mobility approaches a proportional difference of 
p̂  and 

w̂ , which can be predicted by Helmholtz-

Smoluchowski model. As κa decreases, the thickness of the EDL increases and starts overlapping, which leads 

to increasing-decreasing behavior of mobility. As κa approaches zero, Huckel-Onsager model is applicable but 

corrections need to be made to account for effects of finite 
w̂  and confinement.   

 

3.3.4. Application to Nanochannels 

In the above sections we showed that particle mobility is affected by particle zeta 

potential, electrolyte concentration, channel size, and wall zeta potential. However, particle 

zeta potential and electrolyte concentration cannot be arbitrarily specified in real 

applications. Consequently, particle mobility can be manipulated by choosing channels with 

different heights or surface charges [50]. For example, if the value of wall zeta potential is 

chosen between the values of particle zeta potential of two types of particles, the two particle 

types will migrate in the opposite directions under an applied electric field. The results 
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shown in Figure 3.9 can also be viewed as particle mobilities with different sizes in the same 

charged channel. For example, consider two particle types: 50 nm-diameter and 10 nm-

diameter. Figure 3.10 shows particle mobility as a function of electrolyte concentration in a 

microchannel and a nanochannel. The zeta potentials are chosen as p̂ = -0.04, w̂ = -0.08.  

Figure 3.10 indicates how nanochannels (dashed lines) can be used to separate 10 and 50 nm 

diameter particles using 1 µM - 1 M electrolyte concentrations, with a significant 

improvement being observed at the lower and higher electrolyte concentration regions. The 

microchannels (solid lines) can separate the two types of particles, but only for higher 

electrolyte concentrations. This indicates that one can exploit nanochannels to separate 

particles efficiently over a large range of electrolyte concentrations. 

  

 

Figure 3.10. Mobility as a function of electrolyte concentration of 10 nm and 50 nm particles. Solid lines 

and dashed lines correspond to results in a microchannel and a nanochannel, respectively. Difference in 

mobility shows ability of separation, and no significant improvement is observed in a nanochannel. 
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The conventional method to estimate particle zeta potential incorporates Helmholtz-

Smoluchowski’s model and electrophoretic mobility, which is calculated by subtracting 

particle total mobility from the electro-osmotic mobility. As discussed above, this approach 

fails for cases with thick EDLs or with high particle zeta potentials. In addition, the 

difference between total mobility and electro-osmotic mobility is relatively small, and can 

introduce significant error. Subsequently, we propose here a new method for estimating 

particle and wall zeta potentials by using only the total particle mobility as measured in two 

different height channels. Figure 3.11 shows contours of total particle mobility as a function 

of p̂  and w̂  with 1 mM electrolyte concentration (κa = 2.61) for ĥ = 50 (solid lines) and 

ĥ = 2 (dashed lines). Numbers on contour lines correspond to dimensionless total particle 

mobility. Once the total particle mobility has been measured in the two different height 

channels, the intersection of corresponding contours leads to definitive values of particle and 

wall zeta potentials.  
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Figure 3.11. Contours of total particle mobility as a function of 
p̂  and 

w̂  with κa = 2.61. Solid and 

dashed lines correspond to ĥ  = 50 and 2, respectively. Using mobility measurements obtained using the two 

different height channels, particle and wall zeta potentials can be determined by the intersection of 

corresponding contours.  

 

For example, if we want to determine the zeta potential of a 50 nm-diameter particle, we 

can measure its mobility in a 2.5 µm-high channel ( 50ˆ h ) and a 100 nm-high channel 

( 2ˆ h ) filled with 1 mM KCl solution (κa = 2.61).  For demonstration purposes, let’s 

assume that the measured total particle mobilities are, say, 1
50ˆ 

h
  and 1

2ˆ 
h

 . Then by 

comparing the measured mobilities with Figure 3.11, we can estimate that the particle and 

channel zeta potentials are 19.8 mV ( p̂ = 0.792) and 39.8 mV ( w̂ = 1.59), respectively. If 

the error from mobility measurement is, say, 3%, the error for zeta potential would also be 

about 3%. Our approach can avoid the errors generated from measuring electro-osmotic 
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mobility, and works for a wide range of a  and p̂ . Note that Figure 3.11 is restricted to the 

value κa = 2.61. This approach can be readily extended for other values of κa. 
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4. Electromigration of 2D Nanorods in Nanochannels 

In this chapter we improve our steady-state model to include fluid-structure interaction. 

The new model is used to track motion of nanorods in nanochannels. The confinement of 

nanocahnnel can be observed for lower electrolyte concentration due to interaction of thick 

EDLs. Particle mobility is calculated in both models to determine when the steady-state 

model would be a good approximation. 

 

4.1. Equations and Numerical Simulation 

 

4.1.1. Governing Equations 

Consider a rod particle in a two-dimensional channel filled with KCl electrolyte solution, 

as shown in Figure 4.1. The flow is assumed to be incompressible due to low Reynolds 

number flow in nano-confined channels. Following our previous work in chapter 2, for an 

applied electric field, the dimensionless governing equations can be written as electrostatic 

and perturbed equations as follows: 

  0

2

0

2 ˆsinhˆ  a ,        (4.1) 

  1

2

1

2 ˆ
2

1ˆ  a ,        (4.2) 

0ˆ
1  u ,          (4.3) 

  0ˆˆˆˆˆˆ
011011

2  pu ,      (4.4) 

  0ˆˆ
2

1ˆˆˆˆˆ
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
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


 uiiiii nnnzn  ,         (4.5) 
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where ̂ , in̂ , û , p̂ , ̂  are the dimensionless electric potential, ion number concentration of 

species i, flow velocity, pressure, and charge density, respectively. The subscript “0” and “1” 

correspond to electrostatic and perturbed states, respectively. The electrostatic ion 

concentration follows Boltzmann distribution, that is,  00
ˆexpˆ ii zn  . Here we use 

eTkBc / , the particle radius a, and the bulk concentration n  to scale electric potential, 

length, ion number concentration, respectively. The velocity is scaled by the electrophoretic 

velocity,  / EUc , and pressure is scaled by aUp cc / . The reciprocal Debye length 

is defined as   2/12 /2/1 Tken BD   , and aUTakn cB  /2

  represents the ratio of 

electric force scale to hydrodynamic force scale. In addition, we define the ion Péclet 

number as DaU c /2 . The parameters  , e, 
Bk , T,  , D,  , E  correspond to 

permittivity, electron charge, Boltzmann constant, temperature, viscosity, ion diffusion 

coefficient, zeta potential, and applied electric field, respectively.  

To simulate a moving particle in a channel, we consider the fluid-structure interaction 

between the solid particle and the fluid. Here we consider a homogeneous, isotropic and 

linear elastic solid particle. Without body force, the displacement of the particle is governed 

by 

0ˆ  solidσ ,         (4.6) 

T

solidsolid J FSFσ ˆˆˆˆˆ 1  ,  soliduIF ˆˆ  , F̂detˆ J ,  (4.7) 

    solid

T

solid

T

solidsolidsolid uuuuε ˆˆˆˆ
2

1
ˆ  ,     (4.8) 

ijsolidijkksolidijsolid GS ,,,
ˆˆ2ˆˆˆ   ,       (4.9) 
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where solidσ̂  and solidŜ  are Cauchy stress and second Piola–Kirchhoff stress. solidû  is the 

deformation of the solid particle, while F̂  and solidε̂  are deformation gradient and 

Lagrangian finite strain tensor.  aUc //ˆ    and  aUGG c //ˆ   are the scaled Lame 

constant and shear modulus, respectively, which are related to Young’s modulus and 

Poisson’s ratio by    GGGE   /23  and  G  2/ . We assume the density of 

the particle is roughly the same as the flow [51], so the inertial term can be neglected due to 

small Reynolds number. Proper boundary conditions for both electrostatic and perturbed 

states are required to solve the complete system of equations (4.1)-(4.9). 

 

 

Figure 4.1. Computational domain of two-dimensional rod-like particle flowing through a two-dimensional channel. 

The angle of the particle is defined as the angle between the major axis of the particle and x-axis. A 
pla2  rod with 

semicircle ends is used in the simulations. The center of the particle is located at  
pp yx , , and the channel height is 

yL . 
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4.1.2. Boundary Conditions 

In our system, the surfaces of the particle and the channel walls are nonconductive and 

impermeable. Constant surface charge density is specified at the surfaces of the particle and 

walls, and we apply constant voltages at both ends of the channel to produce an applied 

electric field along the channel. Surface charge density can be related to zeta potential by 

 s  for small surface charge [52], which is a good approximation when 

 eTkB / 25 mV at room temperature. To increase the duration of simulation, we chose a 

reference frame traversing with a velocity close to the particle streaming velocity. The 

velocity and normal stress of the fluid and the solid are matched at the solid-fluid interface. 

In addition, an electric force is exerted on the surface of the particle by the applied electric 

field. No stress condition is used at the inlet and outlet far from the particle, where the 

concentration should reach the equilibrium value. Thus we have the following boundary 

conditions:  

  2/ˆˆ
,

2

particle0 psa  n ,   2/ˆˆ
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2
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outlet inlet,0  n , 

 TkeV Bin /ˆ
inlet1  ,  TkeV Bout /ˆ
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 wallparticle,1  n , 

 cw U/ˆ
wall1 Uu  , 

t

solid

ˆ

ˆ
ˆ

particle1





u
u ,   0ˆ

outlet inlet, σn , 

0ˆ
 wallparticle,1  inn , 0ˆ

outlet inlet,1 in ,   ˆˆˆˆ
,particle  pssolid σnσn ,     (4.10)  

where n is the unit normal vector, and ps,̂ , ws,̂  are dimensionless particle and wall surface 

charge density. The applied electric field is specified by   xoutin LVVE /
, where xL  is the 
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distance between the inlet and the outlet. Here    T
p 111

ˆˆˆˆ uuIσ   is the 

dimensionless flow stress.  

 

4.1.3. Numerical Simulation 

The equations and associated boundary conditions are solved in a 2D finite element 

domain using COMSOL V4.4a (COMSOL, Inc., Stockholm, Se). Quadratic elements are 

used for electric potential and ionic potential, and linear elements are used for velocity, 

pressure, and displacement. The mesh is refined adaptively near the surfaces of the particle 

and walls. Mesh independence is checked in all cases, and the relative tolerance is chosen to 

be 0.001.   

Our computational domain is a rectangular channel (length 
xL , height yL ) with a rod-

like particle as shown in Figure 4.1. The 2D rod has 2 nm diameter and 3.4 nm height with 

round ends, and the channel height is chosen as 100 nm ( yL̂ = 100). An electric field of 1000 

V/m is applied along the channel. The surface charge density at the walls is specified as 

25

, C/m 1031.7 ws , which corresponds to zeta potential mV 2w . The surface 

charge density of the particle is chosen as wsps ,, 5.0   . We use viscosity and permittivity 

of water at 20°C and assume diffusion coefficient of both K  and 
Cl  to be 

9 2 11.96 10  m  s   [49].  

The arbitrary Lagrangian-Eulerian method (ALE) [53, 54] is used to deal with the 

moving particle-fluid interface. The mesh deforms to capture the motion of the particle until 

the quality of mesh degrades to a specified isochoric distortion level. Then an undeformed 

mesh corresponded to the new deformed geometry is created and the similar approach is 
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repeated. This method is widely used in tracking particle motion over an extended period of 

time. 

 

4.2 Results and Discussions 

 

4.2.1. Particle Trajectory 

In our initial simulations, the nanorod is located near the bottom wall at 30ˆ
0 y  with 

an inclination angle,  300 . Figure 4.2 shows the representative particle motion over 

8000 non-dimensional time steps, with two electrolyte concentrations 1 mM ( D̂ = 9.57), and 

10 mM ( D̂ = 3.03). For the 1 mM case, the particle moves toward the centerline and is 

confined with the major axis parallel to the applied electric field. This is because the thick 

EDLs, the strong repulsive forces repel the negatively charged particle away from the 

negatively charged walls, and orientate the particle to align horizontally with the flow 

direction.  
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Figure 4.2. Particle trajectories from t̂  = 0 to 8000 in a 100 nm height nanochannel for (a) 1 mM electrolyte 

concentration and (b) 10 mM electrolyte concentration. The particle is confined at the centerline for 1 mM case because of 

the thick EDLs. For the 10 mM case, when the particle moves toward the top wall, the velocity is decreased by the 

increased repulsive force, and eventually moves in the opposite direction. The particle repeatedly oscillates, and the 

trajectory behaves similar to a sinusoid. 

 

For the 10 mM case, the particle tends to move towards the centerline. However, it 

overshoots the centerline continually. Around t̂  = 2000, the particle moves past the 

centerline and towards the top wall. When the particle is close to the top wall, the transverse 

velocity is decreased by the repulsive force, and eventually turns toward the centerline again. 

In this case, the particle moves in an oscillatory manner in a confined region of the channel. 

Because of the relatively thin EDLs that screen charges, the particle does not feel the 

repulsive force of the EDL unless it is near the walls. Therefore, the particle is confined 

towards the center region of the channel, while the angle of the particle changes continually 

as the particle travels through the channel. Clearly, the degree of particle confinement is 

strongly affected by electrolyte concentration. A similar conclusion was obtained in the 

steady-state model by calculating the transverse force on the particle [45].  
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To better visualize the behavior of the particle in different electrolyte concentrations, the 

transverse location pŷ  at the center of the particle is plotted as a function of time in Figure 

4.3. During 20000 non-dimensional time steps, the particle stays at the centerline for 1 mM 

case, while it never moves outside 30ˆ30  y  region for 10 mM case. This is because the 

interaction of the fluid and the nonsymmetrical rod-shape particle causes a nonzero 

transverse force and moment, which results in the particle transverse motion as well as 

rotation, an effect that is not captured by any steady state model. 

 

 

Figure 4.3. Particle transverse location as a function of time with 1 mM (
D̂ = 9.57) and 10 mM (

D̂ = 3.03) 

electrolyte concentration for a cylindrical particle. The particle is confined at the centerline for the 1 mM case, while the 

particle moves in an oscillatory manner inside 30ˆ30  y  region for the 10 mM case due to the interaction of EDLs of 

the particle and walls.    
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For the 1 mM case, the initial angular position of the particle does not affect the resulting 

particle trajectory, because the strong confinement forces the particle to move along the 

centerline, independent of initial position. However, the particle motion could possibly be 

dependent upon initial positions for thinner EDL cases. Four simulations were performed for 

a rod with two different initial positions and two different initial angles for the case of 10 

mM electrolyte concentration. The simulated transverse locations are shown in Figure 4.4 

for these four cases. Note that the initial conditions only affect the particle motion during the 

initial transient stage ( 5000ˆ t ). For larger times, all the cases reported here show similar 

oscillatory movement and have nearly identical mobilities (the differences are less than 2%). 

Therefore, one can conclude that the initial conditions of the particle are not substantially 

important for the current study. 

 



 

 49 

 

Figure 4.4. Particle transverse location as a function of time with 10 mM electrolyte concentration for different initial 

conditions: (a) 
0ŷ  = 0, 

0  = 0. (b)  
0ŷ  = -30, 

0  = 0. (c)  
0ŷ  = 0, 

0  = 30°. (d)  
0ŷ  = -30, 

0  = 30°. After 5000 time steps 

the particle motion is independent of the initial conditions. The particle has oscillatory motion in the same confined region 

with the same mobility in flow direction.  

 

Figure 4.4(c) indicates that an unstable equilibrium state exists at  ˆ 0,   0py   . A 

small disturbance can cause small nonzero transverse forces that initiate transverse motion 

and rotation. In our simulation, the disturbance comes from the numerical error, while in 

reality it is generated by Brownian motion. Therefore, the particle will never stay at the 

centerline unless it is under complete EDL-induced confinement.  
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Figure 4.5 shows the transverse location of the particle as a function of time, keeping the 

10 mM electrolyte concentration ( D̂ = 3.03) constant, while varying the channel heights yL̂ . 

The particle travels in a confined region, which becomes greater with increasing channel 

height, while the EDL thickness (scaled with particle radius) remains the same. Therefore, 

D̂  and yL̂ can be used to estimate the confined region. When the EDL from the particle 

overlaps the EDL from the wall, there is a repulsive force on the particle. We use D̂3  as a 

characteristic value of the EDL thickness, because it represents the point when the electric 

potential drops to ~5% of the surface value, when considering linearized Debye-Huckel 

theory [55]. Therefore the confined region can be estimated by  DyLh ̂34ˆˆ
05   when the 

particle size is insignificant compared to the channel height. The estimated confined regions 

05ĥ  are shown in Figure 4.5 as the dashed lines. The results indicate that 05ĥ  is a good 

estimation, although it overpredicts the confined region for all cases (from 4% to 29%). 
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Figure 4.5. Particle transverse location as a function of time with 10 mM electrolyte concentration (
D̂ = 3.03) in 

channels with different heights 
yL̂ = 100, 200, and 500. The particle moves in an oscillatory manner in a confined region. 

The confined region increases as the channel height increases, and it can be estimated by 
DyLh ̂12ˆˆ

05   (dashed lines). 

 

Next, we investigate the oscillatory movement of the particle in more detail. Due to 

symmetry, we only consider the particle in the lower half of the channel. Since thermal 

fluctuations are excluded in our simulations, the oscillatory particle motion in a 10 mM 

electrolyte solution is caused by the electric force and fluid stress on the particle. Figure 4.6 

shows the net transverse force and moment on the particle as a function of the particle angle 

at 4 different locations.  Here we used the approaches from the steady-state model to 

calculate the force and moment.16 When the particle is at the centerline ( 0ˆ py ) or near the 

centerline ( 10ˆ py ), the moment on the particle is relatively small and can be neglected, 

and the net transverse force depends only on the angle of the particle. This indicates that 
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translation dominates the particle motion in this region, and the particle translates towards 

the wall, if  900   due to the negative transverse force. 

When the particle is at 20ˆ py , near the lower confinement boundary 21ˆ y  (see 

Figure 4.3), the transverse force becomes more positive for all angles as shown in Figure 

4.6(a), which is due to the repulsive force from the bottom wall. In addition, the moment on 

the particle is significant (as shown in Figure 4.6(b)) and it changes with the angle of the 

particle. Two zero moment points can be observed at  86  and  12 , which results 

from the flow stress and the electric force on the particle. The slope of the moment-angle 

line indicates only  12  is a stable equilibrium point. If the particle is located outside 

the confined region ( 25ˆ py ), the repulsive force dominates and the net transverse force 

becomes positive for all angles. Therefore the particle will move quickly into the confined 

region regardless of its orientation.  

 

 

Figure 4.6. Transverse force and moment on the particle as a function of particle angle in a 10 mM electrolyte 

solution. The transverse force becomes positive everywhere when the particle is outside the confined region ( 25ˆ py ). 

The moment is small when the particle is near the centerline of the channel.  
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The particle tends to keep its angle at the stable equilibrium angle (  12stable  near the 

top and bottom boundaries of the confined region), due to the net moment on the particle. 

Figure 4.7 shows the angle of the particle as a function of time for 10 mM electrolyte 

concentration ( D̂ = 3.03). The observed angle in a 100 nm channel ( yL̂ = 100, solid line) is 

bounded by  14bound , which agrees well with the stable equilibrium angle. Angle 

confinement can be observed in a larger channel ( yL̂ = 200, dashed line) with similar 

bounds. This indicates nanochannels confine both the transverse location and angle of the 

particle. Note that the stable equilibrium angle may change with both the electrolyte 

concentration and the particle location.  
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Figure 4.7. The angle (in degree) of the particle as a function of time in a 10 mM electrolyte solution (
D̂ = 3.03) for 

yL̂ = 100 (solid line) and 
yL̂ = 200 (dashed line). The angle observed for 

yL̂ = 100 is bounded by  14 , which is close 

to the stable equilibrium angle estimated by calculating moment on the particle. Similar angle confinement can also be 

observed in a larger channel.  

 

Thermal fluctuations are neglected in the current numerical simulations. However, the 

effect of thermal fluctuations can be estimated from the particle Péclet number 

pp DULPe / , where U is the characteristic velocity, L  is the characteristic length, and 

aTkD Bp 6/  is the particle diffusion coefficient. Here we approximate L ~ 100 μm, 

since the order of particle velocity is ~10 μm/s and the time for measuring average particle 

velocity in experiments is ~10 s. For 10 mM electrolyte concentration, we have 54.0, xpPe  

in x-direction, indicating that motion due to thermal fluctuations are on the same order as the 

electrophoretic-induced motion. However when the average mobility measured over a 
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significantly longer time period, it should not be affected by thermal fluctuations. Therefore, 

the mobility estimates from the deterministic numerical simulations should be reasonably 

accurate.  In comparison, the velocity in y-direction is about 2% of that in the x direction, 

which results in a significantly smaller Péclet number 01.0, ypPe  for the y-direction. This 

indicates that diffusion in y-direction dominates, and the smooth oscillatory motion of the 

particle may not be observed in practical cases. Nevertheless, the confinement should still 

present due to the strong repulsive forces from the wall EDLs. 

 

4.2.2. Particle Mobility 

From the previous section, the particle’s transverse location was found to be dominated 

by the EDL thickness, which is dependent directly upon the electrolyte concentration. In 

addition, the particle mobility changes for different transverse locations. Therefore, the 

overall particle mobility also depends upon the distribution of transverse particle location. 

The distribution of transverse particle location can be estimated by tracking the particle 

location as a function of time. For example, the particle transverse location from Figure 4.3 

is sampled at each non-dimensional time step to construct the histograms shown in Figure 

4.8. Due to symmetry, we report one-sided histograms of particle location. The estimated 

confined regions 05ĥ  from the previous section are plotted as the dashed lines for both cases. 

Since the double layers overlap significantly for the 1 mM case ( 0ˆ
05 h ), the boundary of 

the confined region is plotted at 0ˆ y . This indicates that the particle should always be 

confined to the centerline, as observed from the distribution, and as concluded from the 

previous section. For the 10 mM case, the distribution is bounded by 05ĥ , and several peaks 
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on the histogram are observed near the boundary of the confined region. The increased 

repulsive force reduces the particle transverse velocity when it is located near the boundary. 

With the lower speed, the particle tends to stay longer near the boundary of the confined 

region, and therefore the particle can be observed with higher probability, which agrees with 

the classical probability distribution,    yuyP y/1~ .      

 

 

Figure 4.8. Particle distribution as a function of the particle location from the centerline to the side wall for (a) 1 mM 

and (b) 10 mM electrolyte concentration. The estimated confined regions 
05ĥ  are also plotted as the dashed lines. For 1 

mM the particle is subject to the repulsive force, even with slight deviation and therefore it is confined to the centerline. 

For 10 mM, the EDL screening is stronger and the particle does not sense the repulsive force until it is close to the 

boundary of the confined region, which explains the wider distribution.  

 

To obtain a comprehensive understanding of the confinement effect, we plot several 

particle distributions along with the estimated confined region in Figure 4.9. Here we 

consider 1, 10, 20, 50 mM electrolyte concentrations, and three different particle geometries: 

2 nm × 3.4 nm, 2 nm × 6.8 nm, and 2 nm × 17 nm. The distribution becomes wider with 

increased electrolyte concentration due to reduced EDL thickness and stronger screening. 
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Particle size does not affect significantly the location distribution, compared to electrolyte 

concentration. It is important to note that our simulations exclude thermal fluctuations, 

which would most likely modify the distribution of the particle in reality. 

 

 

Figure 4.9. Particle distribution as a function of the particle location from the centerline to the side wall for different 

electrolyte concentrations and particle geometries. The distribution becomes wider with increased electrolyte concentration 

due to reduced EDL thickness. The estimated confined regions are also shown as the dashed lines.    

 

The average mobility of the particle from the deterministic numerical simulation is 

calculated by dividing the total displacement by time. In addition, the approximate mobility 

can be obtained using the steady-state model from our previous work. Figure 4.10 shows 

dimensionless electrophoretic mobility from the two models (circles for the steady-state 

model and squares for the current deterministic numerical simulation model) as a function of 

electrolyte concentration for three different particle geometries. For low concentrations, the 
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mobility from the two models are in good agreement, because the particle is confined at the 

centerline. As concentration increases, the confinement gets weaker and the mobility is 

overpredicted (~10% higher) by the steady-state model. Since the particle translates and 

rotates simultaneously, the inclination of the particle increases the hydrodynamic drag and 

thus reduces particle mobility. Interestingly, particle geometry has greater influence on 

particle mobility than EDL confinement. Mobility is higher for higher aspect-ratio particles, 

because higher total electrical charge results in larger electric forces and higher velocities. In 

summary, the confinement is dominated by EDL thickness through electrolyte concentration, 

while the mobility can be affected by particle geometry due to the surface charge. The 

deterministic numerical simulation is required to calculate mobility accurately as electrolyte 

concentration is higher than 50 mM. 
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Figure 4.10. Electrophoretic mobility as a function of electrolyte concentration. The circles and squares correspond to 

steady-state model and the deterministic numerical simulation, respectively. The mobility from steady-state model is 10% 

higher than that calculated by deterministic simulation for 50 mM electrolyte concentration.   
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5. Zeta Potential Estimation 

In this chapter we use our model to estimate zeta potential of particles by the measured 

mobility from experiments. We focus on spherical particles and examine the effects of 

thermal fluctuations and particle migration. The double layer polarization and double layer 

interaction will both affect the zeta potential estimation, and the importance of electrolyte 

composition is also investigated.  

 

5.1. Thermal Fluctuations 

The importance of thermal fluctuations can be estimated from the particle Péclet number 

pp DULPe / , where U is the characteristic velocity, L  is the characteristic length, and 

aTkD Bp 6/  is the particle diffusion coefficient. Here we approximate L ~ 1 mm, since 

the order of particle velocity is ~100 μm/s and the time for measuring average particle 

velocity in experiments is ~10 s. For a 42 nm-diameter particle, we have 
3

, 1079.9 xpPe , 

indicating that motion due to thermal fluctuations is insignificant compared to 

electrophoretic-induced motion. The particle diffusion coefficient will further decrease if the 

size of particles increases, which results in even higher value of particle Péclet number. 

Therefore, the mobility estimates from the deterministic numerical simulations should be 

reasonably accurate. 

 

5.2. Particle Migration 

To evaluate the influence of particle migration, we compare the mobility of the particle 

in the steady-state model and the fluid-structure interaction model. The 42 nm-diameter 
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particle in a 100 nm-height channel was investigated. The zeta potentials of the particle and 

the walls were taken as -1 mV and -2 mV, respectively. Figure 5.1 shows trajectory of the 

particle initially located near lower wall of the channel with 1 mM electrolyte concentration. 

The repulsive forces from the walls keep the particle moving near the center plane.   

 

 

Figure 5.1. Trajectory of a 42 nm-diameter particle in a 100 nm-height channel with 1 mM electrolyte concentration. 

The zeta potentials of the particle and the walls were -1 mV and -2 mV, respectively. The repulsive forces on the particle 

keep it moving along the center plane. The average mobility is calculated by the total travel distance and the time required. 

 

The dimensionless total mobility is calculated by the total travel distance and the time 

used, and the results are shown in Table 5.1, along with the mobility calculated from the 

steady-state model. A good agreement between the two models indicate that the steady-state 

model is a good approximation to study electrophoresis of a 42 nm spherical particle. 

Because of the symmetric geometry of the particle, the drag difference from the orientation 

(with respect to the flow direction) is insignificant. Therefore the steady-state model is used 

to study electrophoretic motion of spherical particles and to estimate particle zeta potential. 
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Electrolyte concentration 

(mM) 

Total mobility, steady-state 

model ( /Vsm10 210 ) 

Total mobility, fluid-

structure interaction model 

( /Vsm10 210 ) 

1  8.98 9.17 

10  8.29 7.95 

 

Table 5.1. Mobility in steady-state model and fluid-structure interaction model. Here we consider a 42 nm particle in a 

100 nm channel. Two electrolyte concentrations (1, 10 mM) are used here, and a good agreement between the two models 

can be observed. 

 

5.3. Particle Zeta Potential Calculation 

 

5.3.1. Wynne et al. 2012 [38] 

In this paper the total mobility of 42 nm-diameter particle in 100-nm height channel was 

measured. Sodium-borate buffer solutions of pH 9 with 5, 10, 50 mM concentration are used 

as electrolyte solution. The wall zeta potential was measured by current monitoring. Table 

5.2 shows the particle zeta potentials predicted by our steady-state model. Here we also list 

the zeta potentials calculated by classic models (Smoluchowski and Huckel), and those 

values can be used as the lower and upper bounds.  
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Electrolyte 

concentration 

(mM) 

Total 

mobility 

( /Vsm10 28 ) 

Wall zeta 

potential 

(mV) 

Particle zeta 

potential 

(mV) 

Smoluchowski 






p
  

(mV) 

Huckel 






p

3

2
  

(mV) 

1  5.86 -115 -46.1 -24.9 -37.3 

10  4.67 -101 -48.9 -30.6 -45.9 

50  2.19 -80.1 -66.4 -51.3 -77.0 

 

Table 5.2. Particle zeta potential from measured total mobility and wall zeta potential. The particle is 50 nm and the 

channel height is 100 nm. Three different electrolyte concentrations are considered with pH = 9. Here we also listed the 

zeta potentials calculated from Smoluchowski and Huckel’s expressions as references.  

 

For low electrolyte concentrations (1, 10 mM) the particle zeta potentials predicted by 

our model are not bounded by the values from classic models. This may be due to double 

layer polarization (the nonlinear effect) and the interaction of the EDLs of the particle and 

walls. For the thick EDL (1 mM case) the predicted zeta potential is much greater than the 

ones from the classic models. Since the zeta potentials are not very high compared to 

thermal potential ( 2/ Tke B ), the interaction of EDLs would be the major reason for the 

discrepancy. The results show that our model is required to find the correct value of zeta 

potential with double layer interaction.  

 

5.3.2. Napoli et al. 2011 [39] 

In this paper wall zeta potentials were estimated by Smoluchowski’s formula, which 

used measured velocity of fluorescein in the channel and the charge of the fluorescein. Then 
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the electrophoretic mobility was obtained by the measured particle velocity and the wall zeta 

potentials. Electrophoretic mobility of 50 and 100 nm-diameter particle in 100 nm, 1 um, 

and 20 um-height channel are shown in Table 5.3. Acetate (pH 5), phosphate (pH 7), and 

borate (pH 9) with 1 and 10 mM concentration were used as electrolyte solutions. Here we 

also list the zeta potentials calculated by classic models (Smoluchowski and Huckel) as 

reference.  

 

 

Particle 

diameter 

Channel 

height 

pH Electrolyte 

concentration 

(mM) 

Electrophoretic 

mobility 

( /Vsm10 28 ) 

Particle zeta 

potential 

(mV) 

Classic 

models (mV) 

50 nm 250 nm 5 1 mM -1.44 -30.0 (-20.3, -30.4) 

10 mM -0.032 -0.57 (-0.46, -0.69) 

7 1 mM -1.28 -26.9 (-18.3, -27.5) 

10 mM -2.34 -45.4 (-33.5, -50.2) 

9 1 mM -5.20 NA (-72.5, -109) 

10 mM -2.90 -59.3 (-41.5, -62.2) 

1 μm 5 1 mM -1.29 -26.9 (-18.5, -27.7) 

10 mM 0.346 6.30 (4.95, 7.42) 

7 1 mM -2.81 -67.6 (-40.1, -60.2) 

10 mM -2.62 -52.2 (-37.5, -56.2) 

9 1 mM -9.51 NA (-136, -204) 

10 mM -4.39 NA (-62.8, -94.1) 
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20 μm 5 1 mM -2.04 -44.7 (-29.1, -43.7) 

10 mM -1.43 -26.3 (-20.4, -30.7) 

7 1 mM -3.24 -86.2 (-46.3, -69.5) 

10 mM -2.16 -41.2 (-30.9, -46.3) 

9 1 mM -7.80 NA (-112, -167) 

10 mM -3.80 -97.0 (-54.3, -81.5) 

100 nm 250 nm 5 1 mM -1.83 -37.7 (-26.1, -39.2) 

10 mM -1.87 -32.5 (-26.7, -40.1) 

7 1 mM -1.90 -39.4 (-27.2, -40.8) 

10 mM -4.03 -84.6 (-57.6, -86.4) 

9 1 mM -5.13 NA (-73.4, -110) 

10 mM -3.04 -56.1 (-43.5, -65.2) 

1 μm 5 1 mM -3.24 -77.8 (-46.3, -69.5) 

10 mM -0.984 -16.4 (-14.1, -21.1) 

7 1 mM -3.92 NA (-56.0, -84.0) 

10 mM -4.04 -81.4 (-57.8, -86.7) 

9 1 mM -9.67 NA (-138, -207) 

10 mM -5.45 NA (-77.9, -117) 

20 μm 5 1 mM -3.22 -76.9 (-46.0, -69.0) 

10 mM -2.72 -48.6 (-38.9, -58.3) 

7 1 mM -4.26 NA (-60.9, -91.4) 

10 mM -4.28 -91.3 (-61.2, -91.8) 

9 1 mM -10.2 NA (-146, -219) 
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10 mM -4.66 NA (-66.6, -99.9) 

 

Table 5.3. Particle zeta potential from measured electrophoretic mobility. Two particles (50 and 100 nm) and three 

channel heights (250 nm, 1 μm, 20 μm) are considered, and three electrolyte solutions (pH = 5, 7, 9) are used with two 

concentrations (1, 10 mM). Here we also listed the zeta potentials calculated from Smoluchowski and Huckel’s expressions 

as references.  

 

We notice that there 6 predicted zeta potentials locating outside the region by classic 

models. The channel height is large compared to the particle size and Debye length. 

Therefore the discrepancy should come from double layer polarization. In addition, no 

proper zeta potentials can be determined in 11 cases, because the measured mobility is 

greater the maximum value predicted by the model. As we discussed in chapter 3, the 

electrophoretic mobility first increases with zeta potential and then decreases due to the 

double layer polarization, which results in a maximum mobility for a given electrolyte 

concentration.  

We plot the mobility as a function of zeta potential in Figure 5.2. Here we used a 50 nm-

diameter particle in a 2 µm-height channel. The channel height is relatively large compared 

to the particle so the boundary effect is minimized. We find the maximum mobility are 

81076.3   and /Vsm 1095.3 28 for 1 and 10 mM electrolyte concentration, 

respectively. Similarly we obtained the maximum mobility for 100 nm-diameter particle in a 

2 µm-height channel. The maximum mobility for 100 nm particle are 81071.3   and 

/Vsm 1061.4 28  for 1 and 10 mM electrolyte concentration, respectively. Therefore we 

cannot obtain zeta potential for the 11 cases with electrophoretic mobility greater than the 

maximum value.  
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 A possible explanation is that the buffer solutions in the experiments are not a simple 

(+1, -1) electrolyte solution. The negative ions may be a combination of ions with different 

valences. Here we consider a simple case with (+1, -2) electrolyte solution with the same 

ionic strength. Then we follow the similar approach to calculate the mobility for 50 nm-

diameter particle in 20 µm-height channel as in Figure 5.2. The new maximum mobilities 

are 81014.4   and /Vsm 1002.5 28  (11.6% and 8.89% increase) for 1 and 10 mM 

ionic strength, respectively. This indicates the composition of electrolyte solution is also 

important to determine the particle zeta potential.  

 

 

Figure 5.2. Mobility as a function of particle zeta potential of 50 nm particle in 20 μm channel in electrolyte solutions 

with (a) 1 mM and (b) 10 mM ionic strength. Solid, dashed and dashed-dotted lines correspond to electrolyte with valences 

(+1, -1), (+1, -2), (+2, -1), respectively.  

 

We also plotted the mobility as a function of zeta potential in (+2, -1) electrolyte 

solutions in Figure 5.2. The results show that the maximum mobility decreases drastically 

compared to (+1, 1) electrolyte, and the location of the maximum shifts to lower zeta 

potentials. In this case the particle is negatively charged, and the positive ions are attracted 
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near it to form EDL. When the valence of positive ions increases, the electric force on the 

fluid near the particle increases. Therefore the drag force on the particle increases and results 

in the lower mobility. 

 

5.3.3. Semenov et al. 2013 [56] 

In this paper they measured amplitude and phase of the oscillatory particles under AC 

electric field in a symmetric micro fluidic cell by using optical tweezers. The particle 

diameter is 2.23 μm and the channel is 0.3 mm × 1 mm in cross-section. Three different 

electrolyte (KCl, CaCl2, LaCl3) with different concentrations (or ionic strength) were used in 

the experiments. Table 5.4 shows the results of particle zeta potentials predicted by our 

model and by the classic models. Since the channel height is much greater than the particle, 

EDLs will not interact with each other. Therefore the case locating outside the classic region 

is caused by double layer polarization. In addition, positive mobilities were observed in three 

cases for LaCl3 electrolyte solution, and the predicted zeta potentials are not bounded by the 

values from classic models. Since the zeta potentials are not high enough to cause double 

layer polarization, it indicates that the classic models may not be directly applied to trivalent 

electrolyte with charge inversion. For CaCl2 and LaCl3 at 10 μM concentration, our model 

cannot provide a valid zeta potentials because the measured mobilities are greater than the 

maximum mobility. One possible reason is that the concentration of the proton (1.58 μM for 

a pH=5.8 solution) is comparable to the positive ions. Therefore the concentration of 

positive ions would be greater than 10 μM, and the valence and diffusion coefficient of the 

ions are not constants, which can affect the particle mobility measured in experiments.     
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Electrolyte Electrolyte 

concentration 

(mM) 

Electrophoretic 

mobility 

( /Vsm10 28 ) 

Particle zeta 

potential (mV) 

Classic models 

(mV) 

KCl 400 -1.33 -19.1 (-19.0, -28.5) 

100 -1.45 -21.1 (-20.7, -31.1) 

10 -2.36 -35.9 (-33.7, -50.6) 

1 -3.28 -51.1 (-46.9, -70.3) 

0.4 -4.37 -70.2 (-62.5, -93.7) 

0.1 -4.75 -88.9 (-67.9, -102) 

0.04 -4.21 -83.7 (-60.2, -90.3) 

0.01 -3.55 -78.8 (-50.8,-76.1) 

CaCl2 100 -0.578 -9.50 (-8.26, -12.4) 

10 -1.09 -17.3 (-15.6, -23.4) 

1 -1.64 -23.9 (-23.4, -35.2) 

0.1 -2.54 -42.5 (-36.3, -54.5) 

0.01 -3.34 NA (-47.7, -71.6) 

LaCl3 100 0.707 8.10 (10.1, 15.2) 

40 0.610 7.78 (8.72, 13.1) 

10 0.369 5.24 (5.28, 7.91) 

4 0 0 (0, 0) 

1 -0.514 -8.76 (-7.35, -11.0) 

0.4 -0.916 -13.6 (-13.1, -19.6) 
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0.1 -1.46 -22.5 (-20.9, -31.3) 

0.01 -2.3 NA (-32.9, -49.3) 

 

Table 5.4. Particle zeta potential from measured electrophoretic mobility. A 2.23 μm particle is used in a large channel 

(0.3 mm × 1 mm), and three electrolyte (KCl, CaCl2, LaCl3) are used with several concentrations. Here we also listed the 

zeta potentials calculated from Smoluchowski and Huckel’s expressions as references.  

 

The results show that our model can be used to obtain accurate zeta potentials of the 

particles, while the classic models fail to capture double layer polarization and double layer 

interaction.  
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6. Conclusions and Future Directions 

 

6.1. Conclusions 

Numerical simulation was used to investigate the electrophoretic mobility of a spherical 

particle in a confined nanochannel. The numerical model was validated for a wide range of 

zeta potentials, electrolyte concentrations, and channel sizes. The results indicate that, for a 

50 nm spherical nanoparticle in a 100 nm nanocahnnel, the mobility of a particle located at 

the centerline of the nanochannel agrees to within 1% of the average mobility for a particle 

distributed transversely throughout the nanochannel. 

When a nanoparticle is confined in a nanochannel, overlapping EDLs between the 

charged particles and nanochannels walls can be important. Charged walls not only induce a 

background flow (electro-osmotic flow), but also affect the particle’s hydrodynamic drag 

and surface charge density. Particle mobility in nanochannels can be greater than that in 

microchannels, if the electrolyte concentration is chosen properly. 

The numerically-simulated results indicate that different size nanoparticles may be 

electrophoretically-separated using nanochannels, even if the particles have similar zeta 

potentials.  For example, a 100 nm-wide nanochannel could be used to separate 50 nm and 

10 nm-diameter particles for a wide range of electrolyte concentrations. A new method is 

proposed for determining zeta potentials of the particle and channel walls by measuring the 

mobility of a particle using two different height channels. This method can avoid errors 

generated from measuring electro-osmotic velocity, and it is applicable over a wide range of 

zeta potentials. 
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Next, fluid-structure interaction is included in the model to investigate particle mobility 

and the confinement effect of a two-dimensional rod-like particle in a nanochannel. The 

results indicate that different particle motions can be observed in electrolyte solutions with 

different concentrations. For the 1 mM case, the particle is confined at the centerline of the 

channel due to the overlapping EDLs between the charged particles and nanochannels walls. 

When electrolyte concentration is increased, the particle can move in a confined region, 

which is roughly predicted by the estimated confined region 05ĥ . The confined region is 

determined by the electrolyte concentration as well as the channel height. In addition, the 

oscillatory particle motion can be explained by examining the transverse force and the 

moment on the particle, which show a strong dependence on the angle and the transverse 

location of the particle. Due to the interactions of the EDLs from the wall and the particle, 

stable equilibrium angles of the particle exist and the observed angle during the motion lies 

mostly within the stable equilibrium angle at the boundary of the confined region. 

The distribution of transverse particle location within the confined region is important 

because it affects the overall particle mobility. Simulations were conducted to study the 

distribution using three different sizes of rod-like particles and four different electrolyte 

concentrations, in a 100 nm high nanochannel.  

Particle mobility was calculated using the deterministic numerical simulation model, and 

compared to the approximate particle mobility obtained from our previously reported steady-

state model. The results agree well for the 1 mM electrolyte case. However, for the 50 mM 

case, the calculated mobilities differ by up to 10 %. This indicates the importance of using 

the deterministic numerical simulation model to obtain accurate non-spherical particle 

mobility when considering high electrolyte concentrations. 
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Finally, we combine our model with the experimental data to estimate particle zeta 

potential. The effects of electromigration and thermal fluctuations are insignificant when we 

consider spherical particle with diameter greater than 42 nm under moderate external electric 

field. The results show that the classic models fail to provide accurate zeta potential because 

double layer polarization and interaction affect particle mobility for higher zeta potential in a 

narrow channel. In addition, the composition of electrolyte solution also affects the particle 

mobility. Therefore it is also important to understand the properties of electrolyte solutions 

in each experiment.    

 

6.2. Future Directions 

In this work we mostly studied electromigration of 2D rods due to the computational 

limits. Here we show some preliminary results for motion of a 3D rod in a channel. Figure 

6.1 shows the trajectory of a nanorod with 2 nm-diameter and 3.4 nm-height in a 100 nm-

height nanochannel in a 1 mM KCl solution. The applied external electric field is 1000 V/m, 

and the zeta potentials of the particle and the walls are -1 mV and -2 mV, respectively. Due 

to the interaction of the thick EDLs, the particle moves toward the center plane and stay near 

it, which is similar to the motion of 2D rods for lower electrolyte concentrations in chapter 4. 

However, the major axis of the rod does not align with the direction of the flow. This is 

because the 3D rod is able to move in z-direction and rotate about y-axis, which are not 

allowed in 2D simulations. Since the hydrodynamic force on the particle is affected by the 

angle between the rod and flow direction, the velocity of a 3D nanorod changes with its 

location and orientation in an unsteady manner. Therefore, the steady-state model with 

assumption of an aligned rod in a channel cannot provide an accurate mobility.   
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Figure 6.1. Trajectory of a nanorod in a nanochannel with 1 mM KCl electrolyte solution. The repulsive forces from 

the wall make the particle move toward the center plane. The major axis of the rod does not align with the direction of 

applied electric field because the rod can rotate about y-axis. The velocity of the particle changes with its location as well 

as orientation so only averaged mobility can be obtained.  

 

Figure 6.2 shows the trajectory of the same nanorod in a 20 mM KCl solution. Since the 

EDLs are thinner, the repulsive forces on the particle reduce to zero before it reaches the 

center plane. The rotation of the rod is stronger compared to 1 mM case, so the drag force 

changes rapidly as well as the velocity.  
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Figure 6.2. Trajectory of a nanorod in a nanochannel with 10 mM KCl electrolyte solution. The particle still moves 

toward the center plane but it does not reach it due to thinner EDLs. The rotation of the particle is much stronger than 1 

mM case, and the variation of orientation affects its velocity and the average mobility.  

 

The above preliminary results show that the steady-state assumption is not valid for a 

rod-like particle. Therefore a comprehensive model including fluid-structure in a 3D domain 

is required to calculate the accurate mobility. However, the 3D fluid-structure simulations 

require a great number of meshes to capture the sharp change inside the EDLs, so it requires 

better hardware and takes longer time to find a solution. High speed computing such as 

parallel computing could be a solution to improve the efficiency of computation. In addition, 

since the system of equations are highly coupled, the convergence of the simulation is also 

an issue. An improvement of the solver is helpful to reduce iteration time and to make the 

simulation more stable.  

Although thermal fluctuations may not be important for large particles, they could be 

important when we consider smaller particles with arbitrary shapes. It is possible to include 
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thermal fluctuations in the model by adding a random force on the particle according to 

Langevin dynamics. However, the reaction on the fluid adjacent to the particle should be 

modeled properly. In addition, we only consider undeformed particles in this study. When 

the particle has high aspect ratio, it could bend to change the geometry as well as its velocity. 

It is interesting to study deformation of a soft particle in an electrokinetic flow and how the 

geometry of the particle affects the mobility. 
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